
SEAN ROBSON, BONNIE L. TRIEZENBERG, SAMANTHA E. DINICOLA,
LINDSEY POLLEY, JOHN DAVIS, MARIA C. LYTELL

Software Acquisition
Workforce Initiative
for the Department
of Defense
Initial Competency Development and Preparation
for Validation

C O R P O R A T I O N

https://www.rand.org/pubs/research_reports/RR3145.html
https://www.rand.org

Limited Print and Electronic Distribution Rights

This document and trademark(s) contained herein are protected by law. This representation
of RAND intellectual property is provided for noncommercial use only. Unauthorized
posting of this publication online is prohibited. Permission is given to duplicate this
document for personal use only, as long as it is unaltered and complete. Permission is
required from RAND to reproduce, or reuse in another form, any of its research documents
for commercial use. For information on reprint and linking permissions, please visit
www.rand.org/pubs/permissions.

The RAND Corporation is a research organization that develops solutions to public
policy challenges to help make communities throughout the world safer and more secure,
healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the
public interest.

RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors.

Support RAND
Make a tax-deductible charitable contribution at

www.rand.org/giving/contribute

www.rand.org

Library of Congress Cataloging-in-Publication Data is available for this publication.

ISBN: 978-1-9774-0384-1

For more information on this publication, visit www.rand.org/t/RR3145

Published by the RAND Corporation, Santa Monica, Calif.

© Copyright 2020 RAND Corporation

R® is a registered trademark.

Cover: monsiti/Getty Images; PeopleImages/Getty Images

http://www.rand.org/t/RR3145
http://www.rand.org/pubs/permissions
http://www.rand.org/giving/contribute
http://www.rand.org

iii

Preface

The Department of Defense (DoD) has experienced persistent chal-
lenges with software development across different kinds of acquisition
programs. These challenges, which include schedule delays and cost
overruns, can be attributed, in part, to an overreliance on outdated soft-
ware development practices and methodologies. This report, requested
in July 2017, by the Deputy Assistant Secretary of Defense for Systems
Engineering, Major Program Support,1 responds to these concerns by
defining modern software competencies for the software acquisition
workforce. The report should interest policymakers responsible for
hiring, training, and managing software acquisition professionals.

This research was conducted within the Forces and Resources Policy
Center and the Acquisition and Technology Policy Center of the RAND
National Defense Research Institute, a federally funded research and
development center sponsored by the Office of the Secretary of Defense,
the Joint Staff, the Unified Combatant Commands, the Navy, the Marine
Corps, the defense agencies, and the defense Intelligence Community.

For more information on the Forces and Resources Policy Center,
see www.rand.org/nsrd/ndri/centers/frp; and for information on the
Acquisition and Technology Policy Center, see www.rand.org/nsrd/
ndri/centers/atp or contact the directors (contact information is pro-
vided on the center webpages).

1 As of February 1, 2018, Section 901 of National Defense Authorization Act for Fiscal
Year 2017 abolished the roles of the Under Secretary of Defense for Acquisition, Technology,
and Logistics (AT&L) and subsidiary Assistant Secretaries. As a result, the project sponsor
was restructured under the newly established Under Secretary of Defense for Research and
Engineering.

http://www.rand.org/nsrd/ndri/centers/frp
http://www.rand.org/nsrd/ndri/centers/atp
http://www.rand.org/nsrd/ndri/centers/atp

v

Contents

Preface . iii
Figures and Tables . ix
Summary . xi
Acknowledgments . xxi
Abbreviations . xxiii

CHAPTER ONE

Introduction . 1
Objectives . 3
Software Acquisition Workforce . 4
Evolving Organizational Structure and Guidance for DoD

Acquisition . 8
Organization of This Report . 10

CHAPTER TWO

Methodology for Developing Competencies . 11
Department of Defense Competency Definition and Process 13
Competency Modeling Approaches . 13

CHAPTER THREE

Review of Existing Competency Models . 19
Department of Defense Models . 19
Commercial Models . 21
Other Department of Defense Competency Efforts . 23
Similarities and Differences Among Competency Models 24
Other Occupational Sources Reviewed . 25

vi Software Acquisition Workforce Initiative for the Department of Defense

CHAPTER FOUR

Commercial Industry Perspective . 27
Software Industry Trends . 27
Industry Subject Matter Expert Perspectives . 29
Review of Position Announcements and Course Descriptions 33

CHAPTER FIVE

From Initial to Revised Competency Model . 39
Initial Competency Model . 39
Revising the Competency Model Through Stakeholder Feedback 41
The RAND-Developed Software Acquisition Competency Model 48

CHAPTER SIX

A Review of Software Training and Education . 51
Software Courses . 52
Mapping Competencies to Software Courses . 53

CHAPTER SEVEN

Identifying, Tracking, and Managing a Software Acquisition
Workforce . 63

Current Systems for Tracking and Managing a Workforce 64
Options to Track and Manage a Software Acquisition Workforce. 70

CHAPTER EIGHT

Recommendations . 77
Recommendation 1: Identify Who Is in the Software Acquisition

Workforce . 77
Recommendation 2: Validate the Software Acquisition

Competencies . 79
Conclusion . 82

APPENDIXES

A. Acquisition Career Fields . 83
B. Trends in Modern Software Development Trends 87
C. Tracing Initial Competencies to Other Competency Models 119
D. Notional Example of Software Careers . 129

Contents vii

E. Existing Competency Models . 135
F. RAND-Developed Software Acquisition Competencies 141
G. List of Courses Reviewed . 167
H. Software Curriculum–Competency Mapping . 177

References . 181

ix

Figures and Tables

Figures
 2.1. Five-Tiered Competency Framework . 14
 2.2. RAND Approach to Competency Model Development 17
 4.1. Word Usage in Army and Industry Software Job Postings 34
 4.2. Software Life-Cycle Management Terms in Army and

Industry Job Postings . 35
 4.3. Commonly Used Words in Software Acquisition Course

Descriptions . 37
 5.1. Guiding Perspectives for Initial Competency

Development . 40
 7.1. Strategic Workforce Planning Process Steps . 63
 7.2. Office of Personnel Management Classification Structure 65
 B.1. Waterfall Model Activity Flow Compared to Joint

Capabilities Integration and Development System/
Defense Acquisition System . 90

 B.2. Agile Model Process Flow Compared to Joint Capabilities
Integration and Development System/Defense Acquisition
System . 97

 B.3. Practices Used and Found Effective by Five Agencies 107
 B.4. Different Goals, Different Values . 108

Tables
 S.1. Final RAND Draft Software Acquisition Competencies

and Topics . xv
 1.1. Acquisition Career Fields in Current Study . 6
 5.1. Number and Background of Workshop Participants 43
 5.2. Subject Matter Expert Area of Expertise . 43

x Software Acquisition Workforce Initiative for the Department of Defense

 5.3. Expanded Set of 46 Software Acquisition Competencies 44
 5.4. Number and Representation of Subject Matter Experts in

Panel Workshops . 47
 5.5. Revised Set of Software Acquisition Competencies and

Topics . 49
 6.1. Other Department of Defense Institutions Offering

Software Training and Education . 52
 6.2. Top U.S. News and World Report Academic Software

Programs . 54
 6.3. Department of Defense, Civilian and Other Defense

Acquisition University Courses That Can Fill Defense
Acquisition University’s Potential Gaps . 57

 7.1. Possible Occupational Series with Software Professionals 66
 7.2. Summary of Workforce Tracking Options . 71
 A.1. Acquisition Career Fields . 83
 C.1. Mapping of Initial Draft Competencies to Five Existing

Competency Models. 120
 D.1. Example of Possible Software Careers and Corresponding

Competencies . 130
 E.1. Competency Models Reviewed . 136
 G.1. Courses Provided by the Defense Acquisition University 168
 G.2. Courses Provided by Department of Defense Institutions 170
 G.3. Courses Provided by Civilian Institutions . 172
 H.1. Competencies Covered by Defense Acquisition University

Information Systems Acquisition Courses and Other
Department of Defense and Civilian Courses 178

xi

Summary

The Department of Defense (DoD) has experienced persistent chal-
lenges with software development across different kinds of acquisi-
tion programs. These challenges, which include schedule delays and
cost overruns, can be attributed, in part, to an overreliance on out-
dated software development practices and methodologies—a problem
highlighted by both the Defense Science Board (DSB) and Defense
Innovation Board (DIB) in 2018 reviews of software acquisition prac-
tices. Given these findings and the importance of software develop-
ment in defense acquisition timelines and spending, the capability of
the defense acquisition workforce to understand and address software
needs for defense acquisition programs is critical. However, DoD faces
significant challenges in ensuring the workforce has this capability.

One strategy for assessing this capability is to focus on workforce
proficiencies in relevant competencies. Competencies, which consist
of an “observable, measurable pattern of knowledge, skills, abilities,
behaviors, and other characteristics (KSAOs) needed to perform work
roles or occupational functions successfully,”2 can support a wide range
of talent management initiatives including recruitment and selection,
training and development, career development, and proficiency gap
assessments. A collection of competencies for a specific career field or
functional area is generally referred to as a competency model.

2 The Defense Civilian Personnel Advisory Service (DCPAS) adapted this definition from
DoD Instruction 1400.25, “DoD Civilian Personnel Management System: Volume 250,
Civilian Strategic Human Capital Planning (SHCP),” Washington, D.C.: Under Secretary
of Defense for Personnel and Readiness, November 18, 2008, p. 8.

xii Software Acquisition Workforce Initiative for the Department of Defense

Competency models have been developed to support workforce
management of DoD across acquisition career fields. These compe-
tency models are also updated on a regular basis. Specifically, func-
tional leaders (FL) oversee Functional Integrated Product Teams
(FIPTs), which review competencies and develop plans to addresses
potential training gaps. Despite these existing processes, there is nei-
ther a dedicated FL for software nor a corresponding software career
field in DoD.3 Consequently, efforts to update software competencies
are limited to processes used by FLs and FIPTs representing existing
acquisition career fields. A lack of coordination across career fields to
determine how software competencies are defined or managed may
contribute, in part, to confusion and ineffective management of soft-
ware functions. Considering these challenges, DoD asked RAND to
help improve the ability of DoD’s software acquisition workforce to
rapidly and reliably deliver complex software-dependent capabilities
through an enhanced understanding of necessary technical competen-
cies and improvements to education and training and workforce man-
agement and assessment.

This report addresses three major objectives to support DoD
goals to improve software acquisition. First, we discuss the develop-
ment of a competency model that emphasizes modern software prac-
tices and technical competencies. Second, we review training and edu-
cation courses offered by the Defense Acquisition University (DAU) to
identify potential gaps in the current training of software acquisition
professionals. Third, we present several options for tracking and man-
aging a software acquisition workforce.

Because software is not an official career field, it is important
to define a software acquisition professional. In developing a working
definition for this study, we revised the DAU definition to arrive at the
following:

Software acquisition personnel are military, civilian, and contrac-
tor personnel engaged in the definition, development, deploy-

3 However, as noted by the Executive Secretary of the IT FIPT, the IT career field was
intended to cover Software Acquisition Management. In fact, the IT certification course
track was initially named Software Acquisition Management.

Summary xiii

ment, operation, and sustainment of software components and
software reliant systems or ecosystems.

Although some of these software functions may be performed
outside of the acquisition community, acquisition professionals may
need to be at least familiar with these functions to effectively acquire
software. It is also important to note that this definition is broader
than the scope of the current study in that it includes software acquisi-
tion personnel coded in any career field, while our study is limited to
those in three primary acquisition career fields, selected in coordina-
tion with the sponsor: (1) information technology (IT), (2) engineering
(ENG), and (3) program management (PM).

A Software Acquisition Competency Model

But building competency models can be a complex undertaking. When
used to make employment decisions, DoD and the federal government
must ensure that competencies are legally defensible. Thus, the com-
petency modeling approaches followed by DoD, the Office of Person-
nel Management (OPM), and this project are based on basic principles
that adhere to widely accepted professional and scientific guidelines.

RAND’s approach to developing its software acquisition work-
force competency model included the following steps:

• Review existing competency models used by DoD and commercial
industry. The models differed greatly in the naming structures
used and different levels of specificity. But sufficient similarities
helped us identify relevant competencies for the software acquisi-
tion workforce. For example, competencies such as data manage-
ment, software development, and sustainment appeared in mul-
tiple models and were included in our initial competency model.
This was a valuable early step in determining which competencies
were most likely to be relevant and critical going forward in the
development process.

• Review commercial industry trends and modern software practices.
A review of relevant literature and discussions with subject matter

xiv Software Acquisition Workforce Initiative for the Department of Defense

experts (SMEs) provided insights used in the model’s develop-
ment. Three themes emerged. First, strong technical skills were
considered important factors in fulfilling software engineering
roles. Second, the ability to work collaboratively and the ability
to participate in rapid prototyping emerged as two very impor-
tant meta-skills in the domain of software engineering. Third,
previous experience was among the strongest indicators of a can-
didate’s potential success in a software engineering role.

• Draft initial competency model. Guided by the review of models
and modern software practices in commercial industry, RAND
researchers with an accumulated 70 years of experience in soft-
ware management, development, and acquisition identified 13
initial competencies.

• Gather stakeholder feedback and revise competencies. Following
discussions with sponsor office SMEs, the initial RAND model
was substantially revised and expanded to increase the depth and
specificity of competencies. This revised model was then updated
in several iterations based on inputs gathered from DoD SMEs in
panel workshops. A key component of this phase was to ensure
that the titles and definitions were meaningful, facilitated a shared
understanding, and minimized ambiguity.

• Review options for further validation. This validation phase is used
to determine which competencies are needed across the workforce
and which are specific to particular subgroups (e.g., software sub-
specialties). Because the workforce has not yet been defined, val-
idating the competency model at this time is not possible and
therefore was not completed as part of this study. Once software
acquisition professionals have been identified, however, DoD can
administer a competency assessment to determine the relative
importance of each competency.

The conclusion of the feedback efforts resulted in a final set of 48
competencies; detailed descriptions and additional context and related
definitions are presented in Appendix F. Table S.1 contains the titles
in the revised model. This model should not be considered final until
it has been validated, which, as noted, is a task that DoD will need to
complete.

Summary xv

Table S.1
Final RAND Draft Software Acquisition Competencies and Topics

Problem Identification

1. Capabilities elicitation

2. Business case development

Solution Identification

3. Strategic risk/reward analysis

4. Cloud computing

5. Software ecosystems

6. Model-based engineering

Development Planning

7. Development tempo

8. Release planning

9. Software development planning

10. Planning for continuous delivery

11. Planning for continuous
deployment

12. System engineering planning

13. Software metrics

14. Configuration and version control

Transition and Sustainment Planning

15. Software documentation

16. Contracting for software
development

17. Data and proprietary rights
management

System Architecture Design

18. Architectural design approach

19. Software orchestration and
 choreography patterns

20. Software deployment patterns

21. Artificial intelligence and machine-
learning applications

22. Augmented and virtual reality
applications

23. Embedded systems

24. Balancing quality attributes

25. Emerging technologies

Modeling Functional Capabilities
and Quality Attributes

26. Use/abuse case modeling

27. Validation of performance
requirements

28. Validation of sustainability
requirements

29. High fidelity system modeling

Building Secure, Safe and
High-Availability Systems

30. Software assurance

31. Cybersecurity

32. Safety critical systems

33. High-availability systems

Software Construction Management

34. Life-cycle management

35. Detailed backlog management

36. Release management

37. Change management

38. Automated test and continuous
integration

Software Program Management

39. Effort estimation

40. Product roadmap and schedule
management

41. Cost management

42. Legal policy and regulatory
environment management

43. Risk, issues, and opportunity
management

Mission Assurance

44. Quality assurance

45. Root cause, corrective action

46. System integration and testing

Professional Competencies

47. Strategic planning and change
management

48. Innovation and entrepreneurship

NOTE: The hierarchical structure of topics to competencies is not fixed and can be
reorganized to meet a variety of organizational objectives.

xvi Software Acquisition Workforce Initiative for the Department of Defense

A Review of Software Training and Education

In addition to determining which competencies are needed for a soft-
ware acquisition career, it is important to determine what training and
education resources exist and may still be needed for developing these
competencies. To achieve this, RAND reviewed 394 courses related to
software offered by DAU along with other DoD and civilian institu-
tions and found potential differences in the curriculum offered. We
found that coursework provided by DAU emphasizes management and
DoD-specific acquisition requirements. This finding reflects points
raised by DAU SMEs that DAU is best positioned to provide train-
ing and education on DoD-specific issues related to acquisition, not
to train personnel how to code. In contrast, courses offered by civil-
ian institutions, in general, focused more on design development and
specification, programming, and software engineering.

The research team mapped DAU’s courses in the Information
Systems Acquisition (ISA) curriculum to the final draft set of com-
petencies identified in the RAND-developed software acquisition
competency model. We found that most competencies were covered
to varying degrees but that 14 potentially had either minimal or no
representation.

Several options exist to address potential gaps in the training and
education of software acquisition professionals. These options may
include developing new courses or updating course material, leveraging
other DoD institutions and courses, and expanding partnerships with
commercial education providers (e.g., universities) and massive open
online courses (MOOCs) such as Coursera and edX. Formal courses
are most effective when training needs to be provided to a large group of
people and the concepts are transferable across services, organizations,
and programs. Informal and on-the-job training can also be effective
when training needs are more localized to specific programs or a more
limited number of personnel.

However, DoD should first determine the relative importance
of each competency and identify competency gaps prior to investing
further in training and education resources to address the potential
gaps identified. Conducting a competency gaps assessment helps to

Summary xvii

determine if software acquisition professionals have already obtained
the necessary KSAOs prior to joining DoD or if additional training
and education are needed. Once gaps have been confirmed, DoD can
decide among the different training and education options. The best
option(s) will depend, in part, on the extent and pervasiveness of the
gaps identified across DoD.

Identifying, Tracking, and Managing a Software
Acquisition Workforce

Currently, there is no established system for identifying or tracking
who performs software functions in DoD. That is, there is no accepted
government job title or occupational series for software professionals.
Until the software acquisition workforce is identified, it is not possible
to take advantage of the competency model or the insights gained from
this study on potential gaps in training provided by DAU.

Thus, the research team explored systems currently used by DoD
and the federal government to track personnel and identified options
for DoD to track and manage a software acquisition workforce. Each
option has pluses and minuses and requires different levels of effort and
resources. In some cases, for example, options can only provide a snap-
shot of the workforce suitable for short-term solutions, whereas other
options may require significant long-term planning, coordination, and
approval from external agencies. The six options are

• Perform a data call. This is the most direct strategy to identify
personnel who perform software functions throughout DoD. It
provides a snapshot of software workforce positions and major
duties. This is a short-term solution and may require incentives to
encourage response to the data call. It may also require DoD to
take steps to verify the accuracy of self-identifications.

• Flag positions/billets. This provides information to count the
number and type of software acquisition positions. However,
positions may not provide accurate information about individ-
ual qualifications or proficiencies. Waivers may also need to be

xviii Software Acquisition Workforce Initiative for the Department of Defense

tracked to determine positions that are filled by unqualified soft-
ware professionals. Position duties may not reflect actual work
performed.

• Assign codes to identify skills, experiences, and education. This pro-
vides information about workforce readiness and capabilities and
can be useful in uncovering potential skill gaps. Verifying skills
and quality of experiences is a resource-intensive effort.

• Create unofficial job titles. Tailored job titles for acquisition pro-
fessionals facilitate tracking and recruiting. But this option cre-
ates a limited structure for workforce planning and management
(such as compensation and training).

• Define new acquisition career field(s). This provides software-
specific career field(s) for acquisition-coded positions. It reinforces
communications about the importance of software and provides
a focal point for talent management efforts. DoD leadership
can determine the level of training and education required for
those assigned in these career fields. But such an approach would
exclude software professionals outside the officially designated
acquisition workforce, who may play other important roles such
as software sustainment.

• Develop a new occupational series. This entails a government-wide
implementation of a software workforce strategic plan. It requires
a long-term commitment and considerable data.

Recommendations

There are two fundamental recommendations that DoD should imme-
diately follow to address potential concerns with the software acquisi-
tion workforce.

1. Identify who is in the software acquisition workforce. With-
out an understanding of who is in the software acquisition
workforce, DoD can neither validate the competency model nor
make use of it to identify competency gaps in the workforce.
A number of options are available for tracking and managing

Summary xix

a software acquisition workforce, each of which requires dif-
ferent levels of resources and offers different outcomes. Taking
these considerations into account, we recommend conducting a
data call as the first step to identify personnel who perform software
functions. Further we recommend limiting the data call initially
to personnel within the acquisition community to promote rapid
implementation of competencies across acquisition career fields.
Other options either require greater amount of resources and
coordination or do not directly address who performs software
functions. To the extent that software professionals are dis-
tributed across multiple career fields, an effective data call will
require considerable coordination and support from DoD lead-
ers (e.g., FLs, Service Directors of Acquisition Career Manage-
ment, PMs). DoD could use the data call results to determine
the need to refine estimates using other strategies or expand
tracking efforts beyond the acquisition community. Finally, the
data call results should be used to guide discussions on the need
and level of effort required for more formal tracking mecha-
nisms (e.g., do the data indicate a need to develop a software
subspecialty or career field?).

2. Validate the software acquisition competencies. After the
software acquisition workforce has been identified, the com-
petencies should be validated. At a minimum, DoD needs to
collect information from the workforce to evaluate the relative
importance of each competency. This step will require coordi-
nation with the Defense Civilian Personnel Advisory Service
(DCPAS) to determine the most appropriate way forward given
limitations with existing competency management tools used
by DoD. As with identifying the workforce, validation can be
approached in a number of ways.
a. We recommend either reprogramming the existing competency

management tools used by DoD or selecting another software
tool. Most importantly, we recommend limiting the number
of questions to focus on the relative importance of each compe-
tency. Doing so will help to minimize survey fatigue. Future
analyses, including assessments of proficiency, could then

xx Software Acquisition Workforce Initiative for the Department of Defense

focus on a more limited set of the most critical competen-
cies relevant to the target software professional. If exist-
ing tools cannot be reprogrammed, the competencies could
be administered in smaller chunks using appropriate sam-
pling techniques so that each respondent “sees” only a small
number of competencies.

b. We further recommend consulting a statistician to ensure that
the sample of respondents are representative of important per-
spectives (e.g., service branch, years of experience, acquisition
category). A well-designed sampling plan is needed so that
appropriate statistical analyses can be conducted to address
critical questions about the workforce.

c. Finally, we recommend planning future validation studies
that establish links between performance on competencies and
outcome measures. These types of criterion-related validation
studies require considerable planning to develop and col-
lect the appropriate performance measures, and they should
therefore be integrated into a long-term strategy for evaluat-
ing and managing the software acquisition workforce.

Conclusion

The work described in this report should be viewed as first steps in a
long-term strategy to define and manage a software acquisition work-
force. Further analysis is required to validate the competencies and to
determine who is performing software functions. To gain complete
traction on this problem, DoD needs to appoint a senior leader who
can implement these recommendations across the services. Without a
champion, any improvements will be slow and sporadic.

xxi

Acknowledgments

We gratefully acknowledge the support of our project director, Sean
Brady, for providing the vision and overall direction for this project.
We also thank Jerry Tarasek and Tom Hickok, who served as our proj-
ect liaisons to establish connections with the Functional Integrated
Product Teams, coordinate meetings, and provide feedback on project
tasks.

We thank all of the software subject matter experts who reviewed
and provided feedback on the software competencies and the many
individuals from the Information Technology, Engineering, and Pro-
gram Management FIPTs who helped to connect us to SMEs.

We appreciate the support of Dave Pearson for facilitating the
review of DAU curriculum. We thank the course managers for taking
the time to review and map the competencies to the courses they
manage.

We would like to acknowledge Graham Andrews for his soft-
ware expertise and assistance in evaluating educational courses. We
thank Clara Aranibar for helping to coordinate and schedule panel
workshops. We are grateful to Barbara Bicksler for her support in orga-
nizing, editing, and summarizing project activities and key findings.
Finally, we thank our reviewers, Bill Shelton, Brad Wilson, and James
Belanich, for their feedback and recommendations, which helped
improve the overall quality of this report.

xxiii

Abbreviations

ACAT acquisition category
ACM Association for Computing Machinery
AFIT Air Force Institute of Technology
ASI Additional Skill Identifier
AT&L acquisition, technology, and logistics
ATM automatic transaction machine
AWF acquisition workforce
AWQI Acquisition Workforce Qualification Initiative
BLS Bureau of Labor Statistics
CMMI Capability Maturity Model-Integrated
COTS commercial off-the-shelf
DACM Director of Acquisition Career Management
DAU Defense Acquisition University
DAS Defense Acquisition System
DCAT Defense Competency Assessment Tool
DCPAS Defense Civilian Personnel Advisory Service
DIB Defense Innovation Board
DISA Defense Information Systems Agency
DMDC Defense Manpower Data Center
DoD Department of Defense
DoDI DoD Instruction

xxiv Software Acquisition Workforce Initiative for the Department of Defense

DSB Defense Science Board
EA enterprise architecture
EDP electronic data processing
ENG engineering
FE facilities engineering
FIPT Functional Integrated Product Team
FL functional leader
GAO Government Accountability Office
GOTS government off-the-shelf
GS General Schedule
HCI Human Capital Initiative
IaaS Infrastructure as a Service
IEEE Institute of Electrical and Electronics Engineers
IoT internet of things
IOT&E initial operating test and evaluation
IPT integrated product team
ISA Information Systems Acquisition
IT information technology
JCIDS Joint Capabilities Integration and Development

System
KPP key performance parameter
KSAOs knowledge, skills, abilities, and other characteristics
MOOC massive open online course
NDU National Defense University
NPS Naval Postgraduate School
OPM Office of Personnel Management
OTA other transactional authority
PaaS Platform as a Service
PCS Position Classification Standards
PM Program Management/Manager

Abbreviations xxv

PWA progressive web app
QA quality assurance
QE quality engineering
RFP request for proposal
RR risk reduction
SaaS Software as a Service
SATEWG Software Acquisition Training and Education

Working Group
SDLC software development life cycle
SEE skills, experiences, and education
SEI Special Experience Identifier
SHRM Society for Human Resource Management
SME subject matter expert
SQI Special Qualification Identifier
SwE software engineering
SWEBOK Software Engineering Body of Knowledge
SWECOM Software Engineering Competency Model
USD (A&S) Under Secretary of Defense for Acquisition and

Sustainment

1

CHAPTER ONE

Introduction

The Department of Defense’s (DoD’s) multimillion-dollar acquisitions
programs have been under scrutiny by Congress for schedule delays
and cost overruns.1 The Government Accountability Office (GAO)
has included DoD’s weapon systems acquisitions and DoD business
systems modernization as high-risk areas for many years. In 2015, due
in part to high-profile DoD failures such as Expeditionary Combat
Support Systems, GAO added information technology (IT) acquisition
and operations to the high-risk list for the federal government in 2017.2

In particular, DoD has experienced persistent challenges with soft-
ware development across different kinds of acquisition programs. For
example, GAO recently reported that the four major software-intensive
space programs it reviewed “are estimated to cost billions of dollars,
have experienced overruns of up to three times originally estimated
cost, and have been in development for periods ranging from 5 to over
20 years.”3 These challenges can be attributed, in part, to an overreli-
ance on outdated software development practices and methodologies.

In a recent review of software acquisition practices in DoD, the
Defense Science Board (DSB) emphasized several differences between

1 Congressional Research Service, “The Department of Defense Acquisition Workforce:
Background, Analysis, and Questions for Congress,” July 29, 2016.
2 See U.S. Government Accountability Office (GAO), High-Risk Series: Progress on Many
High-Risk Areas, While Substantial Efforts Needed on Others, GAO-17-317, February 2017.
3 GAO, “DOD Space Acquisitions: Including Users Early and Often in Software Develop-
ment Could Benefit Programs,” GAO-19-136, March 18, 2019.

2 Software Acquisition Workforce Initiative for the Department of Defense

DoD and commercial industry. Notably, “Software development in
the commercial world has undergone significant change in the last 15
years, while development of software for defense systems has contin-
ued to use techniques developed in the 1970s through the 1990s.”4
The Defense Innovation Board (DIB) shared a similar conclusion in
opening its draft report of Ten Commandments of Software: “The latest
industry best practices for developing, fielding, and sustaining soft-
ware applications and information technology systems are substantially
outpacing the US government’s . . . methods.”5

Given these findings and the importance of software develop-
ment in defense acquisition timelines and spending, the capability of
the defense acquisition workforce (AWF) to understand and address
software needs for defense acquisition programs is critical. One strat-
egy for assessing this capability is to assess workforce proficiencies in
relevant competencies. Competencies, which consist of an “observable,
measurable pattern of knowledge, skills, abilities, behaviors, and other
characteristics (KSAOs) needed to perform work roles or occupational
functions successfully,”6 can support a wide range of talent manage-
ment initiatives, including recruitment and selection, training and
development, career development, and proficiency gap assessments. A
collection of competencies for a specific career field or functional area
is generally referred to as a competency model.

Competency models have been developed to support workforce
management of DoD across acquisition career fields. These compe-
tency models are also updated on a regular basis. Specifically, func-
tional leaders (FLs) oversee Functional Integrated Product Teams
(FIPTs), which review competencies and develop plans to addresses
potential training gaps. Despite these existing processes, there is nei-
ther a dedicated FL for software nor a corresponding software career

4 Defense Science Board, Design and Acquisition of Software for Defense Systems, February
14, 2018, p. 1.
5 Defense Innovation Board (DIB), Ten Commandments of Software, Version 0.14, last
modified April 15, 2018, p. 2.
6 DCPAS adapted this definition from DoDI 1400.25, 2008, p. 8.

Introduction 3

field in DoD.7 Consequently, efforts to update software competencies
are limited to processes used by FLs and FIPTs representing existing
acquisition career fields. A lack of coordination across career fields to
determine how software competencies are defined or managed may
contribute, in part, to confusion and ineffective management of soft-
ware functions. Considering these challenges, DoD asked RAND to
help improve the ability of DoD’s software acquisition workforce to
rapidly and reliably deliver complex software-dependent capabilities
through an enhanced understanding of necessary technical competen-
cies and improvements to education and training and workforce man-
agement and assessment.

Objectives

This report addresses three major objectives to support DoD goals
to improve software acquisition. First, we discuss the development
of a competency model that emphasizes modern software practices
and technical competencies (i.e., combinations of KSAOs needed).8
Second, we review training and education courses offered by the
Defense Acquisition University (DAU) to identify potential gaps in
the current training of software acquisition professionals. We also
explore alternative training options, including other DoD institu-
tions and select civilian programs offering software-related courses,
to address any potential gaps. Third, we present several options for
tracking and managing a software acquisition workforce, which are
necessary for taking advantage of the competency model and the

7 However, as noted by the Executive Secretary of the IT FIPT, the IT career field was
intended to cover Software Acquisition Management. In fact, the IT certification course
track was initially named Software Acquisition Management.
8 Society for Human Resource Management (SHRM), Content Validation Study of the
SHRM Competency Model, undated; Michael A. Campion, Alexis A. Fink, Brian J. Rugge-
berg, Linda Carr, Geneva M. Phillips, and Ronald B. Odman, “Doing Competencies Well:
Best Practices in Competency Modeling,” Personnel Psychology, Vol. 64, No. 1, 2011, pp.
225–262; Richard S. Mansfield, “Building Competency Models: Approaches for HR Profes-
sionals,” Human Resource Management, Vol. 35, 1996, pp. 7–18.

4 Software Acquisition Workforce Initiative for the Department of Defense

insights gained from this study on potential gaps in training provided
by DAU. For each option, we review potential benefits and limitations
and conclude with recommendations. Before turning to these topics
in the following chapters, we begin with a discussion of the software
acquisition workforce and recent changes in DoD’s organizational
structure, which have implications for management of the acquisition
workforce.

Software Acquisition Workforce

Section 1 of the DoD Defense Acquisition Workforce Program Guide
(2017) outlines the definition and process for designating acquisition
workforce positions. DoD defines acquisition as “the conceptualiza-
tion, initiation, design, development, test, contracting, production,
deployment, logistics support (LS), modification, and disposal of weap-
ons and other systems, supplies, or services (including construction)
to satisfy DoD needs, intended for use in, or in support of, military
missions.”9 If more than 50 percent of a position’s duties and responsi-
bilities fit within this definition, it is designated and coded as part of
the acquisition workforce.

All acquisition positions are assigned to one of 15 acquisition
career fields described in Appendix A, which cover acquisitions rang-
ing from radios and large communication systems to major defense
systems, ground vehicles, aircraft, and ships. All acquisition personnel
must meet certification requirements that are established by the func-
tional leaders of each career field. DAU maintains these certification
requirements and manages the courses required for certification. Three
certification levels are used to manage standards and qualifications:
Level I—Basic or Entry Level, Level II—Intermediate or Journeyman
Level, and Level III—Advanced or Senior Level.

Within this system, software professionals are not currently
coded or tracked in any systematic way and therefore may reside in

9 DoD, Defense Acquisition Workforce Program Desk Guide, Washington, D.C., July 20,
2017a, p. 1.

Introduction 5

variety of acquisition career fields across DoD or even work in a non-
acquisition position. The focus of this report, however, is limited to
the acquisition workforce and uses inputs primarily from three pri-
mary career fields—(a) information technology (IT), (b) engineering
(ENG), and (c) Program Management (PM)—which were selected
in coordination with the sponsor to encourage subject matter expert
(SME) participation from a range of software perspectives. Table 1.1
provides representative roles and activities for each of these career
fields. Although the descriptions for each of the three career fields list
activities relevant to software, there are several questions that cannot
be answered at this time:

• Who performs software functions in the PM, IT, and ENG career
fields?
 – Which software functions are performed by these professionals?
 – How relevant are the existing PM, IT, and ENG competencies
for these individuals?

• Would a new career field improve software acquisition?
 – How many individuals perform software functions as core
duties?

 – Are the existing career field competencies sufficient for hiring,
training, and managing individuals who have core functions
related to software?

• What training and education is needed?
 – Is the current training provided by DAU sufficient?
 – What software competency gaps exist in the workforce?
 – What are the most effective ways to address potential gaps?

This report does not intend to directly answer these questions,
but rather provides an initial and fundamental step by detailing soft-
ware competencies that may be needed by acquisition professionals.
These competencies will need to be further validated in future work (as
described in Chapters Seven and Eight) to determine if they are truly
required and, if so, to determine the required level of proficiency, and
to identify proficiency gaps in the workforce. This validation step is
critical to determine the most effective way forward for DoD.

6 Software Acquisition Workforce Initiative for the Department of Defense

Table 1.1
Acquisition Career Fields in Current Study

Acquisition
Career Field Representative Roles and Activities

Engineering Functional Engineer
• Plans, organizes, conducts, and/or monitors engineering activities

relating to the design, development, fabrication, installation,
modification, sustainment, and/or analysis of systems or systems
components for a functional specialty (i.e., reliability and main-
tainability, systems safety, materials, avionics, structures, propul-
sion, chemical/biological, human systems interfaces).

• Demonstrates how systems engineering technical processes and
technical management processes guide engineering activities for
a functional specialty.

General Engineer
• Plans, organizes, conducts, and/or monitors engineering design,

development, and sustainment activities for systems or systems
components.

• Demonstrates how systems engineering technical processes and
technical management processes guide design, development,
and sustainment activities.

Information
Technology

Central Design Activity
• Identifies and describes: basic concepts of software engineer-

ing and development activities; enterprise architecture; best
 practices; IT systems engineering; information assurance/cyber-
security; IT-related technologies; test and evaluation processes;
and verification and validation processes.

Project Office/Field Activities
• Identifies and describes: IT program management approaches;

emerging IT acquisition strategies; best practices; IT-related
 performance measures and quality management; acquisition
planning, solicitation, and admin istration; information assurance/
cybersecurity; test and evaluation processes; verification and
 validation processes; and fielding and sustaining IT systems.

Program
Management

Weapon Systems
• Participates in an integrated product team (IPT) delivering a

weapon system, command and control/network-centric system,
or space system.

• Performs financial and status reporting and basic logistic activities.
• Supports pre-award contract activities and workload planning

and scheduling.

Services
• Assists in acquisition planning, assessing risk (technical, cost and

schedule), and contract tracking and performance evaluation.

Business Management Systems/IT
• Participates in a business process IPT, fundamentals of enterprise

integration, and outcome-based performance measures.

SOURCE: DAU, “Career Fields,” webpage, undated.

Introduction 7

Given that software acquisition functions or personnel are not
tracked in a systematic way, how does one define a software acquisition
professional? We initially adopted DAU’s definition of software acqui-
sition. However, through discussions and feedback from DoD SMEs,
we revised that definition to arrive at the following working definition:

Software acquisition personnel are military, civilian and contractor
personnel engaged in the definition, development, deployment,
operation, and sustainment of software components and software
reliant systems or ecosystems.10

Although this definition is broad, it is designed to differenti-
ate software acquisition personnel from other acquisition profession-
als such as IT purchasing agents. IT purchasing agents only purchase
software (e.g., desktop software); they do not define, develop, deploy,
operate, or sustain the software. It is also important to note that some
software functions may be performed primarily outside of the acquisi-
tion community. Nonetheless, acquisition professionals may need to
be at least familiar with these functions to effectively acquire software.

10 Development refers to the processes, procedures, people, material, algorithms, and infor-
mation required to conceive, specify, design, program, document, test, deliver, and deploy
the software aspects of a system. This includes oversight activities required to determine
adherence and compliance to contract requirements. Sustainment refers to the processes, pro-
cedures, people, material, algorithms, and information required to support, maintain, and
operate the software aspects of a system. This includes software development, documenta-
tion, operations, deployment, security, configuration management, training (users and sus-
tainment personnel), help desk, commercial off-the shelf (COTS) product and license man-
agement, and technology refresh. Software refers to a collection of data and instructions that
executes on a processing unit. Software includes, but is not limited to, applications, scripts,
databases, operating systems, device drivers, and firmware. Software reliant systems refers to a
hardware-software system (such as a radar) that would fail to meet its mission use if the soft-
ware were to fail, or a software system (such as mission planning or intelligence dissemina-
tion tools) with its accompanying computing infrastructure and network. Ecosystems refers to
a set of entities functioning as a unit and interacting with a shared end-user constituency for
software and services, together with relationships among them. Ecosystems form when a set
of core components (the keystone) are complemented by peripheral components (e.g., apps
or services) developed by autonomous entities (i.e., organizationally independent of the core
developer) to address specific user needs. Ecosystems are characterized by interoperability
and co-innovation enabled thru common interfaces and shared knowledge.

8 Software Acquisition Workforce Initiative for the Department of Defense

The relative importance and proficiency level required by acquisi-
tion professionals across these functions can be determined only once
the software workforce has been defined. It is also important to note
that this working definition is broader than the scope of the current
study in that it includes software acquisition personnel coded in any
career field. However, we did not explicitly include feedback or inputs
from career fields outside PM, ENG, and IT. Therefore, the competen-
cies presented in this study should be systematically reviewed by rel-
evant SMEs prior to adoption by other acquisition and nonacquisition
career fields.

Evolving Organizational Structure and Guidance for
DoD Acquisition

In response to Section 901 of National Defense Authorization Act
for Fiscal Year 2017, DoD restructured the roles of the Under Secre-
tary of Defense for Acquisition, Technology, and Logistics to “better
pursue the goals of technological superiority, affordable systems, and
well managed business operations.”11 As of February 1, 2018, the new
organizational structure includes two new roles:

• Under Secretary of Defense for Research and Engineering to
“drive innovation and accelerate the advancement of our war-
fighting capability”

• Under Secretary of Defense for Acquisition and Sustainment
(USD [A&S]) “to deliver proven technology into the hands of the
Warfighter more quickly and affordably.”12

USD (A&S) has oversight of the acquisition workforce and the
responsibilities for establishing accession, education, training, and expe-
rience requirements. Furthermore, under the authority of USD (A&S),

11 DoD, Report to Congress: Restructuring the Department of Defense Acquisition, Technology
and Logistics Organization and Chief Management Officer Organization, August 1, 2017b,
p. 3.
12 DoD, 2017b, p. 3.

