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Abstract  
 
This project focused on mathematical decision models which capture data uncertainty.  In 
such situations, it is almost impossible to make choices which are deterministically 
optimum.  However, by using statistical approaches, one can make decisions which are 
good up to a statistically verifiable guarantee.  Algorithms which provide such decisions 
are said to achieve some level of statistical optimality.  However, because there are no 
absolute certainties in such a setting, it is also important that the decisions are resilient to 
non-optimality.  In other words, the decisions should be such that the downside of facing 
a bad scenario is not devastating to the decision-maker.  Such decisions will be referred 
to as “resilient decisions”.     Our approaches were devoted to studying continuous 
optimization models which provide computational tools for resilient decision-making in 
two-stage (e.g., today and tomorrow) as well as multi-stage (sequential) decision models. 
Our approaches have been tested computationally, and the computational results speak to 
the effectiveness of these approaches.   In all cases we have applied the new methods to 
decision problems arising in real-world settings such as network planning and system 
operations (e.g., power).  

Overview 
This report organized by the publications which were produced as a result of AFOSR 
funding.  The first group of publications presented here are dedicated to two-stage 
models, and following that we provide our work on multi-stage problems.  Some 
applications-oriented papers are also listed in this report1.    

Two Stage Stochastic Linear Programming (2-SLP) 
This section is sub-divided into three subsections, all of which are related 2-SLP 
 
Variance Reduction 

                                                 
1 Papers/Reports which are cited within the text will not appear in the Reference list.  Other papers which 
are not cited within the report are listed in the References. 
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S. Sen and Y. Liu, “Mitigating Uncertainty via Compromise Decisions in Stochastic 
Linear Programming: Variance Reduction” Operations Research, 64(6):1422-1437, 
August 2016. 
Stochastic Programming (SP) has long been considered a well-justified yet 
computationally challenging paradigm for practical applications. Computational studies 
in the literature often involve approximating a large number of scenarios by using a small 
number of scenarios to be processed via deterministic solvers, or running Sample 
Average Approximation on some genre of high performance machines so that statistically 
acceptable bounds can be obtained. In this paper we show that for a class of stochastic 
linear programming problems, an alternative approach known as Stochastic 
Decomposition (SD) can provide solutions of similar quality in far less computational 
time using ordinary desktop or laptop machines of today. In addition to these compelling 
computational results, we provide a stronger convergence result for SD, and introduce a 
new solution concept that we call the compromise decision. This new concept is 
attractive for algorithms that call for multiple replications in sampling-based convex 
optimization algorithms. For such replicated optimization, we show that the difference 
between an average solution and a compromise decision provides a natural stopping rule. 
We discuss three stopping criteria that enhance the reliability of the compromise 
decision, reducing bias and variance associated with the result. Finally our computational 
results cover a variety of instances from the literature, including a detailed study of 
SONET Switched Network (SSN), a network planning instance known to be more 
formidable test instances in the literature.  This instance was also cited by the Defense 
Science Board as one of the challenges in DoD research (Defense Science Board Report, 
2011).    
 
Formally speaking, SSN is a two-stage stochastic linear programming model. The basic 
“operations”-issue in the SSN model is to recommend link sizes of a given network so 
that the network will experience the least number of “lost calls” (in expectation), while 
operating under a given budget constraint. In the SP literature, such models are often 
classified as “here-and-now” because the link capacities must be decided before actual 
demands are known. Models of this type, which are based on introducing randomness to 
linear programming models, must contend with multidimensional random vectors, which, 
in the SSN model represent point-to-point demand uncertainty. In this example, there are 
86 point-to-point pairs, which, by standards of LP models, is modest. As is common 
today, these demands are available through forecasting systems, and errors in forecasts 
may be treated as independent random variables. For the model presented in Sen et al. 
(1994), each marginal error random variable was deemed to be sufficiently approximated 
by a discretization using about 5–9 outcomes per demand pair. Clearly the total number 
of scenarios involves an astronomical number of parametric LPs (approximately of 
magnitude 1071).  Even if one had access to an exascale (1018 flops) computing 
platform, it would be pointless to seek a solution whose optimality could be verified in a 
deterministic sense. It is therefore pragmatic to seek approximate solutions that are near-
optimum in a statistical sense.   
 
The most widely cited experiment for the SSN problem is the 2006 study of Linderoth et 
al which reported lower and upper bounds on the optimal solution of the instance to 
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belong to the interval [L,U] = [9.84, 9.914].  This was accomplished using grid 
computing with hundreds of PCs2 running for about 30-45 minutes per replication. that 
these hundreds of desktop PCs and the MacBook Air used in [99] had very similar 
processing speeds (about 2 GHz clock speed).  Thanks to research support from this 
AFOSR grant, our team was able to produce the following results using only a 
conventional laptop3.  
 

