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Abstract 
The ability to model the stress concentration, strain localization, crack initiation and propagation at 

mesoscopic length scales of heterogeneous materials such as polymer bonded explosives is critical to 
preventing undesirable ignitions. 

The research conducted in this study addresses the ability to model the strain localization, crack 
initiation and propagation by using explicit Lagrangian solution of the underlying partial differential equations 
within domains of interest discretized using finite elements and initially rigid cohesive elements. This 
approach is superior in its ability to model stress wave propagation excited by rapidly applied loads along 
model boundaries as it does not suffer from inaccuracies imposed by numerically generated internal 
impedance boundaries to their propagation. 

New criteria for detection of the onset of strain localisation, new algorithms for activation of initially 
rigid cohesive elements, strain softening, crack initiation and crack propagation have been implemented 
within in-house software DEST (Discrete Elements Simulation Tools) in order to enable existing and new 
experimental data to be used to enable further improvements of both the understanding of the underlying 
physical process as well as thus motivated further improvements of related modelling capabilities. 

The developed algorithms are presented alongside benchmarks which confirm their effectiveness. 
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1 Introduction 
This report provides a summary of findings obtained during a relatively short (six months long) research 

effort exerted to advance the fundamental aspects of explicit Lagrangian finite element (FE)-based modelling 
simulations of the mechanical response of solids subjected to impact loading related to the three-
dimensional localised brittle and quasi-brittle fracture at mesoscopic length scale. This project relied entirely 
upon the resources and facilities available within the Impact Engineering Laboratory of the University of 
Oxford, an integral part of the Solid Mechanics and Materials Engineering Group within the Department of 
Engineering Science. The key resource needed to advance the proposed modelling capabilities was DEST 
(Discrete Element Simulation Tools) software developed by Professor N. Petrinic’s research group over the 
last couple of decades. In addition, the existing experimental data generated previously in the wider research 
group was used to obtain some fundamental properties of relevant polymeric materials, while a new set of 
experiments was developed particularly to enable detailed validation of specific modelling methodologies 
developed and implemented during the course of this project. 

The research was motivated by its importance in the context of the sensitivity analysis of 
heterogeneous energetic (HE) materials, such as polymer-bonded explosives (PBXs), by enabling the 
modelling of emergence and evolution of "hotspots" or fracture initiation sites as a part of the observed 
mechanical response of this class of materials. This is inherently related to the chemical composition and the 
mesoscopic system material structure, which define the distribution, magnitude, concentration and 
localisation of excited reversible and irreversible thermo-mechanical response mechanisms. Consequently, 
any sensitivity analysis of HE materials requires accurate prediction of the deformation within the bulk as 
well as of the relative motion within zones of strain localisations and along interfaces between 
heterogeneous subdomains, i.e. inert binder and reactive crystals, to understand the initiation and evolution 
of damage and adiabatic heat induced by rapidly applied impulsive loading. 

The simulation methodology underpinning the work proposed in the following section aligns with that 
employed by Barua and Zhou [4] but aims to employ "extrinsic" (initially rigid) cohesive elements. The choice 
of an extrinsic formulation is motivated by the fact that, especially for the numerical analysis to provide the 
understanding of thermo-mechanical response of HE materials subjected to impact loading, it has to be 
employed at mesoscopic length scales where the explicit modelling of the morphology of materials under 
consideration, in particular the binder, the crystalline grains and their interfaces, can be conducted. Often, 
instead of dealing with macroscopic samples, representative volume elements (RVEs) are analysed. Due to 
the necessity to resolve the highly transient nature of the impact-induced phenomena such as high-frequency 
waves, explicit time integration algorithms are usually adopted in solutions of the underlying governing 
partial differential equations, discretised in some manner in both the spatial and temporal domains. In the 
given context, Eulerian and Lagrangian spatial, predominantly finite element (FE)-based, discretisations are 
commonly employed. 