Introduction 9

Human Capital Initiatives (HCI) maintains responsibility for position
category descriptions and job specialty descriptions and for providing
metrics on the acquisition workforce and guidance on the development
of career models for education, training, and experience needed for
career progression.13

In addition to the reorganization, under Subtitle I, Develop-
ment and Acquisition of Software-Intensive and Digital Products and
Services, of the 2018 National Defense Authorization Act, Congress
directed several efforts to improve software acquisition. In particular,
Section 872 directs DIB to conduct a study with the aim of addressing
several objectives, among which are “produce specific and detailed rec-
ommendations for any legislation, including the amendment or repeal
of regulations, as well as non-legislative approaches, that the members
of the Board conducting the study determine necessary to—:

• Streamline development and procurement of software;
• Adopt or adapt best practices from the private sector applicable to

Government use;
• Promote rapid adoption of new technology.”14

Sections 873 and 874 each provide specific direction to the ser-
vices to consider and pilot Agile methods for select major programs,
defense business systems, and software development activities. For
example, Section 873 directs the services to select major programs that
will be part of a pilot to use Agile methods. These programs include
major software-intensive warfighting systems that have “identified
software development as a high risk,” “experienced cost growth and
schedule delay,” and “did not deliver any operational capability within
the prior calendar year.” They also include defense business systems
that “have experienced cost growth and schedule delay,” “did not
deliver any operational capability within the prior calendar year,” and

13 DoDI 5000.66, Defense Acquisition Workforce, Education, Training, Experience, and
Career Development Program, Washington, D.C.: U.S. Department of Defense, August 31,
2018.
14 Public Law 115-91, National Defense Authorization Act for Fiscal Year 2018, December
12, 2017.

10 Software Acquisition Workforce Initiative for the Department of Defense

“are under performing other systems within a defense business system
portfolio with similar user requirements.”15

Organization of This Report

Using our working definition of the acquisition workforce, the remain-
der of this report addresses the three study objectives. Chapters Two
through Five explore the development of a competency model for soft-
ware acquisition professionals, our first objective. Specifically, Chapter
Two presents our methodology and roadmap for developing and vali-
dating competencies. Chapters Three and Four provide an overview
of relevant data sources used to develop the initial competency model,
with Chapter Three highlighting other related DoD and commercial
industry competency models and Chapter Four summarizing relevant
findings from our evaluation of commercial industry trends. Chapter
Five describes our initial competency model, the steps taken to gather
and integrate stakeholder feedback to revise the competencies, and the
final competency model that resulted from this process. Chapter Six
turns to the topic of training and education and our second objective
of mapping competencies to software courses provided by DAU and
other DoD and civilian education institutions and identifying gaps
and options for addressing them. Chapter Seven, which fulfills our
third objective, presents options for identifying and tracking a soft-
ware acquisition workforce. Conclusions and recommendations are
presented in Chapter Eight.

15 Public Law 115-91, Section 873, p. 218.

11

CHAPTER TWO

Methodology for Developing Competencies

Competencies can be characterized by KSAOs that are important to
organizational success and generally reflect the technical knowledge
or behaviors required to perform a job or role within an organiza-
tion.1 Competencies can be useful tools to support a wide range of
talent management initiatives, including recruitment and selection,
training and development, career development, and proficiency gap
assessments.

Competencies are used government wide and across the com-
mercial industry. However, not all have been developed following best
practice guidelines,2 in part, because there is no single accepted stan-
dard definition or process for developing and implementing compe-
tencies. As a result, competency models, which organize competen-
cies for a specific occupation or function, have many different flavors
and range in their level of specificity. In a recent review of compe-
tency models used by different organizations, the Institute for Defense
Analyses found that “some taxonomies focused on detailed tasks and
specific actions that a job incumbent needs to perform, while others
emphasized broader personal characteristics, attitudes, and traits.”3

1 SHRM, undated; Campion et al., 2011; J. S. Shippmann, R. A. Ash, M. Battista, L. Carr,
L. D. Eyde, B. Hesketh, J. Kehoe, K. Pearlman, E. P. Prien, and J. I. Sanchez, “The Practice
of Competency Modeling,” Personnel Psychology, Vol. 53, 2000, pp. 703–740.
2 Campion et al., 2011.
3 J. Belanich, F. L. Moses, and P. Lall, Review and Assessment of Personnel Competencies and
Job Description Models and Methods, Alexandria, Va.: Institute for Defense Analyses, 2016,
p. 11.

12 Software Acquisition Workforce Initiative for the Department of Defense

Competencies and competency models clearly differ in their levels of
specificity, with some being heavily detailed to apply to specific posi-
tions or tasks and others being broader to satisfy needs across the entire
organization.4

Two competencies from OPM’s Cybersecurity Competency Model
demonstrate how competency models often capture general as well as
more technical KSAs:

Organizational Awareness—Knows the organization’s mission
and functions, and how its social, political, and technological
systems work and operates effectively within them; this includes
the programs, policies, procedures, rules, and regulations of the
organization.

Distributed Systems—Knowledge of the principles, theoreti-
cal concepts, and tools underlying distributed computing sys-
tems, including their associated components and communication
standards.

When competencies are used to make employment decisions,
DoD and the federal government must ensure that those competen-
cies are legally defensible. Thus, the competency modeling approaches
followed by DoD, OPM, and in this project are based on principles
that adhere to widely accepted professional and scientific guidelines.5
This chapter discusses some of the complexity surrounding compe-
tency models, but also provides a roadmap describing our approach to
developing competencies.

4 Belanich et al., 2016.
5 Society for Industrial and Organizational Psychology, “Principles for the Validation and
Use of Personnel Selection Procedures,” Industrial and Organizational Psychology, Vol. 11,
No. S1, 2018, pp. 1–97; Equal Employment Opportunity Commission, Civil Service Com-
mission, Department of Labor, and Department of Justice, Uniform Guidelines on Employee
Selection Procedures, August 25, 1978.

Methodology for Developing Competencies 13

Department of Defense Competency Definition and
Process

To guide our competency development efforts, we adopted the defini-
tion used by the Defense Civilian Personnel Advisory Service (DCPAS):

An observable, measurable pattern of knowledge, skills, abilities,
behaviors, and other characteristics (KSAOs) needed to perform
work roles or occupational functions successfully.6

Competencies can serve different tiers in the DoD-wide Five-
Tiered Competency Framework, illustrated in Figure 2.1. Tier 1 focuses
on core competencies that apply across DoD and are not specific to a
position or agency. An example Tier 1 competency could be “dem-
onstrates integrity.” Tier 2 competencies apply across an occupational
series—for example, “cybersecurity” could be applied across all of IT.
Tier 3 competencies focus on KSAOs specific to subspecialties that
may exist in one or more occupational series—for example, “software
assurance” could be considered a suboccupational competency for a
specialty within IT. Tier 4 adds further specificity to components and
agencies—for example, competencies required to work at the Air Force
Sustainment Center. Finally, Tier 5 competencies are meant to cap-
ture any additional KSAOs needed for a specific position that are not
already addressed by Tiers 1 to 4.

Following this framework and consistent with the DCPAS
competency definition, our software acquisition competency model
addresses Tiers 2 and 3 using KSAO-based competencies supported by
sets of example behaviors and job tasks.

Competency Modeling Approaches

As indicated previously, there is no single approach to developing com-
petency models. Nonetheless, many organizations including DCPAS
follow a few basic steps, which include a thorough review of existing

6 DCPAS adapted this definition from DoDI 1400.25, 2008, p. 8.

14 So
ftw

are A
cq

u
isitio

n
 W

o
rkfo

rce In
itiative fo

r th
e D

ep
artm

en
t o

f D
efen

se

Figure 2.1
Five-Tiered Competency Framework

Tier 1: Core Competencies
Apply across DoD regardless of DoD Component or
occupation, e.g., DoD leadership competencies

Five-Tiered Competency Framework

Tier 2: Primary Occupational Competencies
Apply across discrete occupational series and or functions,
i.e., one or more functionally related occupations that share
distinct, common technical quali�cations, competencies,
career paths, and progression patterns

Tier 3: Sub-Occupational Specialty Competencies
Unique to sub-occupational specialty, e.g., set of geotechnical
competencies within the civil engineering occupation

Tier 4: DoD Component-Unique Competencies
So unlike any of the other competencies identi�ed that they
exist at the component level and are unique to the context
or environment in which the work is performed

Tier 5: Position-Speci�c Competencies
Required for a particular position within an occupation and
are not addressed in the Tiers above, e.g., a speci�c civil
engineer may require �nancial management competencies

Competency Components

Competency Title

Competency De�nition

Pro�ciency Level
De�nition/Illustration

Level 1 = Awareness

Level 2 = Basic

Level 3 = Intermediate

Level 4 = Advanced

Level 5 = Expert

Pro�ciency Levels (tied to assessments)
indicate the degree to which employees
performed a competency

Job Tasks

Methodology for Developing Competencies 15

data, drafting an initial model, gathering inputs from SMEs, refin-
ing the model, and validation. We first outline DCPAS’s approach to
competency modeling, which we followed to the extent possible. We
then outline where our approach aligns with theirs and the challenges
with following their approach for this study, particularly in terms of
the final validation step.

Defense Civilian Personnel Advisory Service Approach

DCPAS follows three general phases to competency development:
(1) Competency Development, (2) Competency Assessment and Vali-
dation, and (3) Implementation. Phase 1, Competency Development,
involves reviewing data to develop a draft list of technical competen-
cies, followed by gathering SME feedback, which is collected in two
stages. The first stage of feedback involves a pre-panel activity, which
is a self-administered assessment (i.e., survey) to evaluate the relative
importance of competencies. The results of the pre-panel activity are
used to screen out irrelevant competencies and to focus subsequent
steps on the most important competencies. The second stage occurs in
SME panels, which are face-to-face discussions with SMEs about the
competencies.

Once revisions to competencies have been completed, DCPAS
begins Phase 2, Competency Assessment and Validation, which involves
administering and analyzing results from the Defense Competency
Assessment Tool (DCAT). Policy guidance (DoDI 1400.25) provides
instruction for civilian personnel management including the use of
DCAT to “assess and report workforce competency gaps and pro-
ficiency levels.”7 DCAT provides a platform linked to the Defense
Civilian Personnel Data System to evaluate competencies through
DoD occupational assessment surveys. Once DCAT has been com-
pleted, SMEs provide one final round of reviews of the competencies,
definitions, and tasks. SMEs also review the results of DCAT and
recommend any necessary changes to ensure the model is accurate
and ready to be implemented. The final phase in the DCPAS process
is implementation, which involves submitting an executive summary

7 DoDI 1400.25, 2008, p. 16.

16 Software Acquisition Workforce Initiative for the Department of Defense

and validated model to the Office of the Secretary of Defense func-
tional community managers.

Limitations of the Defense Competency Assessment Tool

Although the questions in the DCAT are designed to gather critical
information needed to support the validation of competencies, the
software tool is limited in several ways. Most important is that the
number of competencies that can be evaluated at any one time is no
more than 12. According to discussions with DCPAS, using more
than 12 competencies can cause the software to function slowly and
may significantly reduce response rates. The current design of DCAT
requires employees and their supervisors to complete assessment ques-
tions. Responses are counted only when a match is made (i.e., super-
visor and employee both complete). This design may not be problem-
atic when there are 12 competencies or fewer or when the supervisor
has only a few subordinates completing the assessment. As the number
of competencies or subordinates increase, the number of overall ques-
tions that a supervisor must complete also increases, thereby quickly
increasing survey fatigue and risk of nonresponse.

Another important factor to consider is that DCAT is designed to
be used primarily with the DoD civilian workforce. Although DCAT
could also be administered to military personnel, additional steps
would need to be taken to merge results with military databases to
evaluate competencies by subgroups (e.g., occupational specialty, rank).

RAND Competency Approach

We follow the general process DCPAS uses to develop a software acqui-
sition competency model. As illustrated in Figure 2.2, we started with
a thorough review of relevant competency models used by DoD and
commercial industry (Chapter Three). Next, we explored commercial
industry trends and modern software practices (Chapter Four). This
step involved several efforts: a review of literature, interviews with a
small number of commercial industry SMEs, analysis of commercial
industry position announcements, and a review of top university soft-
ware course descriptions and objectives. Guided by the review of exist-
ing models and modern software practices used by commercial industry,
we drafted an initial competency model comprised of 13 competencies.

Methodology for Developing Competencies 17

Following discussions with sponsor-office SMEs with expertise
in software development, engineering, and training, the initial RAND
model was substantially revised and expanded to increase the depth and
specificity of competencies. The expanded competencies were designed
to increase understanding and minimize misinterpretation of content
and definitions. This revised model was then updated in several itera-
tions based on inputs gathered from DoD SMEs in panel workshops.
A key component of this phase was to ensure that the titles and defini-
tions are meaningful, facilitate a shared understanding, and minimize
ambiguity. The initial competency model, stakeholder feedback, and
the revised model are discussed in more detail in Chapter Five.

The competencies should then be validated by collecting infor-
mation about the relative importance of each competency. This valida-
tion phase is used to determine which competencies are needed across
the workforce and which are specific to particular subgroups (e.g., soft-
ware subspecialties).

Because the workforce has not yet been defined (as discussed
 further in Chapter Seven), validating the competency model at this
time is not possible and therefore was not completed as part of this
study. Once software acquisition professionals have been identified,

Figure 2.2
RAND Approach to Competency Model Development

Review existing competency models

Review commercial industry trends

Draft initial competency model

Gather stakeholder feedback

Revise competencies

Review options for future validation

18 Software Acquisition Workforce Initiative for the Department of Defense

however, DoD can administer a competency assessment to determine
the relative importance of each competency. Specifically, data should be
gathered from the software acquisition workforce (e.g., survey of super-
visors and job incumbents) to confirm which competencies are needed
and by whom. A more complete discussion of validation options is pre-
sented in Chapter Eight.

19

CHAPTER THREE

Review of Existing Competency Models

In this chapter, we describe our review of existing competency models
that contain relevant software competencies. This review provides a
foundation on which to draft an initial set of competencies relevant
to the software acquisition workforce. To initiate our search for rel-
evant software acquisition competencies, we considered competency
models currently used by DoD and commercial industry. DoD models
included career field functional competencies, which overlap with
efforts to provide additional detail by the Acquisition Workforce Qual-
ification Initiative (AWQI) for the PM, IT, and ENG career fields.
These also include commercial models, such as the Software Engineer-
ing Competency Model (SWECOM) and version 3 of the Guide to the
Software Engineering Body of Knowledge (SWEBOK Guide). Finally, we
reviewed additional DoD efforts related to software acquisition com-
petencies, particularly the Software Acquisitions Training and Educa-
tion Working Group (SATEWG).

Department of Defense Models

DoD’s career field functional models come from the December 2005
DoDI 5000.66, “Operation of the Defense Acquisition, Technology,
and Logistics Workforce Education, Training, and Career Develop-
ment Program,” which

implements reference (a) and provides uniform guidance for
managing positions and career development of the Acquisition,

20 Software Acquisition Workforce Initiative for the Department of Defense

Technology, and Logistics (AT&L) Workforce. This includes
the designation and identification of AT&L positions; specifi-
cation of position requirements; attainment and maintenance
of AT&L competencies through education, training and experi-
ence; AT&L Performance Learning Model; management of the
Defense Acquisition Corps; selection and placement of personnel
in AT&L positions; and workforce metrics.1

Reissued in July 2017 as “Defense Acquisition Workforce Educa-
tion, Training, Experience, and Career Development Program,” DoDI
5000.66 similarly “establishes policies, assigns responsibilities, and
provides procedures for the conduct of the Defense Acquisition Work-
force (AWF) Education, Training, Experience, and Career Develop-
ment Program, referred to in this issuance as the ‘AWF Program.’”2

These instructions are part of a DoD effort to define require-
ments for the acquisition workforce and resulted in FIPT-reviewed
competencies for the PM, ENG, and IT career fields. Each list is divided
into high-level competency units, such as business management (PM),
technical management (ENG), or acquisition planning (IT), with a
varying number of competencies and accompanying descriptions, in
each unit. There is some overlap in competencies across the different
career fields. The PM career field functional competencies are also
described in terms of expectations for a basic level, intermediate level,
and advanced level of competence.

To ensure the acquisition workforce has the appropriate com-
petencies to meet job requirements, USD AT&L launched AWQI as
an element of the Better Buying Power 2.0 initiatives in 2012.3 This

1 DoDI 5000.66, “Operation of the Defense Acquisition, Technology, and Logistics Work-
force Education, Training, and Career Development Program,” Washington, D.C.: Under
Secretary of Defense for Acquisition, Technology, and Logistics, December 21, 2005, p. 1.
2 DoDI 5000.66, “Defense Acquisition Workforce Education, Training, Experience, and
Career Development Program,” Washington, D.C.: Under Secretary of Defense for Acquisi-
tion, Technology, and Logistics, July 27, 2017, p. 1.
3 Frank Kendall, Office of the Under Secretary of Defense for Acquisition, Technology,
and Logistics, “Better Buying Power 2.0: Continuing the Pursuit for Greater Efficiency
and Productivity in Defense Spending,” memorandum, Washington, D.C.: Department of
Defense, November 13, 2012.

Review of Existing Competency Models 21

employee-development tool is intended to “ensure that everyone who
touches acquisition has the skills required to ensure successful acquisi-
tion outcomes.”4 DAU’s Continuous Learning Center uses the AWQI
eWorkbook to allow individuals to track their on-the-job experience
with various acquisition skill sets and to determine which areas might
require additional developmental opportunities.5 Like DoD career field
functional competencies, AWQI competencies are divided into career
fields (e.g., IT, PM, and ENG) with a varying number of competencies
in each one and some overlap across the three career fields. AWQI is
structured to have a competency unit, similar to the functional compe-
tencies, followed by a competency element, product, and, at the lowest
level, a task.

Commercial Models

Version 3 of the SWEBOK Guide was developed by the Institute of
Electrical and Electronics Engineers (IEEE) Computer Society to help
“promote the advancement of both theory and practice for the pro-
fession of software engineering.”6 The SWEBOK Guide is organized
into 15 software “knowledge areas,” which are then broken down into
“topics,” including descriptions of the critical aspects of the topics.
These subcategories include, but are not limited to, Software Require-
ments, Software Testing, Software Maintenance, and Software Engi-
neering (SwE) Process. This effort was designed to reach five objectives:

1. promote a consistent view of software engineering worldwide
2. specify the scope of, and clarify the place of, software engineer-

ing with respect to other disciplines such as computer science,
project management, computer engineering, and mathematics

4 DAU, Acquisition Workforce Qualification Initiative, undated.
5 DAU, “About AWQI,” webpage, undated.
6 Institute of Electrical and Electronics Engineers (IEEE) Computer Society, Software
Engineering Body of Knowledge (SWEBOK), undated; P. Bourque and R. E. Fairley, eds.,
SWEBOK V3.0: Guide to the Software Engineering Body of Knowledge, Piscataway, N.J.: IEEE
Computer Society, 2014, p. xviii.

22 Software Acquisition Workforce Initiative for the Department of Defense

3. characterize the contents of the software engineering discipline
4. provide a topical access to the Software Engineering Body of

Knowledge
5. provide a foundation for curriculum development and for indi-

vidual certification and licensing material.7

SWECOM lists and defines the competencies that are relevant to
“software engineers who participate in development of and modifica-
tions to software-intensive systems.” The model is based on version 3
of the SWEBOK Guide and was also developed by IEEE. It consists
of 13 “competency areas” and 60 “competency labels” that are criti-
cal for those in engineering-intensive roles, including both technical
and behavioral KSAOs. The competency areas included in SWECOM
cover the following software-related skills:

• Requirements
• Design
• Construction
• Testing
• Sustainment
• Process and Life Cycle
• Systems Engineering
• Quality
• Security
• Safety
• Configuration Management
• Measurement
• Human-Computer Interaction

In addition to SWEBOK and SWECOM, we reviewed two
 education-focused efforts that contain guidelines for software engi-
neering curricula. First, the IEEE Computer Society joined efforts
with the Association for Computing Machinery (ACM) to develop a
set of guidelines for undergraduate degree programs to aid both aca-

7 Bourque and Fairley, 2014, p. xxxi.

Review of Existing Competency Models 23

demic institutions and accreditation agencies.8 In addition to describ-
ing the kinds of material that should be covered, examples of courses
and curricula are provided as a reference for what a software engineer-
ing undergraduate degree program could look like.9 The Integrated
Software & Systems Engineering Curriculum Project involved authors
from a variety of academic institutions, software corporations, and pro-
fessional societies.10 These authors developed a similar set of guidelines
for graduate degree programs in software engineering in order to

• improve existing graduate programs in software engineering
(SwE) from the viewpoint of universities, students, graduates,
software builders, and software buyers

• enable the formation of new graduate programs in SwE by pro-
viding guidelines on curriculum content and advice on how to
implement those guidelines

• support increased enrollment in graduate SwE programs by
increasing the value of those programs to potential students and
employers.11

Other Department of Defense Competency Efforts

SATEWG was formed of organization representatives tasked with
developing a software competency framework that could be used to
inform acquisition career field competency models and courses.12 To

8 Joint Task Force on Computing Curricula, Software Engineering 2014: Curriculum Guide-
lines for Undergraduate Degree Programs in Software Engineering, New York: IEEE Computer
Society and Association for Computing Machinery, 2015.
9 Joint Task Force on Computing Curricula, 2015.
10 A. Pyster, ed., Graduate Software Engineering 2009 (GSwE2009): Curriculum Guidelines
for Graduate Degree Programs in Software Engineering, Integrated Software & Systems Engi-
neering Curriculum Project, Hoboken, N.J.: Stevens Institute of Technology, September 30,
2009.
11 Pyster, 2009, p. vi.
12 D. S. Lucero, “Influencing Software Competencies Across the DoD Acquisition Work-
force,” Journal of Defense Software Engineering, 2010, pp. 4–7.

24 Software Acquisition Workforce Initiative for the Department of Defense

accomplish this, the group “reviewed 234 software competencies and
790 competency elements” from DAU courses, best practices, and
existing competency models.13 This review resulted in four knowledge
areas or high-level descriptions, and 29 competencies to be included
in their software competency framework. The four knowledge areas
included are

• Software Acquisition and Sustainment Planning
• Software Development Considerations
• Software Management
• Post-Deployment Software Support.

The representatives also reviewed persistent issues in the field
of software acquisition, of which they found 123.14 Additionally, the
working group aimed to identify and address gaps in the Defense
Acquisition Workforce Improvement Act curriculum.15

Similarities and Differences Among Competency Models

The competency models were assessed for differences and similari-
ties in the way they were structured and the competencies that were
included. As the previous sections indicate, the models differed greatly
in how they labeled the various “levels” of the competencies. In partic-
ular, different levels of specificity were given different names. Whereas
SWECOM used “competency area” as the highest level and “compe-
tency label” and “competency definition” as the most specific levels,
the SATEWG model had only “knowledge area” and “competency.”
The AWQI models contain detail across multiple levels starting with
“career field” at the top, followed in order of specificity by “functional

13 Lucero, 2010, p. 5.
14 Lucero, 2010.
15 J. L. Finley, “Establishment of Software Acquisition Training and Education Working
Group,” memorandum, Washington, D.C.: Under Secretary of Defense for Acquisition,
Technology, and Logistics, February 19, 2008.

Review of Existing Competency Models 25

unit of competence,” “competency,” “competency element,” “product,”
and “task.”

Despite these differences, similarities among the competency
models helped us identify relevant competencies for the software
acquisition workforce. For example, Data Management appeared as
a competency in the AWQI PM and ENG models, as well as in the
SATEWG model, and it was included in our software acquisition
competency model. Competencies related to contracting, software
development, and sustainment followed similar patterns. As an early
phase of developing a competency model for the software acquisition
workforce, this review proved a valuable step in determining which
competencies were most likely to be relevant and critical going for-
ward. Appendix E presents further details on each of the competency
models reviewed, including information on the number of “levels”
and competencies and examples of some of the competencies for each
model.

Other Occupational Sources Reviewed

Although the federal government does not have specific career fields
for software, we reviewed occupational requirements for occupational
series in which software professionals are likely to reside, including
computer science, computer engineering, general engineering, and IT.
The information about these occupational series provides lists of typi-
cal functions. For example, a typical function for a computer scientist
is the “development of software systems using a knowledge of tech-
niques, procedures, and processes such as operating system theory, data
structures, computer system architecture, software engineering, and
computer communications.”16 Although topic areas overlapped with
the software acquisition definition, the functions are not comprehen-
sive and serve primarily as examples of occupation duties.

16 OPM, “Position Classification Flysheet for Computer Science Series, GS-1550,” Com-
puter Science Series, GS-1550, 1988, p. 2.

26 Software Acquisition Workforce Initiative for the Department of Defense

Another potential source of information about software occu-
pations is provided by O*NET,17 which is the online repository for
occupations across the entire U.S. economy. O*NET collects infor-
mation from workers in each occupation to describe work activities,
knowledge, skills, and ability requirements. Although O*NET pro-
vides information about several software-specific occupations such
as “Software Developers, Systems Software,” “Software Developers,
Applications,” and “Software Quality Assurance Engineers and Tes-
ters,” the information is both very broad and less comprehensive than
the competency models described previously in this chapter.

17 O*Net Online, webpage, undated.

27

CHAPTER FOUR

Commercial Industry Perspective

In this chapter, we describe several efforts to identify modern software
competencies based on commercial industry trends. To identify these
trends and potential competencies, we reviewed relevant research lit-
erature and trade publications; held discussions with a select number
of commercial industry subject matter experts;1 and compared DoD
and commercial industry job announcements, training, and education
course descriptions and objectives. We also provide a more detailed lit-
erature review of modern software practices in Appendix B.

Software Industry Trends

We began with a literature review seeking input on trends in the soft-
ware industry. Software development is a relatively young industry that
continues to rapidly evolve its practice. And like any other profession,
software development is subject to hype and changing fashions. As
such, research in this area is not always straightforward. First, there
is active marketing around every aspect of software development as
firms jostle for position and influence. Distinguishing real trends from
hype is challenging. Second, there are very few quantitative compara-
tive studies of “what works” in software development. There is general
agreement that software project success is highly dependent on factors
that are not easily measured or quantified, such as the novelty of the

1 This study was conducted according to all Human Subjects Protection Committee
guidelines.

28 Software Acquisition Workforce Initiative for the Department of Defense

software, the complexity of internal and external dependencies, and
development staff expertise. Conducting evidence-based comparative
studies of specific development practices is extremely difficult due to
our inability to quantify these critical factors. Finally, today’s best prac-
tice often becomes tomorrow’s obsolete practice.

Considering these challenges, we identified four principal indus-
try trends in our review:

• Changes in the sequencing of the activities used in the pro-
duction of software, described as a software development life-
cycle (SDLC) model: While this change is commonly referred
to as the change from a Waterfall to an Agile model, at root it is
the trend to shorten the time between defining what the software
needs to do (e.g., “the idea”) and producing working product.

• Changes in software development architecture from mono-
lithic development to ecosystems: Whereas in the past, a single
vertically integrated firm would produce a monolithic software
product including hardware, operating system, and application
(e.g., the original release of Microsoft Word), today’s software
is more likely to be produced by a more organic ecosystem of
development teams that include commercial entities, open-source
foundations, and individual developers.2

• Increasing diversity in software deployment architectures:
While in the past, software was envisioned as running on a stand-
alone processor, today’s software is typically spread across multi-
ple processors of varying capability, ranging from large clusters of
servers linked by hypervisors (e.g., the cloud) to the phone in our
pocket. Stand-alone software products are becoming increasingly
rare in today’s world.3

2 While the original releases of MS Word ran only on Microsoft operating systems, Word
dominates the word processing market today because Microsoft moved to a software stack
and business model that allowed later versions of the application to run on operating systems
besides Windows.
3 The software deployment architecture defines how the software is organized for deploy-
ment onto the computing infrastructure. A typical application today has elements deployed

Commercial Industry Perspective 29

• Increasing automation in software practices: There has been
an explosion of software products that automate the activities
needed to develop software. These tools provide a means to auto-
mate tasks ranging from tracking change, to producing docu-
mentation, to performing security vulnerability scans, to check-
ing for compliance to standards for design, code, or test, to fully
automated build, integration, and test. Recently, these automa-
tion “pipelines” have expanded to include the automated delivery
and deployment of software into operations.

While each of these trends could have developed on its own, they
are highly interdependent and have co-evolved in a highly symbiotic
relationship. The desire to shorten the time from idea to working soft-
ware is supported by the improvements in automating the tasks of soft-
ware development; changes in both the development and deployment
architectures are enabled by the concept of a software stack, where layers
can be independently developed within an ecosystem and deployed to
distributed processors. In turn, the software stack concept grew from
the desire to reuse software in an attempt to shorten the time from idea
to working software. Automated pipelines for products developed in
specific ecosystems are tailored to specific deployment architectures
and life-cycle models. These trends are described in the sections below.

We relied heavily on SMEs both in the commercial software indus-
try and those working within DoD to investigate how those trends are
evolving and their impact on the software competencies documented
in this report. An in-depth discussion of each of these trends and of its
impact on our software competency model is provided in Appendix B.

Industry Subject Matter Expert Perspectives

To obtain the perspective of software professionals in commercial
industry, we conducted four unstructured interviews between Janu-

across servers (including the cloud), personal computers, phones, and the small devices that
make up the internet of things (IoT).

30 Software Acquisition Workforce Initiative for the Department of Defense

ary and April of 2018. Each SME, selected from a RAND researcher’s
professional network, had extensive software development experience
in the private sector. All were well versed in identifying and assess-
ing software competencies, industry trends in software development,
and the management of software development projects. All had under-
graduate degrees, and three had earned doctorates in computer science
or electrical engineering. All SMEs had seven or more years of expe-
rience working at large, multinational technology corporations, and
three had worked at or co-founded technology start-ups over the course
of their careers. They worked in a wide range of technical domains
that included speech recognition, ad hoc networking, machine learn-
ing, hardware verification, mobile app development, deep learning,
and data science.

The objective of the interviews was to learn about the key com-
petencies that were important for software engineers working in the
private sector today and that would be needed to support near-term
(three- to five-year horizon) trends in the industry, and how to assess
those competencies. Three themes emerged from these interviews:

• Strong technical skills are important for fulfilling software engi-
neering roles

• Two meta-skills that are very important in the domain of soft-
ware engineering are the ability to work collaboratively and the
ability to participate in rapid prototyping.

• Previous experience is among the strongest indicators of a candi-
date’s potential success in a software engineering role.

Strong Technical Skills

All of the SMEs spoke about the importance of general computer sci-
ence skills. These skills included familiarity with general-purpose pro-
gramming languages (e.g., Java and Python) and a thorough under-
standing of specific languages/methods needed for web development
and cloud computing. Understanding data structures and foundational
computer science is key. It was pointed out that modern web technolo-
gies, and advanced programming languages more generally, are a very
fast-moving competency set with constant changes. When hiring for a

Commercial Industry Perspective 31

role that would use such skills, employers should look for a candidate
who either demonstrates the specific technical skill relevant to the job
role he or she will be filling or has a demonstrated track record showing
an ability to continuously learn technologies and languages.4

The SMEs believed a solid background in computer science is crit-
ical for those working in product, project, or program management (all
abbreviated as PMs) roles.5 The SMEs cautioned that to be successful in
software acquisition, PMs must have the technical expertise to

• Understand what software can do and why: A good PM under-
stands both engineering and product features and thus has tech-
nical depth to understand how a product should be developed
but also know how the product will be used and is able to specify
metrics against which the usage would be measured.

• Vet the offerings of third-party vendors or the planning of their
own teams: Software is easy to fake, especially when it hasn’t been
built yet or is very new. As one SME put it, a PM needs to have
a little light that goes off when someone is just throwing buzz-
words.

• Achieve the best technical solutions: If the PM is not asking
sophisticated questions, it may be impossible for the developers
to volunteer appropriate recommendations or the best technical
solution.

4 It was striking that none of the SMEs felt it was industry’s job to train people for these
skills. The modern software industry has elements of the gig economy, with the burden of
keeping skillsets current falling squarely on the shoulders of the employee. This may change
if software talent becomes harder to find.
5 A SME who worked at a sophisticated, top-tier multinational went as far as to say that
they were unaware of any PMs at their company who did not have a technical background.
PMs in private sector technology companies are overlapping roles with loosely defined
boundaries that involve management of the software effort. This includes defining the fea-
tures or attributes needed, the overall product design, identification of the target market, and
prioritization of bugs and features. Product or program managers generally focus on end-to-
end considerations for the software’s entire life cycle. PMs are more focused on shorter time
periods; for example, if a project launch is scheduled for a given date, the PM will focus on
what needs to happen up until that date. In each of the roles, PMs work closely with the
technical professionals to produce cost and schedule estimates.

32 Software Acquisition Workforce Initiative for the Department of Defense

Meta-Level Skills

Two meta-level skills emerged during the SME interviews: the impor-
tance of collaborative work and the need for rapid prototyping. Given
that most software is developed by teams, an appreciation for collab-
orative work is important for all software professionals. SMEs looked
for candidates who had experience using collaboration tools such as
Confluence, Jira, Git, and other feature-tracking and software-version
control solutions, as well as team management techniques such as the
daily standup (i.e., the “Scrum”).

Rapid prototyping, the ability to quickly create a preliminary
software artifact that is then evaluated for refined implementation, was
also considered a key skillset. Implicit in rapid prototyping is the notion
that a prototype may be deemed unsatisfactory and will be scrapped.
As one SME put it, software acquisition professionals must accept the
idea that failure is a necessary step toward success.

Experience

All the SMEs shared their thoughts on the challenge of assessing the
competencies and predicting the performance of a candidate for a
software engineering role. They typically broke this out by two cat-
egories of positions: generalist and specialist. Broadly speaking, a gen-
eralist may work with a general-purpose programming language to
implement logic, algorithms, or other processing. In contrast, very spe-
cialized skills may be sought to fill specific niches on the team. For
example, a robotics team may have an opening for a computer vision
specialist with knowledge of motion-detection algorithms that execute
efficiently on small embedded processors. In this case, neither general
knowledge of algorithms nor general knowledge of embedded soft-
ware is sufficient alone; the candidate must have both.

One SME described a process of evaluating generalists and spe-
cialists. In the case of generalists, the first step is to assess candidates
via a triaging decision tree. Candidates who get past the decision tree
are then given a programming test in which they solve a generic data
structure or algorithms problem. In contrast, the résumés of specialist
candidates are reviewed by a committee of employees who currently
work in the role being hired for. The committee then gives selected spe-

Commercial Industry Perspective 33

cialist candidates a programming assignment to build a custom system
(candidates are typically given about a week to complete the implemen-
tation). Our SMEs acknowledged that the programming exercises are,
in fact, often not an accurate gauge of whether a candidate would be
successful in the role. However, in “prestige” private-sector technology
companies with many applicants, companies may prefer a bias toward
false negatives as opposed to false positives in hiring.

In the case of PM roles, while all of the SMEs indicated that
formal training in a technical field was very helpful for determining if
a candidate PM would be successful, it was not a sufficient indicator.
Instead, they stated that the best way to gauge a candidate PM is to see
evidence that the PM has worked in the role previously.6

Review of Position Announcements and Course
Descriptions

Our review of open software job positions and of software course
descriptions in industry compared with those in DoD was exploratory
but provided valuable insights. To evaluate the content of job positions,
we downloaded 20,637 software job openings from an online web-
site using a public application programming interface with the search
keywords “acquisition” and “software.” We repeated this process using
the same search terms to download 14,402 open positions listed in the
Army’s Fully Automated System for Classification (FASCLASS).7

To explore differences in position announcements, we compare
the frequency of words used by the Army with words used by commer-
cial industry (Figure 4.1). The horizontal position of a word in the plot

6 Presumably this experience is gained in another company that is more risk acceptant.
Short of direct experience, one SME shared a method for evaluating candidate PMs in which
the candidate is asked to respond to a set of emails that simulate a real-world scenario over
the course of a day. For example, the candidate might be asked to imagine working for a con-
sulting firm that depended on a cloud computing service and the service was down; in such
a situation, how would he or she manage the crisis?
7 FASCLASS is web-based system that contains information on Army civilian positions to
include details on OPM occupational series, position titles, and job duty descriptions.

34 Software Acquisition Workforce Initiative for the Department of Defense

describes its frequency in Army position descriptions, and its vertical
position denotes how frequently it is used in industry job postings.8
Words that are close to the red line share similar relative frequencies.
As one might expect, “software,” “systems,” “data,” “design,” and “net-
works” are frequently used in both Army and industry job postings.
However, we noticed that words specific to software practices appeared
much more frequently in industry postings.

8 Figure 4.1 was developed by training a word2vec model on both the industry and Army
position descriptions and then selecting 500 words for each of the following five models. The
models were then used to select words that are frequently used in close proximity to terms that
we found to be of significance in the software trends analysis described in Chapter Three.

Words used in models: 1. embedded, systems; 2. Agile, Waterfall, Iterative, methodolo-
gies; 3. sustainment, integration; 4. container, cloud; 5. software, engineering.

Figure 4.1
Word Usage in Army and Industry Software Job Postings

Army

In
d

u
st

ry

Low
usage

High
usage

Low
usage

High
usage software

business

web
solutions

design data

systemapplications
test

understanding develop
processapplyserver

manage senior
�eld planning

staff
leadership

managing expert
impact techniques

wide
methodsskill

determine
assists

serves

army

strategydesigns
interface future

devicesfunctionality
domain utilizing

developed
voice

entire
lan unitsmonitors

capability
scienti�c

facilities
studies

elementsimpacts
utility utilizessuf�cient

chiefjoint
adp

subsystems

strong

preferred

platform leading
demonstrated

driven lifecycle
pro�cient

modules

microitil
lean sciences

utilities
stand

cots

validating
upgrading

transmission
shelf

isolatedbms pertinent
evolution

scada
computerized combat im

directorate
affected
literature

arena
suppliedsimti

thermalss

composite
minint

aided concerned
logistic

tradoc

surveying

amc

materiel

directorates

ils

simulate
lis bim

eventualaesip interrelationship
asc

procuringlvc
transmit

affordability
sustains

cpus malfunction isc

plotters cerdec
itedissimilar

rmt dms equipments

lmiecp jlcctciew

xp facilitation
swgateway

parallel
embrace ada

velocity csm
wiredceremonies

srd
tpf

bcs
multiprocessing

digitize dmaic

spearheadsmillimeter

best retro�ts foselms blcse

adpeameddlrccbrncdidatiseudhtilnodstaefsutfpdsngcbrs

microservices
kanban

iaa oop
alm

jboss s�

rdbms owner
pmpiterative

hyperbpmwi
ooorm �uent

rationalgui
scmecommerce

rds
sei esx

ood kernel
websphere versioning

toolset
hpc

ecsspisdn
docs

pairing

dwjvmiteration
clilie at

olipdiligently clustered
bios

airlines
asic

estimations
battery

acp psm
amdlabview

ddr
compiler

lcd mcu
mesh

bcminitab
mls

loggers

excelsvhdl
hypervisors
queueing mvp cdma

rockwell
guisaltium

capm
pxeit

gamg capheb aris
mcus

altera
bees

hex

aegis
asics
cyle

encapsulate
cultured

good

neutron
motherboard

vicom

java

cloudagile

linus
fast

os
proven

vmware

python
stack api ops

deep
preferably

virtualization
debug ci

sdlc
app

apache

middleware
offshore

sphere
apps

ux
apis

awsscrum

spring
azure

saa

tomcat

ui
salesforce

hadoop

nice
selenium
ansible

Commercial Industry Perspective 35

To further explore potential differences, we filtered just those
words used in close proximity to terms commonly associated with
software life-cycle management: “Agile,” “Waterfall,” “Iterative,” and
“methodologies.” The results, shown in Figure 4.2, demonstrate a strik-
ing lack of emphasis in software life-cycle management practices in
Army software acquisition job postings. These life-cycle management
and related commercial industry terms reinforced findings from the
literature review to further guide software competency development.
For example, terms such as “scrum,” “kanban,” and “sprint” suggested
commercial industry values professionals with knowledge of modern
methodologies focused on process improvements, Iterative develop-
ment, and adaptive workflows. These terms were also integrated as
examples in the competency definitions (for example, see Development
Tempo, which is detailed in Appendix F).

