AWARD NUMBER: W81XWH-15-2-0085

TITLE: Evaluation of Role 2 (R2) Medical Resources in the Afghanistan Combat Theater: Past, Present and Future

PRINCIPAL INVESTIGATOR:
LTC Christopher VanFosson, PhD, RN

CONTRACTING ORGANIZATION: The Geneva Foundation
Tacoma, WA 98402

REPORT DATE: October 2019

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Evaluation of Role 2 (R2) Medical Resources in the Afghanistan Combat Theater: Past, Present and Future

Study Design: This observational study will be devoted to the analysis of existing (retrospective) data extracted from the Joint Trauma System (JTS) Role 2 Registry (Aim1). A comprehensive inventory and description of current R2 pre-deployment training programs and individual experiences will be conducted, an evidence-based program will be created and implemented to optimize provider performance of combat casualty care.

Objective: Describe and understand impact of R2 utilization during OEF and beyond, with emphasis on patient outcomes and provider competency.

Specific Aim 1 – Descriptive study of all available information for combat casualties in Afghanistan.

Specific Aim 2 – Identify the ideal provider training and competency assessment, sustainment and evaluation for medical staff deployed to R2 environment.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>4</td>
</tr>
<tr>
<td>3. Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>4. Impact</td>
<td>12</td>
</tr>
<tr>
<td>5. Changes/Problems</td>
<td>12</td>
</tr>
<tr>
<td>6. Products</td>
<td>12</td>
</tr>
<tr>
<td>7. Participants & Other Collaborating Organizations</td>
<td>13</td>
</tr>
<tr>
<td>8. Special Reporting Requirements</td>
<td>14</td>
</tr>
<tr>
<td>9. Appendices</td>
<td>14</td>
</tr>
</tbody>
</table>
1. **INTRODUCTION:**
There exists a continued lack of evidence about the impact of Role 2 medical resources in the combat theater. Although a Role 2 database has been in place since 2008, no systematic evaluation for these data has been conducted. Without analysis of this information, military planners and medical leaders will be unable to best allocate Role 2 resources in future operations. Furthermore, the clinical competencies required for each medical team member to function optimally in this environment have yet to be clearly defined or systematically supported across the Tri-Services.

2. **KEYWORDS:**
Role 2 (R2)
Role 3 (R3)
Combat Casualty Care (C3/CCC)
Department of Defense Trauma Registry (DoDTR)
Operation Enduring Freedom (OEF)

3. **ACCOMPLISHMENTS:**
What were the major goals of the project?
CY19 Goal - Evaluate long term outcomes of patients treated at R2 facilities. Post-performance assessment dashboard and standardized competency implementation.

What was accomplished under these goals?
All study progress and accomplishments are directly aligned with the SOW deliverables below.

Specific Aim 1 - Initiate R2 Registry (R2R) analysis and conduct comprehensive review of training literature, individual experiences, and Tri-Service training resources.

Subtask 1: Submit documents for HRPO approval.
Protocols and amendments have been submitted for HRPO review/approval.

(a) **Human Use Regulatory Protocols**
 - Human Research Protection Officer (HRPO) assigned A-number: A-19116
 - Target number required/approved for clinical significance: 15,000
 - Type of submission: Local regulatory determination
 - Type of approval: Exempt local approval
 - PI: LTC Christopher VanFosson, PhD, MHA, RN
 - Status: Ongoing

2. H-16-009 “Analysis of Medical Interventions in the Combat Environment Related to Deployed Hospital Care” **Amendment #3**
 - HRPO assigned A-number: A-19116.3
 - Target number for clinical significance: N/A
 - Type of submission: Local regulatory determination
 - Type of approval: Exempt local approval
 - PI: LTC Christopher VanFosson, PhD, MHA, RN
 - Status: Ongoing

3. H-16-022 “Evaluation of Healthcare Systems Training for Combat Casualty Care Skills” **Amendment #3, Version #4**
 - HRPO assigned A-number: A-19116.2
• Target number for clinical significance: 150 surveys
• Type of submission: Local regulatory determination
• Type of approval: Exempt local approval
• Received DoD-wide Survey Approval
• PI: LTC Christopher VanFosson, PhD, MHA, RN
• Status: Ongoing

4. H-16-023 “The R2 Experience: Comparing the JTS R2 Registry and Surgeon Case Logs from 2008 to 2017” Amendment #2
 • HRPO assigned A-number: A-19116.5
 • Target number for clinical significance: N/A
 • Type of submission: Local regulatory determination
 • Type of approval: Exempt local approval
 • PI: LTC Christopher VanFosson, PhD, MHA, RN
 • Status: Ongoing

5. Old Dominion University “Evaluation of Role 2 (R2) Medical Resources in the Afghanistan Combat Theater: Past, Present and Future
 • HRPO assigned A-number: A-19116.7b
 • Target number for clinical significance: 150 subjects (all sites)
 • Type of submission: No greater than minimal risk
 • Type of approval: Expedited IRB Review
 • Status: Ongoing/anticipate closing soon

6. Old Dominion University “The Development of an Innovative Role 2 CPG-Based Trauma Knowledge-Assessment Instrument and Training Materials That Utilize Deliberative Practice and Mastery Training,”
 • HRPO assigned A-number: A-19116.7a
 • Target number for clinical significance: N/A
 • Type of submission: Local regulatory determination
 • Type of approval: IRB
 • Status: Ongoing/anticipate closing soon

7. H-17-014 NR “Tip-Top Pilot Study” (Evans Army Community Hospital)
 • HRPO assigned A-number: A-19116
 • Target number for clinical significance: N/A
 • Type of submission: Local regulatory determination
 • Type of approval: Not human subjects research; local approval
 • PI Determination
 • Status: Completed as of September 2019

8. H-18-001 “A Comprehensive Evaluation of Patients Treated at Role 2 Surgical Units in Afghanistan” Amendment #2, Version #3, dated 11 February 2019
 • HRPO assigned A-number: IRB Office No. M-10723
 • Target number for clinical significance: N/A
 • Type of submission: Expedited IRB Review
 • Type of approval: IRB Approved, minimal risk, expedited research
 • PI: LTC Christopher VanFosson, PhD, MHA, RN
 • Status: Ongoing
 - HRPO assigned A-number: NA
 - Target number for clinical significance: N/A
 - Type of submission: Animal Use Exempt Protocol
 - Type of approval: IACUC Approved
 - Status: Ongoing

10. PI-16-002 “Redefining and Restoring the USAISR Preceptorship Program”
 - HRPO assigned A-number: NA
 - Target number for clinical significance: N/A
 - Type of submission: Local regulatory determination
 - Type of approval: Exempt local approval
 - Status: Ongoing

Subtask 2: Identify sources and initiate process to obtain data other than R2R.
The following data sources were identified: Joint Trauma Systems; DoDTR; Role 2 Database; Golden Hour Database (TACEVAC, DoDTR, and AFME); TACEVAC Registry; United Kingdom Joint Theater Trauma Registry; Unit specific databases: 59th Medical Wing Aeromedical (AE) and Critical Care Air Transport Team (CCATT) database; 160th SOAR Para-rescue Team registry. Additionally, a unique Iraq dataset from July 2015-2016 from LTC Christina Hahn with n=314 Iraqi trauma patients was identified and the manuscript was published. As the team identifies new data sources, research in this area will be ongoing.

Subtask 3: Describe all data available in R2R, conduct gap analysis.
All data available for OEF in the Role 2 dataset were described in the manuscript entitled “Evaluation of Role 2 (R2) medical resources in the Afghanistan combat theater: initial review of the joint trauma system Role 2 registry”. Dozens of subsequent analyses have been conducted on unique elements of the database. Refer to manuscripts and other dissemination products for these analyses. Topics include, but are not limited to: analysis of the Case Fatality Rates/Died of Wounds for OIF/OEF compared to Vietnam, transport from point of injury to Role 2, transport from R2 to R3, analysis of time at R2, patients treated in 2016 at a R2 in Iraq, pediatric patients treated at R2, use of blood (components and fresh whole blood, analgesia provided prior to R2), airway adjuncts prior to R2, all patients who died, orthopedic/ocular injuries and interventions, development of a surrogate injury severity score (Combat Mortality index) due to lack of ISS in dataset, traumatic brain injury, emergent resuscitative thoracotomy, and initial evaluation of R3 outcomes and ICU patients.

The research team continues to publish manuscripts to disseminate our research findings. The ‘Procedural burden’ manuscript was recently published during this reporting period. Additionally, the research team recently completed the pre-deployment training survey manuscript and plans to submit this paper before the end of the year. The research team will continue working on other dissemination efforts. Ongoing deliverable.

Subtask 4: Compile and analyze all “lessons learned” regarding R2 operations during OEF/OIF.
Findings from Role 2 manuscripts compiled, analyzed, and described the lessons learned regarding Role 2 operations. Army Centers for Lessons Learned is an active partner in this project to record identified lessons learned as analyses continue. The Joint Trauma Systems, now part of the DHA, also focuses on process improvements and “lessons learned” for trauma and combat casualties. The research team continues works alongside the Joint Trauma system (via data sharing agreement) regarding further clarification and understanding of how we can improve the missing data in the DoDTR. The research team helped identify gaps in the current data variables within the DoDTR and data collection processes required for enhanced future analysis. Ongoing deliverable.

Subtask 5: Describe all training assets available for R2 team members.
In collaboration with IVIR, Inc., the research team completed several activities to understand all military and civilian available pre-deployment training assets. Collaborative activities included observational trips to training locations, literature searches, and discussions/meetings with subject matter experts. These comprehensive findings were described in the “MATRIX”. A literature review concerning the elements of Role 2 training and combat casualty care readiness included assessment parameters relative to proficiency, competency, and mastery models.

The information was previously provided to the Defense Medical Readiness Training Institute Director, Col Michael Charlton in 2017 to support the development of a joint pre-deployment curriculum and course. This effort to develop a joint course was directed by the Education and Training Subcommittee of the Committee of Surgical Combat Casualty Care, funded by JPC-6 (PI: Shackelford). As a result of the collaboration with the Role 2 study, providing the results of the year-long compilation of the existing course information and literature review of best practice saved a redundant effort by DMRTI staff and expedited course development.

Subtask 6: Conduct survey of deployed R2 members for personal training experience, confidence upon deployment.

During this reporting period, the training survey results were presented at the 2019 TSNRP dissemination course and the manuscript has been finalized. We anticipate it will be submitted it to the MHSRS supplement before the end of the year.

The findings have been shared with Army Nurse Corps leadership to support current policy decision for improving nursing/medic deployment readiness. This is the largest survey of non-physician pre-deployment training to date.

As a result of this study, and our efforts and accomplishments with the training survey, the research team recently started collaborate with the JTS performance improvement team on a medic AAR project to understand the medic equipment/TCCC training evaluation. The medic AAR project is directly related to subtask 6 and will allow us to do a deeper dive into the medic feedback we already collected through the survey.

Subtask 7: Based on literature review, recommend best practice for R2 training.

The literature review was completed and identified general education barriers to training that related to combat casualty care. Three generic categories were identified: situational, institutional, and dispositional. In the study certain populations were more likely to face barriers than others: these barriers will be applied to the gap analysis, and “training breeds training” suggesting that training creates a perception for the need of more training. The literature review and updates were included within the literature traceability matrix. We’ve continued to reference the results and lessons learned from literature traceability matrix.

Additionally, these principles of optimizing training are being applied to a parallel effort funded by the Army RAD 2 program through the task area. A pilot program for pre-deployment readiness training was implemented at the Army Burn Center and the BAMC Level 1 Trauma Center in 2018.

Specific Aim 2 – Develop R2R Performance Assessment Dashboard.

Subtask 1: Create metrics to evaluate R2 outcomes and team performance

& **Subtask 3: Track training and sustainment programs for R2 members.**

During this reporting period, the research team continued to collaborate with the USAISR Burn Center pre-deployment training program to evaluate performance, and track and train pre-deployers. The training provided included both didactic and clinical exposure, using the universal CCC tools. As a result of the program update, the appropriate data is being collected, allowing the ability to develop a clinical dashboard prototype. Ongoing deliverable.
Subtask 2: Develop DoDTR report for near-real time feedback to deployed teams.
In concert with JTS, this deliverable will ultimately be met as The Medical Situation Awareness Tool (MSAT) used within CENTCOM provides medical and logistical awareness for combat casualties in the AO. The existing MSAT is approximately an 80% solution for this deliverable. The DoDTR and MSAT are unable to track providers, provide training, and determine geospatial awareness of medical assets and patient flow. Within the JTS, process improvement recommendations are currently underway to improve real-time situational awareness of medical assets deployed world-wide and track all patient movement and outcomes.

Specific Aim 3– Expand R2 database to all deployed units to OEF/OIF.

Subtask 1: Obtain all identified data other than R2R.
The research team recently received identifiable data during this reporting period (see IRB approved protocol H-18-001) and will continue to expand the R2 dataset as needed. Ongoing deliverable.

Subtask 2: Create repository within DoDTR for these data.
The DoDTR has been merged with the Role 2 database, therefore, this deliverable has been completed. However, the Role 2 dataset obtained for this proposal continues to be a more complete dataset. Continued collaboration with JTS to make this research dataset available to investigators are ongoing.

Subtask 3: Conduct analysis and contrast by R2 unit and phase of conflict (entry, surge, and sustainment).
The research team is comparing and contrasting the Role 2 units ‘by year’, rather than by the ‘phase of conflict’ utilizing the recently acquired dataset (protocol H-18-001). The research team plans to include this table in a future publication during the next calendar year. Ongoing deliverable.

Specific Aim 4 - Implement TriService training and sustainment standard.

