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1.0 SUMMARY 

  

In this report, we developed smart optical metamaterials which integrate solid mechanics 

with transformation optics to realize variable-index macroscale optical devices with 

inhomogeneous gradient index distribution. We employed transparent compressible silica 

aerogels to redistribute the desired index distribution by compressing with 3D-printed 

pressing molds. Based on self-aggregated nanowire structures, we achieved ultrabroadband 

perfect absorbers in the range from 0.3 to 17μm by versatile metal coatings. These large area 

few μm-thick films are used to get highly efficient solar steam generation and desalinations. 

Nanoporous structures are used to achieve high performance sensors with plasmonic 

behaviors. By using plasmonic metamasks, the image resolution is enhanced for the 

photolithography in the far field. 

 

 

2.0 INTRODUCTION 

 

 

Figure 1. A schematic of the applications of thermoplasmonics. 

Thermoplasmonics is a new research field that utilizes the thermal energy from an absorption 

by plasmonic resonance. The plasmonic resonance absorption occurs in metal or metal-

dielectric structures which have sharp absorption peak caused by localized surface plasmon 

between metal and dielectric interactions. The absorption wavelength range and position can 

be tuned as target applications by controlling the shape and composition of the 

thermoplasmonic structures. Numerous researches are making progress for the application of 

thermoplasmonic in diverse fields such as medical and imaging. In this research, we will 
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develop the thermophotovoltaic reactors and radiative cooling system to maximize 

thermoplasmonic effect. 

Figure 2. A schematic concept of thermophotovotaics using the optimization of selective 

emitters. 

Metamaterials, made of artificial atoms with metals and dielectrics, can be engineered to have 

ultimate material properties that have not been found in nature, such as negative refractive 

index, perfect absorbers, blackbody, selective emitter, cloaking or superlensing, so on. By 

choosing appropriate materials of intrinsic properties (specific metals or dielectrics), design 

of shapes (unit cell patterns), and some periodicity (crystal lattice structure), we can engineer 

desirable material properties that cannot be naturally available.  

The plasmonic resonance absorption in metal or metal-dielectric structures can be changed by 

structural parameters. The frequency selective thermoplasmonic structure using dielectric or 

metal-dielectric nanowires can easily control the absorption wavelength range and position. 

In this research, we develop the thermoplasmonic structures which have different resonant 

spectrum range for solar vapor generation, thermophotovoltaic (TPV), and radiative cooling 

system. This novel thermoplasmonic structure can be achieved from nanowires fabricated by 

commercializable large-scale fabrication processes. While the same basic fabrication method 

is used for the nanowires, its optical properties easily change by applying small changes, such 

as the metal deposition. As the optical properties change easily, various applications become 

possible. 
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Figure 3. A fuel based micro thermophotovoltaic system. 

A design for a mm-scale 10 W TPV propane-powered micro-reactor developed. A key 

component in this device is the selective emitter made with tantalum PhC. The typical 

efficiency of the device ranges from 0.5% to 2.2%, depending on whether all key design 

elements are included. In all cases, the system requires a silicon MEMS reactor for catalytic 

combustion of fuels such as propane and butane, and a GaInAsSb photovoltaic diode for 

efficient conversion of above-gap photons into electricity. An additional design element for 

improved performance is a 1D PhC emitter grown on the surface of the MEMS reactor to 

suppress mid-IR radiation. Finally, a low-power maximum power-point tracker can be added 

to ensure the maximum power is always generated under varying conditions. With some 

relatively small tweaks to the existing 2.2% design, it has been predicted that an efficiency of 

5.3% could be achieved. Furthermore, if one raises the operating temperature to 1,200 K, 

efficiencies as high as 21.7% would theoretically be achievable. 

 

Figure 4. A solar based thermophotovoltaic system. 

Solar thermophotovoltaics can be seen as an alternative to solar photovoltaics and solar 

thermal power generation. In terms of device architecture and operating principle, solar TPV 

is identical to the combustion TPV except that the emitter is heated by the sun light instead of 

burning chemical fuel. One of the unique challenges of solar TPV is designing the suitable 

solar absorber, and optimizing it to work in tandem with the TPV selective emitter and diode. 
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Selectivity is needed because there is a tradeoff between absorbing sunlight and re-radiating 

infrared radiation, which fundamentally derives from Kirchoff’s law. Optimal design for 

selective solar absorbers has been discussed extensively in previous literature.  

However, the maximum efficiency of the TPV back end will increase with temperature. This 

implies that for a given solar concentration, there will be an optimal operating temperature 

and TPV bandgap where the product of these two components is at a maximum. Due to 

experimental constraints, previously built solar TPV systems, have diverged substantially 

from these values. It is reported that 2% efficient operation is observed at relatively modest 

concentrations and temperatures using germanium indirect bandgap photovoltaic cells. 