Figure 4.2
Software Life-Cycle Management Terms in Army and Industry Job Postings

Army

In
d

u
st

ry

Low
usage

High
usage

Low
usage

High
usage

teams

principles

methodologies
innovative

methodology

strong

sql
java

preferred
cloud

linus

agile

aws
python frameworks

demonstrated
stakeholders

lifecycle
soliddriven
xml pro�cient

demonstrate model
mentor

desirable
ci itil

lean
cycles

traditional

mathematical
sigma

api ops
sdlc shell deep

preferably
studioperl

visiosoa

apis

apps
ux

etl

crm

waterfall defect strongly
regression

pmp
xp fashion

hybrid
backlog

grasp cmmi
ide stream

disciplined

re�nement

belt

rational
embrace

doors
imcremental

styles conception
ss

strictly

jspideally
demonstrable

bpm
�uentant

scm gui
pairelicitation

paradigms
socket

scaled
ieee

runtime

wiki reengineering

adopts originate

embodies
addie

multiprocessing belts cpi
dmaic

pdls

judgements

integration

ordinating

navigatingpracticing
bugzilla in�nite

pbm
embody

plc pixel spc psm
le

norm
mobilize

patters
yellow

mob
harmonized

arisenv
shorter
kernels

practitioner
contrasts

sdp

lssparticipativembblcmmlogsas

ides
scrums docsxpath

reusabilityerwindiligently
cadence

msmq
solutioning

intentional
lingual

bpmn
bpms

rcs
shepherd

bla
masterful

cyle
nfrsencapsulate

abides
good

best

scrum
dev

springui
salesforce

jira
azure

soap ruby
backend

amazon
sprint
bugs

uat
prefer

oo orm
ecommerce

versioning
dw
xsdjvm

enjoys

nice
selenium

tfs
microservices
kanban mindset
haves
servlets
quest

iteration

36 Software Acquisition Workforce Initiative for the Department of Defense

It is important to note that observed differences in these analyses
may simply reflect differences in how positions are tagged by differ-
ent search engines. For example, it is possible that the Army positions
returned by the search terms were not as software-specific compared
with commercial industry jobs. Although beyond the scope of this
effort, a more thorough analysis could ask SMEs to identify comparable
positions in the Army and commercial industry to determine if these
observed differences remain. This type of follow-on analysis would help
to address any potential bias in search-engine selection of positions.

Building on the comparisons in position announcements, we
conducted a similar comparison of words used in course descrip-
tions by DoD and civilian academia. We downloaded software course
descriptions from 14 U.S. universities considered to be top educators
in software engineering, computer engineering, or computer science.
We did the same for five DoD academic institutions: Naval Postgrad-
uate School (NPS), National Defense University (NDU), DAU, Air
University, and the Air Force Institute of Technology (AFIT). We
then used text analysis to identify key differences in terms used by
DoD and industry.

Figure 4.3 shows the result of our analysis of words used in the
software course descriptions. Words that are most likely to be used in
DoD course description but not in civilian academic institutions (as
measured by the log odds ratio9), are shown in red. Words that are
more likely to be used in civilian academia (as measured by log odds
ratio), are shown in blue. Strikingly, DoD course descriptions contain
very few words that are specific to software development, such as “con-
currency,” “algorithms,” “virtualizations,” “embedded,” and “Agile.”
Instead, they emphasize words specific to acquisition: “governance,”
“investment,” “tracking,” and “assessing.”

These differences may simply reflect DoD’s emphasis on manage-
ment and DoD-specific acquisition requirements. That is, DAU does

9 Log odds is used to represent the ratio of relative term usage by DoD to the relative term
usage by civilian academia. The terms represented in red have a relative frequency that is
more than two times greater in DoD course descriptions compared with civilian academic
course descriptions.

Commercial Industry Perspective 37

Figure 4.3
Commonly Used Words in Software Acquisition Course Descriptions

NOTE: Red indicates words most likely to be used in DoD course description but not in
civilian academic institutions; blue indicates words more likely to be used in civilian
academia.

Log odds ratio (DoD/Civ)

led
sustainment

acquisition
moving

assess
ea

supply
portfolio

government
governance

consent
investment

chain
elements

traceability
perspectives

limitations
leaders

hcsi
federal

encouraged
cyber

contracting
acq

typically
trees

synchronization
practical

concurrent
languages

cs
virtualization

semantics
parallel

access
offered

real
machine

hours
embedded
algorithms

optimization
interfaces
graduate

concurrency
agile

cse

0 2–2

W
o

rd

38 Software Acquisition Workforce Initiative for the Department of Defense

not expect to train acquisition professionals how to write code. Given
the different educational objectives across these institutions, it will be
an important step in the future to determine how DoD will ensure
acquisition professionals have and maintain important software com-
petencies. Some competencies may be used to establish hiring criteria,
and others may need to be taught by DAU. These questions can be
addressed as part of a broader validation study (see Chapter Eight).

It is important to note that these course description (and position
announcement) analyses were largely exploratory, intended to identify
potential areas of emphasis. In general, we found the terms used both
in commercial industry position announcements and course descrip-
tions to be helpful in reviewing the comprehensiveness and definitions
of competencies. Common terms were also reviewed during discus-
sions with SMEs during the competency revision process, as described
in the following chapter.

39

CHAPTER FIVE

From Initial to Revised Competency Model

This chapter presents the initial competency model, steps taken to
gather and integrate stakeholder feedback, and the revised competency
model. The initial model, containing 13 competencies, was informed
by the review and findings presented in Chapters Three and Four. It
was then significantly revised and expanded in several iterations, even-
tually evolving into a model with 48 detailed competencies. The full
model with detailed definitions is provided in Appendix F.

Initial Competency Model

To adhere to the DCPAS approach for competency model develop-
ment, we were initially asked to develop 10 to 12 competencies in which
DoD software acquisition professionals need to be capable and success-
ful.1 With guidance from two industrial-organizational psychologists
with backgrounds in competency model development, three indepen-
dent RAND researchers with an accumulated 70 years of experience in
software management, development, and acquisition reviewed existing
competency models and modern practices to identify potential compe-
tencies. Researchers also considered three different perspectives when
generating competencies: (1) primary software functions, (2) topics
included on a request for proposal (RFP) for software-dependent sys-
tems, and (3) primary differences between acquiring software versus

1 Ten to twelve is the number of competencies that the tools used by DCPAS to validate
competency models is designed to handle.

40 Software Acquisition Workforce Initiative for the Department of Defense

hardware systems (Figure 5.1). To ensure comprehensiveness, compe-
tencies were compared against existing models discussed in Chapter
Three and Appendix E (see Appendix C), against the System Engineer-
ing Capability Maturity Model-Integrated (CMMI), and against Scott
Ambler’s detailed model of the Agile SDLC.

Figure 5.1
Guiding Perspectives for Initial Competency Development

Perspective Software Topics Description

A. Functions • Problem identi�- • Methods for deciding
 cation and solution (including what to
 de�nition acquire and how to
 • Managing project acquire it)
 constraints • Methods to manage
 • Architecture and the acquisition
 models throughout the
 • Quality assurance life cycle
 • Functionality • Strategies and tactics
 for design, validation,
 and veri�cation
 • Strategies for
 identifying and
 mitigating risk and
 delivering quality

B. RFP • Quality attributes • What functionality
 questions • Con�guration should be acquired?
 management • What quality attributes
 and integration should the different
 • Software functions have?
 assurance • What activities should
 be included in the
 acquisition?
 • When should those
 activities be performed?
 • By whom should those
 activities be performed?

C. Software • Quality attributes • Methods to develop
 versus • Data rights safe, secure, high-
 hardware • Architecture quality software
 acquisition • Architectural pattern
 and tactics to achieve
 evolvability, sustainability,
 safety, security, respon-
 siveness, usability,
 availability, etc.
 • Architecture and the
 need for multiple views
 of the architecture—
 the “ability to abstract”

13 Initial Competencies

1. Problem Identi�cation
2. Solution Identi�cation
3. Development Planning
4. Transition and

Sustainment Planning
5. System Architecture

Design
6. Validation Modeling
7. System Attribute

Analyses
8. Software Construction

Management
9. Cost Management
10. Schedule Management
11. Policy Management
12. Mission Assurance
13. Quality Assurance

From Initial to Revised Competency Model 41

Revising the Competency Model Through Stakeholder
Feedback

The following sections describe the steps taken to gather stakeholder
feedback and use that information to revise the initial set of competen-
cies. In general, modifications were made to the initial set of competen-
cies following each phase of feedback. We obtained feedback from the
sponsor office, SME panel workshops, and software professionals, who
provided written feedback.

Feedback on the First Draft of Competencies

Representing the sponsor’s office and DAU, seven key stakeholders
who had backgrounds in software engineering, development, train-
ing, management, and acquisition reviewed and provided feedback on
the initial competency list and definitions. There was a strong con-
sensus among these stakeholders that the competencies did not ade-
quately reflect the nuanced differences between how software is devel-
oped today versus how it was developed 15 to 20 years ago. Perhaps
more critically, the model did not adequately capture the strong dif-
ferences in competencies needed for hardware versus software acqui-
sition. In other words, SMEs suggested that the initial competencies
were a better reflection of primary occupational competencies (Tier
2, as described in Chapter Two) commonly used to define competen-
cies that apply across functionally related occupations. However, these
Tier 2 competencies are less useful for describing the requirements of
Tier 3, suboccupational specialties within software (e.g., a set of soft-
ware architecture competencies within a software occupation2).

The key stakeholders were also concerned that if this initial set
of competencies were adopted for DoD software acquisition, it would
breed complacency and that acquisition professionals would not obtain
the training in modern software development methodologies believed
to be necessary to improve the effectiveness of software acquisition in
DoD. The specific feedback suggested potential gaps in six key areas:

2 As noted throughout this report, software does not exist as an official OPM or DoD
occupation. Therefore, this example is provided to demonstrate the relationship between
Tier 3 competencies and a hypothetical software occupation.

42 Software Acquisition Workforce Initiative for the Department of Defense

(1) Agile software development including DevOps, continuous integra-
tion, and continuous deployment; (2) machine learning and artificial
intelligence; (3) software estimation, measures, and metrics; (4) soft-
ware development and testing; (5) software site reliability engineering;
and (6) information assurance and cybersecurity.

Feedback on Subsequent Drafts

With this feedback in mind, the RAND team revisited the commer-
cial industry analysis findings (Chapter Four and Appendix B) with
the goal of capturing suboccupational competencies (Tier 3), which
more extensively reflect modern software practices. Although not for-
mally mapped to specific sources, the revised model containing 46
competencies, organized into 11 competency topics, generally corre-
sponds with the initial draft competencies. The competencies were
then reviewed in workshops with SMEs from across DoD. Directors of
Acquisition Career Management (DACMs) and functional career field
leaders were asked to provide contact information for SMEs using the
following criteria:

• Experience: professionals with at least five years of experience per-
forming and/or supervising software acquisition activities

• Recent knowledge and/or experience in software acquisition
(within the past two years)

• Representation: covers range of duties across component/agency,
commands, and programs.

Characteristics of the SMEs who participated are provided in
Tables 5.1 and 5.2.

Due to the greatly expanded number of competencies, we divided
them into three overlapping sets for review, loosely titled (1) Software
Program Management and System Engineering, (2) Software Tech-
nologists, and (3) Software Project Managers (Table 5.3).

Subject Matter Expert Panel Workshops

We invited 119 SMEs identified by DACMs to participate in one of
nine workshops scheduled during the summer of 2018, with each work-
shop covering one of the three sets. Of the 31 SMEs who participated,

From Initial to Revised Competency Model 43

Table 5.1
Number and Background of Workshop Participants

Years of Experience
Number of

Software SMEs
Number of

Acquisition SMEs

Less than 10 3 3

10 to 20 10 12

20 or more 14 12

NOTE: Some participants had experience in both software and
acquisition, so the table sum is greater than the total number of
participants.

Table 5.2
Subject Matter Expert Area of Expertise

Area of Expertise
Number of
Participants

Acquisition 6

Development 8

Education 2

Sustainment 5

Test & Evaluation 2

Acquisition; Development 2

Acquisition; Education 2

Acquisition; Sustainment 1

Development; Sustainment 3

most were currently working in software or had extensive experience in
managing software programs in the past. SMEs had a range of exper-
tise in sustainment, development, acquisition, and training and educa-
tion. The number and distribution of SMEs is presented in Table 5.4.

SMEs were provided with an advance copy of the competencies
and corresponding definitions for review. Each half-day workshop was
structured in exactly the same way. We introduced the purpose of the

44 Software Acquisition Workforce Initiative for the Department of Defense

Table 5.3
Expanded Set of 46 Software Acquisition Competencies

Competency
Topic Competency

Software
Program Mgt.

and System
Engineering

Software
Technology

Software
Project

Management

Problem
Identification

• Capabilities Elicitation X

• Business Case
Development

X

Solution
Identification

• Solution Risk/Reward
Analysis

X X

• Cloud Computing X X

• Software Ecosystems X X

• Prototyping X

Development
Planning

• Development Manage-
ment Approach

X X

• Agile Software
Development

X X

• Agile System
Engineering

X X

• Software Metrics X X

• Configuration and
 Version Control

X X

Transition and
Sustainment
Planning

• Software
Documentation

X X

• Sustainment Manage-
ment Approach

X X

• Continuous Delivery X

• Continuous Deployment X

From Initial to Revised Competency Model 45

Competency
Topic Competency

Software
Program Mgt.

and System
Engineering

Software
Technology

Software
Project

Management

System
Architecture
Design

• Agile Enterprise
Architecture

X

• Software Orchestra-
tion and Choreography
Patterns

X

• Software Deployment
Patterns

X

• Artificial Intelligence
and Machine-Learning
Applications

X

• Augmented and Virtual
Reality Applications

X

• Cyber-Physical Applica-
tions and the Internet
of Things (Embedded
Systems)

X

• Balancing Quality
Attributes

X X

• Emerging Technologies X X

Modeling
Functional
Capabilities
and Quality
Attributes

• Use/Abuse Case
Modeling

X

• Validation of Perfor-
mance Requirements
(Responsiveness, Latency,
and Throughput)

X X

• Validation of Maintain-
ability Requirements

X

• High Fidelity System
Modeling

X X

Building
Secure, Safe,
and High-
Availability
Systems

• Software Assurance X

• Cybersecurity X

• Safety Critical Systems X X

• High-Availability Systems X X

Table 5.3—Continued

46 Software Acquisition Workforce Initiative for the Department of Defense

Competency
Topic Competency

Software
Program Mgt.

and System
Engineering

Software
Technology

Software
Project

Management

Software
Construction
Management

• Life-Cycle Management X

• Backlog Management X

• Release Management X

• Agile Change
Management

X X

• Automated Test and
Continuous Integration

X X

Software
Program
Management

• Effort Estimation X

• Product Roadmap and
Schedule Management

X X

• Cost Management X X

• Legal Policy and Regu-
latory Environment
Management

X X

• Risk, Issues, and Oppor-
tunity Management

X X

Mission
Assurance

• Quality Assurance X

• Root Cause, Corrective
Action

X

• System Integration
and Testing

X X

Professional
Competencies

• Vision and Change
Management

X X X

• Design Thinking,
Innovation, and
Entrepreneurship

X X X

Table 5.3—Continued

RAND study and then discussed the primary objectives for the work-
shop. These objectives included evaluating (1) the relevancy of each
competency for DoD software acquisition, (2) the clarity of definitions
for each competency, (3) potential gaps in content or missing compe-
tencies, and (4) potential to consolidate and merge competencies that

From Initial to Revised Competency Model 47

may be redundant or too similar. The competencies were presented
with definitions one at time. For each competency, participants were
asked to provide feedback in relation to each objective. At the end of
each workshop, we asked participants for closing thoughts on how the
competency model could be further improved.

We modified the competencies based on SME feedback after
each round of workshops and saw a decrease in the number of substan-
tive comments received each round. As a result of the feedback, we
tempered our use of “Agile” in favor of “modern” and reduced our use
of “buzzwords” often associated with software development. We added
definitions for software-unique terminology and moved some explana-
tory information from the competency itself to “context” statements.
Over the course of the workshops, we dropped the grouping by catego-
rization because we found it distracted reviewers from concentrating
on the competencies themselves.3

3 Social science researchers trying to understand how various groups think about a com-
plex subject, which software development certainly is, ask individuals to sort elements of
a list into piles and then name the piles. Often two individuals do not sort into the same
categories. Researchers then probe for why individuals sorted and named the piles to better
understand how they think about the subject. Categorization techniques often reveal more
about the person doing the categorization than they do about the subject at hand. A catego-
rization that is useful to a program manager may be very different from one that is useful to
a software sustainment lead.

Table 5.4
Number and Representation of Subject Matter Experts in Panel Workshops

Program
Management

and Engineering
Project

Management

Software
Technical
Execution Total

Air Force 7 4 3 14

Army 1 1 1 3

Navy 0 1 3 4

Defense Contract
Management Agency

2 1 3 6

DAU 1 2 1 4

Total 11 9 11 31

48 Software Acquisition Workforce Initiative for the Department of Defense

At all times, we remained vigilant in our efforts to express the
competencies in terms that are agnostic of particular software develop-
ment “tribes” or entities with a monetary interest in particular tools or
methods.

Almost inevitably, the number of competencies, tasks, definitions
and context statements grew with each round as we added nuance and
refined concepts. The result, however, was an infinitely improved state-
ment of the 48 competencies.

Written Feedback

As a final step in revising the competencies, RAND distributed them
by email to 120 DoD software professionals to provide feedback. The
feedback period remained active for two months. In total, we received
more than 40 comments from eight reviewers in that time period. We
adjudicated each comment and updated the competencies to address
key concerns. No new competencies were developed during this phase
of feedback. None of the changes substantially altered the content of
the competencies, but all did improve the clarity and accuracy of the
descriptions.

The RAND-Developed Software Acquisition
Competency Model

The conclusion of the feedback efforts resulted in a revised set of 48
competencies with detailed descriptions and additional context and
related definitions. Table 5.5 contains the titles in the revised model
and Appendix F provides detailed definitions and additional material.
As mentioned previously, this model should not be considered final
until it has been validated, which is a task that DoD will need to com-
plete, and which we discuss further in the final chapter.

The competencies should be viewed as part of a living docu-
ment that can be updated over time. Future evaluations and feedback
from the software acquisition community may suggest areas in need
of improvement. For example, redundancies may exist where compe-
tencies overlap too much and cannot be easily differentiated. Other
competencies may need to be further split, or new competencies may

From Initial to Revised Competency Model 49

Table 5.5
Revised Set of Software Acquisition Competencies and Topics

Problem Identification

1. Capabilities elicitation

2. Business case development

Solution Identification

3. Strategic risk/reward analysis

4. Cloud computing

5. Software ecosystems

6. Model-based engineering

Development Planning

7. Development tempo

8. Release planning

9. Software development planning

10. Planning for continuous delivery

11. Planning for continuous
deployment

12. System engineering planning

13. Software metrics

14. Configuration and version control

Transition and Sustainment Planning

15. Software documentation

16. Contracting for software
development

17. Data and proprietary rights
management

System Architecture Design

18. Architectural design approach

19. Software orchestration and
choreography patterns

20. Software deployment patterns

21. Artificial intelligence and machine-
learning applications

22. Augmented and virtual reality
applications

23. Embedded systems

24. Balancing quality attributes

25. Emerging technologies

Modeling Functional Capabilities
and Quality Attributes

26. Use/abuse case model

27. Validation of performance
requirements

28. Validation of sustainability
requirements

29. High fidelity system modeling

Building Secure, Safe, and
High-Availability Systems

30. Software assurance

31. Cybersecurity

32. Safety critical systems

33. High-availability systems

Software Construction Management

34. Life-cycle management

35. Detailed backlog management

36. Release management

37. Change management

38. Automated test and continuous
integration

Software Program Management

39. Effort estimation

40. Product roadmap and schedule
management

41. Cost management

42. Legal policy and regulatory
environment management

43. Risk, issues, and opportunity
management

Mission Assurance

44. Quality assurance

45. Root cause, corrective action

46. System integration and testing

Professional Competencies

47. Strategic planning and change
management

48. Innovation and entrepreneurship

NOTE: The hierarchical structure of topics to competencies is not fixed and can be
reorganized to meet a variety of organizational objectives.

50 Software Acquisition Workforce Initiative for the Department of Defense

emerge. Once validated, these competencies provide a valuable frame-
work to guide software acquisition talent initiatives. DoD could use
this model to identify which competencies are needed for specific posi-
tions, craft position announcements, and determine program needs.
If the competencies are needed at the time of hire, specific assess-
ments (e.g., structured interview questions, knowledge tests) should
be developed and used to ensure job applicants have the requisite level
of proficiency. DoD should also consider using these competencies to
inform assignment decisions and to evaluate training needs. The full
potential of any competency model requires an effective implementa-
tion plan and integration across DoD. Simply having a list of compe-
tencies is necessary but not sufficient to improve software acquisition
practices. DoD also needs to ensure software professionals are tracked
and receive the necessary training. We discuss these topics in the fol-
lowing chapters.

51

CHAPTER SIX

A Review of Software Training and Education

In addition to determining which competencies are needed for a soft-
ware acquisition career, it is important to determine what training and
education resources exist and what may still be needed for develop-
ing these competencies. To achieve this, RAND reviewed 394 courses
related to software offered by DAU and by other DoD and civilian
institutions. A full list of these courses can be found in Appendix G.
In this chapter, we provide an overview of the findings of this review
and also discuss potential gaps in select DAU courses and options for
addressing those gaps. These options may include leveraging a mix of
other DAU, DoD, or civilian courses, on-the-job training, and self-
directed learning programs.

This review should be viewed as an initial first cut since the com-
petencies have not been validated. Validation is necessary to determine
the relative importance of each competency. In addition, efforts should
be taken to determine the current and required proficiency levels for
each competency. The results from these efforts are necessary to pro-
vide a more robust analysis of potential competency gaps and to ensure
resources addressing gaps are appropriately prioritized. Recognizing
these limitations, this review provides a preliminary linkage between
competencies and educational courses. The linkages can be used as a
first step toward a more thorough review of courses that may address
proficiency gaps identified by DoD in the future.

52 Software Acquisition Workforce Initiative for the Department of Defense

Software Courses

Defense Acquisition University

Course descriptions and objectives for 93 DAU courses relevant to
the IT, ENG, and PM career fields and software more generally were
reviewed. For a majority of the courses, the study team was able to
review both the course description and course objectives. However,
some course objectives were not available, so it is possible that our eval-
uation missed things that actually are covered in the courses but were
not apparent from the course description. An initial review of these
courses suggests an emphasis on management and DoD-specific acqui-
sition requirements, reflecting points raised by DAU SMEs that DAU
is best positioned to provide training and education on DoD-specific
issues related to acquisition, not to train personnel how to code.

Other Department of Defense Educational Institutions

Four other DoD institutions were reviewed including AFIT, NDU,
NPS, and Air University (Table 6.1). These institutions offer degree
programs in at least one of the following specialties: SwE, Computer
Science, Systems Engineering, Electronic Data Processing (EDP) Sys-
tems, Cybersecurity, IT Program Management, and Information Sys-
tems and Technology. The team reviewed course descriptions from 78
relevant courses offered by these institutions.

Table 6.1
Other Department of Defense Institutions Offering Software Training
and Education

DoD Institution Program(s)

Number of
Relevant
Courses

AFIT Computer Science; Software Engineering;
Systems Engineering

29

Air University Data Systems (EDP) 18

NDU Cybersecurity; IT Program Management 10

NPS Computer Science; Information Systems and
Technology; Software Engineering

21

A Review of Software Training and Education 53

Academic Programs

The top 14 computer engineering programs in the United States were
pulled from the list developed by U.S. News and World Report in Feb-
ruary 2018 and resulted in 223 course descriptions for the team to
review. The civilian institutions, programs, and numbers of relevant
courses are listed in Table 6.2.

Mapping Competencies to Software Courses

The study team started with a thorough review of all course descriptions
and objectives. In general, civilian institution courses focused more on
design development/specification, programming, and software engi-
neering than did Information Systems Acquisition (ISA) courses (ISA
101—Basic Information Systems Acquisition, ISA 201—Intermedi-
ate Information Systems Acquisition, ISA 301—Advanced Enterprise
Information Systems Acquisition, and ISA 320—Advanced Program
Information Systems Acquisition) provided by DAU. To map courses
to competencies, we asked DAU course managers to identify which
competencies were represented in DAU ISA courses. More specifically,
each ISA course manager evaluated the extent to which each compe-
tency was fully covered, partially covered, or not covered by his or her
respective course. These evaluations were also reviewed by the Learn-
ing Director for Information Technology at DAU and forwarded to
RAND for consolidation with our analyses of other courses.

In addition, a RAND SME reviewed the remaining courses (i.e.,
other DAU, DoD, and civilian) that could address potential gaps in
DAU’s core ISA curriculum. More specifically, the SME first reviewed
all of the competencies and corresponding definitions. Next, the SME
worked sequentially through each course and marked an “X” to indicate
when a competency definition overlapped with content in the course
objectives or description. Future analyses could further strengthen
these linkages by reviewing course syllabi and materials. For the results
of the ISA and other course mapping, please see Appendix H.

The results presented in the following sections should be inter-
preted cautiously, given the limited number of SMEs providing inputs.

54 Software Acquisition Workforce Initiative for the Department of Defense

Table 6.2
Top U.S. News and World Report Academic Software Programs

Civilian Institution Program(s)

Number of
Relevant
Courses

California Institute of
Technology

Project Management Certificate;
Project Management Short Courses;
Systems Engineering Short Courses

3

Carnegie Mellon University Master of Science in Information
Technology; Master of Software
Engineering

16

Cornell University Computer Science 10

George Mason University MS Software Engineering 22

Georgia Institute of
Technology

Computer Systems and Software 4

Michigan Institute of
Technology

BS Computer Science and Engineering 12

Princeton University Master of Science in Engineering 9

Purdue University MS in Computer Science; Software
Engineering Track

12

San Jose State University BS Software Engineering; MS Software
Engineering

36

University of California,
Berkeley

BA in Computer Science; Master of
Information Management and Systems;
MS in Computer Science

20

University of Illinois,
Urbana-Champaign

BS in Computer Science (Engineering);
MS in Computer Science; Software
Engineering Certificate

15

University of Michigan,
Ann Arbor

MS in Computer Science and
Engineering

11

University of Texas at
Austin

MS in ECE with a concentration in
Software Engineering

22

University of Washington BS/MS in Computer Science; Graduate
Courses in Computer Science;
Professional Master’s Program in
Computer Science

31

SOURCE: “Best Computer Engineering Programs,” U.S. News & World Report, 2018.
Note: This list has since been updated with 2019 data, but we used the 2018 data.

A Review of Software Training and Education 55

A more thorough analysis following competency validation should
be conducted using at least three independent SMEs to link course
curriculum to competencies. Using multiple independent SMEs helps
minimize potential biases and potentially informs changes needed to
further clarify instructional objectives and/or competency definitions.
In addition to SME linkages, other sources of information, such as stu-
dent evaluations collected by DAU, could be used to determine how
well competencies are being taught.

Potential Gaps in Software Curriculum at Defense Acquisition
University

Fourteen of the competencies appear to have either minimal or no rep-
resentation in the ISA curriculum. Additional reviews of the curricu-
lum are needed to confirm gaps really do exist and to determine the
best options for addressing the gaps. These options are discussed in the
subsequent section. Noting the limitations we described previously, we
find that seven of the software acquisition competencies are minimally
represented in the ISA courses, meaning that only one of the courses
very lightly touches upon material related to the competency (that is,
the topic is introduced but not discussed further).

• Automated Test and Continuous Integration
• Capabilities Elicitation
• Change Management
• Embedded Systems
• High-Availability Systems
• Software Deployment Patterns
• System Engineering Planning.

Seven of the competencies have no representation across DAU’s
ISA courses:

• High Fidelity System Modeling
• Innovation and Entrepreneurship
• Model-Based Engineering
• Software Ecosystems
• Software Orchestration and Choreography Patterns

56 Software Acquisition Workforce Initiative for the Department of Defense

• Use/Abuse Case Modeling
• Validation of Performance Efficiency Requirements.

More information on the representation of the competencies in
ISA curriculum can be found in Appendix H.

Options for Addressing Gaps

Several options exist to address potential gaps in the training and edu-
cation of software acquisition professionals. However, DoD should first
determine the relative importance of each competency and identify
competency gaps prior to investing further training and education
resources to address the potential gaps identified. Conducting a com-
petency gaps assessment (e.g., DCAT) helps to determine if software
acquisition professionals have already obtained the necessary KSAOs
prior to joining DoD or if additional training and education are
needed. Once gaps have been confirmed, DoD can decide among the
different training and education options.

These options may include developing new courses or updating
course material, leveraging other DoD institutions and courses, and
expanding partnerships with other commercial education providers
(e.g., universities) and massive open online courses (MOOCs) such as
Coursera and edX. Formal courses are most effective when training
needs to be provided to a large group of people and the concepts are
transferable across services, organizations, and programs.

Other Courses Addressing Competencies

All of the competencies that appear to have minimal or no representa-
tion in DAU ISA curricula are covered in at least one course offered by
other DoD institutions or by the top civilian institutions, and most are
covered in multiple courses (Table 6.3). Assuming these competency
gaps are confirmed and deemed important enough to address across
the acquisition workforce, it would likely benefit DAU to partner with
these institutions to either use their existing courses or determine how
to best develop curricula for DAU to fill its gaps in covering software
acquisition competencies. Additionally, a review of other DAU courses
that cover software content showed that some of the competencies are
represented in non-ISA DAU courses.

A Review of Software Training and Education 57

Table 6.3
Department of Defense, Civilian and Other Defense Acquisition University
Courses That Can Fill Defense Acquisition University’s Potential Gaps

Competency Other DAU Courses Other DoD Courses Civilian Courses

Automated
Test and
Continuous
Integration

• NPS Software
Testing

• AFIT Software
Test Engineering

• George Mason
University Software
Testing

• San Jose State
 University Software
Quality Assurance
and Testing

• San Jose State
 University Software
Quality Engineering

Capabilities
Elicitation

• Introduction to
Agile Software
Acquisition (CLE
076)

• Fundamentals of
Systems Engineer-
ing (ENG 101)

• Program
 Manager’s Skills
Course (PMT 400)

• Core Concepts
for Requirements
Management
(RQM 110)

• NPS Human-
Computer Sys-
tems Inter action

• NPS Requirements
Engineering

• AFIT Current Soft-
ware Acquisition
and Management
Topics

• AFIT Software
Requirements
Management

• AFIT Software
Requirements
Engineering

• AFIT Soft-
ware Project
Management

• University of Cali-
fornia, Berkeley,
Needs and Usability
Assessment

• University of
Washington Prin-
ciples of Software
Engineering

• Carnegie Mellon
University Agile
Software Develop-
ment Frameworks:
Theory

• George Mason
University Software
Project Laboratory

• Cornell Univer-
sity Software
Engineering

• University of Texas
at Austin Require-
ments Engineering:
Acquisition and
Modeling

• Purdue University
Software
Engineering

• California Institute
of Technology Soft-
ware Engineering
and Management

• California Institute
of Technology Agile
Project Manage-
ment Certificate
Program

58 Software Acquisition Workforce Initiative for the Department of Defense

Table 6.3—Continued

Competency Other DAU Courses Other DoD Courses Civilian Courses

• San Jose State
University Soft-
ware Engineering
Processes

• San Jose State Uni-
versity Software
Engineering I

Change
Management

• Configuration
Management
(LOG 204)

• AFIT Software
Deployment and
Sustainment
Techniques

• AFIT Software
Requirements
Management

• AFIT Software
Requirements
Engineering

Embedded
Systems

• Carnegie Mellon
University Distrib-
uted Embedded
Systems

• Carnegie Mellon
University Real-
Time Embedded
Systems

• University of Cali-
fornia, Berkeley,
Introduction to
Embedded Systems

• University of
 Illinois, Urbana-
Champaign, Embed-
ded Systems

• Cornell University
Embedded Systems

• Carnegie Mellon
University Embed-
ded System Soft-
ware Engineering

• University of
Washington
Advanced Topics in
Human-Computer
Interaction

High
Availability
Systems

• NPS Software
Reliability

• NPS Project Man-
agement for
Enterprise Systems

• University of
 Michigan, Ann
Arbor, Principles
of Real-Time
Computing

A Review of Software Training and Education 59

Table 6.3—Continued

Competency Other DAU Courses Other DoD Courses Civilian Courses

Software
Deployment
Patterns

• NDU Informa-
tion Technol-
ogy Program
Management

• Carnegie Mellon
University Embed-
ded System Soft-
ware Engineering

• University of Wash-
ington Advanced
Topics in Software
Engineering

• San Jose State
University Soft-
ware Engineering
Processes

System
Engineering
Planning

• Fundamentals of
Systems Engineer-
ing (ENG 101)

• Applied Systems
Engineering in
Defense Acquisi-
tion, Part I (ENG
201)

• Applied Systems
Engineering in
Defense Acquisi-
tion, Part II (R)
(ENG 202)

• NDU Enterprise
Architectures for
Leaders

• NPS Requirements
Engineering

• University of
 Illinois, Urbana-
Champaign, Soft-
ware Engineering I

High Fidelity
System
Modeling

• NPS Enterprise
Architecture

• NPS Software
Reliability

• George Mason
University Soft-
ware Modeling
and Architectural
Design

Innovation
and Entre-
pren eurship

• Carnegie Mellon
University Agile
Software Develop-
ment Frameworks:
Practice

• Carnegie Mellon
University Agile
Software Develop-
ment Frameworks:
Theory

• California Institute
of Technology Agile
Project Manage-
ment Certificate
Program

60 Software Acquisition Workforce Initiative for the Department of Defense

Table 6.3—Continued

Competency Other DAU Courses Other DoD Courses Civilian Courses

Model-Based
Engineering

• Introduction to
Agile Software
Acquisition
(CLE 076)

• Applied Systems
Engineering in
Defense Acquisi-
tion, Part II (R)
(ENG 202)

• Engineering Man-
agement Work-
shop (WSE 006)

• NPS Principles of
Software Design

• NPS Requirements
Engineering

• University of
California, Berke-
ley, User Inter-
face Design and
Development

• University of Cali-
fornia, Berkeley,
Principles and
Techniques of Data
Science

• University of
California, Berke-
ley, User Inter-
face Design and
Development

• University of Cali-
fornia, Berkeley,
Software Proto-
typing for Data Sci-
ence and Informa-
tion Management

• San Jose State
University Com-
puter and Human
Interaction

• University of Wash-
ington Human Com-
puter Interaction

• University of Wash-
ington Software
Development for
Data Scientists

• University of Texas
at Austin Advanced
Programming tools

Software
Ecosystems

• Designing for Sup-
portability in DoD
Systems (CLL 008)

• Sustainment of
Software Intensive
Systems (CLL 056)

• NPS Software
Architecture

• AFIT Manag-
ing Software
Deployment and
Sustainment

• NPS Enterprise
Architecture

• NDU Emerging
Technologies

• Cornell University
Open-Source Soft-
ware Engineering

• University of
Texas at Austin
Middleware

• Carnegie Mellon
University Architec-
tures for Software
Systems

A Review of Software Training and Education 61

Table 6.3—Continued

Competency Other DAU Courses Other DoD Courses Civilian Courses

• NDU Data Man-
agement Strate-
gies and Technolo-
gies: A Managerial
Perspective

• AFIT Current Soft-
ware Acquisition
and Management
Topics

• NPS Project Man-
agement for
Enterprise Systems

• California Institute
of Technology Soft-
ware Engineering
and Management

• Carnegie Mellon
University Man-
agement of Soft-
ware Development
for Technology
Executives

Software
Orchestration
and
Choreography
Patterns

• AFIT Software
Architecture
and Design
Management

• University of Wash-
ington Advanced
Topics in Software
Engineering

• San Jose State
University Soft-
ware Engineering
Processes

Use/Abuse
Case Modeling

• NPS Software
Reliability

• George Mason
University Soft-
ware Require-
ments Analysis and
Specification

• University of Michi-
gan, Ann Arbor,
Principles of Real-
Time Computing

Validation of
Performance
Efficiency
Requirements

• AFIT Software
Requirements
Engineering

• University of Cali-
fornia, Berkeley,
Software
Engineering

• University of Texas
at Austin Verifica-
tion and Validation

• Purdue Univer-
sity Software
Engineering

• University of Wash-
ington Advanced
Topics in Software
Engineering

• San Jose State Uni-
versity Software
Engineering I

62 Software Acquisition Workforce Initiative for the Department of Defense

Informal and On-the-Job Training

A broader range of options exist when training needs are more local-
ized to specific programs or a more limited number of personnel. In
these cases, DoD could leverage or expand programs to provide more
tailored education and training. For example, structured on-the-job
training, job shadowing, and job rotations could be beneficial espe-
cially if DoD could identify highly effective programs to mentor more
junior software professionals. Similarly, DoD could consider further
developing exchange programs with the commercial industry partners
to promote modern software practices. It is also possible that simple
refresher training or self-directed learning could help address gaps espe-
cially if content was previously mastered. Some degree of self-directed
learning may even be expected or necessary given the constant evolu-
tion of technology and software development practices.

In conclusion, we recommend conducting a competency gap
assessment once the software acquisition workforce has been identi-
fied. The results of this assessment should guide discussions on how
best to address any confirmed gaps. The best option(s) will depend, in
part, on the extent and pervasiveness of the gaps across DoD.

63

CHAPTER SEVEN

Identifying, Tracking, and Managing a Software
Acquisition Workforce

In the previous chapters we have described the approach used to iden-
tify and define software competencies and to uncover potential gaps
in training provided by DAU. The results of these efforts cannot move
forward without first identifying the target workforce. Therefore, in
this chapter, we present systems currently used by DoD and the federal
government to track personnel and suggest options for DoD to track
and manage a software acquisition workforce. To frame the discussion
of these topics, we begin with a brief overview of steps commonly used
in workforce planning.

A strategic workforce plan is a useful tool that can guide current
and future workforce analyses and drive actions to identify and close
proficiency gaps (Figure 7.1). DoD has initiated efforts to define the
first step, “Strategic Planning Alignment,” through studies conducted
by DSB and the DIB. These studies reinforce senior leader priorities to
improve software acquisition.

Figure 7.1
Strategic Workforce Planning Process Steps

SOURCE: U.S. Department of Defense, Civilian Personnel Advisory Services, Strategic
Workforce Planning Guide, November 23, 2016.

6. Execution
and

monitoring

5. Workforce
action

planning

4. Gap
analysis

3. Future
workforce

analysis

2. Current
workforce

analysis

1. Strategic
planning

alignment

64 Software Acquisition Workforce Initiative for the Department of Defense

Executing step 2, Current Workforce Analysis, is complicated by
a lack of available data defining the software acquisition workforce.
Therefore, DoD must first determine who performs software acquisi-
tion functions before a workforce analysis can be conducted.