Subtask 1: Cross-walk all training programs for R2 team members.
In collaboration with IVIR, Inc., the cross-walk of all training programs for Role 2 team members has been completed. Eleven relevant categories were identified for the training program traceability MATRIX, to include: general course information, course details, course content, instructional methodologies, course type, course availability, assessment criteria, requirements, funding, alignment with clinical practice guidelines, and alignment with tactical combat casualty care. From these 11 parent categories, subcategories were then generated to capture the appropriate data elements of interest; 40 independent subcategories were identified. Training program research and traceability matrix were requested by and provided to the Committee for Surgery in Combat Casualty Care; Committee for Tactical Combat Casualty Care; Defense Medical Readiness Training Institute; Knowledge, Skills and Attributes Working Group, and the Army Trauma Training Detachment.

Subtask 2: Develop and validate knowledge assessment tool for combat-related skills.
Collaborations between VNIP, Old Dominion University, and the research team are ongoing. ODU is working towards finalizing and validating the knowledge assessment tool for combat-related skills. As provided by ODU, the Knowledge Acquisition and Testing System (KATS) provides a platform that supports all types of educational materials on the topic of military trauma patient management content based on the concepts and content from the Clinical Practice Guidelines (CPGs) developed by subject matter expert teams who used data from the Joint Theater Trauma Registry (JTTR) to develop evidence-based guidelines for care. KATS is comprised of a testing or assessment capability to assess the level of core trauma knowledge. This first release of KATS focuses on nursing care. Surgeon and physician knowledge tests are being developed by CAPT Elster’s KSA team, in concert with the American College of Surgeons. The primary goal of this study is to validate the Knowledge Acquisition & Testing System (KATS) as a reliable and valid instrument to use for testing the level of military trauma knowledge for DOD clinicians based on the JTS data-driven CPGs and consensus KSAs. During the reporting periods, ODU collaborators provided the research team with a platform
to trial the knowledge assessment tool. The team anticipates receiving the results from this study. Ongoing deliverable.

Subtask 3: Generate universal combat casualty skills for each provider type.
In collaboration with ODU and VNIP, the research team generated the universal combat casualty care skills for non-physician clinicians based on the Army Burn Center TIP-TOP program (Transition in Practice Towards Optimal Performance staff development program based on VNIP). These collaborations resulted in the development of a program support document (guide book and reference/workbook) that provides content explanation, demonstration, and a great source for additional reference material. The materials are all aligned with the KSA domains. Physician knowledge, skills, and surgical ability is being defined and developed by the KSA project group as mentioned previously. In support of this deliverable, a performance improvement project was completed to define the core components of a nurse competency program using a Delphi approach (i.e., expert opinions). As a result, the findings were published in the Delphi manuscript during this reporting period.

Subtask 4: Develop and implement metrics for evaluating skill and knowledge retention.
Completed Deliverable - The KSA group has been heavily focused on physician skill and metrics, therefore our project has been focused on filling the gap by focusing on RN, LVN, and Techs. The research team developed a paper-based competency assessment tools (CATs) for RN, LVN, and Techs to track skills and knowledge related to combat casualty care for nurses and medics. Using the retrospective Role 2 data analysis and the TIP-TOP/VNIP framework, the research team identified realistic, clear, and concise performance objectives applicable to the CAT for realistic patient scenarios. The CAT cross-walk accounted for Army, Navy, and Air Force pre-deployment competency standards for Tri-service applicability. Since the last reporting period, the Austere Care Tool has been updated to include en route care competencies. This tool has been renamed to “Expeditionary Care Tool”. The information is in the process of becoming automated through the US Army Burn Center Pre-deployment Program.

Specific Aim 5 - Implement TIP-TOP Pilot study at a military treatment facility (MTF).

Subtask 1: Determine the number of preceptors and nurse trainees.
Completed Deliverable - Research Nurse Coordinator at Evans Army Community Hospital Education conducted monthly preceptor training sessions. These sessions were aimed at training both preceptors and hospital staff members to help socialize the TIP-TOP concepts, principles, and documentation. During this pilot period, 132 staff members attended training.

<table>
<thead>
<tr>
<th>Hospital Unit/Clinic</th>
<th>RN</th>
<th>LPN/LVN</th>
<th>Other/Unknown</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Care Clinic</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Medical-Surgical</td>
<td>13</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Mother Baby</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Intensive Care</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Emergency Department</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Surgical Services</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Inpatient Behavior Health</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Labor and Delivery</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Pediatrics Care</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>OB/GYN Clinic</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Cardiology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Education</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Department</td>
<td>RN</td>
<td>LVN/LPN</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Internal Medicine</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Float</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Rehab Clinic</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Urology Clinic</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>90</td>
<td>25</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Subtask 2: Identify and train 100% current nursing preceptors (n = x preceptors) on TIP-TOP.
A 115 RN and LVN/LPN preceptors were trained hospital wide. Of these 47 were within the four target units most associated with combat casualty care (Medical Surgical, Emergency Department, Intensive Care Unit, and Surgical Services). After accounting for attrition (n=19), 28 trained preceptors remain within the target units (11 Medical Surgical, 5 Emergency Department, 6 Intensive Care Unit, and 6 Surgical Services) and 19 untrained preceptors remain; approximately 60% trained.

Subtask 3: Identify and orient all new nurses on TIP-TOP (n = x nurse trainees).
From October 2018 to September 2019 there were 24 new staff nurses that transitioned into the target units (11 Medical-Surgical, 5 Emergency, 4 Intensive Care Unit, and 4 Surgical Services). Approximately 29% (n=7) were transitioned by a trained preceptor on TIP-TOP. Due to leadership turnover and high preceptor turnover (n=19), full implementation was limited. Even with limited implementation a total of 27 weeks of training was saved by transitioning to competency versus transitioning for a set amount of time. In addition, 2 new hire were identified as needing additional time to transition and were provided extra training.

Subtask 4: Collect data/outcome measures on completeness of the employee CAF folder, duration of preceptorship, and variation in competency.
Completed deliverable – Previously audited CAF folders. Findings included documentation and administrative issues (i.e., use of rubber stamps, missing dates and names, etc.). Training and guidance was provided to staff members. For units not using universal CBOs and PETs consistently, leadership was notified. Documentation issues were noted during initial audit prior to the start of this study. Despite reduced documentation requirements, increased training, and increased ease of use with CBO and PETs, staff continues to document in the same manner.

Subtask 5: Perform data analysis to evaluate critical thinking, reduce documentation burden, increase the accuracy and completeness of competency documentation, and provide a method to effectively track competency progression.
Due to this limitation, documentation has been limited and we are unable to evaluate data for competency progression. The RN Nurse Coordinator followed up with units to implement process, however, preceptors reported lack of leadership support for requests for administrative time to document competencies and formally provide feedback. During the pilot period, the education chief has changed 4 times and the Medical/Surgical, Emergency Department, and Intensive Care Unit have all experienced at least one NCOIC change. Unit preceptors have found it challenging to document competency appropriately without the allocation of administrative time. PI closed out/completed study at EACH during this reporting period, effective September 2019.

Subtask 6: Trouble shoot issues with implementing the transition program or process.
Since initiating the TIP-TOP Pilot study at EACH, the PI and RN research coordinator have experienced significant challenges with implanting the TIP-TOP pilot at EACH. Several leaders have transitioned in/out of this facility; therefore, leadership and staff engagement has been an ongoing issue. The research team has provided their best efforts to sustain this study at EACH, however, this study is no longer receiving the support required for sustainability at this site. PI closed out/completed study at EACH during this reporting period, effective September 2019.
Milestone: Provide lessons learned on TIP-TOP to standardize and improve nurses transitioning into specialty practice, and to provide a method to effectively track competency progression. PI closed out/completed study at EACH during this reporting period, effective September 2019. Coordinator at EACH provided leadership and staff with at transition plan for long-term sustainment and/or implementation, if desired. Coordinator created a PowerPoint presentation and uploaded to EACH intranet for reference. This milestone has been accomplished.

Specific Aim 6 – Evaluate long term outcomes of patients treated at R2 facilities post Performance Assessment Dashboard and Standardized Competency implementation.

Subtask 1: Compare outcomes for patients treated at Role 2 after implementation of standardized pre-deployment training program.

What opportunities for training and professional development has the project provided? PIs, LTC VanFosson, and COL (Ret.) Mann-Salinas continued to support the research team with mentorship and professional development opportunities, including the following:

- Epidemiologist, Amanda Staudt, PhD continues to work one-on-one with executive/senior level statisticians/epidemiologists across the USAISR and the Department of Defense (DOD). In addition, Dr. Staudt presented the teams research findings locally, and at a national conference, which has contributed to her ongoing professional development.
- Program Manager, Jennifer Trevino, MBA attended The University of Texas at San Antonio Lean Six Sigma Yellow Belt certification course, the BAMC A3 Course, and qualified to take the Project Management Institute Project Management Professional Certification course for ongoing professional development. Ms. Trevino continues to consult with, and collaborate with colleagues and leaders across the institute and DoD.
- Research Nurse Coordinator, Krystal Valdez-Delgado, BSN, RN worked closely with other senior level nurse educators across the DoD and Tri-services and received one-on-one mentorship and training in nursing education and training for ongoing professional development.

As a result, the research team contributed to, and/or attended and presented at the following conferences or events:

- 2019 Tri-Service Nursing Research Symposium in San Diego, CA
- 2019 Military Health Systems Research Symposium in Kissimmee, FL
- 2019 BAMC Nurses Week in San Antonio, TX
- 2019 5th Annual San Antonio Military Health System and Universities Research Forum
- 2019 Scientific Seminar at USAISR in San Antonio, TX
- 2019 American Association of Blood Banks (AABB)
- 2019 Southern Region Burn Conference
- 2019 Army Nurse Corp Association

How were the results disseminated to communities of interest? In addition to presenting our new and ongoing research findings at national and local research conferences, our significant progress has resulted in numerous manuscript publications and ongoing collaborations with members of the community (see section 6 below).

What do you plan to do during the next reporting period to accomplish the goals? CY19 Goals – Evaluate long term outcomes of patients treated at Role 2 facilities using pending complete dataset from DoDTR with patient identifiers. PI plans to submit no cost extension to continue working on these deliverables.
Collaborate with the Joint Trauma System on a medic equipment/TCCC training evaluation project related to R2.

Continue to disseminate research findings through manuscript publications including the following:

4. IMPACT:

What was the impact on the development of the principal discipline(s) of the project?
Nothing to report.

What was the impact on other disciplines?
Nothing to report.

What was the impact on technology transfer?
Nothing to report.

What was the impact on society beyond science and technology?
Nothing to report.

5. CHANGES/PROBLEMS: Nothing to report.

6. PRODUCTS:

Publications, conference papers, and presentations

Presentations:
- 2019 USAISR Scientific Seminar
- 2019 TSNRP - Evaluation of Pre-deployment Training for Army Nurses and Medics
- 2019 MHSRS – A seven year study of casualty injury patterns and procedural burden experienced by U.S. military Role 2 forward surgical teams in Afghanistan

Posters:
- 2019 TSNRP - Evaluation of Pre-deployment Training for Army Nurses and Medics
- 2019 MHSRS - Analysis of Far Forward Ocular Trauma among Combat Casualties in Afghanistan
- 2019 MHSRS - Combat Casualty Care Readiness Achieved Following Level 1 Trauma/Burn Clinical Exposure Training
- 2019 MHSRS – A Review of Casualties that underwent pain management before reaching a Role 2 in Afghanistan
- 2019 SURF - An Assessment of Pre-deployment Training of Army Nurses and Medics
- 2019 BAMC Nurses Week - An Assessment of Pre-deployment Training of Army Nurses and Medics
- 2019 Southern Region Burn Conference - Development of a Standardized Competency Program for Combat Medical Readiness
- 2019 Army Nurse Corp Association - Development of a Standardized Competency Program for Combat Medical Readiness

Journal publications. All publications include the acknowledgement of federal support
3. Forward Surgical Team Procedural Burden and Non-Operative Interventions by the U.S. Military Trauma System in Afghanistan, 2008-2014 (accepted to Military Medicine MILMED-D-19-00516R1)
4. A Review of Casualties that Underwent Airway Management before Reaching Role 2 in Afghanistan (accepted to Military Medicine MILMED-D-19-00178R3)
5. Association of Early Mortality with the Inclusion of Fresh Whole Blood in the Resuscitation of Combat Casualties (resubmission to JoT)

Other publications, conference papers and presentations. Nothing to report.

Website(s) or other Internet site(s). Nothing to report.

Technologies or techniques. Nothing to report.

Inventions, patent applications, and/or licenses. Nothing to report.

Other Products
Educational aids/curricula:
- Implementation of Tip-Top PowerPoint Presentation

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS
What individuals have worked on the project?
- LTC Christopher VanFosson
- COL (Ret.) Elizabeth Mann-Salinas
- Amanda Staudt, PhD
- Jennifer Trevino, MBA
- Krystal Valdez-Delgado, BSN, RN
- COL Jennifer Gurney, MD
- Mithun Suresh, MD
- COL (Ret.) Russ Kotwal, MD
- Susan Boyer, DNP
- Richelle Power, BSN, RN
- Andrea Parodi, PhD
- Nadine Baez
- Col. Stacy Shackelford
- Tuan D. Le, MD, Dr. PH
- Kirby Gross
- Jeff Bailey
- Timothy Hodgetts
- Ian Lane
- Rory Rickard
- Kyle Remick
- John Oh
- David Cannon
- Avi Benov
- Jacob Chen
- Ariel Furer
- Matt Borgman
- Zsolt Stockinger
- Ben Antebi
- Patrick Reeves
- Christina Hahn
- Jessica Rivera
- Daniel Stinner
- James Blair
- Joseph Wenke
- Michael Charlton
- John F. Kragh
- Shawn Nessen
- Andrew Cap
- Brian Eatridge
- Eric Epley
- Geir Strandenes
- Philip Spinella
- Jeffrey Dawley
- Sharon Smith
- Monica Phillips
- Ian Hudson
- LTC Mazuchowski
- Patrick Mason
- LTC Edwards
- Eric Elster
- Meredith Hettinger
- CPT Christy Lang
Name: Deborah del Junco
Project Role:
Researcher Identifier: NA
Nearest person month worked: 3
Contribution to project: Mentor for statistical support
Funding Support: NA

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?
Nothing to report.

