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CHAPTER 1 

SPECTRUM SENSING AND SHARING  

FOR COGNITIVE RADAR SYSTEMS 

 

ABSTRACT 

This chapter deals with the problem of Spectrum Sensing and Spectrum Sharing for 

Cognitive Radar operating in spectrally dense environments. Spectrum sensing and 

spectrum sharing are the two main functions that allow a cognitive radar to measure, 

sense, learn, and be aware of the parameters related to the radio channel 

characteristics. This paper focuses on the role of Compressed Sensing (CS) in Spectrum 

Sensing and on the problem of channel parameter estimation for Spectrum Sharing. 

This paper shows how CS can allow a significant reduction in acquisition time 

reducing the cost for high-resolution analog-to-digital converters with large dynamic 

range, and high speed signal processors. We derive an algorithm for estimating the 

channel parameters that characterize the behaviour of the primary users and a 

spectrum sharing method that exploits these estimates to minimize the interference 

between the radar and the primary user. The proposed method optimizes the 

performance of the radar and, at the same time, limits the interference received by the 

other users.  
 

 

 

1. Introduction 

Radar technology has been evolving towards higher resolution, high-precision 

detection instruments with an ever-increasing list of functionalities. One of the areas 
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that have very good potential of combining the benefits of these developments is 

multifunctional radar systems. These systems join inside the same system, and 

simultaneously, multiple functions such as surveillance, tracking, confirmation of 

false alarm, back-scanning, clutter and interference estimation, which are 

traditionally performed by dedicated individual radars [1]-[2].  

For these reasons, multifunctional radar systems should be able to work with 

wider frequency bands than traditional radar systems. Clearly, this is in contrast 

with the growth of activities in the area of civil communications, the emergence of 

new technologies and new services that involve a strong demand for spectrum 

allocation inducing a very strong pressure upon the frequency channels currently 

allocated to radars.  

Some portions of the radar bands have been recently allocated to communication 

services. For instance, the International Telecommunication Union (ITU) decided to 

allocate the spectrum between 5150 and 5350 MHz and between 5470 and 5725 

MHz on a co-primary basis to wireless access systems including RLANs (Radio Local 

Area Networks) [3]-[4]. In the United States, the National Telecommunications and 

Information Administration (NTIA) has recently devoted efforts on identifying 

frequency bands that could be made available for wireless broadband service 

provisioning. A total of 115 MHz of additional spectrum (1695-1710 MHz and 3550-

3650 MHz bands) has been identified for wireless broadband implementation [5].  

A recent work [6] focused on the primary-secondary sharing between a radar 

system and indoor system providing broadband services, considering an Air Traffic 

Control (ATC) radar operating in the 2.7-2.9 GHz band and a Surveillance Radar in 

the 16.7-17.3 GHz. The case study analysed in this work is an L-band radar that 

shares the same frequency band with a JTDIS (Joint Tactical Information 

Distribution System) radio system, supposed to be the primary user of the channel. 

The JTIDS is a radio system for exchanging tactical information between aircraft and 

ground stations or ships and between aircraft. The JTDIS radio system operates in 

the frequency band 969-1206 MHz, subdivided into sub-channels used for 

frequency hopping. 
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From the above examples, it is clear that the availability of frequency spectrum 

for multifunction radar systems has been severely compromised and the available 

frequency bands are continuously diminished. 

This unique issue of spectrum crowding and steadily increasing radar 

requirements cannot be addressed by traditional modes of operation. Future 

systems require the ability to anticipate the behaviour of radiators in the 

operational environment. This in turn leads to the need for critical and new 

methodologies based upon cognition as an enabling technology [7]-[12].  

The cognitive methodology to reduce mutual interference between the radar and 

the other radiating elements is based on two main concepts: Spectrum Sensing and 

Spectrum Sharing. Spectrum Sensing has the goal to recognize the frequencies used 

by other systems using the same spectrum in real time, while Spectrum Sharing has 

the goal to limit interference from the radar to other services and vice-versa. 

Through these functions, a cognitive radar can obtain necessary observations 

about the radio frequency channel, such as the presence of other users and the 

appearance of spectrum opportunities, i.e. spectrum holes where it is possible to 

transmit without interfering with other users of the channel. After using this 

information, a cognitive radar is able to adapt its transmit and receive parameters, 

such as the transmission power and the operating frequency, in order to achieve 

efficient spectrum utilization.  

In cognitive radio terminology, primary users is defined as the users who have 

higher priority or legacy rights on the usage of a specific part of the spectrum. On 

the other hand, secondary users, which have lower priority, exploit this spectrum in 

such a way that they do not cause interference to primary users.  

Therefore, secondary users need to have cognitive radio capabilities, such as 

sensing the spectrum reliably to check whether a primary user is using it and to 

change the radio parameters to exploit the unused part of the spectrum.  

In this work, we analyse the problem of a wideband radar system that shares the 

same frequency band with a communication system, the frequency band of the 

communication system is divided into several frequency channels used for dynamic 
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spectrum access. The radar system is the secondary user while the communication 

system is the primary user of the channel.  

As an illustrative example, Figure 1 shows the spectrum opportunities in the 

frequency channels. As apparent, the available spectrum is divided into narrow 

chunks of bands. Spectrum opportunity in this dimension means that not all the 

bands are used simultaneously at the same time; therefore, some bands might be 

available for opportunistic usage. To this end, a cognitive radar should detect the 

spectrum opportunities, selecting the best frequency channels and vacating the 

frequency when a primary user appears.  

In this paper, we focus on two important topics, the use of CS for Spectrum 

Sensing and the problem of channel parameter estimation for Spectrum Sharing 

application. In particular, we analyse the use of CS, focusing on how this emerging 

technology can represent a helpful tool to solve some important problems related to 

the hardware requirement for the design of a responsive spectrum sensing system, 

which is able to react to the changes of the operating frequency channel quickly. As a 

matter of fact, to have high spectrum efficiency and high sensing accuracy, a 

cognitive radar has to perform real-time wideband monitoring of the licensed 

spectrum, using a dual-radio architecture [13]-[14], where one chain is dedicated to 

radar operations while the other chain is dedicated to spectrum sensing. The 

drawback of such approach is the hardware cost, as the related systems requires 

high sampling rate and high resolution Analog-to-Digital Converters (ADCs) with 

large dynamic range, plus the use of high speed signal processors. Moreover, when 

the required time used to estimate the spectrum occupancy is very short and the 

monitored frequency band is wide, the current generation ADCs are even unable to 

collect the required samples at the Nyquist-rate. A signal processing technique that 

can solve this problem is based on the use of Compressed Sensing. 

Recent results on CS state that it is possible to reconstruct a sparse signal from 

random projections of the sensor data (see e.g. [15]-[17]). The number of random 

projections can be very small, in proportion to the number of the channels occupied 

by the other users. Under the hypothesis that the frequency spectrum of the other 
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users is sparse, CS can be profitably used to solve the hardware constraints by 

reducing the sampling rate and decreasing the computational complexity. 

The second problem considered in this paper is the estimation of the channel 

parameters that describe the behaviour of the primary users of the channels and 

how to exploit these estimates to minimize the interference between the radar and 

the communication system.  

Analysing the behaviour of the primary users and exploiting the time history of 

the channel occupancy, the cognitive radar system can evaluate the probability to 

have a spectrum opportunity, i.e. the probability that the monitored frequency 

channel is free at the time of transmitting. Evaluating this probability, a cognitive 

radar can decide whether it is possible or not to transmit in the monitored 

frequency channel at the beginning of each time slot. 

The remaining part of the paper is organized as follows. Section 2 introduces the 

channel models for frequency spectrum occupancy of the primary user, introducing 

the concept of interfering temperature and defining two models for the primary 

user dynamics and for the spectrum occupancy. Section 3 describes how CS-based 

techniques can be used for Spectrum Sensing. Section 4 describes how to estimate 

the main channel parameters and how to evaluate the probability to have a 

spectrum opportunity using these parameter estimates. Simulation results are 

reported both in Section 3 and in Section 4. Conclusions and final remarks are 

summarized in Section 5. 

 

Primary user

Spectrum opportunity

time

frequency

Time Slot  

Figure 1 – Spectrum Opportunities. 
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2. Channel Model 

As described, the cognitive radar is assumed to be the secondary user of the 

channel, therefore, it can use the spectrum only when it causes no harmful 

interference to the primary user. This requires a cognitive radar to be equipped with 

a spectrum sensing function, which can detect primary users’ appearance and 

decide which portion of the spectrum is available. 

Such a decision can be made according to various metrics. The traditional 

approach is to limit the transmitter power of interfering devices, i.e. the transmitted 

power should be no more than a prescribed noise floor at a certain distance from 

the transmitter.  

However, due to the increased mobility and variability of radio frequency 

emitters, constraining the transmitter power becomes problematic, since 

unpredictable new sources of interference may appear. To address this issue, the 

FCC Spectrum Policy Task Force [18] has proposed a new metric on interference 

assessment, the interfering temperature, to enforce an interference limit perceived 

by receivers. 

Like other representations of radio signals, instantaneous values of interference 

temperature would vary with time and, thus, would need to be treated statistically. 

In this section, we present a model for the interference temperature dynamics and 

the Hidden Markov Model (HMM) for channel occupancy. 

 

2.1 Interfering Temperature 

The FCC has proposed the interference temperature as a metric for interference 

analysis. The US Federal Communications Commission in 2002 investigated the 

future needs of radio frequency spectrum and the limitations of current spectrum 

policies, as well as develops recommendations for enhancing current policies. One 

recommendation was the use of an interference metric to enforce current spectrum 

access rights and create new opportunities for dynamic spectrum utilization [19]-

[20] 

The interference temperature is defined as the temperature equivalent of the RF 

power available at a receiving antenna per unit bandwidth [21], i.e. 
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( , )

( , ) I C
I C

P f B
T f B

kB
= , (1) 

 

where PI(fC,B) is the average interference power in Watts, centered at fC, covering 

bandwidth B measured in hertz, and Boltzmann’s constant k is 1.38×10-23 JK-1. 

