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ABSTRACT

A methodology is presented for objectively optimizing nonorographic gravity wave source parameters to

minimize forecast error for target regions and forecast lead times. In this study, we employ a high-altitude

version of the Navy Global Environmental Model (NAVGEM-HA) to ascertain the forcing needed to

minimize hindcast errors in the equatorial lower stratospheric zonal-mean zonal winds in order to improve

forecasts of the quasi-biennial oscillation (QBO) over seasonal time scales. Because subgrid-scale wave ef-

fects play a large role in driving theQBO, this method leverages the nonorographic gravity wave drag (GWD)

parameterization scheme to provide the necessary forcing. To better constrain the GWD source parameters,

we utilize ensembles of NAVGEM-HA hindcasts over the 2014–16 period with perturbed source parameters

and develop a cost function to minimize errors in the equatorial lower stratosphere compared to analysis.

Thus, we may determine the set of GWD source parameters that yields a forecast state that most closely

agrees with observed QBO winds over each optimization time interval. Results show that the source mo-

mentum flux and phase speed spectrum width are the most important parameters. The seasonal evolution of

optimal parameter value, specifically a robust semiannual periodicity in the source strength, is also revealed.

Changes in optimal source parameters with increasing forecast lead time are seen, as the GWD parameter-

ization takes on a more active role as QBO driver at longer forecast lengths. Implementation of a semi-

annually varying source function at the equator provides RMS error improvement in QBO winds over the

default constant value.

1. Introduction

It has long been understood that internal gravity

waves play an integral role in the large-scale circula-

tion of the middle atmosphere. They are emitted from

a variety of tropospheric sources, both orographic and

nonorographic. Some propagate into the stratosphere

and mesosphere, where they break and deposit some

or all of their momentum locally. Since this process

occurs quasi continuously around the globe, it sus-

tains planetary-scale gravity wave drag (GWD) forces

that drive the climate and meteorology of the middle

atmosphere across a broad range of spatial and tem-

poral scales (Fritts and Alexander 2003).

While both orographic and nonorographic gravity

waves are critical drivers of the extratropical strato-

sphere and mesosphere (e.g., Holton 1983; McLandress

1998; Hitchman et al. 1989; Alexander and Rosenlof

2003; Scinocca et al. 2008), the dominant quasi-biennial

and semiannual circulations of the tropical strato-

sphere and mesosphere are predominantly impacted

by nonorographic GWD (e.g., Dunkerton 1982, 1997;

Baldwin et al. 2001; Peña-Ortiz et al. 2010). Since finite

computational resources force current global numeri-

cal weather prediction (NWP) and climate models to

operate at space–time resolutions that do not resolve

short-wavelength components of the atmospheric wave

spectrum, accurate parameterizations of subgrid-scale

nonorographic GWD remain an indispensable compo-

nent of these models.
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Most nonorographic gravity wave drag parameter-

ization schemes begin by specifying the source-level

wave features based on observational estimates of

momentum flux and spectral properties in the real atmo-

sphere, which are used to build a parameterized source-

level wave spectrum whose propagation upward and

subsequent dissipation are modeled by a chosen dy-

namical framework for parameterizing these processes.

Typically, the global atmospheric wave spectrum, in

particular the short wavelength regime represented

by the GWD parameterization, has been character-

ized using decades of radiosonde and satellite obser-

vations (Allen and Vincent 1995; Tsuda et al. 2000;

Alexander et al. 2010; Zhang et al. 2012). In con-

trast to curating climatological nonorographic grav-

ity wave spectra through offline tuning, some studies

have proposed and implemented schemes where source

characteristics are derived directly from parameter-

ized subgrid-scale convective activity within the model,

which is a more internally consistent approach based

on our physical understanding of gravity wave sources

(e.g., Beres et al. 2004; Richter et al. 2010; Schirber et al.

2014). However, varying implementations of nonoro-

graphic GWD parameterization in models and differ-

ences in modeled large-scale flow patterns mean that

the parameterized wave spectrum that provides the

highest NWP or climate skill may differ among models

(e.g., Bushell et al. 2015; Serva et al. 2018).

A persistent practical difficulty with all parameter-

izations of nonorographic GWD is the need for ad hoc

adjustments (tuning) once implemented in a model,

a problem further complicated as models enter a new

‘‘gray zone’’ era where both gravity waves and convec-

tion are partially resolved and partially parameterized

(e.g., Vosper et al. 2016; Chen et al. 2018). As hori-

zontal and vertical resolutions are routinely changed

in any given model from application to application,

the partitioning between parameterized and resolved

GWD also changes, necessitating careful retuning

of the parameterized GWD component. Since the

amount of resolved gravity wave momentum flux (and

hence the corresponding amount of GWD requiring

parameterization) also proves sensitive to many other

model characteristics besides grid resolution (e.g.,

the levels and types of numerical diffusion; see

Skamarock 2004; Shutts and Vosper 2011), objective

procedures for retuning parameterized GWD in re-

sponse to changes in model properties have proven

elusive. To the limited extent that offline GWD tuning

methods for the middle atmosphere have been dis-

cussed, they focus mainly on ad hoc ‘‘trial and error’’

approaches in which GWD parameters are exhaus-

tively modified to most closely reproduce some subset

of observational states (see, e.g., Kim et al. 2003;

Scinocca et al. 2008; Eckermann et al. 2009; Long

et al. 2014).

A more promising approach to emerge recently uses

objective data assimilation methods to identify subgrid-

scale drag deficits in model forecasts, which are then

minimized using a cost function approach that depends

on key parameters of the model’s GWD parameteri-

zation (e.g., Pulido et al. 2012; Tandeo et al. 2015). We

explore this type of objective approach here for the

specific problem of tuning parameterized nonoro-

graphic GWD driving of the tropical stratosphere

within a model.

Nonorographic GWD parameterization is an im-

portant component of an accurate simulation or fore-

cast of the tropical quasi-biennial oscillation (QBO),

which is known to be primarily driven by vertically

propagating waves (Lindzen and Holton 1968; Holton

and Lindzen 1972; Baldwin et al. 2001) with a signifi-

cant contribution from small-scale nonorographic

gravity waves (Alexander and Holton 1997; Dunkerton

1997). The QBO is also a potent source of predictabil-

ity in the middle atmosphere owing to relatively long

tropical stratospheric memory (Scaife et al. 2014).

Many studies have characterized the impact of the

QBO on forecast skill in regions across the globe

(Holton and Tan 1980; Hitchman and Huesmann 2009;

Garfinkel and Hartmann 2011; Garfinkel et al. 2018).

Since accurate simulation of the QBO is important

for extended-range prediction, tuning a model’s non-

orographic GWD parameterization specifically for the

QBO is an important step toward this goal. The pres-

ent work is timely given new coordinated initiatives to

improve QBO modeling and prediction, and in par-

ticular the role of parameterized nonorographic GWD

(Butchart et al. 2018).

We propose in this study a methodology for deter-

mining the optimal source parameters of a nonoro-

graphic GWD parameterization, in the sense that

forecast error is minimized. In particular, we are inter-

ested in improving seasonal forecasts of the strato-

spheric QBO winds, but the methodology may be

adapted to regions of any size and location globally.

Details of the working forecast model, its nonoro-

graphic GWD parameterization, and the formulation

of the optimization technique are given in section 2.

In section 3 we describe our experimental design,

including model improvements and specification of

the methodology for accurate QBO simulation. Re-

sults of the optimization are shown in section 4, and

improvements in forecast skill are discussed in sec-

tion 5. A summary of the study’s findings follows in

section 6.
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2. Model and methodology

a. NAVGEM-HA model description

In this study, analysis and forecast winds were pro-

vided by a high-altitude (HA) configuration of the Navy

Global Environmental Model (NAVGEM-HA; see,

e.g., McCormack et al. 2017). As the Navy’s operational

global NWP system, NAVGEM couples a global model

issuing forecasts with a data assimilation system (DAS)

issuing meteorological analyses that serve both as at-

mospheric initial conditions and verification fields for

the forecasts (Hogan et al. 2014).

