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Abstract

This report proposes a model for trustworthy human-robot interactions by
taking into account the self-consciousness capabilities of an agent. The long-
term goal of the project is to increment transparent and trustworthy inter-
actions in human-robot teams so that that collaboration may be reliable and
efficient. In general, the more a teammate is aware of the limitations and
capabilities of the other teammates, the more it may be possible to establish
confidence and create productive and trustworthy interactions.

In this scenario, we investigate self-consciousness capability as a com-
ponent of trust interactions. In particular, we implement self-consciousness
capabilities by allowing the robot to generate a model of its actions and
abilities.

We exploit the BDI practical reasoning cycle in conjunction with the
theoretical model of trust proposed by Castelfranchi and Falcone [20][32].
We focus on the model in NAO and Pepper robots by means of the BDI
[64][14] agent paradigm in the Jason framework [13][12].

Starting from the BDI cycle, we extend the deliberation process and the
belief base representation to allows the robot to decompose a plan in a set
of actions associated with the needed self-knowledge to perform each action.
In this way, the robot creates and maintains self-consciousness capabilities
able to explain and justify the outcomes of its actions.

In the final part of the research we introduce a new concept: the role
of inner speech in trustworthy human robot interactions. We describe the
preliminary results obtained. However, new research is needed in order to
better analyze the role of inner speech.

Chapter 1 described the theoretical model of trust employed allowing
self-consciousness capabilities, along with an early implementation on the
NAO robot. Chapter 2 generalizes the approach in the previous chapter by
introducing a cognitive architecture to trust human-robot team interactions
based on robot self-consciousness. Chapter 3 exploit the implementation
issues of the architecture in the BDI paradigm by employing Jason and
CArtAgO. Chapter 4 extends the architecture by taking into account the
problem of knowledge acquisition at runtime. Chapter 5 further expands the
problem of incremental knowledge acquisition at runtime. FInally, chapter
6 describes the preliminary results obtained by introducing the inner speech
in the proposed cognitive architecture.
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Chapter 1

A Theoretical Model of Trust

1.1 Introduction

Purposeful social interactions in human-robot teams are based on the broad
concepts of autonomy, proactivity, and adaptivity. These concepts allow
the team to choose the productive activities to be performed to pursue the
required goals. From a social point of view, the members of the team have
to choose which actions to perform and which ones to delegate to the other
components of the team.

Therefore, human-robot interactions involve not only decisions on the
action to undertake to reach a goal, but also the actions to delegate to other
teammates. These decisions cannot be defined at design time, for reasons
ranging from the composition of the environment to the characteristics of
the interacting entities. A robot cannot be simply pre-programmed to carry
out tasks whose knowledge is acquired during execution. To face with this
kind of robot self-adaptation, we need to take into account the state of the
robot during execution, its knowledge about itself and the environment and
the knowledge about the other teammates.

Interactions with other teammates are based on the knowledge about
the capabilities of the other mates, on the interpretation of the actions of
the other mates concerning the shared goals and also on the mutual level
of trust. Trustworthiness is thus an essential element to choose actions to
undertake or to delegate to other members.

According to Castelfranchi and Falcone [20],[32] trust is assigned on the
basis of specific evaluations regulating the behavior of the agents. Trust is
tightly related to delegation, and it refers to a mental state of the trustor
towards the trustee. At the origin of trust are direct experience, recommen-
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dations, reputation and inferences reasoning.
In a dynamic context where human-robot interactions depend on time,

reputation and direct knowledge may not apply and inferences and reasoning
become essential elements [34].

The approaches in literature for the development of self-adaptive systems
are commonly related to multi-agent systems [79][78]. In the following, we
overview the adopted trust theory, the BDI paradigm and we describe the
employed elements of Jason and CArtAgO for our proposed implementation.

1.2 Concepts about trust

According to the trust theory proposed by Castelfranchi and Falcone [20][32][33][22],
we take into account:

• trust as mental attitude allowing the prediction and evaluation of other
agents’ behaviors;

• trust as a decision to rely on other agent’s abilities;

• trust as a behaviour, i.e., an intentional act of entrusting;

Thus, a set of different figures take part in the model:

• the trustor is an intentional entity, i.e., a cognitive agent based on the
BDI agent model that pursues a specific goal;

• the trustee is an agent operating in the environment;

• the context where the trustee performs actions;

• τ - is a “causal process” performed by the trustee and composed by
an act α and a result p. The goal gX is included in p and sometimes
coincides with p.

• the goal gX - is defined as GoalX(g).

The function of trust is the trust of a trustor in a trustee for a specific
context to perform acts to realize the outcome result. The model is described
by a five-part figures relation:

TRUST (X Y C τ gX) (1.1)

3
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Figure 1.1: Level of Delegation/Adoption, Literal Help

where X is the trustor agent, Y is the trustee agent. X’s goal, or briefly gX ,
is a critical element of this model of trust. In some cases, the outcome can
be identified with the goal.

Trust is the mental counterpart of the delegation, in the sense that trust
denotes a specific mental state composed of beliefs and goals, but it may be
realized only through actions. Delegation is the result of a decision taken
by the trustor to achieve a result involving the trustee.

Different levels of delegation are hypothesized [21, 31], ranging from a
situation in which the trustor directly delegates the trustee to cases in which
the trustee autonomously acts on behalf of the trustor. An interaction is a
continuous operation of adoptions and delegations. In particular, we focus
on the literal help, shown in Figure 1.1.

In the literal help, the client (trustor) and the contractor (trustee) act
together to solve a problem. The trustor asks the trustee to solve a sub-
goal by communicating the trustee the set of actions (plan) and the related
result. In the literal help the trustee tightly adopts all the sub-goals the
trustor assigns to him [21][31].

The notion of behaving on behalf of is one of the key ideas in the multi-
agent systems paradigm. Agents’ features, such as autonomy, proactivity,

4
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and rationality are useful concepts that make trust-based agents ideal can-
didates be used in applications such as human-robot interaction. Adopting
the multi-agent paradigm, we design and develop a multi-agent system in
which many agents are deployed in the robot involved in the application
domain.

1.3 BDI Agents

The BDI model approach was proposed as a model of practical reasoning
[14], while Jason [12] is an Agent-Oriented Language inspired by models of
behavior. The BDI Agent-Oriented Programming is in facts a commonly
employed paradigm for the implementation of agents.

According to the BDI model, an agent is characterized by its own beliefs,
desires, and intentions:

• beliefs are information about the working area or the world of the
agent;

• desires are the possible states of affairs of an agent. A desire is not a
must to do action, but it is a condition influencing other actions;

• intentions are the states of affairs an agent decides to perform. Inten-
tions can be considered as operations that can be delegated to other
teammates.

An intentional system is a system predictable through beliefs, desires
and intentions [30].

The decision-making model underpinning BDI systems is the practical
reasoning, a reasoning process for actions, where agents’ desires and beliefs
supply the relevant factor [15]. Practical reasoning, in brief, consists of two
activities:

• deliberation and intentions;

• means-ends reasoning.

Each activity can be expressed as the ability to fix behavior related to
intentions and deciding how to behave.

5
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Figure 1.2: Practical reasoning taken from [13] .
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Figure 1.3: Mapping actions onto beliefs

1.4 Jason and CArtAgO

The Jason programming language extends the agent-oriented language AgentS-
peak. A BDI agent can sense its environment and update its internal belief
base accordingly. Jason implements the BDI paradigm, and thus the com-
ponents of the language are the beliefs, the desires and the intentions of
the model. An agent enters an infinite loop of perception, reasoning, and
actions to satisfy its goals [12].

CArtAgO [66] is a general purpose framework based on Agents and Arti-
facts meta-model. Briefly, it allows the development of virtual environments
for BDI systems based on artifacts.

1.5 Self-conscious BDI agents

In this project, we investigate the self-consciousness abilities of the entities
as valuable ingredients of a trustworthy relationship.

In our proposed model, the robot has the role of the trustee and the
human mate is the trustor. The human mate trusts the robot and delegates
goals to it. We assume the level of trust as related to the robot’s ability to
explain and justify the outcomes of its actions, especially when the robot
fails.

As previously stated, our approach is based on the employment of a
multi-agent paradigm and the BDI theory to model trust-based interactions
in a partially unknown environment. We take inspiration by the theoretical

7

DISTRIBUTION A:  Approved for public release; distribution unlimited



Desires

IntentionsKnowledge Base (Beliefs)

Actions, Capabilities and 
Knowledge Mapping

Plans Identification
Actions Decomposition

Environment and 
Capabilities Analysis

Goals Identification and 
Analysis
Goals Decomposition
Agents Identification 

Knowledge

step1 step2 step4step3

Figure 1.4: The first layer of the architecture: analysis and design

model by Castelfranchi and Falcone and we implement parts of it by the
BDI cycle [13] where we include the self-consciousness capabilities at the
basis of robot explanation and justification. The module for the robot self-
consciousness includes components allowing the robot to reason about its
knowledge to perform actions or behaviors.

In the implementation, to establish a transparent and trustworthy inter-
action, each action is then coupled with the concepts related to itself, that
the robot needs to complete that action. Then, the robot may explain and
justify at each moment whether and why action is going wrong and, most
important, it may motivate faults.

For instance, let us suppose a person sitting on a desk in a room with
the goal of going out of the room. The goal may be pursued by some simple
actions like standing up, heading to the door, opening the door with the
key, going out. For each action, the performer employs the knowledge about
the external environment and herself and her capabilities. She has to be
able to stand up, to know that a key is necessary for opening the door
and she has to own that key and so on. Before and during each action,
the person continuously and iteratively checks and monitors the conditions
of her actions, and in particular if she already has the knowledge of the
conditions allowing the actions to be undertaken and finished.

To this aim, we modify the model from [20]:

TRUST (X Y C τ gX), where τ = (α, p) and gX ≡ p; (1.2)

Here, τ is no longer based on the couples of actions and results, but it
combines the trust theory model with a self-consciousness approach: τ is
now a couple of a set of possible plans πi and the related results pi. This
model is implemented in the BDI paradigm by breaking down actions and
results in a combination of multiple arrangements of plans and sub-results.

8
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The model of τ is formalized as:

τ = (α, p) where α =
n⋃
i=1

πi and p =
n⋃
i=1

pi (1.3)

Each atomic plan πi is the composition of action γi and the portion of
belief base Bi for pursuing it. It is formalized as:

πi = γi ◦Bi ⇒ α =

n⋃
i=1

(γi ◦Bi) (1.4)

where Bi is a portion of the initial belief base of overall BDI system. The
◦ operator represents the composition between each action of a plan with a
subset of the belief base (Figure 1.3)

The framework has been implemented in the robotic platform NAO by
exploiting Jason [13] and CArtAgO [66]. The environment model has been
generated through the perceptual module of the robot NAO. The CArtAgO
artifact allows the robot to perform operations in the real world.

The implementation is supported by a two-layered architecture (Figures
1.4 and 1.5).

Before illustrating these two layers, it is worth introducing the employed
reference model. Since we adopt a multi-agent paradigm, we take into ac-
count the human mate as an agent. Human mate is thus a part of the MAS
the robot is part of and with whom it interacts to accomplish a specific task.

The environment is the other crucial element of the model, as we include
in the environment the ensemble of intentional and unintentional agents. An
intentional agent is an agent (human, robot or software entity) in the envi-
ronment that interacts intentionally and autonomously with the robot. An
intentional agent has objectives, it may change the state of the surrounding
environment while interacting and performing the appropriate actions to
achieve its objectives. Also, an intentional agent has capabilities (i.e., the

9
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ability to do certain things [29]) that are in correlation with the actions that
can be taken within a plan to achieve a goal.

The environment thus evolves by the interactions among its components.
An unintentional agent is any resource or object that has a state of its
own, and the intentional agents can target it. The environment is dynamic,
changing over time as the result of agents’ actions.

It is to be noted that the robot is considered as part of the environment:
it has representation of the external environment, and also a representation
of its internal state. This way to handle the environment by taking into ac-
count the robot itself is the critical points of the proposed self-consciousness
model of the robot.

The two-layered architecture is based on the MAPE (Monitor, Analyze,
Plan and Execute) loop [4]. Each agent continually monitors a portion of
the environment is interacting with, it analyzes and chooses the objectives
to pursue and the action to undertake.

In Figure 1.4, the first and the second steps of the architecture aim
at identifying and analyzing the structural part of the system; the third
step is the dynamic part, and the fourth step is the core of the robot self-
consciousness capabilities.

During the first step, the goals of the systems are defined at a high
level and then decomposed and refined into more fine-grained goals by an
AND-OR decomposition. See also [16][59].

The second step aims at analyzing the environment made up of objects
and intentional agents with their internal state. For each component of the
environment, we analyze its state and the actions (known at design time)
that may cause a change in the state. We follow the approach previously
proposed in [28][29] that involve concepts, predicates, and actions to describe
the entities involved in a domain. Briefly, A Concept is a term used in
a broad sense to identify “anything about which something is said.” A
Predicate is the expression of a property, a state or a constraint; It serves
to clarify or to specify a Concept or to infer a restriction on an Action. An
Action represents every actions made on a concept to pursue an objective,
and that may change the state of a Concept [49]. These two steps build
the knowledge base, i.e., the belief base the agents employ at runtime for
reasoning about their actions.

In the third step, the functional decomposition of goals is performed.
The result is a set of plans and related actions to pursue each goal, which
is assigned to the robot in case it possesses the suitable capabilities (known
at design time) to reach the objective.

In the fourth step a Assignment Tree is created. An example of the

10

DISTRIBUTION A:  Approved for public release; distribution unlimited



Assignment Tree is provided in the following Section; it is a model of the
relationships among actions, the set of capabilities and the knowledge on
the environment useful for performing a specific action. This final step also
contributes to the creation of the belief base whereas step 2 and 3 contribute
to form all the possible state of affairs of the human-robot team, what in
the BDI logic is called desire. The actual objective the robot is assigned (or
the one it commits to). The intentions are created during the fourth step
as it is shown in the Figure.