The FCC further established an interference temperature limit, which provides a 

maximum amount of tolerable interference for a given frequency band at a 

particular location. Any secondary transmitter using this band must guarantee that 

its transmission plus the existing noise and interference will not exceed the 

interference temperature limit at a primary user. Since any transmission in the 

licensed band is viewed to be harmful if it would increase the noise floor above the 

interference temperature limit, it is necessary that a cognitive radar receiver has a 

reliable spectral estimate of the interference temperature. Given a particular 

frequency band in which the interference temperature limit is not exceeded, that 

band could be made available for secondary usage. If a regulatory body sets an 

interference temperature limit TL for a particular frequency band with bandwidth B, 

then the secondary user has to keep the average interference below kBTL. Therefore, 

assuming that a secondary user is operating with average power P in a band [fC-B/2, 

fC+B/2], the interference temperature limit will ensure that [21]: 

 

 ( , ) ( )I C L C

LP
T f B T f

kB
+ ≤  (2) 

 

where L represents path loss attenuation between the secondary transmitter and 

the primary receiver. 

 

2.2 Statistical model for primary user’s channel occupancy 

In this section, we introduce a statistical model for primary user’s channel 

occupancy, describing the statistical model used to characterize the signal received 

by the cognitive radar and the statistical model for the observations at the output of 

the spectrum sensing detector. 

DISTRIBUTION A Distribution Approved for Public Release: Distribution Unlimited



 10

The spectrum sensing module of the cognitive radar receiver periodically scans 

and senses multiple licensed channels to measure in each channel the interference 

temperature exploiting the received signal, then it compares the measured 

interference temperature with a predefined threshold value to evaluate if the 

channel is busy or free. However, due to the noise in the channel, a free channel can 

be classified as busy and a busy channel classified as free. In order to model the 

channel dynamics of the primary users, HMMs are proposed in [22]-[24]. In the 

context of dynamic spectrum access networks, HMMs are used to model the primary 

user occupancy of the channel. HMMs represent a useful tool for this problem since 

true occupancy states are not always known to the cognitive radar after the 

Spectrum Sensing process. 

As discussed, the case study analysed in this work is related to an L-band 

surveillance radar, which shares the same frequency band with a JTDIS 

communication system. The frequency band used by the communication system is 

subdivided into N frequency channels of bandwidth B used for frequency division 

multiple access. As showed in Figure 1, the time axis is divided into time slots of 

duration Δt.  

In general, a HMM is comprised of a set St of possible states and a set Ot of 

possible emissions. The possible states represent the real activity of the primary 

user in each frequency channel, if the primary user is transmitting at time slot t, the 

state is St=1, otherwise, if the channel is free, the state is St=0. However, due to the 

noise in the channel, a free channel can be classified as busy and a busy channel 

classified as free. Therefore, there are also two possible emissions, which are 

represented by the observation symbol Ot at the output of the spectrum sensing 

detector.  

Figure 2 shows the HMM for spectrum occupancy in each frequency channel, in 

particular the lower part of the figure describes the primary user’s dynamic while 

the upper part the secondary user’s observation. 

The primary user’s dynamic is described by the states St=0 and St=1, and is 

characterized by the 2×2 state transition probability matrix A, that represents the 

probabilities associated with changing from one state to another and it is given by 
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 [ ]1[ ] Pr |hk hk t ta S h S k−= = = =A ,   h,k=0,1. (3) 

 

In each frequency channel and in each time slot, if the primary user is 

transmitting, the received signal at the radar receiver is given by an oscillation at 

that frequency whose amplitude is a Gaussian random variable (r.v.) with zero mean 

and variance 2σ f
, that is 

 

 [ ] ( 1)(2 1)
cos

2
i in

i n

N

παζ − − =  
 

f ,   i,n=1,…,N, (4) 

 

where i is the frequency channel index, while n is the n-th time sample.  

If the channel is free, the received signal [fi]n is zero. In each time slot, the 

multiband received signal is given by the combination of the signal in each 

frequency channel and Additive White Gaussian Noise (AWGN) with zero mean and 

variance 2σ w : 

 
1

N

i

i=

= +f f w . (5) 

 

The values of A may be different in each frequency channel. 

The spectrum occupancy is given by the Discrete Cosine Transform (DCT) of f, that 

is 

 T=x Ψ f , (6) 

 

where Ψ is the DCT matrix whose elements are given by 

 

 [ ]
,

( 1)(2 1)
cos

2
ii j

i j

N

πζ − − =  
 

Ψ ,   i,j=1,…,N. (7) 

 

In (4) and (7) the values of ζi are given by 
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1 , 1

2 , 2
i

N i

N i N
ζ

 == 
≤ ≤

 (8) 

 

Note that, in this work, without any lack of generality, we can consider real 

signals, instead of the complete complex signals. In fact, to monitor the spectrum 

occupancy of the primary users and to reduce the cost of the receiver further, it is 

not necessary to process the In-Phase (I) and Quadrature (Q) components of the 

received signal, but only one of them. Figure 3 shows the squared absolute value of 

x, that is the channel occupancy evolution during an observation time composed of 

ten time slots Δt. The channel is composed of N=256 frequency bands and the Signal 

to Noise Ratio, defined as SNR= 2σ f
/ 2σ w

, is 20dB.  

To evaluate the channel occupancy evolution it is necessary to perform the DCT 

of the received time samples every Δt seconds. When the frequency band to be 

monitored tends to be very wide and/or the time slot Δt tends to be very short, it 

should be very difficult to collect the N time samples at the Nyquist-rate. In Section 

3, we study how CS may be used to alleviate this hardware constraint. 

 

 

St=1 St=0

Ot=1 Ot=0

a10

a00a11

a01

b1(1) b1(0) b0(1) b0(0)

secondary user’s observations

primary user’s dynamics
 

Figure 2 – Hidden Markov Model representation for spectrum occupancy. 
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Figure 3 - Channel occupancy evolution in ten time slots, N=256, SNR=20dB. 

 

In the open literature, there are several Spectrum Sensing techniques to 

recognize if the channel is occupied by the primary user, such as the energy 

detector, feature detector or matched filtering detection techniques [25]. In 

particular, at each time slot, the cognitive radar records an observation symbol Ot 

depending upon the following conditions: 

 

 
0, if ( )

1, if ( )
t I L

t I L

O T t T

O T t T

= ≤
 = >

 (9) 

 

The radar periodically makes the observations and records an observation 

sequence O=[O1…OT] over a period of T time slots. The transitions from the states St 

to the observations Ot are described by the 2×2 emission probability matrix B, 

which represents the probabilities associated with obtaining a certain output given 

that the model is currently in a true state st: 

 

 [ ][ ] ( ) Pr |hk h n nb k O h S k= = = =B . (10) 

 

The emission probability matrix B is related to the Receiver Operating 

Characteristic (ROC) of the Spectrum Sensing detector. As a matter of fact, b0(1) is 
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the probability of false alarm, that is the probability to classify a free channel as 

busy, whereas b1(0) is the probability of miss detection, that is the probability to 

classify a busy channel as free. Clearly, b0(0)=1–b0(1) and b1(1)=1–b1(0). These 

probabilities depend on the channel noise, the kind of signal emitted by the primary 

user and the spectrum sensing detector used at the cognitive radar receiver, that is 

on the specific characteristics of the systems that share the same channel. Knowing 

these characteristics, the elements of B can be calculated or evaluated through 

Monte Carlo simulations. Hence, without loss of generality, hereafter we assume 

that B is known. Section 4 will describe how to estimate the channel parameters 

from the observation sequence O and how to exploit these estimates to minimize the 

interference between the radar and the communication system.  

 

3. Compressed Spectrum Sensing 

In this section, after a brief introduction to the principles of Compressed Sensing 

(CS), we focus on its application to Spectrum Sensing, that will be referred to as 

Compressed Spectrum Sensing (CSS). For more details on CS we refer the reader to 

[15]-[17] and references therein.  

CS is a signal processing methodology for signal recovery from highly incomplete 

information. 

The central results state that a sparse vector1 x N∈ℝ  can be recovered from a 

small number of linear measurements y=Hx K∈ℝ , K«N (or y=Hx+w when there is 

measurement noise) by solving a convex program [15]-[17]. To make this possible, 

CS relies on two principles: sparsity, which pertains to the signal of interest, and 

incoherence, which pertains to the sensing modality. Considering the real signal 

f N∈ℝ  defined in (5) and being Ψ=[ψ1… ψN] an orthonormal basis (e.g. the DCT), 

then the representation of f on the basis Ψ is given by f=Ψx, where x is the sparse 

coefficient vector. Given a set of vectors [φ1,…,φK] and denoting with Φ the K×N 

sensing matrix whose rows are the φk’s, the measures are collected by means of 

                                            

1 A vector is s-sparse if it has at most s nonzero entries. 

DISTRIBUTION A Distribution Approved for Public Release: Distribution Unlimited



 15

linear functionals y=Φf=ΦΨx K∈ℝ  [15]-[16]. The interest is in undersampled 

situations in which the number K of available measurements is much smaller than 

the dimension N of the signal f. The process of recovering the Kx1 vector x=ΨTf from 

the N×1 measurement vector y=Φf is, in general, ill-posed when K<N. However, if x 

is s-sparse, then the problem can be solved provided K≥s. A necessary and sufficient 

condition for this problem is that, for some small δ>0, the matrix H=ΦΨ satisfies the 

Restricted Isometry Property (RIP) [26]: 

 

 
2 2 2

(1 ) (1 )δ δ− ≤ ≤ +x Hx x . (11) 

 

The RIP implies that matrix H must preserve the length of s-sparse vectors. A 

related condition to RIP is referred as incoherence. The coherence between the 

measurement matrix Φ and the representation matrix Ψ measures the largest 

correlation between any two columns of these matrix and is defined as 

 

 ( )
1 ,

, max ,k j
k j N

Nµ
≤ ≤

=Φ Ψ ψϕ . (12) 

 

It can be shown [15]-[17] that ( ), 1, Nµ  ∈  ΦΨ . The design of a measurement 

matrix Φ such that H=ΦΨ has the RIP requires that all possible combination of s 

nonzero entries on the vector x of length N have to satisfy (11). However, both the 

RIP and incoherence can be achieved with high probability by designing Φ as a 

random matrix [15]. 