Currently, there is no established system for identifying or track-
ing who performs software functions in DoD. That is, there is no
accepted government job title or occupational series for software pro-
fessionals. Without a way to identify who performs software functions,
the following workforce and gap analysis (steps 2–4) questions cannot
be answered at this time:

• How many and what types of software professionals work in
DoD (e.g., software engineers, software developers, software sus-
tainment)?

• What is the distribution of software talent across DoD (e.g., by
service, active duty military versus civilian)?

• What is the retention rate among software professionals in DoD,
and how does this compare with the commercial sector?

• What factors can be used to attract and retain software talent?
• What are the proficiency strengths and gaps in DoD software

talent?

In the following sections, we present several strategies that DoD
could consider to systematically identify and track the software acqui-
sition workforce. We also discuss the advantages and disadvantages
for each strategy and recommend a way ahead that balances resource
requirements with desired outcomes. We begin with a brief overview
of current workforce management practices used in the federal govern-
ment, DoD, and the acquisition community.

Current Systems for Tracking and Managing a Workforce

Federal Government Occupational Classification

OPM provides guidance and oversight for “designing, developing, and
promulgating government-wide human resources systems, programs,

Identifying, Tracking, and Managing a Software Acquisition Workforce 65

and policies that support the current and emerging needs of Federal
agencies.”1 These policies govern how civil service employees are clas-
sified, including civilian employees working for DoD. Figure 7.2 out-
lines the hierarchical structure for how civil service positions are clas-
sified. As part of this structure, OPM uses a two-digit alphanumeric

1 OPM, “Our Mission, Role & History,” 2019.

Figure 7.2
Office of Personnel Management Classification Structure

SOURCE: OPM, “Introduction to the Position Classi�cation Standards,” 2009.

General Schedule
The broadest subdivision of the classi�cation system covered by
Title 5. It includes a range of levels of dif�culty and responsibility
for covered positions from grades GS−1 to GS−15. It is designated
by “GS” for supervisory and nonsupervisory positions at all of
these grade levels.

Occupational Group
A major subdivision of the General Schedule, embracing
a group of associated or related occupations; e.g., the
Accounting and Budget Group, GS−500; the Engineering
and Architecture Group, GS−800; the General Administrative,
Clerical, and Of�ce Services Group, GS−300).

Series
A subdivision of an occupational group consisting of
positions similar as to specialized line of work and quali�ca-
tion requirements. Series are designated by a title and number
such as the Accounting Series, GS−510; the Secretary Series,
GS−318; the Microbiology Series, GS−403.

Grade
The numerical designation, GS−1 through GS−15, which
identi�es the range of dif�culty and responsibility, and level
of quali�cation requirements of positions included in the
General Schedule.

Position
The duties and responsibilities which make up the work
performed by an employee.

66 Software Acquisition Workforce Initiative for the Department of Defense

code to designate positions in a federal civilian pay plan. In addition to
the General Series (GS), OPM uses several other plans including “ST”
to designate scientific and professional positions and “VN” for Depart-
ment of Veterans Affairs nurses.

Many occupational series probably include some number of
employees performing software functions, including the 19 different
engineering series (e.g., General, Civil, Computer, Electrical, Elec-
tronic). However, there is no software engineering series. Furthermore,
there are no official position titles or parenthetical titles that can be
used to fully identify all software professionals. Table 7.1 lists example
occupational series and corresponding position titles available within
that series that may be related to software.

OPM is the authority for establishing official position titles, which
must be used in official documents such as position descriptions and

Table 7.1
Possible Occupational Series with Software Professionals

Occupational Series Series Code Official Position Titles
Example OPM

Parenthetical Titles

General Engineering GS-0801 • N/Aa • N/Aa

Computer
Engineering

GS-0854 • Computer Engineer • Data Systems
• Embedded Systems
• Networks
• Simulations

Computer Science GS-1550 • Computer Scientist
• Supervisory

 Computer Scientist

• N/A

Information
Technology

GS-2210 • IT Program Manager
• IT Project Manager
• Information Tech-

nology Specialist
or IT Specialist

• Policy and Planning
• Enterprise

Architecture
• Systems Analysis
• Applications

Software
• Network Services
• Data Management
• Systems

Administration

NOTE: a No basic titles or parenthetical specialty titles are specified for this series.
Guidance indicates that agencies may construct titles that appropriately describe the
work.

Identifying, Tracking, and Managing a Software Acquisition Workforce 67

personnel actions.2 However, it is important to note that federal agen-
cies are not precluded from developing unofficial position titles, which
can be used to support talent management initiatives (e.g., recruiting).
Agencies may also “designate the official title of positions in occupa-
tional series for which OPM has not prescribed titles; i.e., those not
specifically covered by classification standards. The title selected by
the agency should not be one that has been prescribed by OPM as an
official title for positions in another series.”3

Military Occupational Classification and Skill Tracking

The military occupational classification systems are specific to each
service. For example, the Air Force uses Air Force Specialty Codes,
the Army uses Military Occupational Specialties, and the Navy uses
Naval Ratings. Specialties are defined separately for enlisted personnel
and commissioned officers. Although the services have unique posi-
tion titles, DoDI 1312.01 requires the services to complete and main-
tain crosswalks to federal government occupational classifications (e.g.,
OPM classification) and civilian occupations, which allow for analyses
of comparable jobs to be conducted.

The services also use a limited number of codes to track spe-
cific experiences, skills, and qualifications. The Air Force uses Special
Experience Identifiers (SEIs) for experience and training not specified
within the military personnel data system. According to the Air Force
Enlisted Classification Directory (AFECD), SEIs

are established when identifying experience or training is critical
to the job and person assignment match, and no other identifica-
tion is appropriate or available. SEIs permit rapid identification
of a resource already experienced to meet unique circumstances,
contingency requirements, or management needs. They provide
a means to track individuals and identify positions requiring or
providing unique experience or training that otherwise would be

2 (5 U.S.C. 5105 (a)(2)).
3 U.S. Code, Title 5, Section 5105, Standards for Classification of Positions. OPM, “Intro-
duction to the Position Classification Standards,” 2009, p. 14.

68 Software Acquisition Workforce Initiative for the Department of Defense

lost. SEIs may be used to better distribute personnel and optimize
the job and person match insofar as possible.4

The Air Force tracks three Agile Software Development SEIs for
enlisted personnel as described in AFECD: (a) Developer, (b) Designer,
and (c) Product Manager. There are also several potentially relevant
experience identifiers for Air Force officers, including (1) program-
ming—general, (2) computer programming—analysis, (3) systems
analysis, (4) programming productivity techniques, and (5) systems
computer program support. Officers can also be classified by a limited
number of activity codes, which can help to identify officers who are
directly or indirectly involved with the acquisition or technical acqui-
sition of Air Force systems. There is also an officer activity code for
computer systems, which identifies officers involved with the design,
development, or application of software systems.

The Army and the Navy also track enlisted personnel and officers
who have specific skills and qualifications. The Army uses an Addi-
tional Skill Identifier (ASI) to identify skills or formal school train-
ing that soldiers can take to expand their knowledge. In additional to
ASIs, the Army also manages a list of Special Qualification Identifiers
(SQIs), which are associated with specialty schools (e.g., Court Reporter
School, Special Forces Underwater Operations School). Although it is
not immediately clear if any ASIs or SQIs directly relate to the software
workforce, they do provide a useful mechanism for tracking personnel
skills and capabilities.

The Navy uses Tracking Naval Enlisted Classification codes to
identify sailors’ unique training, skills, and experiences that are not
official requirements. The Navy uses a subspecialty system for officers
to define advanced education, training, and experience required for a
specific position and to track officers with the corresponding skills and
training. One subspecialty in particular, Computer Science and System
Design, identifies several core skill and educational requirements rel-
evant to software:

4 Headquarters Air Force Personnel Center, Air Force Enlisted Classification Directory
(AFECD), Randolph Air Force Base, Tex.: HQ AFPC/DPSIDC, October 31, 2018, p. 360.

Identifying, Tracking, and Managing a Software Acquisition Workforce 69

• Fundamental Computer Science: architectures, virtualization,
operating systems, computer networks, high- and low-level lan-
guages and their translation, software systems, human-computer
system interaction, and supporting mathematical foundations of
Computer Science

• Software Development: planning and development of large
software projects to include specification of requirements, design,
technical documentation, implementation, risk analysis, testing,
quality assurance, maintenance, process metrics, and measures
of effectiveness through the use of modern software engineering
techniques and tools

• Analysis: Application of scientific methods to determine reliabil-
ity, efficiency, and performance of computer systems; modeling,
simulation, and analysis of algorithms, processes, and systems in
support of Naval operations

• Data Systems and Management: Devices, interfaces, and inter-
connects; storage architectures and data organizations, addressing
and indexing; continuity, backup, and recovery; resilience; models,
analytics, and visualization; large data sets and data mining

• Autonomous Systems: design, construction, and operation of
autonomous systems including unmanned vehicles; analysis tools
for security, forensics, and intelligence; basic skills including arti-
ficial intelligence, knowledge management and representation,
machine learning, heuristic search, and data mining.5

While the above examples demonstrate that the services have
their own systems and infrastructures for tracking relevant skills and
experiences, these data are often used to supplement formal manpower
tracking and therefore cannot be used to fully define the software
acquisition workforce. Nonetheless, these data are a useful resource for
preliminary analysis and to locate areas where software functions are
clearly being performed.

5 Naval Postgraduate School, Computer Science—Curriculum 368 (Resident), Curricu-
lum 376 (Distance Learning), Academic Catalog, 2019.

70 Software Acquisition Workforce Initiative for the Department of Defense

Defense Acquisition Workforce

DoD regularly collects and reports data on the acquisition workforce
by linking files maintained by the Defense Manpower Data Center
(DMDC).6 These data include information about the composition
(e.g., demographic characteristics, education level, and certification
level) of each acquisition career field over time. However, because no
acquisition career field is specific to software, the data do not provide
any insights into the number, composition, or distribution of software
acquisition professionals. DMDC also has some information about the
specific degrees held by military and civilian personnel (e.g., computer
science), which could be useful for future analyses to describe the edu-
cational backgrounds of software acquisition professionals.

Options to Track and Manage a Software Acquisition
Workforce

In the following sections, we present several options that have been
used by DoD and related organizations to track personnel. Each option
and its key considerations are summarized in Table 7.2. In some cases,
options can provide only a snapshot of the workforce suitable for short-
term solutions, whereas other options may require significant long-term
planning, coordination, and approval from external agencies. We con-
sider these factors in our discussion and offer courses of action that bal-
ance resource requirements with desired outcomes in the next chapter.

Data Call

A data call requesting the services and specifically DACMs to iden-
tify personnel who perform software functions is the most direct strat-
egy for identifying personnel who perform software functions. This
approach has been used to identify personnel who perform earned
value management functions that are designed to measure and monitor
program performance. Although the size of the workforce performing

6 Susan M. Gates, Brian Phillips, Michael H. Powell, Elizabeth Roth, and Joyce S. Marks,
Analyses of the Department of Defense Acquisition Workforce: Update to Methods and Results
Through FY 2017, Santa Monica, Calif.: RAND Corporation, RR-2492-OSD, 2018.

Identifying, Tracking, and Managing a Software Acquisition Workforce 71

Table 7.2
Summary of Workforce Tracking Options

Option Primary Outcome Example Inputs Key Considerations

Data Call Snapshot
of software
workforce
positions and
major duties

• Criteria for eligibility
as software acquisi-
tion professional

• Desired data (e.g.,
major job functions)

• Supervisor responses
to data call

• Short-term solution
• May require incentive

to respond to data call

Coding
Positions/
Billets

Information to
count number
and type of
software
acquisition
positions

• Criteria for eligible
positions and coding

• Training supervisors
to code positions

• Positions may not
 provide accurate
information about
individual qualifica-
tions or proficiency

• Position duties may
not reflect actual
work performed

Coding skills,
experiences,
and
education
(SEE)

Information
about workforce
readiness and
capabilities

• Transcripts, degrees,
and certificates

• Supervisor and
self-evaluations

• Assignments

• Less reliable coding
for subjective SEE

• Resource-intensive
to verify skills and
quality of experiences

Unofficial
Job Titles

Tailored job
titles to facilitate
tracking and
recruiting

• New job titles and
corresponding duties

• Supervisor mapping
of existing positions
to new job titles

• Limited structure for
workforce planning
and management
(e.g., compensation,
training)

New
Acquisition
Career
Field(s)

Software-
specific career
field(s) for
acquisition
coded positions

• HCI coordination
with acquisition
 programs and DAU

• New DAU course
 curriculum and
 certification criteria

• Supervisor mapping
of existing positions
to new jobs

• USD (A&S) and HCI
can determine the
level of training and
education required

• No information on
software professionals
outside of acquisition

New
Occupational
Series

Government-
wide
implementation
of software
workforce
strategic plan

• Many inputs required
by OPM

• Requires long-term
commitment and data

72 Software Acquisition Workforce Initiative for the Department of Defense

earned value management is arguably considerably smaller than that of
software acquisition, similar principles apply. That is, a detailed defini-
tion is provided to supervisors and/or employees, who then indicate if
they perform those functions.

Data calls can be limited in several ways. First, a data call pro-
vides a snapshot of the workforce at a specific point in time. Hence,
additional data calls would be required to capture changes in work-
force structure and composition. Second, the success of the data call
is dependent on the response rates across the services. A low response
rate may limit the value gained from a data call especially if a primary
objective is to identify all personnel who perform software functions.
A third limitation is that the accuracy of the data may be difficult to
verify particularly in cases of underreporting. Follow-on surveys may
also be needed to ensure that identified personnel meet the criteria to
be included in the software acquisition workforce.

Flagging Positions/Billets (Coding Positions as Software)

Position or billet codes are commonly used to track employees in specific
subspecialty areas. For example, OPM recently developed the Cyber-
security Category/Specialty Area Code to identify cybersecurity posi-
tions government-wide. Similar to the software acquisition workforce,
“the cyber workforce is occupationally cross-cutting, multi- faceted,
and encompasses a variety of contexts, roles, and occupations.”7 In con-
sideration of these characteristics, OPM established the cyber security
code to allow agencies to “more effectively identify the cybersecurity
workforce, determine baseline capabilities, examine hiring trends,
identify skill gaps, and more effectively recruit, hire, train, develop and
retain an effective cybersecurity workforce.”8

DoD could pursue a similar strategy to define and code software
positions across the services. Coding software positions would provide
the same benefits and help to establish the data required to determine
if an official OPM position title is needed government-wide. At a mini-

7 OPM, Interpretative Guidance for Cybersecurity Positions: Attracting, Hiring and Retaining
a Federal Cybersecurity Workforce, October 11, 2018, p. 21.
8 OPM, 2018, p. 19.

Identifying, Tracking, and Managing a Software Acquisition Workforce 73

mum, DoD could conduct the analyses to address critical questions
about the software workforce and subsequently use these analyses to
determine how best to manage this workforce.

Skills, Experiences, and Education Identifiers

The services already track a variety of skills, experiences, and educa-
tion (SEE). Adding a series of codes to identify software skills and
qualifications could be useful to identify who performs software func-
tions and to uncover potential skill gaps. Positions/billets could also
be coded using the same SEE to ensure that assignments are filled
with qualified personnel. To achieve these benefits, DoD would need
to identify a limited number of SEE that are important to effective
job performance. If there are too many SEE to easily track, the codes
may become unreliable and lose utility. Another challenge in effec-
tively using SEE is to ensure that there are clear criteria that specify
when someone should be coded with SEE. Some SEE will be fairly
simple to evaluate (e.g., completed DoD course), but other codes may
be more subjective (e.g., participated in Agile software development).
To the extent possible, SEE should be objective, verifiable, and tied to
important outcomes.

Unofficial Job Titles

The flexibility to use unofficial job titles, per OPM, may provide DoD
with another option for tracking software professionals. Job titles could
also be tailored to increase probability that job search results return
relevant job opportunities and to better coincide with applicant expec-
tations. These benefits assume that DoD agencies coordinate to decide
on which job titles to use, identify the associated roles and responsibili-
ties, and code existing and future positions. As with other options (e.g.,
skill identifiers), retroactively changing job titles for current employees
would require an extensive effort to coordinate and then update the
various systems of record.

New Acquisition Career Field

Directly under the control of USD (A&S), HCI could coordinate the
development of one or more acquisition career fields specific to soft-

74 Software Acquisition Workforce Initiative for the Department of Defense

ware acquisition.9 Creating a new acquisition career field would rein-
force communications about the importance of software and would
require substantially less time and effort compared with creating a new
OPM occupational series (discussed next). Furthermore, a new acqui-
sition career field would provide a focal point for talent management
efforts including recruiting, training, and certification, which are tai-
lored specifically to meet career field and acquisition program needs.

There are a few drawbacks with this option. First, a new acqui-
sition career field would be limited to those who are currently coded
as an acquisition professional (e.g., greater than 50 percent of duties).
Therefore, software professionals who have their primary duties as
nonacquisition could not be tracked using this approach. The implica-
tions of this limitation will be unknown until data that can determine
how software professionals are distributed across DoD are collected.

New Office of Personnel Management Occupational Series

Estimates provided by the Bureau of Labor Statistics (BLS) indicate
that there were over 1.25 million software developer jobs in the United
States in 2016, with a growth projection of 24 percent through 2026.10
These positions include two broad types of software developers: those
for applications and those for systems software. Although tracked by
BLS, these occupations are not part of the federal government occupa-
tional series; therefore, software professionals in DoD cannot be easily
identified. A new occupational series would provide similar capabili-
ties to track military and civilian (federal government) software pro-
fessionals. If the occupational series aligned with the BLS classifica-
tion system, comparisons could be made in total compensation and job
growth between DoD, the federal government, and the commercial
sector. These types of comparisons provide critical data for understand-
ing factors and policies that could influence recruitment and retention

9 As suggested by the Executive Secretary of the IT FIPT, DoD could also consider rede-
signing the IT career field to formally incorporate software acquisition—a suggestion, which
follows from the original designation of the IT acquisition career field as Software Acquisi-
tion Management.
10 Bureau of Labor Statistics, U.S. Department of Labor, “Software Developers,” Occupa-
tional Outlook Handbook, April 13, 2018.

Identifying, Tracking, and Managing a Software Acquisition Workforce 75

of skilled personnel. An occupational series would also provide struc-
ture for developing career paths that could support transitions between
DoD and other agencies.

The primary disadvantage to this approach is the limited amount
of government-wide data on software professionals needed to establish
a new occupational series. OPM specifies the criteria needed to fully
consider the creation of a new occupational series. The specific details
of these criteria were provided in email response by OPM:

All OPM GS Position Classification Standards (PCS) are consis-
tent with the grade-level definitions of work established by law.
These definitions are based on the difficulty and responsibility of
the work at each level and the qualifications required to do that
work. All occupations change over time, some more rapidly and
profoundly than others, but the fundamental duty and responsi-
bility patterns and qualifications required in an occupation nor-
mally remain stable. Therefore, careful application of the appro-
priate PCS to work performed should yield the correct grade for
a position irrespective of date written. Any duties not specifically
referenced in a PCS can be evaluated properly by comparison
with similar or related duties the PCS does describe, as well as
with the entire pattern of grade-level characteristics.

Agencies may submit requests for updates to standards
through their Chief Human Capital Officers for OPM to con-
sider establishing new or revising existing standards at any time.
The formal request must come through an agency’s Headquarters
Human Resources Office. Agency requests for new standards and
revisions must include the following basic information in order to
be properly considered:

a. The current classification of the covered positions;
b. The positions duties and responsibilities;
c. Employment data—the number of impacted positions and

their current classification (e.g., pay plan, title, occupational
series, and grade);

d. Number of employees working in specialty areas and/or
mixed jobs;

e. Organizational charts clearly identifying positions;

76 Software Acquisition Workforce Initiative for the Department of Defense

f. Explanation of why the current classification/qualification
standard(s) is/are not effective;

g. Supporting documentation of classification difficulties;
h. Required competencies and/or knowledge, skills, and abili-

ties required for performing work;
i. Job analysis supporting required competencies and/or knowl-

edge, skills and abilities required;
j. Copies of current official position descriptions and other

related position classification information;
k. Copies of current performance standards for the work;
l. Copies of agency and OPM appeal decisions for the work;
m. Copies of job opportunity announcements used to fill

positions;
n. Statistical data/information showing current recruitment

efforts and challenges filling positions;
o. Statistical data/information showing current retention and

turnover issues;
p. Information concerning use of HR Flexibilities such as 3Rs

[recruitment, relocation, and retention incentives] and Spe-
cial Salary Rates;

q. Related agency studies/surveys of positions;
r. Any other pertinent information related to this work at your

agency; and
s. Government-wide impact (e.g., any other agencies likely to

have covered positions).11

A review of these criteria suggests that developing a request to
create a new occupational series would require a long-term strategy
to coordinate across agencies and DoD to collect the required data.
Furthermore, coordinating and securing OPM approval may require
a multiyear commitment as demonstrated by resources and time dedi-
cated to the recent creation of the cybersecurity occupational series.

11 OPM, email exchange on requirements to request a new occupational series, October 18,
2018.

77

CHAPTER EIGHT

Recommendations

There are two fundamental recommendations that DoD should imme-
diately follow to address potential concerns with the software acquisi-
tion workforce. First, DoD needs to adopt a strategy to identify who is
in the software acquisition workforce. Second, steps should be taken to
validate the software acquisition competencies presented in this report.
We elaborate in this chapter on each of these recommendations.

Recommendation 1: Identify Who Is in the Software
Acquisition Workforce

As described in Chapter Seven, the options for tracking and manag-
ing a software acquisition workforce may require different levels of
resources and offer different outcomes. Options range from short-term
solutions such as asking supervisors to identify who performs software
acquisition functions (data call) to modifications of existing occupa-
tional classification structures (i.e., occupational series, acquisition
career field). Midrange solutions (e.g., coding positions or individual
SEE) can capture desired data without changing occupational struc-
tures, but still require considerable resources to develop the criteria for
coding and training individuals to carry out the coding.

Considering the resources required and desired outcomes to begin
tracking the software acquisition workforce, we recommend initiating a
data call that would identify personnel who perform software functions.
Other options either require greater amount of resources and coordi-
nation or do not directly address who performs software functions.

78 Software Acquisition Workforce Initiative for the Department of Defense

More specifically, identifying new career fields either across the fed-
eral government or within the DoD acquisition community requires
not only a baseline knowledge of who performs software functions but
also updating other talent management components (e.g., hiring crite-
ria, training, and education). Such an option should be pursued only
once a clear need has been identified. A less resource-intensive option
would be to code positions or billets. However, this option does not
provide information on the qualifications or competencies of individu-
als filling those positions; instead, it provides only a better indication
of the demand for software professionals. Understanding the demand
for software professionals is an important part of a workforce planning
strategy but does not directly address the question of who performs
software functions and what their competencies are.

Considering the different options, we recommend that a data call
should be adopted as an initial step that can provide the information
necessary to determine if more permanent tracking mechanisms are
needed. For example, if DoD determines that there is sufficient jus-
tification to submit a formal request to OPM for a new occupational
series, the results of a data call will be critical to providing information
on how many personnel will be impacted and the current classification
of those personnel to include current title, pay, and grade.

We recommend limiting the data call initially to personnel within
the acquisition community to promote rapid implementation of com-
petencies across acquisition career fields. DoD could use the data
call results to determine the need to expand tracking efforts beyond
the acquisition community. Finally, the data call results should be
used to guide discussions on the need and level of effort required for
more formal tracking mechanisms (e.g., do the data indicate a need to
develop a software subspecialty or career field?).

Identifying who performs software functions may at first appear
simple but requires significant time, resources, and coordination. To
ensure accurate and reliable data on the workforce, DoD should appoint
a senior leader with the authority to direct data collection efforts. Such
authority is necessary to ensure the cooperation and timely responses
from civilian and military personnel, including active-duty, guard, and
reserve components. The time and resources needed to plan and exe-

Recommendations 79

cute these data collection efforts will require coordination and support
across services, programs, and functional career fields. Without full
support from key stakeholders, any effort to identify the workforce will
be delayed and likely incomplete.

Recommendation 2: Validate the Software Acquisition
Competencies

After the software acquisition workforce has been identified, the com-
petencies should be validated. At a minimum, DoD needs to collect
information from the workforce to evaluate the relative importance
of each competency. This step will require coordination with DCPAS
to determine the most appropriate way forward given limitations of
DCAT. As described in Chapter Two, DCAT is the official tool for
measuring proficiency gaps and proficiency levels in the DoD civil-
ian workforce. However, due to technical requirements coded into the
software, DCAT is limited in the number of competencies that can
feasibly be fielded at any one time.

Options for Validating Software Acquisition Competencies

Given the current challenges associated with DCAT, we reviewed alter-
native approaches to gather the necessary data for validation. We con-
sidered four options.

1. Aggregate similar competencies to reduce the number of com-
petencies to 12 or fewer (initially recommended by DCPAS).
However, this option loses valuable information and specificity
that are needed to guide training and education.

2. Update the DCAT software (or use different software) by elimi-
nating the requirement for a match and restructuring the design.
For example, a more sophisticated branching could be used in
which respondents start by answering one primary question
about each competency (i.e., relative importance) and then are
provided only with follow-on questions for competencies meet-
ing some threshold in importance (e.g., critical competencies).

80 Software Acquisition Workforce Initiative for the Department of Defense

Of course, this approach assumes that the branching would
help to reduce the number of competencies that a supervisor
and employee would need to evaluate.

3. Administer a stratified random sample of competencies to
potential respondents. For example, one respondent may evalu-
ate competencies #1 through #12, and another respondent may
evaluate competencies #6 through #18. If a sufficient number of
responses are received, accurate estimates of the relative impor-
tance of competencies and of competency gaps could be made.
This approach would require a complex sampling plan to ensure
representative responses are received from subgroups (e.g., career
fields) and that supervisors and their employees received the
same set of competencies.

4. Group competencies into meaningful categories that align with
software positions, career paths, or functions. This approach
would allow for DCAT to be administered in a much more
targeted way using fewer and potentially more relevant compe-
tencies for each respondent. However, to implement this option
effectively, the workforce would need to be defined and orga-
nized into meaningful groups (see Chapter Seven). As an exam-
ple, we offer a notional grouping of software acquisition compe-
tencies based on our professional expertise and observations of
the commercial industry in Appendix D.

Balancing Needs and Resource Requirements

Noting current limitations with DCAT and the need to validate compe-
tencies, we recommend either reprogramming DCAT or selecting another
software tool. Most importantly, we recommend limiting the number of
questions to focus on relative importance of competencies. Reducing the
number of questions will help to minimize “survey fatigue” and facili-
tate higher response rates. Future analyses that should include assess-
ments of proficiency and workforce competency gaps could then focus
on a more limited set of the most critical competencies relevant to tar-
geted software professionals. If DCAT cannot be reprogrammed, the
competencies could be administered in chunks using stratified random
sampling such that each respondent “sees” only 10 to 12 competencies.

Recommendations 81

We further recommend consulting a statistician to ensure that the
sample of respondents are representative of important perspectives (e.g., ser-
vice, years of experience, acquisition category (ACAT) level.1 A well-
designed sampling plan is needed so that appropriate statistical analy-
ses can be conducted to address critical questions about the workforce.
These questions may include the following:

• How does the importance of competencies vary across different
job groups?

 – occupational series
 – acquisition career fields
 – acquisition programs

• Which competencies will be the most important in the future?
• How well do supervisors and job incumbents agree on which

competencies are most and least important?
• How does the importance of competencies vary by job grade and

acquisition certification level?
• Which competencies are needed on day 1?

Finally, we recommend planning future validation studies that
establish links between performance on competencies and outcome mea-
sures. For example, demonstrating that higher proficiency in a set of
competencies is associated with better performance (e.g., fewer errors,
faster delivery) provides some evidence on the relative importance of
these competencies. These types of criterion-related validation studies
can take multiple years and considerable resources to plan and execute.
Because appropriate performance measures may not be readily avail-
able, they would first need to be developed and evaluated to ensure
that the measures reflect true performance. Considering these factors,
validation studies should be integrated into a long-term strategy for
evaluating and managing the software acquisition workforce.

1 ACAT is an acquisition category that is based on level of funding provided to a program.
For a description of ACAT categories and criteria, see DAU, Defense Acquisition Guidebook,
undated, Chapter 1, Section 3.2.3.1.

82 Software Acquisition Workforce Initiative for the Department of Defense

Conclusion

This report presents the methodology for the development of com-
petencies that could be used to train, develop, and manage a soft-
ware acquisition workforce. We compare these competencies with the
training courses provided by DAU to identify potential gaps. Both of
these efforts should be viewed as first steps in a long-term strategy
to define and manage a software acquisition workforce. Further anal-
ysis is required to validate the competencies and to determine who
is performing software functions. To gain complete traction on this
problem, DoD needs to appoint a senior leader who can implement
these recommendations across the services. Without a champion, any
improvements will be slow and sporadic.

83

APPENDIX A

Acquisition Career Fields

Table A.1 lists each of the acquisition career fields and corresponding
example activities and duties that are performed. The example activi-
ties for each career field were extracted from the Defense Acquisition
University website.

Table A.1
Acquisition Career Fields

Acquisition Career Field Representative Assignments and Activities

Auditing • Audits financial records, reports, management con-
trols, policies, and practices affecting or reflecting the
financial condition and operation of DoD and other
federal agency contractors

Business—Cost
Estimating

• Relates the processes of life-cycle cost estimating
within the context of materiel system acquisition in
DoD

Business—Financial
Management

• Applies basic concepts of budget and program prin-
ciples, policies, procedures, concepts, standards, and
terminology, as well as a general knowledge of the
financial management and business operation systems

• Possesses a basic knowledge of acquisition; recognizes
the life-cycle process of an acquisition program

• Reviews, allocates, or manages acquisition resources
and programs

Contracting • Operational Contracting: contracting functions in
 support of post, camp, or stations

• Research and Development: contracting functions in
support of research and development

• System Acquisition: contracting functions in support of
systems acquisition to include all ACAT programs

• Logistics and Sustainment: contracting functions per-
formed by the Defense Logistics Agency or by other
offices to sustain weapon systems

84 Software Acquisition Workforce Initiative for the Department of Defense

Table A.1—Continued

Acquisition Career Field Representative Assignments and Activities

ENG • Functional Engineer: 1. plans, organizes, conducts,
and/or monitors engineering activities relating to the
design, development, fabrication, installation, modi-
fication, sustainment, and/or analysis of systems or
systems components for a functional specialty (i.e.,
reliability and maintainability, systems safety, mate-
rials, avionics, structures, propulsion, chemical/bio-
logical, human systems interfaces, weapons, Computer
Engineer/Scientist, etc.); 2. demonstrates how systems
engineering technical processes and technical man-
agement processes guide engineering activities for a
functional specialty.

• General Engineer: 1. plans, organizes, conducts, and/or
monitors engineering design, development, and sus-
tainment activities for systems or systems components;
2. demonstrates how systems engineering technical
processes and technical management processes guide
design, development, and sustainment activities

Facilities Engineering
(FE)

• Conducts actions that support one or more facet of FE;
planning; design; construction; environmental man-
agement; base operations, support, and housing; real
estate; and real property maintenance

• May serve as an IPT member, representing a specific
FE functional area

Industrial and Contract
Property Management

• Oversees and manages life-cycle processes for
government- owned property being utilized by con-
tractors (i.e., government property in the possession
of contractors and, in some instances, government-
owned contractor-operated plants)

• Provides advice and assistance on property-related
matters during acquisition planning, contract forma-
tion, and contract management

• Reviews contractor’s purchasing system as it pertains
to property management

IT • Central Design Activity: identifies and describes basic
concepts of software engineering and development
activities; EA; best practices; IT systems engineering;
information assurance/cybersecurity; IT-related tech-
nologies; test and evaluation processes; and verifica-
tion and validation processes

• Project Office/Field Activities: Identifies and describes
the following: IT program management approaches;
emerging IT acquisition strategies; best practices; IT-
related performance measures and quality manage-
ment; acquisition planning, solicitation, and adminis-
tration; information assurance/cybersecurity; test and
evaluation processes; verification and validation pro-
cesses; and fielding and sustaining IT systems

Acquisition Career Fields 85

Table A.1—Continued

Acquisition Career Field Representative Assignments and Activities

Life-Cycle Logistics • Design Interface: understand and support the systems
engineering process to impact the design from its
inception throughout the life cycle, facilitating sup-
portability to maximize the availability, effectiveness,
and capability of the system at the lowest total owner-
ship cost

• Sustaining ENG: understand, recognize the importance
of, and assist in supporting in-service systems in their
operational environments

• Technical Data: support the identification of, planning
for, resourcing, and implementation of management
actions to facilitate development and acquisition of
information to operate, install, maintain, and train on
the equipment to maximize its effectiveness and avail-
ability; effectively catalog and acquire spare/repair
parts, support equipment, and all classes of supply;
define the configuration baseline of the system (hard-
ware and software) to effectively support the war-
fighter with the best capability at the time it is needed

Production, Quality, and
Manufacturing

• Engineer: 1. establishes production planning and
control processes and measures the overall effective-
ness of the organization, methods, systems, and pro-
cedures; 2. builds producibility into designs (tooling,
facilities, and products); 3. builds quality characteristics
into the designs of products and services; 4. builds
quality requirements into technical review criteria and
program planning

PM • Weapon Systems: 1. participates in an IPT delivering a
weapon system, C2/network-centric system, or space
system; 2. performs financial and status reporting and
basic logistic activities; 3. supports pre-award contract
activities and workload planning and scheduling

• Services: assists in acquisition planning, assessing risk
(technical, cost, and schedule), and contract tracking
and performance evaluation

• Business Management Systems/IT: participates in a
business process IPT, fundamentals of enterprise inte-
gration, and outcome-based performance measures

Purchasing • Purchases, rents, or leases supplies, services, and
equipment through either simplified acquisition
procedures or placement of orders against preestab-
lished contractual instruments to support operational
requirements

Science and Technology
Management

• Conducts and/or monitors science and technology
activities including basic research, applied research,
and/or advanced technology development to support
acquisition programs

86 Software Acquisition Workforce Initiative for the Department of Defense

Table A.1—Continued

Acquisition Career Field Representative Assignments and Activities

Small Business • Not available on DAU website

Test and Evaluation • Program Management and Matrix Support: 1. supports
the program’s T&E working-level IPT; 2. supports devel-
opment of program’s T&E strategy, approach, process,
schedule, and resource requirements; 3. supports coor-
dination of cybersecurity T&E IAW DoDI 5000.02 and
the DoD Risk Management Framework; 4. supports
implementation of an evaluation methodology and
framework for product/system under test; 5. supports
development of T&E materials/data for technical and
progress reviews, to include risk assessment

• Range/Lab/Field Supporting Activities: 1. supports
identification and scheduling of T&E resources to
include workforce, infrastructure, and budgets to sup-
port testing at the respective facility; 2. reviews facility
T&E tools (IT, video, targets, simulators, stimulators,
instrumentation, etc.) and clearly understands their
capabilities; 3. supports facility test plan development;
4. supports development of T&E plans and mitigation
of safety risks for test plans during test execution;
5. assists in test execution, data collection, analysis,
and reporting

87

APPENDIX B

Trends in Modern Software Development Trends

In this appendix, we provide a detailed summary of industry trends
and modern software practices. Because software development prac-
tices often outpace traditional peer-reviewed research, our review com-
bines information from several sources including peer-reviewed studies,
gray literature (e.g., think tanks, research institutes, DoD government
documents), and professional literature (e.g., blog posts, commercial
industry white papers).

We have already identified four general, interrelated trends in
Chapter Four. These concern changes in the sequencing of the activi-
ties used in the production of software, described as an SDLC model;
changes in software development architecture from monolithic devel-
opment to ecosystems; increasing diversity in software deployment
architectures; and increasing automation in the practice of software
development. Here, we elaborate further on these trends.

Life-Cycle Trends: Waterfall to Agile

Software development practice is often described in relation to an
SDLC model that indicates how the practices necessary to produce
working software are orchestrated in time. The most commonly refer-
enced SDLCs are Waterfall and Agile, with almost an infinite variety of
life cycles in actual use. Although we describe each SDLC in its ideal-
ized form in the sections below, one of the authors of this report has
over 40 years in software development and cautions that she has never
seen either idealized model used on any project. What is true is that

88 Software Acquisition Workforce Initiative for the Department of Defense

the trend in software over those 40 years has been to shorten the time
between idea and working product in an attempt to improve software
quality and maximize the potential of software to adapt to changing
environments.

Waterfall Software Development Lifecycle

The Waterfall SDLC is an idealized approach largely modeled after
hardware development. In this model, development stages are dis-
tinct, do not overlap, and happen in sequential order.1 Progress is one-
directional. For a stage to begin, the prior stage must be completed,
and once a stage has been completed, it is not revisited.2 In a Water-
fall development model, software is conceived as progressing through
distinct stages; the number of stages is not important, but the dis-
tinct nature of the stages and the association of each stage with a spe-
cific activity/practice are. The literature suggests seven stages: concep-
tion, initiation, requirements and analysis, design, implementation (or
code), testing, and maintenance (see Figure C.1). Testing, per older
DoD software acquisition compliance documents such as MIL-STD-
498,3 is further broken down into unit test, integration test, and final
qualification and/or acceptance test.4 Similarly, the requirements and
analysis activity is often broken down hierarchically by system, subsys-
tems, and units to mimic hardware development nomenclature. The
Waterfall activities are often depicted in a “V” configuration, with vali-
dation occurring on the left branch of the V and verification activities

1 S. Balaji and M. Sundararajan Murugaiyan, “Waterfall vs. V-Model vs. Agile: A Com-
parative Study on SDLC,” International Journal of Information Technology and Business Man-
agement, 2012, pp. 26–30; Nayan B. Ruparelia, “Software Development Lifecycle Models,”
ACM SIGSOFT Software Engineering Notes, Vol. 35, No. 3, May 2010, pp. 8–13.
2 Association of Modern Technologies Professionals, “Software Development Methodolo-
gies,” 2018; Smartsheet, “What’s the Difference? Agile vs Scrum vs Waterfall vs Kanban,”
2018.
3 DoD Military Standard 498, Software Development and Documentation, December 5,
1994.
4 DoD Software Development Plan templates still use this nomenclature to refer to the
various levels of testing that software products complete. See, for example, Berton Manning,
“Software Development: Software Management Plan,” AcqNotes, June 15, 2018.

Trends in Modern Software Development Trends 89

occurring on the right branch.5 This system engineering V depiction
is particularly useful in emphasizing the importance of validation and
verification for safety/security critical or high-availability systems.

The trend to automated pipelines has blurred many of the for-
merly sharp delineations between the activities of the Waterfall model.
When everything from code onward has been automated in a set of
tooling, the model is less useful as a means for thinking about the orga-
nization of the software development process.

The delineations between early activities of the Waterfall SDLC
are also becoming increasingly blurred. Modern software architectural
concepts bridge the gap between requirements, design, and implemen-
tation in ways that hardware architecture does not. Software archi-
tectures are largely abstract and are expressed in multiple dimensions
(static versus dynamic, development versus deployment, user capa-
bilities versus quality attributes) that interconnect the requirements,
design, and implementation activities.

With those caveats in mind, we offer a brief description of the
Waterfall stages as derived from the literature and, to provide per-
spective, compare the software Waterfall with the Joint Capabilities
Integration and Development System (JCIDS)/Defense Acquisition
System (DAS) stages used in DoD system development.6 We caution,
however, that our mapping of the software Waterfall to JCIDS/DAS
stages in Figure B.1 is highly simplified. The astute reader will notice
that although both life-cycle models share the characteristic of being
linearly staged, the maturity of software as it passes through its early
gates is lower than that required in the JCIDS/DAS and that it passes

5 For an example of the “V” model, see G. K. Hanssen, B. Haugset, T. Stålhane, T. Mykle-
bust, and I. Kulbrandstad, “Quality Assurance in Scrum Applied to Safety Critical Soft-
ware,” in H. Sharp and T. Hall, eds., Agile Processes, in Software Engineering, and Extreme
Programming. XP 2016. Lecture Notes in Business Information Processing, Vol. 251, Cham.:
Springer, 2016.
6 Much of the literature on the Waterfall SDLC may be biased in a desire to contrast it
unfavorably with Agile SDLCs and emphasizes the rigidity of the Waterfall. However, the
experience of SMEs we contacted is that the rigidity of the Waterfall is greatly exaggerated,
and what matters is the time span between phases.