Relative 
Tolerance 

Sample 
Size  

(Std. Dev.) 

Lower 
Bound (L) 
Conf. Int.  

Upper 
Bound (U) 
Conf. Int. 

 
U - L 

CPU secs 
(Std. Dev) 

Tight 
(0.0001) 

3137  
(605.17) 

9.876 
(+/- 0.107) 

9.925 
(+/- 0.05) 

0.049 189.79 
(74.57) 

 
Table 1: Results using Stochastic Decomposition (SD) for SSN on a MacBook Air 

 
The quantity U is an upper bound on the minimum (in expectation) and L is a lower 
bound on the minimum.  The difference shown in the column U – L reports that the 
optimum solution is 0.5% (on average).    However, the processing time reported by our 
experiments is only 3 minutes per replication.  Because the processor speeds of the two 
studies were similar, one concludes that the “speed-up” can be attributed to algorithmic 
efficiency.  From a detailed discussion reported on page 1427 of our Operations 
Research (2016) paper,  we were able to conclude that our approach, which produced 
Table 1, provides an algorithmic speed-up similar to the renowned Moore’s Law for 
computer chips (i.e., doubling the speed every 1.5 years)! 
 
Convergence Rate 
J.Liu and S. Sen, “Asymptotic Results on Two-stage Stochastic Quadratic Programming” 
submitted last minor revision to  SIAM  J. on Optimization 
 
While the computational results reported in the previous section was remarkable, and the 
asymptotic convergence of SD has been proved over 25 years ago (Higle and Sen 1994) 
no theoretically proven convergence rates  were available for this method.  In this sense, 
the mathematical properties of stochastic bundle methods were not fully understood.  
Thanks to the current AFOSR funded project, this issue has been resolved: we have 
obtained a sublinear convergence rate for the SD algorithm, under some assumptions.   
Table 2 compares the convergence rate that we have obtained for SD with those available 
in the literature for other algorithms which might be used for large scale Linear/Quadratic 
Programming problems.   The notation in Table 2 uses 𝑥𝑥𝑁𝑁 to denote the solution obtained 
when an algorithm stops after 𝑁𝑁 iterations, and the notation 𝑓𝑓(𝑥𝑥𝑁𝑁) denote the “true 
value” of the decision 𝑥𝑥𝑁𝑁, while 𝑓𝑓∗ and 𝑥𝑥∗ denote the “true optimal value” and the “true 
optimal solution” of the SP model.  One should recognize that since most optimization 

                                                 
2An average Pentium IV PC in 2004/2005 had clock speed of about 2 GHz, which is similar to the laptop 
3MacBook Air using (Core i5 processor running at 1.8 GHz) 



 4 

algorithms are used for the purposes of decision-making, what matters is the quality of 
𝑥𝑥𝑁𝑁, and although 𝑓𝑓(𝑥𝑥𝑁𝑁) is an important deliverable (for optimization), many Air Force 
and DoD applications seek decisions or actions, and therefore, having good quality 
solutions is or primary importance. 
 
It is important to note that SAA is more-or-less a mathematical tool, rather than a 
numerical algorithm, because the latter is an essential choice in implementing SAA. 
Hence the convergence rate listed for SAA does not tell the whole story.   Of the 
remaining algorithms which can be applied for Stochastic Programing with Linear or 
Quadratic Programs defining their value functions, we show that SD provides a faster rate 
of convergence than of the algorithms which can be used.   This theoretical result actually 
supports the computational results which were observed on page 2 of this report.  
 

Method Structural 
Assumptions 

Convergence Type Convergence 
Rate 

SAA for Nonconvex 
Problems 

Non-convex 𝑃𝑃{𝑓𝑓(𝑥𝑥𝑁𝑁) − 𝑓𝑓∗ > 𝜖𝜖} 𝑂𝑂(𝐶𝐶𝜖𝜖𝑒𝑒−𝛽𝛽𝜖𝜖𝑁𝑁) 

SAA for Convex 
Problems 

convex 𝑃𝑃(𝑥𝑥𝑁𝑁 ∉ 𝑆𝑆∗) 𝑂𝑂(𝐶𝐶0𝑒𝑒−𝛽𝛽0𝑁𝑁) 

Robust Stochastic 
Approximation 

(RSA) 
convex 𝐸𝐸|𝑓𝑓(𝑥𝑥𝑁𝑁) − 𝑓𝑓∗| 𝑂𝑂(𝑁𝑁−12) 

Stochastic 
Approximation (SA) 

Strongly convex 𝐸𝐸||𝑥𝑥𝑁𝑁 − 𝑥𝑥∗|| 𝑂𝑂(𝑁𝑁−12) 

Stochastic 
Approximation (SA) 

Lipschitz Gradient 𝐸𝐸|𝑓𝑓(𝑥𝑥𝑁𝑁) − 𝑓𝑓∗| 𝑂𝑂(𝑁𝑁−1) 

Stochastic 
Decomposition (SD) 

(This Grant) 
Positive Definite 
Quadratic Forms  

𝐸𝐸||𝑥𝑥𝑁𝑁 − 𝑥𝑥∗|| 𝑂𝑂(𝑁𝑁−1) 

Table 2.  Comparison of Convergence Rates for Alternative Algorithms for SP. 
 