Replacing those solar cells with a higher-performance III-V TPV cell such as GaSb would by 

itself roughly double the expected efficiency. Other desirable changes would come from PhC-

based designs for more wavelength-sensitive selective solar absorbers, selective emitters, and 

filters for photon recycling. Combining all those elements and optimizing yields a theoretical 

prediction of 44% using a tandem junction for 100 sun concentration at 1,000 K, and up to 

50.8% efficiency for a single junction under 46,200 suns at 2,360 K. Overall, the photonic 

design approach is predicted to yield up to an order of magnitude enhancement in the 

performance of these systems. Furthermore, these projected efficiencies exceed the Shockley-

Queisser limit for single-junction photovoltaic cells under equal solar concentrations.  

One of the most recent reports describes a 3.2% efficiency in a device that combines carbon 

nanotube absorber and PhC emitter for optimal performance. The device construction and 

operating principle are shown the figures below. Briefly the sun light is illuminated on the 

absorber made of carbon nanotubes. The heat is then emitted on the emitter side which is 

composed of a 1D PhC. The thermal radiation emitted from the PhC surface drives the 

InGaAsSb PV cell for electricity generation. This device with 3.2% efficiency represents the 

current state-of-the-art, highlighting the challenge of spectral engineering and thermal 

management. The current proposal will address these challenges by developing a novel 

plasmonic PhC structure, as described earlier. 

 

Figure 5. The absorption cross section of the gold nanoshells. 

In recent studies, metal nanoparticles or carbon based materials have been widely used for 
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photo-thermal light harvesting because these materials are highly light absorptive. Metal 

nanoparticles has tunable characteristic in their absorption spectrum by controlling the size of 

the particles or using metal-dielectric shell structure. Thus, the absorption cross section can 

be tuned to overlap the solar spectral irradiance, which makes efficient light harvesting from 

the sun. (Neumann et al., ACS Nano 7(1) 42-49(2013)) 

 

 

Figure 6. Solar steam generation with a structure of carbon foam. 

Carbon based materials are almost blackbody which shows >97% absorptivity in the solar 

spectrum (250-2250nm). H. Ghasemi et al.(2014) have reported that they achieved solar 

thermal efficiency up to 85% by using graphite/carbon foam double layer.  

In this research, we investigated the heat generation from photo-thermal effect of the 

metamaterials and metasurface coatings. Photo-thermal effect refers to a phenomenon that 

light energy is converted into thermal energy by the photo-excitation of materials. By using a 

specially designed metamaterial, which confines the light in a few micro meter thick, heat 

energy converted from the light is also highly localized in a small volume.  

Although metal nanoparticles or carbon based materials are high performance photo-thermal 

materials, they have some weaknesses for the practical use. The solar thermal conversion 

efficiency of the metal nanoparticles was only 24% in the study of Neumann et al.  Also, 

low melting point (~1000℃) of the metal nanoparticles hinders their use for devices working 

at high temperature. Carbon based materials are fragile to use in harsh environment such as 

windy desert. These approaches use rigid bulk materials which are not easily feasible or 

flexible in real applications.  

To overcome those disadvantages, we develop high efficiency, mechanically strong photo-

thermal materials, flexible thin film membranes by using metamaterials and metasurface 

coatings.  

 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
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3.1 Smart metamaterials 

By integrating solid mechanics and transformation optics, we develop metamaterials whose 

properties change the property correspondingly with the elastic deformation. We consider a 

porous material with the volume fraction parameter of dielectric (𝑓d) , the effective 

permittivity (𝜀eff) is given as 𝜀eff = 𝜀d𝑓d + 𝜀a𝑓a from the effective medium theory. 

If we compress the material, the deformed effective permittivity is changing to 𝜀′eff =

𝜀d𝑓′d + 𝜀a𝑓′a . By the relationship of 𝑓′d = 𝑓d
𝐴

𝐴′
= 𝑓d/𝐽, the effective permittivity ratio 

becomes as.  

𝜀′
eff

𝜀eff
=

𝜀a + (𝜀d − 𝜀a)𝑓d/𝐽

𝜀a + (𝜀d − 𝜀a)𝑓d
 

 

 

Figure 7. Coordinate transformation for the elastic deformation. 

 

In the limiting case of 𝜀d ≫ 𝜀a, it approximateds as. 
𝜀′

eff

𝜀eff
≈

1

𝐽
∝

𝐴

𝐴′
 

 

This is the same relationship for carpet cloaking derived by Prof. Pendry as following. 

𝜀′ =
𝜀

|G|
 

With this theoretical method, we develop smart metamaterials for self-adjustable 

metamaterials which change their properties appropriately for the mechanical deformation. 

 

3.2 Self-aggregated nanowire structures 

 

Based on our previous/ongoing research (following list), we can make structures for highly 

efficient light absorbers.  
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- Integrating biomimetic moth-eye structure with antireflective nano-island 

- Resonant light leakage using whispering gallery modes of nanosphere crystals 

- Plasmonic nanofocusings made by randomly self-aggreagated metallic nanowire bundles 

- Metal insulator metal nano-gap plasmons 

 

Figure 8. A schematic for the self-aggregated nanowire fabrication. 