90 So
ftw

are A
cq

u
isitio

n
 W

o
rkfo

rce In
itiative fo

r th
e D

ep
artm

en
t o

f D
efen

se

Figure B.1
Waterfall Model Activity Flow Compared to Joint Capabilities Integration and Development System/
Defense Acquisition System

SOURCE: DAU, “Figure 3: JCIDS and Defense Acquisition,” Defense Acquisition Guidebook, undated.

Materiel
Solution
Analysis
(MSA)

Technology
Maturation &
Risk Reduction

(TMRR)

Engineering &
Manufacturing
Development

(EMD)

Production &
Deployment

Operations &
Support

Operational Test and
Evaluation (OT&E) Sustainment Disposal

LRIP
CPD

AoA TMRR results
re�ected in CDD

EMD results
re�ected in CPD

MDA RVA RVARVA MDA MDA MDA MDA

JC
ID

S/
D

A
S

W
at

er
fa

ll

CBA CDDDraft
CDD

A B C

Materiel
Development

Decision

CDD
Validation

Requirements
& Analysis

Conception

Initiation

Implementation

Design

Testing

Maintenance

Software
“Click”

Deployment

AoA: Analysis of Alternatives
ICD: Initial Capabilities Document
CBA: Capabilities-Based Assessment
CDD: Capability Development Document
CPD: Capability Production Document
FRP: Full Rate Production
MDA: Milestone Decision Authority
 (see DoDI 5000.02)
LRIP: Low Rate Initial Production
RFP: Request for Proposal
RVA: Requirements Validation Authority
 (see JCIDS Manual)

Development RFP
Release Decision

Full
Operational
Capability

(FOC)

Initial
Operational
Capability

(IOC)
FRP

Decision

ICD

Trends in Modern Software Development Trends 91

through its later gates with a maturity much higher than that required
in the JCIDS/DAS.7

During the conception stage, a rough assessment of the project
is produced. This includes an assessment of why the project would be
beneficial, as well as general goals and scoping of the project. Ideally,
an initial cost estimate and rough timeline are also generated.8 The
conception stage ends, and the initiation stage begins with manage-
ment approval of the basic concept. In DoD acquisitions, this is often
signaled by the release of a draft Capabilities Development Document.

Once the project has been approved, the initiation stage begins.
During this stage, the project team is hired, and a more detailed proj-
ect plan is developed. This also includes the clear defining of proj-
ect scope, objectives, deliverables, and timeline. For DoD programs,
this stage is associated with developing an RFP and performing source
selection activities.

The requirements and analysis stage may mark the first formal
meeting between the project team and the customer/stakeholders.
During this stage, needs are identified and a requirements specifica-
tion document is developed, identifying requirements for each proj-
ect goal.9 In some cases, system requirements (i.e., components needed
for building the system, including both hardware and software) and
software requirements (i.e., the expected level of functionality for the
software being developed) are established separately.10 The aggregated
requirements—framed within the initial conception of the software—
are then analyzed to determine project feasibility.11

7 In fact, given the highly automated nature of software build, test, and deployment today,
software passes from a JCIDS/DAS “Gate C” maturity to an initial operational capability
with one click of a button.
8 Smartsheet, 2018.
9 Mark Lotz, “Waterfall vs. Agile: Which Is the Right Development Methodology for Your
Project?,” Segue Technologies, July 5, 2013.
10 Nabil Mohammed Ali Munassar and A. Govardhan, “A Comparison Between Five
Models of Software Engineering,” International Journal of Computer Science Issues, Vol. 7,
No. 5, September 2010, pp. 94–101.
11 Note that in DoD JCIDS, the feasibility of the program was decided before the project
team was formed and before requirements analysis, but in the software Waterfall, the feasi-
bility decision comes after.

92 Software Acquisition Workforce Initiative for the Department of Defense

Once requirements have been agreed upon and the project has
been deemed feasible, the design stage begins. Based on the require-
ment specification documents created in the prior phase, the project
team develops design specifications for both the architectural design
(i.e., determines the software framework by defining the major compo-
nents and their interactions, but not the actual structure of each com-
ponent), as well as the detailed design (i.e., defines how each component
is implemented). These are then converted into models and prototypes,
which are evaluated, and subsequently a design is finalized.12

The implementation stage uses the documents, models, and eval-
uations generated over the past four stages to write the code that imple-
ments the software. After coding is complete, the testing stages begin.
The newly developed software is tested for bugs and defects utiliz-
ing a wide range of test tools at various levels of software integration;
and user-acceptance tests are conducted, ensuring that the software
can execute tasks from real-world scenarios by the users for whom the
software was developed. After ample testing has been conducted and
all necessary fixes have been made, the final product is released to
the customer. The trend toward automation in software development
has largely collapsed these implementation and test stages, and there is
no significant period of time between when designs are finalized and
entry into the maintenance stage.

The final stage—maintenance—is meant to address any issues
that may arise from future use of the software. This includes any neces-
sary product updates or patches required for changing needs or shifting
environments, and fixes for defects that were not uncovered during the
testing stage (or that arose as a result of updates).13

It is important to note that documentation is critical when uti-
lizing a Waterfall SDLC on a large program. Because generating and

12 The need to do a complete validation of the proposed design prior to moving into imple-
mentation is based on the fact that it is very expensive to make late changes in a Waterfall
model. Agile life-cycle models directly acknowledge and accommodate the inherent dif-
ficulty of correctly analyzing and predicting the behavior of complex software and systems.
Often, we fully understand which elements are important for modeling only after at least
part of the software is built.
13 Balaji and Sundararajan Murugaiyan, 2012, pp. 26–30.

Trends in Modern Software Development Trends 93

analyzing requirements may occur years before those requirements are
implemented or tested, clarity, correctness, and completeness of docu-
mentation are critical to program success. This is especially necessary
for large projects with significant personnel turnover over the course of
development.

Waterfall Development Teams

A software development team that utilizes the Waterfall approach is
often composed of smaller subteams, with each subteam mapped to
specific activity-based stages. A common practice is to have a software
system engineering team assigned to requirements, analysis, and archi-
tectural design; a software development team to take over for detailed
design, code, and developer testing; and an independent verification
and test team to take over in the later phases leading up to customer
delivery. Yet another team will often be assigned to long-term mainte-
nance and sustainment of the software. Handoffs between teams are
often formalized in an attempt to limit ambiguity.14 In DoD programs,
it is not uncommon for these teams to work under separate contracts,
thereby making the handoffs contractual interfaces.

Waterfall Software Development Life Cycle in Practice

Although the idealized Waterfall has all software capabilities developed
in one pass through the model, it has long been recognized that there
is value in building software incrementally. In complex systems that
have a significant number of dependencies among hardware, software,
and external elements, not all requirements and designs mature at the
same time. Waiting for “everything” to be set in stone is impractical
and unnecessary if the software development team does not have the
bandwidth to work on “everything” simultaneously. A variant of the
Waterfall, called “Incremental Build,” in which detailed design, code,
and developer testing are repeated for distinct capability subsets, was
the dominant DoD software acquisition life-cycle model in the 1990s
and well into the 2000s.

14 Ming Huo, J. Verner, Liming Zhu, and M. A. Baber, “Software Quality and Agile Meth-
ods,” Proceedings of the 28th Annual International Computer Software and Applications Con-
ference, 2004.

94 Software Acquisition Workforce Initiative for the Department of Defense

Agile Software Development Life Cycles

The term “Agile” in the context of software development is derived
from the 2001 “Manifesto for Agile Software Development”—a short
document signed by 17 leaders in the software industry who outlined
four values and 12 core principles that they believed were needed if
software development practice was to improve.15 The four values are
stated as a need to emphasize:

1. individuals and interactions over processes and tools
2. working software over comprehensive documentation
3. customer collaboration over contract negotiation
4. responding to change over following a plan.

Scott Ambler, one of today’s leading writers on software develop-
ment practice, explains these values as: tools and processes are impor-
tant, but a competent, effective team is more important; comprehen-
sive documentation helps users understand the software’s build, but the
main point of development is to develop useful software; a contract is
important, but cannot replace a close working relationship with cus-
tomers to discover their needs; and, a strategic plan is important, but
should be able to accommodate any changes in customers’ priorities,
their understanding of the problem, or any changes in the environment
(i.e., technological advances).16

The 12 core principles of the Agile Manifesto reflect these values.

1. Satisfy the customer through early and continuous delivery of
valuable software.

2. Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.

15 Kent Beck, James Grenning, Robert C. Martin, Mike Beedle, Jim Highsmith, Steve
Mellor, Arie van Bennekum, Andrew Hunt, Ken Schwaber, Alistair Cockburn, Ron Jeffries,
Jeff Sutherland, Ward Cunningham, Jon Kern, Dave Thomas, Martin Fowler, and Brian
Marick, “Manifesto for Agile Software Development,” 2001.
16 Scott Ambler, “Examining the Agile Manifesto,” Ambysoft, 2014.

Trends in Modern Software Development Trends 95

3. Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

4. Businesspeople and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

6. The most efficient and effective method of conveying infor-
mation to and within a development team is face-to-face con-
versation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The spon-

sors, developers, and users should be able to maintain a constant
pace indefinitely.

9. Continuous attention to technical excellence and good design
enhances agility.

10. Simplicity—the art of maximizing the amount of work not
done—is essential.

11. The best architectures, requirements, and designs emerge from
self-organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.17

“Agile,” then, began as a philosophy, not a development model or
set of practices. Dave Thomas, one of the “Manifesto’s” signatories, has
observed that “the word ‘agile’ has been subverted to the point where
it is effectively meaningless, and what passes for an agile community
seems to be largely an arena for consultants and vendors to hawk ser-
vices and products.”18 Keeping this caution in mind, we adopted the
word “modern” to describe the software competencies needed for DoD
acquisitions and distinguish an SDLC model from the practices used
to support it.

17 Beck et al., 2001.
18 From “Agile Is Dead (Long Live Agility),” quoted in Yvette Francino, “Is the Agile Mani-
festo Dead? Not by a Longshot,” Tech Beacon, undated.

96 Software Acquisition Workforce Initiative for the Department of Defense

There are many “Agile” SDLC models in the literature. Our
description below is derived primarily from Scott Ambler’s “High Level
Agile” SDLC and reflects what is often referred to as a “DevOps” or
“SecDevOps” process in which each iteration ends with working soft-
ware deployed to operations. We note significant variations in our
description.19

The initial stages of conception and initiation are much the same
as the Waterfall model, but after that, development is partitioned into
a series of “sprints,” each of which results in “working software” for a
set of “features” (see Figure B.2). The partitioning of capabilities for
Iterative development is common to all Agile SDLCs. In some Agile
SDLCs, the subsets of software developed in each iteration are defined
by “user stories,” in others by the test cases that must be passed. There
is significant variation in the duration of the sprint, with some models
using fixed “time-boxed” durations and others using what is called
“continuous” iteration. For small projects with few dependencies,
sprints are often measured in days or weeks. More complex projects
use a longer period, but there is a shared belief among Agile practitio-
ners that shorter sprints improve software quality. Another major ele-
ment of variation in Agile SDLCs is whether delivery and deployment
are included in the iteration. Often, the software is taken through
integration only within the sprint, with delivery and deployment per-
formed on “releases” of software that aggregate the results of several
sprints.

Although the conception and initiation phases of Agile—often
referred to together as “discovery”—are similar to those of Waterfall,
a key difference is that Agile SDLCs emphasize the early involvement
of the project team. In these early phases, the project team researches
the customer’s goals, challenges, business climate, and end-users both
independently and through face-to-face interactions with the custom-

19 There have been various attempts to illustrate the different branches of “Agile” software
methods that go by names such as Extreme Programming (XP), Lean Development (aka
Kanban), Scrum, DevOps, and SecDevOps. One of the more successful attempts to map
the various strains to specific variations in practice is the Agile Alliance’s “Subway Map to
Agile Practices,” 2018. See also Scott Ambler, “The Agile System Development Life Cycle
(SDLC),” Ambysoft, undated.

Tren
d

s in
 M

o
d

ern
 So

ftw
are D

evelo
p

m
en

t Tren
d

s 97

Figure B.2
Agile Model Process Flow Compared to Joint Capabilities Integration and Development System/Defense
Acquisition System

SOURCE: DAU, undated.

Materiel
Solution
Analysis
(MSA)

Technology
Maturation &
Risk Reduction

(TMRR)

Engineering &
Manufacturing
Development

(EMD)

Production &
Deployment

Operations &
Support

Operational Test and
Evaluation (OT&E) Sustainment Disposal

LRIP
CPD

AoA TMRR results
re�ected in CDD

EMD results
re�ected in CPD

MDA RVA RVARVA MDA MDA MDA MDA

JC
ID

S/
D

A
S

A
g

ile

CBA CDDDraft
CDD

A B C

Initiation

Initial Software
“Click” Deployment

“N” Cycle Software
“Click” Deployment

AoA: Analysis of Alternatives
ICD: Initial Capabilities Document
CBA: Capabilities-Based Assessment
CDD: Capability Development Document
CPD: Capability Production Document
FRP: Full Rate Production

MDA: Milestone Decision Authority
 (see DoDI 5000.02)
LRIP: Low Rate Initial Production
RFP: Request for Proposal
RVA: Requirements Validation Authority
 (see JCIDS Manual)

Development RFP
Release Decision

Full
Operational
Capability

(FOC)

Initial
Operational
Capability

(IOC)

FRP
Decision

ICD

Conception

Initial
Features
Subset

Initial
Sprint
Cycle

Desired
Features

Sprint
Cycle ‘N’

CDD
Validation

Materiel
Development

Decision

98 Software Acquisition Workforce Initiative for the Department of Defense

er.20 The result of these two phases is the desired capabilities/features/
stories set. There is wide variation in the level of detail captured at
this stage of development. Some SDLCs advocate that only the mini-
mum set of features and capabilities (the “minimum viable product”)
be defined during these early phases, while others advocate for a more
complete “wish list” of features and capabilities that the customer and
their end-users would ideally like incorporated into the software (often
referred to as the “backlog”). Both the minimum viable product defini-
tion and the complete backlog are of value, and our software compe-
tencies include the need for both.

“Iteration Zero” is often referenced separately in Agile SDLCs
to acknowledge that going from zero to something is generally much
harder than adding incremental functionality to existing software. The
selection of the initial subset of features to implement in the initial
iteration is made considering overall program risk and may often be
quite small in order to allow sufficient time to build team cohesion and
gain familiarity with the methods, processes, and tools to be used in
subsequent sprints. Well-integrated teams with experience in the meth-
ods, processes, and tools selected for use may choose to do an early
prototype of a particularly challenging or ill-defined capability during
Iteration Zero.

Each “sprint cycle”—also referred to as an “iteration”—essentially
contains all of the activities of the Waterfall development cycle,21 albeit
applied to a much smaller capability set and with no fixed sequenc-
ing between activities (a key distinguishing characteristic between the
Waterfall and Agile/“modern” SDLCs).22 Architectural designs are

20 Segue Technologies, “What Is Agile Software Development?” August 24, 2015.
21 The sequencing of activities within an iteration often does follow the traditional Water-
fall, but can also be varied based on need. For example, if the goal of the iteration is to
improve the timeliness or efficiency of the product, then the initial activity might be the
verification tasks needed to determine the performance of the current code, followed by
prototyping of alternative solutions and finally, based on evidence collected, revising the
architecture and models.
22 Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta, “Agile Software
Development Methods: Review and Analysis,” VTT Technical Research Centre of Finland,
2002; Association of Modern Technologies Professionals, 2018.

Trends in Modern Software Development Trends 99

revised; models are generated and evaluated; documents are gener-
ated; capabilities, features, and stories are coded; and software is veri-
fied.23 Once testing is complete, the product is ideally deployed to the
customer for feedback and the development team convenes to discuss
lessons learned.24 Subsequent product iterations “add on” capability
or sometimes refactor it based on feedback from the customer and/or
from lessons learned. In this way, an Agile SDLC allows for early dis-
covery of emergent issues and a more flexible response.25

Agile Development Teams

A development team that internalizes the values and principles of the
“Agile Manifesto” is often characterized as being cross-functional, self-
organizing, and highly collaborative. However, these teams may choose
to execute any SDLC, including the Waterfall. In the ideal environ-
ment the signatories of the “Agile Manifesto” envisioned, these teams
would be small in size, physically work in the same space, and have
short daily meetings (the daily stand up, or Scrum) to orient all team
members to any changes that may have occurred the previous day.26
This combination allows for improved communication and product
development via increased face-to-face interactions and thus faster
information flow and with lower levels of ambiguity.27 As we will dis-
cuss later in this appendix, modern software development tooling often
allows these same benefits to be realized by larger and/or geographi-
cally dispersed teams.

23 Smartsheet, 2018.
24 Balaji and Sundararajan Murugaiyan, 2012, pp. 26–30.
25 An Agile SDLC does not guarantee these outcomes; it only enables them. An incompe-
tent team that cannot solicit actionable customer feedback, assess and manage risk, or incor-
porate change may be better off using a more structured SDLC.
26 Lan Cao, Kannan Mohan, Peng Xu, and Balasubramaniam Ramesh, “A Framework
for Adapting Agile Development Methodologies,” European Journal of Information Systems,
2009; Balasubramaniam Ramesh, Lan Cao, Kannan Mohan, and Peng Xu, “Can Distrib-
uted Software Development be Agile?,” Communications of the ACM, Vol. 49, No. 10, Octo-
ber 2006, pp. 41–46.
27 A. Cockburn and J. Highsmith, “Agile Software Development: The People Factor,” Com-
puter, Vol. 34, No. 11, November 2001, pp. 131–133.

100 Software Acquisition Workforce Initiative for the Department of Defense

Modern software developers often do have a wider range of
skills—individually, as well as team-wide—than in the past. The
diversity of software architectures and tooling have expanded the skill
sets needed to effectively develop complex products. This wide range
of skills plays into the characteristic of self-organization with Agile
teams able to reconfigure as needed to facilitate a specific project
need. Our analysis of job postings (discussed in Chapter Four) indi-
cates that there is a continuing need for skills specialization as teams
hire to fill specific gaps. Achieving the ideal cross-functional individ-
ual envisioned by some Agile advocates may not be necessary or even
possible, but many software teams regularly reconfigure themselves to
ensure that knowledge is not monopolized by select team members.28

The project team dynamic is particularly important when apply-
ing an Agile SDLC to highly innovative or emerging applications since
the pace and tempo requires the ability to make swift group decisions
under ambiguous circumstances. To achieve a high level of collabo-
ration, teams must have a healthy balance of personality, talent, and
communication skills. If this balance is lacking, the team will not be
able to function efficiently and effectively.29 The implementation of
Agile values and principles has been shown to improve communica-
tions skills among preexisting as well as newly formed teams.30

Agile Software Development Life Cycle in Practice

Both the initial and final phases of the idealized Agile SDLC pre-
sent challenges to DoD acquisitions. Early engagement with end-users
can be limited if personnel cannot be spared from the battlefield or
operations to support acquisition. Compliance with federal acquisition

28 Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj, “Challenges of Migrat-
ing to Agile Methodologies,” Communications of the ACM, Vol. 48, No. 5, May 2005, pp.
73–78.
29 Peter Schuh, Integrating Agile Development in the Real World, Rockland, Mass.: Charles
River Media, Inc., 2004.
30 Harald Svensson, and Martin Höst, “Views from an Organization on How Agile Devel-
opment Affects Its Collaboration with a Software Development Team,” in F. Bomarius and
S. Komi-Sirviö, eds., Product Focused Software Process Improvement, PROFES 2005, Lecture
Notes in Computer Science, Vol. 3547, pp. 487–501, Berlin: Springer, 2005.

Trends in Modern Software Development Trends 101

rules governing competitive contract awards must be considered when
designing forums for early pre-award engagements between compet-
ing development teams, the acquisition team, and operational teams.
Keeping more than one development team in competition through risk-
reduction (RR) contracts is one method used to achieve early engage-
ment, as is the growing practice of using other transactional authorities
(OTAs) to fund the development of prototype or experiments. How-
ever, transitioning from the RR/prototyping stage to full development
brings its own risks and is far from the ideal envisioned by Agile advo-
cates.31 Knowledge transfer from these early engagements must be pri-
oritized if the promise of an Agile SDLC is to be realized.32

While delivery to the end customer and deployment into the
operational environment are the ideal goals of an Agile SDLC, in prac-
tice for DoD programs, delivery to a test and evaluation team and
deployment into initial operating test and evaluation (IOT&E) may be
the closest DoD can come to this ideal. Even that can be challenging
given that the hardware that comprises a developing complex weapons
system or vehicle is often not available until quite late in the acquisition
life cycle. Identifying the models and test resources needed to support
software development is therefore a critical software competency for
DoD. Differences in tempo or cadence between the test and evalua-
tion teams and the development team or the operational teams can
be accommodated by performing delivery and deployments on speci-
fied software releases as opposed to each iteration.33 Synchronizing the
tempos of the different teams is therefore defined as a software compe-
tency in our work.

31 Unfortunately, labeling the work in RR as a prototype sets an expectation that it is not
“working software,” which may be detrimental to quality.
32 On the contractor side, a break between RR and SD phases will often mean that a new
team of software developers takes over. If continuity of software personnel is a requirement
for source selection, this risk can be reduced, but it may not always be obvious to the source
selection team which members of a self-organized team are the key to its success.
33 Alignment of releases with the operational tempo(s) of the battlespace may be key to end-
user acceptance and can be particularly challenging.

102 Software Acquisition Workforce Initiative for the Department of Defense

Considerations in Design of a Software Development Life Cycle

A key software competency for DoD software acquisitions personnel
is the ability to design and manage an SDLC in a way that mitigates
the specific risks associated with a specific acquisition. For example,
when comparing Waterfall and Agile SDLCs as they appear in prac-
tice in DoD programs, an incremental-build SDLC and an Agile
SDLC that uses incremental releases for delivery and deployment
appear remarkably similar. One distinction, however, is in how require-
ments analysis and architectural design are treated. An Agile approach
is designed to allow for more fluidity, experimentation, and proto-
typing in the requirements and architecture and may be particularly
well suited to innovative applications where there is uncertainty in the
capabilities desired and/or required. More well-established applications
with strong dependencies on evolving hardware may be better suited
to the incremental build. We also note that not all software within a
program need use the same SDLC, and different SDLCs can be used
during different phases. In fact, it is not uncommon for a different
SDLC to be used for acquisition and sustainment in DoD programs.
The key lies in having DoD software acquisition personnel well versed
enough in the theoretical application of both SDLCs such that they
can make empowered decisions as to which SDLC (or combination of
SDLCs) will best fit a given program and/or phase. With that in mind,
we offer a short description of key advantages and disadvantages that
appear in the literature,34 tempered with the experience of the SMEs
with whom we interacted over the course of this study.

The largest challenges cited in using Waterfall SDLC include

• Incomplete/inaccurate requirements: Waterfall SDLCs perform
capabilities elicitation at the beginning of the project, when cus-
tomers and stakeholders may not have an in-depth understand-
ing of all the needs associated with their desired product. As a
result, capabilities may be overlooked, and if added late, may

34 Lotz, 2013; Balaji and Sundararajan Murugaiyan, 2012, pp. 26–30; Munassar and Gov-
ardhan, 2010, pp. 94–101.

Trends in Modern Software Development Trends 103

require earlier stages of development to be revisited, often at
great expense.35

• Inability to accommodate change: In multiyear developments there
are numerous sources of change. Change in the operational threat
environment is of particular concern for DoD programs since the
“adversary gets a vote.” As DIB recently wrote, “The Department
of Defense (DoD) must be able to develop and deploy software
as fast or faster than its adversaries are able to change tactics.”36

• Late customer feedback: The final product does not begin to take
form until late in the Waterfall process. This can pose a challenge
if the customer—once having seen the product—decides that the
capabilities or features they outlined do not meet their needs. In
DoD acquisitions, if IOT&E, safety, or security accreditation
teams have not been involved throughout the development period,
these late life-cycle deliveries can be particularly problematic.

It is important to acknowledge that while programs with planned
updates throughout the development life cycle of a given capability
may experience less severe setbacks than programs without planned
updates, the challenges outlined above can still manifest and cause
significant delays.

Defining requirements early and a linear development approach
do, however, have benefits for specific types of projects. Certain advan-
tages associated with the Waterfall approach include

• Straightforward management across projects: Utilizing the Waterfall
approach across projects can ease and facilitate the management
process. Although each project will encounter different issues, the
overall structure of the process will be the same across projects.
For systems that are predominately comprised of hardware proj-

35 While it is possible to go back and make adjustments to prior stages, the Waterfall meth-
odology makes this extremely difficult and expensive. Several reputable software develop-
ment firms report that fixing defects in the later stages of testing is ten to 100 times more
expensive than fixing it during the phase where the defect was inserted. One of our SMEs
reported collecting data on a DoD project in the 1990s that validated this rule of thumb.
36 DIB, 2018.

104 Software Acquisition Workforce Initiative for the Department of Defense

ects, aligning the software development life cycle to the hardware,
as the Waterfall model does, may eliminate some miscommunica-
tion, but it also may obscure critical differences that management
needs to be aware of (such as software dependencies on hardware
characteristics that cannot be known until production hardware
is deployed into the test or operations environment).

• Gated progress: Due to the combination of setting starting and
ending criteria for each stage and specific requirements for each
stage, progress is easy to track and can be concisely described.

• Detailed documentation: Since documentation is an explicit part
of each stage, a more thorough picture of the entire process logic
may be captured and retained for future reference, if necessary.

The Agile approach to software development evolved to address
the disadvantages of the Waterfall approach, but in doing so creates its
own disadvantages:

• Lack of a precise plan: Lack of a precise plan can make clear com-
munication of project progress with the customer difficult. For
DoD projects, communicating software development progress
through earned value management has been particularly diffi-
cult.37 The trade-off here, though, is that both the Agile team and
the client understand that by accepting to move forward on a less-
structured plan, they allow themselves the flexibility to learn and
adapt with the project as it develops.

• Time commitment for the customer: Agile compensates for the
lack of a precise plan through continuous end-user and customer
engagement to obtain feedback during the entire project. An
Agile SDLC may result in the development of a suboptimal prod-
uct if end-users are not available to support these interactions.
As we noted earlier, freeing up operations or IOT&E personnel
on DoD programs to perform the “voice of the customer” role is
challenging.

37 Office of the Secretary of Defense, “Agile and Earned Value Management: A Program
Manager’s Desk Guide,” April 16, 2018.

Trends in Modern Software Development Trends 105

• Project success hinges on the team: Agile may require a higher level
of multiskilled personnel than a Waterfall. Also, due to the high
level of team collaboration, Agile may not be suitable for very large
teams, although modern tooling and techniques such as “Scrum
of Scrums” have been used effectively on some large programs.38

• Deficient documentation: Since Agile does not need to use doc-
umentation as a means to transmit information from architec-
ture to code and test, the resultant documentation at the end of
the program may not be as comprehensive as that developed in a
Waterfall. Determining the appropriate level of documentation
needed is a critical software competency for all SDLCs.

The most frequently cited advantages to utilizing an Agile
SDLC are

• Rapid response to change: Because the Agile SDLC revolves around
a series of sprint cycles, any changes—whether in capabilities or
the prioritization of features or in the availability of test environ-
ments—can be accommodated into subsequent sprint cycles. In
some high-priority cases, the desired change can be implemented
in weeks, rather than months or years.

• Deliverable product definition maturation: Agile’s iterative process
lends itself to projects with an unclear end goal; these include
cases where a customer knows there is a gap, but does not know
what the answer looks like, and therefore cannot clearly articu-
late an end product or requirements. In these instances, the Agile
approach can greatly facilitate the discovery process.

• Improved customer/user acceptance: Due to the customer’s or end-
user’s close involvement with the development team, their priori-
ties and vision ideally guide the development and influence the
final deliverable. They observe product maturation over time as
their feedback is received and new features are added, which theo-
retically improve the ultimate end-user experience. However, as

38 The Scrum of Scrums approach is described on the Agile Alliance website. Agile Alliance,
“Scrum of Scrums,” webpage, undated.

106 Software Acquisition Workforce Initiative for the Department of Defense

we have noted throughout, achieving an effective “voice of the
customer” can be challenging on DoD programs.

• Higher-quality end product: If each sprint cycle closes with the
project team’s review of lessons learned, an Agile SDLC may
allow for the incorporation of these lessons learned into the next
sprint cycle, which will result over time in an overall higher-
quality product.

Claims of improved customer acceptance appear to be substan-
tiated with quantitative studies. However, there is little definitive
research to defend the claim of higher software quality, given that the
fact that Agile teams are often more experienced confounds causal
analysis.39

Use of Agile Software Development Life Cycles in Government

The use of Agile within government is becoming increasingly common
across multiple federal agencies: The Defense Information Systems
Agency (DISA), the National Aeronautics and Space Administration,
the Federal Bureau of Investigation, the Department of Veterans
Affairs, and the Patent and Trademark Office have all documented use
of Agile.40 As the number of federal agencies utilizing Agile increases,
information on how the methodology scales to large, complex settings
along with best practices for effective implementation are emerging.

A GAO report released in 2012 evaluated the use of Agile across
five federal agencies.41 This report revealed ten key practices that offi-
cials from all five agencies identified as effective for successful imple-
mentation of the Agile method (see Figure B.3).

39 A 2008 systematic review of the literature related to Agile software development found
that only a handful of studies had looked at software quality, and the results were inconclu-
sive. Studies on customer acceptance were more conclusive. Tore Dybå and Torgeir Ding-
søyr, “Empirical Studies of Agile Software Development: A Systematic Review,” Information
and Software Technology, Vol. 50, 2008, pp. 833–859.
40 GAO, Software Development: Effective Practices and Federal Challenges in Applying Agile
Methods, GAO-12-681, July 2012; Deloitte, Agile in Government: A Playbook from the
Deloitte Center for Government Insights, 2017.
41 GAO, 2012.

Trends in Modern Software Development Trends 107

One key challenge to successful adoption of the Agile approach by
government agencies is current acquisition practices. Current govern-
ment acquisition models illustrate the acquisitions process as a singu-
lar, unified process composed of various stages. While this view of the
process is not untrue, it does not acknowledge the fact that the various
stages have different goals and different criteria for success (see Figure
B.3). Instead, current models impose the goals and success criteria of
the end stages and apply them to the beginning stages.42 An example
of this is controlling scope to limit variability. While this may be a goal
of the production stage where uniformity is desired, if applied in the
beginning stages of the acquisition process, it may limit the innova-
tions needed to deliver superior solutions.

Another characteristic of current government acquisition models
is that they are often very large and complex—a reflection of the agen-
cies they serve. While this is not harmful to all types of acquisition, it
is particularly harmful to software acquisition because the capabilities

42 Troy Mueller, David Harvey, Awais Sheikh, and Scott Johnson, “Making Agile Work in
Government,” MITRE, May 2015.

Figure B.3
Practices Used and Found Effective by Five Agencies

Practice
1. Start with Agile guidance and an Agile adoption strategy.
2. Enhance migration to Agile concepts using Agile terms and examples.
3. Continuously improve Agile adoption at both project and organization levels.
4. Seek to identify and address impediments at the organization and project levels.
5. Obtain stakeholder/customer feedback frequently and closely.
6. Empower small, cross-functional teams.
7. Include requirements related to security and progress monitoring in your queue

of un�nished work (backlog).
8. Gain trust by demonstrating value at the end of each iteration.
9. Track progress using tools and metrics.
10. Track progress daily and visibly.

SOURCE: GAO, 2012, Table 1, Practices Used and Found Effective by Five Agencies.

108 So
ftw

are A
cq

u
isitio

n
 W

o
rkfo

rce In
itiative fo

r th
e D

ep
artm

en
t o

f D
efen

se

Figure B.4
Different Goals, Different Values

SOURCE: Adapted from Mueller et al., 2015.

Traditional
views of

acquisition...

...tend to hide
important

differences.

DoD Model

DHS Model

Goal Model

User Needs

Technology Opportunities & Resources

Materiel
Solution
Analysis

Technology
Development

Engineering &
Manufacturing
Development

Production &
Deployment

Operations &
Support

FRP Decision
Review

LRIP/IOT&E
Materiel
Development
Decision

Post-
PDR A

Post-
CDR A

A B C(Program Initiation) IOC FOC

Pre-Systems Acquisition Sustainment

= Decision Point = Miletone Review

Requirements
De�nition

Planning Design Development
Integration

& Text
Operations &
Maintenance

Disposition
Solution

Engineering

1 2A 2B 3

Need Obtain Deploy/Support
Analyze/

Select

0

SPR SER PPR SDR CDR TRR PRR ORR PIR
POR

Systems Acquisition

Implementation

Product Development

Goal: Create the Recipe

Production & Operation

Goal: Repeat the Recipe

OTRR

2C

= Decision Point A PRD is not conducted before Milestone B

Trends in Modern Software Development Trends 109

delivered via software change rapidly and with greater frequency—so
much so that current acquisition models cannot adapt effectively and
be responsive to such changes.43

Switching from a traditional DoD acquisition model to one that
utilizes Agile may require a fundamental shift in an agency’s organi-
zational culture and mind-set. Changing an organizational culture is
a difficult undertaking, requiring both a top-down and a bottom-up
approach. A shift to an Agile SDLC may rest on leadership’s ability to
(1) let go of some decisionmaking power and allow teams to operate
organically within the framework of the SDLC; and (2) revise accredi-
tation, certification, test, and evaluations practices to accommodate
incremental system delivery and deployment. The organizational cul-
ture will not change without leadership taking a visible and proactive
role. But by actively engaging in this process, leadership exhibits their
support of the change and encourages others in the agency to follow
suit.44 For this reason, we have included competencies associated with
organizational change and design thinking in the software competen-
cies developed by this project.

In order for the shift to be enduring, the Agile approach must be
incorporated into agency policy in such a way that incentivizes pro-
grams to utilize and adhere to this approach. Strategies for accomplish-
ing this would include education and training to ensure workforce com-
petency and extend into on-the-job coaching and mentoring during
the adoption period.45 Education and training issues are addressed in
Chapter Six of this report.

43 Su J. Chang, Angelo Messina, and Peter Modigliani, “How Agile Development Can
Transform Defense IT Acquisition,” in P. Ciancarini et al., eds., Proceedings of 4th Inter-
national Conference in Software Engineering for Defense Applications, Switzerland: Springer
International Publishing, 2016; Mary Ann Lapham, Ray Williams, Charles (Bud) Ham-
mons, Daniel Burton, and Alfred Schenker, “Considerations for Using Agile in DoD Acqui-
sitions,” Pittsburgh, Penn.: Software Engineering Institute, Carnegie Mellon University,
2010.
44 Agile Government Leadership, “Cultural Transformation,” Agile Government Handbook,
2016.
45 Harry Levinson, “Helping Large Government Programs Adopt and Adapt to Agile Meth-
ods,” Pittsburgh, Penn.: Software Engineering Institute, Carnegie Mellon University, 2016.

110 Software Acquisition Workforce Initiative for the Department of Defense

Development Architecture Trends: Monoliths to
Ecosystems

Today’s software is increasingly produced by organic ecosystems in
which the development teams include commercial entities, open-source
foundations, and individual developers. Ecosystems form around shared
interface standards, operating systems, or platforms. Participants can
contribute at any level of the software “stack” (the computing hard-
ware, operating system, middleware, application interfaces, libraries,
and application). Vertical integration, in which a single firm produces
all, or even most, of the elements of the software stack are virtually
nonexistent today. Even IoT devices include third-party elements in
their software.

For the commercial industry, this trend is driven primarily by
economics. Assembling executable software from a stack of proven
products minimizes time to market and the resources that must be
expended to deliver a working product to end-users. Unfortunately,
this trend also may decrease the reliability of the software. While shar-
ing elements with other systems means that more defects are found
(and presumably fixed), it also increases the total amount of software
deployed since elements such as operating systems will contain fea-
tures that are not needed by all applications. Many firms have no clear
insight into the pedigree of the elements they integrate into their prod-
ucts. Furthermore, if many applications use the same stack elements,
that common use increases the incentive for cyber attackers to find
and exploit vulnerabilities in those elements. DoD programs, many of
which are safety- and security-critical, must carefully weigh the advan-
tages and disadvantage of leveraging ecosystems in their products.
More than one of the SMEs we talked to in the course of this study
wondered if the time is right for DoD to develop its own ecosystem of
secure and pedigreed elements of the software stack needed to support
DoD application domains such as weapons systems or battle manage-
ment. The feasibility of doing so is unknown, given that DoD lacks
the market mechanisms that give rise to software ecosystems in other
domains.

Trends in Modern Software Development Trends 111

Established and Emerging Ecosystem

One of the first widely popular software ecosystems arose around the
Eclipse Platform, an integrated software development environment
that was built architected to be highly extensible through third-party
developed “plug-ins.” The Eclipse ecosystem is fostered through the
Eclipse nonprofit foundation and is largely comprised of open-source
tools and products.

The “mobile apps” ecosystem is another commonly cited exam-
ple, encompassing the set of developer tools and support elements (such
as app stores) used to develop and deploy literally thousands of appli-
cations to our mobile phones. Unlike the Eclipse ecosystem with its
emphasis on open-source development, the mobile apps ecosystem is
largely proprietary, with Google and Apple setting up “walled gardens”
for their third-party developers and partners.

While we are still far from having a widespread autonomous vehi-
cle ecosystem, advancements in technology and the number of compa-
nies taking on this challenge are moving society toward that reality at
a quicker pace. These advances are changing the way companies view
automobiles—from active modes of transportation to moving compu-
tational platforms, hosting a wide variety of applications from naviga-
tion to entertainment.46

Adoption of Open-Source Solutions

Many companies are adopting open source as a potential solution to
high-cost software investments. Aside from the lower overhead factor,
open-source tools and software offer companies many benefits, includ-
ing faster development, increased flexibility for customization, and
potentially more robust code due to a wide pool of feedback to draw
from.47 Open-source software provides full visibility into the code base,
which is a plus for security- or safety-critical applications that need

46 Daniel Eckert, “Three Big Emerging Technology Themes from CES 2016,” PWC, Janu-
ary 13, 2016.
47 Carolyn A. Kenwood, “A Business Case Study of Open Source Software,” MITRE, July
2001; Testing Whiz, “8 Software Testing Trends Every Tester Should Follow in 2018,” Janu-
ary 10, 2018.

112 Software Acquisition Workforce Initiative for the Department of Defense

access to source code for certification or accreditation. Open-source
software products provide relatively fewer intellectual property or data
rights constraints than their proprietary counterparts.

Generating Reusable Code

A trend that is being encouraged within the software development field
is the generation of reusable code to reduce production time, as well as
to enhance security. When done internally, this practice would result
in the creation of a code repository with scripts of basic, widely appli-
cable code that can be dragged and dropped into new scripts being
developed. This practice requires companies to establish secure inter-
nal sharing platforms, code-sharing policies, and training procedures
to promote safe individual security practices.48

Deployment Architecture Trends: From Stand-Alone to
Clouds and Fog

In the design of a software system, the decisions determining what
aspects of the software should run on which processing units lead to
what is called the deployment architecture. Very few applications in
today’s connected world reside only on a single processor. For example,
in a typical bank automatic transaction machine (ATM), the software
resident on the ATM itself handles the interface to the user (e.g., card
and personal identification number input, service selection and money,
check, receipt handling), but the bulk of the software that allows you
to make deposits, withdraw cash, or check your balance resides on
secure servers, perhaps even in geographically distributed server farms
managed by large firms that provide computing resources on demand
(i.e., the public cloud). The software resident on the ATM is called edge
computing, signifying that it is at the edge of the internet, at the user
interface. In today’s most sophisticated banking systems, the interface

48 European Center for Security and Privacy by Design, Emerging Trends in Software Devel-
opment & Implications for IT Security: An Explorative Study, Darmstadt, Ger.: Technical
University Darmstadt, June 2014.