What other organizations were involved as partners?
Nothing to report.

8. SPECIAL REPORTING REQUIREMENTS

COLLABORATIVE AWARDS: N/A

QUAD CHARTS: Attached.

9. APPENDICES: Attached copies of final manuscripts (2), presentations (4), posters (8), and education aids/curricula (1).
Improving strategies for life-saving blood transfusion in military casualties:
What, when and how

12 October 2018

Jennifer Gurney, MD FACS
COL, MC, USA

AABB-THOR Joint Working Group Hemorrhagic Shock
Resuscitation Workshop
Disclaimer

• The opinions or assertions contained herein are the private views of the author and not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

• There are no conflicts of interest to disclose.
Pre-hospital Transfusion (PHT) Background

The existing literature offers...

1. Conflicting findings
2. Poor quality evidence
37 unique studies identified, 1 prospective, 0 RCTs, 10 excluded for ambiguities

Significant heterogeneity precluded a valid summary relative risk (RR) from meta-analysis

25/27 studies rated very low quality

No survival benefit identified
Three Major Methodologic Flaws noted in systematic review by Smith et al

1. **Study groups not equivalent, bias/confounding**
 a. Indications for PHT (bleeding severity)
 b. Interventions other than PHT (pre-post designs)
 c. Time (from injury to start of PHT, post-PHT survival time)
 d. Misclassification of PHT (transported from scene vs. transferred)

2. **Sample sizes too small, too few patients at high risk of hemorrhage-related mortality**

3. **Key data often missing**
Our MEDEVAC PHT Study

Methods

Designed to overcome flaws in previous studies:

- Minimized bias & confounding
- Assembled a large sample of high-risk patients
- Tracked down missing data

Approved as an Exempt Performance Improvement Initiative by the DoD Joint Trauma System
Study Population: US military casualties in Afghanistan from April 1, 2012 to August 7, 2015

Study Design: Retrospective comparing concurrent cohorts
Gradual expansion of transfusion capability to different MEDEVACs

Example:

- Cumulative MEDEVAC Count
- Not transfusing
- Transfusing

<table>
<thead>
<tr>
<th>Month</th>
<th>Cumulative Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-12</td>
<td>6</td>
</tr>
<tr>
<td>May-12</td>
<td>10</td>
</tr>
<tr>
<td>Jun-12</td>
<td>12</td>
</tr>
<tr>
<td>Jul-12</td>
<td>14</td>
</tr>
<tr>
<td>Aug-12</td>
<td>16</td>
</tr>
<tr>
<td>Sep-12</td>
<td>18</td>
</tr>
<tr>
<td>Oct-12</td>
<td>20</td>
</tr>
</tbody>
</table>
MEDEVAC PHT Study Data Resources

• DoD Trauma Registry
• Pre-hospital Database
• Hospital Records
• Armed Forces Medical Examiner
• Original paper-based records
502 potential study candidates met 3 criteria:
1) U.S. military casualty in Afghanistan April 1, 2012 - August 7, 2015
2) Evacuated alive from the point of injury by MEDEVAC helicopter
3) Documented one of the established indications for PHT:
 a) Multiple traumatic amputations, at least one above knee or elbow
 b) Pre-hospital heart rate >120 beats/minute or systolic blood pressure <90 mmHg

55 PHT recipients were stratified based on 5 factors:
1) Mechanism of injury (gunshot vs. explosion)
2) Positive indicator of hemorrhagic shock (Yes/No)
3) Traumatic limb amputations
 a) 0=none
 b) 1=1 below knee/elbow
 c) 2=2 or more below knee/elbow or 1 above knee/elbow but below hip
 d) 3=2 or more above knee/elbow
4) Maximum severity of head injury by Abbreviated Injury Severity (AIS) score (0-1 vs. 2 vs. ≥3)
5) Significant torso hemorrhage by AIS score (Yes/No)

447 non-recipients were group-matched to recipients

= 345 matching non-recipients

102 unmatched non-recipients.
MEDEVAC PHT Study

Results

Primary Hypothesis:
Pre-hospital transfusion is associated with improved survival from hemorrhagic shock.
MEDEVAC PHT Study
Unadjusted Mortality Differences

<table>
<thead>
<tr>
<th>Mortality Follow-up Period</th>
<th>PHT-Recipients (n=55)</th>
<th>All non-recipients (n=447)</th>
<th>Unadjusted P values</th>
<th>Matched non-recipients (n=345)</th>
<th>Unadjusted P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death within 24 hours of MEDEVAC rescue (%)</td>
<td>3 (5%)</td>
<td>85 (19%)</td>
<td>0.013*</td>
<td>69 (20%)</td>
<td>0.007*</td>
</tr>
<tr>
<td>Death within 30 days of MEDEVAC rescue (%)</td>
<td>6 (11%)</td>
<td>102 (23%)</td>
<td>0.043*</td>
<td>78 (23%)</td>
<td>0.050</td>
</tr>
</tbody>
</table>
Because the PHT capability of non-recipients’ transport teams was undocumented, we chose matching factors and other covariates that transport teams likely observed to better balance the two study groups and statistically adjust our survival analyses.
MEDEVAC PHT Study: Group-Matching Factors

<table>
<thead>
<tr>
<th>Injury Characteristics</th>
<th>PHT-Recipients (n=55)</th>
<th>All non-recipients (n=447)</th>
<th>Unadjusted P values</th>
<th>Matched non-recipients (n=345)</th>
<th>Unadjusted P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of Injury</td>
<td></td>
<td></td>
<td>0.029*</td>
<td></td>
<td>0.051</td>
</tr>
<tr>
<td>Gunshot Wound (%)</td>
<td>9 (16%)</td>
<td>119 (26%)</td>
<td>-</td>
<td>101 (29%)</td>
<td>-</td>
</tr>
<tr>
<td>Explosives (%)</td>
<td>46 (84%)</td>
<td>303 (68%)</td>
<td>-</td>
<td>244 (71%)</td>
<td>-</td>
</tr>
<tr>
<td>Other (motor vehicle crash, falls, etc.) (%)</td>
<td>0 (0%)</td>
<td>25 (6%)</td>
<td>-</td>
<td>0 (0%)</td>
<td>-</td>
</tr>
<tr>
<td>Documented Pre-hospital Shock (SBP<90, HR>120, shock index >0.9) (%)</td>
<td>51 (93%)</td>
<td>405 (91%)</td>
<td>0.805</td>
<td>330 (96%)</td>
<td>0.313</td>
</tr>
<tr>
<td>Traumatic Limb Amputations</td>
<td></td>
<td></td>
<td><0.0001*</td>
<td></td>
<td><0.0001*</td>
</tr>
<tr>
<td>None (%)</td>
<td>15 (27%)</td>
<td>331 (74%)</td>
<td>-</td>
<td>251 (73%)</td>
<td>-</td>
</tr>
<tr>
<td>1 below knee/elbow (%)</td>
<td>12 (22%)</td>
<td>48 (11%)</td>
<td>-</td>
<td>38 (11%)</td>
<td>-</td>
</tr>
<tr>
<td>Bilateral, >1 below knee/elbow, or 1 above but below hip/shoulder (%)</td>
<td>12 (22%)</td>
<td>38 (8%)</td>
<td>-</td>
<td>31 (9%)</td>
<td>-</td>
</tr>
<tr>
<td>Bilateral or > 1 above knee/elbow (%)</td>
<td>16 (29%)</td>
<td>30 (7%)</td>
<td>-</td>
<td>25 (7%)</td>
<td>-</td>
</tr>
<tr>
<td>Significant Torso Hemorrhage by AIS Diagnostic Code (%)</td>
<td>31 (56%)</td>
<td>164 (37%)</td>
<td>0.005*</td>
<td>122 (35%)</td>
<td>0.004*</td>
</tr>
<tr>
<td>Maximum AIS Score for Head Injury Severity</td>
<td></td>
<td></td>
<td>0.602</td>
<td></td>
<td>0.620</td>
</tr>
<tr>
<td>0-1 (%)</td>
<td>26 (47%)</td>
<td>185 (41%)</td>
<td>-</td>
<td>163 (47%)</td>
<td>-</td>
</tr>
<tr>
<td>2 (%)</td>
<td>18 (33%)</td>
<td>176 (39%)</td>
<td>-</td>
<td>129 (37%)</td>
<td>-</td>
</tr>
<tr>
<td>>3 (%)</td>
<td>11 (20%)</td>
<td>86 (19%)</td>
<td>-</td>
<td>53 (15%)</td>
<td>-</td>
</tr>
</tbody>
</table>
MEDEVAC PHT Study
Additional covariates adjusted along with matching factors in Cox proportional hazards survival analysis

- Age
- Injury year
- Transport team’s level of care
- Pre-hospital tourniquet used
- Minutes from injury occurrence to MEDEVAC rescue

We used the delayed entry approach to appropriately adjust for immortal time bias given recipients had to survive long enough for PHT to be initiated after MEDEVAC rescue.
Adjusted Cox Proportional Hazards Models

24 hour survival

a. HR = 0.26 (95% CI = 0.08 – 0.84, P=0.025)

Non-recipients

b. HR = 0.39 (95% CI = 0.16 – 0.92, P=0.031)

24-hour survivors

c. HR = 0.84 (95% CI = 0.18 – 4.00, P=0.831)
Early Transfusion, Pre- or In-Hospital
Adjusted Cox Proportional Hazards Models for 24 hour Survival

Transfusion within 15 minutes vs. longer delays after MEDEVAC rescue from point of injury

Conditional survival among 16-minute survivors:
Transfusion within 16-20 minutes vs. longer delays

a.
HR = 0.17 (95% CI = 0.04 – 0.73, \(P=0.017\))

b.
HR = 0.94 (95% CI = 0.41 – 2.17, \(P=0.887\))

Earlier transfusion

Delayed transfusion
<table>
<thead>
<tr>
<th>Post-treatment Characteristics and Outcomes</th>
<th>PHT-Recipients (n=55)</th>
<th>Non-Recipients (n=345)</th>
<th>Unadjusted P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury Severity Score (ISS): Median (IQR)</td>
<td>29 (17, 36)</td>
<td>17 (9, 33)</td>
<td>0.001*</td>
</tr>
<tr>
<td>Maximum AIS Score: Median (IQR)</td>
<td>4 (3, 5)</td>
<td>3 (2.5)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Received Tranexamic Acid [TXA] (%)</td>
<td>48 (87%)</td>
<td>122 (35%)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>MEDEVAC transport time in Minutes: Median (IQR)</td>
<td>17 (15, 22)</td>
<td>16 (12, 23)</td>
<td>0.771</td>
</tr>
<tr>
<td>Minutes from injury occurrence to arrival at 1st surgical hospital: Median (IQR)</td>
<td>47.5 (37, 59)</td>
<td>45 (33, 60)</td>
<td>0.660</td>
</tr>
<tr>
<td>1st Surgical Hospital Level of Care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role 3 theater hospital vs. Role 2 resuscitative care (%)</td>
<td>48 (87%)</td>
<td>164 (54%)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Documented shock (SBP<90, HR>120 or shock index >0.9) upon ED arrival (%)</td>
<td>42 (76%)</td>
<td>162 (54%)</td>
<td>0.002*</td>
</tr>
<tr>
<td>ED base deficit: Median (IQR)</td>
<td>-7 (-11, -4)</td>
<td>-3 (-7, -1)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>ED pH: Median (IQR)</td>
<td>7.28 (7.17, 7.38)</td>
<td>7.36 (7.29, 7.42)</td>
<td><0.003*</td>
</tr>
<tr>
<td>ED hemoglobin: Median (IQR)</td>
<td>12.4 (10.9, 13.7)</td>
<td>14.3 (13.0, 15.3)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>ED INR: Median (IQR)</td>
<td>1.4 (1.2, 1.7)</td>
<td>1.2 (1.0, 1.3)</td>
<td>0.006*</td>
</tr>
<tr>
<td>Total units of RBCs or whole blood within 24 hours of ED arrival: Median (IQR)</td>
<td>15 (8, 23)</td>
<td>10 (4, 20)</td>
<td>0.001*</td>
</tr>
<tr>
<td>Total hospital days over the 30 days of follow-up among survivors at day 30 (IQR)‡</td>
<td>(n=48)‡</td>
<td>(n=265)‡</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>30 (21, 30)</td>
<td>18 (4, 30)</td>
<td></td>
</tr>
</tbody>
</table>

†Non-recipients who survived to the Emergency Department (ED) of the 1st surgical hospital (n=304)
‡Study patients who were discharged alive or survived at least through hospital day 30 (n=316, PHT-n=49, Non-Recipient-n=267)
Study Strengths

Capitalizing on unique and comprehensive research resources, this study was able to establish...

- At least a 4-fold sustained survival benefit from rapid transfusion (Number Needed to Treat ≤ 8).

- Timing is critical; benefit depends on starting transfusion within minutes of injury occurrence.

- Studies of advances in pre-hospital trauma care must include pre-hospital and early deaths.

Right Patient, Right Place, Right Time, Right Care
MEDEVAC PHT Study’s Limitations

- A retrospective cohort design cannot overcome unmeasured, potentially important confounding (e.g., contra-indications for pre-hospital transfusion).