To increase the resistance to heat or wear, we are going to introduce alumina nanowire 

bundles for our metasurface coating.  We use thin film membranes which can be the 

alternative of metal nanoparticles. Noble metal is high performance materials for plasmonic 

matematerials, however, low melting point of noble metal makes them unstable under strong 

light illumination. We will also search for better candidates to able to improve thermal 

properties for realistic applications.  
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Figure 9. The schematic for the self-aggregated alumina nanowire structures 

Using Finite Difference Time Domain (FDTD) or Finite Elements Methods (FEM), such as 

Lumerical or Comsol, we are able to design metamaterials or metasurfaces, in the regime of 

visible light wavelength.  

In the optical regime, we use reflection/transmission spectroscopy system with an integrating 

sphere, which enables us to measure specular and diffuse reflection/ transmission/ absorption 

with variable incidence angles for surface textured structures. 

 

Figure 10. The images of nanowire structures. 

For the measurement of photo-thermal effect of our metamaterials and metasurface coatings, 

we use light source, light concentrator with mirror and lens, IR camera, high precision 

electronic scale etc.  

For the fabrication of the designed structures, we use photolithography, nano-imprinting, and 

self-assembly methods of anodized aluminum oxides (AAO), block copolymer, or colloidal 

nanosphere lithography, in addition to FIB milling, e-beam lithography. 
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Year Research plan 

1 Structure design of photothermal energy conversion metamaterials, metasurface 

coatings, Sample fabrication    

2 Measurement of photothermal conversion effect by steam generation experiment 

/ Analysis of Optical, thermal properties of the sample(experimental, theoretical-

FDTD,FEM)  

3 Optimization of structure for maximizing solar thermal efficiency (final goal: 

>50%)  

Table 1. Research plan 

 

4.0 RESULTS AND DISCUSSION 

 

Our methods can be applied to follwing research advances.  

Smart optical metamaterials, which integrate solid mechanics with transformation optics, are 

useful for macroscopic optical devices and components with inhomogeneous gradient index 

distributions. They can be used for photonic applications, lenses, waveguides, or possibly 

optical cloakings in the future. 

Perfect absorbers, which have almost 100% absorptions in visible, IR regimes, are useful for 

absorber part of solar thermophotovoltaic devices. This material can be applied to the 

conventional solar power generation system to reduce the expenses of the ground rent, light 

concentrators such as mirror array, and so on.   

Our photo-thermal metamaterial can be used for de-icing of the surface. By coating the 

metasurface on any large structure, heat is generated by solar illumination and ice on the 

surface melts or it prevents icing on the surface. This is applicable to aircraft surface, wind 

turbine blade, large construction structures or buildings, and so on.  

Plasmonics can be used to develop high performance sensors and high resolution photomask 

in the lithography. We use plasmonic device phenomena to enhance the sensitivity or the 

resolution in various environments. 

 

4.1 Smart optical metamaterials 

 

4.1.1 Scalable variable-index elaso-optic metamaterials 
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Figure 11. Concept of the elasto-optic metamaterials with aerogels and 3D-printed pressing 

molds. 

Controlling the propagation of natural light through bulk optics components is a important 

requirement in recent photonics applications. By introducing metamaterials, gradient index 

materials or photonic crystals, there are many efforts to realize macroscopic optical 

components with controllable beam propagation. Since commonly used nanofabrication 

techniques are prohibitively expensive and time-consuming, optical metamaterials have been 

demonstrated almost exclusively on microscopic scales within thin planar waveguides. 

Macroscopically large, yet mass-producible at a consumer-affordable price, optical 

metamaterials would therefore open up new opportunities in the photonics markets. We use 

metamaterials to realize inhomogeneous gradient index materials by combining solid 

mechanics and transformation optics. 

We experimentally demonstrate macroscale (~50 mm) transformation-optics Wave Bender 

and a Luneburg lens in the broadband wavelengths at 473 nm, 523 nm, 589 nm, and 650 nm, 

using a novel class of elasto-optic metamaterials combining optics and solid mechanics. By 

mechanical deformation, we achieve the required graded refractive index profiles through 

compression ratio distribution.(Fig. 11a) We employ an elasto-optic metamaterial, specifically, 

a compressible, transparent, mesoscopically-homogeneous aerogel with a nanoporous (~60 

nm) structure with a Poisson’s ratio of 0.12 and the refractive index of 1.074.(Fig. 11b)  It 

can compress from the initial porosity 84% to nearly zero in maximum, leading to stress-

tunable refractive index varying in a wide range from 1.078 to 1.43. As we deform the 

homogeneous aerogel chunks by pressing our designed molds, we end up with the desired 

compression ratio and gradient refractive index distribution on the top surface region for the 

Wave Bender and the Luneburg lens (Fig. 11c, 11d). 
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Figure 12. The mechanical and optical properties of aerogels. 