For this work, we operated NAVGEM-HA with tri-

angular spectral truncation at total wavenumber 119

(T119, corresponding to gridbox dimensions of ;18 on
the quadratic Gaussian grid), with 74 (for the analysis)

or 108 (for the forecasts) hybrid s–p model levels. As

shown in Fig. 1, the L108 configuration provides im-

proved vertical resolution within the 100–1-hPa region

of interest in this work, relative to other layer profiles

used in recent NAVGEM studies (e.g., Kuhl et al. 2013;

Barton and McCormack 2017; Eckermann et al. 2018).

Most notably for this study, L108 provides the requisite

stratospheric vertical resolution to sustain a prognostic

QBO in themodel (e.g., Giorgetta et al. 2006;McCormack

et al. 2015; Anstey et al. 2016).

The T119L74 NAVGEM-HA configuration was run

in an historical reanalysis mode to generate a contig-

uous set of meteorological reanalyses spanning a 3-yr

period from 2014 to 2016. These NAVGEM-HA an-

alyses were produced using a four-dimensional varia-

tional (4DVAR) data assimilation (DA) algorithm, with

background errors specified as linear combinations

of static covariances and flow covariances from an 80-

member forecast ensemble at the inner loop (T47) res-

olution (so-called hybrid 4DVAR; see Kuhl et al. 2013).

In the 100–1-hPa range of interest, the system assimi-

lated data from a dense network of heterogeneous sat-

ellite and suborbital observations (see, e.g., Figs. 6–8

of Eckermann et al. 2018). Following McCormack et al.

(2017), we combined the resulting 6-h analyses with

the 3-h outer loop forecast from each update cycle to

produce global fields every 3 hours, to reduce tidal

aliasing at upper levels.

These reanalysis fields are used both as initial con-

ditions and verification for extended-range T119L108

forecasts used here to optimize parameterized non-

orographic GWD. The NAVGEM forecast model used

here is global, semi-implicit and semi-Lagrangian, and

incorporates a suite of parameterizations tuned for

tropospheric and stratospheric NWP (Hogan et al.

2014). The HA configuration is supplemented with

dynamical modifications and additional physical pa-

rameterizations for mesospheric NWP, including pa-

rameterized nonorographic GWD and exothermic

chemical heating (e.g., McCormack et al. 2017).

b. NAVGEM-HA GWD parameterization

Because the specifics of the nonorographic GWD

parameterization scheme are relevant to our optimi-

zation approach described in later sections, we briefly

review its formulation in NAVGEM-HA. The basic

approach, illustrated schematically in Fig. 2, follows

closely that of the version 3.0 Whole Atmosphere

Community Climate Model (WACCM; Garcia et al.

2007). At each horizontal grid point, a spectrum of

waves is simulated, with each wave assigned a unique

ground-based horizontal (zonal) phase speed cj in

the range usrc 6 cr, where usrc is the zonal wind at the

launch level (model pressure psrc) and cr is called the

phase speed range. By design, the scheme does not

parameterize waves with source-level intrinsic phase

speeds jcj 2 usrcj greater than jcrj. The source-level

momentum flux of wave j is a Gaussian function of

intrinsic phase speed:

t
j
5 t 3 exp

2
642(c

j
2 u

src
)2

c20

3
75, (1)

t5 t
src
F(u, t),

FIG. 1. NAVGEM pressure–height layer thicknesses DZk vs

pressure altitude Zk for L108 (red) used here, operational L60

(black) (Kuhl et al. 2013), L74 HA (green) (Eckermann et al.

2018), and L80 (blue) (Barton and McCormack 2017). The gray

band shows the altitude region focused on in the present study.
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where t is the prescribed peak source flux, specified

using a base value tsrc modulated by a latitudinally

and seasonally varying component F(u, t), and c0 is

the phase speed width. The Gaussian is truncated at

cj 5 usrc 6 cr (see Fig. 2, bottom panel). By centering

the Gaussian at usrc, wave momentum is distributed

symmetrically at the source level among waves with

positive (eastward) and negative (westward) intrinsic

phase speeds.

The upward vertical propagation of waves from this

source and flux deposition at upper levels is parame-

terized, following Lindzen (1981), using hydrostatic

wave equations that ignore any lateral group compo-

nents. At each model level in the column above the

launch height, the momentum flux saturation thresh-

old for wave j is calculated as

t
sat,j

5

�������
kr(u2 c

j
)3

Fr2cN
2

�������
, (2)

where k is zonal wavenumber, r is density, u is the

background zonal wind at that level, Frc is the critical

Froude number for wave breaking (a constant of order

unity), and N is the buoyancy frequency at that level.

If the momentum flux carried by a wave exceeds this

local saturation limit, the excess is deposited into the

background flow. The resulting momentum flux diver-

gence provides a zonal mean-flow acceleration:

a
j
5 g�

›t
j

›p
, (3)

where g is gravitational acceleration and � is a param-

eterized efficiency (or intermittency) of wave breaking.

The acceleration aj is given the same sign as u2 cj. Note

that a parameterized wave is totally absorbed at its

critical level where cj 5 u because tsat,j 5 0. In the left

and right panels of Fig. 2, we show how the saturation

limit may vary with height and the wave’s phase speed,

especially in relation to the background zonal wind

profile, and how the momentum carried vertically by the

parameterized waves is deposited.

The total GWD tendency is obtained by summing

the aj from all parameterized waves j in Eq. (3). Since a

large number of waves is required to discretize the flux

FIG. 2. Schematic illustration of the nonorographic GWD scheme in NAVGEM-HA. A zonal wind profile for

an equatorial grid point is shown, and two waves with phase speeds cj 5630m s21 are launched (green curves) at

psrc ; 500 hPa. The bottom plot shows the Gaussian variation of source-level momentum flux with phase speed

given source-level zonal wind usrc ; 4m s21, tsrc ; 4.5mPa, c0 ; 30m s21, and cr ; 50m s21. The left and right

panels demonstrate how eachwave is attenuated at levels where the wavemomentum flux (green) exceeds the local

saturation limit calculated from Eq. (2) (blue). The left panel uses signed flux values for illustration only. Corre-

sponding zonal wind acceleration [Eq. (3)] due to wave breaking is plotted in red.
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Gaussian in Eq. (1) accurately, this GWD algorithm can

be computationally expensive when implemented in

models. Eckermann (2011) modified this scheme into

a stochastic analog to improve both the computational

efficiency and ensemble spread of GWD within models,

which facilitated its transition into NAVGEM for use

in operational NWP. This stochastic version, used in

NAVGEM-HA and hence in this work, treats only a

single wave at each grid point, with the phase speed

randomly assigned in the range usrc6 cr. The efficiency

� must be upscaled to account for the difference in

total source momentum flux between the multiwave

and single-wave schemes, but otherwise no other changes

are necessary since, as shown by Eckermann (2011), the

same time-mean flux and mean-flow acceleration are

produced, leading to similar time-mean circulation re-

sponses in models. A range of subsequent studies have

pursued similar stochastic approaches to parameteriz-

ing nonorographic GWD and have reported similarly

acceptable performance in modeling both tropical and

extratropical middle atmospheric circulations (e.g., Lott

and Guez 2013; McCormack et al. 2015; de la Cámara

et al. 2016; Garcia et al. 2017; Serva et al. 2018).

While the basic approach of the GWD parameteri-

zations used in NAVGEM-HA and WACCM 3.0

(Garcia et al. 2007) are similar, the implementation

of the scheme in NAVGEM-HA differs from the

WACCM 3.0 implementation in a number of ways.

