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2. Objectives 

 

The objectives of this research were to: 

 

i. Elucidate how the biophysical dynamics of neuronal networks mediate their responses 

to (time-varying) afferent inputs. 

ii. Optimize these temporal dynamics in synthesized networks toward processing of 

dynamic stimuli 

 

3. Summary and Status of effort 

 

This report summarizes the 

outcomes and accomplishments 

achieved under grant FA9550-

15-1-0199. This project had two 

objectives, noted above. These 

objectives are synergistic and 

related to the understanding and 

eventual design of biophysically-

inspired neural network 

constructs. Succinctly, the goal 

was to reveal general principles 

that underlie brain-like 

computation, which could then 

be leveraged in the synthesis of 

new machine intelligence 

schemes. This in turn can enable 

computational methods for 

engaging cognitive tasks, as 

consistent with the goals of the 

AFOSR Computational Cognition and Machine Intelligence program. 

Specifically, the first objective pertains to analysis of biophysical, dynamical systems-

based neural models, in order to better understand their input-output relationships. In so doing, this 

analysis reveals the substrate for information processing at the level of individual neurons. The 

second objective adopts a normative, optimization-based view of neural dynamics. The goal here 

involved synthesizing neural and network dynamics based on specific functional objectives. A 

focus was on objectives related to processing time-varying stimuli, toward the construction of 

general schemes for history-dependent computation. Ideally, the two objectives converge, so that 

the optimized dynamics are consistent with those modeled from biophysical principles. Figure 1 

illustrates this research paradigm. 

 The research within this proposal spans the domains of systems theory (dynamical systems 

modeling, analysis, optimization ), information theory and computational neuroscience. The broad 

nature of the project is reflected in its outcomes and products, which appeared in a range of 

academic venues. In total, the project led to the publication of 10 papers in refereed journals and a 

further 7 in refereed conferences. Another 3 papers remain under review.  

Figure 1. Objective one seeks to take known biophysics toward 

revealing fundamental circuit and network properties associated with 

high-level functional goals. Objective two takes the end goals and 

backward optimized the dynamics and neurons and networks. If 

successful, the two tracks converge and reveal fundamental principles 

of neural computation that can be leveraged toward machine 

intelligence.  
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The principal investigator for this effort is Professor ShiNung Ching.  Dr. Ching has been 

assisted by graduate students and a postdoctoral associate. Several additional graduate students not 

requiring stipend support also contributed to the research effort. The PI and students have 

disseminated the findings of the project at several national meetings in systems theory, machine 

intelligence and computational neuroscience. 

 

4. Accomplishments 

 

This section summarizes the key accomplishments and products associated with the project. 

Portions of this summary are adapted from prior Annual Report documents, while other sections 

are new and based on results from the last reporting period. Full details regarding these 

accomplishments are contained in the referenced archival publications. These accomplishments 

are organized based on the schematic of Figure 1 (Analysis and Synthesis). For each 

accomplishment, the relevant products from Section 6 are indicated. 

 

4.1. Analysis of biophysical neural dynamics to understand circuit properties 

 

Related to objective (i), we have performed fundamental characterizations of the sensitivity of 

recurrent networks to time-varying stimuli, in order to understand the ability of such networks to 

encode time-varying input intensity and orientation. Such analysis can reveal how neural circuits 

enable history-dependent computations. We have also developed new methods for assessing 

information propagation in nonlinear dynamical models of neural populations. 

 

4.1.1. Sensitivity of recurrent neural circuits to history, enabling novelty detection 

A key question in theoretical neuroscience pertains to how neural circuits produce 

actionable representations of afferent stimuli or inputs. Such representations (i.e., 

neural codes) are the substrate for downstream information processing and thus a 

critical pre-cursor to any neural computation scheme.  

We first approached the neural coding problem through the lens of network 

sensitization, studying how circuits might be particularly apt to propagate certain types 

of afferent excitation. To this end, we developed a new construct termed the network 

bispectrum that holistically describes how stimulus energy and tuning trade off against 

each other towards producing discriminable representations in the network state space. 

This analysis allowed us to study how neuronal dynamics may endow networks with 

‘useful’ sensitization properties, such as tuning their receptive fields to novel stimuli.  

This in turn may help us to better leverage these dynamics in the construction of 

systems for novelty detection and/or detection of rare events. 

