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1. Introduction 

Recently, there has been great emphasis on investigating technologies and 

methodologies that can extend the weapon range of guided munitions in order to 

provide better coverage of the battlefield. The primary focus of the current work is 

to develop an efficient design tool that provides flight vehicle designs that exhibit 

favorable aerodynamic performance (i.e., high lift-to-drag) in order to reach 

significant ranges. The typical design method of guided munitions is an iterative 

process that begins with a baseline concept that undergoes continual modifications 

until performance requirements are met. The aerodynamic portion of the design 

process requires a considerable amount of evaluations (e.g., wind tunnel 

experiments, computational fluid dynamics [CFD], flight trajectory simulation), 

and ultimately may not result in the optimal configuration. More recently, 

aerodynamic design optimization methods have become more integrated into the 

design process, resulting in better final designs while drastically reducing time and 

costs. Several studies have used optimization to determine the exterior shape (e.g., 

nose) as well as sizing of control surfaces (e.g., canard and tail fin planform area) 

of both guided and unguided missiles to maximize flight performance.1–6 

A weighted multi-objective Particle Swarm Optimization (PSO) algorithm was 

implemented to find the control surface sizing of a projectile at a given body angle 

of attack. PSO is a stochastic, population-based computer algorithm that applies the 

concept of swarm intelligence to problem solving.7–8 Swarm intelligence is the 

property of a system whereby the collective behaviors of particles interacting 

locally with their environment cause coherent functional global patterns to emerge. 

A physical analogy might be a swarm of bees searching for a food source; each bee 

makes use of its own memory as well as knowledge gained by the swarm as a whole 

to find the best available food source.9 Compared to other optimization techniques, 

PSO is a simple algorithm that can be implemented fairly easily. PSO is a 

metaheuristic, gradient-free optimization method that is very useful for many 

practical engineering design applications where gradient-based methods encounter 

difficulties (e.g., non-differential functions, disconnected or discrete feasible space, 

multiple local extrema). Although PSO is a population-based algorithm, it works 

well with relatively few particles (e.g., 10 to 40) and there are no “generations” or 

selection operations; design variables are directly updated each iteration. Several 

studies have been explored to improve the performance of PSO, including adjusting 

parameters of the search behavior, or modifying the algorithm to ultimately 

improve convergence efficiency.10–12 
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Most studies that apply optimization methods to determine aerodynamic shapes 

incorporate a computationally inexpensive tool to evaluate designs; this is due to 

the inherent nature of any optimization algorithm. The evaluation of each new 

design is necessary to determine if the current design is suitable for the given 

objective. Therefore, in order to maintain efficiency and time savings, either semi-

empirical aerodynamic prediction (SEAP) codes5 or Euler CFD solvers13–14 are 

incorporated with optimization methods to determine optimal aerodynamic 

designs.   

In the current work, an automated design optimization routine was developed and 

implemented to recommend aerodynamic characteristics (i.e., size of the control 

surfaces) to maximize the lift-to-drag ratio (L/D) for each projectile for a given 

diameter, length-to-diameter ratio, and ogive length. Specifically, the PSO method 

incorporated with the SEAP code Missile DATCOM15 to determine the optimal 

design for each configuration. Additionally, NASA’s Cartesian Euler CFD analysis 

package Cart3D16 was used to further analyze each optimal design. A formal 

process to combine these multiple sources into an aerodynamic dataset is outlined. 

This aerodynamic model and these coefficients underpin both 3-degree-of-freedom 

(DOF) and 6-DOF modeling. Flight trajectory simulations are necessary to evaluate 

flight system performance.  

2. Vehicle Configurations 

The focus of the research was to determine the optimal control surface design for a 

given vehicle configuration. Multiple vehicle configurations incorporating different 

control configurations (i.e., canards, wings, and fins) were investigated; however, 

only the Body-Fin configuration will be addressed in this report. Recent results 

from flight trajectory simulation indicate that tail-fin control flight vehicles perform 

better in extending range than compared to canard-control configurations. More 

details regarding the optimization process for both Body-Fin-Canard and Body-

Fin-Canard-Wing vehicle configurations are discussed in Strohm et. al.17 For each 

vehicle configuration, the control surface size, shape, and location was found for a 

given axisymmetric baseline body shape based on diameter, length-to-diameter, 

and ogive length, as well as for Mach regime of interest (i.e., subsonic or 

supersonic). 

