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1 Executive Summary
The objective of this project was to develop new methods for rapidly computing accurate bounds on the
solutions of nonlinear ordinary differential equations (ODEs) subject to bounded uncertainties. It has long
been possible to compute such bounds efficiently using interval methods, but the results are often too con-
servative to be useful. In contrast, some modern strategies can achieve remarkably sharp bounds, but are too
costly for real-time decision making. Our aim here was to produce bounds at a small multiple of the cost of
simulating a single trajectory but with much higher accuracy than existing methods of similar complexity.

Toward this end, our key insight was that the conservatism of fast interval methods can be dramatically
reduced using model redundancy. Specifically, our prior work showed that bounds produced by interval
methods often enclose large regions of state-space that violate redundant relations implied by the dynamics,
such as conservation laws. Furthermore, such relations (known as solution invariants) can be exploited to
obtain much sharper bounds in many cases. Motivated by these observations, we pursued new bounding
approaches for general nonlinear systems based on the deliberate introduction of redundant model equa-
tions to reduce conservatism. The work was organized around three major tasks. The most significant
accomplishments in each task are summarized below:

Task 1: Develop a fast and accurate state bounding algorithm that exploits pre-existing model redundancy.
A new bounding theorem was proven that enables the use of nonlinear invariants within fast bound-
ing methods based on differential inequalities (DI) for the first time [1,2]. An efficient new bound-
ing algorithm was also developed to implement this theory. In aggregate, these advances extend
the redundancy-based DI bounding approach to systems satisfying a much more general class of
invariants and have enabled efficient computation of very sharp bounds for several test cases.

Task 2: Develop a theoretical framework for the introduction of redundancy into arbitrary dynamic models
to effectively reduce conservatism. A framework was developed for introducing solution invariants
into arbitrary systems by lifting them into a higher-dimensional state space [3]. Critically, this
enables the methods from Task 1 to be applied to systems that do not initially satisfy any invariants.
However, the user must specify effective invariants to introduce, which often requires considerable
insight. Thus, tailored strategies were developed for (i) transient mass and energy balance models
[3] and (ii) vehicle models under path and trajectory tracking control [4]. Moreover, a new method
called mean-value differential inequalities (MVDI) was developed that automatically constructs
effective invariants for arbitrary systems using the forward sensitivity system [5,6]. Numerous test
cases show that these methods can provide sharp bounds at very low cost.

Task 3: Develop algorithms and software for fast and accurate state bounding through the automatic iden-
tification, introduction, and exploitation of model redundancy. MVDI is the most effective method
discovered in this project for automatically identifying, introducing, and exploiting invariants. An
efficient implementation of MVDI was developed in C++ and is described in [6].

Through interactions enabled by this project, we became aware of several closely related problems of
interest to AFOSR that were not included in the original scope. In two cases, we were able to make signifi-
cant progress by direct extensions of the methods above. First, we developed new methods for bounding the
solutions of discrete-time systems rather than ODEs [7,8]. Many robust estimation and control problems of
interest are commonly formulated in discrete-time. Thus, valid discrete-time analogous of the advanced DI
methods above were developed and shown to offer significant advantages over existing methods for some
test cases. Second, a new method was developed for solving a class of formal verification problems that can
be formulated as backward reachability problems for nonlinear ODEs [9]. Such problems can be solved by
embedding many forward reachability calculations in a branch-and-bound framework. Preliminary results
herein show that using the advanced DI methods discussed above for these forward calculations enables the
solution of some verification problems much more efficiently than the current state of the art.
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2 Research Findings
2.1 Background Relevant to the Findings Described in this Report

This project considered dynamic systems described by nonlinear ODEs of the form

ẋ(t) = f (t,x(t),w(t)), x(t0) = x0, t ∈ [t0, t f ], x(t) ∈ Rnx , w(t) ∈ Rnw , (1)

with x0 ∈ X0 and measurable disturbances w : [t0, t f ]→ Rnx satisfying w(t) ∈W for interval uncertainty sets
X0 = [xL

0 ,x
U
0 ] and W = [wL,wU ]. The objective was to compute an accurate enclosure of the reachable set

R(t)≡ {x(t;x0,w) : x0 ∈ X0, w(s) ∈W, ∀s ∈ [t0, t f ]}. (2)

The methods investigated are based on the theory of differential inequalities (DI) [10], which states that two
functions xL,xU : [t0, t f ]→ Rnx are guaranteed to satisfy R(t)⊂ X(t)≡ [xL(t),xU(t)], ∀t ∈ [t0, t f ], provided
that they satisfy the following differential inequalities for all i = 1, . . . ,nx:

ẋL
i (t)≤min{ fi(t,z,v) : v ∈W, z ∈ [xL(t),xU(t)], zi = xL

i (t)}, xL
i (t0)≤ xU

0,i, (3)

ẋU
i (t)≥max{ fi(t,z,v) : v ∈W, z ∈ [xL(t),xU(t)], zi = xU

i (t)}, xU
i (t0)≥ xU

0,i. (4)

The DI approach computes bounds by first constructing an auxiliary system of ODEs that describes xL and
xU satisfying (3)–(4) as its solution, and then solving this system numerically [10]. To make this precise, let
β L

i (x
L(t),xU(t)) ≡ {z ∈ [xL(t),xU(t)] : zi = xL

i (t)} and βU
i (xL(t),xU(t)) ≡ {z ∈ [xL(t),xU(t)] : zi = xU

i (t)}.
These sets are intervals and represent exactly the set of z’s feasible in the optimizations in (3) and (4),
respectively. Then, bounds are computed as the solutions of the following system of 2nx ODEs:

ẋL
i (t) = f L

i (t,β
L
i (x

L(t),xU(t)),W ), xL
i (t0) = xU

0,i, (5)

ẋU
i (t) = f U

i (t,βU
i (xL(t),xU(t)),W ), xU

i (t0) = xU
0,i, (6)

where f L
i and f U

i are lower and upper bounds on the range of fi over the specified ranges of arguments
computed using interval arithmetic. Using a state-of-the-art numerical integrator, bounds can be obtained
from (5)–(6) at a small multiple of the cost of integrating a single trajectory of (1), making DI a potentially
powerful tool for real-time applications [11]. However, this basic approach produces extremely conservative
bounds in general.

Prior to this project, the PI developed a method for computing sharper DI-based bounds for systems
that satisfy affine solution invariants [11]. A solution invariant is a function g : Rnx → Rnm such that
g(x(t;x0,w)) = 0 for all t ∈ [t0, t f ] and all (x0,w) ∈ X0×W , and is affine if g(z) ≡ Mz− b = 0 for some
M ∈ Rnm×nx and b ∈ Rnm . For such systems, improved bounds are given as the solutions of

ẋL
i (t) = f L

i (t,Ig[β
L
i (x

L(t),xU(t))],W ), xL
i (t0) = xU

0,i, (7)

ẋU
i (t) = f U

i (t,Ig[β
U
i (xL(t),xU(t))],W ), xU

i (t0) = xU
0,i, (8)

where Ig is an interval refinement operator that must satisfy Ig(Z)⊃ {z ∈ Z : Mz = b}, ∀Z ∈ IRnx , as well
as the following regularity condition, where dH denotes the Hausdorff metric:

∃L ∈ R+ : dH(Ig(Z1),Ig(Z2))≤ LdH(Z1,Z2), ∀Z1,Z2 ∈ IRnx . (9)

The use of the refinement operator Ig has been shown to dramatically improve the accuracy of the
bounds computed through (7)–(8) relative to standard DI for many case studies. Moreover, the additional
computational cost is typically very modest. However, this method only applies to models that naturally
satisfy affine solution invariants (e.g., conservation laws), and therefore offers no useful solution for the
majority of systems of practical interest. The purpose of this project was to pursue a novel extension of this
approach to general nonlinear systems through the deliberate introduction of redundant model equations and
invariants.
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2.2 Research Findings from Task 1
The objective of Task 1 was to develop a fast differential inequalities (DI) bounding approach that produces
much tighter bounds than existing methods by exploiting model redundancy in the form of (potentially
nonlinear) solution invariants. Related research prior to this project applied only to affine invariants [11].
Thus, new theory and methods were necessary to handle nonlinear invariants. Moreover, the affine method
in [11] was not optimized for either efficiency or accuracy. The results of this project on both of these issues
are described in the subsections below. These results are discussed in further detail in the publications [1–3].

2.2.1 Optimal use of Affine Invariants through New Preconditioning Techniques
A new technique was developed for preconditioning systems of affine invariants that leads to significant
improvements in the accuracy the bounds computed by the DI method in [11]. To clarify this contribution,
consider a system (1) that is known to satisfy affine invariants Mx(t;x0,w) = b for all t ∈ [t0, t f ] and all
(x0,w) ∈ X0×W . Moreover, consider computing bounds X(t)≡ [xL(t),xU(t)] by solving the ODEs (7)–(8)
with Ig satisfying Ig(Z)⊃ {z ∈ Z : Mz = b}, ∀Z ∈ IRnx , and the Lipschitz condition (9). The article [11]
proposes an algorithm for Ig that produces an interval enclosure of {z ∈ Z : Mz = b} efficiently using
iterative interval computations. However, this method considers the equations in the system Mz = b one at a
time, so the resulting interval Ig(Z) is highly sensitive to M and b. Specifically, a different enclosure Ig(Z)
is obtained if Mz = b is first preconditioned by an invertible matrix P; i.e., PMz = Pb.