The second layer refers to the execution time. The robot system has
been analyzed and designed and then put in execution (See Fig. 1.5).

The agents involved in the system acquire knowledge at runtime. Con-
cerning the BDI cycle, they explore the belief base and the initial goals they
are responsible for (points 1. 2. 3. 4. - Fig. 1.2). The module implementing
deliberation and means-and-reasoning (points 5. 6. 7. - Fig. 1.2) is now
extended. At this point, while executing the BDI cycle, the tail of actions
for each plan is generally processed to let the agent choose the action to
perform. Since we are interested in the knowledge useful for and involved
in each action, we add the new function:

Ac ← action(Bαi , Cap) (1.5)

where Bαi and Cap are the portion of the belief base related to the action
αi and the set of agent’s capability for that action.

The third step of execution and monitoring, implies the points 8. 9. 10.
11. 12 of the BDI cycle that we extended with the capabilities to evaluate
the statements impossible (I, B) and ¬ succeeded(I, B) (ref. point 9.)

In this step, when the trust interaction takes place, the robot is endowed
with the self-consciousness abilities to re-plan, explain and justify or request
supplementary information to the human mate.

The added functions in the case of explanation, are shown in the following
algorithm:

Algorithm 1

1: foreach αi :
2: evaluate(αi);
3: J ← explain(αi,Bαi);

Figure 1.6 details all the elements of our trust model.
Summarizing, τ is the goal that the trustor delegates to the trustee;

then, the BDI agent is assigned the responsibility to perform the actions γi
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Figure 1.6: All the element of the trust model
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included in τ made up of the following elements:

• Jason Agent - the BDI agent that manage the NAO robot through the
AgentSpeak formalization [13] with the following:

– ASL Beliefs - the set of beliefs that include the knowledge about
the environment of the agent and its inner capabilities;

– ASL Rules - the beliefs related to norms, constraints and domain
rules;

– ASL Goals - the list of goals of the application domains, i.e., the
list of desires in BDI;

– ASL Plans - the logic inference needed to perform actions ;

– ASL Actions - the agent commitments of sequences of actions,
hence plans;

• CArtAgO Artifact - it allows the agent to perform a set of actions
in the environment. The CArtAgO virtual environment represents
the environment through the beliefs acquired by NAO’s perception
module;

• CArtAgO @Operation - it is employed to perform agent’s actions in
the environment.

The proposed trust model with the agent with self-consciousness abili-
ties has been implemented through the BDI cycle on a reference model of
environment where the critical point is the robot, and by modeling the inner
states of the robot as as part of the environment.

1.6 The robot in action using Jason

The case study described in this Chapter concerns a human-robot team
whose goal is to carry objects from a position to another in the same room.
The work to be done should be exploited in a collaborative and cooperative
way. In this setup, we consider the case in which the robot is delegated by
the human mate to pursue a specific goal.

The environment is a set of objects marked with the landmarks needed
for the NAO to work. The set of capabilities is made up by taking into
account the NAO capabilities: for instance, to be able to grasp a small
box. The NAO also is endowed with the capability of discriminating the
dimensions of the boxes.
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In this case, only one agent is managing the robot, with the responsibility
of carrying an object to a given position. The human mate, i.e., the other
agent of the team, indicates the robot the object and its position.

From the decomposition of goals in sub-goals, and then in plans and
actions, and from the mapping of capabilities, actions, and beliefs, we obtain
the result shown in Fig. 1.7.

The Figure represents a portion of the assignment tree introduced in the
previous section. The main goal BoxInTheRigthPosition is decomposed in
three sub-goals, namely FoundBox, BoxGrasped ReachedPosition.

Let us consider the sub-goal ReachedPosition: two of the actions that
allow pursuing this goal are: goAhead and holdBox 1.

The NAO goes ahead towards the goal and at the same time it holds
the box. The beliefs associated with these actions refer to the concepts in
the knowledge base affecting these actions. In this case, one of the concepts
is related to box, with its attributes as the dimension, color, weight, initial
position and so on. The model of the environment (see Sect. 1.1) contains
the possible actions to be made on the box, for instance holdBox, and the
set of predicates representing the beliefs for each object, for instance hasVi-
sionParameters or isDropped. The beliefs (visionParameter and dropped)
are associated with the action holdBox through a relation number (1.4).

In the following, a portion of code related the example:

τ: +!ReachedPosition: true← goAhead; holdBox.

γ1) +!goAhead: batteryLimit(X) & batteryLevel(Y) & Y < X ← say("My battery

is exhaust. Please let me charge.").

γ1) +!goAhead: batteryLimit(X) & batteryLevel(Y) & Y ≥ X ← execActions.

B1: batteryLimit, batteryLevel

γ2) +!holdBox: dropped(X) & visionParameters(Y) & X == false← execAct(Y).

γ2) +!holdBox: dropped(X) & visionParameters(Y) & X == true ← say("The box

is dropped.").

B2: dropped, visionParameters

Fig. 1.8 reports some pictures showing the execution of the NAO.

1For space concerns we only show an excerpt of the AssignmentTree diagram, so only
a few explanatory belies for each action are reported.
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Figure 1.7: A portion of the assignment tree for the case study
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Figure 1.8: The NAO working on the BoxInTheRightPosition goal and the
justification

1.7 Discussion

The current literature explores the concept of trust, how to implement it
and how to employ it generally from an agent society viewpoint in an open
and dynamic environment. So, research is mostly focused on organizations
in which multiple agents interact with each other and choose which action
to take by considering a certain level of trust in each other. Instead, in
our case, while sharing the concept of an open and dynamic environment,
we focus on the theme of human and robot teammates, and we explore the
two-way role of human-robot and robot-human.

In [58], decision making based on trust evaluation is examined through
a decision-theoretic model that allows controlling trust activities. The lead-
ing point is to make agents able to evaluate trust. Reputation mechanism
enables the trustor to make a better evaluation. Our work shares the same
objectives but it focusses at a different level of abstraction. We endow the
agent with self-consciousness abilities to give the trustor a means for dele-
gating or making the action by himself. We propose self-consciousness as an
autonomous form of interaction and cooperation.

In [74] the trust model is applied to virtual organization, and authors
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employ a probabilistic theory that considers parameters calculated from past
interactions when information lacks or it is inaccurate. In our case, we pose
the basis for giving the trustee the ability to ask for help when it does not
own the necessary knowledge to perform the delegated action. Thus, we let
the possibility of the trustor to evaluate the operations of trustee. It is no
longer the trustor concerned about assessing trust to the trustee, but it is
the trustee who provides the means to do so.

In [41] a trust model based on reputation is presented, that it allows
creating a measure for trust that can be used in different circumstances. This
model overcomes the problem of evaluating trust in a dynamic environment
where it is difficult to consolidate the knowledge of the environment. The
model we propose is constrained by the fact that the trustor establishes a
level of trust by observing the other agent. However, endowing the trustee
with self-consciousness abilities gives the trustor the possibility to better
evaluate the work of the other mate.

A different approach is proposed in [68]: here, the authors use meta-
analysis for establishing which features of the robot may affect the trust
relationship form, the point of view of the human mate. The robot is a
participant to the team but not an active part of it. From this work we
may outline the main difference of our proposed trust model against all the
others, as we consider the trustee (agent, robot or whatever else) an active
autonomous entity in the interaction.

The primary element of our work is to equip the robot with self-consciousness
abilities that allow it to be aware of its skills and failures. We have chosen
an explicit self-consciousness feature as the ability to explain justify oneself
in the case of failure. We may extend the model with the ability to ask for
help when the trustor’s requests do not fall within the trustee’s knowledge
and the ability to autonomously re-planning.

Our trust model takes inspiration from the work by Falcone and Castel-
franchi and has been integrated with a BDI-based part of the delibera-
tion process to include self-consciousness. The self-consciousness ability is
obtained by joining the plan a BDI agent commit to activating with the
knowledge base useful for it.

The model is based on a two-level architecture; the two levels allow to
maintain distinct the theory developed by its implementation part. In this
way, the trust model can be developed on any robotic platform and with any
programming language. We have chosen Jason and CArtAgO because they
fully support the BDI theory. Besides, it allow us to implement, without
significant changes to the agent language paradigm, the elements of the
reference model for the environment we previously defined.
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Chapter 2

A Cognitive Architecture for
Human-Robot Teaming

2.1 Introduction

As stated in the previous Chapter, trustworthy human-robot interactions
are rich in research ideas and open problems. Fig. 2.1 represents the typical
situation of a human-robot team working in a shared environment to reach
a common objective.

Our long-term research goal focuses on analyzing and developing sys-
tems where humans and robots collaborate in a human-like fashion. In the
following, a list of possible activities of a teammate is reported:

• she knows what she has to do, i.e., she knows the overall goal of the
team;

• she knows what she wants to do, hence, she intentionally decides which
goal or subgoal to commit;

• she knows what she can do, i.e., she is aware of his capabilities and
accordingly she selects the goals she can reach and all the right plans
and actions;

• she is aware of the surrounding environment;

• she associates any new element in the environment to what is already
in her knowledge base. Generally, she owns a knowledge base that
includes a large number of elements, only a few of them are of interest
for what she was doing and for the domain she is working in;
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Figure 2.1: Human-Robot teaming scenario in an environment composed of
cognitive agents, objects and resources.

• she communicates with the other team members to update her knowl-
edge base about the environment;

• she explicitly or implicitly delegates action to other mates;

• she asks how to do something she is not able to do;

• she observes what other team members are doing and, if the case, she
anticipates actions or cooperates with other mates;

• she anticipates whether the other mates can carry out the work and if
the case she takes the initiative;

• she observes what the other mates are doing and decides what to do
and whether to do something basing on her own emotional or stress
state, on the trust level she has on the others and herself and on the
possible mental state she may possess;

• she understands if some operative condition for pursuing objective
changes. In this case, she can re-plan or create new plan from memory
and experience;
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• she explains what she is doing and why and, if the case, why she is
not able to do something;

• she learns from experiences and stores all the information about the
outer and inner continuous changing world.

During each one of the listed activities, the teammate performs different
processes that account for a description of the world in time concerning
vision, speech understanding, learning, state of mind, decision making.

Taking into account these aspects in a human-robot teaming, a cognitive
architecture means to analyze and implement at least these processes: (i)
knowledge acquisition and representation, including memory management;
(ii) representation of the external environment; (iii) plans selection and
creation; (iv) learning.

We propose to integrate self-consciousness in a cognitive architecture
for human-robot teaming to implement some of the previously listed team
features in a robot system.

This work focuses on theoretical and implementation aspects. We aim
at identifying an abstract cognitive model and the related implementation
counterpart. The contribution of this Chapter lays in how knowledge rep-
resentation and acquisition dealt with a robot able to generate a simplified
self-consciousness.

Two approaches have been considered in the cognitive process area about
cognitive architectures, i.e., the cognitivist and the emergent approaches
[72][24][43]. The first approach relies on the perceive-decide-act loop and the
symbolic representations to instantiate operations devoted to implementing
agents behaviors and decision processes. The second approach considers
cognition as a dynamic emergent process implying self-organization: emer-
gent approaches take into account anticipative skills more than knowledge
acquisition, and the physical instantiation of the model as a main factor.

ACT-R [3] is based on five specialized modules, where each module pro-
cesses a different kind of information. ACT-R thus decomposes the cognition
process and shows how to integrate the modules to generate a complete cog-
nitive process. ACT-R introduces the chunk as a declarative unit of knowl-
edge. SOAR [47] is based on a cyclic process that includes the production
and the decision processes. A decision cycle follows each production cycle;
this guarantees that every change in the state of affairs can be accounted,
but deadlocks sometimes may occur. EPIC [44] replicates motor and per-
ception systems with several processes running in parallel, multiple rules
can fire at the same time. ADAPT [8] is tailored for robotics and it in-
cludes adaptive dynamics and concurrent real-time communications. The
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learning mechanism follows a sequential process of search and selection that
let the decision process be sequential and less prone to changing conditions
and self-adaptive requirements. Emergent architectures as AARs [23] and
GWCA [69] presents limitations when the system increases.

An interesting hybrid architecture, the Humanoid Robot Cognitive Ar-
chitecture, presents a three-layered architecture where long-term memory,
short-term memory, perception and task planning subsystems interact and
communicate via an execution manager. Knowledge is globally handled
among all the modules, learning and effective low-level implementation of
tasks are still a work in progress.

In this Chapter, we present COAHRT, a cognitive architecture endowed
with modules implementing the monitoring, analyzing, planning, action cy-
cle along with modules devoted to representing memory involved in the
decision and learning process at runtime and in the realization of self-
consciousness. The architecture is conceived in a highly modular fashion.
Each module in COAHRT is mapped to the implementation level by using
agent-oriented technology and the BDI paradigm [64][12].

2.2 COAHRT - COgnitive Architecture for Hu-
man Robot Teaming

The definition of COAHRT (COgnitive Architecture for Human-Robot Team-
ing) results from the integration of the features of existing architectures
[35][3] with an extended version of the perception-action cycle to add mod-
ules for handling decision process and memory. In Fig. 2.2, a cognitive
agent employs inputs from the environment perception and from memory
for choosing which action to execute. The agent chooses actions to per-
form after a reasoning process, and it executes and continuously observes
the results of its action on the environment. To integrate self-consciousness
aspects in the architecture, we added elements in the decision and memory
modules.

We represent knowledge by including the objects in the environment, the
goals to be pursued and the motivations to execute a specific action. The
knowledge representation allows us considering the environment as com-
posed of objects, other cognitive agents and also the agent inner state. All
these elements are parts of the agent’s self-consciousness that triggers the
agent decision process. Continuous observation and perception allows the
agent to update knowledge during the execution phase.