The areas of our two proof-of-concept demonstrators, the Wave Bender and the Luneburg 

lens, are 293 mm
2
 and 1,884 mm

2
 across the visible spectrum, respectively. (Fig. 11e, 11f)  

The vertical thickness of working devices (~1 mm) is determined by the maximally 

compressed region. This shows that wide-spectrum natural light propagation can be 

controlled in the metamaterial volume as large as 1013𝜆3 (e.g. > 105𝜆 × 105𝜆 × 103𝜆) 

without any extra light-coupling components. 

Our elasto-optic concept enables industrial applications of optical metamaterials in general, 

and transformation optics in particular, for example, adaptive lenses for advanced 

miniaturized cameras, machine vision, lidar-based technologies, energy harvesting, and so on. 

 

4.1.2 Meta-lens design with smart transformation optics 

The ability to design and fabricate transformation optics device with a commercial 3D 

printing technology has long been tantalizing. In previously proposed transformation devices, 

the metamaterial properties require large range of permittivity. Such devices demand 
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dielectric material with high value of permittivity which cannot be made of 3D printing 

material.  

Smart transformation optics, which we propose in this study, not only design transformation 

optical device but also reduce the maximum value of required permittivity using intuitive 

stretching method as shown in Fig. 13. We develop a method based on smart transformation 

optics to decrease the range of electric permittivity required to manufacture transformation 

optics devices. We illustrate the design procedure with two types of collimator meta-lens 

designs, which we call warping space collimator meta-lens and half fisheye collimator meta-

lens. We experimentally demonstrated two types of lens manufactured by 3D printer in the 

microwave regime.  

 

Figure 13. Intuitive design process of metalens 

 

Figure 14. Two metalens samples manufactured by 3D printer and 2D microwave scanning 

apparatus. 

 

4.1.3 Related Publications 
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Dongheok Shin, Junhyun Kim, Changwook Kim, Kyuyoung Bae, Seunghwa Baek, Gumin 

Kang,Yaroslav Urzhumov, David R. Smith and Kyoungsik Kim, “Scalable variable-index 

elasto-optic metamaterials for macroscopic optical components and devices”, Nature 

Communications 8, 16090 (2017) 

Junhyun Kim, Dongheok Shin, Seungjae Choi, Do-Sik Yoo, Ilsung Seo, and Kyoungsik Kim, 

"Meta-lens design with low permittivity dielectric materials through smart transformation 

optics", Applied Physics Letters 107(10): 101906 (2015) 

 

4.2 Applications of perfect absorbers  

 

Since sunlight is one of the clean and sustainable energy resources on the planet, extensive 

studies have been conducted on the solar energy conversion into electricity through 

photovoltaic (PV) devices. However, single-junction PV device cannot break the theoretical 

efficiency limit caused by sub-bandgap transmission and heat dissipation loss in 

semiconductors which is known as the Shockley-Queisser limit. Solar thermal conversion 

approaches can be an alternative way to exceed this limit and to utilize solar light more 

efficiently than PV devices. Recently, spectrally or thermally engineered metamaterials have 

attracted considerable attention because of their excellent physical properties. There are 

extensive research progresses in the photothermal and thermoplasmonic metamaterials 

including their promising applications in solar thermophotovoltaics, radiative cooling, and 

solar desalination. 

 

4.2.1 Noble metal-coated perfect absorbers for solar steam generation 

To enable efficient steam generation under solar irradiation, the localized resonant surface 

plasmon heating has been realized by using metallic nanoshells or nanoparticles, which have 

inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider 

solar spectrum, we employ adiabatic nanofocusing structures of surface plasmons to attain 

both polarization-independent ultrabroadband light absorption and high plasmon dissipation 

loss. 

By employing an efficient self-assembly approach, we demonstrate a large scale flexible thin 

film black gold membranes, which exhibit adiabatic nanofocusing of surface plasmons. (Fig. 

15: a inset) Our self-aggregated metallic nanowire bundles have random 3D patterns similar 

to mountain ridges and valleys, which have the cross sections of microscale funnel shapes. 

(Fig. 15: a) It is a multiscale structure of a very wide range of metallic nanoscale gaps from 

zero to hundreds of nm over few micron depth and microscale funnel structures, leading to 

the unltrabroadband absorption of the membrane. (Fig. 15: b-c) The small taper angle and 
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varying nanogaps between aggregated nanowires are responsible for the broadband 

absorption of 91% in the wavelength range of 400 nm to 2,500 nm. The 3 μm funnel structure 

yields the ultrabroadband absorption (reflection <7%) from 2.5 μm to 17 μm. 

 

 

Figure 15. The structure and optical properties of the gold-coated self-aggregated nanowire 

structures. 