Now, it is natural to attempt to recover x by solving the following optimization 

problem: 

 

 
0

ˆ arg min
N∈

=
x

x x
ℝ

,  s.t. ΦΨx=y. (13) 

 

In the literature, this minimization is referred as the Basis Pursuit (BP) method, 

which, for real valued signals, can be recast as a linear programming problem. The 
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BP method is guaranteed to find a reconstruction of a s-sparse signal if there is no 

measurement noise. However, in the presence of measurement noise, its influence 

on the signal reconstruction can be minimized by applying the Basis Pursuit De-

Noising (BPDN) method which finds a solution of the following problem [27]: 

 

 
1

ˆ arg min
N∈

=
x

x x
ℝ

,  s.t. 
2

σ− ≤y ΦΨx , (14) 

 

where the positive parameter σ is an estimate of the noise level in the data. The case 

σ=0 corresponds to the basis pursuit problem. The BPDN method can be solved by 

means of linear programming algorithms. 

As previously discussed, when the frequency spectrum of the user radiating in 

the same channel as the cognitive radar is a sparse signal, it is possible to apply CS 

ideas to Spectrum Sensing. For the problem at hand, the representation matrix Ψ is 

the DCT, whose elements are defined in (7). In this work, we consider two kind of 

measurement matrices Φ, the first one is the Gaussian matrix, which is formed by 

sampling independent and identically distributed (IID) entries from the normal 

distribution with zero mean and variance 1/K: 

 

 [ ] ( )
,

0,1/
i j

N KΦ ∼ ,  i=1…,K; j=1,…,N. (15) 

 

The second measurement matrix is the Spiky matrix given by randomly selecting 

K rows of the N×N identity matrix. The latter case is the more interesting because, 

from the definition of this matrix, the measurement vector y is obtained by simply 

selecting K samples of f at random. The use of CS allows to use an ADC with a rate of 

K/Δt instead of an ADC with rate N/Δt. For the physical implementation of the CS 

filters, we refer the reader to [28]-[30].  

Figure 4 shows the channel occupancy evolution of Figure 3 recovered using the 

Gaussian measurement matrix, whereas Figure 5 shows the results obtained using 

the Spiky measurement matrix. In both cases K=N/2 and SNR=20dB. 
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Figure 4 - Channel occupancy evolution recovered using the Gaussian measurement matrix, K=N/2. 

 

Figure 5 - Channel occupancy evolution recovered using the Spiky measurement matrix, K=N/2. 

 

Figure 6 shows the Root Mean Square Error (RMSE) after the reconstruction of 

the channel occupancy signal. The RMSE measures the error in reconstructing x 

using CSS w.r.t. the reference signal estimated with all the N samples, that is 

 

 
2( ) ( )

1 1

1
ˆRMSE

H M h h

mm mh mMH = =
= −  x x , (16) 
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where m and h are the time slot and the Monte Carlo run indexes, respectively. 

The results are shown as a function of K (percentage of N) for both the 

measurements matrices and for different values of the Signal-to-Noise power ratio 

(SNR). The performance results obtained using the two matrices are about the same. 

It is also apparent that, in the absence of noise, it is possible to reconstruct the signal 

of interest using a very low number of samples (30% of N). However, as the noise 

power increases we need more samples to minimize the influence of the noise on 

the signal reconstruction. Anyway, when the SNR tends to be high, the signal can be 

almost perfectly reconstructed using fewer samples (40% of N). From our analysis 

(see Figures 5-6), the RMSE in reconstructing the signal is strictly related to the fact 

that, when the channel is busy, we need a high number of samples to reconstruct the 

whole spectrum with high precision. However, in this case, even if we use a low 

number of samples, a busy channel is always recognized to be busy. As a matter of 

fact, when performing the cognitive spectrum sensing function, we are not 

interested on reconstructing the whole spectrum with high accuracy, but rather on 

deciding which channels are busy. With regard to this latter operation, we apply the 

classical energy detector technique [31], which compares the squared value of each 

element of the spectrum occupancy vector rk=xk
2 with a threshold ζ to evaluate if the 

channel is busy/free. We evaluated the percentage of error in the decision on the 

channel occupancy applying the same threshold to the reconstructed signal as a 

function of K. 

According to the signal model described in Section 2.2, in the two hypotheses the 

elements of the vector x are given by 

 

 
2

0

2 2
1

~ (0, ),

~ (0, ),
k

k

x N H

x N H

σ
σ σ


 +

w

f w

  (17) 

 

where 2σ f
 is the variance of the primary user’s signal and 2σ w

 is the variance of the 

noise. Being the squared value of a Gaussian r.v. a χ2 r.v. with one degree of freedom, 

the binary hypothesis test is given by 
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  (18) 

 

Indicating with P the upper incomplete gamma function, the probability of 

detection PD and the probability of false alarm PFA are given by 

 

 { } ( )
2

1 1 2 2 2 2

1
Pr | Pr ,

22
D kP r H P

ζ ζζ χ
σ σ σ σ

  
 = ≥ = ≥ = 
 + +   f w f w

  (19) 

 { } 2
0 1 2 2

1
Pr | Pr ,

2 2
FA kP r H P

ζ ζζ χ
σ σ

   
= ≥ = ≥ =   

   w W

.  (20) 

 

In our Monte Carlo simulations, we evaluated the percentage of error in the 

decision on the channel occupancy (i.e. if a free channel is declared as busy and vice 

versa), the results are shown in Figure 7 when ζ is fixed for a probability of 

detection of 0.8. Note that in a radar detector the probability of false alarm is fixed 

to a desired value and the probability of detection is maximized according to the 

Newman-Pearson criterion. It is convenient to keep constant the probability of false 

alarm to a low value because a false alarm is more problematic than a miss 

detection. As a matter of fact, for each detection a lot of radar procedures, such as 

target tracking and target identification, are activated, if there are a lot of false 

alarms a great portion of the system memory and computational capabilities are 

occupied for the tracking of inexistent targets. For the problem of Spectrum Sensing, 

being the radar the secondary user of the channel, the more problematic event is the 

miss detection, that is when the channel is declared as free and the primary user is 

transmitting. For this reason, it is convenient to fix the probability of detection to a 

desired value and minimize the probability of false alarm. Note also that in this case, 

being the threshold dependent on the SNR, the probability of false alarm depends on 

the SNR. In particular, in the simulation the probability of detection has been fixed 

to 0.8 for each value of SNR, while the corresponding probability of false alarm 

according to (20) is 0.01 for SNR=20dB and 0.15 for SNR=15dB. 

The results in Figure 7 show that, when the SNR is sufficiently high, the error 

percentage is reasonably low, which means that the busy/free decision can still be 
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carried out on the signal reconstructed with few samples (<30% of N), even if the 

signal is not accurately reconstructed. 
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Figure 6 - RMSE for channel occupancy reconstruction as a function of K (percentage of N) for 

different SNR values. 
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for different SNR values. 

 

4. Channel Monitoring for Spectrum Sharing 

In the previous Section, we showed how the spectrum sensing detector exploits 

the received signal to obtain the observation symbols Ot used to evaluate if the 
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channel is busy or free at time slot t. To detect the presence of the primary user, the 

spectrum sensing detector must process the time signal received in the whole time 

slot. Considering that the Pulse Repetition Interval (PRI) of the radar system and the 

time slot of the communication system are of the same time duration, in each 

channel at the time of transmitting (i.e. at the beginning of each PRI), the radar could 

not be able to measure if the frequency channel is effectively occupied by the 

communication system.  

For minimizing interference to primary users while making the most out of the 

spectrum opportunities, the cognitive radar should keep track of variations in 

spectrum availability and, exploiting the history of the spectrum usage information, 

should make predictions of the future profile of the spectrum. Therefore, the 

cognitive radar system analyses the behaviour of the primary user in the frequency 

channel and, exploiting the time history of the channel occupancy (i.e. a sequence of 

observation symbols), it can evaluate the probability to have a spectrum 

opportunity at the beginning of each PRI, i.e. the probability that the monitored 

frequency channel is free at the time of transmitting.  

In this Section, we describe how to estimate the channel parameters that model 

the behaviour of the primary user in a frequency channel and how to exploit this 

estimate to evaluate the probability to have a spectrum opportunity. 

 

4.1 Channel parameters estimation 

As discussed in Section 2.2, the statistical parameters that describe each 

frequency channel are the state transition probability matrix A, the emission 

probability matrix B, and the initial state distribution π={πi}, defined as 

 

 [ ]1Pri is Sπ = = ,   i=0,1. (21) 

 

Matrix B is related to the ROC of the spectrum sensing detector and, as discussed 

in Section 2.2, is assumed to be a-priori known. Hence, the problem of channel 

parameter estimation is to determine a method to estimate the model parameters A 
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and π using a finite observation sequence O=[O1…OT] of T elements. The observation 

sequence used to adjust the model parameters is called training sequence since it is 

used to “train” the HMM. There is no way to solve analytically this problem [32]. In 

fact, given any finite observation sequence as training data, there is no optimal way 

of estimating the model parameters. However, the most widely adopted iterative 

procedure is the Baum-Welch method, which is closely related to the Expectation-

Maximization (EM) method [23], [24], [32], [33]. The Baum-Welch method selects 

the parameters A and π such that Pr[O|A,π] is locally maximized.  