The Anticipation module of Fig. 2.2 generates the anticipation of the
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Figure 2.2: The Cognitive Architecture for Human-Robot Teaming

action result, i.e., the post-conditions on the state of affairs at the end of
each action. This module allows anticipating the other cognitive agents’
behaviors and actions. In so doing, we implement a simplified version of a
theory of other agents’ minds.

In the Anticipation module we include elements for the generation of
the Current Situation and a Situation Queue of possible situations,
generated from the knowledge base and gained when the current situation
is not applicable.

The Motivation module includes elements related to the inner state to
be considered during the decision process. Some motivation elements that
lead to a purposeful decision are the emotional state and the level of trust
in the others and in itself.

2.3 Knowledge Acquisition and Representation by
Self-consciousness

We model and update the agent knowledge base at runtime. Knowledge is
necessary for the decision process and for communicating and interacting
with other agents. Besides, knowledge representation let the agent to be
able to understand what it does not know.

In the subsection, we illustrate multi-agent technological aspects for im-
plementing the reasoning cycle at the core of the decision process. Multi-
agent paradigm is employed for developing the system level part of COAHRT.
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Then, we discuss the experiment towards self-consciousness abilities, two dif-
ferent ways of representing and handling knowledge at runtime and finally
some hints to the motivation module concerning how emotions may trigger
the decision process.

2.4 Implementing the decision process

The proposed cognitive architecture includes the modules knowledge and
memory, which in turn is composed of two parts: the long term memory
and short term memory, and other modules as the perception module, the
communication system and the reasoner that allows the robot to choose by
taking into account the retrieved data.

The cognitive architecture deliberates the robot behavior by the plan-
ner which interacts with the context in which the agent is plunged. We
employed the multi-agent systems paradigm to implement the architecture;
each module is a agent which interacts with all the others for achieving its
objectives and at the same time the overall system objective.

As in the previous Chapter, we employ the Belief-Desire-Intention model
(BDI) [64] to describe the reasoning process of each agent. We employ Jason
[13] as a programming language that implements BDI agents.

The decision-making model underpinning BDI systems is known as prac-
tical reasoning, a reasoning process to do actions, where agents’ desires and
agents’ beliefs supply the relevant factor [15]. Practical reasoning consists
of the activities of deliberation and intentions and of means-ends reasoning.

Fig. 2.3 shows this multi-agent model that maps COAHRT. In our ap-
proach, each agent is orchestrated, regarding knowledge and memory access,
by the controller agent Knowledge Manager, implementing planning and the
reasoning functions. The module ensures the knowledge necessary to allow
the collaboration among the agents.

Across the extended reasoning cycle, each agent employs its experience
to perform the action and to reason on the situation by analyzing inner states
and external perceptions. Once the plan selects an action, it is executed by
changing the state of the environment and also the inner state of the robot.

2.5 Implementing self-consciousness abilities

With the aim to endow the robot with self-consciousness abilities, we model
tasks as sets of beliefs and intentions. The robot is able to identify failures in
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Figure 2.3: Multi-agent view implementation of COAHRT Architecture

executable plans and actions and to explain and justify the incompleteness
of its performances.

Perception and external stimuli are modeled in the knowledge ontology
of the robot. When a goal is detected, the related beliefs are generated from
the ontology by allowing the robot to select the appropriate plan. Each
action modifies the state of the environment and the robot inner state.

Our approach involves the knowledge that, based on the selected beliefs,
allow the robot to identify the motivations for which a plan could fail. In
facts, we keep separate the reasoning component from the environmental
managing tools; these two components are implemented respectively by Ja-
son [13] and CArtAgO [66]. In details, Jason implement the BDI agents and
it manages the interactions among them, whereas CArtAgO manages the
interaction with all the resources and the objects in the environment.

Beyond simple actions, each plan involves context variables representing
the preconditions to be satisfied to perform the actions of the plan. When
one of these variables, instantiated by the perception module, does not sat-
isfy the preconditions (i.e., it has an unexpected value or it is false), then
the plan execution fails, and the robot is able to infer the motivations of the
failure, thus implementing a simple form of self-consciousness. The motiva-
tions of failures are then sent to the other members of the team which may
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solve the situation by enforcing collaboration,

2.6 Handling Knowledge in the Cognitive Archi-
tecture

The robot knowledge is based on a set of concepts, individuals, and roles
with semantic relations between concepts and their properties, modeled by
an ontology. The conceptual level is the terminological box which defines
the ontological entities concerning the general schema over the facts in the
domain; it is the abstract description of concepts, properties, and relations.
The low level is the assertional box that includes facts in the actual con-
text: it is the set of individuals corresponding to concrete objects in the
environment.

We consider two different methods to acquire knowledge: the first one
depends on the interactions with the human mate, which helps the robot
to infer the meaning of new perceived objects. In this case, the verbal
interaction allows to disambiguate the sense of the percept, for which each
feature has to exist as a term of the ontology. The features are in the
terminological box, and the interaction allows to disambiguate the perceived
entity as a new concept by the features emerging during a conversation. If a
feature is not modeled in the ontology, the robot cannot recognize objects.

The second method is based on a probabilistic evaluation of knowledge
acquisition that overcomes this problem. In this case, the robot can infer a
new term and its correct allocation at the conceptual level.

2.6.1 Knowledge acquisition by interaction.

The scenario we considered for knowledge acquisition by interaction involves
the robot performing a specific task and the human mate that provides the
information the robot needs to complete the task.

The robot has all the needed knowledge about the objects in the envi-
ronment, as an object is conceptualized when the robot recognizes all its
features. Once it detects an object, the robot queries its knowledge base to
retrieve the corresponding features. When all the features are retrieved, then
the object is conceptualized, else an interactive linguistic session starts with
the human mate. In this case, the robot steers the interaction by making
specific queries to the human.

If the information provided by the human mate is exhaustive, then all
the features are known, and the object is conceptualized. Otherwise, the
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interaction ends, and the conceptualization fails.
The knowledge about the object is not related to its features only, but

also to the actions the robot could perform on it and the context variables.
For example, if the robot has to move an object from a start position to
an end position, then the reasoner generates the suitable plan to execute
the task by retrieving the actions the robot may perform on the object.
Then, it verifies if the context variables are satisfied and hence if the plan
is executable.

2.6.2 Probabilistic evaluation for knowledge acquisition.

We investigate a probabilistic approach for knowledge acquisition to make
the robot able to understand and acquire new perceived entities in a dynamic
context by updating its general knowledge.

Three different phases are defined: (i) an entity is perceived and formal-
ized in a suitable way for the robot; (ii) the entity is classified as new or
redundant, and finally (iii) a new entity is linked in the correct knowledge
context, leading to its semantic disambiguation. In this section, we show
the final step.

We inspired to the Pitman-Yor Process (PYP) [61] that generates distri-
butions for language modeling and grammar induction. In fact, a PYP pro-
duces power-law distributions that resembles those employed when linking
concepts to contextual knowledge. The main idea is that the robot ontology
is a set of fragment trees (the set of ontological nodes and triples) linked to
the features of a new entity. A Pitman-Yor Process defines a distribution
over sequences of fragment trees to estimate the correct linking.

The model we implemented is build upon the principles of Tree Substi-
tution Grammar (TSG) induction [27], that define a power-law distribution
over a space of production rules that take the form of elementary trees. An
elementary tree of the grammar is a tree of height ≥ 1 whose each internal
node is labeled as nonterminal symbol and each leaf is labeled either a ter-
minal or a nonterminal. Differently to the Context-Free Grammar (CFG)
in which nonterminals can rewrite only immediate children [42], the TSG
nonterminal can rewrite entire tree fragments. In this sense, the TSG is
an extension of CFG. A Probabilistic Tree Substitution Grammar (PTSG)
assigns a probability to each production rule, and estimating it requires
to learn statistics for linguistic structures from a corpus; parsing involves
finding the most probable combination of trees for a given string.

Similarly, we assign a probability to each possible subgraph in the ontol-
ogy, which can consist of one node only, and then we find the most probable
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combination of subgraphs for a given percept to be expressed by a text.
Once the subgraphs are inferred, the percept is acquired and new knowl-
edge is discovered. This model allows generating the subgraphs. Different
PYP are organized hierarchically, so to allow the combination of subgraphs.

We do not need sufficient statistics for computing the probabilities of
production rules as we refer to the selectional preference strength [65] that
allows us to define a probabilistic measure for establishing how a set of nodes
fall in support of the PYP distribution. However, a training step is required
for computing the related hyperparameters. Details of the whole method
are explained in Chapter 4.

27

DISTRIBUTION A:  Approved for public release; distribution unlimited



Chapter 3

Implementation Aspects of
the Cognitive Architecture

3.1 Introduction

As stated in the previous Chapters, a human-robot team has to cooperate
to achieve a goal in a not fully known environment. Robots and humans
mates decompose the overall goal into subgoals and they choose the actions
needed to reach the goal. They also match their skills with the correct steps
to perform, and possibly delegate tasks to the other teammates.

A scenario concerning autonomous cooperation requires a complex soft-
ware system with runtime adaptation to new situations that may leads to
new requirements and constraints. Software injected and evaluated at run-
time cannot be defined during design phase, and then the control system of
the robot has to be handled as a self-adaptive system.

In brief, the self-adaptive system should be aware of its goals; it should
be able to monitor the working environment, to understand how far it is
from the goal and if it is deviating from the same goal. It should be also
able to adopt alternative plans, and generate new plans when necessary.

From the point of view of software implementation, the challenges in this
field concern knowledge representation and updating; selection and creation
of plans at runtime; generation of techniques for purposefully and efficiently
conveying the (runtime) decision process. These challenges lead to different
solutions depending on whether we consider the architectural level or system
level.

In the previous Chapter we considered the architectural level, while this
Chapter focuses on the system level counterpart. In particular, we take
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into account the BDI agents paradigm [37] and Jason the an agent-oriented
language [13][11].

Decision processes elaborate data coming from external sources and the
environment. In many domains it would be hard to design and implement
the decision process merely by employing the monitoring, analyzing, plan-
ning, acting (MAPE) cycle. In our system, the decision process must take
as input all the internal states of the agents involved in the environment, in-
cluding human mates. Internal states then embody all the changes occurring
at runtime.

The project we discuss aims at considering, as a crucial part of the
decision process, the robot capabilities of attributing mental states (beliefs,
desires, emotions, knowledge, abilities) to itself and the other mates. In
brief, we take into account simplified forms of robot self-consciousness and
theory of mind.

Thus, we discuss the steps of the ongoing work aiming at integrating self-
consciousness and theory of mind capabilities in an architectural structure
implementing adaptive decision process at the system level. The architec-
tural part extends the MAPE cycle [4] with modules allowing the perception
of the external world and the inner world as internal states. We structured
the architectural part so to fill the gap at the system level. We then present
an extended version of the Jason reasoning cycle to map the architectural
level into an agent-oriented framework.

3.2 Towards using BDI Agents and Jason for Im-
plementing Human-Agent Interaction

Jason is an implementation of AgentSpeak language [63][13] that allows
overcoming the denotation of software, as it is no longer something providing
a service by means of coding based on the intervention of the user. In Jason’s
logic, a computer program has its own know-how and and it is able to choose
actions to pursue a goal on behalf of the user, without intervention. Then,
a Jason program is an agent. The basic idea behind Jason is the definition
of the know-how in the form of a set of plans: the Jason platform allows
executing the deliberation process of a BDI agent by choosing the intentions
to pursue within a set of possible states of affairs.

Typically, a Jason agent has partial control over the environment as
it is populated by other agents having control over their own parts of the
environment. The procedures for handling agent-agent interaction is stan-
dardized and defined at design time. Human-agent interactions are an open
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problem in the context of cooperation between humans and agents, which
presupposes delegations and selection of actions to be undertaken.

Human-agent interactions can vary from simple situations where every-
thing is identified and defined at design time (environment, plans, actions
and changing situations) to more complex ones where changes occur at any
time and where the agent has to decide autonomously and to self-adapt to
changing situations.

To gain the case we are facing, let us suppose the following three sce-
narios: in the first case, a team composed of a human mate and a robot
works together to carry out a task known to both. Let us suppose that the
working environment is known in advance. At runtime, there are no changes
other than those resulting from the actions of the robot or the human mate.
However, these changes have been planned in advance. In this situation, the
agent acts in complete autonomy, and the goals may be achieved performing
the actions in the agent repertory. Here, the collaboration is only appar-
ent in the sense that the agent and the human mate do not need mutual
help; then, the BDI logic and its implementation using Jason is efficient and
usable.

In a second more complex case, let us suppose the agent needs collabora-
tion by the human mate to perform part of the overall goal. For instance, it
may realize not to be able to do an action because of some limitations (e.g.,
its arms are too short), even though having the correct know-how for com-
pleting the action. This situation implies an intervention of the human mate
under an explicit request of the agent, and it is then a collaborative work.
This case requires a soft self-adaptation: the agent has self-consciousness
capability to understand he cannot select an action to achieve a goal. This
case can be handled by the Jason interpreter by customizing the methods
of some predefined classes (see [13] for more details).

In the third case, the most complicated one, let us suppose that only
part of the environment is known beforehand. The common goal, as well as
a set of plans to achieve it, is identified at design time, but the interaction
of the agent with the environment and with the human mate allow the
operating conditions to change unpredictably. This fact happens when the
interactions with the environment brings out new terms of operability that
must be considered so to choose the action to take.