These results are significant because they show how both the structural and 

dynamical properties of neural networks intrinsically enable processing capabilities 

(e.g., sensitivity to stimulus novelty or contrast) that may be advantageous for higher-

level information extraction and processing. 

Relevant products: [6.a.v],[6.a.vii],[6.a.viii], [6.b.vi] 

 

4.1.2. Neural plasticity and its effects on input-to-output circuit lability 

Building on our initial results, we focused on the question of how neural circuits 

accentuate stimulus novelty over time via mechanisms of neural plasticity. The 
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motivation here was specifically to understand how the prior history of a time-varying 

input modifies the sensitivity of the network itself. That is, whereas our initial results 

above focused on a static network, these analyses treated the case where the neural 

dynamics themselves adapted over time. 

We performed this analysis in small, canonical biophysical network motifs. Our 

key finding was that such motifs, which tend to be overrepresented in early sensory 

processing pathways, indeed tend to accentuate stimulus contrast over time, thus 

facilitating even greater detection of novel inputs (versus the case of a static network). 

These results are significant because they ascribe a functional role to neural plasticity 

in the context of neural coding, e.g., producing favorable sensory ‘tuning curves.’ 

Relevant products: [6.a.iv] 

 

4.1.3. Input propagation in the spiking domain 

We also performed analysis of input-to-output properties for neurons with explicit 

spiking dynamics. Specifically, we examined the use of Integrate-and-Fire-type (IF) 

neurons in networks that can perform functions including input coding, dynamical-

systems approximation and control. A particular focus was on analyzing the extent to 

which such neurons can produce dissociable spiking patterns. The idea here is thus: 

consider a network that receives n distinct afferent inputs. Will this network produce n 

distinct spiking outputs (i.e., that can be associated distinctly to each input), or will they 

compress the inputs to a single spiking representation? What sorts of dynamics and/or 

network configurations promote either situation? 

To this end, we provided a complete, fundamental characterization regarding the 

‘pattern sensitivity’ of IF neurons. The analysis is important as it provides a lower-

bound on achievable spike timing in networks impinged upon by extrinsic stimuli, thus 

impacting the use of such networks to process the stimuli in question. We subsequently 

parameterized networks of IF neurons in order to produce desired spiking profile. Our 

synthesis procedure will be further discussed in Section 4.2.   

Relevant products: [6.a.ix], [6.b.vii] 

 

4.1.4. Information-theoretic stimulus encoding and noise rejection 

On the question of stimulus encoding, we pursued an additional track of research 

wherein we explicitly integrated information-theoretic frameworks into our problem 

formulation. In particular, we asked how the dynamics of neurons and of networks 

(e.g., via synaptic plasticity) might allow information-theoretic objective functions to 

be maximized. In particular, the Shannon mutual information can be understood as a 

computational primitive that indicates the extent to which a network mediates encoding 

and decoding of afferent excitation in a Bayesian sense. 

We have made several contributions regarding how Shannon mutual information 

might be maximized via neuronal dynamics. While much of this work falls into the 

realm of network synthesis (discussed below in Section 4.2), we performed extensive 

analysis on how multiple time-scales of plasticity (e.g., short and long-term adaptation) 

enable networks to learn unsupervised representations. Indeed, using optimization 

arguments, we showed that neurons with multiple time-scales of adaptation allow for 

recurrent networks to find efficient stimulus representations through only local 

(pairwise) interactions between neurons. This result is significant because it shows how 
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neural dynamics might provide a means for scalable unsupervised learning (and neural 

coding). 

Relevant products: [6.a.x],[6.a.ii],[6.a.iii],[6.b.iv],[6.c.iii] 

 

4.1.5. Empowerment of nonlinear neural mass models 

We performed a second information-theoretic analysis, aimed at revealing intricate 

information processing relationships mediated by nonlinear neural dynamics. Indeed, 

while we know that actual neurons possess a range of intricate nonlinear biophysics, 

the informational advantages associated with such nonlinearities are far from clear. 

Perhaps as a result, artificial neural network constructs rarely leverage such dynamical 

nonlinearities. As a first step to fill this gap, we attempted to characterize the 

information-theoretic channel capacity, sometimes known as the ‘empowerment,’ of a 

nonlinear neural mass model. Our goal was to ascertain how the information 

propagation of a population of neurons varied based on its dynamical regime (e.g., the 

stability of its fixed points). This problem is analytically and computationally 

challenging for reasons related to the nature of the nonlinear dynamics and their 

continuous state spaces. 