The Eulerian approach with its temporarily invariant spatial discretisation is particularly suited for 
problems exhibiting large deformations since, in contrast to the Lagrangian approach in which the 
discretisation follows the deformation, it does not suffer from reduced precision and a shortened admissible 
time step in the face of significant distortions. Furthermore, the coupling of the mechanical response to heat 
transfer and other phenomena, which are usually also modelled in the Eulerian framework, is 
straightforward. An example for adoption of the Eulerian approach is the work conducted by Rai and 
Udaykumar [32] (for the method see [14]). The work focuses on the dependence of the ignition behaviour 
on the morphology, particularly on orientation, size and distributions of voids, of shock-loaded pressed HMX 
energetic material.  

However, imposing specific boundary conditions, simulating damage induced strain localisation, and 
leading to fracture, fragmentation and multi-body interaction including friction is handled more naturally 
within the Lagrangian framework. An example is the work of Barua and Zhou [4] in which they presented a 
computational framework for simulating the mesoscale thermo-mechanical response of PBXs. Their 
framework makes use of "intrinsic" (initially elastic) cohesive elements embedded between bulk elements to 
explicitly model the cohesive zone preceding fracture within and between the mesoscopic constituents of 
the HE material. Subsequent works [2, 3, 5, 15, 16], which build upon this framework, focussed more on the 
ignition and thermal aspects. 
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Finally, it should be mentioned that all approaches from the literature referenced above rely on two-
dimensional spatial discretisations. 

Aligned with the declared motivation and building upon the existing simulation capabilities 
demonstrated above, this study aims to improve the three-dimensional extrinsic cohesive element 
formulation developed in [18] explicitly with respect to its ability on to model more accurately localised 
damage, failure and eventually fracture within heterogeneous materials, such as HE materials. In this context, 
the ability of the initially rigid cohesive formulation to model the localisation of damage within homogeneous 
domains of heterogeneous materials, which showed to have potential for improvement in a previous study 
[17], will be investigated and eventually improved. In particular the investigation will involve the criteria for 
adaptive activation of cohesive elements and the development of algorithms for the prevention of spurious 
effects responsible for the aforementioned lack of localisation. Regarding the overall methodology, the 
impact of time stepping on the localisation behaviour will also be addressed. 

The improved methodology is expected to complement the research efforts in the broader field by 
providing a new platform for modelling coupled phenomena, e.g. by allowing to focus on the thermal effects, 
i.e. on the "hotspots" in the case of HE materials. Moreover, it should be emphasised here that the proposed 
methodology is not limited to HE materials. For example, the mesoscale simulation of concrete or ceramics 
is also a suitable field of application. 

2 Modifications of the initially rigid cohesive element formulation 
This section presents the modifications developed in the course of the project which aim to improve 

the specific initially rigid cohesive element formulation outlined in Chapter 2.2, especially with regard to an 
improved localisation modelling. Specifically, three modifications are proposed: a specialised time step 
control, an improved CT method for the determination of the tractions underlying the failure initiation and 
an algorithm for the avoidance of hanging nodes. 

2.1 Time step control 
In the context of initially rigid cohesive elements, determining an admissible time step via classic 

stability analysis (as underlying the CFL criterion which is usually used for bulk elements), is rendered 
impractical by a potentially infinite release stiffness. Additionally, allowing a large softening or, considering 
the worst case, total decohesion over one time step, may lead to a abrupt unloading of the adjacent bulk 
elements and consequently oscillations and thus spurious activation of other cohesive elements. 

 

. 
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The contact algorithm adopted in this study is a penalty contact based upon a symmetric facet/facet 
interaction, in fact facet/facet overlap. Due to the similarity between this contact formulation and the 
cohesive elements employed, an additional (or optional) time step control similar to the one given above is 
applied to the contact, which before relied only on a time step control relying on the half step velocities of 
the previous time step. 