- Missing data values, especially for pre-hospital patient characteristics, diagnostic assessments, and intervention timing, remain a challenge.
MEDEVAC PHT Study

Conclusions...

our findings

1. Support blood product transfusion as far forward as possible
2. May help resolve conflicting findings and inform the design of future studies
TRANSITION FROM ‘WHEN’ TO WHAT

Questions
Background

The Use of Fresh Whole Blood in Massive Transfusion

Thomas B. Repine, MD, Jeremy G. Perkins, MD, David S. Kauvar, MD, and Lorne Blackborne, MD

Conclusions: Under extreme and austere circumstances, the risk:benefit ratio of whole blood transfusion favors its use. Fresh whole blood may, at times, be advantageous even when conventional component therapy is available.
Background

Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications

Philip C. Spinella, MD

Objective: The objective of this study was to review the history and current literature regarding the benefits and risks of warm fresh whole blood transfusion to include recent U.S. Army research from Afghanistan and Iraq. We also discuss current indications for its use as well as potential civilian applications for large-scale disasters.

Background: The use of warm fresh whole blood currently only persists in emergency life-threatening scenarios when tested stored blood components are not available. Recent combat operations in Afghanistan and Iraq have redirected attention on the benefits and risks of warm fresh whole blood for life-threatening injuries in casualties.

Main Results: Between March 2003 and July 2007, over 6000 units of warm fresh whole blood have been transfused in Afghanistan and Iraq by U.S. medical providers to patients with life-threatening traumatic injuries with hemorrhage. Preliminary results in approximately 500 patients with massive transfusion indicate that the amount of fresh warm whole blood transfused is independently associated with improved 48-hr and 30-day survival and the amount of stored red blood cells is independently associated with decreased 48-hr and 30-day survival for patients with traumatic injuries that require massive transfusion. Risks of warm fresh whole blood transfusion include the transmission of infectious agents and the potential for chimerism.

Conclusions: For patients with life-threatening hemorrhage at risk for massive transfusion, if complete component therapy is not available or not adequately correcting coagulopathy, the risk: benefit ratio of warm fresh whole blood transfusion favors its use. In addition, recent evidence suggests that there is potential for warm fresh whole blood to be more efficacious than stored component therapy that includes stored red blood cells in critically ill patients requiring massive transfusion. Efforts must continue to improve the safety of warm fresh whole blood transfusion for patients when it is required in emergency situations. U.S. civilian disaster agencies are preparing guidelines for its use in massive casualty scenarios and prospective, randomized trials are about to start to determine whether stored warm fresh (<24 hrs) whole blood improves outcomes compared with standard stored component therapy. (Crit Care Med 2008; 36[Suppl.]: S340–S345)

Key Words: whole blood; trauma; mortality; hemorrhage; coagulopathy; combat
Background

New evidence in trauma resuscitation - is 1:1:1 the answer?

Timothy E Miller

Perioperative Medicine 2013 2:13
https://doi.org/10.1186/2047-0525-2-13 © Miller; licensee BioMed Central Ltd. 2013
Received: 23 October 2012 | Accepted: 8 May 2013 | Published: 3 July 2013

Conclusions

Reduced crystalloid use upfront, massive transfusion protocols and 1:1:1 in the absence of whole blood have all been shown to improve trauma outcomes. There is growing evidence to suggest that 1:1:1 is the best possible alternative to fresh blood, together with damage control resuscitation. However the principles of damage control resuscitation should only
Background

Warm Fresh Whole Blood and Thoracic Trauma in Iraq and Afghanistan

Ryan J. Keneally, Andrew M. Parsons, and Peter B. Willett

Results:

Patients transfused with warm fresh whole blood in addition to component therapy had a higher mortality rate than patients transfused only separated blood components (21.3% vs. 12.8%, \(P < 0.001 \)). When controlling for covariates, transfusion of warm fresh whole blood in addition to component therapy was not associated with increased mortality risk compared with the transfusion of component therapy only (OR 1.247 [95% CI 0.760-2.048], \(P = 0.382 \)).

Conclusion:

Patients with combat related thoracic trauma transfused with warm fresh whole blood were not at increased risk for mortality compared to those who received component therapy alone when controlling for covariates.
Objective

To compare early survival after injury in combat casualties resuscitated with FWB vs. CT-only after appropriate adjustment for both immortal time bias and the severity of injury and bleeding.
Outcome

• Primary Outcome: mortality within 6 hours of Role 2 facility admission

• Secondary outcomes:
 • the total sum of RBC-containing transfusions
 • total sum of unit blood product transfusions among patients who survived at least 6 hours in the Role 2 facility
Methods - Study Population

• Retrospective study
• Role 2 Database
• Exposure: FWB vs CT

Adult patients, battle or non-battle injured in Afghanistan from February 2008 to September 2014

2+ units of RBC containing units

non-missing data

>20% total body surface area burn

1,105 patients
• 221 FWB
• 884 CT-only
Methods

• Matching factors and categorization of FWB patients into 29 unique strata

• Selection of CT patients by identical matching to the profiles specified by the 29 strata

• Analysis strategies
 • For mortality outcome: multi-level mixed model logistic regression with stratum as the random intercept to appropriately adjust for both matching and other covariates
 • For sum totals of blood products: Survival average causal effect modeling with adjustment for matching factors and the severe head injury covariate using multiple logistic regression
Characteristics of FWB patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR)</td>
<td>26</td>
<td>(22, 30)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients without missing data</td>
<td>220</td>
<td>99.5</td>
</tr>
<tr>
<td>Male</td>
<td>217</td>
<td>98.2</td>
</tr>
<tr>
<td>Injury Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetrating</td>
<td>205</td>
<td>92.8</td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>7.2</td>
</tr>
<tr>
<td>Head injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>13</td>
<td>5.9</td>
</tr>
<tr>
<td>Moderate</td>
<td>6</td>
<td>2.7</td>
</tr>
<tr>
<td>None</td>
<td>202</td>
<td>91.4</td>
</tr>
<tr>
<td>Patient affiliation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US military</td>
<td>84</td>
<td>38.0</td>
</tr>
<tr>
<td>Other</td>
<td>137</td>
<td>62.0</td>
</tr>
<tr>
<td>Tourniquet use</td>
<td>103</td>
<td>46.6</td>
</tr>
<tr>
<td>Prehospital blood</td>
<td>7</td>
<td>3.2</td>
</tr>
</tbody>
</table>

a Multilevel mixed-effects logistic regression adjusted simultaneously for the matching factors of injury type, patient affiliation, tourniquet use, prehospital blood, and hourly rate of unit RBC/FWB transfusion and for the covariate head injury assessed by maximum head abbreviated injury scale score or Glasgow coma scale when MAIS missing
Characteristics of FWB patients

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourly rate of unit RBC/FWB transfusion<sup>a, b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>59</td>
<td>26.7</td>
</tr>
<tr>
<td>Medium-Low</td>
<td>62</td>
<td>28.1</td>
</tr>
<tr>
<td>Medium-High</td>
<td>55</td>
<td>24.9</td>
</tr>
<tr>
<td>High</td>
<td>45</td>
<td>20.4</td>
</tr>
<tr>
<td>Shock<sup>c</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>143</td>
<td>64.7</td>
</tr>
<tr>
<td>No</td>
<td>78</td>
<td>35.3</td>
</tr>
<tr>
<td>Dose of FWB<sup>d</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>66</td>
<td>29.9</td>
</tr>
<tr>
<td>High</td>
<td>155</td>
<td>70.1</td>
</tr>
<tr>
<td>Admission base deficit, median (IQR)</td>
<td>-7</td>
<td>(-13, -4)</td>
</tr>
<tr>
<td>Median (IQR) MAIS score, median (IQR), n=132</td>
<td>3</td>
<td>(2, 3)</td>
</tr>
<tr>
<td>Median (IQR) Injury severity score<sup>f</sup>, median (IQR), n=132</td>
<td>9</td>
<td>(5, 14)</td>
</tr>
<tr>
<td>Time from point of injury to Role 2 facility, median (IQR), n=113</td>
<td>60</td>
<td>(35, 117)</td>
</tr>
</tbody>
</table>

^aMultilevel mixed-effects logistic regression adjusted simultaneously for the matching factors of injury type, patient affiliation, tourniquet use, prehospital blood, and hourly rate of unit RBC/FWB transfusion and for the covariate head injury assessed by maximum head abbreviated injury scale score or Glasgow coma scale when MAIS missing

^bHourly rate of unit RBC/FWB transfusion was calculated as units of FWB or RBCs divided by patient Role 2 length of stay with a maximum length of stay of 6 hours. Hourly rate of unit RBC/FWB transfusion were examined in quartiles (Low, 0.33333 to <1.71429; Low-Medium, 1.71429 to <2.88462; High-Medium, 2.88462 to 4.90909; High, ≥4.90909)

^cShock was defined as admission systolic blood pressure ≤90, admission pulse ≥120 or shock index ≥0.9

^dDose was calculated as units of FWB divided by the total units of FWB and RBCs. Patients categorized as low dose received a dose <0.33, while high dose patients received a dose ≥0.33

^fInjury severity score was calculated as the severity score of the most severe injury sustained.
Unadjusted\(^a\) pre-specified outcomes

<table>
<thead>
<tr>
<th></th>
<th>FWB</th>
<th></th>
<th>CT-only</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Mortality within 6 hours of Role 2 facility admission</td>
<td>15</td>
<td>6.8</td>
<td>56</td>
<td>6.3</td>
</tr>
<tr>
<td>≥1 unit of blood product</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>187</td>
<td>84.6</td>
<td>709</td>
<td>80.2</td>
</tr>
<tr>
<td>Platelets</td>
<td>20</td>
<td>9.0</td>
<td>119</td>
<td>13.5</td>
</tr>
<tr>
<td>Blood products, units, median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBC containing units(^b)</td>
<td>12</td>
<td>8.0-19.0</td>
<td>4</td>
<td>2.0-7.0</td>
</tr>
<tr>
<td>Plasma</td>
<td>5</td>
<td>2.0-8.0</td>
<td>3</td>
<td>2.0-6.0</td>
</tr>
<tr>
<td>Platelets</td>
<td>0</td>
<td>0.0-0.0</td>
<td>0</td>
<td>0.0-0.0</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>11.0-27.0</td>
<td>8</td>
<td>4.0-12.0</td>
</tr>
</tbody>
</table>

Abbreviations: FWB, fresh whole blood; IQR, interquartile range; RBCs, red blood cells

\(^a\)Unadjusted for matching with variable ratios of CT-only:FWB patients in each stratum. See Results Section for findings from the appropriately adjusted analyses.

\(^b\)RBC containing units means FWB or RBCs
Primary results

Adjusted odds of mortality in FWB patients (n=221) versus matched\(^a\) CT-only patients (n=884)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Deaths</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWB</td>
<td>221</td>
<td>15</td>
<td>0.27</td>
<td>0.13 0.58</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Abbreviations: FWB, fresh whole blood

\(^a\)Multilevel mixed-effects logistic regression adjusted for the matching factors of injury type, patient affiliation, tourniquet use, prehospital blood, and hourly rate of unit RBC/FWB transfusion and the covariates head injury and interaction between head injury and FWB use.
Results- secondary analysis

Adjusted odds of mortality by dose of FWB received versus matcheda patients who received CT-only (n=884)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Deaths</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Doseb</td>
<td>66</td>
<td>10</td>
<td>0.12</td>
<td>0.04</td>
<td>0.38</td>
</tr>
<tr>
<td>High Doseb</td>
<td>155</td>
<td>5</td>
<td>0.54</td>
<td>0.22</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Abbreviations: FWB, fresh whole blood; RBC, red blood cell

aMultilevel mixed-effects logistic regression adjusted for the matching factors of injury type, patient affiliation, tourniquet use, prehospital blood, and hourly rate of unit RBC/FWB transfusion and the covariates head injury and interaction between head injury and FWB use

bDose was calculated as units of FWB divided by the total units of FWB and RBCs. Patients categorized as low dose received a dose <0.33, while high dose patients received a dose ≥0.33. Referent equals no dose.
Results - sensitivity analysis

Adjusted odds of mortality in FWB patients (n=68) versus matched\(^a\) CT-only patients (n=354)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Deaths</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWB</td>
<td>68</td>
<td>3</td>
<td>0.15</td>
<td>0.03</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Abbreviations: FWB, fresh whole blood

\(^{a}\)Multilevel mixed-effects logistic regression adjusted for the matching factors of injury type, patient affiliation, tourniquet use, prehospital blood, and hourly rate of unit RBC/FWB transfusion and the covariates head injury, interaction between head injury and FWB use, injury severity score, maximum abbreviated injury scale, admission base deficit, age, gender, shock, and time from injury to Role 2 facility
Results - 2nd sensitivity analysis

Adjusted odds of mortality in FWB patients (n=217) versus matcheda CT-only patients (n=864), excluding decedents who did not respond to CPR

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Deaths</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWB</td>
<td>217</td>
<td>11</td>
<td>0.35</td>
<td>0.15</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Abbreviations: FWB, fresh whole blood

aMultilevel mixed-effects logistic regression adjusted for the matching factors of injury type, patient affiliation, tourniquet use, prehospital blood, and hourly rate of unit RBC/FWB transfusion and the covariates head injury and interaction between head injury and FWB use
Results - between group difference

- Sum total of unit RBC-containing transfusions among study patients predicted to have survived at least 6 hours
 - No difference
 - $p = 0.426$

- Sum total of all blood product transfusions
 - No difference
 - $p = 0.685$
Conclusions

• FWB improves early survival in combat casualties
• Sorry, I don’t understand the stats well enough to make much interpretation beyond this. Need to address:

Secondary outcomes:

• the total sum of RBC-containing transfusions
• total sum of unit blood product transfusions among patients who survived at least 6 hours in the Role 2 facility
Limitations
Recommendations for future research
Co-Authors

• Amanda Staudt, Ph.D.
• Deborah J. del Junco, Ph.D.
• Col Stacy Shackelford, USAF, MC
• Phil Spinella, MD
• COL Andre Cap, USA, MC
• Elizabeth Mann-Salinas, RN, Ph.D.
• COL Nicole Powell-Dunford, USA, MC
• LTC Edward L. Mazuchowski, USAF, MC
• Jeffrey T. Howard, Ph.D.
• Russ S. Kotwal, MD, MPH
• Frank K. Butler, Jr., MD
• COL Kirby R. Gross, USA, MC
Acknowledgments

* Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX (DdJ)
* U.S. Army Aeromedical Research Laboratory, Ft Rucker, AL (NPD)
* Office of the Armed Forces Medical Examiner, Dover, DE (EM)
* Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, U.S. Department of Energy (DdJ)

Special thanks to the DUSTOFF flight medics, Pararescuemen, En route Critical Care Nurses, crew chiefs, flight physicians and the Blood Support Detachment, and the men and women of the Joint Trauma System for their tireless commitment to improving survival from combat injuries.