Generally, when a team is made up of human mates only, they choose
actions starting from their experience, the knowledge they have of the other
team members, the trust they place in the other team, their emotional state
and the anticipation of the actions of other mates. For example, suppose
that two people are caring for a disabled patient, where routine care includes
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the administration of medicines, cleaning, help during meals, and each of the
two people has tasks assigned. If during a meal the patient spills a glass of
water, then the operation involves picking up the glass from the ground and
cleaning the patient, but neither of the two actions is assigned to a specific
person. When a mate takes the initiative and clean the patient, then the
other mate chooses to pick up the glass. If there is no procedure to respond
to an emergency, the two mates generally do not stay still but choose what
to do based on their experience and their internal state. Besides, they will
collaborate even delegating to each other what to do.

Replicating this behavior in a human-robot team is a problematic task
mainly because we do not have the tools to analyze and identify the pos-
sible elements perturbing and changing the environment, so we cannot de-
termine, at design time, a suitable decision-making process to be efficiently
implemented at the system level.

In the literature, promising approaches [7][10] solve this problem by shift-
ing the design time to runtime. Also, architectures containing modules for
learning and memory have been introduced to pass the decision-making
process through the stored and processed sensing data [73][47][35]. How-
ever, these approaches do not take into account the robot capabilities of
self-consciousness, which is the primary element in our hypothesis to create
human-agent interaction systems behaving as human-human systems.

3.3 Extending Jason Interpreter and its Classes

In the first part of our study, we identified an architecture focused on the
MAPE cycle. Here, specific modules allow the decision-making process to be
triggered from the stimuli coming from the environment, from the internal
state of agents and from the observation and interpretation of the actions
carried out by the other agents in the environment.

Fig. 6.3 shows the high-level view of the modules of the cognitive archi-
tecture introduced in the previous Chapter. The modules centered on the
sensing/plan/action cycle are highlighted in red. The core of the decision-
making process consists of the reasoning module, the action selection module
and the anticipation module.

This module is devoted to generating the current situation. Each time
an agent has a goal to reach, the module selects a suitable action and it
generates anticipations of the state of the world resulting from that action.
The module receives as input the motivations, the goals and the elements in
the memory, it processes them and it chooses and executes the corresponding
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The motivation module is a trigger for the anticipation and action se-
lection. Here, the information of the robot inner state resides. This module
generates decisions about the actions to be conveyed by means of the ability
to attribute mental states (belief, desire, intention, knowledge, capabilities)
to itself as a simple form of self-consciousness, and others agents as a simple
form of a theory of minds.

The architecture has been mapped onto a software system by extending
the Jason reasoning cycle. The reasoning cycle of Jason (see Fig. 3.2) is the
counterpart of the BDI deliberation and means-ends reasoning process. The
rectangles are the components determining the agent state; rounded boxes,
diamonds, and circles describe the functions used in the reasoning cycle. In
particular, the circles model the application processes, and the diamonds
represent the selection functions.

The cycle is divided into ten steps, starting with the perception of the
environment to the selection of actions to be taken. The main steps of the
reasoning cycle concern the update of the belief base, the management of the
events corresponding to the changes in the environment and with respect
to the goals, the retrieval of plans from the library, the unification of the
events with the plans available to select the most useful plan (the so-called
the applicable plan), and the selection of the intentions.

Perception and actions in the environment are implemented by the func-
tions perceive, checkMail, act and sendMsg (see [13] for details). The cycle
starts by updating the belief base and generating an event through the Belief
Update Function (BUF) and Belief Revision Function (BRF); these func-
tions correspond to the buf and brf methods (see Fig. 3.4). The brf takes
the agent’s current beliefs and percepts and it suitable adds or removes be-
liefs. An event is then selected by the event selection function SE ; events
corresponds to the perceived changes in the environment and the agent’s
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Figure 3.2: Jason agent reasoning cycle. Redrawn from [13]

goals.
The selected event is then unified with the trigger event to individuate

the set of plans relevant for the event. Once the relevant plans have been
identified, they are checked against the context (a set of belief literals rep-
resenting the condition for the plan to be activated) to verify whether they
are logical consequences of beliefs. The result is a set of applicable plans.

Given the agent’s know-how expressed by the plan library and the in-
formation about the environment in the belief base, the option selection
function SO chooses a plan handling the event and includes it in the set
of intentions. The intentions component contains all the intentions ready
for the execution. The agent chooses the intention to be executed by the
intention selection function SI . The selected intention is then executed.

We exercised the robustness and stability of the Jason interpreter for
implementing the BDI agents by extending the reasoning cycle to introduce
the modules of the architecture (Fig. 6.3). Figures 3.3 and 3.4 illustrate
the added components in the reasoning cycle for the new decision process
(Fig. 6.3), and the classes we extended and inserted in the user-defined
components.

Mainly, we introduced components and functions (in blue in the Fig.)
related to the learning/reasoning module and a process implementing the
introduced anticipation module. We added the motivation base including

33

DISTRIBUTION A:  Approved for public release; distribution unlimited



Agent
Reasoning

Anticipation

Learning

O
bservation / Perception / Com

m
unication

Action Selection

Perceive

BUF

act

BRF

checkMail

Belief
Base

SM

SocAcc

Suspended Intentions

…

Intentions

New …

Percepts

Messages

Percepts

Events

Check
Context

Unify
Event

SE

Plan
Library

Beliefs

Plans

Relevant
Plans

SO

Applicable
Plans

Intended
Means

SI

Intentions

Handle
Situation

Selected
Situations

Beliefs

sendMsg

.send

Actions

MessagesBeliefs

External
Events

Beliefs to 
Add and
Delete

Messages

Updated
Intention

Selected
Event

Events

New

Internal
Events

Execute 
Intention

Current
Situation

Action

Situation Queue

MUF

Motivation
Base

M
otivations

MRF

M
otivations

Execution
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all the beliefs related to the mental states and emotions. We consider the
motivations as extensions of the belief to include the beliefs in oneself and
others. The beliefs are thus related to the external world outside while
motivations refer to the inner states, i.e., to the robot self-consciousness.

We added a Motivation Update Function (MUF) and a Motivation Re-
vision Function (MRF). At the beginning of each cycle, the MUF updates
and initializes the agent’s motivations and the belief base, by taking as input
a list of literals with beliefs and motivations (see Figs. 3.3 and 3.4). The
input from the belief base is treated as it were from the perception. The
motivations are elaborated from the modified SI function. It generates a
list of situations to choose the one to be executed and the queue to be used
for the selection of events through the SE function. A situation is similar
to the state of affairs concerning the environment: it represents the overall
state of the agent including the agent inner states. In this way, we let agents
reason on new events generated from internal states.

Finally, the process Handle Situation generates the current situation to
be executed and it provides the queue of situations to the SE function.

Concerning the agent code (Fig. 3.4), we added a class as an extension
of the BeliefBase class named Motivation. The Motivation class allows
managing resources as the BeliefBase and it also queries external services
to let the agent be aware of its internal state.
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Figure 3.4: Agent and Agent Architecture Class Diagram and the related
extension for implementing the reasoning cycle.

The core of the proposed reasoning cycle is the AgentMotivated class
that extends the Agent class. The selectEvent and selectIntention SE and
SI functions supports the code related to the MRF and MUF functions (Fig.
3.3) by means of mrf and muf methods. The agent invokes these methods
to modify the Motivation Base. Moreover, the extension of AgArch class
into AgArchMotivated implements the perception and action modules.

Finally, Fig. 3.4 describes the general classes architecture.

3.4 Discussion

In this Chapter, we presented the implementation of the agent’s decision
making process in a dynamic context. Our proposal is based on the fact that
agent’s decision-making-process is determined by processing data coming
from observation of the external environment and by the knowledge that
the agent has about itself and the other agents. The implementation of
such a system is a hard task because its features can be considered only at
runtime, during the interaction with the environment. Therefore, the system
must be treated and implemented by means of self-adaptive characteristics.

We have exploited the BDI agents and the Jason language, which allow
creating agents that perform a deliberation and means-ends reasoning pro-
cess. We modified the Jason reasoning cycle to include modules to manage
events, plans, and intentions selection to take into account the motivations
in addition to traditional beliefs. To complete the infrastructure the agent
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coding level, we modified user-defined classes of the Jason component. In
particular, we added the classes needed to implement the new reasoning cy-
cle by adding the methods necessary for the agent to be able to choose the
plan to pursue using a cognitive process based on motivations that embody
the mental states of the agent.

It is worth to note that the proposed cycle extension does not alter the
original Jason agent reasoning at a high level, but it extends its capabilities,
allowing the development of agents able to manage at the same time the
agent self-consciousness and the theory of mind together with the usual
decision-making process.
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Chapter 4

Knowledge Acquisition in
the Cognitive Architecture

4.1 The Cognitive Architecture for Human-Robot
Teaming Interaction

Our aim is developing a cognitive architecture that includes the necessary
modules for a robot to cooperate in a team to achieve a common goal. The
robot has to apply a decision-making process that takes its cue from the
objective situation of the environment and also from the knowledge it has
of itself and the other members of the team.

The architecture in Fig. 4.1 contains modules for self-consciousness, for
representing the surrounding physical world, including the other agents and
including the mental states that this involves. In a cognitive agent, it is the
mental state that triggers actions. The memory is the support for the inner
state processing phase.

To date, architectures base their decision making and learning processes
on the concept of stored data or facts and not on the idea of a mental
state. Our contribution lies in the creation of memory modules containing
the information about the mental state in the world so that the perceive-act
cycle becomes what we call the perceive-proact cycle. We identified some
main modules: the module devoted to the observation of the environment,
the one realizing the decision process (including reasoning, learning and
actions anticipation), the execution and the memory. A cognitive agent
knows its goal and the state of affairs around and within itself, it perceives
objects relevant to the mission in order to trigger a decision about which
action to perform. Before performing actions, it produces the anticipation of
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Figure 4.1: The Cognitive Architecture for Human-Robot Teaming Interac-
tion

the action results to check if that action brings to an acceptable situation of
the world, and alternatively it generates a queue of situations to be selected
if necessary. This process is performed iteratively, each time interacting with
the elements in the environment through perception and observation.

In this Chapter, we detail the path highlighted in red that is related to
the process of knowledge management and its acquisition through introspec-
tion.

4.2 Problem description: the example of a robot
working in a partially known environment

The project aims to make a robot aware of objects in dynamic environ-
ments and self-aware of its knowledge by updating it when a new entity
is perceived. If the robot does not recognize an object, then it would not
be able to use it and refer to it during task execution, thus breaking the
collaboration in the team.

A means for knowledge representation is then necessary. Currently, on-
tology is one of the possible strategies for equipping the knowledge level of
cognitive agents. An ontology is more than a simple taxonomy as it allows
representing semantics relations beyond the is-a subsumption.

Formally, the ontology is a set of concepts, individuals, and roles. The
concepts represent abstract entities, and are the symbolic representation
of the knowledge; the individuals are instances of concepts and represent
concrete entities in the environment. The roles are properties, that can
be relational or datatype; the former define abstract relationships among

38

DISTRIBUTION A:  Approved for public release; distribution unlimited



Entity

Animate

Agent

Animal

Person

DogCat

Inanimate

Software Object Device
Furniture

Chair Table

Sensor

Processor

Mechanical

Memory

Audio

Actuator

Electronic

Energy

Battery

Camera

Legend

Concept

Concept 
about itself

Is a

Figure 4.2: The fragment of the ontology including all the concepts about
itself. These concepts are framed.

concepts, the latter define properties of a concept with datatype values.
Figure 5.4 is a high-level ontology which includes the concepts (without

the correspondent instances) organized in taxonomy; it is the set of concepts
the robot possesses. Every time a robot perceives or observes a concept
already known, then it creates an instance of that object.

The ontology is generally manually encoded before the robot is deployed.
If the robot is situated in a dynamic environment, then a dynamic ontology
is expected to grow when it perceives new objects. Thus, the challenge
is how to model and represent new knowledge acquired at run-time in an
ontology.

Let us consider the simple scenario where a robot is plunged into an
environment whose high-level knowledge is represented in Fig. 5.4. Actually,
it is an excerpt of the whole ontology, and for the sake of clarity of the
example we highlighted the concepts related to elements about itself owned
by the robot. These elements concern the physical components of the robot
that it perceives as integral parts of the environment. In Fig. 4.3, the same
ontology is enriched with some concepts the robot has perceived and then
instantiated; we may say that it knows these concepts and it recognizes one
or more instances of them in the environment.

Let us also consider a self-repair operation as the goal of the robot.
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Figure 4.3: The fragment of the ontology including all the concepts about
the environment along with some instances.

Physical self-repair operations are critical in applications where no humans
are around to assist the robots. Also, it can be useful for cooperating with
humans to repair other machines.

Knowing the damaged resource is the first step for self-repairing opera-
tions; the robot acquires such a resource and becomes able to understand
how to repair it, for example by identifying what object can be used in place
to it, or the set of necessary actions for replacing it.

Generally, the robots can self-diagnose and detect if and what component
is in trouble. The primary goal of diagnosis is to check every device and its
functionalities and to publish whether the device has or has not a fault:
until this moment, the robot has no consciousness about this device. It
passively communicates to the human the internal state, but it is not able
to understand such a state.

To start the self-repair operation, the robot has to conceptualize the
device for the timely intervention. In other words, by self-diagnosis, the
robot knows that a device is in trouble, but it does not know such a resource,
which remains an abstract concept until it is not acquired in its knowledge
base.

The robot might not know anything in advance about its own devices,
or it could have a partial knowledge about itself.
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In our example, we employ a Pepper Robot1 and we forced it to diagnose
a hardware trouble by the self-diagnose library (the ALDiagnosis2), that
returns the variable d as the name of a possible damaged resource. Let
suppose that the CPU is this resource, so we declared d = cpu.

As it can be seen from Figure 4.3, the CPU is an element not known
to the robot. The robot can process the new perceived element, to link it
to a known one to produce a new instance (see Figure 4.4). It is worth
to note that we do not care if a knowledge element belongs to the exter-
nal environment or the internal one; in our approach, we use an extensive
conceptualization of the environment, including the robot itself.
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Figure 4.4: The knowledge acquisition related to the CPU concept.