In order to describe the iterative procedure for estimation of the HMM 

parameters, first we must define some useful variables. First consider the forward 

variable αt(i) defined as 

 

 [ ]1 2( ) Pr ... , | ,t t t ii O O O s Sα = = A π  (22) 

 

That is the probability of the partial observation sequence O1…Ot and state Si at 

time t, given the channel parameters A and π. The forward variable can be 

inductively calculated initializing 

 

 1 1( ) ( )i ii b Oα π= ,   i=0,1, (23) 

 

and iterating 

 
1

1 1
0

( ) ( ) ( )t t ij j t

i

j i a b Oα α+ +
=

 =  
 
 ,   1≤t≤T-1, j=0,1. (24) 

In a similar manner, the backward variable βt(i) is defined as 

 

 [ ]1 2( ) Pr ... | , ,t t t T t ii O O O s Sβ + += = A π , (25) 

 

that is the probability of the partial observation sequence from t+1 to T, given 

state Si at time t and the channel parameters A and π. 

Similarly, βt(i) can be solved inductively initializing 
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 ( ) 1T iβ = ,   i=0,1 (26) 

and iterating 

 
1

1 1
0

( ) ( ) ( )t ij j t t

j

i a b O jβ β+ +
=

= ,   t=T-1,…,1; i=0,1. (27) 

 

Another important variable is the probability 

 

 [ ]( ) Pr | , ,t t ii s Sγ = = A πO , (28) 

 

that is the probability of being in state Si at time t, given the observation sequence 

O and the channel parameters A and π. This probability can be expressed simply in 

terms of the forward-backward variables: 

 

 
1
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( ) ( )
( )

( ) ( )

t t
t

t t

j

i i
i

j j

α βγ
α β

=

=


,   i=0,1. (29) 

 

Concluding, for the iterative estimation of the HMM parameter we must define 

the probability of being in state Si at time t and state Sj at time t+1, given the 

observation sequence O and the channel parameters A and π 

 

 1( , ) Pr , | , ,t t i t ji j s S s Sξ + = = = A πO ,   i,j=0,1. (30) 

 

From the definitions of the forward and backward variables, we can write (30) in 

the form [32]: 

 

 
1 1
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,   i,j=0,1. (31) 
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It is easy to verify by using (30) that the probability in (28) is given by 

 

 
1

0

( ) ( , )t t

j

i i jγ ξ
=

= ,   i=0,1. (32) 

 

If we sum γt(i) over the time index t, we get a quantity which can be interpreted 

as the expected (over time) number of times that state Si is visited, or equivalently, 

the expected number of transitions made from state Si. Similarly, summation of ξt(i,j) 

over t (from t=1 to t=T-1) can be interpreted as the expected number of transitions 

from state Si to state Sj. Using (29) and (31) with the concept of counting event 

occurrences, it is possible to define a method to iteratively estimate the parameters 

of an HMM. 

Considering that the ij–th element of the state transition probability matrix A can 

be considered as the ratio of the expected number of transitions from state Si to 

state Sj and the expected number of transitions made from state Si, it is possible to 

estimate the elements of A by using the following equation 
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1
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ij T

t

t
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a

i
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γ

−

=
−
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
,   i,j=0,1. (33) 

 

Similarly, the initial state distribution πi can be considered as the expected 

number of times in state Si at time t=1, therefore we can estimate π using 

 

 1
ˆ ( )i iπ γ= ,   i=0,1. (34) 

 

If we define the current channel parameters A and π and we use them to compute 

(29) and (31), and we define the re-estimated channel parameters as Â  and π̂ , 

determined from (33) and (34), then it has been proven in [34] and [35] that the 
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model described by Â  and π̂  is more likely than the model described by A and π, in 

the sense that Pr[O| Â , π̂ ]>Pr[O|A,π], i.e. we have found a new set of channel 

parameters from which the observation sequence is more likely to have been 

produced.  

Based on the above procedure, if we iteratively use Â  and π̂  in place of A and π 

and repeat the re-estimation, we can improve the probability of O being observed 

from the model until some limiting point is reached. The final result of this 

procedure is a maximum likelihood (ML) estimate of the HMM [32]. This procedure 

is called Baum-Welch method and it is summarized in Table 1. 

 

Input: observation sequence O=O1…ON 

 

initialize A and π 
for k=1:MaxIter 

   calculate γn(i) and ξn(i,j) from A and π 

   estimate Â  and π̂  from γn(i) and ξn(i,j) 

   substitute A and π with Â  and π̂ . 

end 
 

Output: estimate of A and γn(i), n=1,…N; 

i=0,1. 

 

Table 1 - Baum-Welch procedure. 

 

By Monte Carlo simulation, we evaluated that using 30 iterations the algorithm 

converges to a stable estimate of A and π. Figure 8 shows the Root Mean Square 

Error (RMSE) of the estimation of the elements of A as a function of the number of 

elements of the observation sequence T. These results have been obtained through 

103 Monte Carlo runs by random generating a00 and a11 as independent and 

identically distributed (IID) random variables, uniformly distributed in [0,1]. 

Considering that (29) and (31) measure the expected number of transitions from 

one state to the other, it is clear that in order to have a good estimate of A, we need 

an high value of T, when the number of elements of the observation sequence is too 

low the estimate of A is biased. 
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Figure 8 - RMSE in the estimation of A as a function of the number of elements of the observation 

sequence. 

 

4.2 Probability of Spectrum Opportunity 

In the previous Section, we showed how to estimate the channel parameters 

using a finite observation sequence. In this section, we show how the cognitive radar 

exploits these estimates to avoid interference with the primary user. We also show 

some simulation results that highlight how the proposed methodology can provide 

good radar performance in the presence of the user and low impact on the 

performance of the primary user by the presence of the radar.  

As discussed, in the analysed scenario, at the time of transmitting the cognitive 

radar is not able to evaluate instantaneously if the operating channel is free or busy. 

However, using the channel parameter estimates obtained from the last T channel 

observations, the cognitive radar can calculate the probability that at the time of 

transmitting the channel is free, i.e. the probability to have a spectrum opportunity. 

If this probability is sufficiently high, the cognitive radar transmits, otherwise it does 

not transmit. 

Figure 9 shows how the radar processes the continuous sequence of observations 

at the output of the spectrum-sensing detector. Since the estimation of A and γt(i) is 

time consuming, the radar receiver performs these estimates using non-overlapping 

blocks of T elements, in each block the initialization is performed using the channel 

parameter estimates of the previous block. As showed in Figure 9, the channel 
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parameter estimates performed in each block are used to evaluate the probability to 

have a spectrum opportunity using a sliding window that collects the last T 

observations received in the previous time slots. 

There are T sliding windows for each block, in particular in the k-th sliding 

window, using the estimate of A and fixing πi=γk(i), the signal processor of the radar 

evaluates the forward and the backwards variables using (23)-(27). Therefore, 

similarly to (29), evaluates the probability that the last observation in the sliding 

window corresponds to the channel state Si, that is 
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( )

( ) ( )

T T

T T

j

i i
i

j j

α βγ
α β

=

=


,   i=0,1. (35) 

 

This probability is used to evaluate the probability to have a spectrum 

opportunity: 

 

 00 01(0) (1)SOp a aγ γ= + , (36) 

 

i.e. the probability that in the previous time slot the channel was free and in the 

current time slot it remains free plus the probability that in the previous time slot 

the channel was busy and in the current time slot it becomes free. The signal 

processor compares the probability to have a spectrum opportunity with a 

threshold λ, and transmits only if the probability is greater than λ.  

There are two kinds of errors. The first one, e0, is the event in which the cognitive 

radar does not transmit and the channel is free, i.e. the probability to lose a 

spectrum opportunity. The other kind of error, e1, is the case in which the radar 

transmits and the channel is occupied by the primary user, i.e. the probability to 

have a collision.  

Figure 10 shows the probability of these two errors as a function of the threshold 

λ, this graph can be used to tune the cognitive radar to the desired performance. 

These results have been obtained through 103 Monte Carlo runs by random 
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generating a00 and a11 as independent random variables uniformly distributed in the 

range [0,1]. 

It is clear that when threshold λ is zero, the radar is always transmitting, 

therefore the probability of e1 coincides with the probability that the channel is 

busy, that for the matrix A that we used in our simulation, is 0.5. Similarly, when the 

threshold λ is one, the radar never transmits and the probability of e0 coincides with 

the probability that the channel is free, that in our particular case, is 0.5. 

Figure 11 shows the probability to lose a spectrum opportunity and the 

probability to have a collision as a function of time, observing the performance of 

the system for 9246 time slots (i.e. 9 blocks of 1024 elements). These results have 

been obtained through 103 Monte Carlo runs, generating a00 and a11 as IID random 

variables uniformly distributed in [0,1] and fixing the threshold λ to 0.65.  