 

2.2 Improved Cauchy theorem’s (CT) based method for determination of interface traction 
Although the CT traction determination described in [18] provided good results for the modelling of 

failure of material interfaces, it exhibits a conceptional flaw. At the instance of a node split, the group of bulk 
elements which connect to the node under consideration are affected by the nodal mass change. In this 
study, the failure within homogeneous material domains is considered, i.e. cohesive elements are seeded 
between all bulk element interfaces which amplifies the effect of element debonding upon the change of 
nodal mass. To prevent the consequent abrupt change of Cauchy stress within the element, it was proposed 
that the following modification of its computation is implemented in order to improve the CT traction 
determination method. 
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The calculation of the weighted nodal Cauchy stresses is implemented as follows 
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Figure 3.1: Details of a two-dimensional FE partition in which one original node has been split 

into four nodes in consequence of cohesive element activation, which serve the illustration the 
improved CT method. 

3 Results and discussion 
The effectiveness of the modifications of the proposed formulation as well as the overall suitability and 
limitations of the final formulation will be measured and discussed based on their application to two three-
dimensional benchmark problems. In the early stage of the project, it became clear that the simulation of HE 
materials is not ideal for a comparative analysis of the modifications, which focus on localisation within 
homogeneous material regions. This is mainly due to the lack of well documented experimental results with 
an emphasis on the mechanical response within those homogeneous regions. Furthermore, the material data 
published in the literature governing the localisation behaviour is scarce—especially with regard to different 
temperature regimes, which are of critical importance for the material class considered.  

As an alternative, polymethylmethacrylat (PMMA), a material often used for the validation of 
cohesive zone approach-based formulations, is employed as the primary benchmark. The "compact 
compression specimen" (CCS) experiment proposed by Rittel et al. [34] (see also [20, 33]) is used, in which a 
mode 1-dominated, curved crack within a homogeneous material is induced by impulsive loading with a 
compression split Hopkinson bar. Despite its widespread adoption as a benchmark problem, the 
documentation concerning the temporal evolution of the crack trajectory within PMMA is insufficient. The 
facts that PMMA is readily available and that a suitable experimental setup exists in our laboratory, allowed 
us to conduct and document the CCS experiment ourselves.  

Nevertheless, to demonstrate the applicability of the final formulation within the field which 
motivated this work, the second benchmark is derived from the simulations of dynamically loaded PBX 
published by Barua and Zhou [4]. 

It should be noted, that due to the computational effort resulting from the necessity to spatially and 
temporarily resolve the evolution of cohesive zones within the 3D simulations of the benchmark problems, 
only thin slices of the respective specimens can be considered. To avoid buckling, the FE partitions are 
confined by suitable displacement boundary conditions such that a plain strain-like state is maintained during 
the simulations. 
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All FE partitions of the benchmark problems considered were created with Gmsh [13]. ParaWiew 
was used for the visualisation of the results, all of which were generated with the research group’s in-house 
DE-FE-code DEST. 

3.1 Simulation of a generic uniaxial compression experiment 
As mentioned at the beginning of this section, the final formulation proposed in this work will be applied to 
a benchmark problem derived from 2D simulations conducted by Barua and Zhou [4]: the dynamic 
compression of elastic particulates embedded in a viscoelastic matrix representing reactive crystals enclosed 
in an inert binder of a PBX. This benchmark serves only the purpose of verification of the general applicability 
of the final formulation to HE materials and, given the simplified material description adopted, should be 
considered as generic. 

  
Figure 4.13: Geometry of the PBX representation and the anvil stubs used in the simulation. 

 
Table 4.3: Bulk material parameters for the generic 
PBX compression benchmark 

Table 4.4: Relaxation times and shear moduli for a 
generalised Maxwell model for two temperatures for 
the binder employed in the generic PBX compression 
benchmark 

 
 
Table 4.5: Cohesive material parameters variations 
employed in the generic PBX compression benchmark 

 
 
Table 4.6: Selected variants of the PBX compression 
simulations conducted 
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Figure 4.14: In-plane shear stress in the binder and damage in active cohesive elements of 

the generic PBX compression simulation variants A and B at the end of the simulation interval 
considered. 