Effects of radiative damping and eddy diffusive mixing

are turned off, and all parameterized momentum that

reaches the upper sponge layer of themodel is deposited

there so that circulation responses due to downward

control may be realized (Haynes et al. 1991; Garcia

and Boville 1994). The GWD-induced heating rates

are calculated differently [see Eq. (7) of Eckermann

2011]. Although the temperature tendency is applied

by default in both WACCM 3.0 and NAVGEM-HA,

for this study we did not apply this tendency, since this

term is generally important only in the mesosphere

and higher.

The standard NAVGEM-HA GWD parameteriza-

tion is tuned so that momentum is deposited mostly in

the extratropical mesosphere. Motivation for the pres-

ent study arose from the realization that our T119L108

model does not resolve the full spectrum of convectively

generated tropical waves needed to drive theQBO (e.g.,

Krismer et al. 2015), that nonorographic GWD param-

eterized using the default configuration does not gen-

erate and sustain a realistic QBO in free-running model

simulations, and that an objective retuning of the source

parameters (e.g., McCormack et al. 2015) would be re-

quired inter alia to accurately forecast the QBO in

equatorial stratospheric winds on seasonal time scales.

To this end, we have selected five parameters for opti-

mization in this study: ‘‘source strength’’ tsrc (default

4.5mPa), launch height psrc (default 500 hPa), phase

speed Gaussian width c0 (default 30m s21), phase

speed range cr (default 80m s21), and zonal wave-

number k (default wavelength 2p/k 5 400/a for radius

of Earth a). These parameters are assigned globally,

while the source flux varies around the nominal tsrc 5
4.5mPa value with latitude and season according to

a prescribed F(u, t) in Eq. (1) that varies with season

in the extratropics but is seasonally invariant in the

tropics (see Fig. 1b of Eckermann 2011).

The specific influence of each source parameter on

the parameterized acceleration aj varies and so can be

used to tune circulation responses in the model (see,

e.g., section 3 of Eckermann et al. 2009). Changes in

the source strength tsrc produce a uniform relative

change in source flux across the parameterized spec-

trum in Eq. (1), meaning each wave j will see an equiv-

alent scaling of its source-level momentum flux leading

to more GWD throughout model upper layers. How-

ever, changes to the phase speed width do not affect

waves across the entire spectrum equally; in fact, only

medium-speed (jcj 2 usrcj ; 30m s21) waves will see

a significant absolute change in source momentum

flux, while waves with phase speeds nearer usrc or in the

tails of the distribution receive little to no absolute

change in source momentum flux. In general, raising

the source flux by any means in isolation will produce

larger parameterized accelerations and will tend to

move the onset of wave–mean flow interaction to lower

levels. The phase speed range eliminates any waves

faster than a desired intrinsic phase speed limit and

therefore has little effect when this value is larger than

typical wind speeds in the model layers of interest,

because the waves at the ends of the spectrum are

too fast to interact with the background flow locally.

Because wavenumber k acts more or less as a simple

scaling coefficient for the saturation flux profile via

Eq. (2), a higher value will tend to move breaking al-

titudes up, meaning, for example, that more flux is

deposited nearer to a critical level, leading to more

sharply peaked aj profiles. Last, the launch height

controls the depth of the filtering layer below the tro-

popause, which can lead to significantly different

GWD profiles and middle-atmosphere responses

(e.g., Manzini and McFarlane 1998).

The goal of this study is to optimize the GWD source

parameters to produce realistic forecasts of the QBO.

In the standard NAVGEM-HA implementation, source

parameters are assigned one value for the entire global

domain, so changing their values may have a more

drastic effect on the overall circulation of the forecast
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model than desired, which could indirectly affect the

QBO and negatively impact the fidelity of the opti-

mization technique. We have therefore modified the

nonorographic GWD parameterization scheme in

NAVGEM-HA so that the five parameters selected

for optimization (tsrc, psrc, c0, cr, and k) are varied in-

dependently within latitude bands. The parameters are

now specified at a set of ‘‘anchor latitudes,’’ which we

have chosen to be at 908, 608, 408, and 208S; 08; and 208,
408, 608, and 908N, and vary linearly between adjacent

latitudes. In the equatorial band 58S–58N, the values

are kept equal to the specified equatorial anchor point

value rather than being linearly interpolated. Unless

noted otherwise, for ensembles of QBO hindcasts an-

alyzed in this study the parameters are given their

default value at each anchor latitude, and we apply

perturbations in the equatorial band only.

c. GWD parameter optimization

Here we develop a general methodology by which we

can determine the ‘‘best’’ (optimal) values of a subset

of GWD source parameters that minimize the model’s

hindcast error, relative to analysis, in equatorial strato-

spheric zonal-mean zonal wind u. The simplest tuning

method, often called ad hoc tuning, is to run a large

number (i.e., an ensemble) of hindcasts with varying

source parameters and select the GWD tuning of the

member with the smallest error. However, with a large

set of tuning parameters, the probability of sampling

the optimal parameter space is small, in addition to

being inefficient.

The problem can be simplified if the hindcast error at

all altitudes of interest can be linearly related to changes

in a GWD source parameter over some range of per-

turbations. Assuming a change in the u profile over the

hindcast period Dt of Du, we can then express the model

response as a simple linear matrix M governing the

perturbation equation:

Mx0 5Du0 5Du2Du
def

, (4)

where x0 is the vector of perturbations of the GWD

source parameters from their default values and Dudef

is the change in u over the hindcast period Dt for default
values of the GWD parameters. Inclusion of this term

satisfies the trivial case x0 5 0. Because the hindcasts are

launched from the same set of initial conditions at time

t0, Du
0 simplifies to (u2 udef)jt5t01Dt5 u0, which is just

the difference in hindcast wind profiles at the final time t.

Thus, M provides the response of the hindcast zonal-

mean zonal wind profile at lead time Dt to changes in the

GWD source parameters. Each column in M quantifies

the linearized Du response to perturbations in one of the

GWD source parameters, while each row inM quantifies

the response within a different vertical model layer.

To minimize the total error between the hindcast and

our verifying analysis (hereafter theA2 F error) we first

replace ujt5t01Dt above with the state we require, uA,

the QBO wind profile from our verifying analysis at

the final time t. Since the linear matrix equation in Eq.

(4) is overdetermined, with more analyzed wind values

uA on model layers (rows) to reproduce than source

parameters x0 available to vary (columns), an exact x0

solution does not exist. Thus, we estimate a ‘‘best’’ x0

from Eq. (4) using least squares minimization of the

norm kMx0 2 (uA 2udef)jt5t01Dtk.
One implicit assumption of such an approach is that

all of the A 2 F error is due to forecast error from the

nonorographic GWD parameterization scheme.While

this is never the case in practice (see section 3a), with

respect to the QBO it is likely that the majority of the

wind error comes from insufficient wave driving by the

parameterized nonorographic gravity waves (Scaife

et al. 2000; Giorgetta et al. 2002; Geller et al. 2016).

As a consequence, this methodology will minimize the

model error from any source so long as that error proj-

ects strongly onto the model response due to changes

in nonorographic GWD source parameters.

Since Du is the result of integration of the full non-

linear forecast model, M must contain information

about the change in zonal wind due to the combined

effects of every model component, not just the GWD

parameterization. While this makes it infeasible to ob-

tain M precisely, we can estimate it as follows. First, we

note that M as defined in Eq. (4) is conceptually the

same tangent-linear form of the forecast model uti-

lized in the 4DVAR DA algorithm [e.g., Eq. (6) of

Eckermann et al. 2018], but here the tangent-linear

model (TLM) is one linearized around a background

forecast trajectory defined by the default source-level

parameters of the GWD parameterization. Thus, we

can populate all the elements of the TLM matrix M

by first performing an ensemble of hindcasts in which

the GWD source parameters are perturbed symmetri-

cally about the default state. MatrixM is the matrix that

best satisfies (in a least squares sense) the following

system of equations:

M
�
x01 � � � x0E

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

X

5
�
u0
1 � � � u0

E

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

U

, (5)

where each column in X is the vector of perturbations

of the GWD source parameters in the selected subset

for ensemble member e (x0e), and the corresponding

column in U is the deviation of the hindcast profile of

ensemble member e (ue) from the default hindcast (udef)
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at time t5 t01Dt. We solve Eq. (5) using multiple linear

regression to fit the linear model M in the multidimen-

sional parameter space.