The simulation results show how the performance of a cognitive radar that 

adopts the proposed methodology are constant during the time and much better 

than the performance of the non cognitive radar that always transmits ignoring the 

presence of the primary user and than the radar that never transmits to avoid 

interference with the primary user of the channel. 
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for each block: 
evaluate A and γn(i)
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…

Sliding Window of Block 1

in each window: 
given A and γn(i), evaluate pSO

Observed sequence

 

 

Figure 9 - How to process the observed sequence. 
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Figure 10 - Probabilities of e0 and e1 as a function of λ. 
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5. Conclusions 

Since the availability of frequency spectrum for radar sensors continuously 

diminished and fragmented, next generation radar systems should be able to 

operate in spectrally dense environments, coexisting with other systems operating 

in the same frequency channel. For this reason, an important system requirement is 

the ability to recognize and react to the behaviour of other users radiating in the 

same operational environment that, in turn, leads to the need of new methodologies 

and techniques, based upon cognition as enabling technology. The cognitive 

methodology to reduce mutual interference between the radar and the other 
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radiating elements is based on two main concepts: Spectrum Sensing, that has the 

goal to recognize the frequencies used by other systems using the same spectrum in 

real time, and Spectrum Sharing, that has the goal to limit interference from the 

radar to other services and vice versa. 

This chapter focuses on two main topics, the role that Compressed Sensing in 

Spectrum Sensing and the problem of channel parameter estimation for Spectrum 

Sharing. In particular, we demonstrate that CS techniques can provide a significant 

reduction in acquisition time, reducing the cost for high resolution Analog-to-Digital 

converters with large dynamic range and high speed signal processors. In the 

specific application, where the goal is not reconstructing the whole spectrum with 

high accuracy, but rather to decide which are the busy channels in the considered 

band, the results show that, when the SNR is sufficiently high, the error percentage 

on the busy/free decision can be low already using less than 30% of the total 

samples of the original signal. This mitigates the hardware constraints of 

conventional spectrum sensing techniques and allows to reduce the sampling rate. 

Moreover, this paper describes a technique to estimate the channel parameters that 

model the behaviour of the primary user of the channel, and propose a cognitive 

method that, exploiting these estimates, enables a radar to operate in a spectrally 

dense environment. The performance of the cognitive radar is evaluated in terms of 

probability to lose a spectrum opportunity and probability to have a collision with 

the primary user of the channel. The numerical results suggest that the proposed 

cognitive algorithm lowers the mutual interference between the radar and the 

primary users. 
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CHAPTER 2 

COGNITIVE PASSIVE TRACKING IN  

SYMBIOTIC IEEE 802.22 COMRADE SYSTEMS 

 

ABSTRACT 

This chapter deals with a Symbiotic Radar, defined as a Passive Radar that is an 

integral part of a communication network. The Symbiotic Radar is integrated with an 

IEEE 802.22 WRAN and linked with the Base Station. It can work as a purely passive 

radar or, and this is the novelty in the system, can use the Base Station to suggest the 

best Customer Premise Equipment that should be scheduled for transmission to 

improve tracking performance. This paper defines a cognitive passive tracking 

algorithm that exploits the feedback information contained in the target state 

prediction to improve the performance while preserving the communication 

capabilities of the complete network. 

 

1. Introduction 

Communication systems are proliferating at incredible rates, resulting in a 

spectrally dense environment and fierce competition for frequency bands that 

traditionally had been exclusively allocated to radar systems as primary legal users. 

To cope with the issue of spectrum crowding, future radar systems, as well as 

communication systems, should be based upon cognitive radio technology to co-
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exist with other radiating systems anticipating their behavior and properly reacting 

to avoid interference 1-3.  

Moreover, for both communication and radar systems, an increasing number of 

functions, traditionally realized by hardware components, are being replaced by 

digital signal processing and the resulting radio frequency (RF) front-end 

architectures of these systems have become more and more similar. This offers the 

possibilities to design symbiotic systems, where communication and radar 

applications could be realized exploiting the same transmitted waveform 4, 5.  

This work deals with a Symbiotic Radar (SR) integrated with an IEEE 802.22 

WRAN (Wireless Regional Area Network). The radar receiver is based on passive 

radar technology and exploits the IEEE 802.22 devices as transmitters of 

opportunity. Being integrated with the WRAN, the SR can select some of these 

transmitters to improve radar performance.  

The IEEE 802.22 is a new standard 6 based on Cognitive Radio techniques for 

WRAN that exploits, in a non-interfering and opportunistic basis, the unused 

channels in the VHF and UHF bands allocated to television. In this manner, the 

occupied spectrum is used very efficiently for both radar and communication 

functionalities that can be operated simultaneously, which guarantees a permanent 

availability of both functions and helps to overcome the limited availability of 

spectral resources. 

The architecture of the IEEE 802.22 network is composed of a Base Station (BS) 

that covers a cell with a radius up to 30 km, providing high-speed internet service 
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for up to 512 fixed or portable Customer Premise Equipment (CPE) devices or 

groups of devices.  

The definition of SR has been recently introduced in patent in 7 and in the related 

work 8, where a passive radar is an integrated commensal function of an IEEE 

802.22 Base Station. The radar exploits the signal arising from several BS sharing 

the spectrum with the communication system in a collaborative way. In this work 

the definition of symbiotic radar is different and new. In particular, we assume that 

SR exploits the signals arising from a single BS and the CPEs of the WRAN. Moreover, 

the radar system is defined as symbiotic since it can control the Medium Access 

Control (MAC) layer of the WRAN selecting, in a collaborative way with the BS, some 

of the CPEs that must be scheduled to transmit in each frame to improve radar 

performance.  

Some recent works 8-13 analyzed how the possibility to exploit IEEE 802.22 

devices as transmitters of opportunity for Passive Radar (PR) systems. In particular, 

8 and 11 study a PR, defined as commensal radar, which exploits the signals of 

opportunity arising from several IEEE 802.22 Base Station focusing also on the 

foliage penetration capabilities in UHF/VHF frequency bands. On the other hand, 

works 12 and 13 analyze a PR that combines the signals of opportunity of a single 

BS and the CPEs for target detection and target parameter estimation, respectively.  

The SR described in this work exploits the signal emitted by the BS and the CPEs 

for surveillance purposes, but it is also linked to the BS to suggest the best CPEs that 

should be scheduled for transmission to improve target tracking performance. In 

particular, the IEEE 802.22 WRAN is composed of collaborative CPEs, including 
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computers, portable devices, but also wireless or infrared cameras that can also be 

used for surveillance purposes. The SR can also be considered as a CPE that provides 

full surveillance coverage day and night, and in all weather conditions, using radar 

technology. The complete radar system, which is integrated in the communication 

network, can be defined as a ComRadE system, where Com stands for 

communication, Rad stands for radar, while the whole word ComRadE indicates that 

the communication and the radar systems are “friends” or “allies”. In such a system, 

the CPEs, belonging to a communication WRAN that has also radar surveillance 

capabilities, are assumed to be collaborative and, if scheduled to transmit by the SR 

and the BS, emit their data stream to improve radar performance. Note also that 

similarly to conventional passive radar, the SR does not process the information 

contained in the data emitted by the BS and the CPEs, but exploits only their emitted 

physical signals.  

The main advantage of a symbiotic ComRadE system that exploits the IEEE 

802.22 standard is that the complete system can be installed anywhere, without any 

license to transmit and without interfering with other radiating systems. Actually, 

the SR is passive and does not involve any radar transmitter hardware, and the IEEE 

802.22 standard is based on cognitive radio techniques. Moreover, both the SR and 

the IEEE 802.22 devices are very low power consuming systems that can be 

powered with solar panel or small wind turbines 14. For this reason, the complete 

system can be installed in remote areas where the electricity grid is inexistent or 

dated and fragile.  
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As mentioned, the SR is linked to the BS and suggests the best CPEs that must be 

scheduled to transmit in order to improve target tracking performance. This concept 

is directly linked to the cognitive tracking algorithm introduced by Haykin in 15 and 

16. Exploiting the perception-action cycle, the receiver feeds the transmitter with 

feedback information that is processed to select the best transmitted waveform. In 

the particular case of a passive radar that exploits signals of opportunity emitted by 

the BS and the CPEs, its performance is dependent on the position of the target with 

respect to the location of the transmitters and the receiver (bistatic geometry). 

Hence, the feedback information contained in the target state prediction stage can 

be exploited for the selection of the best transmitters of opportunity. Over the years, 

a multitude of filters have been proposed for target tracking 17. In this paper, we 

consider the Extended Kalman Filter (EKF), combined with a cognitive algorithm for 

the selection of the best set of CPEs. 

In our previous works 18,19 we studied the selection of  the best transmitter of 

opportunity in a multistatic radar system, that minimizes the range and target 

velocity measurement errors. In this paper, these results are used to initialize the 

search for the best set of illuminators of opportunity that must be exploited to 

minimize the mean square error of target state prediction along the target 

trajectory, in terms of target position and target velocity in the Cartesian plane. With 

respect to our previous works, where the PR was not linked with the transmitters of 

opportunity, in this paper we introduce a cognitive algorithm for the selection of the 

CPEs that exploits the perception-action cycle performed by the SR and the linked 

BS. The perception is made by the SR that, starting from the a-priori knowledge of 
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the CPEs that guarantees the best measurement 18, 19, minimizes a predefined cost 

function on the target state estimation to select a subset of CPEs which are 

scheduled to transmit by the BS (action). 

The proposed algorithm is designed such that the communication capabilities of 

the complete network are preserved. Numerical results show that the proposed 

cognitive tracking algorithm improves the performance of the symbiotic radar while 

preserving the communication capabilities of the ComRadE system. 

 

 

2. IEEE 802.22 emitted signals and analyzed scenario 

The IEEE 802.22 emitters operate in the white space bands of the TV signal in the 

frequency range of 54~862 MHz. The standard specifies three operating modes 

depending on the channel bandwidth: 6 MHz, 7 MHz, and 8 MHz. Without loss of 

generality, we consider here the 6 MHz based channel case. 

The transmitted signal is based on an OFDMA scheme where information to or 

from multiple CPEs is modulated on orthogonal sub-carriers using the Inverse Fast 

Fourier Transform (IFFT) of size N=2048. In the 6 MHz based channel mode, the 

sampling frequency fS is 6.856 MHz, the sub-carriers are divided in 60 sub-channels 

and the sub-carrier spacing Δf is Δf=fS/N=3347.656 Hz.  