 In the last reporting period, we made progress on developing a method to 

characterize the empowerment of dynamical neural models. Figure 2 illustrates the type 

of characterization that our analysis method produces. In particular, our analysis allows 

us to draw conclusions about the functional advantages of certain nonlinear regimes, 

including neural oscillations. Such oscillations are observed ubiquitously in actual 

neural circuits, but are rarely manifest in artificial networks. Thus, this analysis may 

pave the way for incorporating oscillatory dynamics into such networks in a 

functionally meaningful way. 

Relevant products: [6.b.i],[6.c.i] 

 

 

 

 

Figure 2. (left) Empowerment landscape of a Wilson-Cowan nonlinear neural mass model in an 

oscillatory regime. We observe that the oscillatory limit cycle forms a locus of high empowerment, 

implying that afferent activity is well-encoded by the population when received at these states. 

(right) In contrast, when the dynamics exhibit a single stable fixed point (i.e., not oscillatory), 

empowerment is low across the entire state space. 
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4.2. Synthesis of neural dynamics for high-level functional objectives and tasks 

  

Our second aim involves synthesis of neural circuits. Here, rather than starting with known 

biophysics, we first formulate a functional objective. Our hope is that biophysically interpretable 

dynamics emerge from the optimization of the objective (i.e., ‘building’ a neural network model 

based on a functional specification). The last reporting period focused heavily on this objective 

and several interesting developments have been achieved. We will focus on the most recent, and 

potentially most broadly impactful finding. Then we will go on to review earlier products and 

contributions. 

 

4.2.1. Synthesis of recurrent neural circuit dynamics for monotone inclusion: A substrate for 

solving complex decision tasks 

During the last reporting period, a postdoctoral associate (Dr. Peng Yi) was appointed 

to the project and worked extensively on normative synthesis of recurrent neural 

dynamics for ‘general purpose’ functional objectives. We specifically examined the 

issue of how networks might, through their dynamics, solve the problem of monotone 

inclusion.  Monotone inclusion is a general mathematical optimization problem that 

encompasses many key problems in decision and inference. For example, Bayesian 

inference and Markovian decision-making are both examples of monotone inclusion 

problems. 

 We showed that in a recurrent neural circuit/network with Poisson neurons, each 

neuron's (nonlinear) firing curve can be understood as a proximal operator of a local 

objective function, while the overall circuit dynamics constitutes an operator-splitting 

system of ordinary differential equations whose equilibrium point corresponds to the 

solution of the monotone inclusion problem. Our analysis thus establishes that neural 

circuits are a ‘universal’ substrate for solving a broad class of computational tasks. In 

this regard, we provided an explicit synthesis procedure for building neural circuits for 

specific MI problems and demonstrated it for the case of Bayesian inference and sparse 

neural coding (efficiently representing information with just a few neurons within a 

larger population). This concept has significant potential for generalization to handle 

an even broader class of computational tasks and thus could represent a new 

biophysically salient paradigm for ‘training’ neuromorphic systems without relying on 

traditional, gradient-based algorithms. 

Relevant products: [6.c.iv] 

 

4.2.2. Information-maximization and storage in recurrent neural circuits 

A significant arc of research related to objective (ii) involved optimizing spiking 

networks for generic information-theoretic functional objectives.  Whereas in our 

analysis results we focused on establishing the informational properties of known 

circuit models, our goal here was the construct neuronal network dynamics based on 

explicit maximization of these information quantities. We specifically made 

breakthroughs in the development of local learning strategies for adapting these 

networks to dynamic stimuli.  That is, strategies wherein the connections between any 

pair of neurons depend only on the activity of those neurons (i.e., without requiring 

‘global’ knowledge about other neurons in the network). The local character of the 

derived strategy is significant because it enables efficient, scalable learning for high 
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dimensional context- and history-dependent tasks. We have demonstrated this by using 

the developed method to solve canonical tasks including n-back memorization. The key 

innovation underlying this result leverages our aforementioned analysis of multiple 

time-scales of synaptic adaptation (analogous to the notion of metaplasticity in 

physiological synapses). Specifically, we show through our synthesis procedure that 

such dynamics allow each connection to hold a local estimate of the overall network 

state at each moment in time.  