Trends in Modern Software Development Trends 113

software that lets you pay for goods and services resides on your phone,
interacts with the store’s “point of sale” software resident in a device
connected to the register, and both systems connect to a much large
banking system, resident on servers, to complete the actual account-
ing that transfers money from your account to the store’s. If the soft-
ware at the edge of the system is embedded in a more specialized
device such as your home thermostat, it is termed IoT. The design of
a “smart” home thermostat is likely to include a web service to con-
figure the device, as well as software resident on the thermostat itself.

In DoD applications such as the F-35, software resides in multi-
ple computers controlling battle management and fire control systems,
radars and other sensors, flight control systems, and communication
systems (radios). Off-board computers host maintenance software for
diagnostics and other support functions such as mission debrief. In
total, the F-35 system (comprising both on-board and off-board pro-
cessors) is reported to have more than 8 million lines of code spread
across multiple processing units ranging from small devices, to real-
time embedded core processors, to servers.49

Living in the Cloud

Application of the cloud to a wide range of uses continues to mature.
As noted earlier, the cloud is simply a system of large server farms
linked via fast internet connections to end-users or gateways. These
server farms are geographically located where energy is inexpensive,
yet are close enough to end-users to provide relatively fast response
times, provided users have good internet connectivity. The primary
advantage of using a cloud provider for computing is that the user does
not have to purchase and maintain the hardware. For unsophisticated
users, public cloud services from reputable firms are likely more secure
than the typical home computer. Large firms and/or DoD may build
their own private cloud systems.

The second advantage of a cloud system is that users can access
applications and data stored in the cloud from anywhere an internet

49 Lockheed Martin, “F-35 Lightning II: A Digital Jet for the Modern Battlespace,” web-
page, undated.

114 Software Acquisition Workforce Initiative for the Department of Defense

connection is available. For civilian use in an increasingly wired world,
this reliance on an internet connection may be a relatively low-risk
dependency. For militaries operating in denied or degraded electronic
environments, however, it is a significant limitation.

When only computing services (i.e., processors, memory) are pro-
vided to the users, the arrangement is called Infrastructure as a Service
(IaaS), but there has been rapid growth in providing more elements
of the software stack and/or software development tools to provide
what is called Platform as a Service (PaaS). PaaS is having a profound
effect on how software is developed and tested. For large projects or
in support of an ecosystem, a core team of “pipeline” engineers will
tailor a suite of software development and test tools (i.e., a platform)
for the project or ecosystem application that test teams can then access
on demand. This ensures uniformity across the project or ecosystem
and thus improves interoperability and frees application developers
and testers from the need to install, configure, and maintain the
lower levels of the software stack or the software development and
test tool sets. If one is using a public cloud provider, the flexibility of
being able to instantiate a test bed or development environment on
demand, only paying for the resources when they are needed, may
be cost effective. This flexibility is often cited as a primary factor in
decisions to use PaaS.50

When a complete software application (such the Microsoft Office
suite) is made available to users over the internet from a cloud architec-
ture, it is called Software as a Service (SaaS). Typically, SaaS providers
charge an annual subscription fee, which is a valuable source of revenue
to the provider. SaaS subscriptions are often cost effective for the user
in the short term but may not be in the long term. Careful cost analysis
over the entire life cycle of a system is required when deciding to incor-
porate SaaS into a system architecture.

Trends in Internet of Things and Edge Computing

IoT is evolving from the “internet of things” to the “interoperability
of things.” This evolution means that rather than users simply being

50 Capgemini, The Changing Dynamics of the Global High Tech Industry, 2011.

Trends in Modern Software Development Trends 115

able to control certain devices from others (i.e., turning on your lights
from your phone), these devices can now automatically interact with
one another based on a specific set of characteristics and preferences
(i.e., all the IoT devices in a room will alter their settings—such as
turning up lighting and changing the music—as a person enters a
room).51

In addition to the increasing proliferation and interoperability
of IoT devices, these devices’ ability to compute is also increasing.
The IoT devices at the edge of the network are increasingly able to
perform data processing and analytics. This means that end-users
experience faster real-time analytics, without having to transfer data
to a central data center for analytics processing.52 This capability has
given rise to a new type of architecture called fog computing, in which
a collection of IoT devices at the edge of the internet provides low-
latency data processing without reliance on a permanent connection
to the wider internet.53 Fog computing may be of special value to
DoD forward units when communications links back to secure serv-
ers are unreliable.54

The improved performance of edge processors and improvements
in web service delivery have also enabled the development of what are
called progressive web apps (PWAs)—webpages that appear and inter-
act with the user almost as if they were native applications hosted on
the edge device itself. PWAs enable continued use of many of the app
functions even when disconnected from the internet.55

51 Eckert, 2016.
52 Ben Putano, “6 Software Development Trends for 2018: Developers Needed,” Stackify,
November 24, 2017.
53 Fog computing is named to evoke the concept of a cloud close to the ground. It applies
cloud computing concepts to the IoT processors at the edge of the network. See Christopher
Mims, “Forget ‘the Cloud’; ‘The Fog’ Is Tech’s Future,” Wall Street Journal, May 18, 2014.
54 Divya Lanka, Ch. Lakshmi, and D. Suryanarayana, “Application of Fog Computing in
Military Operations,” International Journal of Computer Applications, Vol. 164, 2017, pp.
10–15.
55 Kerry B., “5 Software Development Trends to Watch for in 2018,” April 23, 2018.

116 Software Acquisition Workforce Initiative for the Department of Defense

Automation in Software Development: From “Quality
Assurance” to “Quality Engineering”

Traditional software quality assurance (QA) practices were largely reli-
ant on human inspection, analysis, and testing. As software develop-
ment efforts became larger and more complex, teams quickly realized
that repeating these steps each time a change was made to the software
was time consuming and that variations in the process led to uncer-
tainty regarding the quality of the software. They also realized that
postponing these steps led to increased cost and scheduling; defects are
most efficiently removed when they are found early. Common practice
is, therefore, to automate these steps to the extent practical. Twenty
years ago, this automation would largely be custom built into test
beds, supported by scripting languages to provide inputs to and collect
outputs from the software under test. Analysis tools were also often
custom built, and inspections continued to be done by humans. Today,
tools have been developed to automate not only inspections, but also
commonly used analysis techniques, along with portions of software
build, integration, and testing.56 This shift in automation has given rise
to the term quality engineering (QE). QE allows development teams to
maintain high quality at higher speeds, reducing time to delivery by
optimizing functional testing and enabling teams to build automated
“fitness functions” that continually evaluate the architecturally impor-
tant quality attributes of the software.57 The terms continuous integra-
tion, continuous delivery, and continuous deployment are used to desig-
nate which activities in an SDLC are automated.

Continuous Integration

Continuous integration of software automates the process of software
merge, build, and integration to ensure that newly committed code is
compatible with existing code, meets quality standards for safety and
security, and has not “broken” existing functionality or performance.
It usually includes the use of static and dynamic analysis tools and the

56 Testing Whiz, 2018.
57 Gifographics Creative Team, 6 Emerging Software Testing Trends That Will Rule 2018,
infographic, June 8, 2018.

Trends in Modern Software Development Trends 117

execution of a suite of regression tests. In the 2000s, it was common
to run this automation nightly (i.e., “the nightly build”) so that devel-
opers arriving the next morning would have notifications in their in-
boxes of items to be fixed. With improvements in computing capabil-
ity, these steps now execute so quickly that the common practice is to
trigger the automation whenever a developer “submits” code to provide
feedback in nearly real time.

Continuous Delivery

Continuous delivery of software automates the complete integration
and test process and includes all steps necessary to package the soft-
ware for delivery into the operational environment. This practice can
include audits needed for safety and security certification or accredi-
tations. Often the steps that comprise the continuous integration and
delivery process are termed the pipeline to emphasize the continuous
flow of product through these processes.

Continuous Deployment

Continuous deployment takes automation all the way to the opera-
tional environment. For teams that have implemented continuous
deployment, the updated code is automatically pushed out to users,
sometimes as often as every 12 seconds.58 While this level of speed is
not necessary for every software deployment, continuous deployment
may be beneficial in some cases. The risk of deploying new software
directly into operations can be mitigated using techniques such as A/B
testing, in which some users of a website are selected to use the new
software (B) while the bulk of the users remain on the prior software
baseline (A). This approach can help teams obtain immediate feed-
back from actual, as opposed to simulated, operations with relatively
low risk. Unfortunately, it can also make users unwitting testers of
unproven functionality if the integration and delivery pipelines are not
engineered with an appropriate emphasis on software quality.

58 Putano, 2017.

119

APPENDIX C

Tracing Initial Competencies to Other
Competency Models

We traced the initial draft competencies to five existing models:

1. IT career field model updated by IT FIPT, which was provided
to RAND by the executive secretary of the IT FIPT

2. IEEE’s SWECOM
3. IT career field’s AWQI model
4. ENG career field’s AWQI model, pulled from the AWQI web-

site in October 2017
5. PM career field’s AWQI model, along with an updated PM

career field model.

Although other models and information (e.g., SEI reports) were
consulted to develop the initial draft competencies, the five models
listed above were the primary sources used. Also, because the com-
petency model evolved over the course of the study, the mapping in
this appendix reflects the initial competencies but does not necessarily
reflect the final competencies.

120 Software Acquisition Workforce Initiative for the Department of Defense

Table C.1
Mapping of Initial Draft Competencies to Five Existing Competency Models

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Problem
Specification

Identify and
specify the
problems that
must be overcome
to enable a desired
capability, based
on consultation
with key
stakeholders.

• Identify stakeholders, elicit
capability objectives, and
negotiate conflicts among
stakeholders as required

• Evaluate stakeholder objec-
tives to identify and specify
system operational require-
ments and capability needs
(includes gap analysis vs.
existing capabilities)

• Identify key performance
parameters (KPPs) and other
performance specifications
for inclusion in capabilities
documents

IT: 7, 14, 35
ITa: 7, 13, 26
ENGa: 2-3, 12,
16, 20-21
PMa: S: 1-5,
15, 27-30, 39,
56, 58

Solution
Identification

Identify and
specify a desired
solution approach
to the problem
based on utilizing
alternative
analysis, market
research, trade-
off analyses, and
business drivers
of cost, schedule,
capability,
and risk. This
includes initial
implementation
and integration
efforts (e.g.,
prototyping).

• Apply or conduct an analy-
sis of alternatives to ensure
data-based decisions for
meeting critical objectives

• Apply methods to assist
solution identification
which may include context
definition, prototyping,
and dependency analyses

• Explore options for reuse
of existing GOTS and COTS
capabilities

• Identify cost and schedule
drivers associated with key
performance parameters/
key system attributes deci-
sion elements

IT: 3, 4, 5, 27,
39
ITa: 4-5, 15, 22
ENGa: 1, 20-
21
PMa: S: 27-29,
31, 58

Tracing Initial Competencies to Other Competency Models 121

Table C.1—Continued

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Development
Planning

Identify and imple-
ment methods,
processes, and
lifecycle manage-
ment approach to
be used for system
development (and/
or purchase), and
deployment. This
includes project
planning from
initial concept
development
through imple-
mentation,
integration,
deployment,
and transitions
to operations.

• Select methods, processes,
and a life-cycle approach
(such as Agile, Iterative,
Waterfall, etc.) that are
appropriate to the develop-
ment needs. This includes
cost and schedule manage-
ment, team communication,
requirements management,
mission and quality assur-
ance, change management,
corrective action, con-
figuration management,
and release management,
among other processes

• Select metrics and measures
appropriate to manag-
ing software scope, cost,
schedule, and quality. This
may include quantitative
methods to assess and track
software progress against a
baseline (planned vs. actual)

• For each acquisition phase,
determine the appropriate
entrance and exit criteria to
minimize program risk

• Develop detailed plans for
installation, acceptance test-
ing, and accreditation of the
operational system within a
larger system environment

• Select appropriate lan-
guages, tools, frameworks,
platforms, and environ-
ments that will be needed
during software design,
code, validation, verifica-
tion, and sustainment and
identify how the configura-
tion of these items will be
managed

IT: 17, 18, 2,
19, 20, 29, 32,
10, 22, 39
ITa: 1-2, 10,
14-18, 20
ENGa: 5, 10-
11, 13, 15, 21
PMa:
S: 5, 7, 10-12,
14-17, 22-24,
26, 33-34, 38,
51-55

122 Software Acquisition Workforce Initiative for the Department of Defense

Table C.1—Continued

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Transition and
Sustainment
Planning

Identify and
specify the
 accountabilities
and dependencies
needed to success-
fully transition the
software from ini-
tial development
(and/or purchase)
to sustainment,
and the methods,
processes, and
life-cycle manage-
ment approach
to be used during
sustainment of
the system until its
termination.

• Develop detailed plans for
transitioning accountability
of the software require-
ments, design, code, and
verification artifacts to the
sustainment organization

• Plan for and manage future
modernizations to meet
emerging requirements
and/or relationships with
other systems

• Develop detailed plans for
sustainment of the software
through system termination

IT: 11, 30, 39
ITa: 11
ENGa: 9
PMa:
S: 5, 12, 16,
19-21, 32, 34,
51-53

System
Architecture
Design

Specify the system
architecture at
various levels of
implementation.
This includes
specification of
where the system
fits within the
context of the
broader DoD
ecosystem down
to implementa-
tion on end-user
hardware.

• Develop, review, and eval-
uate alternative system
architectural designs.
 (Architectures may be
based on distributed com-
ponents or rely on external
dependencies. This task may
include architectures within
the DoD Information Enter-
prise Architecture)

• Perform or utilize enabling
techniques such as abstrac-
tion, coupling/cohesion,
and information hiding,
as appropriate

• Ensure aspects of quality
attributes (e.g., perfor-
mance, interoperability,
sustainability) and risk
mitigation techniques (e.g.,
system safety, security, and
usability) are integrated into
architecture specifications as
appropriate

• Specify a final design archi-
tecture based on reviews of
alternative designs

IT: 13, 8, 14,
27, 28, 37, 38
ITa: 8-9
ENGa: 4, 13,
19
PMa:
S: 2, 6-8, 12,
32, 46

Tracing Initial Competencies to Other Competency Models 123

Table C.1—Continued

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Validation
Modeling

Specify the soft-
ware models that
comprise the
software system
components.
This may include
implementation
details about
database
design, object-
oriented design,
interface design,
among other
characteristics.

• Develop, integrate, employ,
and evolve the authoritative
model of the system under
development

• Employ models appropriate
to the requirements which
may include formal logic,
state machines, and process
models

• Use models to explore qual-
ity attributes and other
design considerations such
as managing concurrency,
event handling, data per-
sistence, or distributed
software

• Interpret modeling or simu-
lation results to explore
concepts, refine system char-
acteristics/designs, assess
overall system performance,
and inform acquisition pro-
gram decisions

IT: 13, 22
ITa: 9
ENGa: 4, 11
PMa:
S: 6-9, 12, 31-
32, 40, 46, 57

System
Attribute
Analyses

Explore and
specify how the
system is meeting
the key attributes
that the software
solution must
satisfy. Examples
of key attributes
include availability,
integrity, and
performance
scalability.

• Apply and execute the soft-
ware security practices and
analyses necessary to meet
system requirements

• Apply and execute the soft-
ware safety practices and
analyses necessary to ensure
the resultant system will
meet system requirements

• Apply and execute the
software reliability and
maintainability (R&M) prac-
tices and analyses neces-
sary to ensure the resultant
system will meet system
requirements

• Conduct appropriate analy-
ses necessary to ensure the
resultant system will meet
all other specified quality
attributes

IT: 13, 14, 22,
26
ITa: 8, 25-27
ENGa: 4, 6,
10-11, 19
PMa:
S: 2, 9, 15,
17, 32, 39-50,
58-60

124 Software Acquisition Workforce Initiative for the Department of Defense

Table C.1—Continued

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Software
Construction
Management

Implement plans
for development
(and/or purchase
or sustainment),
and manage
objective and
threshold
requirements
and qualities
throughout the
acquisition against
constraints in
technology, cost,
schedule, and
policy.

• Continually engage with
stakeholders to a) surface
discrepancies between user-
defined needs and specifi-
cations, and b) recommend
trade-offs for affordability
and schedule feasibility

• Continually engage with
ongoing mission and qual-
ity assurance activities to
elicit corrective action rec-
ommendations (e.g., bug
fixes, relief of performance
bottlenecks, changes to
software library dependen-
cies, correction for method
or process misalignments)

• Evaluate change recom-
mendations from stakehold-
ers or for corrective action
for impacts to technology,
performance, cost, schedule,
and policy

• Approve recommended
changes to the software
development plans and/
or features of the software
solution within the con-
straints of technology, cost,
schedule and policy

• Implement approved
changes to the software
development plans and/
or features of the software
solution

• Perform analyses to con-
firm resolution of approved
changes

IT: 13, 12, 14,
15, 19, 20, 25,
32, 27, 28, 30,
36, 38, 40,
41, 42
ITa: 6, 14, 18,
20
ENGa: 5, 10-
11, 15
PMa: S: 5, 11-
12, 18, 24, 26,
28, 33, 38, 52

Tracing Initial Competencies to Other Competency Models 125

Table C.1—Continued

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Cost
Management

Implement plans
for development
(and/or purchase
or sustainment),
and manage
the cost of the
acquisition against
constraints in
scope, schedule,
and policy.

• Conduct a decomposition
of the system into its key
elements and cost driv-
ers using work breakdown
structures (WBS) aligned
to program plans and the
software architecture

• Estimate software system
cost using methods that
account for software size,
complexity and required
attributes, expected
changes, the need for
future corrective actions,
and program risks

• Establish a software cost
baseline

• Plan and implement execu-
tion year adjustments to the
cost baseline or make con-
tingency plans in response
to program progress (vs.
plan), anticipated require-
ments changes, or external
resource adjustments (Con-
gressional/OMB/service or
agency)

• Implement cost estimation
and monitoring processes to
assess and track software-
reliant program progress

IT: 6, 21, 23,
34, 41
ITa: 3, 6, 18
ENGa: 10-11
PMa: S: 11, 24,
26, 28

126 Software Acquisition Workforce Initiative for the Department of Defense

Table C.1—Continued

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Schedule
Management

Implement plans
for development
(and/or purchase
or sustainment),
and manage the
schedule asso-
ciated with feature
development and
release against
scope, cost, and
policy.

• Develop a schedule for exe-
cuting the planned software
activities, including sched-
ule buffer to accommodate
expected change, future
 corrective actions, and pro-
gram risks

• Establish a software sched-
ule baseline

• As needed, assess the impact
to schedule from changes in
the requirements, staffing
levels, and internal or exter-
nal dependencies

• As needed, manage sched-
ule buffers to minimize the
risk of cascading effects
from critical ordered
dependencies

• Implement quantitative
methods and measures (such
as an integrated master
schedule) to assess and track
software progress against
the baseline

IT: 6, 21, 41
ITa: 6, 18
ENGa: n/a
PMa: S: 11,
24, 26

Policy
Management

Implement plans
for development
(and/or purchase
or sustainment),
while considering
and adhering to
relevant laws,
regulations, and
policies (e.g., data
and property
rights, ownership)
and managing
against constraints
in scope, cost, and
schedule.

• Identify and review orga-
nizational policy regarding
use of standard processes,
methods, tools, metrics,
and measures

• Identify and review current
laws, policies, regulations,
directives, and guidance
applicable to management
and acquisition of DoD IT
programs

• Tailor governing policy, as
appropriate, to establish an
initial program baseline that
is compliant with current
laws, policies, regulations,
directives, and guidance (to
include Title 10 direction)
for the acquisition effort

• Use quantitative and quali-
tative methods and metrics
to ensure the developer’s
implementation is compliant
with the approved program
baseline

IT: 1, 9, 16,
28, 41
ITa: 1, 27
ENGa: 10
PMa: S: 11, 24,
26, 36-37

Tracing Initial Competencies to Other Competency Models 127

Table C.1—Continued

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Mission
Assurance

Identify, specify,
and execute strate-
gies for managing
mission risks and
meeting valida-
tion, certification,
and accredita-
tion needs. This
 includes opera-
tional test, evalu-
ation, and audit
support.

• Establish, specify, and
manage an integrated risk
and opportunity manage-
ment process

• Identify mission risks and
propose appropriate miti-
gation activities

• Conduct a crosswalk to
assess technical, financial,
and contract documents
are consistent with the
 proposed technical solution
and program planning

• Continually assess the soft-
ware design (e.g., boundar-
ies, interfaces, standards,
available production process
capabilities, performance
and behavior characteris-
tics) to validate the ability
of the resultant product to
meet mission requirements,
including that it interfaces
properly with the rest of the
system

• Continually assess mission
areas end-to-end, across
system and platform bound-
aries, to identify and close
integration and interoper-
ability (I&I) gaps in mission
critical capabilities

• Develop operationally rep-
resentative test plans and
test management plans to
ensure that all expected
deliverables are met and
that those deliverables are
fully functional

• Conduct accreditation man-
agement (e.g., assess results
from operational test and
evaluation, traceability from
requirements to test plan,
metric management ([KPP,
KSA]) to ensure products
meet their intended use and
can operate within intended
environments and depen-
dent systems

IT: 19, 20, 22,
27, 33, 37, 39,
42
ITa: 19
ENGa: 1, 4, 8
PMa: S: 2, 4-5,
9, 15-18, 21,
33, 35, 37, 45-
46, 50, 54-55

128 Software Acquisition Workforce Initiative for the Department of Defense

Table C.1—Continued

Competency Definition Tasks

Trace to
Model and

Competency
Numbera

Quality
Assurance

Identify, specify,
and execute strate-
gies for managing
project risks, cor-
rective analyses,
and meeting
verification needs.
This includes
 development and
integration test
and evaluation.

• Continuously conduct
 corrective action assess-
ments, (i.e., monitor metrics
such as bug reports, static
analysis results, peer review
processes, and testing pro-
cesses) to identify adverse
trends. This may include
independent audits

• If adverse trends are iden-
tified, conduct root cause
corrective action to identify
recommended process or
product improvements

• Identify verification plans
and procedures to be
included in the software
planning

• Conduct verification activi-
ties (e.g., verification test
planning and execution,
software design reviews,
static analyses, coding stan-
dards, unit test and code
coverage) and verify the
system elements against
their defined requirements
(build-to specifications)

• Trace verification activities
to link modeling and simu-
lation, developmental test
and evaluation and opera-
tional test and evaluation
together, as needed to doc-
ument system capabilities,
limitations, and risks against
the system requirements

IT: 12, 19, 20,
24, 22, 41
ITa: 12, 19, 21,
23-25
ENGa: 6-7, 10,
14, 17-18, 21
PMa: S: 9, 13-
19, 25, 35-36,
38-51, 54-55,
59-60

NOTE: a The following notation is used to represent the five competency models:
IT = IT career field model updated by IT FIPT, S = IEEE’s SWECOM, ITa = IT AWQI
model, ENGa = Engineering AWQI model, PMa = PM AWQI model.

129

APPENDIX D

Notional Example of Software Careers

Because the software acquisition workforce has not yet been defined,
we draw on our research team’s software expertise and review of com-
mercial industry practices (Chapter Four and Appendix B) to propose
possible career paths for software professionals. These and any other
career paths should be more fully evaluated once the workforce has
been identified. Table B.1 provides a crosswalk of five potential career
paths with the software competencies described in this report (Chapter
Five). In Table D.1, we use a “P” to indicate a primary competency and
an “S” to indicate a supporting competency that is useful but not criti-
cal. Below is a brief description of each possible career path.

• Program Managers and System Engineers have primary accounta-
bility for stakeholder relationship management and overall account-
ability for program technical quality, cost, and schedule.

• Enterprise and Software Architects are primarily accountable for
making architectural-level trades and ensuring the product qual-
ity attributes are appropriately balanced such that delivered prod-
uct meets stakeholder needs.

• Software Project Managers are the Scrum leaders and release manag-
ers. They have detailed accountability for synchronizing the devel-
opment and release of their individual products. They perform the
detailed management of configuration, cost, and schedule.

• Software Integration Managers are focused on integration, test,
and delivery. They manage the DevOps pipeline and have the
detailed accountability to deliver products to specific groups of
users, external test environments, and other stakeholders.

130 Software Acquisition Workforce Initiative for the Department of Defense

• Software Technologists are the technical experts in one or more
software specializations. These are the people the architects and
system engineers go to when they need deep expertise to build
models or perform analyses (safety, cyber, performance). The proj-
ect and integration managers go to them when there are tough
problems to be solved.

In terms of career paths, software project managers could grow
to be program managers and system engineers, and software technolo-
gists could develop into enterprise and software architects. Software
integration managers have generally been around only since the mid-
2000s and have less defined career paths.

Table D.1
Example of Possible Software Careers and Corresponding Competencies

Program
Managers

and System
Engineers

Enterprise
and

Software
Architects

Software
Project

Managers

Software
Integration
Managers

Software
Technologists

DRAFT Software
Competencies

S P Capabilities
Elicitation

P S Business Case
Development

P S S Strategic Risk/
Reward Analysis

P S S Cloud Computing

S P S Software
Ecosystems

S S P Model-Based
Engineering

S S P S Development
Tempo

S S P S Release Planning

P S Software
Development
Planning

Notional Example of Software Careers 131

Table D.1—Continued

Program
Managers

and System
Engineers

Enterprise
and

Software
Architects

Software
Project

Managers

Software
Integration
Managers

Software
Technologists

DRAFT Software
Competencies

S P Planning for
Continuous
Delivery

S S P Planning for
Continuous
Deployment

P S System
Engineering
Planning

S P Software Metrics

S P Configuration and
Version Control

S P S S Software
Documentation

P S Contracting
for Software
Development

P S Data and
Proprietary Rights
Management

P S S Architectural
Design Approach

S P Software
Orchestration and
Choreography
Patterns

P S Software
Deployment
Patterns

P S Artificial
Intelligence and
Machine Learning
Applications

P S Augmented and
Virtual Reality
Applications

132 Software Acquisition Workforce Initiative for the Department of Defense

Table D.1—Continued

Program
Managers

and System
Engineers

Enterprise
and

Software
Architects

Software
Project

Managers

Software
Integration
Managers

Software
Technologists

DRAFT Software
Competencies

P S Embedded
Systems

S P S Balancing Quality
Attributes

S P S Emerging
Technologies

P S Use/Abuse Case
Modeling

S S P Validation of
Performance
Requirements

S S S P Validation of
Sustainability
Requirements

S P High Fidelity
System Modeling

S P S Software
Assurance

P S S Cybersecurity

S S S P Safety Critical
Systems

P S S S High-Availability
Systems

S S P Life-Cycle
Management

S P Detailed Backlog
Management

S S P Release
Management

P S Change
Management

S P S Automated Test
and Continuous
Integration

Notional Example of Software Careers 133

Table D.1—Continued

Program
Managers

and System
Engineers

Enterprise
and

Software
Architects

Software
Project

Managers

Software
Integration
Managers

Software
Technologists

DRAFT Software
Competencies

S P Effort Estimation

S S P Product Roadmap
and Schedule
Management

S P Cost Management

P S Legal Policy
and Regulatory
Environment
Management

P S S Risk, Issues, and
Opportunity
Management

P S Quality Assurance

S P Root Cause,
Corrective Action

S S P System Integration
and Testing

P S Strategic Planning
and Change
Management

S P S Innovation and
Entrepreneurship

12 12 10 8 6 Number of primary
competencies for
this career path

22 19 11 13 13 Number of
secondary
competencies for
this career path

34 31 21 21 19 Total

NOTE: “P” indicates a primary competency, and “S” indicates a supporting
competency that can be useful but is not critical.

135

APPENDIX E

Existing Competency Models

Table E.1 provides a summary of the key competency models that we
reviewed as part of the competency development process. It includes
information about the hierarchical structure (i.e., number of levels)
of the competency model, the number of competencies, and example
competencies.

136 So
ftw

are A
cq

u
isitio

n
 W

o
rkfo

rce In
itiative fo

r th
e D

ep
artm

en
t o

f D
efen

se

Table E.1
Competency Models Reviewed

Model
Number of

Levels
Number of

Competencies Competency Example 1 Competency Example 2 Competency Example 3

DoD Career
Field Functional
Competencies—
PM

4 70 Configuration Management
(Basic)—Understand the
configuration management
process and how it can be
used to provide technical
insight into the program.

Technology Management—
Use current/require science/
technology as trade space
to cover user needs recog-
nizing that there will be
gaps in coverage.

Technical Data Management—
Ensure the application of the
principles, procedures, and
tools of data management
and associated data rights.

DoD Career
Field Functional
Competencies—
ENG

3 75 Requirements Analysis—
Evaluate stakeholder and
derived requirements
(including constraints)
and transform those
requirements into a
functional and technical
view of a system capable of
meeting the stakeholders’
needs. Decompose needs
and constraints into clear,
achievable, and verifiable
high-level requirements.
As the system design
evolves, allocate and derive
requirements to the system
elements and enabling
system elements (hardware
and software) to be
designed and developed.

Verification—Generate
evidence that the system or
system element (hardware
or software) performs its
intended functions and
meets all performance
requirements listed in
the system performance
specification and functional
and allocated baselines.
Apply methods to verify
performance, which
may include the use of
modeling and simulation,
and developmental test,
including Integrated Testing.

Data Management—Apply
policies, procedures and
information technology to
plan for, acquire, access,
manage, protect, and use
data of a technical nature
to support the total life cycle
of the system.

Existin
g

 C
o

m
p

eten
cy M

o
d

els 137

Table E.1—Continued

Model
Number of

Levels
Number of

Competencies Competency Example 1 Competency Example 2 Competency Example 3

DoD Career
Field Functional
Competencies—
IT

2 42 Contracting for IT—
Knowledge of IT specific
areas of emphasis for
acquisition IAW FAR and
DFAR processes to develop
and execute an acquisition
strategy. (Includes TECHFAR)

Enterprise Architecture—
Applies and/or assesses
enterprise architectures (EA)
and develops EA products
(e.g. DODAF) to ensure
compliance with DoD EA
strategic goals. (Includes
Information Support Plan
(ISP))

Cybersecurity—Develops
and applies Cybersecurity
requirements for adequacy
and effectiveness of security
measures, continuity of
operations, and protection of
systems and system content.

Acquisition
Workforce
Qualification
Initiative
(AWQI)—PM

5 50 Business Case
Development—Evaluate
the merits and associated
trade space of two or more
potential solutions

Acquisition Policy and Best
Practices—Apply current
acquisition policy and best
practices to products and
processes in each phase of
the Defense Acquisition
Management System to
enable sound acquisition
management decisions

Configuration Management—
Articulate the program
technical insights provided
by the configuration man-
agement process. Employ
Configuration Management
methods and best practices
to establish and maintain
consistency of a product’s
attributes with its require-
ments and product config-
uration information

Acquisition
Workforce
Qualification
Initiative
(AWQI)—ENG

5 21 Validation—Evaluate the
requirements, functional
and physical architectures,
and the implementation to
determine the right solu-
tion for the problem in an
operationally-representative
environment.

Configuration
Management—Apply
sound program practices
to establish and maintain
consistency of a product
or system’s attributes
with its requirements and
evolving technical baseline
over its life cycle.

Data Management—Apply
policies, procedures and
information technology to
plan for, acquire, access,
manage, protect, and use
data of a technical nature to
support the total life cycle
of the system.

138 So
ftw

are A
cq

u
isitio

n
 W

o
rkfo

rce In
itiative fo

r th
e D

ep
artm

en
t o

f D
efen

se

Table E.1—Continued

Model
Number of

Levels
Number of

Competencies Competency Example 1 Competency Example 2 Competency Example 3

Acquisition
Workforce
Qualification
Initiative
(AWQI)—IT

5 27 Business Case Analysis—
Applies and/or assesses the
rationale and key parts of
building a business case to
support achievement of
critical business objectives.

Enterprise Architecture—
Applies and/or assesses
enterprise architectures (EA)
and develops EA products
(e.g., DODAF) to ensure
compliance with DoD EA
strategic goals.

Contracting for Systems—
Knowledge of contracting
stages and requirements for IT
acquisitions IAW the FARS and
DFARS processes to provide a
clear and correctly informed
acquisition process.

Software
Engineering
Competency
Model
(SWECOM)

2 60 Software Requirements
Verification and Validation—
• Checks requirements for

accuracy, lack of ambigu-
ity, completeness, con-
sistency, traceability, and
other desired attributes.

• Constructs and analyzes
prototypes.

• Negotiates conflicts
among stakeholders
during verification.

Software Maintenance—
• Establishes software

maintenance processes
and plans.

• Obtains and main-
tains baseline software
artifacts.

• Performs problem iden-
tification and technical
impact analysis.

• Makes and assures
changes to software
(corrective, adaptive,
perfective).

• Performs preventative
maintenance and soft-
ware re-engineering.

• Monitors and analyzes
software maintenance
activities.

System Requirements
Engineering—
• Establish the system devel-

opment environment
and identify technology
constraints.

• Identify system-level
 traceability requirements
and tools.

• Identify system
requirements.

• Develop the system
requirements specification.

• Develop plans, proce-
dures, and scenarios for
system integration, veri-
fication, validation, and
deployment.

Existin
g

 C
o

m
p

eten
cy M

o
d

els 139

Table E.1—Continued

Model
Number of

Levels
Number of

Competencies Competency Example 1 Competency Example 2 Competency Example 3

Guide to the
Software
Engineering
Body of
Knowledge
(SWEBOK Guide)

2–3 102 topics Software Requirements
Fundamentals

Software Design Software Construction

Software
Acquisitions
Training and
Education
Working Group
(SATEWG)

2 29 Software Architecture—
The software structure
of the system, including
the definition of software
components, and the
relationships between
them, the system, and the
operational architectures.

Software Configuration
and Data Management—
An umbrella activity to
manage evolving software
baselines and related
products that continuously
ensure traceability, proper
implementation and
overall system/software
compatibility across the
lifecycle.

Sustainment—The post-
delivery activities to support
corrective, adaptive,
perfective, and preventative
software and system changes.

141

APPENDIX F

RAND-Developed Software Acquisition
Competencies

This appendix contains the final draft set of competencies and associ-
ated definitions and tasks for the software acquisition workforce. These
competencies were developed using several inputs:

• review of existing DoD and commercial industry competency
models (Chapter Six and Appendix C and E),

• industry trends based on a literature review (Appendix B),
• discussions with industry SMEs (Chapter Four), and
• exploratory text analyses comparing software acquisition position

announcements in commercial industry with those used by the
Army and course descriptions in civilian software courses with
those of DoD software course descriptions (Chapter Four).

After the initial model development, the competencies and def-
initions were revised following feedback from the sponsor’s office
and a series of SME panel workshops. The final set of competencies
is designed to augment (but not replace) DoD-defined competencies
for acquisitions (e.g., contract management, program/project manage-
ment, system engineering, mission assurance, and so on) with software-
specific detail. Because the software acquisition workforce has not yet
been identified, the competencies still need to be validated by DoD fol-
lowing scientific and professional best practices, as described in Chap-
ter Eight.

Each competency is described in terms of general work activities
and tasks. In some cases, additional context and clarification are also

142 Software Acquisition Workforce Initiative for the Department of Defense

provided. Because these competencies are technical, some terms may
not be widely shared by all communities or may have different mean-
ings depending on the context. To facilitate interpretation of these
terms, we provide a glossary at the end of the competencies list.

Software Acquisition Competencies

Capabilities Elicitation

• Engage with stakeholders (to include representative end-user orga-
nizations, owners, developers, integrators, certification authori-
ties, independent validation and verification personnel, and oper-
ators) to elicit capability objectives (i.e., functional requirements)
and quality attributes (i.e., nonfunctional requirements) for the
proposed system.

• Negotiate among stakeholders to prioritize needs and establish
the product roadmap by identifying the minimum viable product
and its possible evolutions.

Context: Elicitation techniques vary in formality and may include
solicitations of user stories (through observation of current task-
ing or through discussions) or completion criteria (e.g., asking
stakeholders to define what “done” looks like), systematic explo-
ration of scenarios and critical mission threads, or more formal
use case modeling and quality attribute workshops.

Business Case Development

• Explore the problem space and identify focal areas for acquisition.
Perform an analysis of alternatives using methods such as story
mapping, success case methods, IT value perception models, and
risk/reward trade-offs.

• Based on the analysis, recommend an acquisition solution and
obtain management support for the proposed acquisition strategy.

Context: Acquisition strategies may leverage prototypes, cloud
computing, and/or existing or emerging software ecosystems.
Acquisition strategies may be iterative or evolutionary.

RAND-Developed Software Acquisition Competencies 143

Strategic Risk/Reward Analysis

• Evaluate risk/reward from various stakeholder perspectives, includ-
ing the sponsoring organization, end-users, test and evaluation
teams, cybersecurity compliance officers, and data rights managers.

• Balance system rewards when evaluating acquisition strategies
that depend on externalities, such as commercial cloud comput-
ing or software ecosystems, against risks impacting overall system
capability or system sustainment.

Context: Solutions that rely on external dependencies such as com-
mercial cloud computing or existing software ecosystems may
offer rewards such as earlier deployment of capability to operations
or lower resource expenditures (i.e., avoiding the “cost of delay”).
However, the risks of depending on externalities may include the
inability to modify the products to meet key requirements such
as operations in denied environments, susceptibility to external
system failures or malicious cyber behavior. Risks to system sus-
tainment, such as vendor lock-in, may also exist.

Cloud Computing

• Identify risks (such as multilevel cybersecurity, vendor lock-in, or
resources needed to operate and sustain DoD unique cloud plat-
forms) and rewards (such as scale and elasticity for end-users and/
or for test and evaluation teams) of cloud-based services.

• Evaluate options to acquire SaaS, PaaS, and/or IaaS.

Software Ecosystems

• Identify the risks and rewards from leveraging existing or emerging
DoD, open-source, or third-party innovative technologies to sup-
port a shared end-user community. Consider how the ecosys tem
might evolve over time (including both planned and unplanned
end of life), its responsiveness to emergent threats, its compat-
ibility with existing capabilities and emerging software systems
across DoD, and data/proprietary rights issues.

• Identify and evaluate alternative approaches to sustain the stabil-
ity and fitness of the ecosystem over time (such as standardization
of component interfaces or required regression testing).

144 Software Acquisition Workforce Initiative for the Department of Defense

• Proactively manage the expectations of the community the eco-
system supports.

Model-Based Engineering

• Create a digital engineering environment that uses models, pro-
totyping, visualization, simulation, and dependency analyses to
support the acquisition.

• Ensure that all models, prototypes, and analyses are fit for their
intended purpose and not used for purposes for which they were
not intended.

Context: Digital engineering environments can be used to (1)
engage end-users or other stakeholders in exploring alternate
acquisition solutions, (2) explore and define the context (opera-
tional boundaries, key attributes and external dependencies) of
proposed acquisition solutions, (3) mature key technologies, and/
or (4) reduce system risk.

Development Tempo

• Determine the life-cycle approach to be used and the tempo of
software construction, release, and deployment to operations.

• Synchronize the software construction, release, and deployment
tempo(s) with system, hardware, and other environmental con-
straints (such as the stability of requirements; availability of devel-
opmental, test, or certification/accreditation resources; or disrup-
tion of end-user activities).

• Consider benefits and risks of adapting best practices from the
Agile development community, such as continuous development
(e.g., Kanban) or time-boxed iterations (e.g., Scrum or Agile
Release Train), feature-driven development, test-first develop-
ment, and pair programming.