When a new entity is perceived, two different cases can be considered:

1. the abstract concept is already modeled in the knowledge base; a new
instance for that concept has to be created corresponding to the per-
ceived entity. We will refer to this process as the mapping process;

2. the abstract concept is not modeled in the knowledge base; the concept
and the instance have to be created. The concept becomes persistent.
We will refer to this process as the merging process. This is the case
of the previous example about the CPU resource.

1https://www.softbankrobotics.com/emea/en/robots/pepper/find-out-more-about-
pepper

2http://doc.aldebaran.com/2-5/naoqi/diagnosis/aldiagnosis.html
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In both cases, the problem is related to infer the presence or absence
of the concept in the knowledge and then to identify the correct allocation
of a new concept and instance in the ontology, leading to the robot self-
consciousness.

4.3 Modeling the mapping and merging processes

In this example, the percept is the name of the damaged resource as output of
the cited library. In other cases, the surface form of a percept is a descriptive
label provided to the robot by the human mate which articulates such a
label producing a streaming voice. The ALSpeechRecognition library3 of
the Pepper robot allows to transform such a stream to the correspondent
string word among those ones in a dictionary defined for testing the method.
Future refinements may regard the definition of a set of services for using
external speech recognition and visual detection libraries.

Once the string corresponding to a vocal stream is detected, the mapping
process allows to infer if such an entity is already modeled in the knowledge
base, and in this case the percept is instantiated. Otherwise, the concept
has to be acquired and correctly allocated in the ontology by the merging
process.

For the purpose, the surface form of the ontological label and the surface
form of the percept have to be mapped; we refer to the similarity measure
defined in [60] that computes the closeness between the ontological labels
and an external word. This measure keeps in account a syntactic component
(the syntax is a crucial aspect for discriminating the equivalence of two
textual elements). Furthermore, a semantic contribution is considered too
to disambiguate the word.

The employed measure represents a similarity distance between the words
w1 and w2; it is the weighted sum of the Jaro-Winkler distance [77] and the
Wu-Palmer distance [80]:

sim(w1, w2) = δ ∗ jaro(w1, w2) + γ ∗ wup(w1, w2). (4.1)

The motivation to consider the Jaro-Winkler distance is the character-
istic of the strings to compare, that are typically short words as the labels
of the ontology. The Wu-Palmer is considered one of the best semantic
measure in literature.

3http://doc.aldebaran.com/2-5/naoqi/audio/alspeechrecognition.html
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The experiments show that the weight to the syntactic contribution leads
to a better identification of the concept in the ontology, and so the param-
eters are empirical set with the following values: δ = 0.7 and γ = 0.3.

Given the set of ontological labels O and the percept p, the mapping
process is modeled by the map function, that is:

map(p) =

{
o if maxo > τ

mer(p) otherwise

where the mer function starts the merging process next defined, while the
maxo is the maximum value of the set Sp where Sp = {sim(p, o) | o ∈ O}.

The map function returns the concept o in the ontology if o matches
with the percept p according to the similarity value which has to be higher
than the threshold value τ empirically set to 0.9; it means that the percept
p is similar to o, so it already exists in the knowledge, and p becomes an
instance of o.

The merging process starts when the maxo value is less than τ ; to merge
a new concept in the ontology requires to compute its correct allocation.
For this purpose, we investigate the probabilistic approach proposed for the
Probabilistic Tree Substitution Grammar (PTSG) induction [27]; such an
approach defines a power-law distribution over a space of production rules
that combine the grammatical, linguistic structures.

To estimate the probability of each production rule, the statistics for
the linguistic structures they represent has to be learned from text corpora.
Parsing a string by using a PTSG means to find the most probable com-
bination of rules for the given string. A Pitman-Yor Process (PYP) [61] is
used for this purpose.

Our idea is that the ontology of the robot is a set of ontological structures,
that are the nodes and the triples representing properties and relations. We
define a PYP for estimating the correct linking between these structures and
a given percept in the same way of the previous string parsing.

In facts, we do not need sufficient statistics for computing such probabil-
ities, because we consider the linguistic properties of the text representing
the percept in respect to the labels of the ontology.

The PYP process assigns a probability to each ontological structure, and
then it finds the most probable combination of these structures for a given
percept. Formally, the merging process is modeled by the PYP distribution
mer(p) over the ontological structures, that is:

mer(p) ∝ PY P (α, β,Go) (4.2)
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Figure 4.5: The knowledge acquisition related to the CPU concept with
its instance represented by the diamond shape. The emergent concepts are
highlighted. The more probable concept is the candidate parent and it is in
red.

where α and β are the hyperparameters of the process that influence the
shape of the distribution, while Go is the base distribution which determines
which fragment trees will fall in the support of mer(p).

In particular, Go is a function that, similarly to map(p), involves the
symbolic linguistic properties of p over the space o ∈ O, and allows to choose
the more plausibly fragment tree given p. In this sense, the method is hybrid,
involving a sub-symbolic process integrated with symbolic properties.

In the self-repair example we illustrated, the mapping process map will
invoke the merg function because the similarity measure computed by 5.9
is under the threshold for each concept in the ontology.

The Table 5.1 shows the results of the merging process. The concept
Processor is the more probable than the other structures in the ontology; a
new concept CPU is created as children of Processor, with the correspondent
instance. Since this moment, the robot has conceptualized the resource,
and it can refer to the knowledge about the processor for the self-repairing
operation it or for identifying the possible new processor among a set of
available spare parts.
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Ontological Structure Result

[Processor] 0.04662

[Camera] 0.03195

[Memory] 0.01704

[Device, Processor] 0.01251

Table 4.1: PYP results for the CPU resource.

Concept Ontological Structure - Result
Kiwi [Fruit] - 0.04250 [Fruit, Pear] - 0.0295 [Fruit, Apple] - 0.02318
Watermelon [Fruit] - 0.04685 [Fruit, Apple] - 0.02563 [Fruit, Pear] - 0.01664
Voltage [Energy] - 0.08136 [Device, Energy] - 0.02436 [] - -
Linux [Software] - 0.13556 [Object, Software] - 0.04744 [] - -
Frog [Animal] - 0.03827 [Animal, Fish] - 0.01140 [Animal, Cat] - 0.00913
Cat [Cat] - 1.0 [] - - [] - -
Sonar [Sensor] - 0.04739 [Device, Sensor] - 0.03176 [Device, Memory] - 0.02247
Pencil [Pencil] - 1.0 [] - - [] - -

Table 4.2: Some of the results obtained during the experiments for testing
the method.

New knowledge is discovered, and the ontology is updated as drawn in
Figure 4.5. The same figure shows the emergent concepts for the resource,
which are in the structure which falls in the PYP support; it is to notice
that these concepts are semantically similar to the percept. Hence, the base
distribution defines a support by excluding concepts that have an entirely
different meaning.

To demonstrate the robustness of the proposed approach, we report more
experimental results at Table 4.2. These results were validated by domain
experts; each row represents the concept to acquire and the ontological struc-
tures outputted by the mapping and the merging processes. For each on-
tological structure, the cell contains the label and the correspondent result.
The structures are ordered according to the results. The concepts are from
different domains for demonstrating the robustness and the generality of the
proposed approach. In the case the concept is already in the knowledge base,
only a structure emerges that is the node in the ontology corresponding to
such a concept, for which only the instance has to be created (for example,
the Cat and Pencil concepts in the table). The cells with empty square
brackets and dashes mean not detected structures.

4.4 Discussion and Conclusions

In this section, we discuss some theoretical implications of the strategy we
propose. We demonstrate how some theories are in support of our implemen-
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tation choice, and in particular how the actual problems of the transparency
and transfer learning are addressed too.

4.4.1 Self-consciousness about knowledge state

The set of facts the robot owns about the world and that are available for
reasoning are formally represented by sentences [51]. The semantic of these
sentences is the knowledge and can be expressed by different formalism,
including ontology. The sentences constitute the robot consciousness about
the environment. So we can claim that the ontology is a form of robotic
environmental awareness because it represents a set of sentences available
for reasoning.

Facts modeled in the ontology are available for observation which gener-
ates other sentences about the whole facts; the facts constitute the awareness
about the world. When the results of observation are not generated by un-
conscious processes but by specific mental actions, then they come from a
kind of artificial introspection, that is, the robot self-consciousness.

We argue that to infer if the concept is already in the knowledge base or
not (i.e., sentences already express it) is the result of a robot self-consciousness:
it produces facts about the state of the knowledge. The robot introspection
might look like “Does my knowledge include this perceived entity?” (i.e. “Do
I know such entity?”); “Where this unknown concept should be allocated in
the ontology?” (i.e. “What is this entity?”).

The mapping and the merging processes previously discussed can be
considered as the mental actions that make the robot able to introspect
about its own knowledge base. An important aspect is that such observation
is transparent: the results it produces are explainable and justifiable.

4.4.2 The cognitive semantics for modeling introspection

The cognitive semantics theory [2] claims that the meanings the humans
understand are carried by structures in their mind that are of the same
nature as those that are created when they perceive something (i.e., when
they hear, touch, see, manipulate entities in the context).

Briefly, the meanings are located in human heads, and they are not found
in the external world; so, when we eat a pizza, we see it as a pizza since the
perception we have fits with the cognitive structure in our head that is the
concept of pizza. In our mental classification, there will be a schema about
how a concept looks like, and we can infer another kind of information, as
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what pizza we are eating (its name, ingredients and so on). This schema is
the very meaning of the entities according to cognitive semantics.

A consequence of the cognitivist position is that the semantics for an
entity is seen as a mapping from the surface form of the entity to the surface
form of the cognitive structure.

In our approach, the ontology constitutes the set of mental schemas for
the robot; in particular, the high-level includes the cognitive structures for
the semantic mapping. The ontological labels provide the surface forms to
link to the surface form of a percept.

When the percept does not fit to any cognitive structures, the robot
understands that it does not know such entity. The robot hence learns that
new concept and allocates it at the high level.

We consider the emergence of cognitive structures related to a percept
the mental actions the robot has to perform to infer if it knows the concept
or not, and eventually to conceptualize it. The robot will use the same
ontological mental schemas, leading to the robot self-consciousness.

4.4.3 Explanation and transparency

The literature related to self-consciousness is vast, and many approaches
were defined as a classification problem by neural networks. Some of this
most accurate classifiers do not provide any mechanism to explain how they
output each result; their reasoning mechanisms are not transparent, not
respecting the actual trend to understand the underlying decision processes.

Understanding the learning model of a neural network has become funda-
mental; to give transparency to the predictions and decisions of an algorithm
is necessary to consider its reliability. According to [57], transparency is the
network’s ability to explain its reasoning mechanisms; it seems to be the
result of a form of introspection that we prosecute considering the described
robot scenario.

The training processes at the basis of sub-symbolic methods represent
the hidden behaviors. The emergence of latent structures from a dataset
allows tuning the parameters of the models. Typically, these techniques lose
the granularity of the data, that is important when the processes have to be
monitored. The works in [56] [57] propose neural networks that attempt to
overcome this problem.

The discussed strategy is an alternative approach that integrates sym-
bolic and sub-symbolic methods; in this way, the training process is avoided
leading to transparency.
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4.4.4 The importance of the incremental knowledge acquisi-
tion

The reuse of knowledge learned from the typical training phase of the ma-
chine learning models is the objective of the transfer learning. With transfer
learning, the training phase starts from patterns that have been previously
learned for a different task. Instead of starting the training process from
an opportunely annotated dataset, it starts from patterns that have been
learned by a different machine learning model to solve a different task.

Even if the transfer of knowledge and patterns is ideally possible in a
full kind of domains, to realize it remains a challenge: knowledge transfer is
possible when it is appropriate, and it involves trust to the way the involved
patterns were generated. A validation of patterns and context is required.
Moreover, not all advantages and disadvantages are known at this time.

With our method, we have not such a problem. The knowledge is incre-
mentally acquired, and the method does not depend on the training dataset.
We apply the strategy in each context in which the knowledge acquisition
is required, and it is independent of the domain under investigation. In
other words, the ontology can regard different domains without conceptual
limitations.

This is a central contribution as we consider that the actual trend is
to incentive data scientists to experiment with transfer learning in machine
learning projects and to make them aware of the limitations of this method.

48

DISTRIBUTION A:  Approved for public release; distribution unlimited



Chapter 5

Incremental Knowledge
Acquisition

5.1 Introduction

A robot designed to collaborate with human beings in a team has to be
aware of the shared space. The structure and the objects of the environment
in which the team operates have to be known by the robot for enabling
decisional, planning and interactive skills [19]. During collaboration, such a
structure changes and the robot has to update its knowledge about the new
environmental state. The run-time alignment to the context is fundamental.

The more general principles pointed out by the Adaptative Resonance
Theory (ART Theory) [38] were adapted for knowledge acquisition [50]:
an artificial agent becomes a ‘truly’ intelligent system when (a) it is able
to support incrementally knowledge acquisition in a way it has not to be
retrained, (b) it supports the inductive and deductive reasoning for reaching
a goal, and, finally (c) it is able to focus on what is relevant knowledge.

We do not claim to address here all these issues, but we focus on the first
point of the ART Theory. In this paper, we refer to the term incremental
knowledge acquisition as the automated process of abstracting knowledge
from facts and other knowledge. It cannot considered a naive accumulation
of what is being learned but it should be checked whether new learned
knowledge may be acquired upon existing knowledge.