In an IEEE 802.22 cell, a single BS controls the medium access and manages 

multiple CPEs. The timeline is divided into super-frames of time duration 160 msec. 

Each super-frame is composed of 16 frames of 10 msec, each of which is composed 

of two parts: a downstream (DS) sub-frame, where the BS transmits and the CPEs 
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receive, and an upstream (US) sub-frame, where the M scheduled CPEs transmit to 

the BS. The time/frequency frame structure is depicted in Fig. 12, the DS and the US 

sub-frames are divided by the Transmit/Receive Transition Gap (TTG), a time gap to 

allow the CPE to switch between the receive mode and the transmit mode and to 

absorb the signal propagation time for a distance of up to 30 km. The vertical axis in 

Fig. 12 is the frequency domain composed of 60 sub-channels while the horizontal 

axis is the time domain, each horizontal time slot is an OFDM symbol. The first 

symbol in the DS sub-frame is composed of a frame preamble and the headers 6, the 

following symbols are for the downstream payload. Note that the BS transmits, 

exploiting all the 60 sub-channels and the data bursts are laid vertically. 

In the US sub-frame, each burst is mapped horizontally, OFDM symbol by OFDM 

symbol, in the same logical sub-channel. In the upstream direction, each CPE can 

occupy one or more sub-channels transmitting at least 7 OFDM symbols. According 

to the standard 6, the signal emitted during the hth OFDM symbol is given by the 

IFFT of size N=2048 of the sequence ch
(m)[f], that is 

 ( ) ( ) 2 /1
[ ] [ ]

m

m m j fn N

h h

fm

s n c f e
π

∈Ω

=
Ω  , (37) 

where the index m is the mth transmitter, i.e. m=0 is for the BS while m=1,2,..,M are 

for the M CPEs scheduled to transmit in the US sub-frame. According to the 

standard, the number M can change in each frame and up to M=16 can be scheduled 

to transmit in each US sub-frame. In this work and loss of generality, we assume that 

M is constant and has been fixed to M=8 (see Fig. 12).  

In (1), Ωm is the set of sub-carrier frequencies allocated to the mth transmitter 

according to Fig. 12 and |Ωm| is the size of Ωm. 

DISTRIBUTION A Distribution Approved for Public Release: Distribution Unlimited



 41

The complex number ch
(m)[f] specifies a point in a QAM constellation 6 and it is 

the data transmitted by the mth emitter on the sub-carrier whose frequency offset 

index is f, during the hth symbol. Clearly ch
(m)[k] is null in the sub-carriers that are 

not assigned to the transmitter.  

Fig. 13 shows the IEEE 802.22 WRAN scenario analyzed in this work. The 

network is composed by a BS that provides internet access to 32 CPEs. The SR is not 

co-located with the BS and can control the BS to select the best cooperative CPEs 

that must be scheduled to improve target tracking performance. The figure also 

shows the target trajectory in the absence of process noise. Clearly, the position of 

the CPEs may be different in other configurations and in general is not symmetric 

with respect to the BS. Moreover, considering that the standard has also been 

designed for portable devices, the position of the CPEs can change in time. We 

consider fixed positions of the CPEs during the target tracking to highlight the 

dependence of the performance on the position of the target along the target 

trajectory with respect to the locations of the transmitters of opportunity. Moreover, 

in the simulation section we also consider the scenario consisting of 256 CPEs 

whose positions have been randomly chosen in the surveillance area. 
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Fig. 12 – Time/frequency structure of a frame. 
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Fig. 13 – Analyzed Scenario. 

 

 

3. Cognitive passive tracking 

Let the state vector be defined as xk=[xk kxɺ  yk kyɺ ]T, where (xk, yk) is the location of 

the target, assumed to be on the x-y plane, and ( kxɺ , kyɺ ) is the target velocity vector. 

Assume now that the target motion equation is described by the following dynamic 

state 20 

 1 1k k k− −= +x Fx n , (38) 

 

 

1 0 0

0 1 0 0

0 0 1

0 0 0 1

T

T

 
 
 =
 
 
 

F , (39) 
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where T is the super-frame duration and nk models the process noise, which takes 

into account mis-modeling effects or unforeseen disturbance in the target motion. 

The process noise vector nk is assumed to be a zero-mean Gaussian distributed, with 

covariance matrix 20: 

 

3 2

2

3 2

2

3 2 0 0

2 0 0

0 0 3 2

0 0 2

T T

T T
q

T T

T T

 
 
 =
 
 
 

Q , (40) 

 

where q is a deterministic parameter which takes into account the process noise 

power. 

Exploiting the target echoes arising from the target which is illuminated by the BS 

and the M scheduled CPEs in each frame, the SR is able to measure the ranges and 

the bistatic velocities for the M+1 transmitter-target-receiver paths, as described in 

12,13. 

The available measurements at time k are collected in the column vector  

zk=[rk
(0) ζk

(0) … rk
(M) ζk

(M) θk]T, whose components are the range from receiver to 

target rk
(0) and the bistatic velocity ζk

(0), obtained by exploiting the signal emitted by 

the BS in the DS, the set of ranges {rk
(1),…, rk

(M)}, and bistatic velocities {ζk
(1),…, ζk

(M)} 

obtained by exploiting the M CPEs in the US and the Direction of Arrival (DOA) of the 

target echo θk. 

The relationship between the measurement vector and the target state is given 

by 

 ( )k k k k= +z h x w . (41) 
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The explicit expression of hk(xk) is reported in Appendix A; wk is the 

measurement noise, which is independent of the process noise nk. The measurement 

noise vector is assumed to be Gaussian distributed with zero mean and covariance 

matrix Rk.  

In bistatic radar systems, it is well known that the accuracy of the estimates of 

range and bistatic velocity heavily depend on the geometry of the scenario, i.e. the 

position of the target with respect to the radar receiver and the transmitter of 

opportunity that is exploited, as well as on the signal to noise ratio (SNR), which is 

itself dependent on the geometry 18,19. The expression of Rk is reported in 

Appendix B. Note that this covariance matrix is a function of time since the bistatic 

geometry changes along the target trajectory. As discussed, to estimate the state 

vector xk from the measurements zk, we use the EKF, where the target state 

estimates are computed recursively as follow 17: 

 ( )( )| | 1 | 1
ˆ ˆ ˆ

k k k k k k k k k− −= + −x x G z h x , (42) 

 | 1 1| 1
ˆ ˆ

k k k k− − −=x Fx , (43) 

 | | 1
T

k k k k k k k−= +P P G S G , (44) 

 | 1 1| 1
T

k k k k− − −= +P Q FP F , (45) 

 | 1
ˆ ˆ T

k k k k k k−= +S H P H R , (46) 

 1
| 1

ˆ T

k k k k k

−
−=G P H S , (47) 

 

where ˆ
kH  is the matrix obtained by the linearization of the non-linear function 

hk(xk) and is defined as the Jacobian evaluated at | 1
ˆ

k k −x : 

 ( )
| 1ˆ

ˆ
k

k k k

T
T

k k k

−=
 = ∇ x

x x

H h x . (48) 
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The explicit expression of ˆ
kH  is given in Appendix A. 

Now let us consider how the perception-action cycle concept defined by Haykin 

in 15 can be applied for cognitive passive tracking. The perception-action cycle is 

the fundamental function of a cognitive tracker. For active radar systems, at each 

step k, the transmitter modifies the transmitted signal (action) minimizing a specific 

cost function that depends on the feedback information. This information is 

evaluated by the receiver and provides a compressed measure of information 

contained in the radar returns (perception).  

Clearly, a passive radar does not have any radar transmitter on its own and hence 

it is not able to modify the transmitted signal. However, the Symbiotic Radar is 

integrated with the communication network and hence it can control the BS to 

select the CPEs that guarantee the best performance for target state estimation. In 

other words, similarly to cognitive active radars that select the best transmitted 

waveform, the SR exploits the feedback information to select the best transmitters 

of opportunity that minimize a pre-defined cost function. This concept was 

originally introduced in 18 and 19. In particular, in these papers we describe how to 

exploit the Cramér-Rao Bounds (CRB) of range and bistatic velocity, which depend 

on the geometry and are strictly related to the measurement covariance matrix Rk, 

to select the best transmitters of opportunity. The CRB can be evaluated off-line and, 

exploiting this information, for each point of the surveillance area, the SR knows 

which of the CPE provides the minimum measurement errors.  

Fig. 14 shows the best CPE for each point of the surveillance area depicted in Fig. 

13. The color scale in quantized into 32 levels, each of which is associated with one 
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of the 32 CPEs of the analyzed scenario. The index associated with each CPE are 

those depicted also in Fig. 13. Note that for each point, the best transmitter is the 

closest to the target that guarantees an optimal bistatic geometry (target far away 

from the baseline between the CPE and the SR). The numerical results shown in Fig. 

14 can be obtained off-line, selecting for each point of the surveillance area the CPE 

that gives the minimum sum of the CRBs of the range and the bistatic velocity, i.e. 

the minimum trace of the sub-matrix ( )m

kR  defined in Appendix B. Similarly, for each 

point of the surveillance area, the SR ranks the CPEs from the best to worst. This 

information represents the a priori knowledge about the scenario or the memory of 

the cognitive symbiotic radar.  

 

 

Fig. 14 – Map of the best CPE for each point of the surveillance area. 
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The perception-action cycle is based on the minimization of a pre-defined cost 

function. In 15 it is demonstrated that the cost function that minimizes the mean 

square error (MSE) of target state prediction is the trace of the prediction of the 

target state covariance matrix Pk+1|k. This function is minimized when the 

transmitters of opportunity are the BS and all the M scheduled CPEs are those that 

minimize the measurement error, i.e. the CPEs for which the prediction point 1|
ˆ

k k+x  

gives the lowest CRBs of the range and bistatic velocity. 