Based on this observation, we investigated preconditioning methods that would result in the sharpest
enclosure Ig(Z) for a given Z. The resulting theory is described in [3]. The key points are as follows:

• For a given interval Z and a given i ∈ {1, . . . ,nx}, there exists a vector µ ∈Rnm such that the invariant
µTMz = µTb is optimal for refining the lower bound zL

i using the Ig operator previously described
in [11], and a distinct vector γ ∈ Rnm such that γTMz = γTb is optimal for refining the upper bound
zU

i . Moreover, these vectors can be obtained for each i as the solutions of 2n simple linear programs.

• The optimal preconditioning vectors described above depend on Z. However, in the course of inte-
grating the bounding ODEs (7)–(8), Ig is applied to many intervals that are not known in advance.
Since solving 2nx linear programs at every time step during integration is impractical, we attempted to
characterize preconditioning vectors that are robust in the sense that they are provably optimal for an
entire range of intervals Z. We found that optimal vectors exist that remain optimal under (i) transla-
tion of Z along the the null space of M, and (ii) scaling of Z with fixed relative edge lengths. Thus, our
new method computes 2nx preconditioning vectors at t0 based on a representative interval enclosure
(possibly physically motivated), which are then guaranteed to be optimal for a wide range of interval
arguments (although certainly not all) that may be encountered during the integration of (7)–(8).

Example 1. The following nonlinear ODEs describe the time-evolution of the concentrations of six chemical
species involved in an enzymatic reaction network:

ẋA =−k1xAxF + k2xF:A + k6xR:A′ (10)

ẋF =−k1xAxF + k2xF:A + k3xF:A

ẋF:A = k1xAxF− k2xF:A− k3xF:A

ẋA′ = k3xF:A− k4xA′xR + k5xR:A′

ẋR =−k4xA′xR + k5xR:A′+ k6xR:A′

ẋR:A′ = k4xA′xR− k5xR:A′− k6xR:A′

Let [t0, t f ] = [0,0.04] s, x0 = (34,20,0,0,16,0) M, and let the rate parameters k = (k1, . . . ,k6) be uncertain
and lie within the admissible set W = [k̂,10k̂] with k̂ = (0.1,0.033,16,5,0.5,0.3).
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Figure 1: State bounds for xA′ (left) and xRA′ (right) from Example 1, computed using standard DI (dashed) and by
solving (7)–(8) using affine invariants Mx(t) = Mx0 with M derived from MATLAB’s null (red star), M as in (11)
(magenta diamond), and M derived by our new optimal preconditioning algorithm (blue circles).

Dynamic models for chemical reaction systems of this type can be written in the form ẋ(t)= Sr(t,x(t),k),
where r is a vector of nonlinear reaction rate functions and S ∈ Rnx×nr is the stoichiometry matrix, which
encodes the topology of the reaction network. It is well known that such systems satisfy the affine solution
invariants Mx(t;x0,k) = Mx0 for any M whose rows lie in the left null space of S. Of course, this choice is
not unique. Figure 11 shows state bounds for (10) computed by solving the bounding system (7)–(8) using
Ig as defined in [11] with three different choices of M. The first has rows that form an orthonormal basis
for the left null space of S obtained using the MATLAB subroutine null. The second is given by

M =
[ 0 −1 −1 0 0 0

0 0 0 0 −1 −1
1 −1 0 1 −1 0

]
. (11)

This choice is physically motivated by conservation laws and is regarded as the best matrix that one could
reasonably determine based on sound physical understanding of the system. Finally, the third choice of M
is obtained by starting from (11) and applying the new preconditioning method described above.

Fig. 1 show that our new preconditioning algorithm leads to substantially sharper bounds. In particular,
it avoids the large upper-bounding error observed in the right panel of Fig. 1 when using (11).

2.2.2 A New Algorithm for Exploiting Affine Invariants with Reduced Computational Complexity
A new implementation of the refinement operator Ig originally defined in [11] was developed that has lower
computational complexity by a factor of nx (the number of state variables). Since this operator is called in
every time-step during the integration of the bounding ODEs (7)–(8), this results in significant speed-ups.

Recall that Ig refines a given interval Z based on affine invariants Mz = b and must satisfy Ig(Z) ⊃
{z ∈ Z : Mz = b}, ∀Z ∈ IRnx . To achieve such a refinement, the original idea from [11] is to consider, for
each mi j 6= 0, the rearrangement of the ith equation for z j,

z j = m−1
i j (bi−∑k 6= jmikzk). (12)

Given an initial interval Z = [zL,zU ], the jth component [zL
j ,z

U
j ] can potentially be refined by bounding the

right-hand side of (12) using interval arithmetic. For example, (12) implies that

bi

mi j
+ ∑

k 6= j
min(−mik

mi j
zL

k ,−
mik

mi j
zU

k )≤ z j ≤
bi

mi j
+ ∑

k 6= j
max(−mik

mi j
zL

k ,−
mik

mi j
zU

k ), (13)

which potentially provides improved bounds [zL
j ,z

U
j ] at a cost of O(nx) flops. In [11], Ig is defined by

applying such refinements to every possible choice of mi j 6= 0, of which there are at most nmnx for M ∈
Rnm×nx , for a total complexity of O(nmn2

x).
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In our new implementation of Ig, we reduce this to O(nmnx) by eliminating repeated computations.
Specifically, for a fixed equation mT

i z = bi, the original implementation computes the sums in (13) in-
dependently for every j. However, for any two choices of j, these sums have nx − 2 terms in com-
mon (up to a scalar multiple). These repeated computations can be avoided by first computing the sums
bi +∑

nx
k=1 min(−mikzL

k ,−mikzU
k ) and bi +∑

nx
k=1 max(−mikzL

k ,−mikzU
k ). This has complexity O(nx), but is

done only once. Then, the sum on the right-hand side of (13) can be computed for each j by a simple O(1)
update. With this change, the complexity of valuating Ig is reduced by a factor of nx, which in turn reduces
the complexity of evaluating the right-hand side of the bounding ODE system (7)–(8) by a total of 2n2

x flops.

2.2.3 A New Differential Inequalities Bounding Theorem Enabling the Use of Nonlinear Invariants
A new bounding theorem was formulated and proven that enables the use of nonlinear invariants within dif-
ferential inequalities methods for the first time. This theorem extends the central result of [11], which shows
that if the solutions of (1) satisfy an invariant of the form g(x(t;x0,w)) = 0, then a valid interval enclosure
of these solutions is provided by the solutions of (7)–(8), where Ig is an interval refinement operator that
must satisfy Ig(Z)⊃ {z ∈ Z : g(z) = 0} as well as the Lipschitz condition (9). Strictly speaking, this prior
result applies to nonlinear invariants, but a specific definition of Ig satisfying the required properties when
g is nonlinear was not known prior to this project. More importantly, it become clear in the course of this
project that the result in [11] relies on some simplifying assumptions that all but exclude the use of nonlinear
invariants in practice. Thus, a major achievement of this project was to formulate and prove a generalization
of the central bounding theorem in [11] under significantly weaker assumptions. Aspects of this generaliza-
tion are described in the proceedings paper [1] and the complete theorem is given in the journal article [2],
which is currently under review. The key improvements to the theory fall into three categories:

1. Invariant equations with nontrivial domains. To prove the central bounding theorem in [11], it was
necessary to assume that the operator Ig is well-defined for any interval argument. Using any con-
ceivable approach for defining this operator, this requires that g itself is defined on all of Rnx . This is
not problematic when g is affine, but is clearly limiting for nonlinear invariants since it prohibits any
invariants involving divisions, square-roots, etc. In contrast, our new theory only requires the domain
of g to be open, and therefore permits invariants described by much more general nonlinear functions.

2. Parameter and input dependence. The bounding theorem in [11] only permits invariants that depend
exclusively on the system states. Specifically, the invariants cannot depend on uncertain model pa-
rameters or inputs. In contrast, our new theorem permits constraints with arbitrary dependence on
both uncertain time-invariant parameters and uncertain time-varying inputs, as well as on the time-
derivatives of the states.

3. General state constraints. Our new bounding theorem permits Ig to make refinements based on any
state constraints of interest, rather than just on solution invariants. For example, nonlinear inequalities
that hold for all solutions of (1) can now be used. Moreover, our new theory also permits refinements
based on externally imposed state constraints that need not hold for all solutions of (1), provided that
one is only interested in bounding the solutions that do satisfy these constraints. This capability is
useful in algorithms for solving open-loop optimal control problems to guaranteed global optimality
and potentially elsewhere [12].

In aggregate, the new contributions above significantly increased the applicability of our bounding al-
gorithms, enabling us to address a wide variety of systems with invariants and other state constraints that
are nonlinear and potentially dependent on uncertain model parameters, inputs, and state derivatives. One
example of these new capabilities is provided after the discussion of algorithms for nonlinear invariants
in §2.2.4. Several further examples are given after the discussion of manufacturing invariants for general
nonlinear systems in §2.3.1.
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2.2.4 An Efficient Differential Inequalities Bounding Algorithm Exploiting Nonlinear Invariants

An efficient new bounding algorithm was developed to implement the theory discussed in the previous
section, resulting in the first method capable of making use of nonlinear invariants g(x(t;x0,w))= 0 (possible
dependence of g on w and ẋ is omitted for simplicity of exposition, although it is permissible in the developed
theory and algorithm). As noted above, the key challenge in implementing the nonlinear theory was to
develop an algorithm for the refinement operator Ig. Given such an algorithm, the overall bounding method
involves simply solving (7)–(8) with any state-of-the-art numerical integration code to obtain xL and xU .