For a robot the knowledge acquisition process regards to link low-level
knowledge, as perceptions and actions, to high-level one that is a net of
concepts modeling general domain knowledge or common-sense knowledge
[48]. Generally, high-level knowledges are modeled by ontologies [5] that are
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“a formal and explicit specification of shared conceptualization” [39].
Usually, these ontologies are large and include all the possible concepts

the robot could encounter in the world; the structure of the environment
is acquired by processing the whole ontology and retrieving those concepts
that can be linked to the perceptions. Current systems require manual
pre-annotation tasks, leading to efforts for rules definitions on the domain
representation [55],[40] .The existence of well-structured knowledge sources
and memories is also important [36], [67].

The well-known stability and plasticity [18] constraints are typical prob-
lems for the incremental knowledge acquisition: the plasticity property con-
cerns the capacity to learn new concepts, while the stability property is the
capacity not to lose and corrupt previously learned ones. Without plastic-
ity and stability, newly learned knowledge may be redundant, irrelevant or
inconsistent concerning the previous ones.

In the human-robot teaming scenario, the relevant information managed
by the team during a thread of cooperation are related to the specific task
to solve and are limited to a context of the environment. These information
are more frequently employed than the others, and the plasticity issue be-
comes less binding: the concepts not linked to the context of the task are
less useful, i.e., not all the concepts in the environment should be acquired.
We consider the conditional plasticity to take into account the relevant in-
formation close to the context. Stability keeps the same sense and regards
the correct allocation of a new concept in the ontology, without altering
existing facts.

We get stimulus by the Pitman-Yor Process (PYP) [61] defined for Tree
Substitution Grammar (TSG) induction [27] which computes a power-law
distribution over a space of production rules taking the form of a combina-
tion of elementary trees.

An elementary tree of a TSG is a tree of height ≥ 1 where each inter-
nal node is labeled as nonterminal and each leaf is labeled a terminal or
a nonterminal. A TSG nonterminal can be rewritten by an entire other
elementary tree, and in this case it is a substitution site. A Probabilistic
Tree Substitution Grammar (PTSG) assigns a probability to each produc-
tion rule and hence a probability to any elementary tree for rewriting a
given substitution site. Estimating it requires the learning of statistics for
such structures from a corpus. The PYP model embodies the rich-get-richer
property, in which a few elementary trees will occur with high probability
as is typical in natural language where a few grammatical expressions are
widespread used only.

We claim that a similar model may also produce exciting implications
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in the described scenario. In fact, the power-law distribution resembles
those employed when linking concepts from an environmental context to
a knowledge model: we assign a probability to each possible subgraph in
the ontology, that is considered as an elementary tree of the previous case,
and then we estimate the most probable combination of such subgraphs for
a given perception expressed purposely by a sequence of words. Once the
subgraphs are inferred, the perception is acquired and, if it there was not in
the model, new knowledge is discovered. The rich-get-richer dynamic gives
to the ontology’s subgraphs related to the context an higher probability to
be linked to the perception.

Differently than the case of grammar induction, which requires a big cor-
pus for training the underlying model, we do not need statistics to compute
the probabilities of each subgraph. This aspect is very important for the
human-robot teaming scenario where training data are not available; the
ontology of the robot may be small and incrementally grow during cooper-
ation. However, a simulation of training was made to compute the typical
hyperparameters of the process: such a simulation is a simple grid search-
algorithm that applies the model many times over different domains, i.e.
over different ontologies and perceptions, and evaluating the combination of
PYP hyperparameters that produces the better results in the largely sets of
domains.

We refer to the selectional preference strength [65] by Resnik for modeling
the PYP base distribution which estimates how a set of subgraphs fall in the
PYP support; being a form of linguistic entropy, our base distribution draws
the subgraphs that better match to the features of the perception basing on
semantic and syntactic similarities, and not on the statistical distribution
of the subgraphs in a training dataset. This represents a novelty in the
PYP model definition: the estimation of the probability value depends on a
deterministic function and not on a probability function.

We compare our method with a set of classifiers for solving the organi-
zational problem which arises when a robot has to organize a set of physical
objects in different locations. By our strategy the robot groups the objects
basing on their semantic nature, leading to the best classifier of all as the
results show.

5.2 Related Works

Over the last decades, there has been an extensive research interest on
knowledge acquisition, involving different research areas. It is considered
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an important task for object recognition and classification [], task planning
[], domain representation [], reasoning [], symbol grounding [] and so on.

The most widespread strategies attempt to discover new knowledge from
patterns and rules by machine learning processes; for example, NELL [17]
and ELLA [] are two approaches which concern the persistent and cumulative
acquisition of knowledge by machine learning. However, in such cases, the
basic principles specifying how to analyze the existing knowledge and how to
acquire new items are not well formalized. When the system is a robot, the
typical training phase of machine learning methods is not desirable because
the environment in which the robot acts has very specific demands which
are usually not met by the items in the dataset. Moreover, the environment
could rapidly evolve making the dataset hold and requiring further training
phases. All these aspects could lead to slow reaction time by robot, that
severely compromise the performance during collaboration with humans.

Several approaches have investigated for incremental [20] or cumulative
[21] knowledge acquisition by logic programming but the possibility to in-
tegrate them into robotic artifacts is not considered and represents an open
challenge. Other works focus on the importance of the human cognition for
improving knowledge acquisition, and among them the work at [] considers
the notions of forgetting and memory consolidation as necessary cognitive
components for knowledge acquisition. The authors look for a proper foun-
dation for detailed knowledge assessment metrics and criteria for modeling
memory and forgetting, not specifying the real improvements.

In the robotic field, the knowledge problem arises in the ontology pro-
cessing; typical framework as KnowRob [75], OpenRobots [], PEIS K&R []
are aligned to Cyc [] which represents a consensus, and are large and at-
tempt to include all possible concepts of teh world. Generally the problem
to acquire knowledge becomes a symbol grounding problem, that attempt
to anchor knowledge in the physical world. The knowledge does not grow
in such a case but is processed by retrieval methods, leading to delay in
the task execution. Many other approaches exist, like amodal (in the sense
of modality-independent) proxies[54], grounded a-modal representations[55],
semantic maps[56–58]or affordance-based planning.

The authors at [?], define a framework in which the knowledge available
to the robot comes from three sources: a priori knowledge that is stored in
an ontology and is loaded at start-up, and implementing the common-sense
knowledge. The second part of the knowledge is acquired at run-time from
perception, interaction and planning, and finally the third source of symbolic
statements comes from the inferences produced by a reasoner. Also in this
case, the knowledge acquisition is not meant as expansion but as
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Even if in some cases [] this problem is solved by a unified robot knowl-
edge framework that integrates different kinds of knowledge (sensory data,
context and domain information, internal states, possible actions and so
on), if a low-level data is not linkable to the high-level conceptual represen-
tation, then the data could be lost. New concepts at the high level have to
be semantically identified and acquired too.

Ontology learning and dynamic instancing of concepts is proposed at [],
where the outputted ontology is composed of fixed modules and is not a
standard ontology usable in open domain.

The typical behavior-based architecture [] is widely referred as the base
for implementing interactive behaviors of robotical systems when operating
in a dynamic environment; such a systems have predesigned perception-
action pairs, that allow robot to adapt its behavior to external events. If an
event is not predefined, a manual intervention on the rules is required and
it could be problematic.

We attempt to solve some of these limitations by proposing a probabilis-
tic evaluations for linking concepts not only from high-level to the low one,
but considering the emergence of new conceptual entities too. Being proba-
bilistic, the method estimates the most plausibly collocation in the ontology,
that can be next validated by interactions with the team. Many contempo-
rary learning algorithms do experience catastrophic forgetting, particularly
when they try to learn quickly in response to a changing world. These in-
clude the competitive learning, self-organizing map, back propagation, sim-
ulated annealing, neocognitron, support vector machine, regularization, and
Bayesian models

5.3 Theoretical core idea

We formalize the knowledge representation and the surface form of percep-
tion to describe how a typical process of the TSG induction can be applied
and adapted to the described scenario.

5.3.1 Formalizing knowledge and perception

Let consider the terminological ontology O and the assertional ontology I
both representing the knowledge for the robot. O will include the gen-
eral concepts of the domain, that are the classes with their properties and
relations between them. I will contain the instances of the classes, that
represent the assertions, and that are the concrete objects in the environ-
ment. O is the tuple O = (C,Po, Pd) where C is the set of classes, Po is the
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set of relations between classes in C, and Pd is the set of properties of each
concept in C, that are relations whose domain is C and range is the typical
set of datatype values. I contains the instances of C.

According to the general definition of ontology, the elements in C are
organized in a taxonomy, i.e., a hierarchical tree where only is-a relation
links nodes; a node is a class in C and THING is the broader concept that
subsumes all the others. A child is a kind of parent. An example of a
fragment of taxonomy is shown in figure 5.1. In such a representation,
not only subsumption relations are represented, but the figure shows an
enriched taxonomy including some properties definition. In this case, the
representation is a graph and not a tree. The internal nodes are classes in
C (in the capital text), and they are linked by not-oriented lines, i.e., the
is-a relations. The leaves can be instances (represented by not-capital text)
or classes.

The relations in Po and properties in Pd are represented by oriented
dashed arrows that link suitable nodes. For example, the has color object
property links the concept APPLE to the concept COLOR and it defines the
color of a perceived apple. In the example, the instance apple has not a
solid color, but it could be defined because such property is defined for its
class and it is valid for all the instances of that class. The relations or the
properties of classes could not be instantiated for specific class’s instances,
as in the proposed example. Instead, the has shape property is defined for
the specific instance of APPLE class.

The space of subgraphs SG from the ontology contains all the possible
fragment of the enriched taxonomy, while the space of fragment trees ST
contains all the possible fragment of taxonomy with the only is-a relations
and without other properties.

A percept p is the symbolic form of a perceived entity that could be,
e.g., a voice stream, an object, one or more features of an object. We
suppose that the percept is represented by a suitable text which describes
the perceived entity (i.e., the text produced by the speech recognition, the
text describing the object or its features, and so on). The percept p is
represented as a sequence of tokens that are the words in the symbolic
description without the stop-words (conjunctions, articles, adverbs, and so
on). So p = {p1, p2, ..., pn} being pi the ith token of the percept. The
percept p is comparable to the string to parse in the grammatical case.
Each token of a percept represents a feature of the percept; for example, if
the percept is related to a juicy red apple, the textual, symbolic description
of that percept looks like p = {apple, red, juicy}.
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Figure 5.1: An example of enriched taxonomy representation. The classes
are internal nodes represented by capital letters. The instances are the
leaves represented by not-capital letters. Simple lines are the subsumption
relations, and the oriented dashed arrows represent object properties among
classes or instances. Datatype properties are not represented for clarity.

5.3.2 Probabilistic tree derivation from ontology

We define the probabilistic tree derivation over the space of fragment trees
ST of the O ontology as the process that draws from ST the more plausibly
fragment trees for a percept and links its features. It is formalized by the
3-tuple A = (T,N,G) where T is a set of terminal symbols, that are the
instances of the ontology, then T = I. N is a set of nonterminal symbols
that contains all classes in C, so that N = C; G is a set of fragment trees
from the ontology including the fragment trees representing the percept.

The fragment trees take the form of a taxonomy where each node (in-
cluding the root) is labeled with a nonterminal, and each leaf is a label with
terminal (when it is an instance) and nonterminal (when it is a class). Non-
terminal nodes are the frontier nonterminal, and represent substitution sites
in which new concepts or instances can be linked.

The fragment trees in G are automatically generated from the ontology
by extracting all possible sub-graphs from the pure taxonomy with different
depth. The fragment trees for the percept are generated considering each
feature and representing it by one-depth tree whose root is a concept and
whose leaf is an instance. Examples of fragment trees are shown in figure
5.2b and 5.2d; the one-depth fragment trees APPLE− apple and RED− red
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are the fragment trees representing each features of p = {apple, red}.
A derivation is a sequence of fragment trees f involved in the knowledge

acquisition process. A final tree t is the resulting tree when combining the
involved fragment trees; different derivations can generate the same tree
depending on the state of the knowledge (i.e, if a concept already exists or
not), as shown in figure 5.2. In this figure, a different set of fragment trees
and different states of knowledge are represented; each of this situation, by
rewriting the substitution sites, generates the same final tree. The arrows
represent the substitution sites, i.e., the nonterminal that can link to others
fragment trees. When only instances are acquired, the correspondent class
nodes are overlapped, as shown in figure 5.2a and 5.2b. When new concepts
are estimated they are linked to the more probable sites leading to the
insertion of a new high-level concept too.

The process of building derivations is probabilistic when we compute a
probability to build a derivation, and hence the probabilities of the fragment
trees that compose them. An higher probability allows to discriminate the
ontological nodes that better link to the features of the percept.

Begin P (f) the probability of a derivation f, it is the product of all the
probabilities of the fragment trees in f ; the probability of a single fragment
tree f is denoted by P (f) and it represents the probability that the fragment
tree f is drawn from the disribution. As consequence:

P (f) =
∏
f∈f

P (f)

and the probability of a tree t will be:

P (t) =
∑

f:tree(f)=t

P (f)

where tree(f) returns the whole tree for the derivation f.
The probability of a percept p is the probability of the trees that can

represent it in the ontology, that is:

P (p) =
∑

t:instance(t)=p

P (t),

where instance(t) returns the instances of terminal symbols at the leaves of
t, that corresponds to the tokens of p.
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(a) A final tree obtained by linking the fragment trees
in 5.2b. Only instances are acquired.
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(b) A derivation of three fragment trees
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(c) The tree obtained by linking the fragment trees in
5.2d. A concept and an instance are acquired.
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(d) A derivation of two fragment trees

Figure 5.2: The same tree t can be obtained from different derivations, de-
pending on the state of the knowledge. The arrows highlight the substitution
sites, and are represented in bold. In this example, 5.2a is related to only
instances acquisition (the concepts already exist), while in 5.2c the same
tree inferred from a different set of fragment trees in5.2d is related to the
acquisition of a new concept with its instance.
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5.4 The Probabilistic Model for Knowledge Ac-
quisition

Estimating a probabilistic knowledge acquisition requires to find the most
probable tree t in O that links a given percept p, and then to insert its
features in the ontology if they do not already exist. The stability property
is then satisfied.