Denoting by Sideal this ideal set of M+1 (BS and the M CPEs) transmitters of 

opportunity, the minimum value of the cost function is given by Trace{Pk+1|k(Sideal)}. 

Clearly, not all the available M slots in the US frame can be allocated for target 

tracking purposes, since the communication functionalities of the network must be 

preserved.  

Let us denote by Sn the set of M+1 transmitters composed by the BS, the n CPEs 

(selected by the SR) that give the best performance in estimating the range and 

bistatic velocity, and the M-n CPEs selected by the BS for communication purposes. 

The cognitive passive tracking algorithm selects the set of transmitters for the 

subsequent frame by finding the minimum number n that guarantees a cost function 

such that  

 ( ){ } ( ){ }1| 1|k k n k k idealTrace S Trace Sλ + +⋅ ≤P P , (49) 

 

where 0≤λ<1. The proposed idea described in (13) consists of selecting only a 

subset of the ideal transmitters of opportunity, allowing the BS to select the other 
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CPEs for communication purposes following its own priority rules. The threshold λ 

is used to select how the desired performance compares with of the ideal case. 

Note that when λ=0, the tracking is purely passive and the SR does not select any 

CPE. In this case the SR will not improve the target tracking performance. On the 

other hand, when λ tends to 1, the SR improves tracking performance as closely to 

the ideal case as possible. 

The search for the minimum number n of CPEs starts at 1, i.e. by exploiting the CPE 

that gives minimum error in estimating range and bistatic velocity, and it stops 

when n=NMAX, i.e. when the maximum number of transmitter that can be scheduled 

for target tracking reaches that maximum value. The proposed algorithm is depicted 

in Table 2.  

Among the M CPEs scheduled to transmit in each frame, the SR requests to the BS n 

(up to NMAX) selected CPEs that improve radar performance. The remaining M-n 

bursts are allocated by the BS with its own rules to the other CPEs that request to 

transmit. Note that in the defined ComRadE system, the communication network 

cooperates with the SR, hence the CPEs, when selected by the SR, continue 

transmitting their own communication signal if they are asking to transmit, or emit 

a pseudo-random code in the other case. In any case, the scheduled CPEs do not 

transmit radar signals but IEEE 802.22 signals according to the standard. For this 

reason, if a CPE among those scheduled by the SR is a CPE which is asking to 

transmit, the communications functionality of the ComRadE system is preserved. On 

the other hand, a communication slot is lost if the CPE scheduled by the SR has not 
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any communication signal to transmit and occupies the burst in the US with a 

pseudo-random signal. 

The value of NMAX can be tuned depending on how the ComRadE system gives 

priorities to the communication and the radar functionalities of the complete 

system. If NMAX is fixed to zero, the ComRadE system is focused on the 

communication functionality only. On the other hand, if NMAX is fixed to M, all the 

CPEs are scheduled by the SR and hence the ComRadE system focuses on the radar 

functionality. As will be clear in the next section, the value of n reaches NMAX only for 

some unfavorable geometries and for values of λ that tend to 1. In practice, the 

number n of selected CPEs by the SR is often lower than the maximum number of 

CPEs that can be selected. 

In this work and without loss of generality, we assume that NMAX=M/2, i.e. when 

50% of the available slots in the US can be allocated by the SR and the remaining by 

the BS. 

According to the US time/frequency map (US-Map) depicted in Fig. 12, the algorithm 

also minimizes the resources allocated for target tracking, i.e. the minimum number 

n that allocates the CPEs for target tracking in the bursts with lower sub-channels 

per OFDM symbols is found. The remaining M-n bursts are allocated by the BS for 

communication purposes. Clearly, if these CPEs are in favorable bistatic geometries, 

they are also exploited for target tracking. It is also important to highlight that the n 

scheduled CPEs for target tracking purposes do not transmit specific radar signals, 

they instead, transmit their own communication data stream. The SR processes only 

the physical signal without extracting the information contained in the data stream. 
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In other words, the communication signal is also exploited for radar purposes and 

hence the n bursts are not exclusively used for target tracking. Hence, even in the 

case in which NMAX=M and all the CPEs are scheduled by the SR, the communication 

functionality is not lost since the CPEs transmit their data stream. In this particular 

case, the BS losses its role for selecting the CPEs. In some practical examples, this 

can be also an advantage. Consider for example, the particular case in which all the 

CPEs are wireless cameras used for surveillance purposes. If the SR detects a target 

and has the highest priority in selecting the CPEs (NMAX=M), along the target 

trajectory, the CPEs that are scheduled to transmit are those closer to the target 

(this will be clearer in the next section). In this case the SR achieves its best 

performance for target tracking and the data streams that can be processed at the 

BS are the videos recorded by the wireless cameras which are closer to the tracked 

target. 

Table 2 – Algorithm used by the SR to select the best set of CPEs. 

 

for each time instant k 

     evaluate the ideal set Sideal 

     evaluate ( )1|k k idealS+P  

     n=0 

     while 

( ){ } ( ){ }1| 1|k k n k k ideal
Trace S Trace Sλ + +⋅ >P P  

          n=n+1 

          if n>NMAX 

               return 

          else 

               evaluate Sn 

               evaluate ( )1|k k n
S+P  

         end 

     end 

end 
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4. Simulation results 

This section analyzes the performance of the proposed cognitive passive tracking 

algorithm for two simulated scenarios. The first scenario in the one shown in Fig. 13, 

where there are 32 CPEs, and the second scenario consists of the same surveillance 

area but considers an IEEE 802.22 WRAN with 256 CPEs. As shown in Fig. 13, the SR 

is located at the origin of the Cartesian coordinate system while, in absence of 

process noise, the target is moving from [-400 m, 400 m] to [400 m, -250 m], with 

speed 8.33 m/sec.  

In the simulation runs, the process noise power q has been fixed to q=0.01, with 

this value the resulting trajectories in the Monte Carlo runs result close to the worst 

case trajectory depicted in Fig. 13 where the target approaches the SR introducing a 

strong non-linearity in the resulting bistatic geometry. Among the available CPEs in 

the network, only M=8 can be scheduled to transmit in each superframe. To improve 

target tracking performance and according to the proposed algorithm, the SR can 

select up to M/2=4 collaborative CPEs.  

Figs. 4 and 5 show the Root Mean Square Error (RMSE) of the target position and 

velocity for the first scenario depicted in Fig. 13. The RMSEs are measured as 

follows 

 ( ) ( )2 2( ) ( ) ( ) ( )
| |

1

1
ˆ ˆ

MC
mc mc mc mc

position k k k k

mc

RMSE x x y y
MC =

= − + − , (50) 

 ( ) ( )2 2
( ) ( ) ( ) ( )

| |
1

1 ˆ ˆ
MC

mc mc mc mc

velocity k k k k

mc

RMSE x x y y
MC =

= − + − ɺ ɺ ɺ ɺ  (51) 
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The results have been obtained through MC=104 Monte Carlo runs for values of 

λ={0, 0.8, 0.9, 0.95, 0.99, 0.999}. The results obtained with λ=0 show the 

performance of a passive radar that does not exploit the cognitive perception-action 

cycle described in the previous section. That is when the SR does not select any CPE 

and the ComRadE system focuses only on the communication functionality. 

For comparison purposes, the figures also show the RMSE for the ideal set of 

transmitters Sideal, that is when all the M scheduled CPEs are those that provide the 

lowest measurement errors. 

The degradation in performance for k∈[400, 500] is related to the fact that in this 

time interval, the target approaches the SR. For the resulting geometry, the non-

linearity in (5) is severe and the non-Gaussianity of the true posterior density is 

stronger 17. This phenomenon is more pronounced for low values of λ. 

From these numerical results, it is apparent that there is a gain obtained using 

the cognitive tracking algorithm with respect to the purely passive tracking.  

As discussed in the previous section, the proposed algorithm has been designed 

also to preserve the communication capabilities of the network. Fig. 17 shows the 

mean number of CPEs scheduled to transmit by the SR along the target trajectory, 

while Fig. 18 shows the percentage of resources occupied by these devices. The 

percentage of resources is the number of OFDM symbols and frequency sub-channel 

allocated by the SR over the total 15×60=900 time/frequency slots in the US-Map. In 

the particular case of this first result, Fig. 17 and Fig. 18 appear to achieve similar 

performances. This means that the n scheduled CPEs are mapped in the same burst 

of the US-Map to minimize the cost function. This results is related to the fact that in 
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this scenario there are few CPEs. If the number of CPEs is increase, the difference 

between these two plots is more evident. 

Clearly, when λ=0 the tracking is passive and the SR does not schedule any CPE 

while when λ approaches 1, the SR tends to schedule all the available M/2 CPEs. 

Note also that for the particular case of λ=0.95, the mean number of scheduled CPEs 

is not greater than 2, the percentage of resources allocated by the SR is not greater 

than 16%, and the resulting performances are substantially improved compared to 

the case of λ=0. 

Note also that in the first analyzed scenario with only 32 CPEs, the performance 

in the case λ=0 is comparable with the other ones since there is a high probability 

that the 8 CPEs scheduled to transmit have favorable bistatic geometries. The 

performance of the cognitive algorithm is more prominent when the IEEE 802.22 

WRAN is composed of a large number of CPEs. 

Fig. 19 shows the best CPE for each point of the surveillance area when there are 

256 CPEs, whose positions have been uniformly distributed in the 400 m × 400 m 

area. Figs. 9 and 10 show the resulting RMSE of position and velocity for the same 

target trajectory as that of Fig. 13, while Figs 11 and 12 show the number of CPEs 

scheduled by the SR and the corresponding allocated resources. The results have 

been obtained for the case of λ=0 and λ=0.95. 