• Plan for the transition of all artifacts, including data rights, from
the development to the sustainment life cycle (e.g., staged versus
continuous delivery) and environment (e.g., contractor to organic
staff).

• Obtain support for the selected approach from program manag-
ers, system engineers, and software development leadership.

RAND-Developed Software Acquisition Competencies 145

Release Planning

• Determine the minimum viable content of and completion crite-
ria for (i.e., define “done”) each release and/or software develop-
ment iteration within the planning period.

• Consider the prioritized user needs and operational improvements
(the product roadmap) while reserving resource margin to accom-
modate (1) expected and unexpected changes in the dependen-
cies of the operational environment, including emergent security
threats or supply chain issues, and (2) addressing technical debt
buildup.

• Obtain support for the planned development and release approach
from end-users as well as program management, system engineer-
ing, software development, test and evaluation (including certifi-
cation authorities), and operations management.

• Reprioritize (i.e., groom) backlog(s) as required to ensure that high-
risk/highly needed capabilities are developed early in the develop-
ment cycle and to identify capabilities that are no longer needed.

Software Development Planning

• Develop methods, processes, and training needed for software
construction (to include design, code, test, build, integration, and
release). Identify tools and methods for backlog management,
continuous integration, automated regression testing, and release
management.

• Identify methods and processes for managing the software supply
chain, to include periodic reevaluation of supplier viability and
managing for COTS obsolescence.

• Assess the effectiveness of methods, processes, and training, and
update as appropriate.

Planning for Continuous Delivery

• Identify cases where it may benefit the program to maintain soft-
ware in a continual state of readiness for deployment into higher-
level test facilities or into operations.

• Identity the methods (e.g., SecDevOps), processes, and train-
ing plans for automating the software release process (includ-
ing fitness checks, integration tests, and acceptance tests) that

146 Software Acquisition Workforce Initiative for the Department of Defense

package the software for deployment into the operational or test
environment(s).

Planning for Continuous Deployment

• Identify software items that could benefit from rapid delivery
into operations (e.g., websites or application program interface
updates).

• Consider the adverse impact incorrect or unstable software could
have on the warfighter before deciding to implement a continu-
ous deployment approach.

• Collaborate with the operations team to identify the methods,
processes, and training plans for automating the delivery, includ-
ing plans for “rolling wave” release, which minimize disruption of
ongoing operations.

• Work with operations, accreditation, and certification teams to
ensure the methods, processes, and training plans satisfy the con-
ditions to grant authority to operate.

• Develop methods and processes to monitor newly deployed fea-
tures and to rapidly roll back or otherwise mitigate unintended
consequences of the deployment.

System Engineering Planning

• Develop methods, processes, and training needed to develop and
evolve modern EAs and to perform dependency management (for
both internal and external dependencies), validation, and verifi-
cation activities (including accreditations or certifications) that
are aligned to the software development life cycle, tempo, release
planning, methods, and processes.

• Assess the effectiveness of methods, processes, and training, and
update as appropriate.

Context: Methods and processes may include (1) Iterative model-
based engineering, analysis and visualization tools (i.e., digital
engineering environments), (2) simulations, test beds, and soft-
ware or system integration labs (with special consideration for
how the minimum viable product will evolve), and (3) tools for
issue tracking and version control.

RAND-Developed Software Acquisition Competencies 147

Software Metrics

• Select metrics and measures to monitor software scope, cost,
schedule, and quality (including performance) as needed to ensure
program success, which may include quantitative methods (e.g.,
statistical control) to assess progress against quality goals (e.g.,
throughput, latency, availability, safety, security) or development
baselines (planned versus actual features deployed to users or veri-
fied by test and evaluation teams).

• Select appropriate metrics at the team, program, and stakeholder
levels.

• Reevaluate the timeliness and use of the selected metric(s), and
eliminate those that are not timely and/or useful.

Context: Team-level metrics may include measures of the veloc-
ity of requirement validation (e.g., requirement decision time) or
velocity of software construction (e.g., story points/sprint, sprints/
month). Program- and stakeholder-level metrics focus on progress
against delivered stakeholder value (e.g., customer value streams,
backlog burn down, and technical debt buildup).

Configuration and Version Control

• Develop strategies for identifying and managing the configuration
of the system and software development and test environment(s),
design, test, and analysis artifacts (including documentation)
and the software itself (including external dependencies such as
associated systems, the underlying hardware and software stack)
throughout the life cycle.

• Develop methods, coding or naming standards, processes, and
training plans for maintaining configuration and version control,
including support of code repository branch and merge proce-
dures, builds, and automated test suites (i.e., continuous integra-
tion), support for staging to test and production environments
(i.e., continuous delivery) and, if feasible, delivery into operations
(i.e., continuous deployment).

Software Documentation

• Document software planning, requirements, design, code, valida-
tion, verification, and sustainment needs in the program planning

148 Software Acquisition Workforce Initiative for the Department of Defense

(e.g., Software Development Plans and Software Measurement
Plans).

• Maintain versioned repositories for design, code, and test artifacts
at all levels and across all phases of the life cycle.

• Use self-documentation tools for design, code, and test artifacts
where practical.

• Continuously update and revise documentation standards to
ensure the produced artifacts support their intended users and
eliminate any unneeded artifacts.

• Use collaborative communication tools to ensure that planning
and artifacts remain current and are easily accessible (e.g., wikis
for team-wide communication and integrated development envi-
ronments that link the product backlog to team member specific
tasks and to artifact repositories).

Contracting for Software Development

• Ensure that contract requirements, constraints, end items, and
data deliverables are compatible with the selected tempo, release
planning, software and system development planning, metrics,
and documentation requirements.

• If applicable, evaluate the use of alternate contracting mecha-
nisms, such as time and materials, indefinite delivery/indefinite
quantity, or OTAs, to provide needed flexibility in acquisition of
the software or system.

• Identify appropriate incentives to manage technical debt buildup
during iterative development.

Data and Proprietary Rights Management

• Negotiate data rights up front if elements of the software or
system will be acquired from DoD-external sources (i.e., open-
source repositories, COTs software, GOTs software, or from pri-
vate entities) to ensure DoD will have assured access to all mis-
sion-critical software throughout the life of the supported system.

• Ensure that all software licenses are in compliance with federal
regulations and compatible with program needs.

Context: Program needs may include a perpetual and nonrevoca-
ble right to use the software over mission life; the right to inspect

RAND-Developed Software Acquisition Competencies 149

source code, design, analysis, and test artifacts to demonstrate
security or safety compliance; and/or the right to create a deriva-
tive work as new system capabilities are added.

Architectural Design Approach

• Determine “how much” architectural design effort is needed to
ensure a successful acquisition.

• Consider benefits and risks of adapting practices from modern
architectural design methods such as Artifact Driven, Use/Abuse
Case Driven, Attribute Driven, Domain Driven (i.e., Manage
by Architecture), or Human-Centered Design when selecting an
architectural design approach.

• Develop methods, processes, and training for the selected archi-
tectural design approach.

• Implement fitness functions (policies, procedures, tests) to peri-
odically reassess the architecture’s ability to satisfy system goals
and constraints and to evaluate the architectural compliance of
the acquired software.

• Develop and implement procedures to manage deviations and to
effectively evolve the architecture over the program life cycle.

Context: The level of detail in architectural design will vary based
on the proposed use of the architecture. These purposes may
include (1) develop a common understanding between stakehold-
ers and the development team of goals and objectives and the
design approach to meeting them, (2) provide a narrative for cur-
rent and future developers of the rationale used in making critical
design decisions, and/or (3) provide a formal model used to vali-
date the software’s ability to satisfy system goals and constraints
(such as modularity, open interfaces, safety, or multilevel security
constraints).

Software Orchestration and Choreography Patterns

• Determine the patterns the software will use to manage the inter-
actions between components, modules, or services.

• Consider common orchestration and choreography patterns
(e.g., client/server, publish/subscribe, peer-to-peer, and services/
micro services) that balance quality attributes for timing perfor-

150 Software Acquisition Workforce Initiative for the Department of Defense

mance (latency, throughput), evolvability, safety, and security in a
manner consistent with the product vision.

• Evaluate how selected patterns may impact system resilience
to naturally occurring failures or malicious attack for mission-
critical systems.

Software Deployment Patterns

• Determine how the software will be deployed onto the comput-
ing infrastructure in the operational system.

• Determine which capabilities are required to be mobile (e.g.,
accessible to the warfighter even when on the move), which must
be present in embedded systems or on local servers (e.g., accessible
to the warfighter when disconnected from wide area networks),
and which can be hosted on remote servers (e.g., cloud architec-
ture, edge computing).

• Consider key attributes such as availability, maintainability, time
performance (latency and throughput), safety, and security when
making deployment decisions to ensure consistency with the
product vision.

Artificial Intelligence and Machine-Learning Applications

• Identify and implement architectural components (such as “clear
box” artificial intelligence), methods, processes, and training plans
to mitigate the risks of incorporating artificial intelligence and
machine-learning techniques to create autonomous cyber-physical
systems, automated or augmented decision support tools, or other
emerging AI-based systems.

• Balance correctness, transparency, explainability, privacy, avail-
ability, safety, and security when developing artificial intelligence
and machine-learning applications.

Augmented and Virtual Reality Applications

• Identify and implement architectural components, methods,
processes, and training plans that support the development and
acquisition of augmented and virtual reality applications.

• Balance accessibility against safety when evaluating augmented
and virtual reality applications.

RAND-Developed Software Acquisition Competencies 151

• Consider human factors such as color blindness or other sensory
factors, navigational perceptions, and general fitness for use.

Embedded Systems

• Employ explicit strategies for incremental realization of capabili-
ties within the constraints of the hardware supply chain.

• Identify and implement architectural components (such as appli-
cation program interfaces or other mediating elements), methods,
processes, and tools (such as simulators or models) to mitigate the
risks of hardware/software co-development and/or obsolescence.

• Consider potential impacts of asynchronous hardware and soft-
ware development life cycles when acquiring embedded applica-
tions and tools.

Balancing Quality Attributes

• Evaluate alternative design solutions to effectively balance the
quality attributes for critical mission threads or other identified
scenarios.

• Identify architecturally significant quality attributes (e.g., through-
put, latency, evolvability, safety) using scenario-based elicitation
techniques (such as quality attribute workshops) to engage critical
stakeholders (including owners, operators, and users), and develop
a common understanding of the relative importance of each qual-
ity attribute to the mission drivers and product vision.

• Define fitness functions that provide an objective measure of the
key attributes, and consider building an executable architecture or
digital engineering environment to evaluate design alternatives.

Emerging Technologies

• Maintain an understanding of emerging technologies, the implica-
tions these technologies may have on a given organizational need
and solution space, and their technical maturity/readiness or cer-
tification.

• Evaluate both the possible benefits and risks of incorporating
emerging tech, including its ability to disrupt opponents, the U.S.
warfighters and our allies, external systems, and the product archi-
tecture itself.

152 Software Acquisition Workforce Initiative for the Department of Defense

Use/Abuse Case Modeling

• Use static and dynamic views to model the software components
that implement the required capabilities of the software to iden-
tify the use cases (i.e., the required uses of the system over the
entire life cycle, including operations and sustainment) and abuse
cases (e.g., critical system failures, malicious user inputs, response
to attacks) for the system to be acquired.

• Develop and evolve models as needed to explore boundary con-
ditions and interactions among domains, capabilities, quality fac-
tors (such as robustness and fault tolerance), activities, and entities
that comprise the acquired software.

Validation of Performance Efficiency Requirements

• Implement models of the software that reflect the concurrency
management, event handling, and data persistence approaches
used in the software.

• Evolve the models as needed to track the “as-built” software
design and implementation.

• Validate the capability to meet performance efficiency require-
ments (with margin as appropriate to the life-cycle phase) under
realizable nominal, best, and worst-case conditions for each
mission- critical thread.

Validation of Sustainability Requirements

• Implement models to explore sustainability features of the soft-
ware architecture with consideration for specific needs associated
with high availability or safety-critical systems.

• Consider modeling use cases for updates of software, data, and
operating procedures, and write test cases to verify those capa-
bilities.

High-Fidelity System Modeling

• Create a digital, high-fidelity representation of the as-built system
that reflects lessons learned in test or operations to support the
analysis of critical quality attributes.

• Use the model to verify critical attributes such as safety, security,
reliability, sustainability, and/or performance efficiencies (e.g.,

RAND-Developed Software Acquisition Competencies 153

system recovery time) under worst-case conditions that cannot be
verified via test or demonstration.

Context: Digital twins is one method for gathering pertinent
information from operations for use in the model.

Software Assurance

• Specify and implement methods, processes, and tools needed to
assure the integrity of the acquired software.

• Determine appropriate coding standards, static and dynamic
analysis rules, test code coverage, and fuzz testing standards.

• Determine the corrective actions to be taken when code or test
standards are not met, and/or when analysis rules are violated.
Track all actions to closure.

• Obtain support for the selected approach(es) from all external
accreditors (e.g., NSA, Army Cross-Domain Management Office),
program quality assurance managers, system safety or security
organizations, and software development leadership.

Cybersecurity

• Specify and implement methods, processes, tools, and models
to improve the cybersecurity of the acquired software, including
procedures to assess the pedigree of reuse, open-source, and com-
mercial software.

• Evaluate cybersecurity attributes to include confidentiality, integ-
rity, availability, and nonrepudiation. Determine the importance
of auditability, redundancy, and resilience attributes to respond to
potential cyberattacks.

• Identify the key security components of the architecture (such as
whitelists, audit traces, and multilevel security guards), and spec-
ify the methods and processes that will be used to assure their
integrity throughout the program life cycle.

• Develop and execute verification activities such as penetration
and/or red-team testing.

Safety Critical Systems

• Specify and implement methods, processes, tools, and models (the
elements of a safety culture) to identify, mitigate, and/or remove
hazards from the acquired software and the systems it supports.

154 Software Acquisition Workforce Initiative for the Department of Defense

• Apply Military Standard 882E,1 Hazard Identification and Prob-
ability vs. Severity Risk Assessment method on all potential safety
hazards.

• Use available best practices and/or required standards (such as
Document-178C2 for aircraft) to increase the safety of the opera-
tional software and its supported systems.

Context: Relevant to safety-critical systems (e.g., aircraft, nuclear
systems, ground combat systems, missile systems, space systems)
or portions of systems (e.g., deployment mechanisms that inter-
face with live ordnance).

High-Availability Systems

• Specify and implement methods, processes, tools, and models
(attributes of a high-reliability culture) to improve (1) the integ-
rity, defect tolerance, and resilience of the acquired software and,
(2) the integrity, fault tolerance, and resilience of the systems it
supports.

• Establish service-level indicators and objectives to measure reliabil-
ity/stability of the software and system from the user perspective
over time (this includes identifying user-defined mission- critical
threads, stressing test cases such as max load) in off-nominal con-
ditions, and having actual users demonstrate their standard oper-
ating procedures and field deviations.

• Use available best practices (such as Service-Level Agreements) to
monitor and improve the availability of the system.

Life-Cycle Management

• Evaluate the effectiveness of the selected life cycle, methods, pro-
cesses, and tools against program outcomes using both quantita-
tive and qualitative measures.

• Identify timing, content, and stakeholders for retrospective
reviews.

1 DoD Military Standard 882E. System Safety, May 11, 2012.
2 Radio Technical Committee for Aeronautics Document 178C, Software Considerations in
Airborne Systems and Equipment Certification, December 2011.

RAND-Developed Software Acquisition Competencies 155

• Update plans as necessary to address obsolete or emerging tech-
nologies, methods, processes, and tools.

Context: Retrospective reviews are team-driven events that include
all stakeholders to evaluate the effectiveness of the acquisition
against program outcomes. They are typically synchronized to
the development tempo and program schedule (e.g., continuous
development would schedule reviews by calendar, while Scrum
would perform retrospectives at the conclusion of each sprint).

Detailed Backlog Management

• Maintain a list of capabilities to be developed (aka, the product
backlog) and the tasks that are required to realize those capabili-
ties mapped to the release plan.

• Add tasks as they are identified throughout the life cycle, includ-
ing tasks to resolve defects found during design, code, test, and
operations.

• Define and clearly communicate the “ready” and “done” criteria
for each task, developing a shared understanding with all stake-
holders.

Context: Fine-grained tasking, linked to capabilities, may be
required to synchronize activities across development teams (e.g.,
“Scrum of Scrums” concept), validation and verification teams
(e.g., software integration or certification facilities), or customer
support teams.

Release Management

• Use the “done” criteria from the release planning to identify the
required verification steps (inspection, analysis, unit, integration,
or acceptance test) for each release to higher levels of integration
testing, certification activities, and/or operations.

• Synchronize software releases with the development of models,
simulations, test beds, and operations environment(s) as needed
to ensure compatibility.

• Review and revise the release planning in response to changes in
program needs.

156 Software Acquisition Workforce Initiative for the Department of Defense

Change Management

• Implement methods, processes, and tools to manage changes to
program planning, requirements, architectural design decisions,
code, as well as validation and verification artifacts.

• Implement mechanisms to ensure that decisions regarding pro-
posed and approved changes are communicated clearly and in a
timely fashion to all stakeholders (i.e., at the speed required by the
development tempo).

• Implement a closed-loop process to track changes to closure.

Automated Test and Continuous Integration

• Implement a continuous integration process to ensure that newly
written code is compatible with existing code.

• Consider implementing methods, processes, and tools as part of
the continuous integration process to write and execute test cases
that reflect the completion criteria for each release, capability,
microservice, or component of the software being acquired.

• Automate the tests (from unit tests to system integration tests)
when feasible to allow for rapid discovery of integration issues.
Identify a subset of the test to function as a “smoke test” for daily
or on-demand builds of the software.

• Ensure the integrity of the automated test environment, and vali-
date that it performs as expected.

Effort Estimation

• Create and maintain an estimate of the total software acquisition
effort (labor and material), accounting for software size, complex-
ity, precedent, team cohesion, and the development team’s direct
experience with the application, methods, and processes to be
used.

• Use parametric, historical comparisons (analogies) and bottom-
up effort estimates from the development team, as appropriate,
to support business case development and acquisition strategy
refinement.

• Revise the acquisition strategy (this may include program cancel-
lation or a redefinition of the minimum viable product) if effort
estimates exceed defined thresholds.

RAND-Developed Software Acquisition Competencies 157

Product Roadmap and Schedule Management

• Implement plans for development (and/or purchase or sustain-
ment); and manage the schedule associated with capability/fea-
ture development and release (i.e., the product roadmap) against
scope, cost, and policy.

• Monitor the velocity of actual software and warfighter value
 production.

• Monitor early indicators of schedule risks, such as schedule buffer
(i.e., distributed schedule float) consumption and cumulative
flow metrics.

• Update effort estimates, cost, and schedule baselines as appro-
priate.

Cost Management

• Implement plans for development (and/or purchase or sustain-
ment); and manage the cost of the acquisition against constraints
in scope, schedule, and policy.

• Monitor actual software production metrics versus labor and
material expenditures, and update effort estimates and cost base-
lines as needed. Utilize cost management reserve to mitigate
development risks.

• Ensure that the formulation of “value earned” for software devel-
opment tasks accounts for (1) the accumulation of technical debt
and (2) the evolution of the product backlog when using earned
value measurement as a tool for monitoring program cost and
schedule.

Legal Policy and Regulatory Environment Management

• Implement plans for development (and/or purchase or sustain-
ment), while considering and adhering to relevant laws, congres-
sional budgets (fiscal year funding constraints), regulations and
certification requirements, and policies (e.g., data and property
rights, ownership, export rules) and managing against constraints
in scope, cost, and schedule.

• Update program plans in response to changes in legal policy and
regulatory environments.

158 Software Acquisition Workforce Initiative for the Department of Defense

Context: Examples of relevant laws includes Buy America Act3
and Title 10.4

Risk, Issues, and Opportunity Management

• Identify, specify, and execute strategies for actively managing proj-
ect risks, to include risk identification, quantization, and imple-
mentation of approved mitigation strategies (e.g., active manage-
ment of the system accreditation process for both operation and
test/evaluation; synchronization of software, hardware, and system
development).

• Implement a closed-loop process to actively track issues as they
arise, identify opportunities for improving products and processes
that add to customer value, and continuously reassess program
plans to mitigate risks and realize opportunities.

Quality Assurance

• Review/audit the system, software, and supply chain’s processes
and products; and team, program, and stakeholder metrics to assess
ability to meet the acceptance criteria for the delivered product
and provide an independent assessment of quality to program
management.

• Establish criteria for reviewing and auditing the software supply
chain across all subtiers as necessary to ensure program success.

Context: Team-level metrics may include measures of software
construction (e.g., story points/sprint, sprints/month), integra-
tion testing, or software quality. Program- and stakeholder-level
metrics focus on progress against delivered stakeholder value
(e.g., customer value streams, backlog burn down, and technical
debt buildup).

Root Cause, Corrective Action

• Monitor the program and software metrics to identify early indi-
cators of adverse trends and determine root causes.

3 United States Code, Title 41, Chapter 83, “Buy American.”
4 United States Code, Title 10, Armed Forces.

RAND-Developed Software Acquisition Competencies 159

• Use statistical control or other methods to proactively propose
changes to methods, processes, and software to correct those
trends.

System Integration and Testing

• Implement and execute system integration test plans and pro-
cedures, to include both informal and formal validation, that the
software meets the needs of its users and verification that the soft-
ware and/or system meets its requirements.

• Document the test results.
• Automate integration and test activities to the extent practical,

and build them into the software release process.
• Analyze the results to identify early indicators of adverse trends;

and implement root cause, corrective action.

Strategic Planning and Change Management

• Take a long-term view and build a shared vision with others; act
as a catalyst for organizational change.

• Influence others to translate strategic planning into action.
• Apply change management principles, strategies, and techniques

needed to effectively plan, implement, and evaluate change in the
organization.

• Develop an understanding of the impacts that change may have
on people, processes, procedures, leadership, and organizational
culture and the impacts that organizational culture and genera-
tional conflict may have on the ability to achieve change.

Innovation and Entrepreneurship

• Provide transformational solution-based approaches to problem-
solving and building products by employing an Iterative process
of empathize, define, ideate, build/prototype, and test (i.e., design
thinking); and institute a culture that encourages early and con-
tinuous learning (i.e., fail early/learn early).

160 Software Acquisition Workforce Initiative for the Department of Defense

Glossary

These definitions started from standard terms of art in the software
industry. Where formal standards exist for specific terms, those stan-
dards are referenced. The definitions are part of the competency model
and were refined using the same processes described in this report.

artificial intelligence: The theory and development of computer sys-
tems able to perform tasks that normally require human intelligence,
such as visual perception, speech recognition, optimization, and deci-
sionmaking. Explainability is a key quality attribute for artificial intel-
ligence applications and is a prerequisite to building trust between
humans and machines.

backlog: A prioritized list of tasks that teams need to work on within
the scope of an acquisition strategy and life-cycle approach. It is derived
from an analysis of users’ stories, quality attributes, and feedback from
actual users and testers. To adapt to emerging needs, the backlog is peri-
odically reviewed to add new items, reprioritize, and drop unneeded or
low-priority items. This process is termed backlog grooming.

cloud computing: A model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. Clouds can be private or
public and generally take the physical form of large server farms con-
nected by high-speed digital networks.

continuous delivery: An automated set of audits and tests to ensure
software is in a continual state of readiness for deployment into exter-
nal testing or operations. This includes packaging the software for
deployment in a production-like environment (e.g., containers). In
Agile development, the steps that comprise continuous integration and
delivery are referred to as a pipeline.

continuous deployment: A process that automatically deploys the
results of continuous delivery into the final production environment,
usually hundreds of times per day.

RAND-Developed Software Acquisition Competencies 161

continuous integration: An automated software merge, build, and
integration cycle to ensure that newly submitted code is compatible
with existing code. Can include automated static and dynamic analy-
ses and regression tests. At minimum, continuous integration is per-
formed once per day (i.e., the nightly build). The cycle may also be
triggered automatically for each code commit.

cumulative flow: A metric that tracks the growth (or shrinkage) of
work as it progresses through different states over time. For software,
cumulative flow diagrams provide an immediate visual indicator of
lead time and cycle time for work in progress and are an effective tech-
nique for identifying bottlenecks in the software construction process,
such as the limited availability of specific skill sets, integration facili-
ties, or certification authorities.

decision support tools: Interactive software-based systems intended
to help decisionmakers compile useful information from raw data, doc-
uments, personal knowledge, and/or business models to identify and
solve problems and make business decisions. A well-designed decision
support tool provides intelligently filtered data at the appropriate time
in the human decisionmaking process.

design thinking: An Iterative method to engage in solution-focused
thinking with the intent of producing a constructive future result. Espe-
cially useful when both the problem and the solution are unknown.
The goal of design thinking is to discover the parameters of the prob-
lem that matter.

digital engineering: An integrated digital approach that uses authori-
tative sources of system data and models as a continuum across disci-
plines to support life-cycle activities from concept through end of life.

digital twin: An integrated model of an as-built/as-deployed system
that is intended to reflect all defects and failures encountered in oper-
ations and to capture the evolving operational environment. It is a
sensor-enabled digital model that simulates the deployed system in a
live setting. The sensors collect cumulative, real-time, real-world data
across an array of dimensions to create an evolving digital profile of the
historical and current behavior of the system.

162 Software Acquisition Workforce Initiative for the Department of Defense

development tempo: The frequency and timing of software devel-
opment iterations, releases to test or certification organizations, and
deployments into hardware or operations. Tempo must be tailored
to the needs of the program and to the different levels of integration
required—no one size fits all.

ecosystem: A set of entities functioning as a unit and interacting with
a shared end-user constituency for software and services, together with
relationships among them. Ecosystems form when a set of core compo-
nents (the keystone) are complemented by peripheral components (e.g.,
apps or services) developed by autonomous entities (i.e., organization-
ally independent of the core developer) to address specific user needs.
Ecosystems are characterized by interoperability and co-innovation
enabled through common interfaces and shared knowledge.

executable architecture: A description of a system architecture in a
formal notation together with the tools that allow the generation of
artifacts from that notation, which are then used in the analysis, refine-
ment, and/or the implementation of the architecture described.

fitness functions: An objective integrity assessment of a quality attri-
bute of the software. The integrity assessment should be conducted
continuously or triggered periodically to ensure that the software
architecture evolves in a direction that meets the system’s key objec-
tives. Fitness functions can be manual, such as a quarterly review by
the architect to review for modularity and open interfaces, or auto-
mated. Automated fitness functions are often built into the continu-
ous integration and/or delivery pipeline. Static analysis for cyclomatic
complexity or directionality of package imports in Java are examples
of fitness functions that evaluate modularity and coupling. Testing for
system resilience using chaos engineering principles is another example
of a fitness function.

fuzz testing: An automated software testing technique that involves
providing invalid, unexpected, or random data as inputs to a software
item and verifying that the resultant behavior of the software is consis-
tent with the assumptions used in the design, validation, and verifica-
tion of safety-critical, security-critical, or high-availability systems.

RAND-Developed Software Acquisition Competencies 163

IaaS: Provides flexible computing resources for data storage, memory,
or computing power.

ideate: An “idea generation” process characterized by alternating
between divergent and convergent thinking. Divergent, or “out of the
box,” thinking creates a wide variety of proposed problems and solu-
tions, while convergent thinking seeks to narrow the proposed prob-
lems/solution space to a best or acceptable alternative.

integrity: The quality of an information system reflecting the logical
correctness and reliability of the operating system, the logical com-
pleteness of the hardware and software implementing the protection
mechanisms, and the consistency of the data structures and occurrence
of the stored data. When used in this report in the specific context of
cybersecurity, integrity is interpreted more narrowly to mean protec-
tion against unauthorized modification or destruction of information
(i.e., data integrity). This definition, including the narrower one used
for cybersecurity, are per the Committee on National Security Systems
(CNSS) Instruction 4009.5

life-cycle approach: The sequencing of activities within each iteration
or for each software release. Activities may include requirements analy-
sis, design (architectural and detailed), validation analysis and model-
ing, implementation, static and dynamic analysis of the code, verifica-
tion (via inspections, analysis, or test at various levels of integration),
build and integration, delivery, and deployment of the software. Life
cycle approaches should evolve as constraints change (e.g., the life cycle
for an initial greenfield development may differ significantly from that
used when sustaining the mature product).

machine learning: A category of algorithm that allows software appli-
cations to become more accurate in predicting outcomes without being
explicitly programmed. These algorithms receive input data and use
statistical analysis to predict an output while updating outputs as new
data becomes available. Commonly used machine-learning algorithms
(in order of increasing sophistication) include: correlators, optimiza-
tions using decision trees, K-means clustering, and neural networks.

5 CNSS Instruction 4009, April 26, 2010.

164 Software Acquisition Workforce Initiative for the Department of Defense

minimum viable product: The minimum set of features that provides
value to a user. It is a core artifact in an Iterative process of idea genera-
tion, prototyping, presentation, data collection, analysis, and learning.
The process is iterated until a desirable product/market fit is obtained,
or until the product is deemed nonviable.

PaaS: Provides the underlying software that makes cloud infrastruc-
ture accessible to individual applications. PaaS differs from IaaS in
that it provides more of the software application stack, and from SaaS
in that it does not provide the complete software stack. A wide range
of PaaS constructs is used in support of DoD programs.

performance efficiency requirements: Per International Organiza-
tion for Standardization (ISO)/International Electrotechnical Commis-
sion (IEC) 25010:2011,6 includes timing characteristics (e.g., respon-
siveness and latency), capacity and resource usage (e.g., memory and
throughput).

product roadmap: A plan that matches short-term and long-term busi-
ness goals with specific technology solutions to help meet those goals.
It is a strategic mapping of how the enterprise will evolve over time.

quality attributes: Nonfunctional requirements used to evaluate the
performance of a system. These are sometimes named “ilities” after the
suffix many of the words share. They are usually architecturally sig-
nificant requirements that require architects’ attention.

resilience: A measure of how quickly the system recovers essential ser-
vices after failure or attack.

risk/reward analysis: Used to select among different acquisition strat-
egies when actual costs and benefits cannot be determined. Plots risk
versus a range of possible reward over the product life cycle to select
the strategy that has the greatest potential to provide rewards while
minimizing risks.

6 International Standard ISO, Systems and Software Engineering—Systems and Software
Quality Requirements and Evaluation (SQuaRE)—System and Software Quality Models, ISO/
IEC 25010–2011, International Organization for Standardization ISO, 2011.

RAND-Developed Software Acquisition Competencies 165

root cause analysis: Tools that promote an understanding of the under-
lying (as opposed to surface) causes of systemic issues. Two common
techniques for understanding the root cause of a series of related issues
are the “5 Whys” and the “Fishbone Diagram.”

SaaS: Provides access to software applications without having to pur-
chase and install those application on individual devices.

schedule buffer: An allocation of development resources (labor and
time) to accommodate changes in system requirements, resolution of
software defects, and reductions in technical debt. Schedule buffers
should be placed prior to all critical integration points to mitigate the
risk of late software deliveries to embedded hardware, external inter-
face testing, and end-to-end verification activities.

software construction: A software engineering discipline to create
working, meaningful software through a combination of user-focused
validation and modeling, architecture, design, coding, analysis, unit test-
ing, integration testing, and debugging. Higher quality can be achieved
when software construction is structured to minimize the calendar time
from initial start of a capability to delivery of usable software.

software development environment: The suite of tools that are used
to aid in software development. These include tools used to enhance
team collaboration; modeling tools that often link directly to code gen-
erators; syntax checkers, compilers, linkers, and debuggers that provide
feedback in real time to human coders; change management tools; and
continuous integration and delivery tools. As these latter tools have
expanded in scope and complexity, the software development environ-
ment has come to be increasingly referred to as the software development
ecosystem. Another term coming into usage to describe both the tools
and the processes that/humans who use them is the software factory.

software quality: This document uses the term software quality as
defined in International Organization for Standardization (ISO)/
International Electrotechnical Commission (IEC) 25010:2011, which
includes all nonfunctional attributes, including performance efficiency
(timing, resource usage), reliability, usability, maintainability, security,
safety, etc.

166 Software Acquisition Workforce Initiative for the Department of Defense

success case method: Involves identifying the most and least success-
ful cases in a program and examining them in detail. It is a useful
approach to document stories of impact and to develop an understand-
ing of the factors that enhance or impede impact.

technical debt: A concept in software development that reflects the
implied cost of additional rework caused by choosing an easy solu-
tion now instead of using a better approach that would take longer. Its
buildup is used as an indicator and warning for system development
risk.

technologies: Includes architectures, algorithms, software, methods,
processes, tools, and techniques that have the potential to transform
warfighting or the velocity and quality of deployment of DoD systems.

validation: An assessment of whether the delivered system will or does
meet user needs (i.e., “Are we building/did we build the right thing?”
“Did we specify the capabilities and quality attributes that the war-
fighter actually needs?”). Validation can be conducted through user
stories, quality attribute workshops, modeling and simulation, integra-
tion testing, and feedback from users regarding the operation of proto-
types or early releases in operational tests and the operational environ-
ment itself. Systems and the services they deliver to the warfighter must
continually evolve as warfighter needs evolve.

value perception model: A conceptual model that defines and relates
price, perceived quality, and perceived value. Price is used as a proxy to
value-proposed acquisition strategies.

verification: An assessment of whether the system implementation sat-
isfies the identified capabilities and quality attributes (i.e., “Did we
build it right?”). Verification activities include inspection, analysis,
demonstration, and test and are conducted at various levels of integra-
tion. To the extent practical, verification activities should be automated
within continuous integration, delivery, and deployment pipelines to
provide rapid feedback to the development and sustainment teams.

167

APPENDIX G

List of Courses Reviewed

This appendix lists the courses reviewed for this study and discussed in
Chapter Six. Tables G.1, G.2, and G.3 detail the 394 courses provided
by DAU, other DoD institutions, and civilian institutions, respectively.

168 Software Acquisition Workforce Initiative for the Department of Defense

Table G.1
Courses Provided by the Defense Acquisition University

Fundamentals of Systems
Acquisition Management

Capability Maturity
Model-Integration (CMMI)

Applied Systems
Engineering in Defense
Acquisition, Part II

Fundamentals of
Technology Security/
Transfer (FTS/T)

Intellectual Property and
Data Rights

Fundamentals of Earned
Value Management

Intermediate Systems
Acquisition, Part A

Cybersecurity Throughout
DoD Acquisition

Basic Information Systems
Acquisitiona

Intermediate Systems
Acquisition, Part B

Introduction to DoD
Cloud Computing

Intermediate Information
Systems Acquisitiona

Mission-Focused Services
Acquisition (R)

Introduction to Agile
Software Acquisition

Advanced Enterprise
Information Systems
Acquisitiona

Understanding Industry
(Business Acumen) (R)

Reliability and
Maintainability

Advanced Program
Information Systems
Acquisitiona

Advanced Technology
Security/Control Workshop

Supportability Test and
Evaluation

Acquisition Logistics
Fundamentals

Acquisition Law Life-Cycle Logistics for
the Rest of Us

Fundamentals of System
Sustainment Management

Forging Stakeholder
Relationships (R)

Developing a Life-Cycle
Sustainment Plan (LCSP)

Reliability, Availability, and
Maintainability (RAM)

Fundamentals of Cost
Analysis

Designing for Supporta-
bility in DoD Systems

Product Support Strategy
Development, Part A

Acquisition Reporting for
MDAPs and MAIS (R)

Supportability Analysis Configuration Management

Operating and Support
Cost Analysis (R)

Product Support Business
Case Analysis (BCA)

Performance-Based
Logistics

Applied Software Cost
Estimating

Sustainment of Software
Intensive Systems

Enterprise Life-Cycle
Logistics Management

Cost Analysis Diminishing
Manufacturing Sources
and Material Shortages
(DMSMS) Fundamentals

Program Management
Tools Course, Part I

Program Execution Cost Estimating Program Management
Tools Course, Part II

Planning, Programming,
Budgeting, and Execution
and Budget Exhibits

Risk Management Program Manager’s Skills
Course

List of Courses Reviewed 169

Software Cost Estimating Commercial-Off-the-Shelf
(COTS) Acquisition for
Program Managers

Production, Quality,
and Manufacturing
Fundamentals

Value Engineering Environmental Safety and
Occupational Health

Intermediate Production,
Quality, and Manufacturing,
Part A

Technical Reviews Introduction to Data
Management

Intermediate Production,
Quality, and Manufacturing,
Part B

Introduction to Lean
Enterprise Concepts

Data Management
Strategy Development

Core Concepts for
Requirements Management

Environment, Safety, and
Occupational Health in
Systems Engineering

Data Management
Planning System

Introduction to Science and
Technology Management

DoD Open Systems
Architecture

Technical Data and
Computer Software Rights

Intermediate Science and
Technology Management

Continuous Process
Improvement
Familiarization

Data Management
Protection Storage

Fundamentals of Test and
Evaluation

Technical Planning Quality Assurance
Auditing

Intermediate Test and
Evaluation

Technology Readiness
Assessments

Introduction to the Joint
Capabilities Integration
and Development System

Advanced Test and
Evaluation

Program Manager
Introduction to Anti-
Tamper

Analysis of Alternatives DISA Information Systems
Engineering Workshop
(ISEW)

Modeling and Simulation
in Test and Evaluation

Introduction to Earned
Value Management

Systems Engineering Plan
(SEP)

Engineering Change
Proposals for Engineers

Software Acquisition
Management (SAM)
Policy and Procedures

Engineering Management
Workshop (EMW)

Software Reuse Software Acquisition
Management (SAM) Policy
Implementation

Reliability and
Maintainability (R&M) for
Engineers

Practical Software and
Systems Measurement

Fundamentals of Systems
Engineering

Intellectual Property (IP)
Workshop

Human Systems
Integration

Applied Systems
Engineering in Defense
Acquisition, Part I

Cybersecurity Awareness
Workshop

NOTE: These are the ISA courses used to identify gaps in the DAU software
acquisition curriculum.