The fundamental requirement on Ig is that it satisfies the inclusion Ig(Z) ⊃ {z ∈ Z : g(z) = 0}, ∀Z ∈
IRnx . Although there is a large literature on bounding the solutions of nonlinear systems of equations in
non-dynamic settings, there are two issues that make the application to reachability analysis uniquely chal-
lenging. First, details of DI theory require Ig to satisfy the Lipschitz condition (9), which is of no concern
in standard uses of interval refinement methods. Second, solving the ODEs (7)–(8) requires executing Ig

in every time step of the numerical integration, so the efficiency of Ig is critically important. After investi-
gating several alternatives, we ultimately developed an effective algorithm for Ig based on a modified form
of the interval Krawczyk method. The interval Krawczyk method is an interval Newton-type method based
on the following consequence of the mean-value theorem:

z,c ∈ Z, g(z) = 0 =⇒ −g(c) ∈ ∂g
∂x

(Z)(z− c), (14)

where ∂g
∂x (Z) is an interval enclosure of the Jacobian of g. Interval Newton methods use various rearrange-

ments of this inclusion to obtain tighter bounds on each z j implied by the constraint g(z) = 0 [13]. The
interval Krawczyk method is one of the weaker methods in this class, but is very efficient and always sat-
isfies the Lipschitz condition (9), whereas other methods fail without restrictive assumptions on the form
of g [14]. Our modified Krawczyk algorithm is given in detail in [1] and [2], and is rigorously proven to
satisfy all of the requirements of our new DI theorem in [2]. Notably, this algorithm also benefits from the
complexity reduction technique developed for affine invariants discussed in §2.2.2. Numerical case studies
indicate that this algorithm is highly effective at reducing the conservatism of fast DI bounding methods on
the basis of nonlinear invariants. One example is provided next and additional examples are given after the
discussion of manufacturing invariants in §2.3.1.

Example 2. The two species Lotka-Volterra predator-prey model is widely used to evaluate reachable set
bounding algorithms. For comparison, we use the same data as in [15, 16]. The ODEs are

ẋ(t) = u1x(t)(1− y(t)), ẏ(t) = u2y(t)(x(t)−1), (15)

with horizon [t0, t f ] = [0,10] s and initial conditions (x,y)(t0) = (1.2,1.1). The time-invariant parameters u1
and u2 are uncertain with u1 ∈ [2.99,3.01] and u2 ∈ [0.99,1.01]. The solutions of this system are known to
obey one nonlinear, parameter-dependent solution invariant, regardless of the values of u1 and u2:

u2
[

ln(x(t)/x0)− (x(t)− x0)
]
+u1

[
ln(y(t)/y0)− (y(t)− y0)

]
= 0. (16)

Figure 2 shows that exploiting the nonlinear invariant (16) using our new method leads to very sharp
bounds on the solutions of (15), whereas standard DI produces bounds that diverge after only a short in-
tegration time. Our new method required 0.024s to compute these bounds, compared to 0.002s for stan-
dard DI1. Our method also significantly outperformed other state-of-the-art bounding methods in the litera-
ture. For example, the bounds from our new method are much tighter than those obtained using the linear

1Methods were implemented in C++ on a 64-bit Linux virtual machine allocated 4GB RAM and a single core of a Dell Precision
T3610 with an Intel Xeon E5-1607 v2 @ 3.00 GHz. Numerical integration was done using the Sundials solver CVODE [17] with
absolute and relative tolerances of 10−5.
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Figure 2: State bounds for x and y in (15) computed using SDI (dashed black) and our new method exploiting the
nonlinear invariant (16) (red circles) with sampled solutions (gray shaded region).

programming-based polyhedral bounding algorithm in [15], which required 0.050s, and very similar to the
bounds obtained using the Taylor Model algorithm in [16], which required 0.59s.

2.3 Research Findings from Task 2
The bounding methods developed in Task 1 only apply to models that naturally satisfy solution invariants.
The objective of Task 2 was to extend these methods to general nonlinear systems. Our approach was
to first develop a theoretical framework for introducing solution invariants into arbitrary dynamic models,
thereby enabling the advanced bounding methods developed in Task 1 to be applied. Since this approach
leaves considerable flexibility in the choice of the introduced invariants, we next aimed to develop broadly
effective strategies for designing invariants that would be maximally effective at reducing the conservatism
of the computed bounds. The results of this project on both of these issues are described in the subsections
below and are discussed in further detail in the publications [1–3, 5, 6].

2.3.1 A New Method for Manufacturing Invariants by Lifting into a Higher-Dimensional State-Space

A theoretical framework was developed for introducing solution invariants into general nonlinear systems
by lifting these systems into a higher-dimensional state space. This is the central contribution of this project
because it enables highly effective reachable set bounding methods for systems with invariants to be applied
to general nonlinear systems for the first time. This new approach, which is described in detail in [3],
proceeds by first choosing a continuously differentiable function g : Rnx → Rny and defining the new state
variables y(t;x0,w)≡ g(x(t;x0,w)). These definitions are then differentiated to form the augmented system

d
dt

[
x(t)
y(t)

]
=

[
f (t,x(t),w(t))

∂g
∂x (x(t)) f (t,x(t),w(t))

]
,

[
x(t0) = x0

y(t0) = g(x0)

]
. (17)
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Clearly, if (x,y) is a solution of (17), then x is a solution of (1). Thus, state bounds for (17) provide state
bounds for (1). Moreover, by design, (17) implies that

y(t0)−g(x(t0)) = 0 and (18)
d
dt
[y(t)−g(x(t))] = ẏ(t)− ∂g

∂x
(x(t))ẋ(t) = 0,

which together imply that the solutions of (17) satisfy the invariants y(t)− g(x(t)) = 0, ∀t ∈ [t0, t f ] and
(x0,w). We call these invariants manufactured invariants to distinguish them from any invariants that may
be satisfied by the solutions of the original model. State bounds for (17) can now be computed using the
methods developed in Task 1. This procedure is summarized in the following theorem, which is the central
result of our publication [3].

Theorem 1. Choose any differentiable g : Rnx → Rny such that ∂g
∂x is locally Lipschitz continuous and (17)

has a unique solution on [t0, t f ] for every admissible (x0,w). Let Ig be an interval refinement operator
satisfying Ig(Z)⊃ {z ∈ Z : g(z) = 0}, ∀Z ∈ IRnx , and the Lipschitz condition (9). Moreover, let

h(t,z,v)≡ ∂g
∂x

(z) f (t,z,v), ∀(t,z,v) ∈ [t0, t f ]×Rnx×W, (19)

and let [hL
j ,h

U
j ], [g

L
j ,g

U
j ], and [ f L

j , f U
j ] be inclusion monotonic interval extensions of h j, g j, and f j, respec-

tively. Finally, let xL,xU : [t0, t f ]→ Rnx and yL,yU : [t0, t f ]→ Rny be solutions of the following ODEs for all

i ∈ {1, . . . ,nx} and j ∈ {1, . . . ,ny}, where Z(t) =
[[

xL(t)
yL(t)

]
,
[

xU (t)
yU (t)

]]
:

ẋL
i (t) = f L

i (t,Ig(β
L
i (Z(t))),W ) xL

i (t0) = xL
0,i (20)

ẋU
i (t) = f U

i (t,Ig(β
U
i (Z(t))),W ) xU

i (t0) = xU
0,i

ẏL
j (t) = hL

j (t,Ig(β
L
nx+ j(Z(t))),W ) yL

j (t0) = gL
j (X0)

ẏU
j (t) = hU

j (t,Ig(β
U
nx+ j(Z(t))),W ) yU

j (t0) = gU
j (X0)

Then x(t;x0,w) ∈ [xL(t),xU(t)] and y(t;x0,w) ∈ [yL(t),yU(t)] for all t ∈ [t0, t f ] and all admissible (x0,w).

Theorem 1 shows that valid state bounds for (1) can be computed by bounding the augmented system
(17) rather than the original ODEs, and that the manufactured invariants g can be exploited in doing so.
However, Theorem 1 does not ensure that this will result in improved bounds, and provides no guidance on
how to choose effective g functions. Our experience with a large number of test problems over the course of
the project shows that there are nearly always choices of g that produce bounds that are significantly sharper
than those produced by applying standard DI to (1) [3]. Although effective choices of g can be difficult to
identify, we have found that there are general strategies that tend to be effective for many models within
the same physical domain. In the following two subsections, we discuss effective strategies for models
composed of transient mass and energy balances, which are ubiquitous in chemical and biological engi-
neering, and for models describing vehicle dynamics under path or trajectory tracking control. Numerical
examples in both of these subsections clearly demonstrate the effectiveness of Theorem 1 when paired with
an appropriate choice of g. Finally, subsection 2.3.4 describes a new bounding method called mean-value
differential inequalities (MVDI) that can be interpreted as a fully automated method for choosing effective
g functions. MVDI is applicable to general nonlinear systems but may be less efficient than the tailored
methods discussed in subsections 2.3.2–2.3.3.
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2.3.2 Effective Manufactured Invariants for Mass and Energy Balance Models

A general strategy has been developed for choosing effective invariants for dynamic models composed of
transient mass and energy balances, which are ubiquitous in chemical and biomolecular engineering. This
strategy exploits the fact that ODEs in this class often involve sums of nonlinear terms with the same or very
similar terms appearing in multiple ODEs. Thus, the ODEs in (1) take the special form

ẋ(t) = h(t,x(t),w(t))+Sr(t,x(t),w(t)), (21)

where r is a vector function whose components describe the rates of various physical processes (chemical
reactions, mass transfer between phases, heat transfer, etc.) and S is an nx×nr matrix describing the effect
of each of these processes on each state variable. The function h contains terms that are not shared between
multiple ODEs and is zero in the simplest cases, such as in batch reactor models. Even when h is nonzero,
the terms that tend to make bounding difficult (due to strong nonlinearities, large uncertainties, or both)
overwhelmingly appear in r, not in h. Accordingly, our basic strategy is to consider linear combinations of
the original ODEs that result in complete or partial cancellation of these terms. Specifically, this is done by
choosing an appropriate matrix U ∈ Rny×nx , defining y =Ux, and forming the augmented system

d
dt

[
x(t)
y(t)

]
=

[
h(t,x(t),w(t))+Sr(t,x(t),w(t))

Uh(t,x(t),w(t))+USr(t,x(t),w(t))

]
,

[
x(t0) = x0

y(t0) =Ux0

]
. (22)

At a minimum, we populate U with a maximal set of linearly independent rows uT
i that satisfy uT

i S = 0.
When this holds, sharp bounds are likely to be obtained for the corresponding yi, which in turn provides
useful information about the possible values of x through the relation yi = uT

i x. Once these choices of uT
i are

exhausted (there may be none), further rows can be added to U such that uT
i S has a single nonzero element.