2.1 Baseline Body Projectiles 

The general size of the baseline body projectile is determined based on values of 

diameter of the center body portion of the projectile (i.e., 3, 4, 5, and 6 inches), 

length-to-diameter ratio (i.e., 6, 8, 10, and 12) and ogive length (i.e., 0.3 and 0.5 of 
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OAL). A total of 32 body configurations were optimized for each vehicle 

configuration. The overall length of the flight vehicle (OAL) is determined based 

on the given diameter and length-to-diameter parameters. The nose tip was modeled 

as a blunt nose defined by a bluntness radius that is 0.1 of the diameter (i.e., 0.1 

caliber). The Von-Karman ogive nose shape was used, with the length of the ogive 

section defined by the percentage of overall length of the projectile. The center of 

gravity location of the flight vehicle was defined to be 0.6 of the OAL from the 

nose for all configurations. This center of gravity value estimate was based on 

preliminary airframe solid modeling in conjunction with subject matter expertise. 

The body section was modeled as a constant axisymmetric cylinder. Additionally, 

a 7° boattail was modeled beginning 0.5 caliber forward of the base. The parameters 

that were used to determine each baseline body projectile are listed in Table 1.  

Table 1 Parameters for baseline body projectiles 

Diameter 

(inch) 

Length-to-

diameter 

Ogive length 

of OAL 

Nose 

bluntness 

radius  

(cal) 

Nose ogive 

shape 

Boattail 

length 

(cal) 

[3, 4, 5, 6] [6, 8, 10, 12] [0.3, 0.5] 0.1 Von-Karman 0.5 

 

2.2 Body-Fin Configurations 

The optimization routine was implemented to determine the sizing of the control 

surfaces for each baseline body projectile. For the Body-Fin configuration, the fin 

set geometry was optimized. A specific set of constraints were placed on the 

number and overall dimensions of the fins for each vehicle configuration. The 

Body-Fin configuration was constrained to a total number of 4, 6, or 8 fins. All 

control surfaces were modeled as simple hex fin cross sections, where a leading 

and trailing edge wedge were defined as 0.25 of the chord length each with a flat 

section defined as 0.5 of the chord length at both root and tip of the fin. A total 

thickness of 4 mm during the flat section for all control surfaces was used. 

The number of design variables are specific to each vehicle configuration and are 

constrained based on speed regime of interest. For the Body-Fin configuration at 

the subsonic flow regime, in which the objective function was optimized across 

subsonic Mach (i.e., M∞ = 0.5 to 0.9), the fin root chord was able to vary from  

1–3 cal, and the tip-to-tip span of the fin was able to vary from 1.1 to 2 cal or a 

maximum length of 0.2032 m (i.e., 8 inches). Whereas, for the supersonic flow 

regime (i.e., objective function optimized across M∞ = 1.2–4), a fin sizing rule 

where the tip-to-tip span was constrained to 8 inches (i.e., 0.2032 m) but the fin 
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chord was able to vary from 3 to 8 calibers was implemented. For all subsonic flow 

regime cases, the leading edge sweep angle of the fins was set to 60°, whereas for 

the supersonic flow cases a leading edge sweep angle of 83° was used. A schematic 

of the optimal Body-Fin configurations for a given baseline body projectile for both 

speed regimes of interest is presented in Fig. 1. The parameters that were used to 

determine the fin set for each configuration are listed in Table 2.   