To gauge the validity of the linearity assumption in-

herent to M for a given GWD source parameter subset,

we correlate the perturbation of the actual ensemble

member hindcast profile, u0
e, with the perturbation pro-

file predicted using the linear modelM and the ensemble

member parameters x0e [i.e., u0
pred 5Mx0e as in Eq. (4)].

The squared correlation coefficient (R2) between u0
e and

u0
pred will be used to assess the accuracy of the lineari-

zation approximation, with high R2 values denoting

strong linearity. Low R2 values may indicate that in-

teraction terms, which we assumed did not exist when

we wrote Eq. (4), contribute significantly to u0. Poor
prediction skill in the region of interest may also pro-

mote low R2 by introducing significant hindcast error

that is unrelated to the GWD source parameters. Ex-

amples and validation of the approach will be provided

in the next section.

3. Experimental setup

a. Model adjustments for QBO simulation

The change in zonal mean wind over the forecast

period Du can be directly influenced by other aspects

of the model apart from parameterized GWD, such

as the dynamical core (Yao and Jablonowski 2015),

horizontal and vertical resolution (Hamilton et al. 1999;

Giorgetta et al. 2006; Anstey et al. 2016), convection

parameterizations (Horinouchi et al. 2003; Yang et al.

2011), and vertical diffusion (McCormack et al. 2015).

Here, we describe how these components of the fore-

cast model are configured to support a realistic QBO

simulation in NAVGEM-HA hindcasts that produce

the background forecast trajectoryDudef aroundwhich our

governing GWD matrix equation in Eq. (4) is linearized.

An ensemble of T119L108 hindcasts is generated

by vertically interpolating our T119L74 analysis fields

linearly with respect to ln(p) to L108 (see Fig. 1) for

use as initial conditions. There is no extrapolation re-

quired in the vertical regridding because L74 has a

higher model top than L108, and we expect that noise

introduced by initializing the model with the interpo-

lated fields will be small. Over the hindcast run, sea

surface temperature and sea ice are updated every 12

forecast hours using archived operational analyses pro-

vided by Navy Fleet Numerical Meteorology and Ocean-

ography Center. The tendency due to vertical diffusion is

reduced by two orders of magnitude in the stratosphere

alone to preserve vertically narrow (,1km) QBO shear

zones [see McCormack et al. (2015) for details of the

NAVGEM-HA vertical diffusion scheme and its impact

on simulating the QBO]. Last, we have replaced the

default simplified Arakawa–Schubert cumulus con-

vection scheme (SAS; see Hogan et al. 2014) with a

modified Kain–Fritsch scheme (Ridout et al. 2005),

which produces a more realistic resolved wave spec-

trum in the tropical upper troposphere and lower

stratosphere over forecast periods longer than 5 days

(Janiga et al. 2018).

b. Single-parameter experiments

Figures 3–7 detail results from the ensemble of

equatorial u hindcasts, where only the indicated GWD

parameter has been varied among ensemble members

while the other four parameters are kept at their de-

fault value. This is consistent with single columns of

the tangent-linear matrixM that in turn facilitate direct

comparisons with the linear matrix predictor [Eq. (4)].

Here we may posit linearity of the single-parameter

responses before exploring the linearity of M in the

multidimensional parameter space. Hindcast ensem-

bles are initialized at 0000 UTC 1 March 2014 and run

for 30 days, and so are compared in these figures to

the verifying analysis valid at 0000 UTC 31March 2014

(black curves). The left panels in each figure show the

zero-wind line as a function of pressure and time for

the analysis (black) and ensemble members (color-

coded according to parameter value), while the middle

panels show the vertical profiles of u at the 30-day lead

time. The scatterplots in the right panels correlate the

perturbation of the actual response from hindcast en-

semble member e (u0
e) with the predicted response

u0
pred 5Mx0e as in Eq. (4) over all analysis levels be-

tween 70 and 1 hPa (16 levels).

Phase speed width (Fig. 3) and source strength (Fig. 4)

both exemplify a good predictor for the purpose of using

our linear matrix model [Eq. (4)] to relate changes in a

single predictor x0 to a corresponding u0. Here we

define a good predictor as a source parameter with a

large ensemble spread that exhibits a zonal wind re-

sponse that varies linearly with the parameter value. A

parameter with these characteristics ensures that our

assumption of linearity required for Eq. (4) to be ac-

curate holds, and thus that the optimization algorithm

will return a realistic and reasonable optimal value

for this parameter. Figures 3 and 4 display a smooth,

monotonic change in wind with respect to parameter

value. Note that below 70 hPa, it is evident from the

lack of monotonicity that the linearity assumption is

invalid, thus we will take 70 hPa as the domain’s lower

bound for optimization fits. For this particular case,

our least squares solution to the matrix Eq. (4) yields

optimal values of c0 and tsrc of about 24ms21 and 3.0mPa,

respectively. The R2 values are calculated to be 0.941 and
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0.987, which again verifies that a single-predictor model

using c0 or tsrc is able to accurately reproduce hindcast

profiles of u using the perturbed parameter value and

our tangent-linear matrix M. Note also that changes in c0
and tsrc affect the descent rate of the QBO more strongly

than its amplitude in 30-day hindcasts, with smaller pa-

rameter values corresponding to slower descent.

The total source momentum flux, which is the in-

tegral of the Gaussian in Eq. (1), is proportional to the

product tsrcc0. Equivalent changes to tsrc and c0
therefore change the available momentum flux at the

launch height equally. However, some of the difference

in total sourcemomentum flux created by changing tsrc,

which uniformly increases or decreases the source flux

FIG. 4. As in Fig. 3, but for source strength tsrc varied within the range 62mPa around the default value of 4.5mPa.

FIG. 3. Ensemble spread of 30-day hindcasts with varying phase speed width c0 within the range620m s21 from the default value of

30m s21 (see color bar). All hindcasts were initialized at 0000 UTC 1Mar 2014 and run out for 30 days. (a) Zero-wind line as a function

of time and pressure for the NAVGEM-HA analysis uA (black) and ensemble hindcast members (colored according to c0 value).

(b) Final vertical profiles of u and uA valid at 0000 UTC 31 Mar 2014 (30-day lead time). (c) Scatterplot correlating u0 predicted from

Eq. (4) using M and x0e and the actual hindcast perturbation profile u0
e at the final time over all analysis levels between 70 and 1 hPa

(16 levels).
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of all waves by the same multiplicative constant, is not

available to use in the equatorial stratosphere. Power

added or removed from the fastest or slowest waves

will have little to no effect on the winds in our domain

of interest because those waves are dissipated above

the 1-hPa level or below the 100-hPa level. On the

other hand, recall that the effect of changes to c0 scales

relative to the parameterized wave’s intrinsic phase

speed. Thus, we expect that changes in c0 (Fig. 3) will

produce a larger ensemble spread than tsrc (Fig. 4)

because of a larger change in available momentum flux

applied to those parameterized waves most relevant

for the QBO.

Phase speed range cr behaves uniquely among the

five source parameters (Fig. 5), in that it appears to

exhibit linearity only within a small window between

cr 5 20 and 40m s21, while outside of this range the

ensemble member curves reproduce roughly the same

wind profiles found using the bounding cr values. Con-

sider the case of cr , 20m s21, meaning only waves with

FIG. 5. As in Fig. 3, but for phase speed range cr varied within the range 10–90m s21.