 

Figure 16. The energy conversion efficiencies for solar steam generation 

Using this film, we efficiently generate solar vapour with solar thermal conversion efficiency 

up to 57% at light illumination of 20 kW m
-2

. (Fig. 16) This membrane is attached on a 

micropore tape then floats on the water surface. On the membrane, the vapourized bubbles 

escape directly into air while hydrophilicity of the membrane continuously provides 

underlying water to the surface through pores. The heat localization on the surface minimizes 

the thermal energy losses into bulk water, thus enhances the efficiency of solar vapour 

generation in comparison with nanoparticles.  

This ultrabroadband absorber membrane in the visible to midinfrared region opens new 

approaches for solar energy harvesting and thermoplasmonics applications. 
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4.2.2 Versatile metal coated perfect absorbers 

For solar-thermal type of energy conversion systems, broadband light absorbers have been 

enthusiastically researched. As well as high absorptance, thermal durability is essential for the 

light absorbers to operate at the high working temperature. Refractory materials such as 

tungsten (W), molybdenum (Mo), Tantalum (Ta), and titanium nitride (TiN), have been 

exploited because of their high melting point, however, their weakness in thermal oxidation 

has been overlooked in many previous studies. Noble metal based plasmonic light absorbers 

are stable, but the high cost is a big obstacle to commercialization of the plasmonic devices.  

 

Figure 17. The optical properties of aluminum, tungsten, TiN coated self-aggregated 

nanowire structures. 

 

 

 

𝛼𝑠 =  
∫  [1 − 𝑅(𝜃, 𝜆)]𝐼𝑠(𝜆)𝑑𝜆

2.5𝜇𝑚

0.3𝜇𝑚

∫ 𝐼𝑠(𝜆)
2.5𝜇𝑚

0.3𝜇𝑚
𝑑𝜆
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Table 2. Solar absorptance of metals (W, Al, TiN) versus annealing temperatures. 

We developed a light absorber with broadband, high absorption based on a multiscale funnel 

structure of self-collapsed nanowire bundle arrays. The structure is fabricated by a simple and 

cost-effective wet etching process of anodic aluminum oxide (AAO), followed by metal 

coating. The funnel structure shows high solar absorptance of ~ 0.9 in 300 to 2500 nm 

wavelength regime, with a wide selection of earth-abundant coating material such as Al, W, 

and TiN. By using numerical simulation, it is demonstrated that ultra-broadband, high 

absorption of the funnel structure is induced from plasmonic nanofocusing and index 

matching effect, and the absorption band can be controlled by changing the degree of collapse, 

i.e. the angle between nanowire bundles. 

 

 

Figure 18. XRD results for various absorbers. 

To test the resistance to thermal oxidation, we annealed the funnel structures coated with Al, 

W, and TiN in the air. Interestingly, Al coated structure shows the best performance in 

thermal durability, even though Al has the lower melting point compared to the W or TiN. Al 
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shows a slow oxidation due to the dense oxide film at the surface, while W or TiN has 

unstable oxide film with high oxidation rate. After annealing at 400 °C, W or TiN coated 

absorber shows solar absorptance of 0.23 and 0.27, while Al coated absorber shows solar 

absorptance of 0.82, as shown in Fig. 17. By using XRD diffraction pattern data of Fig. 18, 

we confirmed the formation of WO3 and TiO2, as a result of the oxidation of W and TiN, 

respectively. These results can be applied to various solar-energy conversion systems, 

especially for devices with mid- to high- working temperature. 

 

4.2.3 Three-dimensional solar evaporator for efficient steam generation 

Water is an essential requirement for sustaining life on earth; however, owing to population 

and environmental factors, a sufficient supply of freshwater is often not available. 

Desalination plants are increasingly being needed to satisfy this demand. However, such 

desalination plants are currently very costly to run, both in terms of monetary and energy 

terms. Desalination technology using sunlight in combination with the advancements in 

nanotechnology have shown great promise as a cheap, environmentally friendly and efficient 

method for desalination to satisfy the future demands for freshwater. 

We use the flower Amorphophallus titanum and the solar chimney structure as inspirations 

for a new design of 3D solar evaporator. Here, an array of evaporators is arranged in a cluster 

to maximise the solar thermal efficiency and also produce an updraft so that vapour saturated 

air produced near the active surface of the evaporator can be replenished by dry air. This 

arrangement achieves a solar thermal efficiency, after subtracting the dark evaporation rate, 

of 132.8%, which indicates an excellent enhancement of the solar thermal efficiency by the 

engineered thermally-driven updraft. 

 

4.2.4 Related Publications 

Kyuyoung Bae, Gumin Kang, Suehyun K. Cho, Wounjhang Park, Kyoungsik Kim, and Willie 

J. Padilla, “Flexible thin film black gold membranes with ultrabroadband plasmonic 

nanofocusing for efficient solar vapour generation”, Nature Communications, 6, 10103 (2015) 

Dongheok Shin, Gumin Kang, Prince Gupta, Sawaswati Behera, Hyungsuk Lee, Augustine M. 