In consequence of the two temperatures and the two cohesive material parameter sets adopted, four 
simulation variants of the generic benchmark problem, as specified in Table 4.6, will be considered in the 
following. Results of these four variants are depicted in the Figures 4.14 and 4.15. The results attained for 
the higher temperature, i.e., lower relaxation times, show less active cohesive elements and fracture 
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surfaces, which are predominately located at the crystal-binder-interfaces, than those for the lower 
temperature. As expected, the magnitude of shear stress concentrations is also lower for the higher 
temperature. The variation of the mode 2 parameters has only a minor impact on the results for the higher 
temperature. In contrast, the impact is significant for the lower temperature. For variant C, the dynamic shear 
resistance of the binder is so high that clusters of activated cohesive elements can be observed. That these 
clusters are at least partially a consequence of an activation due to mode 2 failure is strongly supported by 
the absence of those clusters for variant D. It should be noted that a material model which accounts for a 
reduction of the relaxation times in consequence of deformation-induced self-heating, as adopted in [4], 
might alleviate the issue for lower temperatures. Figure 4.16 illustrates another factor which, aside from its 
general negative impact on the validity of the simulation results, is partially responsible for the occurrence 
of clusters of active cohesive elements observed. The detail depicted on the right-hand side of the figure 
shows clearly spurious pressure modes at locations exhibiting high shear stresses (see Figure 4.15). These 
spurious modes are a consequence of volumetric locking which typically is encountered for (quasi-
)incompressible deformations. Therefore, in addition to the fact that spurious pressure modes are 
problematic for a failure initiation criterion relying on the bulk stresses, volumetric locking effectively and 
spuriously increases the shear stiffness of the binder. The simulations presented in the literature dealing with 
Lagrange-based modelling of HE materials referenced at the beginning of this report avoid this issue by 
relying on two-dimensional structured, cross-triangle FE partitions. It is well known that these special 
structured partitions do not lock [23] (as long as the partitions remain virtually undeformed). Aside from the 
aforementioned issues the applicability of the simulation methodology proposed in this study is affirmed by 
the above results. However, special care is required exploring 
the limitations of its application on a case by case basis. 

 
Figure 4.15: In-plane shear stress in the binder and damage in active cohesive elements of 

the generic PBX compression simulation variants C and D at the end of the simulation interval 
considered. 

4 Conclusions 
During the course of this study three modifications of an existing initially rigid cohesive element 

formulation, which is part of a spatially three-dimensional explicit Lagrangian finite element approach, were 
proposed with the aim to improve the modelling of localised failure, specifically the avoidance of spurious 
failure bifurcations, within homogeneous areas of heterogeneous materials.  

The first modification of the baseline formulation is a robust time step control for the cohesive 
elements. A variant of this time step control has also been applied to the symmetric penalty contact adopted. 
The second modification improved the method for the determination of the tractions upon which the failure 
initiation is based. The third modification is an algorithm which helps to avoid hanging nodes, i.e., bridging 
nodes which prevent a continuous opening of an evolving cohesive zone. The three modifications were 
compared against each other and the baseline formulation by simulation of a "compact compression 
specimen" (CCS) experiment in which the CCS is impulsively loaded by a split Hopkinson bar. Since data 
regarding temporal evolution of the crack trajectory is insufficiently documented in the literature, the 
experiments have been conducted with an PMMA specimen of reduced dimensions using an existing 
experimental setup. The simulations, which were conducted on thin virtual specimens, due the immense 
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computational effort involved, exhibited improved results with regard to the localization behaviour for the 
second and the third modification. The perceived lack of an effect of the enhanced time step control is 
presumably due the necessity to employ a similar time step control scheme for the contact. Occasionally, 
cohesive elements bridging the evolving crack were observed if the algorithm for the avoidance of hanging 
nodes was adopted. A side effect of this algorithm is the increase of the distance for which the cohesive 
elements can still transmit tractions, which presumably explains the bridging elements. The direct 
comparison of the results of the experiment and the simulations employing the final methodology, which 
includes all modifications, showed a remarkably good agreement. 

The final formulation was applied to simulate a generic dynamic compression test of elastic 
particulates enclosed in a viscoelastic matrix representing reactive crystals embedded in an inert binder for 
two temperatures and two different mode 2 resistances. Here, also thin virtual specimens were considered. 
The simulations supported the applicability of the method developed in the numerical analysis to HE 
materials. 
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