Random Cost Models  
H. Gangammanavar, Y. Liu and S. Sen, “Stochastic Decomposition for Two-Stage 
Stochastic Linear Programs with Random Cost Coefficients,” submitted last minor 
revision to INFORMS Journal on Computing 
 
The key to the SD algorithm mentioned above is the incremental sampling approach 
which is designed to discover an appropriate sample size for a given SP instance, thus 
precluding the need for either scenario reduction or arbitrary sample sizes to create 
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sample average approximations (SAA).  As discussed above, SD provides solutions of 
similar quality in far less computational time using ordinarily available computational 
resources. However, previous versions of SD were not applicable to problems with 
randomness in second-stage cost coefficients. In this paper, we have extended its 
capabilities by relaxing this assumption on cost coefficients in the second-stage. In 
addition to the algorithmic enhancements necessary to achieve this, our paper also 
presents the details of implementing these extensions which preserve the computational 
edge of SD. The computational results reported in the paper illustrate the continued 
success of the SD methodology.  To help the reader get a sense of the computational 
advantages of SD we compare our computational results with those obtained from the 
regularized Benders decomposition method applied an extension of the SSN instance.  
Both methods were run using 30 replications so that we could get a sense of the 
variability in performance.  These results are summarized in Table 2. 
 
Algorithm Sample Size 

(std. dev.) 
Lower 
Bound  
(95% CI) 

Upper  
Bound  
(95% CI) 

Pessimistic 
Gap 

Avg.Time (s)  
(std.dev.) 

Regularized 
Benders 

50 
4.46 

(±0.36) 
13.63 

(±0.36) 
10.32 

(231.24%) 
12.54  
(4.41) 

500 
9.06 

(±0.39) 
10.43 
(±07) 

1.84 
(20.30%) 

470.34 
(208.88) 

5000 9.85 (±0.1)  9.95 
(±0.01) 

0.22  
(2.2%) 

30,800.76 
(15,187.34) 

SD-Loose 1567 (±286) 9.59 
(±0.22) 

10.21 (0.05) 0.89 
(9.27%) 

38.91  
(17.60) 

SD-Nom 2315 (±251) 9.72 
(±0.13)) 

10.14 
(0.04) 

0.59 
(6.03%) 

103.86 
(30.48) 

SD-Tight 3318 (±670) 9.88 
(±0.11) 

10.12 
(0.04) 

0.39 
(3.98%) 

299.02 
(177.00) 

Table 3.  Computational Comparison of Regularized Benders and SD for SSN with 
Random Costs in the Second Stage 

 
Based on the upper and lower bounds reported in Table 3 (see also the column labeled 
pessimistic gap), it is clear that SD method provides decisions which are far closer to 
optimality in far less time (see the times reported in the last column) than the Benders’ 
Decomposition method which is standard for Large Scale Stochastic Programming 
problems.   
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Multi-stage Stochastic Linear Programming with a Simulator 
(Multi-stage SLP ) 
H. Gangammanavar, and S. Sen, “The Stochastic Dynamic Linear Programming 
Algorithm”  under revision 2019.   
H. Gangammanavar, and S. Sen, “Two-scale Stochastic Optimization Framework for 
Controlling Distributed Storage Devices”   IEEE Transactions on Smart Grid, vol. 9, pp. 
2691-2702, 2018. 
 