Urbas, Wounjhang Park, and Kyoungsik Kim, “Thermoplasmonic and Photothermal 

Metamaterials for Solar Energy Applications”, Advanced Optical Materials 6 (18) 1800317 

(2018) 

Yunha Ryu, Changwook Kim, Junmo Ahn, Augustine M. Urbas, Wounjhang Park, and 

Kyoungsik Kim, “Material-Versatile Ultrabroadband Light Absorber with Self-Aggregated 

Multiscale Funnel Structures”, ACS Applied Materials & Interfaces 10 (35), 29884-29892 

(2018) 

Distribution A Distribution Approved for Public Release: Distribution Unlimited



18 

 

Dongheok Shin, Changwook Kim, Yunha Ryu, Augustine M. Urbas, Wounjhang Park and 

Kyoungsik Kim, “High-efficiency solar vapour generation with 3D wet structure boosted by 

solar-induced updraft”, To be submitted. 

Changwook Kim, Yunha Ryu, Dongheok Shin, Augustine M. Urbas, and Kyoungsik Kim, 

“Metal-versatile hierarchical nanostructures with aerogel insulator for efficient solar steam 

generation”, To be submitted. 

Saraswati Behera, Changwook Kim, and Kyoungsik Kim, “Solar desalination based on 

graphen-oxide plasmonics with AAO haze nanowire structures”, To be submitted. 

Saraswati Behera, Jonghyuk Im, and Kyoungsik Kim, “SERS Enhancement and Fluorescence 

Quenching in Graphene Oxides by Self-aggregated AAO Nanowire Bundles”, To be 

submitted. 

 

4.3 Plasmonics for sensing 

 

4.3.1 Nano-porous silica aerogels for SERS enhancement 

It has long been a noteworthy study to easily fabricate large area substrates for greatly 

amplified surface enhanced Raman spectroscopy (SERS). 

In this study, we proposed a large-scale low-cost template with high Raman signal based on 

ultralow refractive index (n~1.08) silica aerogels.(Fig. 19a) By depositing 30 nm and 60 nm 

thick silver and gold layer on this nanoporous and ultralow index aerogel template, we got 

Raman signal enhancement of benzenethiol up to 7.86×10
7
 at 633nm excitation.(Fig. 19b) 

Lots of metallic nanogaps, formed by metal deposition on the nanoporous structure of the 

aerogel substrate, concentrate optical fields, resulting in Raman-active hot spots.(Fig. 19c) In 

addition, ultralow index (n~1.08) of the aerogel pushes the electric field into the target 

analyte side, thus enable us to have 60.3 times higher than the incident light.(Fig. 19d) Using 

finite-difference time-domain (FDTD) simulation, we theoretically compared Raman signals 

with the same geometry on various substrates, such as aerogel, glass, silicon.(Fig. 19e) 

 

 

Figure 19. The SERS enhancement with a large-scale nanoporous silica aerogel template. 

 

Distribution A Distribution Approved for Public Release: Distribution Unlimited



19 

 

4.3.2 Colorimetric index sensing by AAO nanotemplate 

 

Figure 20..Colorimetric sensing with AAO MIM samples. 

Recent advancements in nanotechnology have enabled versatile optical sensors that can 

measure a broad range of chemical or biomolecular analytes in environmental and Internet-

of-Things applications. Here, we present a highly versatile and low-cost large-area refractive 

index sensor capable of refractometric and colorimetric sensing by using a plasmon-coupled 

hybrid nanotemplate of anodic aluminum oxide with deposited gold nanosurface. The 

plasmon-coupled nanotemplate greatly enhances sensitivity and figure-of-merit up to 346 

nm/RIU and 27.7, respectively, owing to coupled mode of a Fabry-Perot microcavity and 

plasmonic nanosurface. (Here RIU stands for refractive index unit of analyte.) Linear peak 

shift in the entire visible spectrum is observed in the range of refractive index from 1.0 to 1.7.  

 

Figure 21. The sensitivity of AAO MIM sensors. 

Taking the advantage of the proposed large scale feature with sensitive color change by 
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simple infiltration of the analyte, we examined visually recognizable sensing characteristics 

by analyzing CIELab 1931 color map and found out that ~ 0.006 RIU change could be 

perceptually recognized with our sensor. In addition, we investigated the thickness and 

annealing effect of the nanotemplates to understand the changes in the Fabry-Perot mode and 

plasmonic resonance condition of the gold nanosurface for further optimization. 