FIG. 6. As in Fig. 3, but for launch height psrc varied within the range 100–500 hPa.
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intrinsic phase speeds less than 20m s21 are parame-

terized. In this case, it is likely that most of the param-

eterized waves are dissipated in the upper troposphere

and lower stratosphere before reaching QBO altitudes,

so that changes to cr here have no effect on the hindcast

QBO winds. Likewise, introducing waves into the pa-

rameterization with phase speeds greater than about

40ms21 will have no effect on the hindcast QBO winds

because these waves are generally too fast to interact

with typical background winds in the equatorial lower

stratosphere. Taking these results into account, we believe

that cr is not a good choice for prediction of QBO winds

by itself, although we note that it is indeed an impor-

tant parameter elsewhere in the atmosphere and may

be relevant for GWD tuning to simulate the strato-

spheric and mesospheric semiannual oscillations (SAO;

see Fig. 5b), where nonorographic GWD from faster

waves is known to play an important role (e.g., Garcia

et al. 1997).

Launch height psrc (Fig. 6) and horizontal wave-

number k (Fig. 7) are also not good predictors mainly

because they exhibit a relatively small ensem-

ble spread. It is clear from both figures that the ef-

fects of psrc and k on the hindcast u profiles are too

minimal for a realistic value of either parameter to

provide a measurable reduction in A 2 F error. Note

that this conclusion refers only to errors in u in the

equatorial stratosphere for hindcasts of subseasonal

length and does not preclude either parameter from

having a significant impact in other regions of the at-

mosphere or for longer lead times. For example,

decreasing k in the tropics may be necessary for suc-

cessful multiyear simulation of the QBO (Xue et al.

2012; McCormack et al. 2015; Yu et al. 2017), espe-

cially since the importance of inertia–gravity waves

with wavelengths greater than 100km for the evolution

of the QBO has been shown (Kawatani et al. 2010; Holt

et al. 2016).

c. Multiparameter experiment

To further explore the optimal GWD source pa-

rameter settings in the multidimensional parame-

ter space composed of tsrc, psrc, c0, cr, and k, we

utilize a random ‘‘cloud’’ method in which we run a

60-member ensemble of hindcasts, and for each en-

semble member apply a random perturbation to every

GWD source parameter in the selected subset. This

differs from the standard TLM approach in Eq. (4) in

which the optimized source parameter vector is found

by running single-parameter optimizations (as in

Figs. 3–7) iteratively until a threshold cost function

minimum is reached. We utilize this method here

because it allows us to quickly explore possible non-

linear interactions among predictors. If the nonlinear

interaction terms have a significant impact on u0, we
would find low predictive capability of the simple

linear model M described in the previous section [Eq.

(4)] because it does not account for these interaction

terms by design. We determine the linear model M

that best fits perturbations in the multidimensional

parameter space to the hindcast equatorial zonal-mean

zonal wind response across all model levels between 70

FIG. 7. As in Fig. 3, but for wavenumber k varied within the range 100/a–900/a.
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and 1hPa by solving Eq. (5) using multiple linear re-

gression. The source parameter vector x0 composed of all

five selected parameters is then optimized following the

procedure outlined in section 2c.

The results of this experiment are shown in Fig. 8.

Each blue curve in Figs. 8a–e is the profile of response

of the hindcast equatorial zonal mean zonal wind (i.e.,

Du) to a normalized unit change in the indicated source

parameter. In Fig. 8f, the response predicted by the

model M to the optimized GWD parameter vector x*

[i.e., Du5uoptimal 2 udef 5Mx* as in Eq. (4)] is shown

in red, and the validating analysis Du is in black. We find

good agreement between these two profiles, which

would indicate that the fitted linear model M is pro-

viding an accurate fit to the hindcast results. However,

there is high correlation among the responses of all

source parameters (multicollinearity) throughout the

depth of the domain, notwithstanding the psrc response

at heights above about the 7-hPa level. Note that mul-

ticollinearity does not preclude a model from accurately

predicting the total response (cf. Fig. 8f), but it does

inhibit our ability to separate the responses due to

individual predictors. As such, we are unable to simul-

taneously estimate the optimal value for each of the

individual parameters with a high degree of confi-

dence. In the scatterplot (Fig. 8g), we find that the

correlation between the predicted perturbation profile

u0
pred 5Mx0e and the actual hindcast ensemble member

perturbation profile u0
e has an R2 value of 0.554, in-

dicating only moderate confidence that the model

could closely reproduce the hindcast wind profile ue

of ensemble member e when estimated using only

M and x0e as in Eq. (4). Since no pair of predictors

is uncorrelated and nonlinear terms are likely to affect

u0 significantly, a model using only a single parameter

(i.e., Figs. 3–7) is the best choice for the optimization

procedure when applied to equatorial stratospheric u.

d. Methodology validation

Large R2 values calculated using our linear matrix

model [Eq. (4)] with c0 or tsrc as the lone predictor

(Figs. 3 and 4) show that we are able to reproduce en-

semble member hindcast u using M and x0e. It remains

to be shown that for a parameter value x0 not used in

any ensemble member hindcast to fit and populate M,

this M still accurately predicts the actual forecast model

result using Eq. (4). To address this, we conduct single-

parameter experiments for 1 February, 1 March, and 1

April 2014, generating a 30-day NAVGEM-HA hind-

cast ensemble for each initial date with only tsrc varying

among members. For each case, a least squares solution

to Eq. (4) produced an optimized tsrc value t*. In each

panel of Fig. 9, the blue curve is the u profile estimated

by evaluating Eq. (4) using t* and the M for that initial

date, while the green curve shows the corresponding

u profile from a new NAVGEM-HA hindcast run using

this same GWD parameter setting. The agreement be-

tween the two is close in all three cases, even for the

1 April 2014 case (Fig. 9c) where t* lies outside the

range of values used to generate the original hindcast

ensemble and to defineM. The agreement is worst in the

upper stratosphere, where the uncertainty arises in

forecasting the stratospheric SAO rather than the QBO.

The red curves in Fig. 9 show corresponding

NAVGEM-HA results using the default value of tsrc
(4.5mPa), and in February 2014 (Fig. 9a) the optimal

FIG. 8. Response of 30-day hindcast u wind profile initialized at 0000 UTC 1 Mar 2014 to a (normalized) unit change in (a) source

strength, (b) launch height, (c) phase speed width, (d) phase speed range, and (e) wavenumber. (f) Change in analysis u over the 30-day

hindcast period (black) and total response of 30-day hindcast wind profile with optimized gravity wave drag source parameters (red).

(g) Scatterplot correlating u0 predicted from Eq. (4) usingM and x0e and the actual hindcast perturbation profile u0
e at the final time over all

analysis levels between 70 and 1 hPa (16 levels).
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tsrc value is coincidentally near this default value, so

almost no additional skill is gained by optimizing tsrc,

whereas in April (Fig. 9c) a large decrease in tsrc to

;2.2mPa leads to a notable skill benefit relative to the

default curve above about 7 hPa. In these initial tests, a

least squares solution to Eq. (4) to obtain optimal pa-

rameters was obtained through a deep stratospheric

layer (70–1hPa). The results showed a tendency for the

technique to select parameters that increase skill mostly

in the upper stratosphere, where the default hindcast is

less skillful and the ensemble spread is largest, which

may end up reducing skill in hindcasts of the QBO in

the lower stratosphere (e.g., Fig. 9c). In the next section,

we will present results in which optimal parameters

are derived via least squares solution to Eq. (4) for both

the deep stratospheric layer (70–1 hPa) and a narrower

pressure range focusing on the lower stratosphere (70–

10 hPa).