Among the most popular methods for Multi-stage Stochastic Linear Programming is the  
algorithm of Pereira and Pinto (1991).  That method, which goes by the acronym SDDP 
(for Stochastic Dual Dynamic Programming) has become among the most popular  multi-
stage SP algorithms, primarily based on its ability to address large scale power system 
applications.   SDDP is based on a forward sampling/simulation scheme in which only a 
small subset of scenarios of the multi-stage SP model are sampled, and one creates 
piecewise linear approximations for each node in the sample generated during the 
forward sampling pass.  By restricting the number paths generated during each forward 
pass, SDDP restricts the number of nodes (of the scenario tree) that one must visit during 
any iteration.  While this does reduce the computational burden of associated with any 
iteration of SDDP, as compared with nested Benders decomposition, there are several 
bottlenecks which remain for large scale implementations. First and foremost, the model 
requires a full description of the scenario tree, including the probability distribution 
associated with each node of the scenario tree.   This severely restricts the ability to 
accommodate very large scale SP models where distributions associated large scale trees 
may be too cumbersome to specify.  In such applications, one often works via simulators 
which can work as an oracle that the next state of the stochastic process, and essentially, 
leaves it to an algorithm to infer the probability of visiting nodes of the scenario tree.  For 
such models, our group has presented the multi-stage Stochastic Decomposition (MSD) 
algorithm in Sen and Zhou (2014).  As part of this project, we have developed the so-
called Stochastic Dynamic Linear Programming (SDLP) algorithm (Gangammanavar and 
Sen (2018, 2019)).  These two are companion papers, with the former providing 
computational results for a smart electricity grid, and the latter providing the basic theory. 
Unlike SDDP whose convergence proof depends on discovering all (finitely-many) dual-
extreme points (of a nodal dual problem), the proof of convergence of SDLP relies on the 
convergence of values of nodal approximations generated during the course of the 
forward/backward updates of MSD.  Other than such mathematical differences, there is 
an important modeling consequence of SDLP:  it allows the recursive use of simulators 
within the algorithm setup, and as a result provides greater fidelity than a simple 
probability distribution (as in SDDP). 
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The computational work reported in Gangammanvar and Sen (2018) is transcribed in 
Table 4.  These computational instances were based on an IEEE Data Sets (IEEE 14, 30, 
and 57) with parameters 𝑛𝑛, 𝑧𝑧, 𝑝𝑝 in the data, some with decreasing renewable energy (𝑛𝑛),  
others with zero change in renewables (𝑧𝑧) and still others with positive change (𝑝𝑝)  in 
renewable energy.  It is important to note that as the size of the instance grows (from 14 
nodes to 57 nodes), the time per iteration for SDLP increases at a far lower rate than for 
SDLP.  This is particularly important in large scale applications.  Many more 
computational experiments are reported in Gangammanavar and Sen  (2018)  and the 
ability to simulate the operations of batteries and other storage devices (with losses) is 
critical for optimization, and this aspect is highlighted by the features provided in SDLP.  
  

 
Instances 

 
Time 

per iter. 
SDDP 
Prediction 
value (v1 ) 

 
 

Sample 
Mean 

 
U.B. Estimation 
95 % C.I.  
[CIℓ, CIu] 

 
Time 
per 
iter. 

 
SDLP 
Prediction 
value(v2 ) 

 
Difference 

|𝑣𝑣2 − 𝑣𝑣1| 𝑣𝑣1⁄    

ieee14n 0.001 6534.47 6535.76 [6530.67,6
540.86] 

0.020 6537.89 5e-4 

ieee14z 0.001 6353.72 6351.59 [6346.25,6
356.93] 

0.021 6353.72 3e-4 

ieee14p 0.001 5991.30 5992.64 [5987.30,5
997.98] 

0.023 5994.77 6e-4 

ieee30n 0.070 8489.47 8487.38 [8470.19,8
504.58] 

0.052 8482.08 8e-4 

ieee30z 0.025 7804.19 7801.54 [7789.26,7
813.82] 

0.042 7786.69 2e-3 

ieee30p 0.021 7334.09 7340.13 [7326.80,7
353.46] 

0.038 7309.49 3e-3 

ieee57n 1.023 24684.45 24695.83 [24686.51,
24705.14] 

0.070 24639.42 2e-3 

ieee57z 0.793 24279.30 24287.18 [24277.20,
24297.16] 

0.076 24229.24 2e-3 

ieee57p 0.641 22850.14 22868.82 [22849.84,
22867.81] 

0.068 22854.57 2e-4 

 
Table 4.  Comparison of SDDP and SDLP 
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Two-stage Stochastic Mixed-Integer Programming (2-SMIP)  

Some of the most challenging models in optimization arise from a combination of 
discrete optimization and decisions under uncertainty.  One of the lessons from 
deterministic discrete optimization has been that accommodating discrete variables in 
optimization is best accomplished by exploiting special structures.  In a previous AFOSR 
project, we had obtained results for multiple cases of SMIP models using  binary 
variables.  This class of models possesses the so-called facial structure which means that 
all solutions to these types of models belong to some face of the polyhedron representing 
the feasible set.  Thanks to AFOSR support, our team was awarded the prestigious 
INFORMS Computer Society award in 2015 for seminal work in Stochastic Mixed-
Integer Programming.   

Concurrently with the above award, we undertook a study of one of the more general 
structures in discrete optimization, namely, the two-stage SMIP with mixed-integer 
variables in both stages. The resulting paper is listed below.  