 

Fig. 1 Optimal Body-Fin configuration for a 4-inch diameter, length-to-diameter of 10, and 

ogive length of 30% of overall length projectile, for a) subsonic and b) supersonic speeds 

Table 2 Fin set design parameters for Body-Fin vehicle configuration 

Vehicle 

configuration 

No. of 

fins 

Fin chord 

(cal) 

Fin span 

(cal) 
Fin LE angle 

Body-Fin [4, 6, 8] [1-3] (M∞=0.5–0.9), 

[3-8] (M∞=1.2–4) 

[1.1–2 or 0.2032 

m] 

[70°] (M∞ =0.5–0.9), 

[83°] (M∞=1.2–4) 

2.3 Optimization Tools  

2.3.1 Particle Swarm Optimization (PSO) 

The essence of the PSO algorithm is that each particle in a swarm represents a 

design point that can move in the given design space (defined by the number of 

design variables) looking for the best solution. Each particle’s position is updated 

based on the memory of each particle as well as the knowledge gained by the swarm 

as a whole. The basic formulation of the algorithm is updating a particle’s position 

and velocity at each iteration until convergence is achieved. The scheme for 

updating the position of each particle is shown in Eq. 1. 

  𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 𝛥𝑡 (1) 
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where 𝑥𝑘+1
𝑖  and 𝑥𝑘

𝑖  represents the position of particle i at iteration k + 1 and k, 

respectively, and 𝑣𝑘+1
𝑖  represents the corresponding velocity of the particle. The 

velocity of the particle is defined in Eq. 2. 

  𝑣𝑘+1
𝑖 𝛥𝑡 = 𝑤𝑘

𝑖 𝑣𝑘
𝑖 𝛥𝑡 + 𝑐1𝑟1(𝑝𝑘

𝑖 − 𝑥𝑘
𝑖 ) + 𝑐2𝑟2(𝑝𝑘

𝑔
− 𝑥𝑘

𝑖 ) (2) 

where r1 and r2 are random numbers between 0 and 1, 𝑝𝑘
𝑖  is the best position found 

by particle i so far, 𝑝𝑘
𝑔

 is the swarm’s best particle position at iteration k, 𝑣𝑘
𝑖  is the 

current motion of the particle, 𝑤𝑘
𝑖  is the inertia of the particle, c1 is the cognitive 

parameter (confidence in itself), and c2 is the social parameter (confidence in the 

swarm). The inertia weight of the particle, 𝑤𝑘
𝑖 , controls the exploration properties 

of the algorithm (i.e., larger values enable more global search behavior, whereas 

smaller values result in more local search behavior). The original PSO algorithm 

sets constant values for 𝑤𝑘
𝑖 , c1, and c2; however, further research has demonstrated 

improved performance when the inertia parameter was set to be adaptive—inertia 

values would decrease as the algorithm got closer to the optimal solution in order 

to avoid overshoot. Furthermore, setting the confidence parameters, c1 and c2, equal 

to each other was also found to improve performance. In the current work, c1 and 

c2 were both set to 1, and the inertia parameter was set to be adaptive. The adaptive 

inertia weight factor developed by Qin et. al.12 was implemented and is shown in 

Eq. 3. 

  𝑤𝑘
𝑖 = 1 − 𝛼𝑃𝑆𝑂 (

1

1+𝑒−𝐼𝑆𝐴𝑘
𝑖 ) (3) 

where αPSO is a positive constant between 0 and 1 and is set to 0.3 in the current 

study, and ISA is defined as the Individual Search Ability12 for each particle and is 

expressed in Eq. 4.   

  𝐼𝑆𝐴𝑘
𝑖 =

|𝑥𝑘
𝑖 −𝑝𝑘

𝑖 |

|𝑝𝑘
𝑖 −𝑝

𝑘
𝑔

|+𝜖
 (4) 

where ϵ is a positive constant close to zero, (i.e., 𝜖 = 1 × 10−6). The ISA allows 

for the particle to dynamically adjust to either increase or decrease the inertia 

weight depending on the relationship between 𝑥𝑘
𝑖 , 𝑝𝑘

𝑖 , and 𝑝𝑘
𝑔

at each iteration. If 𝑥𝑘
𝑖  

and 𝑝𝑘
𝑖  are close and far from 𝑝𝑘

𝑔
, ISA decreases, inertia weight increases, and global 

exploration behavior is enhanced to avoid convergence to a local optimal, whereas 

if 𝑥𝑘
𝑖  is far from 𝑝𝑘

𝑔
 and 𝑝𝑘

𝑖  is close to 𝑝𝑘
𝑔

, ISA increases and inertia weight decreases 

to reduce the global exploration behavior.  