Special thanks to Nicole Caldwell and Jennifer Trevino for their technical support

We hope this work honors the sacrifice and service of the U.S. military members whose records were reviewed for this study.
Acknowledgements

• This work was supported by the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No.W81XWH-15-2-0085. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

• The authors acknowledge the Joint Trauma System for providing data for this study

• This research was supported in part by Dr. del Junco’s appointment to the Faculty Research Participation Program at the US Army Institute of Surgical Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the US Army Medical Research and Materiel Command (USAMRMC).
Questions?
Background/Introduction

- There is currently no standard program for clinical pre-deployment readiness, nor documentation tool of individual competency and training.
- The 2017 National Defense Authorization Act included a requirement to establish a standardized training curriculum for pre-deployment training and to formally partner with civilian trauma centers to ensure military clinicians are exposed to the volume and acuity of trauma and burn patients.
- USAISR/BAMC has been established as a premier military readiness platform at DoD's only Level I Trauma and Burn Center. Preliminary results from this pilot have reflected self-reported improvements on key skills.
- From Jan. 2015-Sept. 2018 a total of 229 personnel have rotated through the USAISR program.
- Standardized training curriculum in development with the following goals:
 - Nursing content for Knowledge/Skill/Abilities (KSA) competency development and assessment
 - Documentation tools for nursing combat readiness
 - Knowledge assessment test (Nursing, Medic, Tech, Corpsmen) and novel training platforms (gaming)
 - Simulation scenarios that are easily replicated
 - Standardized curriculum exportable to a civilian facility

Objectives

- Demonstrate that a comprehensive platform to prepare providers for combat deployment is improved with implementation of a standardized program.
- Aim 1: Create standardized training and sustainment modules for identified combat related skills.
- Aim 2: Demonstrate that a program created for the Burn/Thrust Center is adaptable across the Military Health System (MHS) and Civilian partners.

Methods

A prospective, cohort project to compare the observed skill and knowledge of combat casualty care (CCC) for nurses/medics/corpsmen/technicians expected to deploy. Objective metrics:

- Readiness Estimate and Deployability Index (READI) and Periodic Evaluation Tool (PET) instrument will be used for self-assessment
- CCC Competency Assessment Tool will be used to evaluate and document clinical skills and patient care hours

Each group was assessed using the aforementioned tools and categorized into two groups: those who received no simulation training and those who did.

Preliminary Results

Demographics

- 42 total: 18 Female, 28 Male
- Average age 26-30
- All assigned to field units with 28/42 having deployed previously in current role
- 40/42 have conducted field training in the last year
- Specialties: CRNA=1, RN=8, LPN=17, medic=10, surgical tech=3, other=3

Summary/Future Implications

- Upon completion of training, both groups reported improved competence on critical elements.
- USAISR/BAMC collaboration will optimize assets of both organizations.
- Project is directly aligned with Defense Health Agency aims through the KSA Project and 8 domains of Combat Casualty Care.
- Pilot project will result in a program that is standardized, exportable, and offers clear documentation of required readiness elements.
- Efforts underway to maximize efficiency of documentation using available electronic resources (e.g., Elsevier Clinical Skills Learning Management System) and add Knowledge assessment test to assess understanding of Clinical Practice Guidelines and CCC concepts.
- Civilian centers could replicate this training platform for community partners to facilitate hands-on experience in preparation for real-world civilian mass casualty.

Acknowledgements

This work was supported by the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No.W81XWH-15-2-0085 and the US Army Combat Casualty Care Research Program RAD 2 - A3_061_2017_USAISR

Photo Credit: Dr Steven Galvan, USAISR PAO
Background

- Clinicians face several challenges when caring for trauma patients on the battlefield. Combat casualty care may include:
 - Treating patients while under attack
 - Resource constraints
 - Periods of limited visibility/darkness
 - Rugged terrain
 - Extreme temperatures
- Therefore, optimal preparation for clinicians conducted to a combat theater since 2001

Objectives

The purpose of this study was to survey trauma care-oriented Army nurses and combat medics to describe the range of pre-deployment trainings they experienced in order to provide evidence on future pre-deployment training requirements.

Methods

- Survey link sent to military email accounts provided by US Army Human Resource Command
 - Army nurses from active (n=2,344) and reserve (n=2,458) components
 - Active duty combat medics (n=17,535)
- Inclusion criteria:
 - Deployed to a combat theater since 2001
 - Registered nurse (medical-surgical, emergency, critical care), certified registered nurse anesthetist (CRNA), or medic (technician or licensed vocational nurse)
- Intelink.gov survey platform
 - Targeted up to two most recent deployments
 - Captured demographic information, deployment history, and military training received prior to deployment
- Three monthly reminder emails sent to all potential participants
- Survey data analyzed using descriptive statistics

Results

- Of 22,337 emails sent, there were 1,181 respondents (5.3% response rate); 696 (58.9% of respondents) met inclusion criteria

Characteristics of the Participants

<table>
<thead>
<tr>
<th>Characteristics of the Participants</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Participants</td>
<td>696</td>
<td>100.0</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24 years</td>
<td>91</td>
<td>13.6</td>
</tr>
<tr>
<td>25-34 years</td>
<td>329</td>
<td>47.3</td>
</tr>
<tr>
<td>35-44 years</td>
<td>204</td>
<td>29.3</td>
</tr>
<tr>
<td>45-54 years</td>
<td>64</td>
<td>9.2</td>
</tr>
<tr>
<td>55-64 years</td>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-1 to E-4</td>
<td>137</td>
<td>19.7</td>
</tr>
<tr>
<td>E-5 to E-6</td>
<td>264</td>
<td>37.9</td>
</tr>
<tr>
<td>E-7 to E-9</td>
<td>66</td>
<td>9.5</td>
</tr>
<tr>
<td>O-1 to O-3</td>
<td>140</td>
<td>20.1</td>
</tr>
<tr>
<td>O-4 to O-6</td>
<td>89</td>
<td>12.8</td>
</tr>
<tr>
<td>Active Duty</td>
<td>644</td>
<td>92.3</td>
</tr>
<tr>
<td>Area of Concentration or Military Operations Specialty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combat Medic</td>
<td>382</td>
<td>54.9</td>
</tr>
<tr>
<td>Critical Care Nurse</td>
<td>62</td>
<td>8.9</td>
</tr>
<tr>
<td>Emergency Nurse</td>
<td>37</td>
<td>5.3</td>
</tr>
<tr>
<td>Flight Medic</td>
<td>33</td>
<td>4.7</td>
</tr>
<tr>
<td>Medical/Surgical Nurse</td>
<td>66</td>
<td>9.5</td>
</tr>
<tr>
<td>Nurse Anesthetist</td>
<td>55</td>
<td>7.9</td>
</tr>
<tr>
<td>Nurse Anesthetist</td>
<td>35</td>
<td>5.0</td>
</tr>
<tr>
<td>Number of Deployments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>269</td>
<td>38.6</td>
</tr>
<tr>
<td>2</td>
<td>212</td>
<td>30.5</td>
</tr>
<tr>
<td>3</td>
<td>115</td>
<td>16.5</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>8.3</td>
</tr>
<tr>
<td>5 or more</td>
<td>42</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Location of Most Recent Deployment

- Afghanistan: 364 (52.3)
- Africa: 13 (1.9)
- Iraq: 198 (28.4)
- Kosovo: 7 (1.0)
- Kuwait: 59 (8.5)
- Syria: 17 (2.4)
- Other area (Middle East): 18 (2.6)
- Other area (global): 20 (2.9)

Discussion

- Most nurses and medics were satisfied with the quality of their pre-deployment training (when it occurred)
- Nurses and medics believed they were capable of providing effective combat casualty care
- Combat died of wounds rates started to rise recently, 1 indicating that the trauma system may have previously unidentified limitations
- Currently unable to link pre-deployment training to patient outcomes; success of training is subjective

Implications for Military Nursing

- Army nurses and medics felt confident and adequately trained to provide trauma care during their deployments. This study is ongoing. Further analysis of the complete data will inform Army medical department leaders about pre-deployment training for Army nurses and medics, as well as the respondents’ views of the effectiveness of this training.

Limitations

- Survey data only captured pre-deployment training for deployers and not for non-deployers
- Sample not representative of all nurse specialties

Conclusions

- Army nurses and medics felt confident and sufficiently prepared to provide trauma care during their deployments
- Increases in died of wounds rates may indicate that training was not sufficient
- To better understand the effectiveness of combat casualty care training, the Army must be able to link training events to objective measures, such as patient outcomes.

Acknowledgements

- This project was funded by the Defense health program JPC-6 intensive forward surgical critical care, Award Number W81XWH-15-2-0085
- This project was conducted under a protocol reviewed and approved by the US Army institute of surgical research regulatory office
- Conduct of the survey was approved by the Army Research Institute, control number DAPE-ARI-00-18-01

References

Using the Delphi Technique to Determine Core Components of a Nurse Competency Program

Susan Boyer, DNP, RN-BC Elizabeth Mann-Salinas, PhD, RN, FCCM, ANC Krystal Valdez-Delgado, BSN, RN Christopher VanFosson, PhD, MHA, RN, LTC

This modified Delphi study determined consensus on core nurse competency program components that apply across the continuum of transition to initial practice, to new specialty practice, to a new role, or within general nursing orientation. The literature review found no published agreement on support and systems for universal transition programs. This broad-based study addressed this gap by identifying core elements within a competency or transition program and then ranking their importance within program structure.

Competency programs are used to establish evidence of clinical capability of new professional staff members in diverse settings and roles (Blegen et al., 2015; Boyer, Mann-Salinas, & Valdez-Delgado, 2018). These programs may address transitions of student to nurse, from one specialty to another, to a new setting or agency, and nurse to nurse practitioner. The nurse professional development (NPD) practice model identifies partner for practice transitions as one of seven key NPD roles and competency management as an essential throughput. This places management of Nurse Competency or Transition Program structure at the core of this specialized practice. Throughout this article, we refer to “competency program” and “transition program.” Both of these terms address the structure and systems established to develop and validate care provider competency in the clinical setting.

The need for this project was identified when seeking to update and optimize the on-boarding or orientation system for a tertiary care center within the military health system (Boyer, Valdes-Delgado, Huss, Barker, & Mann-Salinas, 2017; Robbins et al., 2017). Work within the military health system agency introduced multiple concepts that were unfamiliar to the nurse leadership group, thus expert opinion and further evidence was sought. A literature review exposed limited evidence-based data on competency framework recommendations and a lack of consistency in tools used for instruction, competence assessment, and/or evaluation (Edwards, Hawker, Carrier, & Rees, 2015; Kinghorn, Halcomb, Frogatt, & Thomas, 2017; Pasila, Elo, & Kääriäinen, 2017). This study addresses the identified gap in evidence for programs that address foundational competency development and validation, as opposed to annual competency models (Strauss, Ovnat, Gonen, Lev-Ari, & Mizrahi, 2016). Cycles of questions, analysis, feedback, and intervention first outlined contemporary, expert opinion on core program elements and then ranked the components in order of importance. Respondent demographic data allowed analysis of responses as divided by role, experience, education, and military versus civilian medical systems.

PURPOSE
This modified Delphi study identifies and prioritizes contemporary, expert opinion on optimal program components within a nurse competency development and validation model. Expert consensus establishes core elements for programs that facilitate new specialty knowledge and skill development—whether the transition is onboarding new nurses or guiding experienced nurse transition into a new agency, specialty area, or role.
LITERATURE REVIEW

The literature review presented a broad set of articles targeting new graduate transition to practice or residency programs (Edwards et al., 2015; Goode, Reid Ponte, & Sullivan Havens, 2016; Pasila et al., 2017). The nurse residency programs show great variation in program length and a lack of standardized evidence-based curriculum. Comprehensive reviews completed in 2014 and 2017 show that, “No integrative literature review could be found to summarize available guidelines facilitating transition of final year nursing students to professional nurses” (van Rooyen, Jordan, ten Ham-Baloyi, & Caka, 2018, p. 35).

With no comprehensive syntheses to inform program development, there is significant imbalance and variation in the quality of transition programs. The search also exposed a lack of consistency in tools used for instruction, competence assessment, and/or evaluation (Pasila et al., 2017; van Rooyen et al., 2018).

Current publications on competency-based orientation disclose that little is shared regarding specific content recommendations, objectives, or program structure used to support successful transition of nurses into specialty practice (Peltokoski, Vehviläinen-Julkunen, & Miettinen, 2016). Gaps in literature were found related to both identifying program elements and the evaluation of program impact on healthcare outcomes. One integrative review identified the complexity of the orientation or transition phenomena while reporting that current research evidence is not strong. The absence of evidence makes it difficult to establish a comprehensive orientation (Kinghorn et al., 2017; Peltokoski et al., 2016; Strauss et al., 2016).

METHODOLOGY

Delphi methodology is a research approach that is suitable when seeking to solve real-world problems wherein expert opinion is appropriate. Three distinguishing features of the technique include iteration with controlled feedback, anonymity, and statistical representation of participant responses (McPherson, Reese, & Wendler, 2018). The process uses consensus to determine what responses and data are valid and is often used within a mixed methodology model. This makes the model particularly useful for reaching consensus with a diverse, widely spread panel of respondents (Collins, Yen, Phillips, & Kennedy, 2017; Hsu & Sandford, 2007; Naderifar, Goli, & Ghaljaie, 2017).