To summarize, we have determined from the single-

and multiparameter experiments that the best choice of

predictive model M relating x0 and u0 will use phase

speed width c0 or source strength tsrc as a single pre-

dictor. We have validated the optimization methodol-

ogy by demonstrating that our assumption that u0 varies
linearly with x0 is justifiable, that the linear modelM can

faithfully reproduce u0 given x0 for the ensemble mem-

bers, and thatM can feasibly predict the behavior of the

full forecast model at an extended lead time. We note

that even when optimizing the GWD parameter subset

{c0, tsrc}, we observe collinearity of the response profiles

and anR2 value of 0.68 (not shown). Since we are unable

to optimize this two-parameter subset simultaneously

with sufficient accuracy, we therefore optimize each

parameter individually. Both parameters have been

shown to have connections to aspects of gravity wave

dynamics within the real atmosphere, which make them

appealing choices for optimization as physically relevant

parameters. For example, Beres et al. (2004) showed

that the phase speed width c0 of a spectrum of gravity

waves generated by convection is linked to the hori-

zontal and vertical structure of the convective source. It

has also been suggested that the source momentum flux

derived from tsrc could be linked quantitatively to as-

pects of the parameterized subgrid-scale convective

activity, with resultant impacts on the QBO (Chun

and Baik 2002; Beres et al. 2005; Kim et al. 2013;

Schirber et al. 2014; Kang et al. 2018). Equatorial wave

forcing has also been shown to peak near equinox (Kim

and Chun 2015), meaning that such convective GWD

schemes could additionally serve to supplement un-

derrepresented resolved wave forcing in a model.

4. Results

Accelerations due to parameterized wave–mean flow

interaction usually peak below QBO shear zones as

varying background zonal winds present critical levels,

below which waves saturate and deposit momentum

FIG. 9. Profiles of equatorial u from the NAVGEM-HA analysis (black), predicted optimal fit (blue), hindcast using optimal tsrc value

(green), and hindcast using default tsrc value (red). Profiles are valid for 30-day lead times from initialization on (a) 1 Feb 2014, (b) 1 Mar

2014, and (c) 1 Apr 2014.
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(e.g., McCormack et al. 2015; Anstey et al. 2016). Thus,

the shape of the response profiles inMwill be contingent

on the shape of the initial u profile, implying that M will

vary with latitude, altitude range, and season. M also

has an implicit dependence on lead time Dt. From
Eq. (4), it follows that the optimized GWD source

parameter x0 will share these dependencies, therefore

we choose to analyze ensembles of hindcasts follow-

ing the approach detailed previously for multiple

latitudes, column depths, initial times, and lead times.

Results presented in this section will cover the

NAVGEM-HA analysis years 2014, 2015, and 2016,

sampled monthly by launching a hindcast ensemble at

0000 UTC on the first day of every month, for both

c0 and tsrc single-predictor models. Each parameter

will be optimized for 30-day and 100-day lead times

and for column depths of 70–10 and 70–1 hPa. In ad-

dition to optimizing the equatorial source parame-

ters, we will also explore the effect of varying tsrc
in the Northern Hemisphere (NH) subtropics (208N)

and extratropics (608N) on forecast skill both at that

latitude and at the equator. We reiterate that these

results may in part leverage the nonorographic GWD

parameterization to compensate for model error due

to, for example, insufficient representation of resolved

wave forcing.

a. Subseasonal (30 day) optimization

Time series of optimal source strength tsrc values that

minimize 30-day lead time A2 F error are summarized

in Fig. 10b in comparison to analyzed equatorial

stratospheric winds (Fig. 10a). The most striking fea-

ture is a semiannual variation in optimal tsrc for the 70–

10-hPa column depth with equinoctial peaks. Spectral

analysis indicates that the semiannual frequency is in-

deed the strongest spectral mode (not shown). This re-

sult is consistent with the hypothesis that source strength

is related to underlying convective activity, which peaks

at equinox in the equatorial region. Since large-scale

equatorial waves are also generated by convection, the

optimization could simultaneously be leveraging the

nonorographic GWD to correct a resolved momentum

budget deficit. During the anomalous so-called QBO

disruption period of 2016 (Osprey et al. 2016), the

equinoctial peaks vanish. Optimal tsrc values at this time

may not be trustworthy considering both the difficulty

in hindcasting the event and that the anomalous drag

in this event came from an extratropical source, rather

than from tropical GWD (Osprey et al. 2016; Coy et al.

2017; Barton and McCormack 2017).

Unlike the lower stratosphere fit, the whole strato-

sphere fit (70–1 hPa, orange curve) has a much more

pronounced annual cycle, with a large primary peak

in boreal winter and a weaker secondary maximum

near July. As discussed previously, largeA2 F error in

the upper stratosphere would overwhelm the relatively

skillful QBO prediction in the lower stratosphere,

yielding results incorrectly synchronized with the east-

erly phase of the SAO. However, because the hindcast

error is not due primarily to insufficient gravity wave

driving, the best fit RMS error for the whole strato-

sphere fit is on average 5.3m s21 higher than that of

the lower stratosphere fit (see Fig. 10c). We note that

the R2 measure of model fidelity is over 0.9 for most

of the analysis period in both column depth cases.

The optimal values of phase speed width in Fig. 10d

reveal a less coherent time evolution than for tsrc. The

annual cycle is more significant for the 70–10-hPa fit.

More analysis years are required to discern a charac-

teristic pattern in optimal c0 as a function of initial

condition for 30-day forecasts. In the whole stratosphere

case, we find that the time evolution behaves similarly

to that of tsrc, which again is a by-product of interaction

with SAO easterly phases in the tropical upper strato-

sphere. Due to larger ensemble spread in the upper

stratosphere (cf. Figs. 3 and 4), we expected that the best

fit c0 hindcasts would have lower RMS error than their

tsrc counterparts, which we find to be the case. We note

that the inability to hindcast the easterly SAO phase is

more conspicuous in Fig. 10e, where there are significant

peaks in RMS error during solstice.

b. Seasonal (100 day) optimization

In Fig. 11b, we present similar tsrc time series as

Fig. 10b, calculated here for a lead time of 100 days.

While the optimal tsrc value varied semiannually for

30-day hindcasts, the green curve in Fig. 11b indicates

ostensibly that tsrc varies with QBO phase, with higher

values during the westerly phase. In the standard QBO

paradigm, the westerly phase is thought to be main-

tained primarily by resolved waves (Giorgetta et al.

2006). Thus, we hypothesize that more parameterized

gravity wave forcing is required to counterbalance

the tendency of the model winds to trend easterly over

longer forecast periods. Another possibility is that hind-

casts of a QBO transition period require more GWD

contribution to lower the QBO shear zone. In this case,

our assumption of a tsrc value that does not vary during

the hindcast may be especially inaccurate when opti-

mizing long hindcasts that include a transition period.

More analysis years are needed to substantiate these

hypotheses. There is some weak semiannual activity

suggested by the curve, but we note that the 100-

day hindcast length is near the resolvable Nyquist

limit of the 180-day semiannual period (90 days),

which would cause the semiannual variability in the
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optimal tsrc curve to be artificially weakened. The

whole stratosphere fit (orange curve) has no re-

markable characteristics. As expected, the fidelity of

the model M as measured by R2 decreased as the lead

time increased (see Fig. 11c). However, the lower

stratosphere fit (green curve) continues to exhibit a

relatively high R2 value over the analysis period. Diffi-

culty in hindcasting theQBO disruption at seasonal lead

time can be easily seen in the increasing RMS error

values in early 2016.