Figure 2 illustrates the PSO velocity and position update scheme for each particle. 

Table 3 summarizes the PSO algorithm. 
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Fig. 2 PSO particle velocity and position update scheme 

Table 3 PSO algorithm 

1. Initialize a set of particle positions, 𝑥0
𝑖 , randomly distributed throughout the design 

space, and randomly assign velocities, 𝑣0
𝑖 , to each particle, or assign zero initial 

velocities 

2. Evaluate each particle’s position using the objective function, 𝑓(𝑥𝑘
𝑖 ) 

3. Update the best particle position, 𝑝𝑘
𝑖 , so far for each particle, the best particle position in 

the current swarm,  𝑝𝑘
𝑔

, and the adaptive inertia weight factor, 𝑤𝑘
𝑖  

4. Calculate the updated velocity vector for each particle in the swarm, 𝑣𝑘+1
𝑖  

5. Update the position of each particle using its previous position and updated velocity, 

𝑥𝑘+1
𝑖  

6. Repeat steps 2–5 until a desired convergence criterion is met 

 

The initial swarm is generated by randomly distributing the set of particles 

throughout the design space. The position of each initial particle is presented in Eq. 

5. 

  𝑥0
𝑖 = 𝑥𝑚𝑖𝑛 + 𝑟1(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) (5) 

where r1 is a random number between 0 and 1, and xmin and xmax are the lower 

bounds and upper bounds of each given design variable, respectively. The initial 

velocity for each particle, 𝑣0
𝑖 , was set to zero. These positions are then evaluated 

through the objective function to determine which particle has the best global value 

in the current swarm, 𝑝𝑘
𝑔

, as well as to track each particle’s best position so far, 𝑝𝑘
𝑖 . 

The velocity of each particle is then updated using the relationship shown in Eq. 2, 

which in turn results in a new position for the next iteration (see Eq. 1). These new 

particle positions are then reevaluated through the objective function (defined 

later), and a new set of velocities and corresponding positions are computed for 
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each particle. This process of velocity update, position update, and evaluation 

repeats until a convergence criterion is met. The convergence criterion for the 

implemented PSO algorithm is based on the variance of the swarm’s fitness 

presented by Tian.18 The convergence criterion is met when the variance of the 

function values are below a certain tolerance (i.e., 𝜖𝑡𝑜𝑙 = 1 × 10−5). The 

convergence criterion used is presented in Eq. 6.  

  
∑ (

𝑓𝑖−�̅�

𝑚𝑎𝑥([1 𝑚𝑎𝑥(|𝑓𝑖−�̅�|)])
)

2
𝑛
𝑖=1

𝑛
< 𝜖𝑡𝑜𝑙 (6) 

where 𝑓𝑖 is the fitness of the ith particle, (i.e., 𝑓(𝑝𝑘
𝑖 )), 𝑓 ̅is the current mean fitness 

of the swarm (i.e., 
∑ 𝑓(𝑝𝑘

𝑖 )𝑛
𝑖=1

𝑛
), and n is the number of particles in the swarm. In the 

current study, a total of 100 particles were used in the swarm. The optimization 

routine terminates when the particles in the swarm converge to the same point in 

the design space, in which the variance of the population’s fitness is close to zero. 

2.3.2 Missile DATCOM 

The analysis and ranking of each configuration needed to be completed fairly 

quickly since PSO utilizes many particles (or design points) in the swarm 

population per iteration, and carries the swarm population forward in time for many 

iterations. As the static aerodynamic forces and moments from multiple angles of 

attack needed to be computed in order to assess each configuration’s fitness based 

on the given objective function at each iteration, a SEAP code was desirable since 

all aerodynamic coefficients for a given configuration could be computed in a 

matter of seconds. The SEAP code Missile DATCOM (release 2014)15 was used to 

predict the aerodynamic forces and moments for all configurations at 12 Mach 

numbers (i.e., M∞ = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1.02, 1.2, 1.5, 2, 3, 4) and at seven 

angles of attack (α = 0°, 2°, 4°, 6°, 8°, 10°, and 12°).   