Y. Qi and S. Sen, “Ancestral Benders' Cuts and Multi-term Disjunctions for Mixed-
Integer Recourse Decisions in Stochastic Programming,” Mathematical Programming 
January 2017, Volume 161, pp 193–235.  
 
The above paper had already been started during the previous AFOSR grant, but the full 
extent of its power was only realized during the course of this particular grant.  As we 
explored the implications of the above paper during the current grant, several individuals 
with background in Homeland Security contacted us explaining that our setup would lend 
itself to modeling situations in which the goal is to deploy alternative technologies 
(cameras, software etc.) in such a manner as to thwart several categories of perpetrators 
(e.g. smugglers, terrorists etc.) within the available resource constraints.  Given the major 
interested in such problems, we were invited to present a tutorial paper at the INFORMS 
conference in Nov. 2017.  Based on that invitation, the following paper was presented in 
Houston. 
S. Küçükyavuz and S. Sen, “Introduction to Two-stage Stochastic Mixed Integer 
Programming” in  INFORMS TutORials, pp. 1-27, 2017.  
 
Finally, we should mention that recently, we have made progress on using sequential  
sampling (Stochastic Decomposition) for the case of 2-SMIP models.  As noted earlier, 
our SD approach allows seamless integration with simulators, allowing SP algorithms to 
work directly with simulation software, as well as discrete optimization will open a large 
class of unsolved problems.  This will allow us to adopt a distribution-free approach, 
although no such methods exist at this point.  This will be particularly powerful for 
models in which the second stage is unimodular, although the  first-stage may be very 
general.  We are in the process of exploring such models in the near future.   While this 
class of models appears to rely entirely of unimodularity theory, that is not exactly the 
case because the entire model is not unimodular:  only the second stage.  It turns out that 
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many practical problems of logistics and distribution invoke such properties, and the 
challenge  

Coalescing Data and Decision Sciences 
 
One of the deficiencies of Stochastic Programming (SP) is that it does not treat data in the 
form of predictors and responses.  Nevertheless, most of statistical and machine learning 
(especially supervised learning) approaches are based on data being available in this 
form.  From a decision-making point of view, this form of data-driven decision model 
allows decisions to be far more agile because the decisions respond to observed data.  
Our project is working towards the fusion of statistical learning and stochastic 
programming, which we refer to as Predictive Stochastic Programming (PSP).  Two 
papers in this realm were produced in the current project. 
 
Y. Deng and S. Sen, “Learning Enabled Optimization: Towards a Fusion of Statistical 
Learning and Stochastic Programming” Optimization Online, 2018. 
 
The above paper is still in the revision process, but based on the work of that paper, my 
students and I were invited to present a tutorial which appeared in the following paper.  
The appears to be a lot of interest in this class of decision models because they bridge the 
areas of Stochastic Programming and Statistical Learning.  These concepts form the basis 
for the following paper. 
 
Y. Deng, J.Liu and S. Sen, “Coalescing Data and Decision Sciences for Analytics” 
INFORMS TutORials pp. 20-49, 2018. 
 
In order to provide the reader a sense of a specific drawback of SP, we present a 
pedagogical example in which we wish to study the coordination between advertising and 
production shown in Figure 1.  Here predictors {𝑍𝑍𝑖𝑖} represent minutes of TV and Radio 
advertising, and response {𝑊𝑊𝑖𝑖} denotes sales. In this case, management seeks to use this 
data for prospective decision-making where it wishes to know how much of its 200,000 
advertising minutes should it commit to TV, and radio so that the total expected profit 
(accounting for production costs of the “Wyndor Production” model) can be maximized.  
Thus the set 𝑿𝑿 represents the 200,000 min. advertising limit, and certain policies (e.g. 
non-negative expenditures).  This is an application in which the management must make 
a bet as to how well the investments in advertising will translate into future sales 𝑊𝑊, 
which in turn affects profits from production in the future. The profit (which is a random 
variable) is estimated using a resource allocation LP whose variables are production 
quantities (𝑦𝑦𝐴𝐴(𝜉𝜉),𝑦𝑦𝐵𝐵(𝜉𝜉)) which are variables in the resource allocation LP, and these 
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choices depend both on the regression model 𝑚𝑚(𝑧𝑧, 𝜉𝜉), which includes the predictor as 
well as the error random variable 𝜉𝜉 (which are in fact latent). 
  