We subsequently generalized 

this synthesis procedure in two 

important ways.  First we showed 

that using the optimized local 

dynamics, it is possible to create an 

information-based growth criteria 

that allows networks to adaptively 

change their size in response to task 

needs. This development obviates 

the problem of parameterizing the 

size of a network when task 

conditions are unknown and/or the 

need for computationally 

redundant, surplus network 

complexity. In addition to this 

growth criteria, it turns out that the 

principle of information 

optimization allows for networks to 

be easily modulated by a secondary, 

extrinsic cost function, enabling 

reward or reinforcement-based 

learning.  The overall schema is that 

of a dynamical network that can 

fluidly alternate between both 

unsupervised and supervised modes 

based on task circumstances. 

We tested this result on a 

temporal summation task, wherein 

the goal is to output the sum of 

sequentially presented handwritten 

(MNIST) digits.  Figure 3 illustrates 

the performance of our proposed 

network in comparison to several competing, suboptimal design schemes.  Our growth 

method, in particular, rapidly converges to the cusp of the performance curve, resulting 

in a network with just enough neurons to produce maximal performance. It is worth 

commenting on the computational requirements of this task: first, encoding the raw 

images, then storing stimulus history and finally enacting the summation operation. 

The result is encouraging not just because of the performance achieved, but because it 

 

 
Figure 3. (A) Our proposed information-optimization 

architecture (e) can achieve nearly 0.95 fraction correct 

(cross-validated) in a 1-step temporal summation task 

(summating handwritten MNIST digits).  All learning 

occurs via local (pairwise) interactions between neurons.  

Suboptimal parameterizations are reflected in (a-d).  (B) 

The information-optimization scheme yields a growth 

criteria that results in a network size at the cusp of the 

performance curve of (A). 
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shows that recurrent, dynamical networks can be synthesized based on high-level 

objectives that can nonetheless engage specific tasks. 

Relevant products: [6.c.ii],[6.b.v],[6.a.vi] 

 

4.2.3. Spiking networks as efficient controllers 

We have also worked on the synthesis problem in the spiking domain. Here, we pursued 

a problem formulation based on the idea of predictive neural coding, wherein each 

spike within a network is linearly decoded into a signal that induces a desired action. 

Within this framework, we showed how the architecture and dynamics of an integrate-

and-fire spiking network can be exactly determined in order to produce desired output 

trajectories when spikes are used to control an exogenous dynamical system (e.g., as in 

the problem of pole-balancing and path following, among others).  In addition to 

exhibiting dynamics that bear intriguing biophysical plausibility, the ensuing networks 

exhibit strong robustness properties, wherein a portion of the network can compensate 

for the loss/disruption of another.  

Relevant products: [6.a.i],[6.b.ii],[6.b.iii] 

 

4.2.4. Empowerment-maximizing neural dynamics 

Finally, we returned to the idea of empowerment discussed above in Section 4.1.5. 

However, instead of simply analyzing the empowerment of a nonlinear neural model, 

we attempted to synthesize the dynamics to achieve the best possible information 

processing capacity subject to energetic and other biophysical constraints. In other 

words, can we synthesize a set of neural dynamics that in a general but mathematically 

rigorous way, are `usable' toward the completion of computational tasks. We devised a 

strategy to optimize the dynamics of a system using empowerment over its state space 

as an objective function. This results in dynamics that are generically conducive to 

information propagation. For example, the optimized environment would be expected 

to perform well as an encoder (of afferent input distributions).  

Relevant products: [6.b.i],[6.c.i] 

 

5. Personnel Supported 

 

The following personnel worked on research supported by the AFOSR under grant FA9550-15-1-

0199: 

 

i. ShiNung Ching (PI) was supported for 4 months of effort over the entire project 

period.  

ii. Delsin Menolascino (Graduate Student, Washington University in St. Louis) was 

supported for 40 months of effort over the entire project period.  Dr. Menolascino 

completed his Ph.D. in the Fall of 2019.  He is now a research scientist at the Teladyne 

Corp., working on computational neuroscience and machine learning. 

iii. Sensen Liu (Graduate Student, Washington University in St. Louis) was 

supported for 39 months of effort over the entire project period. Dr. Liu completed 

his Ph.D. in the Summer of 2018. His last reported position was as a consultant and 

as an entrepreneur. 
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iv. Yi Peng (Postdoctoral Associate, Washington University in St. Louis) was 

supported for 7 months of effort over the entire project period.  Dr. Yi is now an 

assistant professor of engineering at Tongji University in Shanghai, China. 

v. Vignesh Narayanan (Postdoctoral Associate, Washington University in St. 