Missile DATCOM is an engineering-level computer program for estimating 

aerodynamic stability and control characteristics of conventional missile 

configurations. It utilizes both theoretical and empirical methods to encompass the 

entire speed regime from subsonic to hypersonic flight. In previous versions of 

Missile DATCOM, predictions of vortex-fin interactions (i.e., shedding vortices 

from upstream control surfaces impacting downstream tail fins) were poor due to 

insufficient modeling capabilities. However, more recently, the US Army Combat 

Capabilities Development Command Aviation and Missile Center (CCDC-AvMC) 

has made significant improvements to the vortex modeling capabilities, including 

improved fin-shed and body-shed vortex models.19–20 These improvements allow 
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for better predictions of complex flow interactions, such as vortex-induced flow 

phenomena (e.g., induced roll for canard-controlled projectiles).   

2.3.3 Optimization Architecture 

The entire optimization routine was written in and executed using MATLAB21 on 

a standalone laptop. MATLAB’s object-oriented program definition was used to 

efficiently create the input files for each desired design configuration. Additionally, 

the parallel processing computing toolbox was utilized to execute Missile 

DATCOM in parallel (i.e., four workers) in order to quickly compute the swarm 

particles for a given iteration. The PSO algorithm automatically steered the 

optimization process, including initializing the swarm, evaluating the fitness for 

each design configuration, preparing and executing the Missile DATCOM runs, 

and updating the next swarm of design configurations. The static aerodynamic 

coefficients from each Mach number and angle of attack for each design 

configuration were then collated, and evaluated through the objective function. 

After the fitness of each configuration was evaluated, a new swarm of design 

configurations were selected. The process repeated until the convergence criterion 

was met. The optimization routine was repeated for each of the 32 body baseline 

projectiles presented in Table 1, for each vehicle configuration (e.g., Body-Fin).   

2.3.4 Optimization Problem Definition 

The PSO algorithm was implemented to solve a weighted multi-objective 

optimization problem for each studied baseline body projectile (i.e., diameter [d], 

length-to-diameter [l/d], and ogive length [lo]) for a given vehicle configuration 

(e.g., Body-Fin, Body-Fin-Canard). The optimal configuration is the design that 

maximizes the weighted objective function: maximizes lift-to-drag ratio, minimizes 

drag, and minimizes the residual between the static margin (i.e., distance between 

center of gravity and center of pressure locations) of the vehicle to a desired value 

at a given body angle at either subsonic (M∞ = 0.1–0.9) or supersonic (M∞ = 1.2–4) 

speeds. Each vehicle configuration has a specific set of design variables (e.g., chord 

and span of control surface) that can be optimized for each baseline body projectile 

studied. The PSO algorithm together with Missile DATCOM was used to determine 

the optimal configurations. 
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2.3.5 Objective Function 

The goal of the optimization process is to determine the flight vehicle design that 

maximizes the objective function. A weighted sum objective function that 

combines the lift-to-drag ratio, drag, and static margin value (i.e., –Cm/CN) for given 

vehicle design at a body angle of attack of 8° was studied and is presented in Eq. 7.   

  𝑓(𝑥) = ∑ 𝑤1 (
𝐿

𝐷
)

𝑖
+ 𝑤2 (

1

𝐷
)

𝑖
+ 𝑤3 (𝑓 (

−𝐶𝑚

𝐶𝑁
))

𝑖

𝑖  (7) 

where the w1 is the weight for the lift-to-drag values, which was set to be 2/7; w2 is 

the weight for the drag terms, where the inverse drag value was maximized, which 

was set to be 1/7; and w3 is weight associated to the piecewise exponential 

function, 𝑓 (
−𝐶𝑚

𝐶𝑁
), which was set to be 4/7. 