 

4.3.3 Porous metallic nanocone arrays with block copolymer 

The substrate for surface enhanced Raman spectroscopy (SERS) requires highly amplified 

Raman signal as well as cost-effective simple fabrication. In this work, we present a facile 

method of fabricating SERS substrate by combining solvent-assisted nanoimprint lithography 

and selective etching of block copolymer (PS-b-PMMA) film. As a result, highly porous 

metallic nanocone arrays are formed with dense electromagnetic hotspots. The block 

copolymer film could be molded under atmospheric pressure and at temperature below the 

glass transition less than half an hour. Our simple time-saving large-area patterning method 

allows SERS templates with more than 3.5 × 106 enhancement factor on average at 532 nm 

excitation compared to normal Raman spectra from glass substrate. We also examined 

theoretically how the porous Ag-coated nanocone structure forms dense electromagnetic hot 

spots by finite-difference time-domain simulation. 

The facile method, which we propose in this study, is quite versatile so that other 

conventional SERS substrates can be morphed into more porous structure to enhance SERS 

signal further. 

 

4.3.4 Related Publications 

Changwook Kim, Seunghwa Baek, Yunha Ryu, Yeonhong Kim, Dongheok Shin, Chang-Won 

Lee, Wounjhang Park, Augustine M. Urbas, Gumin Kang and Kyoungsik Kim, “Large-scale 

nanoporous metal-coated silica aerogels for high SERS effect improvement”, Scientific 

Reports 8, 15144 (2018). 

Yunha Ryu, Gumin Kang, Chang-Won Lee, and Kyoungsik Kim, "Porous metallic nanocone 

arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block 

copolymer", RSC Advances 5(93): 76085-76091 (2015) 

Kyuyoung Bae, Jungmin Lee, Gumin Kang, Do-Sik Yoo, Chang-Won Lee and Kyoungsik 

Kim, “Refractometric and colorimetric index sensing by a plasmon-coupled hybrid AAO 

nanotemplate”, RSC Advances, 5 (125), 103052-103059 (2015) 
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4.4 Plasmonics for superlensing 

 

There have been numerous efforts for resolution enhancement of photolithography to 

overcome of the diffraction-limited optical systems. Increasing numerical aperture with 

immersion fluid and extreme ultraviolet light source are currently under active development 

in VLSI technologies. These techniques have not yet fully implemented, though, especially 

for large-area applications such as television displays because photomasks in contact with 

photoresist suffer from short lifetime. 

In this study, we demonstrate resolution enhancement by a plamonic metamask in the 

proximity regime where Fresnel diffraction dominateds. The transverse magnetic component 

of the diffracted wave from the photomask (Fig. 22a), which reduces the pattern visibility and 

lowers resolution, was successfully controlled by coupling with the anti-symmetric mode of 

the excited surface-plasmon.(Fig. 22b) 

 

 

Figure 22. Resolution enhanced photolithography in the far field with plasmonic metamask. 

We obtained persistent fine patterning photoresist surface up to 15µm far from the mask 

surface for 3µm pitch slits owing to conserved field visibility propagating from near-field to 

the proximity regime. (Fig. 22c above) Also, we achieved the fine pattern 30µm separate 

distance, between photoresist to photomask, for 5µm pitch slit.(Fig. 22c below) We 

confirmed that the sharp-edge patterning can indeed be possible with a wafer-scale 

photomask in the proximity photolithography regime. Our plasmonic metamask method 

permits cost-saving ultra-large-scale high-density display fabrication by keeping longer 

photomask lifetime and by allowing enough tolerance for the distance between photomask 

and photoresist. 

 

4.4.1 Related Publications 

Seunghwa Baek, Gumin Kang, Min Kang, Chang-Won Lee, and Kyoungsik Kim, 

"Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the 

(a) (b) (c)
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far field", Scientific Reports 6:30476 DOI: 10.1038/srep30476 (2016) 

 

 

5.0 CONCLUSIONS 

 

Metamaterials, made of artificial atoms with metals and dielectrics, can be engineered to have 

ultimate material properties that have not been found in nature. In this study, we invented 

scalable variable-index elasto-optic metamaterials to realize macroscopic optical devices, 

such as a wave bender or a Luneburg lens as large as 855 𝑚𝑚2 × 1 𝑚𝑚. We use plasmonic 

device phenomena to enhance the sensitivity of optical sensors or the resolution of 

photolithography in various environments. We also investigated heat generation from the 

photo-thermal effect of the metamaterials. By using a specially designed metamaterial, heat 

energy converted from the light can be highly localized in few micro meter thick. We use 

varying metals or alumina to increase heat and wear resistance of our metamaterial device in 

extreme environment such as high temperature or windy dust. Our device can be applied to 

solar steam generation, solar thermophotovoltaic devices, de-icing of the surfaces and so on.  
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Abstract 

Metallic nanostructure-based solar absorbers are widely used for solar steam generation 

because of their controllable range of absorption wavelength and various applications. Metal-

versatile solar absorber which is not limited to noble metal is essential for low-cost 

production. Here we designed efficient solar steam generation platforms using black Ni, Au 

films as a solar absorber which includes Ni or Au deposited self-aggregated alumina 

nanowire structures. We also analyzed both high solar absorptance of the Ni deposited 

nanowire structures (~0.85) and Au deposited nanowire structures (~0.88) by comparing 

electric field distributions from FDTD simulation and dielectric functions of Ni and Au. In 

addition, we improved solar steam generation efficiency by heat localization using aerogel as 

a thermal insulator and PVA sponge as a water supplier. The efficiencies of solar steam 

generation platforms using black Ni, Au films under 5 kWm-2 illumination were 83.8 % and 

78.3 %, respectively. 