The lack of a similar peak in RMS error in the 30-day

optimization is indicative of the relatively long radiative

relaxation time scales in the lower stratosphere, where a

forecast of the QBO can be nominally ‘‘good’’ for some

time simply by virtue of initializing the model with ac-

curate QBO initial conditions, which can then persist in

the forecasts (but not descend realistically) for many

days absent other forcings. This is also reflected in the

contrast between green curves in Figs. 10b and 11b,

where we are attempting to optimize forecasts in dif-

ferent time regimes. In the case of subseasonal (i.e.,

30 day) prediction, in which we expect there is some

intrinsic skill in forecasting QBO winds, we find that

the convectively generated wave spectrum must be

FIG. 10. Optimization of source strength tsrc and phase speed width c0. (a) NAVGEM-HA analyzed zonal-mean zonal wind over the

equator (28S–28N average). (b) Values of tsrc for the default setting (black) andminimizing 30-day hindcast error over depths of 70–10 hPa

(green) and 70–1 hPa (orange) as a function of initialization date. (c) RMS error of optimal hindcast (solid) andR2 measure ofM (dotted)

with color corresponding to vertical depth as in (b). Lines dashed with black are RMS error of the default hindcast calculated over the

depth corresponding to the secondary color. (d), (e) As in (b) and (c), but for phase speed width c0.
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supported by a parameterized component (i.e., the

nonorographic GWD scheme), which is realized by a

semiannually varying source function. On the other

hand, errors in prediction at the seasonal scale are

due more to inadequate simulation of the QBO, so the

gravity wave drag is optimized to compensate, which

leads to a source function synchronized with the QBO.

It is possible that longer free-running simulations

of the QBO would necessitate a source function that

varies both semiannually and with the QBO. In general,

we have found that a constant GWD source strength in

the equatorial band is not optimal for minimizing

hindcast errors in QBO winds.

Results for the phase speed width optimization for a

100-day lead time (Fig. 11d) are similar in many ways

to those of tsrc in Fig. 11b, particularly in the temporal

evolution of optimal c0 curves. The best fit RMS error

is as low as in the subseasonal case (2–4ms21) during

the easterly phase of the QBO (latter half of 2014), a

feature not found in the tsrc optimization. In terms of

RMS error, c0 is more effective at increasing forecast

skill than tsrc at both subseasonal and seasonal time

scales; however, it also suffers from lower R2.

c. Subtropical and extratropical optimization

We have also explored the use of our optimization

technique at higher latitudes. The main caveat is that,

as shown in Fig. 12, the long-range predictive skill of

our linear model Eq. (4) in optimizing GWD for zonal-

mean zonal winds degrades with latitude, as quantified

by calculating the R2 measure as a function of lead time

for ensembles run at various latitudes. The results for

FIG. 11. As in Fig. 10, but for minimization of 100-day hindcast error.
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the equator, 208, and 608N are shown in Fig. 12, where

we have again minimized the A 2 F error at these lati-

tudes for model levels from 70 to 10 hPa. We see that

for lead times from 10 to 100 days, GWDparameters can

be accurately optimized to reproduce analyzed zonal-

mean zonal winds over the equator (Fig. 12a). Boreal

summer months are the most difficult to model line-

arly in the tropics. On the other hand, predictive skill

at 208 and 608N degrades quickly as forecast lead time

increases. For 10-day forecasts, the subtropics (Fig. 12b)

hold some amount of skill (R2. 0.9), but this value is not

sustained for longer lead times. Boreal summer months

are the easiest to model linearly, in contrast to the result

at the equator. In the extratropics (Fig. 12c), only a handful

of months show reasonable skill at 10 days, and there are

very few cases of R2 . 0.6 for any month at any longer

lead time.

It is perhaps unsurprising that the methodology as

formulated for the tropical stratosphere is ineffective at

minimizing error in the extratropics at long lead times.

In the tropics, wind and temperature tendencies are

driven locally by GWD, while in the extratropics, the

majority of nonorographic wave breaking occurs in the

mesosphere and above, and influence on the strato-

sphere is exerted through nonlocal effects such as

downward control. The extratropical stratospheric

circulation is also driven more directly by planetary

wave drag and orographic GWD, especially in local

winter (Alexander and Rosenlof 2003). As such,

the influence of our parameterized nonorographic

GWD in this region may be small, and so we cannot

expect to effectively minimize the hindcast error

without building downward control effects of upper-

level GWD and influences of orographic GWD into our

optimization technique. In short, a careful redesign of

the cost function is needed to optimize the GWD

in the extratropics.

Although we have found that optimizing GWD at

higher latitudes by fitting against analysis wind at that

latitude is not effective for lead times longer than about

10 days, we additionally attempted to fit against analy-

sis wind at the equator to observe effects on the simu-

lated QBO due to changes in GWD at higher latitudes.

Specifically, we were interested in gaining hindcast

skill for the QBO disruption event by altering the sub-

and extratropical waveguide through the parameter-

ized GWD. Barton and McCormack (2017) suggested

that a serendipitous reduction in easterlies in the

Northern Hemisphere subtropics allowed the anoma-

lous extratropical flux to reach the equator and induce

the disruption. Thus, we explore whether changes in

sub- and extratropical winds as a result of changes in

the GWD source strength can affect hindcast winds at

the equator.

We find that there is very little effect on the equato-

rial hindcast wind profile in the lower stratosphere by

changing tsrc at 208 or 608N. Figure 13 shows ensem-

ble hindcast u profiles for 30-day hindcasts launched

1 February 2016 and 100-day hindcasts launched

1 December 2015. In both hindcast sets, the final

valid date is in earlyMarch when the easterly disruption

had emerged in the analysis. For 30-day hindcasts,

changing tsrc at 208 or 608N has almost no observable

effect on the winds below about 7 hPa, and the ensemble

spread is only slightly larger for the 100-day hindcasts. In

the upper stratosphere we are able to see some vari-

ability in equatorial winds, but in each plot except

Fig. 13a the winds vary nonlinearly with tsrc. In no

case does the ensemble spread appear to be able to

account for the wedge of easterlies that developed

near 40 hPa. Lin et al. (2019) found that the anomalous

forcing leading to the event was not in the zonal mean

but localized in longitude by single wave packet. It

may therefore be more suitable for optimization of

FIG. 12. The R2 measures of model hindcast fidelity as a function of lead time for (a) the equator, (b) 208N, and (c) 608N, averaged by

month (color coded). The R2 is calculated for ensembles with varying tsrc launched from the first of every month for NAVGEM-HA

analysis years 2014, 2015, and 2016, as in previous sections.
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GWD source parameters during the QBO disruption

period if our cost function was redefined to fit the zonal

wind in the 2D longitude–height plane, rather than

fitting the zonal-mean zonal wind in height alone.

5. Implications for prediction

The motivation for studying years of analysis with this

technique is to inform decisions about how the param-

eterized GWD source in a particular model should

be prescribed in order to maximize predictive skill. As

we are unable to verify forecasts of future events, we

require a robust characterization of the optimal source

parameters so that we can be confident our forecasts

will be accurate for a given season. The challenge lies in

distilling the information yielded by the least squares

optimization solutions to the linearized version of the

problem in Eq. (4) (e.g., Fig. 10b) into a meaningful

characterization of optimal tsrc for true forecasts rather

than hindcasts. A physical link between the atmospheric

FIG. 13. Profiles of equatorial u valid for early March 2016, for (top) 30- and (bottom) 100-day ensembles launched with tsrc varying at

(a),(d) the equator, (b),(e) 208N, and (c),(f) 608N. The analysis profile valid for the final hindcast date is shown in black, and the ensemble

member profiles are color-coded by tsrc value. For the 20 and 608N optimizations, the equatorial tsrc was given its default value of 4.5mPa.
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state and the source parameters is a desirable feature

that will ensure the nonorographic GWD scheme can

dynamically adjust to the optimal settings as the forecast

progresses. For example, the implied relationship be-

tween optimal tsrc and convection evident in the semi-

annual variability in optimized GWD parameters (e.g.,

Fig. 10b) validates the future use of a convection-based

GWD parameterization, and provides constraints and

guidelines for how the convection parameterization

should modulate GW momentum and phase speeds

at tropical source levels in the model.