For both lift-to-drag ratio and drag, the sum of each respective value was summed 

across Mach number studied. The static margin value at these flight conditions was 

then evaluated through a piecewise natural exponential function, defined as 

𝑓 (
−𝐶𝑚

𝐶𝑁
) (i.e., combination of ex and e-x), which produced a maximum value of 1 

when the exponent of the function (i.e., the difference of the exhibited static margin 

value of the configuration from a desired static margin value) equaled 0 at each 

given Mach number. The desired static margin value was set to be either 1 (subsonic 

regime) or 0.3 (supersonic regime) calibers for each Mach number of interest at a 

body angle of attack 8°. The 8° body angle was selected to match the predicted trim 

angle for the vehicle; it is expected that the Body-Fin configurations would trim at 

approximately 8° with trailing edge flap deflection. The constraints of the objective 

function were constructed such that the design configuration can be evaluated for 

static stability. If a configuration was unable to meet the constraints, the objective 

function returned a large negative value such that the optimization routine would 

naturally deviate from the given design point. 

2.4 Aerodynamic Characterization Using Higher Fidelity 
Simulations: Cart3D 

After an optimal design was found, higher fidelity simulations were performed to 

evaluate the accuracy of the optimizer as well as the performance of the optimal 

design. NASA’s Cartesian Euler CFD analysis package Cart3D (1.5.5)16 was used 

to perform aerodynamic analyses for a subset of the found optimal geometries. For 

each given optimal design, static aerodynamic coefficients from multiple angles of 

attack were computed. The Euler code was desirable since static aerodynamic 

coefficients for a given angle of attack could be computed in a matter of minutes. 
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Cart3D quickly creates a Cartesian computational grid around the geometry after 

setting the domain’s extent and resolution. The process is able to automatically 

increase fidelity of the domain near small features and curvature of the geometry, 

therefore better resolving the flow features present near the surface. The domain 

extended approximately 14 projectile lengths in all directions from the center of the 

projectile, and the smallest typical grid size for the domain was approximately 

1 × 1 × 1 mm (Fig. 3). Mesh density regions were defined to refine the mesh near 

the surface as well as in the wake region in order to help resolve flow structures. 

The typical computational domain consisted of approximately 10 million Cartesian 

cells. Once the mesh is generated, the flow solver (flowCart) exploits the features 

of the Cartesian grid to quickly compute aerodynamic forces and moments 

experienced by the configuration. Since the Euler equations being solved do not 

include the viscous components, the Cart3D analysis package provides only 

inviscid aerodynamic coefficients. The drag force computed by the inviscid solver 

is the least accurate since the drag computed neglects the contribution due to skin 

friction. 

 

Fig. 3 Computational domains for given optimal designs used for Cart3D: a) subsonic and 

b) supersonic 

3. Results and Discussion 

3.1 Aerodynamic Design Optimization 

The optimizer typically converged to a design approximately within 50 iterations 

when using 100 swarm particles for a given vehicle configuration. The optimal 

design for the Body-Fin configuration for a given baseline body projectile of 4-inch 

diameter, length-to-diameter of 10, and ogive length of 30% of the overall length 

of the projectile for both subsonic and supersonic speeds were found and presented 

in Fig. 3a and b, respectively.   
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The results of the optimization routine for the given Body-Fin Configurations (i.e., 

d = 4 inches, l/d = 10, lo = 0.3) are summarized in Table 4. The optimization routine 

was able to find the design that maximized the weighted objective function at an 

assumed body trim angle of 8° for the given Mach regime of interest. The optimizer 

trended towards the maximum span constraint for all designs in order to maximize 

the lift of the vehicle. For the given body configuration, both subsonic and 

supersonic designs converged to the maximum 8-inch fin span. The fin chord for 

the supersonic configuration was then sized based on the calculated center of 

pressure location of the vehicle, such that the static margin value of 0.3 was met. 

Since the subsonic configuration fin set was constrained to meet a desired static 

margin of 1, additional fins were necessary to improve static stability. 