As part of our pedagogical example, we assess three different versions of the PSP model:  

a) Use a deterministic approximation 𝑚𝑚� ≔ 𝑚𝑚(𝑥𝑥, 0);  this approximation leads to a 
linear program.  (This appears to be a common among many consulting outfits). 

b) All errors (𝜉𝜉0, 𝜉𝜉1, 𝜉𝜉2) are 0-mean, correlated Gaussian random variables (obtained 
after linear regression).  Here 𝜉𝜉0 denotes the error for the constant term, while 
𝜉𝜉1, 𝜉𝜉2 denote the errors of the coefficients of the regression. 

c) There is only additive error and hence outcomes of 𝜉𝜉0 are 𝜉𝜉0,𝑖𝑖 = 𝑊𝑊𝑖𝑖 −𝑚𝑚(𝑍𝑍𝑖𝑖, 0).   
 
 

 
 

 
    

Figure 1.  The Advertising Data Set (Source:  James et al 2011). 
 
Given the above regression, the decision model involves choosing the advertising 
expenditures in a manner that maximizes expected (profits – cost of advertising) as on the 
left hand panel below. 
 

Max  − 0.1𝑥𝑥1 − 0.5𝑥𝑥2 + 𝐸𝐸𝜉𝜉� [ℎ(𝑥𝑥 = 𝑧𝑧,𝑚𝑚)] 
  𝑥𝑥1 + 𝑥𝑥2 ≤ 200      
 𝑥𝑥1 −  0.5 𝑥𝑥2 ≥  0 

𝐿𝐿1 ≤ 𝑥𝑥1 ≤  𝑈𝑈1,  𝐿𝐿2 ≤  𝑥𝑥2 ≤  𝑈𝑈2 
 

where,   ℎ(𝑥𝑥 = 𝑧𝑧,𝑚𝑚) = Max 3 𝑦𝑦𝐴𝐴 +  5 𝑦𝑦𝐵𝐵                                                            
                       s. t.                   𝑦𝑦𝐴𝐴            ≤   8  

                                2 𝑦𝑦𝐵𝐵 ≤ 24 
                                3𝑦𝑦𝐴𝐴 + 2𝑦𝑦𝐵𝐵 ≤ 36                                                                           
                                   𝑦𝑦𝐴𝐴 +  𝑦𝑦𝐵𝐵 ≤ 𝑚𝑚(𝑧𝑧, 𝜉𝜉)     

                                                   𝑦𝑦𝐴𝐴,  𝑦𝑦𝐵𝐵 ≥  0                     
 

 
The right hand side of the above panel represents the profit under resource constraints (as 
in Hillier and Lieberman 2011) with a total sales constraint represented as  𝑦𝑦𝐴𝐴 +  𝑦𝑦𝐵𝐵 ≤
𝑚𝑚(𝑧𝑧, 𝜉𝜉). 
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It is important to notice that the prediction introduced above is a random variable 
derived from the regression in Figure 3. Using the randomness of errors in 𝜉𝜉 (which  
includes the  randomness of coefficients B) leads to a fully data-driven and automated 
setup which is in the spirit of SL/ML  and is sometimes referred to as Learning Enabled 
Optimization (LEO, Deng et al 2018), but more generally as PSP. 
 
In order to illustrate the range of models , which arise via the combination of learning and 
optimization, we present three alternative plausible models. The first model a) is based on 
a deterministic forecast for the case of 𝜉𝜉 = 0.  On the other hand, models  b) and c) 
involve estimated Gaussian random variables (sales).  In any event, a) is solved using 
linear programming, while b) and c)  is an SP model, solved using Stochastic 
Decomposition (SD) which is a specialized SP algorithm combining stochastic 
approximation and Benders decomposition (Higle and Sen, 1994, and Sen and Liu 2016).  
The summary of results for each of these models is shown in Table 5.  It turns out that 
Model a) is rejected by the hypothesis test because the objective function estimated using 
the training data has a predicted 95% confidence interval (CI) which has no overlap with 
the 95% validation CI shown in Table 5. This is essentially because of the overfitting 
problem of linear programming (using a deterministic prediction 𝑚𝑚(𝑥𝑥, 0)).   In the same 
Table we also report estimated optimization and generalization errors.   The former is 
obtained using a non-parametric analysis of variance, via the Kruskal-Wallis test, while 
the generalization error is based on results in Deng and Sen (2018).   Since the 
optimization error is so dominant, compared with the generalization error for models b) 
and c), one recommends c) as the model to choose. 
 