An independent institutional review board (IntegReview) determined that the study was exempt from human subject research oversight. The study facilitator collected data via a web-based survey system that was not linked with any healthcare agency. The survey tool collected a minimum of publicly available demographic information for the purpose of categorizing responses based on participant experience, education, or background characteristics.

The credibility and dependability aspects of the study were supported through use of a study team for data management and documentation. The decisions, actions, and potential biases of the study facilitator were checked and scrutinized by this team of four reviewers, two of which are nurse scientists with extensive management experience. These experienced researchers hold doctoral (PhD) degrees and ensured fidelity to methodology and an audit trail for study progression. The study team addressed each process step as outlined in Table 1. The component identification phase determined an initial list of program elements based on the literature search, expertise of the study team, and review by nurse leaders in the agency (Collins et al., 2017). Further refinement occurred with evaluation and comparison of current documents and processes.

Within multiple rounds of the Delphi study, participants shared opinions and knowledge based on their experience and expertise in working with transition programs. The facilitator reviewed the material and developed a revised set of summary statements based on each round of feedback. The data analysis and revised elements were reviewed by the full study team prior to the next survey round, and the process continued until participants reached consensus on core program elements. The technique was an iterative process that solicited a broad range of opinions from respondents. Both the level of consensus and the occurrence of “no new data elements proposed” (data saturation) determined the final round, wherein the program elements are prioritized (Hsu & Sandford, 2007).

SAMPLING METHOD: PANEL SELECTION AND SIZE

The study used a purposeful snowball sample composed of over 120 participants that include both military and civilian healthcare settings (Britten, Traynor, Osmond, & Chenoweth, 2018; Collins et al., 2017). The purposive sampling strategy combined with encouraged sharing (snowballing) of the survey link recruited participants from diverse regions and settings (Naderifar et al., 2017). Recruitment efforts targeted a professional web forum (LinkedIn), regional nurse leadership groups, military health clinical nurse leaders, and affiliate groups of the Association for Nursing Professional Development. Distribution of the first round of the Delphi study occurred via e-mail communications, and survey participants were invited to forward the survey link within their network of nurse leaders and clinical educators (Collins et al., 2017). The study protocol did not limit the number of participants, and “snowballing” of respondents expanded the sample size beyond the initial target groups.

The study team recognized that expertise comes in many guises and may include those who are “experts by experience.” Thus, the study sought to include respondents from groups representing both decision makers who will use the outcomes and professional staff members.
from transition to practice support teams (Hsu & Sandford, 2007). The expertise of the respondents provides one measure of validity as respondents apply their leadership background, graduate education, and experience to identify specific elements for competency or transition program delivery. Basic demographic information submitted with each survey allowed grouping of data based on participant settings, role, education, and practice experience to determine if those variations generated any trends within responses.

Ayre and Scally (2014, p. 85) produced a table of exact values for content validity ratio (CVR) that detailed the number of experts agreeing that an element is essential. Based on their work, the minimum sample size was set at 40 respondents. With this sample, the CVR table required agreement of greater than 65% for statistical validity.

DEVELOPMENT OF THE FIRST QUESTIONNAIRE

An environmental scan and a document review were completed as part of gap analysis and study plan development. The search terms of “competency,” “orientation,” “transition program,” and “new specialty” were used in CINAHL, PubMed, and Google Scholar. The component identification phase included this literature review plus line-by-line analysis of the agency’s competency program documents by an NPD specialist (Collins et al., 2017). Based on current practice and the literature review, an initial list of 39 survey items was detailed and categorized under section headings of Demographics, Transition Program Structure, and Program Documentation. Nurse managers and clinical specialists from the involved tertiary care center reviewed the proposed list of elements to identify possible gaps or concerns. The resultant list provided a starting point for the Delphi Study data collection. Six of the 39 items solicited demographic data in the initial survey, leaving 33 items specific to program components, documents, and delivery.

CONDUCTING THE STUDY

The study team engaged the Delphi technique to distribute a list of program elements that could be refined based on respondent feedback. Rounds 1 and 2 were conducted with program elements presented within a survey form, along with specific directions. Respondents were asked to identify whether they believed that each element should be (a) included in the competency program framework, (b) included with modifications, or (c) excluded from the program (Britten et al., 2018). The instructions requested specific recommendations for modification of the statement or an explanation of “why exclude?” if that option was selected. Respondent comments were used to modify statements, expand upon stated rationale or examples, combine related items, and/or “add to” the elements where indicated. With a high level of consensus achieved after Round 2, the third study round asked respondents to also rank the level of importance of each element.

DATA AND ANALYSIS

Within data analysis, recommendations for revisions, additions, merging, and deletions held equal importance to
accepting the element as stated. Data were reviewed using an iterative process to identify salient themes and concerns related to transition program delivery (Hsu & Sandford, 2007). In each round, the respondent’s comments, recommendations, and wording were used to revise the stated program elements or add to the rationale, and then the study team moved to the next process step. Participant demographic data did not track which respondents participated in prior rounds, but the final sample size was larger than the previous samples, indicating either more extensive sharing of the survey link or increased response rate from those receiving study communications.

The total number of respondents for Round 1 was 97 with 73 usable responses. Of the thirty-nine items in the survey, the first six were directed at demographic data, leaving 33 items that offered potential program components. There were occasional votes that requested elimination of an item, although often the “reason for deletion” was absent, revealed misunderstanding of the item, or referred to unrelated issues. From a total of 296 comments submitted by respondents, 33 were linked with a vote for elimination. Frequently, the rationale for exclusion recommended merging the content with another item. Compiled data for each program element showed support for inclusion at 94% or greater; thus, none were deleted. Integration of participant feedback resulted in adding detail to rationale and/or examples for each program element from this round, and the format of demographic information was changed to address all characteristics within a single-survey item where participants selected “all that apply.”

The second round of the Delphi study engaged 81 respondents with 55 usable surveys. Of the 33 potential program elements, 23 received 100% respondent support or a recommendation for merging with another survey item. There were a total of 247 respondent comments from this round, with 50 of those linked to a vote for merging or elimination. With related items merged as directed by respondents, the list of remaining core components contained 20 elements. Data analysis supported retaining the full set of 20 modified statements.

The third and final survey round solicited responses from a total of 118 participants, with an 84% (n = 99) completion rate. Demographic data from the final round reveals that 95% of the respondents had 6 years or more of experience, with 68% reporting more than 16 years. In this round, less than 10% (n = 6) worked in a military medical agency, and 55% identified themselves as clinical educators. Of the 99 respondents, 21% identified as preceptors, 76% reported holding a master’s degree, and 29% had completed doctoral studies. Certifications were held by more than 50% of respondents, with many of those focused on NPD. About 10% reported a mixed set of roles that included research, nursing science, or coordinator roles specific to a Magnet program, clinical support, or training specialist (with the third round offering 99 responses, the percentage and count numbers match when numbers are rounded down).

In this final round, participants ranked the importance level of the 20 program items, as well as offering a final set of comments. The survey tool directed a ranking for each element on a 5-point Likert scale of 5 = very important to 1 = not important. Participants were allowed to skip elements upon which they held no opinion; thus, the total responses for each item in the final round were either 98 or 99, with the blanks scattered across various elements. Initial data analysis included descriptive statistics to determine the mean, mode, range, and standard deviation for each program element as charted in Table 2. Although a small majority of items ranked within a range of 3 points, Table 2 shows Item 6 as being the only element that was ranked within a range of 4 points. That element is stated as, “Apply concepts of sampling to the selection of competency validation criteria that require confirmation within an agency and unit orientation.” This proposed program element raised the most questions and concerns from respondents. Comments included the statements, “Not sure about this one. I worry about the verbiage”; “This statement cannot stand alone. I don’t think the average NPD specialist is going to know what ‘the concept of sampling’ means”; and “teach preceptors and educators about sampling concepts and application.”

The next step of analysis determined the percentage of agreement on importance for each element, which is core to calculating the level of CVR validity. The study outcomes detailed in Table 3 significantly exceeded the critical value of 65% agreement for a panel size of 40. With a panel size of 99 respondents, the lowest ranked item gained 80% level of agreement, and more than half the items ranked above 90%. When the chart of program elements was sorted based on their percentage ranking, the statements are set in a measured order of high to low agreement on importance. Along with prioritizing program elements, participants submitted an additional 112 comments related to competency program structure, documentation, and delivery issues. None of the 20 program components was recommended for elimination in the final round.

DISCUSSION

The modified Delphi process was used to determine and shape statements and examples to communicate specific elements that comprise a nurse competency program. Response rates varied for each study round. Changes in number of respondents may have been predictable as the study did not limit subsequent rounds to prior participants and sharing of the survey link was encouraged. Round 1 produced 73 usable survey responses, whereas the final round gained 99 responses. The expanded participant sample served to affirm transformability and
some aspects of confirmability for program elements as stated within the surveys. As new participants were enrolled for subsequent study rounds, they submitted feedback that supported previously contributed data and reflected the fit of results to their own experiences.

With extensive demographic questions posed at the beginning of the survey, many respondents completed that section without entering any responses specific to core program elements. To address this issue of incomplete surveys, subsequent tools were revised to request all applicable demographics be identified within a single survey item. This format gained sufficient data to sort the submissions by education, experience, credentials, and practice setting once the raw data were formatted in a chart. With the demographics condensed, the percentage of completed surveys rose. Analysis of the various demographic groupings determined that there were no significant differences in responses from respondent subsets.

It is not surprising that all elements ranked at or above a Likert score of four in the final round, as the elements had been reviewed and adapted based on two rounds of feedback. This level of support gave evidence of the efficacy of the prior process steps and the resulting list of core program elements. Ten items had mean scores of 4.5 or higher (see Table 2) when ranked as to level of importance. These point averages may indicate that these elements are especially essential to effective program structure and delivery. Higher rankings may also represent greater familiarity with those program elements as used within current practice, with the remaining elements being less commonly applied in transition programs.

The initial presentation of program elements included examples and/or rationale for only a few selected items. Respondent comments revealed the need to include examples and expand upon rationale to clarify the intent of each and every statement. Panelist responses provided a rich resource of rationale and examples for the statements. Feedback also identified possible gaps in understanding related to certain aspects of program structure. This was especially evident with the two lowest ranking elements of applying sampling principles within a competency framework and concepts of standardized knowledge base. Feedback for these elements may reveal a need for further inquiry into how the element is used within a competency program.

As the study progressed, the response rate improved, revealing a high level of interest in the project and outcomes. The final list of program elements represents consensus from both civilian and military personnel, inclusive of leadership, clinical preceptors, and nurses from diverse backgrounds and geographic settings. Respondent comments added depth and breadth to the ideas and concepts being analyzed within the study. A total of 645 participant comments were submitted, with many related to program elements, but others addressing core implementation challenges and issues. The comments connected to specific elements often provided strong examples or rationales that were added to the element description. In this manner, the Delphi process created work breakdown structures, identified risks and opportunities, and compiled lessons learned from the experience of multiple NPD and education-focused specialists.

LIMITATIONS AND RECOMMENDATIONS

Although the large sample size and absence of prescriptive participant requirements added diversity, there is no way to quantify that the sample addressed all aspects and populations involved in transition program delivery. This study recruited respondents from nursing education and professional development groups rather than broader healthcare audiences. Further implementation studies are needed to determine whether the program elements are generalizable

<table>
<thead>
<tr>
<th>Program Item</th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>4.78</td>
<td>5</td>
<td>5</td>
<td>0.42</td>
<td>1</td>
</tr>
<tr>
<td>Item 2</td>
<td>4.56</td>
<td>5</td>
<td>5</td>
<td>0.58</td>
<td>2</td>
</tr>
<tr>
<td>Item 3</td>
<td>4.71</td>
<td>5</td>
<td>5</td>
<td>0.56</td>
<td>3</td>
</tr>
<tr>
<td>Item 4</td>
<td>4.54</td>
<td>5</td>
<td>5</td>
<td>0.64</td>
<td>2</td>
</tr>
<tr>
<td>Item 5</td>
<td>4.35</td>
<td>4</td>
<td>5</td>
<td>0.73</td>
<td>3</td>
</tr>
<tr>
<td>Item 6</td>
<td>4.23</td>
<td>4</td>
<td>4</td>
<td>0.79</td>
<td>4</td>
</tr>
<tr>
<td>Item 7</td>
<td>4.35</td>
<td>5</td>
<td>5</td>
<td>0.77</td>
<td>3</td>
</tr>
<tr>
<td>Item 8</td>
<td>4.60</td>
<td>5</td>
<td>5</td>
<td>0.65</td>
<td>3</td>
</tr>
<tr>
<td>Item 9</td>
<td>4.57</td>
<td>5</td>
<td>5</td>
<td>0.61</td>
<td>2</td>
</tr>
<tr>
<td>Item 10</td>
<td>4.28</td>
<td>4</td>
<td>4</td>
<td>0.74</td>
<td>3</td>
</tr>
<tr>
<td>Item 11</td>
<td>4.66</td>
<td>5</td>
<td>5</td>
<td>0.48</td>
<td>1</td>
</tr>
<tr>
<td>Item 12</td>
<td>4.35</td>
<td>4</td>
<td>5</td>
<td>0.72</td>
<td>3</td>
</tr>
<tr>
<td>Item 13</td>
<td>4.31</td>
<td>4</td>
<td>5</td>
<td>0.79</td>
<td>3</td>
</tr>
<tr>
<td>Item 14</td>
<td>4.38</td>
<td>4</td>
<td>5</td>
<td>0.68</td>
<td>2</td>
</tr>
<tr>
<td>Item 15</td>
<td>4.63</td>
<td>5</td>
<td>5</td>
<td>0.58</td>
<td>2</td>
</tr>
<tr>
<td>Item 16</td>
<td>4.43</td>
<td>5</td>
<td>5</td>
<td>0.72</td>
<td>3</td>
</tr>
<tr>
<td>Item 17</td>
<td>4.17</td>
<td>4</td>
<td>5</td>
<td>0.82</td>
<td>3</td>
</tr>
<tr>
<td>Item 18</td>
<td>4.50</td>
<td>5</td>
<td>5</td>
<td>0.65</td>
<td>3</td>
</tr>
<tr>
<td>Item 19</td>
<td>4.33</td>
<td>4</td>
<td>4</td>
<td>0.64</td>
<td>2</td>
</tr>
<tr>
<td>Item 20</td>
<td>4.58</td>
<td>5</td>
<td>5</td>
<td>0.64</td>
<td>3</td>
</tr>
</tbody>
</table>
to the full continuum of nursing care and for our allied healthcare teammates.