Table 4 Summary of optimization routine for a given vehicle configuration 

Vehicle 

configuration 

Diameter 

(inch) 

Length-to-

diameter 

Ogive 

length of 

OAL 

No. of 

fins 

Fin 

chord 

(cal) 

Fin 

span 

(cal) 

Body-Fin 

(M∞=0.5–0.9) 
4 10 0.3 6 2 2 

Body-Fin 

(M∞=1.2–4) 
4 10 0.3 4 6 2 

 

The lift-to-drag ratios across angle of attack and Mach number for both optimal 

subsonic and supersonic designs for the given Body-Fin configurations computed 

from Missile DATCOM are presented in Fig. 4a and b, respectively.   

 

 

Fig. 4 Lift-to-drag ratios of both optimal a) subsonic and b) supersonic designs for Body-

Fin configuration of 4-inch diameter, length-to-diameter of 10, and an ogive length of 30% of 

the overall length 
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The computed lift-to-drag ratios show that the optimal vehicle designs achieve 

values of approximately 3 at body angle of attack of 8° for each respective Mach 

regime of interest. Both configurations show that the maximum values of lift-to-

drag the vehicles could achieve is approximately 3.1. The results indicate that the 

desired body trim angle for these vehicles is approximately 10°. Furthermore, the 

results show that lift-to-drag ratios reduce considerably at transonic and low 

supersonic speeds, indicating that drag substantially increases. The wave drag 

produced in this regime is a large contributor to the overall detriment in 

performance. Although the results from Missile DATCOM indicate that the lift-to-

drag ratios continue to climb at higher Mach, future Navier-Stokes CFD analysis 

will need to be performed to explore the hypersonic performance and add 

confidence to these preliminary results. 

3.2 Aerodynamic Characterization of Optimal Design  

Higher fidelity simulations were performed to validate the design found from the 

optimization process. The inviscid flow solver package Cart3D was used to 

compute the static aerodynamic coefficients across angle of attack and Mach 

numbers and were compared to the results found from Missile DATCOM. Figure 5 

presents the axial force (a-b), normal force (c-d) and pitching moment (e-f) 

coefficients across angle of attack and Mach for both subsonic (a, c, e) and 

supersonic (b, d, f) optimal Body-Fin configurations computed from both Missile 

DATCOM and Cart3D.   

Overall, the results from both Missile DATCOM and Cart3D show good 

agreement. The axial force computed by the Cart3D is expected to be low since the 

inviscid flow assumption neglects viscous effects, specifically, the skin friction 

component of drag. The normal force coefficients computed from both methods 

compare well at small angles of attack across Mach number. At higher angles of 

attack, the values deviate, suggesting that high angle of attack nonlinear flow 

physics are present and are not well predicted in the semi-empirical prediction code. 

However, for body angles of attack less than 8°, Missile DATCOM is able to 

predict normal force relatively accurately for both finned projectiles across Mach. 

The largest discrepancies are observed for the predicted pitching moment 

coefficients. The main contributor to this effect is the difference in the predicted 

location of the center of pressure between Missile DATCOM and Cart3D. These 

differences are more exaggerated for the optimal supersonic configuration. 

Although the normal force was accurately predicted, the center of pressure location, 

and therefore pitching moment, was not predicted well. Overall, the Cart3D results 

show larger values of pitching moment, specifically at lower angles of attack. The 

results suggest that Missile DATCOM may provide a more conservative (i.e., 
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center of pressure location predicted further forward, therefore reduced stability) 

result when determining the static stability of low aspect ratio fin configurations.  

 

 

Fig. 5 Axial force (a-b), normal force (c-d), and pitching moment (e-f) coefficient across 

angle of attack and Mach number for both subsonic (a, c, e) and supersonic (b, d, f) optimal 

designs for Body-Fin configuration computed from Missile DATCOM (solid) and Cart3D 

(dashed) 

Both Missile DATCOM and Cart3D data sources were combined in order to 

improve the overall accuracy of aerodynamic coefficients used in flight trajectory 
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simulation. The static aerodynamic coefficients were compiled such that only the 

axial force coefficient used was computed by DATCOM, whereas all other static 

forces and moments were computed by Cart3D (e.g., CN and Cm). For 6-DOF flight 

trajectory simulations, the dynamic derivatives computed from DATCOM were 

utilized. This methodology ensured a more accurate representation of the flight 

vehicle across Mach and angle of attack. The updated lift-to-drag ratios combining 

Cart3D and DATCOM for both optimal subsonic and supersonic designs are 

presented in Fig. 6a and b, respectively.   