Table G.1—Continued

170 Software Acquisition Workforce Initiative for the Department of Defense

Table G.2
Courses Provided by Department of Defense Institutions

Air Force Institute of Technology

System Software
Engineering

Introduction to Software
Engineering

Software Architecture and
Design Methods

Project Management Software Project
Management

Software Implementation
Techniques

System Architecture Software Requirements
Management

Software Test Engineering

Human-Computer
Interaction

Software Architecture
and Design Management

Software Deployment and
Sustainment Techniques

Decision Analysis Software Implementation
Management

Current Software
Technology Topics

Data Security Software Test
Management

Introduction to
Configuration Management

Secure Software Design
and Development

Managing Software
Deployment and
Sustainment

Introduction to Systems
Engineering

Software Evolution Current Software
Acquisition and
Management Topics

Technology Readiness
Assessment (TRA)

Information Visualization Software Requirements
Engineering

Management of the Systems
Engineering Process

Advanced Topics in
Software Engineering

Air University

Principles of Computer
Operation

Introduction to Computer
Networks

Cyber Surety Management

Data Processing, Inquiry,
and Retrieval Systems

Software Engineering Data Retrieval Systems

Operational Systems
Utilities

Principles of Database
Applications

Computer System
Administrator

Introduction to System
Software

Introduction to Logistics
Automated Data Systems

Advanced Data Inquiry
and Retrieval

Computer System
Familiarization

Software Engineering II Database Applications
Programming

Contracting Computer
Applications

Cyber Surety Computer Systems Security

List of Courses Reviewed 171

National Defense University

Information Technology Program
Management

Enterprise Architectures for Leaders

Strategic Information Technology
Acquisition

Decisionmaking for Government Leaders

Capital Planning and Portfolio
Management

Data Management Strategies and
Technologies: A Managerial Perspective

Strategies for Assuring Cyber Supply
Chain Security

Information Assurance and Critical
infrastructure Protection

Emerging Technologies Enterprise Information Security and
Risk Management

Naval Postgraduate School

Software Methodology Introduction to
Computer Security

Intermediate Programming

Software Reliability Advanced Software
Engineering

Human-Computer Systems
Interaction

Acquisition of Defense
Systems

Principles of Software
Design

Computer Architecture

Project Management for
Enterprise Systems

Software Testing Computer Communications
and Networks

Introduction to Formal
Methods in Software
Engineering

Software Architecture Enterprise Architecture

Software Engineering
Research and
Development in DoD

Introduction to
Programming

Enterprise Systems Analysis
and Design

Requirements
Engineering

Fundamentals of
Computing Systems

Enterprise Database
Management Systems

Table G.2—Continued

172 Software Acquisition Workforce Initiative for the Department of Defense

Table G.3
Courses Provided by Civilian Institutions

California Institute of Technology

Managing the Software
Component of Projects

Agile Project Management
Certificate Program

Software Engineering
and Management

Carnegie Mellon University

System Architectures for Managers Distributed Embedded Systems

Architectures for Software Systems Real-Time Embedded Systems

Agile Software Development
Frameworks: Theory

Models of Software Systems

Agile Software Development
Frameworks: Practice

Communication for Software Engineers I

Deciding What to Design Communication for Software Engineers II

Management of Software Development
for Technology Executives

Embedded System Software Engineering

Business for Engineers Engineering Run-Time Malware
Detection

Managing Software Development Analysis of Software Artifacts

Cornell University

Computer System Organization
and Programming

Object-Oriented Programming and
Data Structures

Operating Systems Programming Languages and Logics

Data Structures and Functional
Programming

System Security

Introduction to Database Systems Software Engineering

Embedded Systems Open-Source Software Engineering

George Mason University

Reusable Software
Architectures

Secure Software Design
and Programming

Security Policy

Service-Oriented
Architecture

Software Requirements
Analysis and Specification

Distributed Software
Engineering

Quality of Service for
Software Architectures

Component-Based
Software Development

Software Project
Laboratory

List of Courses Reviewed 173

Table G.3—Continued

Database Management Management Science Software Analysis and
Design of Real-Time Systems

Database Systems Software Project
Management

Software Engineering for
the World Wide Web

Object-Oriented
Software Specification
and Construction

Information Security
Theory and Practice

Software Testing

Software Modeling and
Architectural Design

Operating Systems
Security

Advanced Software Testing

User Interface Design
and Development

Georgia Institute of Technology

Advanced Computer Architecture Software Fundamentals for Engineering
Systems

Engineering Software Design Programming for Hardware/Software
Systems

Massachusetts Institute of Technology

Computation Structures Automata, Computability,
and Complexity

Elements of Software
Construction

Database Systems Introduction to
Algorithms

Computer System
Engineering

Artificial Intelligence Fundamentals of
Programming

Computer Language
Engineering

Introduction to Machine
Learning

Design and Analysis of
Algorithms

Performance Engineering
of Software Systems

Princeton University

Operating Systems Human-Computer
Interface Technology

Functional Programming

Computer Architecture
and Organization

Machine Learning and
Artificial Intelligence

Programming Languages
(COS 441)

Database and Information
Management Systems

Compiling Techniques Programming Languages
(COS 510)

174 Software Acquisition Workforce Initiative for the Department of Defense

Table G.3—Continued

Purdue University

Operating Systems
(CS 35400)

Database Systems Algorithm Design, Analysis,
and Implementation

Operating Systems
(CS 50300)

Compilers: Principles and
Practice

Software Engineering I

Information Systems Compiling and
Programming Systems

Software Engineering II

Data Communication
and Computer Networks

Programming Languages Software Testing

San Jose State University

Computer Organization
and Architecture

Enterprise Distributed
Systems

Introduction to
Programming

Cloud Technologies Enterprise Application
Development

Assembly Language
Programming

Introduction to Data
Structures

Global and Social Issues in
Engineering (ENGR 195A)

Information Security

Data Structures and
Algorithms

Global and Social Issues in
Engineering (ENGR 195B)

Introduction to Engineering

Introduction to Database
Management Systems

Virtualization
Technologies

Software Engineering I

Data Mining Computer Networks I Software Engineering II

Large Scale Analytics Enterprise Software
Platforms

Software Engineering
Process Management

Senior Design Project I Computer Network Design Software Engineering
Processes

Senior Design Project II Network Programming
and Applications

Software Engineering
Management

Operating Systems Cloud Services Software Quality
Engineering

Object-Oriented Design Network Architecture and
Protocols

Software Quality
Assurance and Testing

Computer and Human
Interaction

Network Security

List of Courses Reviewed 175

Table G.3—Continued

University of California, Berkeley

Computer Architecture
and Engineering

Database Management Operating Systems and
System Programming

Graduate Computer
Architecture

User Interface Design
and Development
(COMPSCI 160)

Programming Languages
and Compliers

Introduction to Database
Systems

Introduction to
Embedded Systems

Design of Programming
Languages

Principles and Techniques
of Data Science

User Interface Design
and Development
(COMPSCI 260A)

Computer Security

Introduction to Database
Systems

Human-Computer
interaction Research

Security in Computer
Systems

Implementation of
Database Systems

Software Prototyping
for Data Science and
Information Management

Software Engineering

Information Organization
and Retrieval

Needs and Usability
Assessment

University of Illinois, Urbana-Champaign

Embedded Systems Distributed Systems Programming Language
Semantics

Computer System
Organization

Formal Software
Development Methods

Software Engineering I

Computer Architecture System Programming Software Engineering II

Database Systems Programming Languages
and Compilers

Topics in Software
Engineering

Data Structures Programming Language
Design

Program Verification

University of Michigan, Ann Arbor

Computer Networks Advanced Operating
Systems

Principles of Real-Time
Computing

Database Management
Systems

Foundations of Artificial
Intelligence

Computer and Network
Security

Introduction to Operating
Systems

Compiler Construction Software Engineering

Web Systems Programming Languages

176 Software Acquisition Workforce Initiative for the Department of Defense

Table G.3—Continued

University of Texas at Austin

Software Architecture Communication Networks:
Tech/Arch/Protocol

Algorithmic Foundations
for Software Systems

Data Engineering Distributed Systems Introduction to Optimization

Data Mining Parallel Algorithms Requirements Engineering:
Acquisition and Modeling

Formal Methods in
Distributed Systems

Systems Programming Distributed Information
System Security

Mobile Computing Advanced Programming
tools

Middleware

Social Computing Multicore Computing Verification and Validation

Advanced Embedded
Microcontroller Systems

Computer Graphics Software Testing

System Engineering Program
Management and Evaluation

University of Washington

Computer Architecture Computer-Aided
Reasoning for Software

Advanced Topics in
Programming Languages

Advanced Topics in
Software Systems

Advanced Topics in
Human-Computer
Interaction

Programming
Language Analysis and
Implementation

Computer Operating
Systems

Software Development
for Data Scientists

Principles of Programming
Languages

Computer Systems
Architecture

Machine Learning/Data
Mining

Advanced Topics in
Programming Languages

High-Performance
Computer Architectures

Applications of Artificial
Intelligence

Computer Security and
Privacy

Computer Systems Machine Learning Principles of Software
Engineering

Operating Systems Artificial Intelligence Software Engineering

Database Management
Systems

Artificial Intelligence II Advanced Topics in
Software Engineering

Scalable Data Systems
and Algorithms

Compiler Construction Performance Analysis
(CSEP 597)

Principles of Database
Systems

Programming Languages Performance Analysis
(CSE 597)

Human-Computer Interaction

177

APPENDIX H

Software Curriculum–Competency Mapping

Table H.1 shows potential overlap between information systems acqui-
sition (ISA) courses and each competency. ISA courses were evalu-
ated by each course’s manager. There following four ISA courses were
included in the review:

• ISA 101—Basic Information Systems Acquisition
• ISA 201—Intermediate Information Systems Acquisition
• ISA 301—Advanced Enterprise Information Systems Acquisition
• ISA 320—Advanced Program Information Systems Acquisition.

Green indicates that there is full coverage of the competency.
Yellow indicates that there is partial coverage, and red indicates no
coverage. We also provide a column to sum the total number of ISA
courses that provide full coverage of the competency. A RAND SME
also evaluated other DoD and civilian courses to identify potential
courses that could be used to address gaps in DAU’s ISA curriculum.
For each competency, we provide a count of the number of other DoD
courses and civilian courses that appear to provide good coverage of
competency content. This analysis should be viewed as exploratory and
reevaluated once the competencies have been validated and a workforce
analysis conducted. These steps are necessary to identify the relative
importance of competencies, the level of proficiency required on each
competency, and potential proficiency gaps in the workforce.

178 Software Acquisition Workforce Initiative for the Department of Defense

Table H.1
Competencies Covered by Defense Acquisition University Information
Systems Acquisition Courses and Other Department of Defense and
Civilian Courses

Competency
ISA
101

ISA
201

ISA
301

ISA
320 # Green

Other
DoD

Courses
Civilian
Courses

Legal Policy and Regulatory
Environment Management 4 2 1

Risk, Issues, and
Opportunity Management 4 3 0

Cybersecurity 3 3 2

Business Case Development 2 9 12

Contracting for Software
Development 2 3 0

Life-Cycle Management 2 0 3

Release Planning 2 1 2

Strategic Planning and
Change Management 2 2 1

Cloud Computing 2 0 3

Data and Proprietary Rights
Management 2 2 1

Quality Assurance 2 0 3

Release Management 2 0 3

Strategic Risk/Reward
Analysis 2 9 3

System Integration and
Testing 2 1 2

Architectural Design
Approach 1 0 3

Configuration and Version
Control 1 1 2

Planning for Continuous
Delivery 1 3 1

Planning for Continuous
Deployment 1 3 3

Software Curriculum–Competency Mapping 179

Table H.1—Continued

Competency
ISA
101

ISA
201

ISA
301

ISA
320 # Green

Other
DoD

Courses
Civilian
Courses

Root Cause, Corrective
Action 1 2 1

Software Development
Planning 1 0 5

Software Documentation 1 0 4

Software Metrics 1 3 0

Validation of Sustainability
Requirements 1 2 4

Artificial Intelligence
and Machine-Learning
Applications

1 0 9

Augmented and Virtual
Reality Applications 1 1 4

Balancing Quality Attributes 1 0 3

Detailed Backlog
Management 1 3 2

Development Tempo 1 0 4

Effort Estimation 1 1 2

Emerging Technologies 1 1 2

Product Roadmap and
Schedule Management 1 0 0

Safety Critical Systems 1 0 5

Software Assurance 1 3 1

Automated Test and
Continuous Integration 0 2 3

Capabilities Elicitation 0 6 11

Change Management 0 3 0

Cost Management 0 1 2

Embedded Systems 0 0 7

180 Software Acquisition Workforce Initiative for the Department of Defense

Table H.1—Continued

Competency
ISA
101

ISA
201

ISA
301

ISA
320 # Green

Other
DoD

Courses
Civilian
Courses

High-Availability Systems 0 2 1

Software Deployment
Patterns 0 1 3

System Engineering
Planning 0 2 1

High Fidelity System
Modeling 0 2 1

Innovation and
Entrepreneurship 0 0 3

Model-Based Engineering 0 2 8

Software Ecosystems 0 7 5

Software Orchestration and
Choreography Patterns 0 1 2

Use/Abuse Case Modeling 0 1 2

Validation of Performance
Efficiency Requirements 0 1 5

181

References

Abrahamsson, Pekka, Outi Salo, Jussi Ronkainen, and Juhani Warsta, “Agile
Software Development Methods: Review and Analysis,” VTT Technical Research
Centre of Finland, 2002. As of September 17, 2018:
https://www.vtt.fi/inf/pdf/publications/2002/P478.pdf

Agile Alliance, “Scrum of Scrums,” webpage, undated. As of January 2019:
https://www.agilealliance.org/glossary/scrum-of-scrums/#q=~(infinite~false~filters~
(postType~(~’page~’post~’aa_book~’aa_event_session~’aa_experience_report~
’aa_glossary~’aa_research_paper~’aa_video)~tags~(~’scrum*20of*20scrums))~
searchTerm~’~sort~false~sortDirection~’asc~page~1)

———, “Subway Map to Agile Practices,” 2018. As of September 17, 2018:
https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

Agile Government Leadership, “Cultural Transformation,” Agile Government
Handbook, 2016. As of September 17, 2018:
https://handbook.agilegovleaders.org/#cultural-transformation

Ambler, Scott, “The Agile System Development Life Cycle (SDLC),” Ambysoft,
undated. As of August 27, 2019:
http://www.ambysoft.com/essays/agileLifecycle.html

———, “Examining the Agile Manifesto,” Ambysoft, 2014. As of September 17,
2018:
http://www.ambysoft.com/essays/agileManifesto.html

Association of Modern Technologies Professionals, “Software Development
Methodologies,” 2018. As of September 17, 2018:
http://www.itinfo.am/eng/software-development-methodologies/#chapter14

B., Kerry, “5 Software Development Trends to Watch for in 2018,” April 23, 2018.
As of November 20, 2018:
https://dzone.com/articles/5-software-development-trends-to-watch-for-in-2018

Balaji, S., and M. Sundararajan Murugaiyan, “Waterfall vs. V-Model vs. Agile:
A Comparative Study on SDLC,” International Journal of Information Technology
and Business Management, 2012.

https://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
https://www.agilealliance.org/glossary/scrum-of-scrums/#q=%7E(infinite%7Efalse%7Efilters%7E(postType%7E(%7E%E2%80%99page%7E%E2%80%99post%7E%E2%80%99aa_book%7E%E2%80%99aa_event_session%7E%E2%80%99aa_experience_report%7E%E2%80%99aa_glossary%7E%E2%80%99aa_research_paper%7E%E2%80%99aa_video)%7Etags%7E(%7E%E2%80%99scrum*20of*20scrums))%7EsearchTerm%7E%E2%80%99%7Esort%7Efalse%7EsortDirection%7E%E2%80%99asc%7Epage%7E1)
https://www.agilealliance.org/agile101/subway-map-to-agile-practices/
https://handbook.agilegovleaders.org/#cultural-transformation
http://www.ambysoft.com/essays/agileLifecycle.html
http://www.ambysoft.com/essays/agileManifesto.html
http://www.itinfo.am/eng/software-development-methodologies/#chapter14
https://dzone.com/articles/5-software-development-trends-to-watch-for-in-2018

182 Software Acquisition Workforce Initiative for the Department of Defense

Beck, Kent, James Grenning, Robert C. Martin, Mike Beedle, Jim Highsmith,
Steve Mellor, Arie van Bennekum, Andrew Hunt, Ken Schwaber, Alistair
Cockburn, Ron Jeffries, Jeff Sutherland, Ward Cunningham, Jon Kern, Dave
Thomas, Martin Fowler, and Brian Marick, “Manifesto for Agile Software
Development,” 2001. As of September 17, 2018:
http://agilemanifesto.org/

Belanich, J., F. L. Moses, and P. Lall, Review and Assessment of Personnel
Competencies and Job Description Models and Methods, Alexandria, Va.: Institute
for Defense Analyses, 2016. As of April 8, 2019:
https://apps.dtic.mil/docs/citations/AD1021552

“Best Computer Engineering Programs,” U.S. News & World Report, 2018. As of
February 2018:
https://www.usnews.com/best-graduate-schools/top-engineering-schools/
computer-engineering-rankings

Bourque, P., and R. E. Fairley, eds., SWEBOK V3.0: Guide to the Software
Engineering Body of Knowledge, Piscataway, N.J.: IEEE Computer Society, 2014.

Bureau of Labor Statistics, U.S. Department of Labor, “Software Developers,”
Occupational Outlook Handbook, April 13, 2018. As of March 05, 2019:
https://www.bls.gov/ooh/computer-and-information-technology/software
-developers.htm

Campion, Michael A., Alexis A. Fink, Brian J. Ruggeberg, Linda Carr, Geneva
M. Phillips, and Ronald B. Odman, “Doing Competencies Well: Best Practices in
Competency Modeling,” Personnel Psychology, Vol. 64, No. 1, 2011, pp. 225–262,
doi:10.1111/j.1744-6570.2010.01207.x.

Cao, Lan, Kannan Mohan, Peng Xu, and Balasubramaniam Ramesh, “A
Framework for Adapting Agile Development Methodologies,” European Journal
of Information Systems, Vol. 18, No. 4, 2009, pp. 332–343.

Capgemini, “The Changing Dynamics of the Global High Tech Industry,” 2011.
As of November 20, 2018:
https://www.capgemini.com/wp-content/uploads/2017/07/The_Changing_
Dynamics_of_the_Global_High_Tech_Industry_____An_Analysis_of_Key_
Segments_and_Trends.pdf

Chang, Su J., Angelo Messina, and Peter Modigliani, “How Agile Development
Can Transform Defense IT Acquisition,” in P. Ciancarini et al., eds., Proceedings
of 4th International Conference in Software Engineering for Defense Applications,
Switzerland: Springer International Publishing, 2016.

Cockburn, A., and J. Highsmith, “Agile Software Development: The People Factor,”
Computer, Vol. 34, No. 11, November 2001, pp. 131–133. As of September 17, 2018:
https://ieeexplore.ieee.org/document/963450/#full-text-section

Committee on National Security Systems Instruction 4009, National Information
Assurance (IA) Glossary, April 26, 2010.

http://agilemanifesto.org/
https://apps.dtic.mil/docs/citations/AD1021552
https://www.usnews.com/best-graduate-schools/top-engineering-schools/computer-engineering-rankings
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.capgemini.com/wp-content/uploads/2017/07/The_Changing_Dynamics_of_the_Global_High_Tech_Industry_____An_Analysis_of_Key_Segments_and_Trends.pdf
https://ieeexplore.ieee.org/document/963450/#full-text-section

References 183

Congressional Research Service, “The Department of Defense Acquisition
Workforce: Background, Analysis, and Questions for Congress,” July 29, 2016.

DAU—See Defense Acquisition University.

Defense Acquisition University, “About AWQI,” webpage, undated. As of August
27, 2019:
https://www.dau.edu/tools/awqi/p/About-AWQI

———, “Acquisition Workforce Qualification Initiative,” undated. As of August
27, 2019:
https://www.dau.edu/tools/awqi/

———, “Career Fields,” webpage, undated. As of August 27, 2019:
https://icatalog.dau.edu/onlinecatalog/CareerLvl.aspx

———, Defense Acquisition Guidebook, undated. As of August 27, 2019:
https://www.dau.edu/guidebooks/Shared%20Documents%20HTML/
Chapter%201%20Program%20Management.aspx

Defense Innovation Board, Ten Commandments of Software, Version 0.14, April 15,
2018. As of January 2018:
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/
DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_
SOFTWARE_2018.04.20.PDF

Defense Science Board, Design and Acquisition of Software for Defense Systems,
February 2018. As of October 22, 2018:
https://apps.dtic.mil/dtic/tr/fulltext/u2/1048883.pdf

Deloitte, Agile in Government: A Playbook from the Deloitte Center for Government
Insights, 2017. As of September 17, 2018:
https://www2.deloitte.com/content/dam/insights/us/articles/3897_Agile-in
-government/DUP_Agile-in-Government-series.pdf

Department of Defense Instruction 1400.25, “DoD Civilian Personnel
Management System: Volume 250, Civilian Strategic Human Capital Planning
(SHCP),” Washington, D.C.: Under Secretary of Defense for Personnel and
Readiness, November 18, 2008. As of April 8, 2019:
https://prhome.defense.gov/Portals/52/Documents/RFM/TFPRQ/docs/1400.25
-v250.pdf

——— 5000.66, “Defense Acquisition Workforce Education, Training,
Experience, and Career Development Program,” Washington, D.C.: Under
Secretary of Defense for Acquisition, Technology, and Logistics, July 27, 2017.
As of April 8, 2019:
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodi/500066_
dodi_2017.pdf

https://www.dau.edu/tools/awqi/p/About-AWQI
https://www.dau.edu/tools/awqi/
https://icatalog.dau.edu/onlinecatalog/CareerLvl.aspx
https://www.dau.edu/guidebooks/Shared%20Documents%20HTML/Chapter%201%20Program%20Management.aspx
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
https://apps.dtic.mil/dtic/tr/fulltext/u2/1048883.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/3897_Agile-in-government/DUP_Agile-in-Government-series.pdf
https://prhome.defense.gov/Portals/52/Documents/RFM/TFPRQ/docs/1400.25-v250.pdf
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodi/500066_dodi_2017.pdf

184 Software Acquisition Workforce Initiative for the Department of Defense

——— 5000.66, “Operation of the Defense Acquisition, Technology, and
Logistics Workforce Education, Training, and Career Development Program,”
Washington, D.C.: Under Secretary of Defense for Acquisition, Technology, and
Logistics, December 21, 2005. As of April 8, 2019:
https://pdf4pro.com/fullscreen/department-of-defense-instruction-50a603.html

DoD Military Standard 498, Software Development and Documentation, December
5, 1994.

DoD Military Standard 882E, System Safety, May 11, 2012.

DIB—See Defense Innovation Board.

DoD—See U.S. Department of Defense.

DoDI—See Department of Defense Instruction.

Eckert, Daniel, “Three Big Emerging Technology Themes from CES 2016,” PWC,
January 13, 2016. As of November 20, 2018:
http://usblogs.pwc.com/emerging-technology/3-big-emerging-technology-themes
-from-ces-2016/

Erwin, Sandra, “Pentagon Advisory Panel: DoD Could Take a Page from SpaceX
on Software Development,” Space News, April 10, 2018. As of November 20, 2018:
https://spacenews.com/pentagon-advisory-panel-dod-could-take-a-page-from
-spacex-on-software-development/

Equal Employment Opportunity Commission, Civil Service Commission,
Department of Labor, and Department of Justice, Uniform Guidelines on Employee
Selection Procedures, August 25, 1978.

European Center for Security and Privacy by Design, Emerging Trends in Software
Development & Implications for IT Security: An Explorative Study, Darmstadt, Ger.:
Technical University Darmstadt, June 2014. As of November 20, 2018:
https://www.sit.fraunhofer.de/fileadmin/dokumente/studien_und_technical_
reports/SoftwareDevelopment-Fraunhofer_SIT.pdf

Finley, J. L., “Establishment of Software Acquisition Training and Education
Working Group,” memorandum, Washington, D.C.: Under Secretary of Defense
for Acquisition, Technology, and Logistics, February 19, 2008.

Francino, Yvette, “Is the Agile Manifesto Dead? Not by a Longshot,” Tech Beacon,
undated. As of August 27, 2019:
https://techbeacon.com/agile-manifesto-dead-not-long-shot

GAO—See U.S. Government Accountability Office.

Gates, Susan M., Brian Phillips, Michael H. Powell, Elizabeth Roth, and Joyce
S. Marks, Analyses of the Department of Defense Acquisition Workforce: Update to
Methods and Results Through FY 2017, Santa Monica, Calif.: RAND Corporation,
RR-2492-OSD, 2018. As of March 18, 2019:
https://www.rand.org/pubs/research_reports/RR2492.html

https://pdf4pro.com/fullscreen/department-of-defense-instruction-50a603.html
http://usblogs.pwc.com/emerging-technology/3-big-emerging-technology-themes-from-ces-2016/
https://spacenews.com/pentagon-advisory-panel-dod-could-take-a-page-from-spacex-on-software-development/
https://www.sit.fraunhofer.de/fileadmin/dokumente/studien_und_technical_reports/SoftwareDevelopment-Fraunhofer_SIT.pdf
https://techbeacon.com/agile-manifesto-dead-not-long-shot
https://www.rand.org/pubs/research_reports/RR2492.html

References 185

Gifographics Creative Team, 6 Emerging Software Testing Trends That Will Rule
2018, infographic, June 8, 2018. As of November 20, 2018:
https://gifographics.co/emerging-software-testing-trends-2018-infographic/

Hanssen, G. K., B. Haugset, T. Stålhane, T. Myklebust, and I. Kulbrandstad,
“Quality Assurance in Scrum Applied to Safety Critical Software,” in H. Sharp
and T. Hall, eds., Agile Processes, in Software Engineering, and Extreme
Programming. XP 2016. Lecture Notes in Business Information Processing,
Vol. 251, Cham.: Springer, 2016.

Headquarters Air Force Personnel Center, Air Force Enlisted Classification Directory
(AFECD), Randolph Air Force Base, Tex.: HQ AFPC/DPSIDC, October 31,
2018. As of October 22, 2019:
https://www.afpc.af.mil/Portals/70/documents/07_CLASSIFICATION/
20191031%20AFECD.pdf?ver=2019-10-02-093958-540

Huo, Ming, J. Verner, Liming Zhu, and M. A. Baber, “Software Quality and Agile
Methods,” Proceedings of the 28th Annual International Computer Software and
Applications Conference, 2004. As of September 17, 2018:
https://ieeexplore.ieee.org/document/1342889/

Institute of Electrical and Electronics Engineers (IEEE) Computer Society,
Software Engineering Body of Knowledge (SWEBOK), undated. As of March 21,
2019:
https://www.computer.org/education/bodies-of-knowledge/software-engineering

International Standard ISO: ISO/IEC 25010–2011, Systems and Software
Engineering—Systems and Software Quality Requirements and Evaluation
(SQuaRE)—System and Software Quality Models, International Organization for
Standardization ISO, 2011.

Joint Task Force on Computing Curricula, Software Engineering 2014: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering, New York:
IEEE Computer Society and Association for Computing Machinery, 2015.

Kendall, Frank, Office of the Under Secretary of Defense for Acquisition,
Technology, and Logistics, “Better Buying Power 2.0: Continuing the Pursuit
for Greater Efficiency and Productivity in Defense Spending,” memorandum,
Washington, D.C.: Department of Defense, November 13, 2012. As of April 8,
2019:
https://www.acq.osd.mil/fo/docs/USD(ATL)%20Signed%20Memo%20
to%20Workforce%20BBP%202%200%20(13%20Nov%2012)%20with%20
attachments.pdf

Kenwood, Carolyn A., “A Business Case Study of Open Source Software,”
MITRE, July 2001. As of November 20, 2018:
https://www.mitre.org/sites/default/files/pdf/kenwood_software.pdf

Lanka, Divya, Ch Lakshmi, and D. Suryanarayana, “Application of Fog
Computing in Military Operations,” International Journal of Computer
Applications, Vol. 164, 2017, pp. 10–15, 10.5120/ijca2017913653.

https://gifographics.co/emerging-software-testing-trends-2018-infographic/
https://www.afpc.af.mil/Portals/70/documents/07_CLASSIFICATION/20191031%20AFECD.pdf?ver=2019-10-02-093958-540
https://ieeexplore.ieee.org/document/1342889/
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.acq.osd.mil/fo/docs/USD(ATL)%20Signed%20Memo%20to%20Workforce%20BBP%202%200%20(13%20Nov%2012)%20with%20attachments.pdf
https://www.mitre.org/sites/default/files/pdf/kenwood_software.pdf

186 Software Acquisition Workforce Initiative for the Department of Defense

Lapham, Mary Ann, Ray Williams, Charles (Bud) Hammons, Daniel Burton,
and Alfred Schenker, “Considerations for Using Agile in DoD Acquisitions,”
Pittsburgh, Penn.: Software Engineering Institute, Carnegie Mellon University,
2010.

Levinson, Harry, “Helping Large Government Programs Adopt and Adapt to
Agile Methods,” Pittsburgh, Penn.: Software Engineering Institute, Carnegie
Mellon University, 2016.

Lockheed Martin, “F-35 Lightning II: A Digital Jet for the Modern Battlespace,”
webpage, undated. As of April 9, 2019:
https://www.f35.com/about/life-cycle/software

Lotz, Mark, “Waterfall vs. Agile: Which Is the Right Development Methodology
for Your Project?,” Segue Technologies, July 5, 2013. As of September 17, 2018:
https://www.seguetech.com/waterfall-vs-agile-methodology/

Lucero, D. S., “Influencing Software Competencies Across the DoD Acquisition
Workforce,” Journal of Defense Software Engineering, 2010, pp. 4–7.

Manning, Berton, “Software Development: Software Management Plan,”
AcqNotes, June 15, 2018. As of August 27, 2019:
http://acqnotes.com/acqnote/careerfields/software-development-plan

Mansfield, Richard S., “Building Competency Models: Approaches for HR
Professionals,” Human Resource Management, Vol. 35, 1996, pp. 7–18.

Mims, Christopher, “Forget ‘the Cloud’; ‘The Fog’ Is Tech’s Future,” Wall Street
Journal, May 18, 2014. As of January 2019:
https://www.wsj.com/articles/SB10001424052702304908304579566662320279406

Mueller, Troy, David Harvey, Awais Sheikh, and Scott Johnson, “Making Agile
Work in Government,” MITRE , May 2015.

Munassar, Nabil Mohammed Ali, and A. Govardhan, “A Comparison Between
Five Models of Software Engineering,” International Journal of Computer Science
Issues, Vol. 7, No. 5, September 2010, pp. 94–101.

Naval Postgraduate School, Computer Science—Curriculum 368 (Resident),
Curriculum 376 (Distance Learning), Academic Catalog, 2019. As of April 10, 2019:
https://nps.smartcatalogiq.com/en/Current/Academic-Catalog/Graduate
-School-of-Operational-and-Information-Sciences-GSOIS/Department-of
-Computer-Sciences/Computer-Science-Curriculum-368-Resident-Curriculum
-376-Distance-Learning

Nerur, Sridhar, RadhaKanta Mahapatra, and George Mangalaraj, “Challenges of
Migrating to Agile Methodologies,” Communications of the ACM, Vol. 48, No. 5,
May 2005, pp. 73–78.

Office of the Secretary of Defense, “Agile and Earned Value Management:
A Program Manager’s Desk Guide,” April 16, 2018. As of January 2019:
https://www.acq.osd.mil/evm/assets/docs/PARCA_Agile_and_EVM_PM_Desk_
Guide.pdf

https://www.f35.com/about/life-cycle/software
https://www.seguetech.com/waterfall-vs-agile-methodology/
http://acqnotes.com/acqnote/careerfields/software-development-plan
https://www.wsj.com/articles/SB10001424052702304908304579566662320279406
https://nps.smartcatalogiq.com/en/Current/Academic-Catalog/Graduate-School-of-Operational-and-Information-Sciences-GSOIS/Department-of-Computer-Sciences/Computer-Science-Curriculum-368-Resident-Curriculum-376-Distance-Learning
https://www.acq.osd.mil/evm/assets/docs/PARCA_Agile_and_EVM_PM_Desk_Guide.pdf

References 187

O*Net Online, webpage, undated. As of August 27, 2019:
https://www.onetonline.org

OPM—See U.S. Office of Personnel Management.

Public Law 115-91, National Defense Authorization Act for Fiscal Year 2018,
December 12, 2017. As of May 21, 2018:
https://www.congress.gov/bill/115th-congress/house-bill/2810/text?q=%7B%
22search%22:%5B%22congressId:115+AND+billStatus:/%22Introduced/%22
%22%5D%7D&r=126

Putano, Ben, “6 Software Development Trends for 2018: Developers Needed,”
Stackify, November 24, 2017. As of November 20, 2018:
https://stackify.com/software-development-trends-2018/

Pyster, A., ed., Graduate Software Engineering 2009 (GSwE2009): Curriculum
Guidelines for Graduate Degree Programs in Software Engineering, Integrated
Software & Systems Engineering Curriculum Project, Hoboken, N.J.: Stevens
Institute of Technology, September 30, 2009

Radio Technical Committee for Aeronautics Document 178C, Software
Considerations in Airborne Systems and Equipment Certification, December 2011.

Ramesh, Balasubramaniam, Lan Cao, Kannan Mohan, and Peng Xu, “Can
Distributed Software Development be Agile?” Communications of the ACM,
Vol. 49, No. 10, October 2006.

Ruparelia, Nayan B., “Software Development Lifecycle Models,” ACM SIGSOFT
Software Engineering Notes, Vol. 35, No. 3, May 2010, pp. 8–13.

Schuh, Peter, Integrating Agile Development in the Real World, Rockland, Mass.:
Charles River Media, Inc., 2004.

Segue Technologies, “What Is Agile Software Development?” August 24, 2015.
As of September 17, 2018:
https://www.seguetech.com/what-is-agile-software-development/

Shippmann, J. S., R. A. Ash, M. Battista, L. Carr, L. D. Eyde, B. Hesketh,
J. Kehoe, K. Pearlman, E. P. Prien, and J. I. Sanchez, “The Practice of
Competency Modeling, Personnel Psychology, Vol. 53, 2000, pp. 703–740.

SHRM—See Society for Human Resource Management.

Society for Human Resource Management, Content Validation Study of the
SHRM Competency Model, undated. As of April 8, 2019:
https://www.shrm.org/LearningAndCareer/competency-model/Documents/
14-0705%20Content%20Validation%20Study%203.pdf

Society for Industrial and Organizational Psychology, “Principles for the
Validation and Use of Personnel Selection Procedures,” Industrial and
Organizational Psychology, Vol. 11, No. S1, 2018, pp. 1–97, doi:10.1017/
iop.2018.195.

https://www.onetonline.org
https://www.congress.gov/bill/115th-congress/house-bill/2810/text?q=%7B%22search%22:%5B%22congressId:115+AND+billStatus:/%22Introduced/%22%22%5D%7D&r=126
https://stackify.com/software-development-trends-2018/
https://www.seguetech.com/what-is-agile-software-development/
https://www.shrm.org/LearningAndCareer/competency-model/Documents/14-0705%20Content%20Validation%20Study%203.pdf

188 Software Acquisition Workforce Initiative for the Department of Defense

Smartsheet, “What’s the Difference? Agile vs Scrum vs Waterfall vs Kanban,”
2018. As of September 17, 2018:
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban

Svensson, Harald, and Martin Höst, “Views from an Organization on How
Agile Development Affects Its Collaboration with a Software Development
Team,” in F. Bomarius and S. Komi-Sirviö, eds., Product Focused Software Process
Improvement, PROFES 2005, Lecture Notes in Computer Science, Vol. 3547,
pp. 487–501, Berlin: Springer, 2005.

Testing Whiz, “8 Software Testing Trends Every Tester Should Follow in 2018,”
January 10, 2018. As of November 20, 2018:
https://www.testing-whiz.com/blog/8-software-testing-trends-every-tester-should
-follow-in-2018

Tore, Dybå, and Torgeir Dingsøyr, “Empirical Studies of Agile Software
Development: A Systematic Review,” Information and Software Technology, Vol. 50,
Iss. 9–10, 2008, pp. 833–859, 10.1016/j.infsof.2008.01.006.

U.S. Code, Title 5, Section 5105, Standards for Classification of Positions.

U.S. Code, Title 10, Armed Forces.

U.S. Code, Title 41, Chapter 83, Buy American.

U.S. Department of Defense, Defense Acquisition Workforce Program Desk Guide,
Washington, D.C., July 20, 2017a. As of March 14, 2018:
http://www.hci.mil/docs/Policy/Guidance%20Memoranda/DoDI_5000_66_
Desk_Guide_Signed_20_July_2017.pdf

———, Report to Congress: Restructuring the Department of Defense Acquisition,
Technology and Logistics Organization and Chief Management Officer Organization,
August 1, 2017b. As of May 21, 2018:
https://dod.defense.gov/Portals/1/Documents/pubs/Section-901-FY-2017-NDAA
-Report.pdf

———, Civilian Personnel Advisory Services, Strategic Workforce Planning Guide,
November 23, 2016. As of March 14, 2019:
https://www.dcpas.osd.mil/Content/documents/OD/2_A_Strategic_Workforce_
Planning_Guide.pdf

U.S. Department of Defense Instruction 1312.01, Department of Defense
Occupational Information Collection and Reporting, January 28, 2013.

U.S. Government Accountability Office, “DOD Space Acquisitions: Including
Users Early and Often in Software Development Could Benefit Programs,” GAO-
19-136, March 18, 2019.

———, High-Risk Series: Progress on Many High-Risk Areas, While Substantial
Efforts Needed on Others, Washington, D.C.: GAO-17-317, February 2017.

———, Software Development: Effective Practices and Federal Challenges in
Applying Agile Methods, Washington, D.C.: GAO-12-681, July 2012.

https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban
https://www.testing-whiz.com/blog/8-software-testing-trends-every-tester-should-follow-in-2018
http://www.hci.mil/docs/Policy/Guidance%20Memoranda/DoDI_5000_66_Desk_Guide_Signed_20_July_2017.pdf
https://dod.defense.gov/Portals/1/Documents/pubs/Section-901-FY-2017-NDAA-Report.pdf
https://www.dcpas.osd.mil/Content/documents/OD/2_A_Strategic_Workforce_Planning_Guide.pdf

References 189

U.S. Office of Personnel Management, Competency Model for Cybersecurity,
February 16, 2011. As of June 25, 2019:
https://www.chcoc.gov/content/competency-model-cybersecurity

———, Interpretative Guidance for Cybersecurity Positions: Attracting, Hiring and
Retaining a Federal Cybersecurity Workforce, October 11, 2018.

———, “Introduction to the Position Classification Standards,” 2009. As of June
10, 2019:
https://www.opm.gov/policy-data-oversight/classification-qualifications/
classifying-general-schedule-positions/positionclassificationintro.pdf

———, “Our Mission, Role & History,” 2019. As of April 10, 2019:
https://www.opm.gov/about-us/our-mission-role-history/what-we-do/

Wijeratne, David, Gagan Oberoi, and Shashank Tripathi, “The New Ways to Win
in Emerging Markets,” strategy+business, April 24, 2017. As of November 20,
2018:
https://www.strategy-business.com/article/The-New-Ways-to-Win-in-Emerging
-Markets?gko=7f566

Wolf, Michael, and Dalton Terrell, “The High-Tech Industry, What Is It and
Why It Matters to Our Economic Future,” in U.S. Bureau of Labor and Statistics,
Beyond the Numbers, Vol. 5, No. 8, May 2016. As of November 20, 2018:
https://www.bls.gov/opub/btn/volume-5/pdf/the-high-tech-industry-what-is-it-and
-why-it-matters-to-our-economic-future.pdf

https://www.chcoc.gov/content/competency-model-cybersecurity
https://www.opm.gov/policy-data-oversight/classification-qualifications/classifying-general-schedule-positions/positionclassificationintro.pdf
https://www.opm.gov/about-us/our-mission-role-history/what-we-do/
https://www.strategy-business.com/article/The-New-Ways-to-Win-in-Emerging-Markets?gko=7f566
https://www.bls.gov/opub/btn/volume-5/pdf/the-high-tech-industry-what-is-it-and-why-it-matters-to-our-economic-future.pdf

NATIONAL DEFENSE RESEARCH INSTITUTE

T
he U.S. Depar tment of Defense (DoD) seeks to advance the

ability of its software acquisition workforce to rapidly and reliably

deliver complex software-dependent capabilities through an

enhanced understanding of technical competencies, improvements

to education and training, and guidance for workforce management

and assessment. Focusing on three primary acquisition career fields—

information technology, engineering, and program management—the

authors review existing competency models used by DoD and commercial

industry, along with industry trends and modern software practices, and

gather feedback from stakeholders and subject-matter exper ts to develop

a model consisting of 48 competencies organized by topic: problem

identif ication, solution identif ication, development planning, transition and

sustainment planning, system architecture design, software construction

management, software program management, mission assurance, and

professional competencies. They also review existing courses of fered by

the Defense Acquisition University, other DoD institutions, and private and

public universities to determine whether and to what extent the courses

offer software training and education that corresponds with these competencies,

and to identify ways to address potential gaps. Although there is no currently

accepted government job title or occupational series for software

professionals, and although the competency model thus af fords limited

utility for assessing current workforce capability, the authors present

options for tracking and managing the software acquisition workforce, as

well as fur ther steps toward validating the competency model.

RR-3145-OSD

www.rand.org

$35.00

9 7 8 1 9 7 7 4 0 3 8 4 1

ISBN-13 978-1-9774-0384-1
ISBN-10 1-9774-0384-0

53500

http://www.rand.org