This produces states yi that are only effected by a single component of r, and hence a single physical process,
and these can often be bounded much more accurately than states that are affected by all processes. Note
that if S contains uncertain parameters, then this strategy requires U to be uncertain as well. This leads to
nonlinear invariants, but these can be readily handled by the methods developed in Task 1.

The articles [1, 3] provide many examples of the application of this strategy. Although it is clearly con-
ceivable to automate a form of this strategy, we determined that pursuing automation would have consumed
an undue fraction of the project resources. This decision was based largely on our judgment that our pub-
lished examples already provide sufficient guidance for a competent practitioner to successfully apply the
strategy by hand. This, along with the fact that this strategy is limited to a specific class of models, however
important, led us to conclude that finding more general solutions and/or similar solutions for other classes
of problems was likely to be more impactful.

A small selection of examples from [1,3] are given below. These results show that, when highly nonlin-
ear and uncertain terms can be canceled, the developed strategy results in very significant improvements in
bound accuracy and/or computational efficiency relative to other state-of-the-art approaches. Moreover, due
to the mathematical similarities described above, this strategy is effective in surprisingly diverse systems,
from metabolic reaction networks to industrial separation systems such as liquid-liquid extraction columns
where no reactions occur at all.

Example 3. The following ODEs describe an anaerobic wastewater treatment process with pH self-regulation
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and liquid-gas transfer from [18]:

Ẋ1 = (µ1(S1)−αD)X1 (23)

Ẋ2 = (µ2(S2)−αD)X2

Ṡ1 = D(Sin
1 −S1)− k1µ1(S1)X1

Ṡ2 = D(Sin
2 −S2)+ k2µ1(S1)X1− k3µ2(S2)X2

Ż = D(Zin−Z)

Ċ = D(Cin−C)−qCO2 + k4µ1(S1)X1 + k5µ2(S2)X2

where

qCO2 = kLa(C+S2−Z−KHPCO2) (24)

PCO2 =
φCO2−

√
φ 2

CO2
−4KHPt(C+S2−Z)

2KH

φCO2 =C+S2−Z +KHPt +
k6

kLa
µ2(S2)X2

µ1(S1) = µ̄1
S1

S1 +KS1

µ2(S2) = µ̄2
S2

S2 +KS2 +S2
2/KI2

The time horizon is [t0, t f ] = [0,20] days, the uncertainties are the initial conditions X1(t0) ∈ [0.49,0.51]
g(COD)L−1, X2(t0) ∈ [0.98,1.02] mmolL−1, and C(t0) ∈ [39.2,40.8] mmolL−1, and the parameters k1 ∈
[42.14,42.98] g(COD) g(cell)−1 and k2 ∈ [116.5,118.24] mmol g(cell)−1. The remaining initial conditions
are S1(t0) = 1 mmolL−1, S2(t0) = 5 mmolL−1, and Z(t0) = 50 mmolL−1, and all other parameters are
constant as in [19].

To the best of our knowledge, (23) does not obey any existing solution invariants. Thus, we apply the
strategy outlined in §2.3.1 to embed the model into a higher-dimensional augmented system that satisfies
solution invariants by design. Specifically, we define the redundant state variables

N1 ≡ k1X1 +S1, N2 ≡−k2X1 + k3X2 +S2, (25)

and augment (23) with the corresponding ODEs for N1 and N2 derived by differentiating (25). After some
simplification, these are

Ṅ1 = D(Sin
1 +S1(α−1)−αN1), (26)

Ṅ2 = D(Sin
2 +S2(α−1)−αN2).

As discussed above, the variables N1 and N2 are chosen such that highly nonlinear and uncertain terms cancel
when deriving (26) from (23) (specifically, µ1(S1)X1 and µ2(S2)X2, which describe enzymatic reactions).
By construction, the solutions of the lifted system consisting of (23) and (26) satisfy the nonlinear invariants

0 =−N1 + k1X1 +S1, (27)

0 =−N2− k2X1 + k3X2 +S2.

Figure 3 compares the standard DI method applied directly to (23) with our new method applied to the
lifted system consisting of (23) and (26) with the nonlinear invariants (27). Again, standard DI produces
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Figure 3: State bounds for X2 and S2 in (23) computed using SDI (dashed black) and our new method exploiting the
nonlinear invariants (27) (solid red) with sampled solutions (gray shaded region).

rapidly diverging bounds. However, the use of the invariants (27) results in very sharp bounds over the
entire time horizon, and appears to stabilize the bounds as t→ ∞. Our new method required 5.0×10−2s to
produce the bounds shown in Figure 3, compared to 7.0×10−3s for standard DI. For reference, integrating a
single trajectory of (23) required 2.8×10−4s on average2. This problem was also considered in [19] over the
shorter horizon [t0, t f ] = [0,4] days, and with k1 and k2 fixed rather than uncertain. There, the fastest method
that did not produce divergent bounds used 4th-order Taylor Models with ellipsoidal remainder bounds and
required 0.41s. Thus, the use of nonlinear solution invariants provides sharp bounds at significantly lower
cost in this case.

Example 4. The following model describes a two-phase counter-current multistage liquid-liquid extraction
system with a single solute [20]:

VLẋn = L(xn−1− xn)−Qn (28)

VGẏn = G(yn+1− yn)+Qn

Above, n = 1, . . . ,5 is the stage number, xn and yn are the concentrations of solute in the feed and solvent
phases, respectively (kg/m3), VL = 2 and VG = 2 are the phase volumes (m3), L = 5 and G = 5 are flow rates
(m3/h), and Qn is the rate of solute transfer, expressed as

Qn = KLa(xn− x∗n)V. (29)

Above, KLa is the overall mass transfer capacity constant (1/h), V =VL+VG is the total hold-up volume (m3),
and x∗n is the solute concentration in equilibrium with yn. We assume that the following polynomial has been
fit to experimental equilibrium data: x∗n = p1y4

n + p2y3
n + p3y2

n + p4yn + p5. Due to measurement error, we
further assume that KLa and all coefficient p1, ..., p5 are uncertain, with KLa ∈ [8,16], p1 ∈ [1.48,1.49]×
10−5, p2 ∈ [−1.11,−1.05]×10−3, p3 ∈ [3.28,3.30]×10−3, p4 ∈ [7.56,7.58]×10−1, and p5 ∈ [4.93,4.95]×
10−2. All initial concentrations are zero and the inlet flow rates are x0 = 10 and y0 = 1 (m3/h).

Observing that Qn appears in both ODEs in (28), effective redundant state variables can be created by
arranging for the cancellation of this term. Specifically, we define

Nn =VLxn +VGyn, n = 1, . . . ,5, (30)

which leads to the augmented ODEs

Ṅn = Lxn−1 +Gyn+1− (Lxn +Gyn), (31)

= 5(xn−1 + yn+1)−
5
2

Nn, n = 1, . . . ,5. (32)

2Methods were implemented in C++ on a 64-bit Linux virtual machine allocated 4GB RAM and a single core of a Dell Precision
T3610 with an Intel Xeon E5-1607 v2 @ 3.00 GHz. Numerical integration was done using the Sundials solver CVODE [17] with
absolute and relative tolerances of 10−5.
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Figure 4: State bounds for x5 (left) and y5 (right) from (28) computed using standard DI (dashed) and and our new
approach with manufactured invariants as in Theorem 1 (circles). Solid lines are real trajectories

Figure 4 shows that the bounds produced by applying the standard DI method to (28) rapidly diverge. In
contrast, the use of manufactured invariants provides bounds that are nearly exact. The computational costs
were 0.04s for a single trajectory and 0.7s for DI using manufactured invariants3, while integration of the
standard DI bounds failed due to rapid divergence around t = 2.

2.3.3 Effective Manufactured Invariants for Path and Trajectory Tracking Problems

Some preliminary new strategies have been developed for choosing effective invariants for dynamic models
describing vehicles under path and trajectory tracking control. It is presently unclear how broadly effective
these strategies are, but we have obtained very promising results for several test cases. These results are the
subject of a new manuscript in preparation [4].