Model Model a) Model b) Model c) 
𝑥𝑥1 172.48 181.40 191.40 
𝑥𝑥2 26.52 18.60 8.6 

Predicted 95% CI 
(Training) 

$41,391 (±601) $41,492(±272) $42,045 (±465) 

Validated 95% CI $39,869 (±692) $41,865 (±302) $42, 274 (±493) 
Optimization Error $2405 $409 𝑓𝑓∗ = 42,274 

Generalization Error N/A 19.554 21.326 
Table 5.  Model Comparisons for LEO-Wyndor Example (Deng et al 2018) 

 
Statistical Optimality: 
 
One of the challenges with PSP models is that it is specified by using statistical inference 
on the coefficients of a regression involving {𝑍𝑍,𝑊𝑊}, leading to random variables which 
are continuous (Gaussian).  For the LEO-Wyndor example presented in Figure 1 and 
Table 2, we have 𝑝𝑝 = 𝑛𝑛𝑧𝑧 = 2, and 𝑛𝑛𝑤𝑤 = 1.  As a result, the PSP model has 3 Gaussian 
random variables, one for each regression coefficient and one for the bias term ((𝑛𝑛𝑧𝑧 +
1) × 𝑛𝑛𝑤𝑤 = 3).   Because the number of random variables in PSP grows as O( 𝑛𝑛𝑧𝑧 × 𝑛𝑛𝑤𝑤),  
these models grow in complexity more rapidly than a standard SP.  Of course, the latter 
does not use predictive capabilities because 𝑛𝑛𝑧𝑧 = 0).  In other words, there is a 
computational cost to pay to include predictability: the increased number of random 
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variables is akin to lifting the problem into higher dimensional, albeit Gaussian, random 
variables.   One way to reduce the increased complexity of the new class of models is to 
seek approximately optimal solutions.   Moreover, our work is also motivated by the 
potential for automated scenario generation, which is typically not included as part of the 
complexity of standard SP.  Because there is no free lunch, we expect an increase in 
overall complexity, and as a result, we propose to lower the burden of seeking decisions 
via the concept of “statistically” optimal solutions.   The idea here is to reflect the 
aspirations of a modeler who is willing to accept decisions which are close to optimum 
(i.e., 𝛿𝛿-optimum, 𝛿𝛿 > 0) with a high degree of confidence (say 95%).  Let 𝒫𝒫𝑞𝑞 denote the 
Gaussian distribution of the random variables (ξ�) for model 𝑞𝑞. Then we will seek a pair 
(𝑥𝑥𝑞𝑞 , 𝛾𝛾𝑞𝑞) such that for a pre-specified accuracy tolerance 𝛿𝛿 > 0, we have 

𝛾𝛾𝑞𝑞 ≔  𝒫𝒫𝑞𝑞(𝒙𝒙𝑞𝑞 ∈ 𝛿𝛿 − argmin �𝑓𝑓𝑞𝑞(𝒙𝒙)� 𝒙𝒙 ∈ 𝑋𝑋 })  (5) 
with 𝛾𝛾𝑞𝑞 ≥ 𝛾𝛾 = (0.95, say).  We refer to the requirement in (5) as Statistical Optimality.  
As the reader might notice, this condition states our aspirations for a PSP model in such a 
manner that we expect to report the following critical quantities: 𝛿𝛿, 𝛾𝛾𝑞𝑞 , and 𝒙𝒙𝑞𝑞. The 
precise manner of estimating such a probability consists of combining the notion of a 
compromise decision (Sen and Liu 2016) with (5), and the mathematical details appear in 
Deng and Sen (2018).  When (4) is a convex optimization model (e.g. when the 
regression has a multiple linear regression structure), Deng and Sen (2018) shows that 
one can use sampling algorithms, with replications (perhaps in parallel), to identify 
solutions which satisfy (5) under certain assumptions (e.g., convexity, Lipschitz 
continuity, and knowledge of some parameters) identified in the Theorem below. In the 
following theorem we use 𝐹𝐹 as in (1) and 𝜔𝜔 ≡ 𝜉𝜉 . 
 
Theorem.  Let 𝐿𝐿 denote the expectation of the family of random Lipschitz functions 
𝐹𝐹(𝑥𝑥, 𝜉𝜉), and 𝐷𝐷 the diameter of the ball containing the set 𝑋𝑋. Assume that an instance of 
the type stated in (4) is solved by i.i.d. sampling of 𝐾𝐾𝜈𝜈 points from the Gaussian 
distributions provided by the regression. Assume 𝑁𝑁 = min

ν
𝐾𝐾𝜈𝜈  and that sampling-based 

algorithms are independently replicated 𝑀𝑀 times, using a proximal-point (regularized) 
algorithm using proximal parameters {𝜌𝜌𝜈𝜈}.  Assume that for each replication, the solution 
algorithm produces an approximation 𝑓𝑓𝜈𝜈 such that 𝑓𝑓𝜈𝜈(⋅) ≤ (𝐾𝐾𝜈𝜈)−1(∑ 𝐹𝐹(⋅, 𝜉𝜉𝑡𝑡)𝑡𝑡 ), finds an 
𝜀𝜀-optimal solution for each proximal replication 𝜈𝜈, denoted 𝑥𝑥𝜈𝜈 , where 𝜀𝜀 < 𝛿𝛿𝑢𝑢 (assumed 
given). Let 𝑥𝑥𝑐𝑐 denote  𝛿𝛿 − argmin{𝐹𝐹�𝑀𝑀(𝑥𝑥) ≔ 1