Following the results of section 4a, our GWD pa-

rameterization is optimized by introducing an explicit

semiannual variability to the source strength function

at the equator that better reproduces zonal-mean zonal

winds in the tropical lower stratosphere. Figure 14 il-

lustrates this result by comparing the observed QBO

behavior (Fig. 14a) with the time series of tsrc values

imposed in the NAVGEM-HA GWD parameteriza-

tion in various 30-day hindcast experiments over the

January 2014–December 2016 period (Fig. 14b) and

the corresponding hindcast RMS error (Fig. 14c). The

semiannual component of the green curve in Fig. 10b,

which we determined to be the primary mode of var-

iability through spectral analysis, is extracted and

plotted in purple against the original in Fig. 14b. In-

deed, this single mode accounts for a significant frac-

tion of variance in the full time series, except during

the QBO disruption event in early 2016. Due to its

simplicity, a regular semiannual variation in tsrc is

easily implemented in our scheme using the amplitude

and phase values obtained from the spectral analysis.

We redefine the equatorial source strength as a semi-

annual (period 5 one-half year) sine function of

day with mean 2.285mPa, amplitude 1.191mPa, and

phase21.86 radians. This means that tsrc will vary over

the course of the hindcast, unlike in the previous ex-

periments where tsrc was constant. The yearly peaks

of this function occur in early April and October, im-

mediately following equinox. For comparison, we also

show the results of keeping tsrc constant but lowering

it to the mean value of the optimal curve (2.285mPa,

orange curve).

The RMS errors of hindcasts using default, best fit,

best fit mean, and semiannually varying tsrc are com-

pared in Fig. 14c. Lowering the value of tsrc to the mean

of the best fit curve reduces RMS error in most cases.

By introducing semiannual variability to the equatorial

source strength function, we further reduce RMS error

by an average of 1.5m s21 compared to using the default

tsrc value of 4.5mPa. The difference between the best

fit mean (orange) and semiannual tsrc (purple) curves is

statistically significant at the 90% confidence level.

Additionally, we find only marginal difference in using

a simple semiannual function of tsrc compared to the

actual optimal tsrc values, which gives us confidence that

FIG. 14. (a) NAVGEM-HA analysis zonal-mean zonal wind over the equator (28S–28N average). (b) Comparison of tsrc values: default

(black), optimized for 30-day hindcast over 70–10 hPa (green, as in Fig. 10b), mean of the optimized values (orange), and the semiannual

component with mean of the optimized values (purple). (c) RMS error of 30-day hindcasts with tsrc values as in (b).
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forecast errors of QBO winds will be reduced also for

predictions made outside of the 2014–16 analysis period

shown, given that this variability is a robust feature

of the source strength optimized for subseasonal pre-

diction in any typical QBO season. The QBO disruption

period shows poor predictability using the semiannual

tsrc because the semiannual function diverges signifi-

cantly from the optimal value.

Performing these subseasonal and seasonal optimi-

zations within a longer analysis period spanning many

QBO cycles may provide evidence that other fre-

quency modes are also significant in the time evolution

of optimal GWD source parameter values. For exam-

ple, the largest values of tsrc in the Fig. 14b green curve

occur during a transition period of the QBO, which

corresponds with our hypothesis that the QBO period

was the dominant mode of variability in seasonal tsrc
optimization (Fig. 11b). This is evidence that long-

term effects of the parameterized GWD (its role in

the descent of QBO shear zones, for example) have an

influence on shorter forecasts. These modes of vari-

ability could also be easily introduced but could con-

ceivably require some awareness of the forecast length

if tsrc is kept constant over the forecast length rather

than allowed to vary. Improvements to the resolved

wave spectrum through updated convection parame-

terization or model resolution, for example, may fur-

ther shift the role of the nonorographic GWD scheme

to a more passive one as the model becomes less reliant

on the parameterization to provide missing momentum.

6. Conclusions

We have formulated a methodology for determining

the values of GWD source parameters that minimize

A 2 F error within a domain of interest for a desired

forecast lead time. The utilization of this technique

is straightforward, requiring only ensembles of hind-

casts with source parameters varying among ensem-

ble members. Least squares minimization reveals the

effect of perturbing a source parameter on the final

hindcast zonal winds in the target domain, from which

we can calculate the parameter value that brings the

hindcast wind closest to the analysis state. This simul-

taneously corrects for parameterizedGWDerror as well

as error due to insufficient resolved wave forcing

without explicitly calculating and compensating for a

momentum budget deficit. Applying the technique,

we have found that optimizing a single source param-

eter works best, and that source momentum flux tsrc
and phase speed spectrum width c0 are the best choices

as predictors. Both are effective in reproducing en-

semble member hindcast profiles of QBO winds over

the equator using a simple linear model, even at ex-

tended lead time.

Analysis of the 2014–16 period suggests that values

of tsrc and c0 that minimize forecast error in the equa-

torial lower stratosphere are a function of initial condi-

tion, rather than static values as they are currently in

NAVGEM-HA. Interestingly, the characteristics of the

evolution vary between subseasonal and seasonal fore-

cast lengths. For 30-day forecasts, there is a prominent

semiannual variability in tsrc and an apparent secondary

signal synchronized with the QBO, while only this sec-

ondary signal manifests in 100-day forecasts. The GWD

parameterization appears to become more important

in time as the forecast loses memory of the initial state,

which is more relevant for QBO simulation in longer,

seasonal forecasts than in shorter forecasts. In our

attempt to optimize subseasonal prediction, we have

drawn a connection between tsrc and convective activity,

which is substantiated by previous work deriving source

momentum flux from convection (e.g., Beres et al. 2004;

Richter et al. 2010; Schirber et al. 2014). The time series

of optimal c0 parallels that of tsrc, except that a signifi-

cant annual cycle also exists for the 30-day lead time.

We reiterate that these results are specific to this

configuration of NAVGEM-HA and will likely differ

with results from applying the procedure to other

models. For example, models with higher resolution

or more skillful forecasts of primary QBO drivers

may find that the necessary forcing supplied by the

nonorographic GWD parameterization is less than

in our results.

A predictability time scale of 10 days or less in the sub-

and extratropical Northern Hemisphere, combined with

additional complications of downward control and pa-

rameterized orographic GWD, precludes us from iden-

tifying optimal source parameter values at those

latitudes for subseasonal or seasonal prediction. We

also found that for both 30- and 100-day hindcasts,

there was no effect on the hindcast QBO winds at the

equator by changing the GWD source at higher lati-

tudes. Thus, we were unable to improve hindcasts of

the 2016 QBO disruption through GWD parameter-

ization with optimal source momentum flux.

However, we found that replacing the constant

equatorial tsrc value in NAVGEM-HA with one that

varies semiannually with season resulted in reduced

RMS error in stratospheric equatorial zonal-mean

zonal wind throughout the analysis period. This sim-

ple implementation was informed by our analysis

of optimal tsrc (see Fig. 10) and the satisfactory result

is evidence that a more dynamic parameterization of

GW source-level parameters in the equatorial tropics

is necessary to capture a realistic source of the GW
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momentum that is subsequently deposited in the lower

stratosphere and drives a QBO in the model. Because

the semiannual mode accounts for the majority of vari-

ance in the time series, we are confident that the change

to equatorial tsrc will be beneficial for true forecasts

as well as hindcast experiments.

With a priori knowledge that tsrc could vary semi-

annually, it is also possible for us to impose the semi-

annual variability in the model and optimize for the

amplitude or mean of the oscillation. This has impli-

cations especially for optimization of longer hindcasts,

where the difference between an assumed constant tsrc
value (as in section 4) and a value that varies with day

of year may be significant. Future studies will focus on

developing a more detailed and accurate function for

tsrc that could be determined by optimizing decades of

analysis winds encompassing many QBO cycles.
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