The most probable tree t is given by:

arg maxtP (t|p).

Instead of considering the most probable tree, we find the most prob-
able derivation f that generates that tree. As consequence, we define the
distribution over the space of derivations. Formally, we need to identify the
posterior distribution of f given p, that is the Bayesian statistical inference:

P (f|p) ∝ P (p|f)P (f) (5.1)

Considering that any tree specifies a corresponding set of features, that
are those in the leaves (i.e., a percept), we establish that P (p|f) is:

P (p|f) =

{
1 if p is consistent with f

0 otherwise

So, it is necessary to compute P (f) to solve (5.1). For this purpose,
we use a Pitman-Yor Process (PYP) [?]. Given the percept p, we place
the Pitman-Yor process prior as the Bayesian prior, and the probability
distribution G over the fragment trees becomes:

G ∝ PY P (α, β,Go) (5.2)

where α and β are the hyper parameters of the process that influence the
shape of the distribution, while Go is the base distribution which determines
which items will fall in the support of G.

A random sample from this process is an infinite probability distribution,
consisting of an infinite set of items drawn from Go. Since it is not possible to
represent such kind of distributions, the typical Chinese Restaurant Process
(CRP) [1] is often used for inducing dependencies over the items in the
space, and it makes the distribution finite.

The metaphor of CRP is simple: let us imagine a restaurant with an
infinite number of tables, where the customers enter one at a time. When a
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customer goes to the restaurant, he chooses a table according to the following
rules:

1. The first customer always chooses an empty table.

2. The i-th customer may chose to sit down either to a previously occu-
pied table or to a new empty table. Being zi the index of the table
chosen by the i-th customer, the probability of the described event is
modeled by the following PYP distribution:

P (zi = k|zi−1) =


nk−α
i−1+β 1 ≤ k ≤ K

Kα+β
i−1+β k = K + 1

(5.3)

where zi−1 represents the seating arrangement of the previously cus-
tomers, nk is the number of customers at table k, K is the number of
the occupied tables.

The distribution is known as the Pitman-Yor Chinese Restaurant Pro-
cess (PYCRP) [62]. It allows to produce a sequence of integers z (in this
sense the process is generative. We use it to generate the sequence of frag-
ment trees) and to classify these integers (any seating arrangement creates
a partition) according to the rich-get-richer dynamic: as more customers sit
at a particular table, this table increases in popularity, so new patrons are
more likely to sit down at it not considering empty tables.

The joint probability P (z) of the sequence is the product of the con-
ditional ones at (5.3), so that P (z) =

∏n
i=1 P (zi|zi−1), being n the total

number of customers at the restaurant, that is n =
∑K

k=1 nk.
To produce a sequence of fragment trees, any table represents a fragment

tree, so that when a table is generated, the correspondent fragment tree is
created too. So, a fragment tree is associated to a table. Keeping the
Chinese restaurant metaphor, we imagine such a situation as the association
of a single fortune cookie to a table; the cookie is opened only by the first
customer, and the message is valid for all following customers at that table.
The message is the fragment tree.

The problem is to associate a fortune cookie to a table. Considering that
for the PYCRP, like other PYP, the items are drawn from the base distribu-
tion, a message µ can be generated by pulling it from the base distribution
Go. A message is drawn from Go when a new customer chooses a new table,
and the message for that table is µ(zi).

In a single restaurant all messages at all tables could not tile together,
i.e., they cannot overlap to create a connected tree.
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We investigate two situations for a single percept:

1. consider not full-connected trees, which correspond to different areas
in the ontology;

2. consider a full-connected tree.

In the first case, the single presented PYCRP is enough: the tree t is the
set of the fragment trees drawn in correspondence of each occupied table.
The probability of a single fragment tree fi for a table, that is the message of
the ith customer that sits down for the first time to that table, will depend on
both the probability of the chosen table zi (that is the PYCRP distribution
at (5.3)) and the probability of the message for that table µ(zi) drawn from
Go. As these events are independents, then:

P (fi = f |zi−1, µ(zi)) = P (zi|zi−1) ∗Go(f) (5.4)

In the second case, a hierarchical combination of different PYCRPs al-
lows to create dependencies among messages, i.e., a new fragment tree will
depend from the previously extracted ones. This dependence has to be man-
aged to enable overlap among trees so that they can be jointed. For this
purpose, we define a restaurant for each class in C of the ontology. So we
have as many restaurants as many concepts are. The concept c ∈ C becomes
the restaurant sign: all messages at the tables in that restaurant start with
the restaurant sign, that means the fragment trees of that restaurant have
the same root symbol, that is c. Formally, a separate PYCRP is defined for
each concept c, and the base distribution becomes a conditional distribution
on c.

The PYP distribution over fragment trees whose root symbol is c is:

Gc|αc, βc, Go ∝ PY P (αc, βc, Go(.|c))

where Go(.|c) is a distribution over the fragment trees rooted with c, and αc
and βc represent the hyperparameters of the process. Finally, to generate
a full-connected tree f, the first restaurant with sign THING is considered,
and the f1 component is drawn from the correspondent distribution that is
GTHING with frontiers l1, l2, ... lm. Then the others fragment trees f2, f3, ...,
fm are drawn in turn from the distribution Gl1 , Gl2 and Glm−1 respectively.
The process is iterated until a full-connected tree is generated, and it can
start again.
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In this case, the probability of a single fragment tree fi is conditioned
by c, so that the equation at (5.4) becomes:

P (fi = f |c, zi−1, µ(zi)) = P (zi|zi−1) ∗Go(f |c). (5.5)

In this paper we discuss only the first case, whose results are already
satisfactory. Future works will regard the comparison and the evaluation of
the better strategy among the two. Moreover, we will consider the inferences
that are intrinsic to the ontological structure and that allow to insert new
knowledge in the aftermath. For example, assuming that a red apple is
perceived and that in the ontology there is not defined an apple yet, but there
is the red color, the proposed method will instantiate the concept APPLE with
the instance apple. Then, the relation has color will be instanced for apple
and red too.

5.4.1 Modeling the base distribution

The definition of the proposed base distribution represents an interesting
contribution when used in a PYP. As shown, the base distribution Go defines
the probability that an item (a fragment tree in our case) falls in support
of the general PYP distribution G, and it establishes which things are more
plausibly than other (and hence are useful for combining the correct final
tree). We define a method to make more probable the fragment trees more
close to the features of the percept. Then we focus on the definition of a base
probability that depends on some similarity measures among the character-
istics of the percept and concepts of the ontology. We refer to the selectional
preference that finds the role of words that can fill a specific argument of
a predicate. Resnik [65] proposes a probabilistic model for selectional pref-
erence capturing the co-occurrence behavior of predicates and conceptual
classes in taxonomy. A prior distribution, depending on frequencies in a
corpus, captures the probability of a category of the word occurring as the
argument in predicate-argument structure, regardless of the identity of the
predicate. For example, given the verb-subject relationship, the prior prob-
ability for the concept fruit may tend to be higher than the prior probability
for the concept inkwell (i.e., the word fruit may occur more frequently than
the word inkwell). However, once the instance of the predicate is taken into
account, the probabilities can change: if the verb is write, then the proba-
bility for inkwell could become higher than its prior, and fruit will be lower.
In probabilistic terms, it is the difference between this posterior distribution
and the prior distribution that determines selectional preference.
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The form of the relative entropy by Kullback and Lebier [45] provides
an appropriate way to quantify such a difference:

E =
∑
c∈C

P (c|pi)log
P (c|pi)
P (c)

(5.6)

where P (c|pi) is the posterior probability and P (c) is the prior. In our
terms, P (c|pi) represents the probability of the concept c given the feature
pi of the percept, and P (c) is the prior probability of the concept c (i.e. the
probability depending on the occurrences in the corpus by Resnik).

Intuitively, E measures how much information the feature pi provides
about the concept c. The better P (c) approximates P (c|pi), less influence
pi is having on c, and therefore the less strong its selectional preference. An
important consideration is that words that fit very well can be expected to
have higher posterior probabilities P (c|pi), compared to their priors P (c).

Given this definition, the natural way to characterize the polarity of a
particular concept c to a feature pi is by its relative contribution to the
overall entropy. This contribution is computed by the polarity function
Er : C × p→ [0, 1] defined as following:

Er(c, pi) =
1

E
P (c|pi)log

P (c|pi)
P (c)

(5.7)

If pi has high polarity in respect to the concepts in a fragment tree f ,
then f has the higher probability to be extracted from the ontology, and
hence to fall in support of PYCRP.

The whole polarity of a fragment tree f is then defined as the arithmetic
means of the polarities of its nodes; in this way we give more polarity to the
fragment trees composed by a single node (whit depth zero) in respect to
the fragment trees with higher depth that contain the same node, leading
to a more punctual association (i.e. single concepts are preferred in respect
to deeper fragment trees). Let Go(f) be such a probability, then:

Go(f) =

∑
c∈f Er(c, pi)

nc
(5.8)

begin nc the number of nodes in f .
It is obvious that in the PYCRPs hierarchical composition, the Go(.|c)

is the conditioning of E in c, that means Eo(f |c) but given the form of E
such a condition has no effects on the base distribution form, so

Go(f |c) = Go(f)∀c.

To compute the (5.8) equation, the posterior P (c|pi) and the prior P (c)
have to be defined.

62

DISTRIBUTION A:  Approved for public release; distribution unlimited



The posterior distribution

To define the posterior distributions P (c|pi), we refer to semantic similar-
ity measure by Wu-Palmer [80] that determines how two concepts are se-
mantically similar basing on their distance on the Wordnet taxonomy [52],
according to the score:

P (c|pi) = 2 ∗ depth(lcs(c, pi))

(depth(syn(c)) + depth(syn(pi)))

where depth is a function that returns the depths of the synsets of its argu-
ment in the WordNet taxonomies, and lcs is the least common subsumer of
its arguments in WordNet too.

The prior distribution

The prior, which captures the occurrences of a concept, and hence how it
is widespread, is modeled by the semantic density of this concept in the
Wordnet taxonomy, so that:

P (c) =
syn(c)

allsyn

where syn(c) returns the number of synsets of its argument, while allsyn is
the number of all the synsets in the Wordnet taxonomy, that is 117000 as
reported at 1.

5.4.2 Acquisition of new knowledge

The acquisition of the features of a new percept is based on the computation
of the maximum probability derivation according to (5.4) if the features have
to be linked to different ontological areas, or according to (5.5) if the features
have to be linked to a single full-connected tree.

In any cases, if a feature is already in the ontology, it should not to be
acquired. For this reason, after the probabilities estimation, a similarity
measure between ontological elements in the fragment trees and a feature
is computed. This measure keeps in account syntactic similarity because
syntax is a strength aspect for discriminating the equivalence of two textual
concepts; furthermore, to correct disambiguate the sense of the feature, a
semantic contribution is considered too.

1https://wordnet.princeton.edu/
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Figure 5.3: See text.

The measure is the weighted sum of the Jaro-Winkler distance [] and the
Wu-Palmer distance [], then:

sim(w1, w2) = δ ∗ jaro(w1, w2) + γ ∗ wup(w1, w2). (5.9)

The main motivation to consider the Jaro-Winkler distance is the charac-
teristic of the strings to compare, that are short words as the labels of the
ontology.

The experiments show that to give more weight to the syntactic contribu-
tion leads to better identification of the equivalent concept in the ontology,
and the parameters are set with the following values: δ = 0.7 and γ = 0.3.
A feature is considered already in the ontology if the similarity measure is
above the threshold τ > 0.9, otherwise it is acquired.

5.4.3 A toy example

Let consider the fragment of ontology in figure 5.1 and suppose that the
robot is perceiving the color red for the instance apple, that is not yet
included. Then p = {red, apple}. The similarity measure in respect to all
elements in the ontology at (5.9) returns the following values (that can be
tested by the demo version of the library at 2 ):

• red

• apple

For the concept red the PYCRP starts, and an integer is drawn with
probability – and a fragment tree is drawn from the fragment tree set

5.4.4 A case of study for self-repairing

An interesting scenario for which the incremental knowledge acquisition can
have a great impact is related to the robotic self-repair. Physical self-repair

2xx
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could become critical in applications where no humans are around to assist
or repair the robots, that has to become able to heal itself. Also, this can
be useful for cooperating with humans to repair other machines. To know

Entity

Animate

Agent

Animal

Person

DogCat

Inanimate

Software Object Device
Furniture

Chair Table

Sensor

Processor

Mechanical

Memory

Audio

Actuator

Electronic

Energy

Battery

Camera

Legend

Concept

Concept 
about itself

Is a

Figure 5.4: The fragment of the ontology including all the concepts about
itself. These concepts are framed.

the damaged resource is the first step for self-repairing; the robot acquires
awareness of such a resource and becomes able to understand how to repair
it, for example by identifying what object can be used in place to it, or
the set of necessary actions for replacing. Generally, the robots are able to
self diagnose and to detect if and what component is trouble. The main
goal of diagnosis is to check every device and its functionalities, and to
publish whether the device has or has not an error: until this moment, the
robot has not awareness about this device. It passively communicates to the
human the internal state, but it is not able to understand such a state. To
start the self-repair, the robot has to semantically conceptualize the device
for the opportune intervention. In other words, by self-diagnosis the robot
knows that a device is trouble, but it does not know such a resource, which
remains an abstract concept until it is not acquired in the knowledge. Our
experiments involved this first-step.

The robot could not know anything in advance about its devices, or it
could have a partially knowledge about itself.