 

Keywords: Solar steam generation, metal-versatile, self-aggregated alumina nanowires, 

Aerogel thermal insulator, Heat localization 
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ABSTRACT 

A sunlight-based desalination process is the most environmentally friendly and economical 

method of obtaining increasingly scarce freshwater on the planet. We implement a three-

dimensional (3D) solar evaporator with higher efficiency than a conventional two-

dimensional (2D) structure. The 2D solar evaporator and the 3D evaporator have the same 

area of incident solar energy, but the 3D evaporator, which has an increased evaporation 

surface area by extending into three dimensions, shows a much better evaporation efficiency 

than the 2D evaporator. Our 3D solar evaporator was constructed to completely absorb 

broadband sunlight in a carbon-coated poly(vinyl alcohol) (PVA) foam that can also supply a 

sufficient amount of water to the vertical area because of the excellent water absorption and 

wicking capability. When the 3D solar evaporators are assembled into an array, they suffer 

reduced efficiency from the mutual exposure to water-vapour-saturated air from adjacent 

units. We propose bio-inspired arrangements of the 3D solar evaporators that can achieve 

maximum efficiency in a given area. Motivated by the convection flower (Amorphophallus 

titanum) and solar chimney structures, these clustering arrangements generate an up-draft 

airflow owing to a solar-induced temperature difference in the vertical air column. Using 

these structures, we demonstrate 3D solar evaporator clusters with a solar thermal efficiency 

of more than 133% for a one sun condition. 
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Abstract 

Solar steam generation is the most promicing cost effective solar energy harvesting 

technology to address the global clean and desalinated water deficiency. In this work, we 

present a plasmonic photothermal composite scheme based on graphene oxides for broadband 

solar absorption and efficient solar steam generation. The plasmonic composite is based on 5 

nm Au nano particles deposited over a mixture of graphene oxide and reduced graphene 

oxide coated over the annodized aluminum oxide (AAO) haze nanowire structures transferred 

to micropore tape. Graphene oxides enable broadband absorption, photothermal effect and the 

presence of 5 nm Au nano particles reduces the defects in graphene oxides and enhances 

plasmonic photothermal effect through the localized hostspots and can be able to reach the 

smallest nanogap region in the nanowire structures. AAO haze structures over micropore tape 

provide maximum optical density of states or interaction volume through multiple nanogaps 

for plasmonic heat localization and porocity for water channelization. It is observed from 

optical characterizations that GO/Au and rGO/Au composite have enhanced the absorption in 

haze nanostructures to more than 90% due to strong plasmonic localization of 

electromagnetic field. FESEM and image J analysis reveals the surface morphology of GO, 

rGO, rGO/Au and composite haze substrates consisting of nano wire bundles of 20 - 26 nm 

widths, 5 - 10 micrometers of axial length and inclined at an angle of 5 - 6 degree arranged in 

microscale funnels of approximately 1 µm inter-funnel spacing. ` 

Key words: Plasmonics; photothermal effect, graphene oxide; reduced graphene oxide; 

broadband absorption, solar steam generation, solar desalination 
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ABSTRACT: Graphene oxides are biocompatible 2D functional carbon components. We 

have studied the effect of anodized aluminum oxide (AAO) based self-aggregated nanowire 

bundles over Raman signal enhancement from graphene oxides in the presence of Au nano 

particles. The underlying nanostructure increases the optical density of states in graphene 

oxides through maximum interaction volume for electromagnetic wave which is important 

for the Raman signal enhancement. GO, rGO and Au nanospheres are deposited over the 3D 

haze substrate through drop casting technique. It is observed experimentally that GO/Au and 

rGO/Au composite have enhanced the absorption in these nanostructures to more than 90% 

due to strong localization of electromagnetic field through plasmonic photothermal effect. 

FESEM and image J analysis reveals the surface morphology of GO, GO/Au, rGO, rGO/Au 

and composite nanostructures. Raman characterization studies reveal the signal enhancement 

up to eight folds in the fabricated SERS substrate and its application as an efficient 

fluorescence quencher for dye molecules. FDTD simulation study presents an enhancement 

to the local field in the studied substrate up to a factor of 3.3 ×10
3
 at 532 nm that is even 

more in higher wavelengths. The studied biocompatible sample can be used as a SERS 

substrate for biomolecular sensing. 
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