Models in this domain have clear mathematical similarities stemming from the basic equations of motion
even when they describe very different vehicles. By considering several test cases, we identified two key
challenges for bounding the solutions of this class of models. First, the governing ODE for each state
typically consists of just a single nonlinear term, and the same term is not repeated in the ODEs for multiple
states. Thus, the term-cancellation strategy outlined in §2.3.2 is almost entirely ineffective. In fact, all
conceivable strategies for this class of problems lead to nonlinear invariants, which are much more difficult
to automate. Second, the models in this domain are closed-loop models; i.e., the dynamics can be written as

ẋ(t) = h(t,x(t),w(t),κ(x(t))), (33)

where h describes the open-loop vehicle dynamics and κ is a state-feedback law. Surprisingly, we found that
this structure (which clearly arises in a much wider range of applications) is deeply problematic for standard
DI bounding methods, as well as any other method relying heavily on interval arithmetic. This is because
the feedback law causes a significant interval dependency problem in (33). In brief, this means that standard
interval methods will treat the two occurrences of x(t) in (33) (one in the open-loop dynamics and one in the
feedback law) as independent for the purposes of bounding. Thus, the intended effect of the feedback law
(i.e., to counteract and override the natural x-dependence of h) will not be reflected in the computed bounds.
As a consequence, bounds computed for the closed-loop system can be much worse than those computed
using a nominal open-loop input, despite the fact that the true reachable set is much smaller under feedback.

To address these issues, we obtained path and/or trajectory tracking controllers for a few basic vehicle
models from the literature and studied the corresponding closed-loop models in detail. Based on these case
studies, we identified the following two strategies as broadly effective for reducing the conservatism of fast
DI bounding methods:

3Methods were implemented in MATLAB using the numerical integrator CVODE with default settings [17] on a Dell Precision
T3610 with an Intel Xeon E5-1607 v2 processor @ 3.00 GHz.
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1. Apply the bounding method to the ODEs describing the vehicle dynamics in the same coordinate
system that was used to derive the feedback law. In trajectory tracking problems, the feedback law
is nearly always derived by considering some kind of error dynamics. Importantly, when the closed-
loop system is formed in the appropriate error coordinates, the action of the control law (i.e., the
manner in which it counteracts and overrides the natural dynamics of the system) often manifests
itself explicitly as term cancellations or other major algebraic simplifications that are not apparent in
the original (x,y,z) workspace coordinates. These simplifications can have a profound impact on the
accuracy of interval arithmetic, and hence on the accuracy of DI bounding methods. Thus, applying DI
to the error dynamics (appropriately simplified) and subsequently transforming the results back to the
workspace coordinates of interest is likely to result in much more accurate reachability bounds than
applying DI directly in the workspace coordinates. In addition to considering error coordinates, path
tracking controllers are often derived by considering a transformed independent variable representing
some measure of progress along the path (e.g., arclength) rather than time. Forming the closed-loop
error dynamics with respect to this transformed variable can result in further algebraic simplifications
that are advantageous for interval arithmetic. Moreover, as demonstrated below, computing error
bounds with respect to this transformed variable also makes it possible to convert the bounds back to
the workspace coordinates of interest with much less conservatism.

2. Define new variables y as Lyapunov-like functions for the closed-loop system. Path and trajectory
tracking controllers are commonly proven to be stable with the aid of a Lyapunov function V for
the closed-loop error dynamics. Therefore, once a controller has been designed for a vehicle of
interest, V is readily available. We have found that defining the new state variable y = V (x) and then
applying the bounding method described in §2.3.1 often results in much tighter reachability bounds
than standard DI. To see why, note that this choice of y leads to an augmented system of the form (17)
where the ODE for ẏ is exactly the total time derivative of V (i.e., its Lie derivative with respect to
the vector field defined by the closed-loop error dynamics). By the definition of a Lyapunov function,
the right-hand side of this ODE is negative in a neighborhood of the origin. Moreover, in order to
prove this fact in practice, V is nearly always designed such that this right-hand side can be expressed
in a simple algebraic form. Specifically, it benefits from exactly the kind of term cancellations and
other simplifications that are highly beneficial for interval arithmetic. Thus, applying the bounding
method described in §2.3.1 typically results in sharp bounds on y(t) = V (x(t)) that can then be used
to effectively refine the bounds on x(t) pointwise in time as they are propagated forward.

Our manuscript in preparation [4] provides several examples of the application of these strategies. One
of these examples is provided below showing that the combination of these two strategies can lead to sharp
bounds over much longer time horizons than standard approaches.

Example 5. Consider the following vehicle dynamics with position (x,y) and heading angle θ :

ẋ = vcos(θ), ẏ = vsin(θ), θ̇ = ω. (34)

The objective is to control the heading rate ω in order to track a reference path described by a smooth curve
(xre f (γ),yre f (γ)) parameterized by its arclength γ and curvature c(γ). We specify c(γ) = 1/30 for γ ∈ [0,80]
m and c(γ) =−1/30 for γ ∈ (80,160] m.

Provided that the vehicle stays sufficiently close to the reference path, its location (x(t),y(t)) at any time t
has a unique nearest point on the path, (x∗(t),y∗(t)) [21]. Let s(t) be the arclength at (x∗(t),y∗(t)) and let n(t)
be the unit tangent to the path at (x∗(t),y∗(t)). Moreover, let ex(t) = x(t)−x∗(t) and ey(t) = y(t)−y∗(t) and
define the tracking error by e(t) = ex(t)ny(t)− ey(t)nx(t). Finally, let θe(t) be the difference between θ(t)
and the reference heading angle θre f (t) defined by the tangent to the reference path at (x∗(t),y∗(t)). With
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these definitions, the vehicle’s motion can be described equivalently by the following error dynamics [21]:

ṡ =
vcos(θe)

1− c(s)e
, ė = vsin(θe), θ̇e = ω− vc(s)cos(θe)

1− c(s)e
. (35)

Based on this representation, the following path tracking controller is proposed [21]:

ω =
vc(s)cos(θe)

1− c(s)e
−
(

2.8
√

v2 +0.1
)

θe−
(

4v
sin(θe)

θe

)
e. (36)

We are interested in computing bounds on the possible vehicle positions (x(t),y(t)) under this path-
tracking controller starting from the uncertain initial conditions (x0,y0,θ0) ∈ [0,0]× [0.8,1]× [ π

12 ,
π

6 ] and
with uncertain time-varying velocity v(t) ∈ [5,6] m/s. Perhaps the most natural approach to achieve this is
to apply a bounding algorithm to the closed-loop system obtained by substituting (36) into (34). However,
this cannot be implemented because the coordinate transformation between (x,y,θ) and (s,e,θe) (which
would be required to evaluate the control law) cannot be written as a closed-form algebraic expression, and
so there is no simple way to propagate interval bounds through it. However, even if this were possible
(which it is for other examples), it would likely lead to very conservative bounds due to the dependency
problem caused by feedback described in §2.3.3. Both problems are potentially solved by instead applying a
bounding algorithm to the closed-loop error dynamics obtained by substituting (36) into (35), which results
in a significant term cancellation that is beneficial for interval arithmetic. However, this only yields bounds
on (s,e,θe), and again, there is no simple way to propagate these bounds back to the (x,y) coordinates
of interest. To work around this problem, the bounding algorithm can instead be applied to the following
system describing the closed-loop error and original dynamics simultaneously:

ṡ =
vcos(θe)

1− c(s)e
, ė = vsin(θe), θ̇e =−

(
2.8
√

v2 +0.1
)

θe−
(

4v
sin(θe)

θe

)
e, (37)

ẋ = vcos(θd +θe), ẏ = vsin(θd +θe), θd =
vc(s)cos(θe)

1− c(s)e
.

The results of applying standard DI to this system are shown in red in Figure 5. Unfortunately, the results
are very weak despite taking advantage of a term cancellation in the error dynamics.

To make a further improvement, we next define a new state variable based on the following Lyapunov
function for the closed-loop error dynamics given in [21]: V (e,θe) =

1
2(e

2 + 1
4 θ 2

e ). Defining V (t) =
V (e(t),θe(t)) (we use V instead of y for the augmented variable to avoid conflict with the vertical posi-
tion y), we obtain the additional ODE (after simplification)

V̇ =−2.8
√

v2 +0.1
4

θ
2
e . (38)

By design, the augmented system comprising (37) and (38) satisfies the invariant

V =
1
2

(
e2 +

1
4

θ
2
e

)
. (39)

The result of applying the DI method for systems with nonlinear invariants developed in Task 1 to the
system comprising (37) and (38) with invariant (39) is shown in purple in Figure 5. These bounds constitute
a significant improvement over standard DI, but are still quite weak. However, close examination of these
results shows that only the bounds on the original variables (x,y,θ) are weak, while the computed bounds
on (s,e,θe) are reasonably tight and much better than SDI (not shown). This suggests that much tighter
bounds might be achievable through a better approach for mapping error bounds back into the coordinates
of interest.
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After some experimentation, we discovered that choosing the arclength s instead of t as the independent
variable in path tracking problems makes it significantly easier to propagate interval bounds from (e,θe)
to (x,y) without significant additional conservatism. This is possible because, when the vehicle remains
sufficiently close to the path, (37) shows that ṡ is non-negative. Therefore, s is a monotonically increasing
function of t and is a valid change of variables. Executing this change of variables for the error states and
the Lyapunov function V gives

de
ds

= (1− c(s)e) tanθe,
dθe

ds
= (1− c(s)e)

−
(

2.8
√

v2 +0.1
)

θe

vcosθe
− 4tanθe

θe
e

 , (40)

dV
ds

=−(1− c(s)e)

(
2.8
√

v2 +0.1
)

θ 2
e

4vcos(θe)
.