Louis) was supported for 1.25 months of effort.  He assisted Dr. Yi on implementing 

numerical simulation of recurrent neural networks. 

vi. Gautam Kumar (Postdoctoral Associate) provided contributions to the project 

during its first year. Dr. Kumar was supported through an external career 

development award. He is now Assistant Professor of Engineering at the University 

of Idaho. 

vii. Elham Ghazizadeh (Graduate Student, Washington University in St. Louis) was 

supported for 3 months of effort. She is expected to graduate in 2020. 

viii. Fuqiang Huang (Graduate Student, Washington University in St. Louis) was 

supported for 3 months of effort.  He is expected to graduate later in 2019. 

ix. Anirban Nandi and MohammadMehdi Kafashan (Graduate Students, 

Washington University in St. Louis) provided ancillary contributions to the project. 

Dr. Nandi is currently a research scientist at the Allen Institute of Brain Science, 

while Dr. Kafashan is a postdoctoral associate at Harvard University. 

 

6. Publications 

a. Published Journal Papers: 

i. Huang, F., & Ching, S. (2019). Spiking networks as efficient distributed 

controllers. Biological cybernetics, 113(1-2), 179-190. 

ii. Kafashan, M., & Ching, S. (2017). Recurrent networks with soft-thresholding 

nonlinearities for lightweight coding. Neural Networks, 94, 212-219. 

iii. Kafashan, M., Nandi, A., & Ching, S. (2016). Relating observability and 

compressed sensing of time-varying signals in recurrent linear networks. Neural 

Networks, 83, 11-20. 

iv. Kumar, G., & Ching, S. (2016). The Geometry of Plasticity-Induced Sensitization 

in Isoinhibitory Rate Motifs. Neural Computation, 28(9), 1889-1926 

v. Kumar, G., Menolascino, D., & Ching, S. (2018). Sensitivity of linear systems to 

input orientation and novelty. Automatica, 93, 462-468. 

vi. Liu, S., & Ching, S. (2017). Recurrent Information Optimization with Local, 

Metaplastic Synaptic Dynamics. Neural computation, 29(9), 2528-2552. 

vii. Menolascino, D., & Ching, S. (2017). Bispectral analysis for measuring energy-

orientation tradeoffs in the control of linear systems. Systems & Control Letters, 

102, 68-73. 

viii. Menolascino, D., & Ching, S. (2018). Information spectra and optimal background 

states for dynamical networks. Scientific reports, 8(1), 16181. 

ix. Nandi, A., Schättler, H., Ritt, J. T., & Ching, S. (2017). Fundamental Limits of 

Forced Asynchronous Spiking with Integrate and Fire Dynamics. The Journal of 

Mathematical Neuroscience, 7(1), 11. 
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x. Yi, P., & Ching, S. (2019). Multiple timescale online learning rules for information 

maximization with energetic constraints. Neural computation, 31(5), 943-979. 

 

b. Refereed Conference Publications/Abstracts: 

i. Ghazizadeh, E., & Ching, S., (2019, July). Defining information-based 

functional objectives for neurostimulation and control. In American Control 

Conference. 2019 

ii. Huang, F., & Ching, S. (2018, June). Dynamical Spiking Networks for 

Distributed Control of Nonlinear Systems. In 2018 Annual American Control 

Conference (ACC) (pp. 1190-1195). IEEE. 

iii. Huang, F., Riehl, J., & Ching, S. (2017, May). Optimizing the dynamics of 

spiking networks for decoding and control. In American Control Conference 

(ACC), 2017 (pp. 2792-2798). IEEE. 

iv. Kim, S. A., & Ching, S. (2016, July). Quasilinearization-based controllability 

analysis of neuronal rate networks. In American Control Conference (ACC), 

2016 (pp. 7371-7376). IEEE. 

v. Liu, S., & Ching, S., (2018, March). Local, reinforceable and information-

optimal learning in growing networks. In Computational and Systems 

Neuroscience (COSYNE), 2018. 

vi. Menolascino, D., & Ching, S. (2016, July). Endpoint-based discriminability of 

minimum energy inputs. In American Control Conference (ACC), 2016 (pp. 