The study identified expert opinion regarding core elements of a competency program. With data submission, study participants also expressed concern that implementation of program elements will face staffing, resource availability, and clinical workload barriers. Additional survey comments revealed gaps in understanding related to specific program elements. Challenging concepts include statements related to accountability, sampling, standardized knowledge, and immediate versus ongoing expectations within professional practice. These elements ranked lower on the scale

<table>
<thead>
<tr>
<th>Item</th>
<th>Core Components of a Nurse Competency or Transition Program</th>
<th>% Agree Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Include systems and planning to ensure safe patient care with effective supervision of learners and transitioning orientees.</td>
<td>100</td>
</tr>
<tr>
<td>Item 11</td>
<td>Include an evidence-based delivery system within program structure (such as preceptor program).</td>
<td>100</td>
</tr>
<tr>
<td>Item 3</td>
<td>Incorporate strategies for individualized development of critical thinking, competency, and clinical judgment.</td>
<td>97</td>
</tr>
<tr>
<td>Item 2</td>
<td>Establish competency development and validation documentation requirements that minimize the administrative work burden for preceptors, educators, and managers.</td>
<td>96</td>
</tr>
<tr>
<td>Item 15</td>
<td>Provide clear, concise, concrete, objective and measurable competency criteria within statements of expected performance elements.</td>
<td>95</td>
</tr>
<tr>
<td>Item 20</td>
<td>Clarify individual accountability for clinical practice, knowledge base, and ongoing learning as a healthcare professional.</td>
<td>94</td>
</tr>
<tr>
<td>Item 18</td>
<td>Ensure “hand-off communications” from one preceptor to the next.</td>
<td>94</td>
</tr>
<tr>
<td>Item 8</td>
<td>Establish guidelines for clear communication among transitioning orientees, preceptors, facilitators, and leadership.</td>
<td>93</td>
</tr>
<tr>
<td>Item 9</td>
<td>Integrate ongoing formative feedback and evaluation to ensure continuous, prompt development for program, orientee, system, tools, and preceptor.</td>
<td>93</td>
</tr>
<tr>
<td>Item 4</td>
<td>Present program criteria that support early identification of those who (a) can complete competency validation quickly, (b) might not be suited to the specialty, or (c) might pose a threat to safe care.</td>
<td>92</td>
</tr>
<tr>
<td>Item 19</td>
<td>Include clear directions and scoring key with each set of forms.</td>
<td>91</td>
</tr>
<tr>
<td>Item 16</td>
<td>Present clinical performance goals in the manner in which care delivery occurs, where subtasks are inherent to achieving the overall goal.</td>
<td>89</td>
</tr>
<tr>
<td>Item 14</td>
<td>Address elements of professional practice at various experiential levels, cultural, and situational awareness—based on role and clinical setting.</td>
<td>89</td>
</tr>
<tr>
<td>Item 12</td>
<td>Define and explain appropriate assignment, communication, assertiveness, supervision, roles, and responsibilities.</td>
<td>88</td>
</tr>
<tr>
<td>Item 10</td>
<td>Provide time and topics for development and growth, both in and outside clinical time, during and after formal transition program.</td>
<td>88</td>
</tr>
<tr>
<td>Item 5</td>
<td>Accommodate varied learning styles and skill development that progresses from simple to complex within an individualized development plan.</td>
<td>87</td>
</tr>
<tr>
<td>Item 7</td>
<td>Use a form, format, and process consistent with national standards and facility practices that is adaptable for clinical setting, specialty, or role.</td>
<td>86</td>
</tr>
<tr>
<td>Item 13</td>
<td>Present both initial and ongoing performance criteria in the competency validation tool—thus communicating both immediate and ongoing performance expectations.</td>
<td>86</td>
</tr>
<tr>
<td>Item 6</td>
<td>Apply concepts of sampling to the selection of competency validation criteria that require confirmation within agency and unit orientation.</td>
<td>85</td>
</tr>
<tr>
<td>Item 17</td>
<td>Outline knowledge content related to each performance goal that is standardized within the specialty.</td>
<td>80</td>
</tr>
</tbody>
</table>
of importance and generated multiple comments and questions from survey respondents. Additional focus on challenging concepts deserves consideration for future work, research, and instructional support.

CONCLUSION
This Delphi Study identified and ranked 20 core components of nursing transition or competency programs. As listed in Table 3, the elements may establish guidelines for program structure and documentation. The mean and percentage scores reveal a high level of consensus and support regarding the importance of each element in the final listing.

Study results provide foundational work toward delineating an evidence-based approach for transition or competency program objectives, content, development, and evaluation. Within the survey tools, each program item was further delineated with examples and rationale statements. The additional information will be a necessary component of using these elements to establish an effective transition program. An additional step of transposing the elements into an evaluation tool could further validate specific items and determine efficacy of the concepts in program evaluation.

Considering the significant resources required to support effective transitions within professional practice, refining common program components can ensure that agencies invest scarce resources with the greatest possible efficacy. Program efficacy may impact retention of both new graduate and experienced nurses at the agency, thus improving return on investment in professional development. Further work is warranted to formally communicate what was learned about program elements, related examples/rationale, and implementation issues related to specific program components.

References
Transition Into Practice
Toward Optimal Performance
TIP-TOP

RICHELLE POWER MPH, RN
TIP-TOP COORDINATOR AT EVANS ARMY COMMUNITY HOSPITAL
Contents

- What is TIP-TOP?
 - Evidence-based practice
 - Research

- Points of Contact
 - Who to reach outside Evans Army Community Hospital

- Preceptor Tasks
- New Hire/Transitioning Nurse Tasks
- Benefits for implementing TIP-TOP within your own clinic/unit
- Leadership
 - Data, data, data
What is TIP-TOP?

- Also known as the Vermont Nurses in Partnership (“VNIP”) program; also known as Clinical Transition Framework (“CTF”).
- A validated, evidence-based practice competency tool to train new and transitioning nurses.
- Comprehensive, customizable validation program that provides for a foundation for safe, effective care in a supportive learning environment.
- Primary function of the preceptor or clinical coach is to collect evidence of clinical competence, foster critical thinking and provide a safe learning environment for both nurse and patient.
- Preceptor should provide evidence-based practice instruction.
- Supported by numerous peer-reviewed publications.
Points of Contact

Primary Contact:
Institute for Surgical Research (ISR) @ BAMC
Krystal Valdez-Delgado, BSN RN
Email: krystal.k.valdez-delgado.ctr@mail.mil
Phone: (210) 539-9131

Vermont Nurses in Partnership (VNIP):
Susan Boyer, DNP, RN-BC
Email: sb.vnip@gmail.com
Phone: (802) 952-8700

Principal Investigator: LTC Christopher VanFosson
Email: christopher.a.vanfosson.mil@mail.mil
Preceptor: Role & Tasks

- Identify possible and suitable preceptors
 - Must sign and review two documents prior to precepting new hire/transitioning nurse:
 - Preceptor Selection Criteria
 - Preceptor Expertise Criteria – scores do not preclude individual from precepting
 - Attend preceptor workshop (if available and prior to precepting)
 - Pull and put together appropriate documentation for new hire/transitioning nurse
 - Universal Nursing CBO
 - Unit Specific CBO
 - Benner’s Novice-to-Expert Scale
 - Periodic Evaluation Tool (PET)
 - Mini Periodic Evaluation Tool (Mini PET)
Where are TIP-TOP Documents Located?

Useful Tools
Click the Hospital Education & Training Icon under the Useful Tools Tab.

TIP-TOP Icon
Locate the Tip-TOP Icon in the list of HET related icons and click it.

TIP-TOP Documents
Everything you need should be found here to include: Universal CBO, Unit/Clinic Specific CBO, Periodic Evaluation Tool (PET) and survey tools.
Before New Hire/Transitioning Nurse’s First Assignment...

Completion of two evaluation tools to be completed at the final PET meeting include:

- Preceptor Evaluation of the TIP-TOP Program
- TIP-TOP Evaluation Survey

To be completed at the final PET meeting and handed to supervisor/leadership prior to first assignment.

Certain tools are still needed for both the preceptor and new hire/transitioning nurse to complete!
Document Storage

Universal and Unit/Clinic Specific

- These documents are to be kept with the new hire/transitioning nurse throughout their orientation.
- Only after all signatures (date and initials & back page) have been completed, all preceptors identified and signed off can the document be stored in the CAF folder.

Periodic Evaluation Tools (PET)

- After review with new hire/transitioning nurse, provide a copy of the original document to the new hire/transitioning nurse.
- Place original copy in unit held personnel folder for safe keeping. Preferable to have lock and key protection as this is a personnel-type document.

Surveys & Preceptor Contracts

- All evaluation survey tools to be held by leadership. These documents are intended to be anonymous.
- Preceptor contracts can be stored in unit held personnel folder. These two documents are not considered to be part of the CAF.
New Hire/Transitioning Nurse Responsibilities

New-to-you staff should be responsible for their own training ensuring they are meeting benchmarks, are following up with preceptors for signatures and/or feedback where appropriate and are receiving EBP training that will ensure success!
Benefits

The “perks” of implementing TIP-TOP within your clinic and/or department

- Designed to provide experience and deliberate practice to facilitate successful transition through learning for those new to a specialty area.
- Provides performance-based documentation with concrete evidence for validating success or termination.
- Clearly defined performance expectations
- Rapid identification when the hire is a ‘wrong fit’ or threat to safe and effective care
- Quickly identifies when a hire is ‘high speed’ and can transition to the unit sooner than anticipated
- New hire satisfaction and reduced turnover – feels part of a team or something greater.
Leadership

- Program provides leadership crucial data points and information to include:
 - Whether new hire/transitioning nurse is a good fit for unit/clinic
 - Duration of orientation needed to ensure safe, competent care
 - Ability to make changes to promote evidence-based practice in working documentation
 - Develop clear processes to include: training, tool refinement, policy development and implementation of processes
 - Define what it means to be a competent nurse on the unit or in clinic
Resources

A number of articles on this program have been published to include:

Contacts

Primary Contact:
Institute for Surgical Research (ISR) @ BAMC
Krystal Valdez-Delgado, BSN RN
Email: krystal.k.valdez-delgado.ctr@mail.mil
Phone: (210) 539-9131

Vermont Nurses in Partnership (VNIP):
Susan Boyer, DNP, RN-BC
Email: sb.vnip@gmail.com
Phone: (802) 952-8700

Principal Investigator:
LTC Christopher VanFosson
Email: christopher.a.vanfosson.mil@mail.mil
Can be found in global directory for all further questions.
Characteristics of Iraqi Patients Treated During Operation Inherent Resolve by a Forward Surgical Team

LTC Christina Hahn, MC, USA*; Amanda M. Staudt†; MAJ Joel Brockmeyer, MC, USA‡; COL Elizabeth A. Mann-Salinas, ANC, USA (Ret.)†; COL Jennifer M. Gurney, MC, USA*§

ABSTRACT Introduction: The combat experience during the re-entry stages of Operation Inherent Resolve was distinct from other recent operations, but there is no published literature regarding these “initial entry operations” experiences among forward surgical teams (FSTs) deployed to Role 2 facilities. A descriptive analysis of patients treated by FSTs may provide valuable information for Role 2 surgical teams preparing to deploy in support of initial entry operations. The purpose of this analysis was to describe injury mechanism, wounding patterns and interventions performed by a small FST in the re-entry phase in Iraq. Materials and Methods: From July 17, 2015 to January 31, 2016, a split surgical team with two surgeons and an ER physician documented care for all patients treated by their FST located in Iraq. Given their austere environment, FSTs have limited holding capacity, blood supply, and ability to triage and perform advanced procedures. Patients, who arrived to the Role 2 in asystole, were ineligible for the study. The patient population was Iraqi Security Forces as well as Iraqi civilians. No follow-up data were obtained. Using descriptive statistics, we described the basic demographics, health status, blood utilization, injury severity, and injury pattern of the patient population. Results: The final study population included 300 Iraqi casualties. The majority of patients (96%) were discharged alive. Many patients were 16 years or older (96%), male (96%), Iraqi soldiers (86%), and injured during battle (96%). Over one-third of patients (35%) had a form of metabolic acidosis, 7% were hypothermic, and 18% were in shock at admission. The median amount of blood products used was 6 (interquartile ranges (IQR) = 2–12) units, while the median red blood cells: fresh frozen plasma ratio was 1:2:1. Six or more units of blood were given to 67 (22%) patients. The top three diagnoses were laceration (n = 197, 21%), penetrating injury (n = 185, 19%), and fracture (n = 174, 18%). A high number of injuries occurred in the extremities/pelvis and buttocks (n = 360, 38%) and in the abdomen and pelvic contents (n = 145, 15%). Over a quarter of patients (26%) had critical injuries (i.e., military injury severity score ≥2.5). Conclusions: Given the Role 2 configuration, these results demonstrate FSTs must be capable of managing critically ill patients with markedly limited resources. This management will include general operations in both adult and pediatric patients, resuscitation with a limited blood supply, and patient assessment with minimal to no diagnostic tools. This analysis can inform resident training, pre-deployment training, as well as sustainment training for surgeons after residency.