Applying a bounding algorithm to (40) gives bounds on (e,θe) as functions of s. Since each s values refers
to specific location along the reference path and e(s) is essentially a signed distance between the vehicles
location and the reference path at s in the direction orthogonal to the path at s, bounds on the original
positions can be directly obtained by

xL/U = xre f + eL/U cos
(

θre f +
π

2

)
and yL/U = yre f + eL/U sin

(
θre f +

π

2

)
. (41)

The result of applying standard DI to the system (40) and subsequently propagating the bounds to the
(x,y) space via (41) is shown in blue in Figure 5, while the result of applying the advanced DI method for
systems with nonlinear invariants developed in Task 1 to (40) with invariant (39) is shown in green. It can
be seen that bounding in this coordinate system provides some advantages for SDI relative to the case where
the independent variable is t, but the bounds still rapidly diverge. In contrast, the combination of using the
correct coordinate systems and exploiting the Lyapunov invariant (39) through our new DI method leads to
very sharp bounds over a much longer horizon than any other method. Moreover, this method required only
0.016 s of CPU time4.

Figure 5: Bounds on the vehicle position for Example 5 produced by applying standard DI to (37) (red), applying
advanced DI to the system comprising (37) and (38) with invariant (39) (purple), applying standard DI to (40) (blue),
and applying advanced DI to (40) with invariant (39) (green). The black bounds are not discussed in this report.
Sampled trajectories are grey.

4C++ implementation on a laptop with a 2.9 GHz Intel Core i5 and ODEs solved using the SUNDIALS solver CVODE [17]
with absolute and relative tolerances of 10−5.
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2.3.4 Mean-Value Differential Inequalities for General Nonlinear Models

A new bounding method called mean-value differential inequalities (MVDI) has been developed that can be
interpreted as a fully automated method for choosing effective invariants. This method is described in detail
in our publications [5,6]. MVDI is applicable to general nonlinear systems but may be less efficient than the
tailored methods discussed in §2.3.2–2.3.3. The central idea of this technique is to automatically construct
approximate invariants through the use of the forward sensitivity equations for the model of interest, and
then to derive a rigorous interval refinement algorithm based on these approximate invariants through an
application of the Mean Value Theorem. To present this technique, we first restrict our attention to ODEs
affected by time-invariant uncertainties p:

ẋ(t) = f (t,x(t), p), x(t0) = x0(p), t ∈ [t0, t f ], x(t) ∈ Rnx , p ∈ Rnp , (42)

with p ∈ P and x0 : P→ Rnx for some interval uncertainty set P = [pL, pU ]. Recall that the sensitivities for
(42) are defined as

si j(t, p)≡ ∂xi

∂ p j
(t, p), i ∈ {1, . . . ,nx}, j ∈ {1, . . . ,np}. (43)

Let s denote the matrix with components si j and define the functions

fs(t,x,s, p)≡ ∂ f
∂x

(t,x, p)s+
∂ f
∂ p

(t,x, p), s0(p)≡ ∂x0

∂ p
(p). (44)

With these definitions, the joint state and sensitivity vector [ x
s ] is well-known to satisfy the following initial

value problem in nx +nxnp ODEs:

d
dt

[
x(t, p)
s(t, p)

]
=

[
f (t,x(t, p), p)

fs(t,x(t, p),s(t, p), p)

]
,

[
x(t0, p)
s(t0, p)

]
=

[
x0(p)
s0(p)

]
. (45)

In our new approach, we choose the sensitivities s as the new state variables, i.e. y = s, so that (45) becomes
the augmented system (17). At this point, the development of our new method deviates slightly from our
previous methods because s has not been defined as an explicit algebraic function of x as in s = g(x), and so
(45) does not seem to satisfy any invariants by design. However, a relation between x and s that can be used
for bound refinement is provided in this case by the Mean Value Theorem (MVT). Specifically, given any
i ∈ {1, . . . ,nx} and any reference point p̂ ∈ P, the MVT ensures that there exists ξ (t, p) ∈ P such that

xi(t, p) = xi(t, p̂)+ sT
i (t,ξ (t, p))(p− p̂), ∀(t, p) ∈ [t0, t f ]×P, (46)

where sT
i denotes the ith row of s. Note that this equation relates x(t, p) to s(t,ξ (t, p)), whereas a true in-

variant would relate x(t, p) to s(t, p). However, we have shown that, because ξ (t, p) ∈ P, this relation can
still be used to make valid refinements to interval bounds on x(t, p) and s(t, p) computed using differential
inequalities. Thus, in the context of the reachability algorithms developed in Task 1, Equation (46) can be
treated as an invariant for the augmented system (45), and valid bounds on x can be computed by applying
our differential inequalities approach to (45) while exploiting the nonlinear ‘invariant’ (46) through a suit-
ably defined interval refinement algorithm Ig. Critically, both the augmented system (45) and its invariants
(46) are automatically generated in this scheme without the need for any user insights.

Because (46) is not a true invariant, its use is not strictly permitted by the theory developed in Task 1.
Instead, the validity of this method is established by a more general theoretical development that this is main
result of our proceedings paper [5] and a journal article in review [6].

Although we have done limited numerical experiments with this approach so far, the results have been
very promising. In the examples below, we show that this approach is competitive with using manually
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Figure 6: Bounds on X2 and S2 in (23) from standard DI (dashed black) and mean value DI (solid red) with sampled
solutions (shaded gray area).

designed invariants for Example 3 above, and produces greatly improved bounds for a challenging aircraft
trajectory tracking problem where no manually designed invariants have yet been effective.

Example 6. Consider again the ODEs in (23) with time horizon [t0, t f ] = [0,20] days and uncertain ini-
tial conditions X1(t0) ∈ [0.49,0.51] g(COD)L−1, X2(t0) ∈ [0.98,1.02] mmolL−1, and C(t0) ∈ [39.2,40.8]
mmolL−1. The remaining initial conditions are S1(t0) = 1 mmolL−1, S2(t0) = 5 mmolL−1, and Z(t0) = 50
mmolL−1, and all other parameters are constant at the values in [19].

Figure 6 compares the standard differential inequalities method (SDI) to our new mean value DI method
(MVDI) described above. We use the reference point p̂ = mid(P) and the reference trajectory x(t, p̂). Fig-
ure 6 clearly shows that SDI produces rapidly diverging bounds, while MVDI produces very sharp bounds.
Moreover, the bounds in Figure 6 are only slightly weaker than those in Figure 3, which were computed
with custom, manually constructed invariants. The time required for integrating a single trajectory of
(23) is 4× 10−4s on average, while SDI takes 2.5× 10−3s and MVDI takes 2.6× 10−2s5. Thus MVDI
is roughly a factor of 10 slower than SDI. This problem was also considered in [19] over the shorter horizon
[t0, t f ] = [0,4]. There, the fastest method that did not produce divergent bounds used 4th-order Taylor Models
with ellipsoidal remainder bounds and required 0.41s. Thus, the use of mean value differential inequalities
provides sharp bound at significantly lower cost in this case.

Example 7. The following equations describe the motion of a fixed-wing UAV [22], where (x,y,z) is the
UAV position, vxy and vz are the velocities in the xy−plane and z−plane, respectively, ψ is the heading
angle, and θ is the roll angle:

ẋ = vxy cos(ψ), ẏ = vxy sin(ψ), ż = vz (47)

ψ̇ =
g

vxy
tan(θ), v̇xy = axy, v̇z = az, θ̇ = ω.

The initial position is assumed to be uncertain but bounded in X0×Y0×Z0 = [−1,1]× [−1,1]× [−1,1] m3.
The remaining initial conditions are ψ = 0 rad, vxy = 10 m/s, vz = 1 m/s, and θ = 0.3 rad.

There are three control inputs, (axy,az,ω), where axy and az are the acceleration in the xy−plane and
z−plane in m/s2, respectively, and ω is the roll angle rate in rad/s. These inputs are used to track a desired
trajectory, which is denoted by (xd(t),yd(t),zd(t),ψd(t),vxy,d(t),vz,d(t)). Here, the desired trajectory has
been generated by specifying the open-loop control input (axy,az,ω) = (1,0.1,0) and simulating the model
without uncertainty from the initial position at the center of X0×Y0×Z0. In order to track this trajectory

5C++ implementations on a laptop with a 2.9 GHz Intel Core i7 and ODEs solved using the SUNDIALS solver CVODE [17]
with default settings.
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under uncertainty, the following feedback control law is used

axy = k5εx + k6(vxy,d− vxy), (48)

az = k7εz + k8(vz,d− vz), (49)

ω = k4(k1εy + k2(ψd−ψ)+ k3(ψ̇d− ψ̇)−θ), (50)

where εx, εy, and εz are the lateral, longitudinal, and altitude errors defined by

εx = cos(ψd)(xd− x)+ sin(ψd)(yd− y), (51)

εy =−sin(ψd)(xd− x)+ cos(ψd)(yd− y), (52)

εz = zd− z. (53)

The gains are k1 = 0.05, k2 = 5.0, k3 = 5.0, k4 = 1.0, k5 = 0.1, k6 = 1.0, k7 = 0.13, and k8 = 1.0.
Figure 7 compares the standard differential inequalities method (SDI) to our new mean value DI method

(MVDI) described above. The figure clearly shows that SDI (black) produces rapidly diverging bounds while
MVDI (red) is able to produce bounds very close to the set of true trajectories shown in green. The time
required for integrating a single trajectory of (47) is 3.6× 10−4s on average, while SDI takes 8.0× 10−3s
and MVDI takes 2.8×10−2s6. Thus, MVDI produces accurate bounds over 10s of flight time nearly three
orders of magnitude faster than real-time. Moreover, computing a rigorous enclosure by MVDI is less costly
than simulating trajectories on a 4×4×4 grid over the uncertain initial condition space (64 trajectories at a
total cost of 2.3×10−2s), which is unlikely to provide a reliable approximation of the full reachable set.