𝑀𝑀
∑ 𝑓𝑓𝜈𝜈(𝑥𝑥)𝜈𝜈  }, where 𝛿𝛿 < 𝛿𝛿𝑢𝑢.   Moreover 

define �̅�𝑥 = 1
𝑀𝑀
∑ 𝑥𝑥𝜈𝜈𝜈𝜈 .  If 𝛿𝛿 = �̅�𝜌‖𝑥𝑥𝑐𝑐 − �̅�𝑥‖2, where �̅�𝜌 is the average among the terminal 

values of 𝜌𝜌𝜈𝜈 .  Then,  

𝒫𝒫 �𝑥𝑥𝑐𝑐 ∈ 𝑆𝑆(𝛿𝛿𝑢𝑢)� ≥ 1 − exp�−�
𝑁𝑁𝑀𝑀(𝛿𝛿𝑢𝑢 − 𝛿𝛿)2

32𝐿𝐿2𝐷𝐷2 � + 𝑛𝑛 ln �
8𝐿𝐿𝐷𝐷
𝛿𝛿𝑢𝑢 − 𝛿𝛿

 �� 

where 𝑆𝑆(𝛿𝛿𝑢𝑢)  is the set of solutions {𝑥𝑥 | 𝑓𝑓(𝑥𝑥) ≤ 𝑓𝑓∗ + 𝛿𝛿𝑢𝑢}, where 𝑓𝑓∗ is the optimal value 
of (4), under the assumptions of this theorem.  ∎    
 
Thus although the PSP setting is more demanding than standard SP, computational 
algorithms such as stochastic proximal point methods (e.g., Stochastic Decomposition) 
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can be used to obtain solutions with about the same level of accuracy in case of convex 
PSP.  
 
Dissemination  
 
Stochastic Programming Software (Freely Distributed) 
 

• Available at  www.neos-server.org/neos/solvers/slp:sd/SMPS.html 
• Available through Github at: https://github.com/USC3DLAB 
• A repository of experiments is available at https://core.isrd.isi.edu 

 
Dissertations (Four Completed During the Course of this Project; Two Ongoing) 
[1] Y. Liu (Ph.D) “Statistical Aspects of Stochastic Decomposition,”  At 85.41, a Data 

Science subsidiary of Kroger. 
[2] S. Atakan (Ph.D) “Advances in Stochastic Mixed-Integer Programming with 

Applications in Power Systems Planning,” May 2018.  OR Analyst at  Amazon 
[3] Y. Deng (Ph.D.) “Learning Enabled Optimization and Applications”, joining Google 

in December, 2018. 
[4] J. Liu (Ph.D.) “Stochastic Programming for Prescriptive and Predictive Analytics” 

June 2019 
[5] S. Diao (Current Ph.D. Student) “Non-parametric Learning Enabled Optimization and 

Applications”,(ongoing) 
[6] J. Xu (Current Ph.D. Student)  “Deep Learning with Stochastic Optimization” 

(ongoing) 
 
Major Presentations Only (2016/2017/2018/2019) 
[1] (Plenary Presentation). “Big Data and Big Decisions” INFORMS Annual Conference, 

Nashville, TN, Nov. 2016. 
[2] (Tutorial Presentation) “Tutorial on Stochastic Mixed-Integer Programming,” 
INFORMS Annual Conference, Houston, TN, Nov. 2017. 
[3] (Distinguished Lecture) “Learning Enabled Optimization,”  ISEN Department, Texas 
A&M University, Oct. 2017 
[4] Lecture at German Mathematics Institute, Oberwolfach, August, 2018 
[5] “Learning Enabled Optimization” Sabbatical Lectures at George Washington Univ. 
University of California-Berkeley, Johns Hopkins, Virginia Tech., Virginia 
Commonwealth University, George Mason University, Norwegian University of 
Economics, September-October 2018.  
[6] (Tutorial Presentation) “Tutorial on Learning Enabled Optimization,” INFORMS 
Annual Conference, Phoenix, TN, Nov. 2018. 
[7] “Stochastic Decomposition Revival,” Sabbatical Lectures Univ. of Arizona, Univ. of 
Maryland, Univ. of California-Davis , Sept. 2018, March 2019. 
[8] (Inaugural Lecture, Operations Research Society Conference), “Learning Enabled 
Optimization,” December, 2018 

http://www.neos-server.org/neos/solvers/slp:sd/SMPS.html
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vol. 15, pp. 501-540, 2018. 
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