In our experiment, the whole knowledge of the robot includes few con-
cepts about itself; in figure 5.4 a fragment of the ontology is represented
with all these concepts.
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We force the robot to diagnose an hardware trouble. The self diagnose
will return the variable d that is the name of the damaged resource. Let
suppose that the CPU is this resource, so d = cpu. The mapping process
map will invoke the merg function because the similarity measure is under
the threshold for each concepts in the ontology.

Fragment Tree Result

[Processor] 0.04662

[Camera] 0.03195

[Memory] 0.01704

[Device, Processor] 0.01251

Table 5.1: PYP results for the CPU resource.

The table 5.1 shows the results of the merging process. The concept Pro-
cessor is the more probable than the other fragment trees in the ontology;
a new concept CPU is created as children of Processor, with the correspon-
dent instance. Since this moment, the robot has conceptualized the resource
and it can refer to the knowledge about the processor for self repairing it
or for identifying the possible new processor among a set of available spare
parts.

New knowledge is discovered and the ontology is updated as drawn in
figure 5.5. The same figure shows the emergent concepts for the resource;
it is important to notice that the merging process allows to select concepts
that are semantically similar to the percept, excluding concepts that have a
completely different meaning.

5.5 Experiments

We compared our approach to those proposed at [] where the authors faced
the organizational problem arising when someone has to organize a set of
objects in an environment; in the robotic perspective, the goal is to make
the robot able to infer where to best place a particular, previously unseen
object or where to reasonably search for a particular type of object given
past observations about the allocation of the others.

The authors define this kind of problem as a classification problem be-
cause the robot has to choose the best location in the environment for a
previously unseen object. A location is defined as a set of products (i.e. a
class); to allocate a new object, the robot has to consider the features of
the objects in a location; among such a features, the semantic similarity is
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Figure 5.5: The knowledge acquisition related to the CPU concept with
its instance represented by the diamond shape. The emergent concepts are
highlighted, among them the more probable is the candidate parent.

the main one. The semantic similarity is, We can compare with them by
considering the same kitchen scenario because according to their position
all objects of the same class are allocated into a single location.

Datasets

The datasets the authors propose for their experiments gathered data within
twelve different kitchen environments. Ten of these were acquired by sim-
ulating the process of placing objects within a fictitious kitchen, two were
obtained by carefully annotating the object locations in two real kitchens.
They divided each kitchen environment into locations representing contain-
ers, drawers, fridge, etc .

5.6 Conclusions

A method for cumulative knowledge acquisition by robot is presented. A
percept is formalized as a set of textual features that have to be linked to
the ontology if they are not already modeled. For this purpose, we think to
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define a Pitman-Yor process in the Chinese restaurant variant: it generates
a set of fragment trees from the ontology, that are subgraphs linking the
percept description and taking the form of elementary trees typical of the
Tree Substitution Grammar. The elementary trees are combined to parse a
sentence according to the grammatical production rules. The fragment trees
are then modeled in the same way to link the features according to a suitable
relative entropy among the concepts in the ontology and the features. The
result is that the best fragment trees combination corresponds to the percept
and the features are acquired so that the ontology grows. The measure
allows to discriminate if a feature is already modeled in the ontology, and
the acquisition fails to avoid redundancy.

Different strategies may be combined for optimizing the model, such as
the definition of the priors for the hyperparameters of the process, or the
choice to consider either a full-connected subgraph of the ontology (and in
this case a or a set of subgraphs correspondents to a different area in the
ontology.
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Chapter 6

Inner Speech

6.1 Introduction

Inner speech plays a central role in daily life. A person thinks over her mental
states, perspectives, emotions and external events by generating thoughts
in the form of linguistics sentences. Talking to herself enables the person to
pay attention to internal and external resources, to control and regulate her
behavior, to retrieve memorized facts, to learn and store new information
and, in general, to simplify otherwise demanding cognitive processes [70].

Moreover, inner speech allows restructuring the perception of the ex-
ternal world and the perception of self by enabling high-level cognition,
including self-control, self-attention, and self-regulation.

Even if second-order thoughts may not need language but, for example,
images or sensations, Bermudez [9], Jackendoff [26], among others, argue
that genuine conscious thoughts need language. In the light of the above
considerations, inner speech is an essential ingredient in the design of a
self-conscious robot.

We model such a necessary capability within a cognitive architecture for
robot self-consciousness by considering the underlying cognitive processes
and components of inner speech.

It should be remarked that in the present paper such processes are taken
into account independently from the origin of the linguistics abilities which
are supposed acquired by the robot.

In Section 6.2 we show a brief overview of the cognitive models un-
derlying the proposed robot architecture, which is detailed in Section 6.3.
Conclusions and future works about the proposed robot architecture are
discussed in Section 6.4.
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6.2 Models of inner speech

Inner speech cannot be directly observed, thus reducing the scope for empiri-
cal studies. However, theoretical perspectives were developed during the last
decades, and some of them are recognized in different research communities.

Vygotsky [76] conceives inner speech as the outcome of a developmental
process during which the linguistics interactions, such as between a child
and a caregiver, are internalized. The linguistically mediated explanation
for solving a task thus becomes an internalized conversation with the self,
when the learner is engaged in the same o similar cognitive tasks.

Morin [53][54] claims that inner speech is intrinsically linked to self-
awareness. Self-focusing on an internal resource triggers the inner speech,
and then it generates self-awareness about such a resource. Typical sources
for the self-focus process are social interactions or mirror reflections by phys-
ical objects.

Baddeley [6] discussed the roles of rehearsal and working memory, where
the different modules in the working memory are responsible for inner speech
rehearsal. In particular, the central executive oversees the process; the
phonological loop deals with spoken and written data, and the visuospatial
sketchpad deals with information in a visual or spatial form. The phonolog-
ical loop is composed of the phonological store for speech perception, which
keeps information in a speech-based form for a very short time (1-2 seconds),
and of the articulatory control process for speech production, that rehearses
and stores verbal information from the phonological store.

Inner speech is usually conceived as the back-propagation of produced
sentences to an inner ear: thus, a person rehears the internal voice she
delivers. Steels [71] argued that the language re-entrance allows refining the
syntax emerging during linguistic interactions within a population of agents.
The syntax thus becomes more complex and complete by parsing previously
produced utterances by the same agent.

In the same line, Clowes [25] discussed an artificial agent implemented
by a recurrent neural network whose output nodes are words interpreted as
possible actions (for example ‘up,’ ‘left,’ ‘right,’ ‘grab’). When such words
are re-entrant by back-propagating the output to the input nodes, then the
agent achieved the task in far fewer generations than in the control condition
where words are not re-entrant.
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Figure 6.1: The proposed cognitive architecture for inner speech.

6.3 The cognitive architecture for inner speech

Figure 6.1 shows the proposed robot cognitive architecture for inner speech.
Such a representation refers to the Standard Model of Mind proposed by
Laird et al.[46]. Here, the structure and processing of the Standard Model
are decomposed with the aims to integrate the components and the processes
defined by the inner speech theories previously discussed.

6.3.1 Perception and Action

The perception of the proposed architecture includes the proprioception
module related to the self-perception of the emotions (Emo), the belief, de-
sires and intentions (BDI) and the robot body (Body), and the exteroception
module related to the perception of the outside environment.

The proprioception module, according to Morin [53], is also stimulated
by the social milieu which, in the considered perspective, includes the social
interactions of the robot with the others entities in the environment, as phys-
ical objects like the mirrors and the cameras and others robots or humans,
by means face-to-face interaction that foster self-world differentiation.

The motor module is decomposed in three sub-components: the Action
module, the Covert Articulation module (CA) and the Self Action module
(SA). In particular:

• The Action module represents the actions the agent performs on the
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outside world producing modifications to the external environment
(not including the self) and the working memory.

• The Covert Articulation (CA) module rehearses information from the
Phonological Store (PS), i.e., the perceptual buffer for speech-based
data considered as a sub-component of the short-term memory (see
below). Such a module acts as the inner voice heard by the phono-
logical store by rounding information in a loop. In this way, the inner
speech links the covert articulation to the phonological store in a round
loop.

• The Self Action (SA) module represents the actions that the agent
performs on itself, i.e., self-regulation, self-focusing, and self-analysis.

6.3.2 The Memory System

The memory structure, inspired by the Standard Model of the Mind is di-
vided into three types of memories: the short-term memory (STM), the
procedural and the declarative long-term memory (LTM), and the working
memory system (WMS).

The short-term memory holds sensory information on the environment in
which the robot is plunged that were previously coded and integrated with
information coming by perception. As previously mentioned, the short-term
memory includes the phonological store.

Information flow from perception to STM allows storing the aforemen-
tioned coded signals. In particular, information from perception to the
phonological store is related to conscious thoughts from exteroception, and
to self-conscious thoughts from proprioception.

The information flow from the working memory system to perception
provides expectations or possible hypotheses that are employed for influenc-
ing the attention process. In particular, the flow from the phonological store
to proprioception enables the self-focus modality.

The long-term memory holds learned behaviors, semantic knowledge,
and experience. In the considered case, the declarative LTM contains the
linguistics information in terms of lexicon and grammatical structures, i.e.,
the LanguageLTM memory. The declarative linguistics information is as-
sumed acquired, as specified above, and represent the grammar of the robot.
Moreover, the Episodic Long-Term Memory (EBLTM) is the declarative
long-term memory component which communicates to the Episodic Buffer
(EB) within the working memory system, that acts as a ‘backup’ store of
long-term memory data.
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The procedural LTM contains the composition rules according to which
the linguistic structures are arranged for producing sentences at different
levels of completeness and complexity. A procedure does not concern the
grammatical plausibility of the structures only. Other rules concerning the
regulation, the focusing and the restructuring of resources within the whole
environment (including the self) are to be considered.

Finally, the working memory system holds task-specific information ‘chunks’
and streamlines them to the cognitive processes during the task execution,
step by step according to the cognitive cycle of the Standard Model of
the Mind. The working memory system deals with cognitive tasks such as
mental arithmetic and problem-solving. The Central Executive (CE) sub-
component manages and controls the linguistic information of the rehearsal
loop by the integrating (i.e., combining) data from the phonological loop
and also drawing on data held in the long-term memory.

6.3.3 The Cognitive Cycle

In brief, a cognitive cycle starts with the perception that converts external
signals in linguistics data and holds them into the phonological store. The
central executive manages the inner thinking process by enabling the work-
ing memory system to selectively attend to some stimuli or ignore others,
according to the rules stored within the LTMs, and by orchestrating the
phonological loop as a slave system.

At this stage, a conscious thought emerges as a result of a single round
between the phonological store and the covert articulation triggered by the
phonological loop, once the central executive has retrieved the data for the
process. The phonological loop enables the covert articulation which acts
as a motor for the internal production, and whose output stream is heard
to the phonological store. The output stream also affects the self which is
then regulated and restructured.

Once the conscious thought is elicited by inner speech, the perception of
the new context could take place, repeating the cognitive cycle.

6.4 Conclusions

In this chapter, an initial cognitive architecture for inner speech cognition
is presented. It is based on the Standard Model of Mind which was decom-
posed for including some typical components of the inner speech’s models
for human beings.
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The working memory system of the architecture includes the phonological
loop considered by Baddeley as the main component for storing spoken and
written information and for implementing the cognitive rehearsal process.

The covert dialogue is modeled as a loop in which the phonological store
hears the inner voice produced by the covert articulator process. The central
executive is the master system which drives the whole system.

By retrieving linguistic information from the long-term memory, the cen-
tral executive contributes to creating the linguistic thought whose surface
form emerges by the phonological loop.
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[13] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Pro-
gramming multi-agent systems in AgentSpeak using Jason, volume 8.
John Wiley &amp; Sons, 2007.

[14] Michael Bratman. Intention, plans, and practical reason. 1987.

[15] Michael E Bratman. What is intention. Intentions in communication,
pages 15–32, 1990.

[16] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and
John Mylopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004.

[17] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, Estevam R. Hruschka,
Jr., and T.M. Mitchell. Toward an architecture for never-ending lan-
guage learning. In Proceedings of the Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI’10, pages 1306–1313. AAAI Press,
2010.

[18] Gail A. Carpenter and Stephen Grossberg. The art of adaptive pattern
recognition by a self-organizing neural network. Computer, 21(3):77–88,
March 1988.

[19] Richard Caruana. Multitask learning: A knowledge-based source of
inductive bias. In Proceedings of the Tenth International Conference
on Machine Learning, pages 41–48. Morgan Kaufmann, 1993.

[20] Christiano Castelfranchi and Rino Falcone. Trust theory: A socio-
cognitive and computational model, volume 18. John Wiley & Sons,
2010.

79

DISTRIBUTION A:  Approved for public release; distribution unlimited



[21] Cristiano Castelfranchi and Rino Falcone. Delegation conflicts. Multi-
agent rationality, pages 234–254, 1997.

[22] Cristiano Castelfranchi and Rino Falcone. Towards a theory of del-
egation for agent-based systems. Robotics and Autonomous Systems,
24(3-4):141–157, 1998.

[23] Wayne D Christensen, Cliff A Hooker, et al. Representation and the
meaning of life. Representation in mind: New approaches to mental
representation, pages 41–69, 2004.

[24] Andy Clark. Mindware: An introduction to the philosophy of cognitive
science. Oxford University Press, 2000.

[25] Robert Clowes. A self-regulation model of inner speech and its role in
the organisation of human conscious experience. Journal of Conscious-
ness Studies, 14(7):59–71, 2007.

[26] Pragmatics & Cognition. How language helps us think. Pragmatics &
Cognition, 4(1):1–34, 1996.

[27] Trevor Cohn, Phil Blunsom, and Sharon Goldwater. Inducing
tree-substitution grammars. Journal of Machine Learning Research,
11:3053–3096, 2010.

[28] Oscar Corcho and Asunción Gómez-Pérez. A roadmap to ontology
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