We also computed bounds using the state-of-the-art reachability code CORA, which is based on the
propagation of high-order zonotopes rather than intervals [23, 24]. The bottom panel in Figure 7 shows that
CORA produces even tighter bounds than MVDI. However, CORA requires 3.6 s7. Thus, CORA is more
than 125 times slower than MVDI and is unlikely to be fast enough for real-time verification and control.

2.4 Progress Towards Task 3
The objective of Task 3 was to develop algorithms and software for fast and accurate state bounding through
the automatic identification, introduction, and exploitation of model redundancy. The specific subtasks orig-
inally proposed to accomplish this were largely predicated on the expectation that Task 2 would yield gen-
eral strategies for designing invariants that would benefit greatly from automation, and that automating these
strategies would require certain symbolic computing capabilities. However, this did not occur. Although
Task 2 did indeed produce general strategies for designing effective invariants in two important application
domains (mass and energy balance models and trajectory/path tracking problems), we determined that au-
tomating these strategies would not be the most impactful use of the remaining project resources for reasons
described in §2.3.2–2.3.3. More importantly, work in Task 2 led to the development of the mean-value
differential inequalities (MVDI) method, which automates the construction of effective invariants for gen-
eral nonlinear systems without the need for advanced symbolic computing capabilities. Thus, the objective
of Task 3 was accomplished through the development of the MVDI algorithm already discussed in §2.3.4
and the originally proposed subtasks involving advanced symbolic computing capabilities were not pursued
further.

6C++ implementations on a laptop with a 2.9 GHz Intel Core i7 and ODEs solved using the SUNDIALS solver CVODE [17]
with default settings.

7CORA is implemented in MATLAB and was run with zonotope order 7, time step 0.1 s, and all other parameters at their default
settings on a laptop with a 2.5 GHz Intel Core i5.

18



Figure 7: Top Left: Bounds on x, y, and z in (47) from standard DI (black boxes) and mean value DI (red boxes) with
sampled solutions (green). Top Right: Same image with standard DI bounds removed for clarity. Bottom: Bounds
computed by the state-of-the-art zonotope-based reachability code CORA (red boxes).

2.4.1 A Fast Interval Arithmetic Library for MATLAB

Although the bounding algorithms developed in this project do not require advanced symbolic computing,
they do make extensive use of symbolic-numeric capabilities such as automatic differentiation (AD) and
interval arithmetic (IA). Existing AD and IA packages were readily available for use in C++ implementations
of our bounding algorithms. However, existing tools for use in MATLAB implementations were not nearly
efficient enough to support our use case. To address this, we developed a MATLAB library called SymbComp

that automatically constructs computational graphs of nonlinear functions and supports very fast interval
computations using a novel code generation technique. Using this technique, SymbComp is able to perform
interval computations considerably faster that existing MATLAB libraries and competing libraries that we
previously developed using operator overloading, which is the standard approach used to design interval
libraries in many programming languages. The times required for SymbComp to execute some basic interval
operations are compared with those from the commercial library Intlab and our own operator overloading
implementation in Table 1. These results indicate that SymbComp is nearly an order of magnitude more
efficient on average. The current version of SymbComp also supports advanced bounding computations with
polyhedral outer approximations and more general convex enclosures. SymbComp is the subject of a journal
manuscript currently in preparation and is expected to be released on GitHub sometime over the next year.

2.5 Other Findings

Through our interactions with AFOSR and AFRL personnel over the course of this project, we became
aware of several problems of interest to the Air Force that are closely related to this project but not strictly
included in the original proposal. In two cases, we were able to make significant progress on these problems
under this award through reasonably straightforward extensions of the methods discussed in the previous
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Table 1: Interval arithmetic operation times in seconds per hundred runs in MATLAB 2014b with the JIT compiler
disabled on a computer with 4 Intel R© CoreTM i5-3210M cores at 2.5GHz and 4 Gigabytes of RAM.

Library x+ y x× y xy logx
Symbcomp 0.017035 0.040372 0.038328 0.021660

Operator Overloading 0.118257 0.140825 0.139114 0.103205
Intlab 0.094486 0.198328 0.344083 0.398991

sections. These are outlined in the following two subsections.

2.5.1 Rapid and Accurate Uncertainty Propagation for Discrete-Time Systems

The primary thrust of this project was to develop improved reachable set bounding methods for nonlinear
dynamic systems described by ordinary differential equations in continuous-time. However, many robust
estimation and control problems of potential interest to AFOSR are commonly formulated in discrete-time
and require reachability analysis capabilities in this setting. One example is the calculation of optimal
open-loop control inputs that must satisfy state constraints robustly under uncertainty. Such calculations are
commonly used in moving horizon predictive control schemes formulated in discrete time. After studying
the current state-of-the-art in discrete-time reachability analysis, we identified a clear opportunity to make a
significant contribution by extending our continuous-time methods to this setting.

Notably, there was previously no direct analogue of the standard differential inequalities (DI) approach
in discrete time, so our new advances in DI could not be directly applied. Conceptually, this is because
DI theory depends critically on the fact that, for continuous-time systems, a trajectory cannot leave a set
X without crossing its boundary. Thus, to propagate a reachable set enclosure forward in time, it suffices
to consider the behavior of the vector field on its boundary [25]. This leads to the use of the operators
β

L/U
i in the bounding system (5)–(6). Unfortunately, this is not true in discrete-time, and this precludes any

straightforward analogue of the DI approach for general discrete-time systems.
In practice, however, discrete-time systems are often obtained by Euler discretization of continuous-time

models. Focusing on this special case, our main new results show that, for any given system, there exists a
bound on the discretization step size below which a discrete-time analogue of the basic DI method provides
valid bounds on the reachable sets of the discretized system. This step size bound can be easily computed
in advance, and is no more restrictive than the step size required to preserve basic physical properties of the
solution, such as non-negativity of certain states. Additionally, we showed that the advanced DI methods
using invariants developed in this project [3] are also valid in discrete time under a slightly tighter step size
restriction. These results are the subject of a proceedings paper [7] and a journal article currently under
review [8]. Our numerical results in both publications show that our new discrete-time DI methods substan-
tially outperform the existing state-of-the-art discrete-time methods [26, 27] (which compute bounding sets
in the form of high-order zonotopes) for some challenging test cases.

2.5.2 Formal Verification Using Rapid and Accurate Backward Reachability Analysis

We developed a new method for solving a class of formal verification problems that can be formulated as
backward reachability problems for systems described by nonlinear ODEs. This is the subject of a new
paper in preparation [9].

In contrast to forward reachability analysis, which aims to compute an enclosure of the set of trajectories
reachable from a given set of uncertain inputs and/or initial conditions, backward reachability analysis aims
to characterize the set of uncertain inputs that generate trajectories that satisfy a given set of conditions. We
specifically considered conditions that can be written in terms of a target set that must be reached eventually
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and a collection of obstacle sets that must be avoided at all times. Many important problems can be written
in this form, including aircraft collision avoidance problems, chemical process safety verification, etc. Ex-
isting backward reachability algorithms for general nonlinear systems fall into two broad categories. The
first involves the solution of a Hamilton-Jacobi-Bellman PDE, which scales exponentially in the number of
states and uncertain parameters and is therefore intractable for many systems of interest. The second applies
a recursive sequence of forward reachability computations within a branch-and-bound (B&B) algorithm.
More specifically, the uncertainty set is adaptively partitioned until most subsets can be proven by forward
reachability analysis to be either safe or unsafe, with the remaining sets accounting for a total volume less
than some prescribed tolerance. A significant advantage of this approach is that it does not scale exponen-
tially in the state dimension (unless a forward reachability subroutine is used that does). Moreover, although
it does scale worst-case exponentially in the number of uncertain parameters, its performance in practice
is dictated by the speed and accuracy of the embedded forward reachability calculations. Unfortunately,
existing forward reachability algorithms are either too conservative or too inefficient to make this procedure
effective beyond simple test cases [28].

To address this problem, we developed a branch-and-bound-based backward reachability algorithm
based around the advanced forward reachability methods developed under this award (see §2.2–2.4). Al-
though this algorithm has only been tested on a small number of examples to date, our preliminary results
show that the improved speed and accuracy of our forward reachability algorithms enables the solution of
some verification problems orders of magnitude faster than the current state of the art. Moreover, these meth-
ods make verification possible for significantly larger systems (in terms of the state dimension in particular)
than would be tractable through alternative approaches. Two representative examples are given below.

Example 8. The following ODEs describe the exothermic reaction A→ B in a batch reactor fitted with a
segmented, variable-area cooling jacket:

Ẋ = k0e−Ea/RT (1−X), (54)

Ṫ =
UA

CA0VCp
(Ta−T )− ∆HR

Cp
k0e−Ea/RT (1−X).

Above, X is the reaction conversion and T is the reactor temperature. The final time is t f = 1500 s. The
initial temperature is uncertain and satisfies T0 ∈ [310,540] K. Moreover, there are two control variables,
the coolant temperature Ta and the heat transfer coefficient UA, which must obey Ta ∈ [290,310] K and
UA ∈ [2.5,3.5] W/K. All other parameters are constant at the values in [28].