It is apparent in this case that the performance of the cognitive algorithm reaches 

that of the ideal case and the RMSE is lower than that of the purely passive system. 

Note also that in this particular case, the resources allocated by the SR are higher 

than in the case of 32 CPEs. This is due to the fact that with 256 available CPEs, the 
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ideal cost function Trace{Pk+1|k(Sideal)} is lower than in the previous case and the 

cognitive algorithm needs more resources to satisfies (13).  

Note also that in some points, such as for k∈[100, 350], the behavior of the 

allocated resources in Fig. 23 is similar to the mean number of allocated 

transmitters in Fig. 22 but it is not a scaled version such as in the case of the 

scenario with 32 CPEs. This means that for some points along the target trajectory, 

even if the number n of allocated CPEs is the same, they are mapped in different data 

burst of the US-Map with the aim to minimize the percentage of allocated resources. 
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Fig. 15 – RMSE of target position for λ={0, 0.8, 0.9, 0.95, 0.99, 0.999}. 
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Fig. 16 - RMSE of target velocity for λ={0, 0.8, 0.9, 0.95, 0.99, 0.999}. 
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Fig. 17 - Mean number of CPEs scheduled to transmit by the SR. 
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Fig. 18 – Percentage of resources allocated for target tracking. 
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Fig. 19 – Map of the best CPE for each point of the surveillance area, 256 CPEs. 
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Fig. 20 - RMSE of target position for λ={0, 0.95}. 
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Fig. 21 - RMSE of target velocity for λ={0, 0.95}. 
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Fig. 22 - Mean number of CPEs scheduled to transmit by the SR. 
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Fig. 23 - Percentage of resources allocated for target tracking. 
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5. Conclusions 

In this work, we focus on a Symbiotic Radar, which is a passive radar fully 

integrated into a communication network. The resulting system is defined as a 

ComRadE system, where the communication and radar functionalities are jointly 

performed and the communication network and the passive radar are “friendly” or 

“allies”. We focused on the particular case of an IEEE 802.22 WRAN. This choice has 

been made considering that both the SR, which is a passive system, and the IEEE 

802.22 devices that exploit cognitive radio techniques, can be installed everywhere 

without any license to transmit and without interfere with other radiating systems. 

In this way, the occupied spectrum is used very efficiently for both radar and 

communication functionalities that can be operated simultaneously, which then 

guarantees a permanent availability of both functions and helps to overcome the 

limited availability of spectral resources for operations in spectrally crowded 

environments. 

The symbiotic radar is integrated with the WRAN and can control the BS to select 

some of the CPEs scheduled to transmit. Recent research has been devoted to design 

and develop of such as system 7, to this end we defined a cognitive passive tracking 

algorithm inspired by the perception-action cycle introduced by Haykin 15, where 

the CPEs in each frame are selected to improve target tracking performance. The 

proposed algorithm is also designed to preserve the communication capabilities of 

the network. The obtained results show that there is a substantial gain using the 

proposed algorithm with respect to a passive radar that does not select the CPEs of 
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opportunity even in the case in which the resources allocated to the SR are very low. 

Future research should also focus on a network of cooperative SRs equipped with 

IEEE 802.22 devices to share their detection and tracking information with a fusion 

center. 
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Appendix A – Dependence of the measurement vector on the target state. 

The available measurements at time k are collected in a column vector  

zk=[rk
(0) ζk

(0) … rk
(M) ζk

(M) θk]T, whose components are the range from receiver to 

target and the bistatic velocity, and the target DOA. The explicit expressions of the 

elements of hk(xk) of (5) are 21: 

 ( ) 2 2m

k k kr x y= + , (52) 

 
( ) ( )

( )

( )

m m

m k k k k
k m

k

x x y y

d
ζ +=

ɶ ɺ ɶ ɺ
, (53) 

 1 k
k

k

y
tg

x
θ −  

=  
 

, (54) 

 

for m=0,1,…,M and where ( ( )m

kxɶ , ( )m

kyɶ ) is the incenter at the target position of the mth 

bistatic triangle and  

 ( ) ( )2 2( ) ( ) ( )m m m

k k kd x y= +ɶ ɶ . (55) 

 

Recalling that the SR is at the origin of the Cartesian coordinate system and 

indicating with ( )m

kl  and ( )m

kt  the baseline between the mth transmitter and the SR 

and the distance between the target and the mth transmitter, respectively, the 

incenter at the target position is given by 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

, ,
, ,

m m m m

k k k k T Tm m

k k k km m m

k k k

l x y r x y
x y x y

l r t

+
= −

+ +
ɶ ɶ , (56) 

where  

 ( ) ( )2 2( ) ( ) ( )m m m

k T T
l x y= + , (57) 

 ( ) ( )2 2( ) ( ) ( )m m m

k k T k Tt x x y y= − + − . (58) 
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The EKF exploits the Jacobian of hk(xk) evaluated at | 1
ˆ

k k −x , and the explicit 

expression of the Jacobian matrix is given by 21: 

 ( )

(0) (0) (0) (0)

(0) (0) (0) (0)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k

k k k k

k k k k

k k k k

k k k k

T
T

k k M M M M

k k k k

k k k k

M M M M

k k k k

k k k k

k k k k

k k k k

r r r r

x x y y

x x y y

r r r r

x x y y

x x y y

x x y y

ζ ζ ζ ζ

ζ ζ ζ ζ

θ θ θ θ

∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 ∇ =  ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

x h x

ɺ ɺ

ɺ ɺ

⋮ ⋮ ⋮ ⋮

ɺ ɺ

ɺ ɺ

ɺ ɺ





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



, (59) 

where  

 
( )

( )

m

k k

m

k k

r x

x r

∂ =
∂

,   
( )

( )

m

k k

m

k k

r y

y r

∂ =
∂

, (60) 

 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

2( )

1m m m m
m m mk k k k

k k k k k k k
m

k k k kk

x y d
x y d x x y y

x x x xd

ζ   ∂ ∂ ∂ ∂= + − +  ∂ ∂ ∂ ∂  

ɶ ɶ
ɺ ɺ ɶ ɺ ɶ ɺ , (61) 
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k k k k k k k
m

k k k kk

x y d
x y d x x y y
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ɶ ɶ
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ɺ
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m m
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m
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ɶ

ɺ
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( )2( )

k k

m
k k

y

x r

θ∂ = −
∂

,   

( )2( )

k k

m
k k

x

y r

θ∂ =
∂

, (64) 

 
( ) ( )

0
m m

k k k k

k k k k

r r

x y x y

θ θ∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂ɺ ɺ ɺ ɺ

. (65) 

 

The derivatives that appear in (25) and (26) can be calculated straightforwardly. 
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Appendix B – Covariance matrix of the measurement error.  

The measurement errors of the ranges and bistatic velocities from the M+1 

transmitters of opportunity are independent as well as the measurement error of 

the DOA that depends on the half-power beamwidth of the receiver antenna. The 

resulting covariance matrix of the measurement vector is a block diagonal matrix 

given by 

 ( )(0) ( ) 2,..., ,M

k k kdiag θσ=R R R  (66) 

where 2
θσ  is the half-power beamwidth of the receiving antenna that in this work 

has been fixed to 3°, while ( )m

kR  is the covariance matrix of the errors in measuring 

rk
(m) and ζk

(m). This matrix, which depends on the transmitted signal and on the mth 

bistatic geometry, is given by 13 

 ( ) ( )
11( ) ( ) ( ) ( ) T

m m m m

k k k k

−− =   
R C E C , (67) 

where 

 
( )

( )

2( )

( )

( ) 2( )

01

2 0

m

k
m

k m
m

k
k

SNR

τ

ν

 ∆
 =
 ∆  

E , (68) 

 ( ) 1m

k

m f
τ∆ =

Ω ∆
,   ( ) 1

16
m

kv
T

∆ = , (69) 

 

directly depends on the delay and Doppler resolutions of the target echo from the 

signal emitted by the mth transmitter, and the corresponding signal to noise ratio 

(SNR) at the radar receiver. On the other hand, the matrix ( )m

kC  is given by 13, 21: 
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( ) ( )

( ) ( )

( )

( ) ( )
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m m

k k

m m

k km

k m m

k k

m m

k k

v

r r

v

τ

τ
ζ ζ
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 ∂ ∂ =
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 
∂ ∂  

C , (70) 

 

and takes into account the effects of the bistatic geometry. This matrix is strictly 

related to the non-linear relations between the delay and the range and the Doppler 

shift and the bistatic velocity 13, 21: 

 
( ) ( )2 2

( ) ( ) ( ) ( ) ( ) ( )

( )
2 sinm m m m m m

k k k k k km

k

r r l r l

c

ϕ
τ

+ + +
= , (71) 
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2 2
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2

2
2 2 sin

m m m

m m k k k

k k
m m m m m

k k k k k

f r l
v

c
r l r l

ϕζ
ϕ

+= +
+ +

, (72) 

 

where f0=600 MHz is the carrier frequency, c is the speed of light, while ( )m

kϕ  is the 

receiver look angle and is given by 22 

 
( ) ( ) ( )2 2 2

( ) ( ) ( )

( ) 1

( ) ( )
cos

2 2

m m m

k k km

k m m

k k

r l t

r l

πϕ −
 + −
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 
 

. (73) 

Let 

 ( ) ( )2 2
( ) ( ) ( ) ( ) ( ) ( )2 sinm m m m m m

k k k k k kr l r lω ϕ= + + , (74) 

 ( ) ( ) ( ) ( )sinm m m m

k k k kr lω ϕ= + , (75) 

 ( ) ( ) ( )1m m m

k k kµ ω ω= + , (76) 

 

the elements of ( )m

kC  are given by 13, 19, 21: 
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