 

Fig. 6 Updated lift-to-drag ratios of both optimal a) subsonic and b) supersonic designs for 

Body-Fin configuration of 4-inch diameter, length-to-diameter of 1 0, and an ogive length of 

30% of the overall length 

4. Conclusion 

A PSO method incorporating a semi-empirical aerodynamic prediction code (i.e., 

Missile DATCOM) was utilized to optimize the shape, size, and position of control 

surfaces for a given baseline body projectile. The optimization routine converged 

to designs that produced the maximum lift-to-drag at a body trim angle for each 

configuration. The selected designs were then further analyzed through the use of 

higher fidelity flow solvers in order to validate and to mature the aerodynamic 

model for each configuration. Further assessments of the optimal designs using 

higher fidelity flow solvers show that Missile DATCOM predicts the static 

aerodynamic coefficients reasonably well, suggesting that the routine is an efficient 

tool in the initial aerodynamic vehicle design process. Missile DATCOM was able 

to predict the normal force coefficient for high aspect ratio finned projectiles 

accurately at low angles of attack; however, it was not able to predict the pitching 

moment coefficient (and therefore center of pressure location) well. The 

aerodynamic data sources were compiled in a formal manner to improve the 

accuracy of the aerodynamic database used in flight trajectory simulations.  
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Nomenclature 

𝑥𝑘+1
𝑖  updated position of particle i at iteration k+1 

𝑥𝑘
𝑖  current position of particle i at iteration k 

𝑣𝑘+1
𝑖  updated velocity of particle i at iteration k + 1 

r1, r2 random numbers in the interval [0 1] 

𝑝𝑘
𝑖  

best position found by particle i so far in the optimization 

algorithm 

𝑝𝑘
𝑔

 current swarm’s best particle position at iteration k 

𝑣𝑘
𝑖  current velocity of particle i at iteration k 

𝑤𝑘
𝑖  inertia parameter of particle i at iteration k 

c1 cognitive parameter 

c2 social parameter 

αPSO positive constant in the interval [0 1] 

𝐼𝑆𝐴𝑘
𝑖  

Individual Search Ability parameter of particle i at iteration 

k 

ϵ positive constant close to zero, (i.e. 1∙10-6) 

𝑥0
𝑖  initial position of particle i 

xmin 
minimum design point in design space for given 

configuration 

xmax 
maximum design point in design space for given 

configuration 

𝑣0
𝑖  initial velocity of particle i 

ϵtol convergence criterion tolerance 

𝑓 ̅ current mean fitness of the swarm (i.e., 
∑ 𝑓(𝑝𝑘

𝑖 )𝑛
𝑖=1

𝑛
) 

n number of particles in the swarm 

M∞ free stream Mach number 

d projectile diameter 

l/d length to diameter ratio 

lo ogive length as percent of overall length of projectile 
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𝐿 𝐷⁄  lift-to-drag ratio 

D drag coefficient 

𝑤1 weight value for lift-to-drag objective 

𝑤2 weight value for drag objective 

𝑤3 weight value for static margin objective 

𝑆𝑀 static margin  

α  angle of attack 

𝐶𝐴 axial force coefficient 

𝐶𝑁 normal force coefficient 

𝐶𝑚 pitching moment coefficient 

𝐶𝐿 lift force coefficient 

𝐶𝐷 drag force coefficient 
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List of Symbols, Abbreviations, and Acronyms 

CCDC-AvMC US Army Combat Capabilities Development Command 

Aviation and Missile Center 

CFD computational fluid dynamics 

DOD US Department of Defense 

DOF degrees of freedom 

DRSC DOD Supercomputing Resource Center 

NASA National Aeronautics and Space Administration 

OAL overall length of the flight vehicle 

PSO Particle Swarm Optimization 

SEAP semi-empirical aerodynamic prediction 
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