The formal verification problem of interest is defined in terms of the following four discrete states
associated with (54) at each point in time t:

• s1 (safe operation): t < t f and the reactor temperature has not exceeded 540 K for any t ′ ∈ [t0, t];

• s2 (unsafe operation): t ≤ t f and the reactor temperature has exceeded 540 K at some t ′ ∈ [t0, t];

• s3: (safe and on-spec run): t = t f , the reactor temperature has not exceeded 540 K for any t ′ ∈ [t0, t f ],
and X(t f )≥ 0.975;

• s4 (safe but off-spec run): t = t f , the reactor temperature has not exceeded 540 K for any t ′ ∈ [t0, t f ],
but X(t f )< 0.975;

The system begins in state s1 and immediately transitions to s2, s3, or s4 when the required conditions are
met. All trajectories end in s2, s3, or s4. The backward reachability problem of interest is to characterize
the subsets in the joint space of uncertainties T0 ∈ [310,540] K and control actions Ta ∈ [290,310] K and
UA ∈ [2.5,3.5] W/K that lead to trajectories ending in states s2, s3, and s4.
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Figure 8: Guaranteed inner-approximations of the backward reachable sets for discrete states s2 (unsafe, red), s3
(safe and on-spec, green), and s4 (safe but off-spec, blue) computed using DI with manufactured invariants with an
undecided volume threshold of 20%. The undecided region is shown in gray.

This problem was originally posed in [28] and solved using a branch-and-bound backward reachabil-
ity algorithm. In each iteration of this algorithm, the required forward reachability calculation was done
using a method based on sets described by high-order Taylor models. To compare, we applied two sim-
ilar branch-and-bound algorithms. In the first, the forward reachability computations are done using the
standard differential inequalities (DI) method. In the second, they are done using the advanced differential
inequalities method with manufactured invariants described in §2.3.1. To apply the latter, we defined the
new state variable

N =
∆HR

Cp
X +T (55)

and augmented (54) with the redundant ODE

Ṅ =
UA

CA0VCp
(Ta +

∆HR

Cp
X−N). (56)

Figure 8 shows the backward reachable sets for states s2, s3, and s4 computed by DI with manufactured
invariants (i.e., the subsets of the joint uncertainty and control input space that generate trajectories ending
in discrete states s2, s3, and s4). In this case, the algorithm was set to terminate when the volume of the set
that remains undecided is less than 20% of the original volume. Using DI with manufactured invariants, this
occurred after the joint uncertainty and control input space was partitioned into 3,348 subintervals at a total
cost of 2.8 CPUs8. In contrast, standard DI required 4,545 subintervals and 3.48 CPUs to achieve the same
tolerance. Thus, the use of invariants results in a 20% reduction in CPU time.

To compare with the prior state-of-the-art method in [28], this computation was repeated with an un-
decided volume tolerance of 4.8% in order to match the accuracy of the solution in [28]. Using DI with
manufactured invariants, the algorithm terminated after the joint uncertainty and control input space was
partitioned into 58,383 subintervals at a total cost of 49.6 CPUs. In contrast, the Taylor model method
in [28] required 48,440 subintervals and 98,649 CPUs. Thus, the advanced DI algorithm with manufac-
tured invariants developed under this award enables the solution of this formal verification problem well
over three orders of magnitude faster than the prior state of the art.

8C++ implementations on a laptop with a 2.9 GHz Intel Core i7 and ODEs solved using the SUNDIALS solver CVODE [17]
with absolute and relative tolerances of 10−6.
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Figure 9: Obstacles and sampled trajectories for Example 9.

Example 9. Consider again the fixed-wing UAV model described in Example 7. Using the same reference
trajectory and tracking controller as in Example 7, the backward reachability problem of interest here is to
compute the set of initial conditions from which the UAV is guaranteed to avoid collision with four obstacles
placed around the reference trajectory. The obstacles are all spheres with their centers placed at the (x,y,z)-
coordinates (25,0,5), (20,30,10), (48,50,28), and (25,82,48) and with radii 7, 10, 10, and 4, respectively.
The uncertain initial location of the UAV satisfies x0 ∈ [−3,3] m, y0 ∈ [−3,3] m, and z0 ∈ [−3,3] m. All other
initial conditions are fixed as in Example 7 and the time horizon is [t0, t f ] = [0,0.8] s. The four obstacles are
shown with several sampled trajectories in Figure 9.

To solve this problem, we again applied a branch-and-bound-based backward reachability algorithm
as described in §2.5.2. For the forward reachability calculations required in each iteration, we considered
both standard DI and the mean-value DI (MVDI) algorithm developed under this award and described in
§2.3.4. Figure 10 shows the backward reachable sets computed by MVDI with a 20% undecided volume
threshold. Due to the accuracy of the forward reachable sets produced by MVDI, this computation required
only 0.57 CPUs9 and partitioned the uncertainty space into only 28 subintervals. In contrast, SDI requires
142.86 CPUs and 107,796 subintervals. With a tighter undecided volume threshold of 5%, MVDI requires
5.7 CPUs and 308 subintervals, while SDI requires 185 CPUs and 132,987 subintervals. Thus, the MVDI
method developed under this award enables this verification problem to be solved much more efficiently
than using previously available methods.
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9C++ implementations on a laptop with a 2.9 GHz Intel Core i7 and ODEs solved using the SUNDIALS solver CVODE [17]
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Figure 10: Guaranteed inner-approximations of the sets of initial conditions that are guaranteed to avoid all collisions
(green) and guaranteed to lead to a collision (red) computed by MVDI with an undecided volume threshold of 20%.
The undecided region is shown in gray.
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Journal Publications:

1. Shen, K. and Scott, J.K., “Rapid and Accurate Reachability Analysis for Nonlinear Dynamic Systems
by Exploiting Model Redundancy,” Computers and Chemical Engineering, 106, 596–608, 2017

Refereed Conference Proceedings:

1. Shen, K. and Scott, J.K., “Tight Reachability Bounds for Nonlinear Systems using Nonlinear and
Uncertain Solution Invariants,” Proceedings of the 2018 American Control Conference, 2018

2. Yang, X. and Scott, J.K., “Efficient Reachability Bounds for Discrete-Time Nonlinear Systems by Ex-
tending the Continuous-Time Theory of Differential Inequalities,” Proceedings of the 2018 American
Control Conference, 2018

3. Shen, K. and Scott, J.K., “Mean Value Form Enclosures for Nonlinear Reachability Analysis,” Pro-
ceedings of the 2018 IEEE Conference on Decision and Control, 2018

Journal Publications Under Review:

1. Shen, K. and Scott, J.K., “Exploiting Nonlinear Invariants and Path Constraints to Achieve Tighter
Bounds on the Flows of Uncertain Nonlinear Systems using Differential Inequalities,” Mathematics
of Control, Signals, and Systems, 2018

2. Yang, X. and Scott, J.K., “Accurate Uncertainty Propagation for Discrete-Time Nonlinear Systems
Using Differential Inequalities with Model Redundancy,” IEEE Transactions on Automatic Control,
2018

3. Shen, K. and Scott, J.K., “Tight Reachability Bounds for Constrained Nonlinear Systems Using Mean
Value Differential Inequalities,” Automatica, 2019

Journal Publications in Preparation:

1. Shen, K. and Scott, J.K., “Faster Solution of Backward Reachability Problems for Nonlinear Systems
using Advanced Forward Reachability Algorithms,” 2019

2. Yang, X. and Scott, J.K., “Guaranteed Safe Path and Trajectory Tracking via Reachability Analysis
Using Differential Inequalities,” 2019
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5 Interactions/Transitions Supported by this Project

Other interactions include the following technical presentations:

1. Scott, J.K., “Rapid and Accurate Reachability Analysis for Nonlinear Systems by Exploiting Model
Redundancy,” Kolchin Seminar in Differential Algebra, New York University (March 2019)

2. Scott, J.K., “Rapid and Accurate Uncertainty Propagation, Safety Verification, and Fault Detection in
Chemical, Aerospace, and Robotic Systems,” Department of Chemical and Biological Engineering,
University of Wisconsin-Madison (February 2019)

3. Scott, J.K., “Algorithms for Guaranteed Safety Verification and Fault Detection in Chemical, Aerospace,
and Robotic Systems,” Department of Chemical and Biomolecular Engineering, Georgia Institute of
Technology (January 2019)

4. Shen, K., Yang, X., and Scott, J.K., “Verifying Performance Specifications for Dynamic Processes
Under Uncertainty Using Backward Reachability Analysis,” Computing and Systems Technology Di-
vision Plenary, Annual Meeting of the American Institute of Chemical Engineers (AIChE), Pittsburg,
PA (October 2018)

5. Scott, J.K., “Dealing with Large Uncertainties in the Simulation and Optimization of Complex Chem-
ical and Energy Systems,” School of Chemical and Biomolecular Engineering, Georgia Institute of
Technology (March 2018)

6. Shen, K. and Scott, J.K., “Improved Bounds on the Solutions of Nonlinear Dynamic Systems Us-
ing Centered-Form Differential-Inequalities,” Annual Meeting of the American Institute of Chemical
Engineers (AIChE), Minneapolis, MN (October 2017)

7. Shen, K. and Scott, J.K., “Rapid and Accurate Uncertainty Propagation for Nonlinear ODEs using
Nonlinear Solution Invariants,” Annual Meeting of the American Institute of Chemical Engineers
(AIChE), San Francisco, CA (November 2016)
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