3038-3043). IEEE. 

vii. Nandi, A., & Ching, S., (2017, June). Phasic response motifs are optimal for 

persistent detections. In International Conference on Mathematical 

Neuroscience. 2018 

 

c. Submitted and Under Review: 

i. Ghazizadeh., & Ching, S., (Under Review). Creating usable neural dynamics by 

maximizing information propagation. 

ii. Liu, S., & Ching, S., (Under Review). Reinforcable, local infomax in recurrent 

growing networks. 

iii. Menolascino., & Ching, S., (Under Review). Quantifying noise rejection and 

stimulus encoding over networks with sigmoidal nonlinearities 

iv. Yi, P., & Ching, S., (Under Review). Synthesis of recurrent neural dynamics for 

monotone inclusion with application to Bayesian inference 

 

7. Interactions 

 

a. Participation Participation/presentations at meetings, conferences, seminars 

i. Conferences: 

1. Sensen Liu presented at the 2016 Computational and Systems Neuroscience 

conference (Cosyne) 

2. ShiNung Ching presented at the 2015 American Control Conference 
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3. Delsin Menolascino attended the 2015 American Control Conference 

4. ShiNung Ching attended the 2016 American Control Conference  

5. Delsin Menolascino presented at the 2016 American Control Conference 

6. ShiNung Ching and Yi Peng attended the 2017 Neural and Information 

Processing Systems (NIPS)  

7. ShiNung Ching attended the 2017 American Control Conference 

8. Sensen Liu presented at the 2017 Computational and Systems Neuroscience 

Meeting (COSYNE) 

9. Anirban Nandi presented at the 2017 International Conference on 

Mathematical Neuroscience 

10. Fuqiang Huang presented at the 2018 American Control Conference 

11. Sensen Liu presented at the 2018 American Control Conference 

12. ShiNung Ching attended the 2018 BRAIN Initiative Investigators Meeting 

13. ShiNung Ching presented at the 2018 Conference on Decision and Control 

14. ShiNung Ching presented at the 2019 BRAIN Initiative Investigators 

Meeting 

15. ShiNung Ching presented at the 2019 Midwest Conference on Game Theory 

 

ii. Invited Talks: 

1. Special Session on Neuroscience and Control Theory, at 2015 American 

Control Conference, Chicago IL. (7/2015, Ching) 

2. University of Michigan, Invited Seminar, Department of Electrical 

Engineering and Computer Science (9/2015, Ching) 

3. Special Session on Neural Dynamics, American Control Conference (7/2016, 

Ching) 

4. Computational Neuroscience Program Review, ONR (7/2016, Ching) 

5. Biomedical Engineering Seminar, Washington University in St. Louis 

(9/2016, Ching) 

6. Special Session on Dynamics in Neuroscience, SIAM Conference on Applied 

Dynamical Systems (5/2017, Ching) 

7. Special Session on Analysis and Control of Neural Dynamics, American 

Control Conference (5/2017, Ching) 

8. Workshop on Brain Dynamics and Neurocontrol Engineering (7/2017, 

Ching) 

9. Workshop on Dynamics and Control in Neuroscience, Mathematical 

Biosciences Institute (9/2017, Ching) 

10. Workshop at the Computational and Systems Neuroscience Meeting 

(COSYNE) (3/2018, Ching) 

11. DGIST (South Korea) Invited Colloquium, Daegu, South Korea (9/2018, 

Ching) 

12. Special Session on Analysis of Neural Circuits, American Control 

Conference (7/2019, Ching) 
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b. Consultative and advisory functions to other laboratories and agencies 

None. 

c. Technology Assists, Transitions, and Transfers 

None. 

 

8. New discoveries, inventions, or patent disclosures 

None. 

 

9. Honors/Awards 

 

ShiNung Ching (PI) received the CAREER award from the National Science Foundation. 

 

ShiNung Ching (PI) promoted to the rank of Associate Professor with tenure at Washington 

University in St. Louis. 
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