INTRODUCTION The U.S. Army utilizes small mobile surgical teams in far-forward austere environments to perform damage control resuscitation and surgery in order to bridge the time/space gap between wounding and definitive surgical care. These teams are a component of Role 2 care on the battlefield and while there are a few different service-specific configurations of these units, Forward Surgical Teams (FST) have been the most frequently utilized on the battlefield.1 When deployed in its entirety, the FSTs doctrinally consist of 20 personnel with the ability to perform two simultaneous major surgeries.

The FSTs are equipped with red blood cells (RBC), fresh frozen plasma (FFP), and limited quantities of unpooled cryoprecipitate. Often times, these FSTs perform split operations, whereby 10 personnel set up a one-bed operating room at two different geographical sites.2 With this configuration, both the capacity and capability are diminished: only one surgery can be performed at a time; holding capacity is decreased; and ability to triage and perform advanced trauma life support procedures is reduced. Despite the inherent limitations of a 10 man team, splitting the FST facilitaties surgical coverage for dispersed operations.

There are several publications describing the Role 2 environment and some of the clinical and operational challenges;3–5 however there is a lack of information in the literature regarding the recent “initial entry operations” from Operation Inherent Resolve experiences at far-forward Role 2 facilities. Initial entry operations in Iraq were unique because logistical support and the patient transport system were unestablished and immature. From July 17, 2015 to January 31, 2016, half of a conventional 20 man FST (10 personnel) were deployed to Iraq. This team was augmented by an additional five personnel (emergency room physician/nurse, operating room technician/nurse, and a certified

*772 FST Commander, 6390 Desert Storm Ave, Fort Campbell, KY 42223.
†U.S. Army Institute of Surgical Research, 3698 Chambers Road, Joint Base San Antonio-Fort Sam Houston, TX 78234.
‡Dwight D. Eisenhower Army Medical Center Simulation Center, 300 E. Hospital Road, Fort Gordon, GA 30905.
§Joint Trauma System, DoD Center of Excellence for Trauma, 3698 Chambers Road, Joint Base San Antonio-Fort Sam Houston, TX 78234. doi: 10.1093/milmed/usy392
© The Author(s) 2019. Published by Oxford University Press on behalf of Association of Military Surgeons of the United States. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
registered nurse anesthetist). To our knowledge, this was the first surgical team to repopulate and work in the austere, immature theater of operations. A descriptive analysis of the workload, injury patterns, and patients treated by this FST may provide valuable information for other Role 2 surgical teams preparing to deploy in support of initial entry operations. The purpose of this analysis was to describe injury mechanism, wounding patterns and interventions performed by a small surgical team in the re-entry phase in Iraq; lessons learned may help inform the manning, training and equipping of Role 2 surgical teams in the future operating environment.

METHODS

This descriptive study was reviewed and approved by the United States Army Institute of Surgical Research regulatory department and was determined to be exempt from review by the Institutional Review Board. Data were recorded by a split surgical team with two surgeons and an emergency room (ER) physician. The data were entered into the Role 2 Database at the United States Army Institute of Surgical Research Joint Trauma System by a single surgeon. The patient population was made up of Iraqi Security Forces to include the Iraqi Army, Federal Police, the Iraqi Counter-Terrorism Service, both Sunni and Shia Militia Groups, as well as Iraqi civilians. All patients arrived to the FST by ground, either by ambulance or personal vehicle. The evacuation times from the point of injury were approximately 90–120 minutes. The FST had minimal holding capability. All patients were evacuated to Iraqi hospitals after stabilization and operative procedures. Most patients were evacuated to Baghdad, usually by Iraqi ground assets. No follow-up data were able to be obtained. No treatment or interventions were given to patients who arrived to the Role 2 in asystole; thus, these patients were ineligible for the study.

The following procedures conducted in the ER were excluded from the analysis: endotracheal Tube (n = 122), central line placement (n = 72), focused abdominal sonography for trauma (n = 279), and abdominal wound exploration (n = 16). Patients were recorded as being in shock if their systolic blood pressure (SBP) was less than 90 mmHg. For one patient, the temperature would not register on a medical thermometer, so the temperature was recorded as unreadable. All laboratory values were obtained from either a venous or arterial blood sample. A base deficit >2 was considered metabolic alkalosis, while a base deficit <-2 was considered metabolic acidosis, which was further categorized as: minor <-2 to ≥-10; serious <-10 to ≥-20; and critical <-20.

The military Injury Severity Score (mISS), which was identified by using a form of the abbreviated injury scale, was calculated according to the methods used by Champion et al. Patient injuries were classified according to mISS as follows: mild (1–9), moderate (10–15), severe (16–24), and critical (≥25). In this study, a patient could have more than one classification for mechanism of injury, cause of injury, and injury diagnosis. The causes of injury for patients in this study were categorized as: gunshot, burn, mortar/rocket (i.e., weapon that fires shells at low velocities, short ranges, and high-arching ballistic trajectories), blast (i.e., improvised explosive device or small bomb), and other. Basic demographics, health status, blood utilization, surgical procedures, mISS, and injury pattern of Iraqi patients were described. All categorical data are presented as count (percent), while continuous data are presented using medians (interquartile ranges [IQR]). Statistical analyses were performed using using Stata 14 (College Station, TX, USA).

RESULTS

The final study population included 300 Iraqi casualties. Only 4.0% ($n = 12$) of the study patients died before Role 2 discharge. The majority of patients were adult, male Iraqi soldiers injured during battle, and transported out of the

<table>
<thead>
<tr>
<th>Variable</th>
<th>n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>289 (96)</td>
</tr>
<tr>
<td>Battle injury</td>
<td>288 (96)</td>
</tr>
<tr>
<td>Dead at discharge</td>
<td>12 (4)</td>
</tr>
<tr>
<td>RBC:FFP ratio, median (IQR)</td>
<td>1.2:1 (1:1, 1:7:1)</td>
</tr>
<tr>
<td>Age at injury</td>
<td></td>
</tr>
<tr>
<td>0–15 years</td>
<td>8 (3)</td>
</tr>
<tr>
<td>16+ years</td>
<td>287 (96)</td>
</tr>
<tr>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>Iraqi soldier</td>
<td>259 (86)</td>
</tr>
<tr>
<td>Civilian</td>
<td>30 (10)</td>
</tr>
<tr>
<td>Other</td>
<td>11 (4)</td>
</tr>
<tr>
<td>Departure transportation</td>
<td></td>
</tr>
<tr>
<td>Ambulance</td>
<td>239 (80)</td>
</tr>
<tr>
<td>Helicopter</td>
<td>36 (12)</td>
</tr>
<tr>
<td>Other</td>
<td>5 (2)</td>
</tr>
<tr>
<td>Base deficit</td>
<td></td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>15 (5)</td>
</tr>
<tr>
<td>Normal</td>
<td>102 (34)</td>
</tr>
<tr>
<td>Minor metabolic acidosis</td>
<td>85 (28)</td>
</tr>
<tr>
<td>Serious metabolic acidosis</td>
<td>13 (4)</td>
</tr>
<tr>
<td>Critical metabolic acidosis</td>
<td>6 (2)</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td></td>
</tr>
<tr>
<td>0 units</td>
<td>180 (60)</td>
</tr>
<tr>
<td>1–5 units</td>
<td>53 (18)</td>
</tr>
<tr>
<td>6+ units</td>
<td>67 (22)</td>
</tr>
<tr>
<td>Shock</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>54 (18)</td>
</tr>
<tr>
<td>No</td>
<td>232 (77)</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>$\leq95^\circ$ F</td>
<td>20 (7)</td>
</tr>
<tr>
<td>>95 and $\leq97^\circ$ F</td>
<td>27 (9)</td>
</tr>
<tr>
<td>$>97^\circ$ F</td>
<td>218 (73)</td>
</tr>
</tbody>
</table>

RBC, red blood cells; FFP, fresh frozen plasma; IQR, interquartile range.
In this study, multiple body areas were involved (Table I). There were 11 patients who arrived with pulseless electrical activity or had cardiovascular resuscitation on arrival. Of those 11 patients, three (27%) were resuscitated. Over one-third of patients had a form of metabolic acidosis (n = 104, 35%) with a base deficit as low as –28 recorded. Of the patients with recorded base deficits, 4 (67%) died. There were 20 (7%) patients with a temperature less than or equal to 95°F. Nearly one-fifth (n = 54, 18%) of patients arrived to the Role 2 in shock, and, of those patients, 23 (43%) had a SBP lower than 70.

Nearly 1,000 units of blood products were transfused (x = 971) (Table II). The median amount of blood products used was 6 (IQR = 2–12) units, while the median RBC:FFP ratio was 1.2:1. Six or more units of blood were given to 67 (22%) patients. RBC’s accounted for the majority of the blood product used (x = 553, 57%). The largest amount of blood products were used in August (x = 158, 16%), September (x = 208, 21%), and December (x = 159, 16%), which were also the months with the highest number of surgical procedures (x) and total number of patients (n) (August- x = 193 (19%), n = 65 (22%); September- x = 178 (18%), n = 54 (18%); and December- x = 165 (16%), n = 43 (14%)). Patients treated in the month of August had the highest median mISS (16, IQR = 5–30).

The top three diagnoses were laceration (x = 191, 21%), penetrating injury (x = 185, 19%), and fracture (x = 174, 18%) (Table III). A high number of injuries occurred in the extremities/pelvis and buttocks (x = 360, 38%) and in the abdomen and pelvic contents (x = 145, 15%). Patients injured by a blast (n = 146, 44%) accounted for the highest cause of injury with an average of 2.7 ± 1.7 body regions injured per patient, requiring the highest number of procedures (x = 531, 53%). According to the mISS categorization of this study, 43% (n = 129) of patients had mild injuries, followed by critical injuries (n = 77, 26%). Of the critical patients, 10 (13%) died at the Role 2, and in the severe category, two patients (4%) died. A description of procedures (x = 1,005) is shown in Table IV.

DISCUSSION

In this study, the majority of injuries sustained were penetrating trauma (i.e., blast, mortar or rocket, and/or gunshot wounds), and a disproportionately higher number of procedures occurred in patients injured by blast or mortar/rockets as compared to gunshot wounds. Blast mechanism of injury is common in combat and has been linked to higher injury severity and fatality. In Iraq in 2006, Bird and Fairweather reported a high lethality of improvised explosive devices, linking them to the cause of 62% of hostile deaths. Among Israeli patients with terror-related injuries, a larger proportion of patients sustained explosion injuries as compared to those injured by gunshots had multiple body regions injured (62% versus 47%) and an injury severity score ≥25 (46% versus 34%), respectively. In this study, multiple body areas injured and more than one mechanism of injury for many patients translated into high injury severity scores; complicated wounding patterns required the performance of multiple surgical procedures and transfusion of blood products. Many patients required at least one unit of blood product and over a fifth required more than 6 units of blood. Approximately 1,000 units of blood products were transfused in 7 months with a RBC:FFP ratio nearing the goal 1:1 ratio. Although 40% of the patients were transfused blood product, 34% had metabolic acidosis, and 45% recorded a severe to critical military injury severity score, only 4% of patients died of wounds.

All casualties treated by this FST were Iraqi, either part of the many branches of the Iraqi Security Forces or Iraqi

TABLE II. Blood Utilization, Surgical Procedures, and mISS by Month in Iraqi Patients at a Role 2 in Al Taqqadum, Iraq from July 17, 2015 to January 31, 2016

<table>
<thead>
<tr>
<th>Month</th>
<th>RBCs</th>
<th>FFP</th>
<th>Cryoprecipitate</th>
<th>Total</th>
<th>Surgical Procedures</th>
<th>Median mISS (IQR)</th>
<th>Total Patients, n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>49</td>
<td>29</td>
<td>0</td>
<td>78</td>
<td>114</td>
<td>8.5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>(8)</td>
<td>(0)</td>
<td>(8)</td>
<td>(11)</td>
<td>(2–16)</td>
<td>(13)</td>
</tr>
<tr>
<td>August</td>
<td>107</td>
<td>51</td>
<td>0</td>
<td>158</td>
<td>193</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>(19)</td>
<td>(14)</td>
<td>(0)</td>
<td>(16)</td>
<td>(19)</td>
<td>(5–30)</td>
<td>(22)</td>
</tr>
<tr>
<td>September</td>
<td>123</td>
<td>85</td>
<td>0</td>
<td>208</td>
<td>178</td>
<td>10</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(23)</td>
<td>(0)</td>
<td>(21)</td>
<td>(18)</td>
<td>(4–26)</td>
<td>(18)</td>
</tr>
<tr>
<td>October</td>
<td>64</td>
<td>38</td>
<td>4</td>
<td>106</td>
<td>122</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>November</td>
<td>62</td>
<td>47</td>
<td>19</td>
<td>128</td>
<td>132</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>December</td>
<td>80</td>
<td>59</td>
<td>20</td>
<td>159</td>
<td>165</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>(16)</td>
<td>(36)</td>
<td>(16)</td>
<td>(16)</td>
<td>(5–21)</td>
<td>(14)</td>
</tr>
<tr>
<td>January</td>
<td>68</td>
<td>54</td>
<td>12</td>
<td>134</td>
<td>101</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
<td>(15)</td>
<td>(22)</td>
<td>(14)</td>
<td>(10)</td>
<td>(9.5–20)</td>
<td>(8)</td>
</tr>
<tr>
<td>Total</td>
<td>553</td>
<td>363</td>
<td>55</td>
<td>971</td>
<td>1,005</td>
<td>11.5</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>(57)</td>
<td>(37)</td>
<td>(6)</td>
<td>(100)</td>
<td>(100)</td>
<td>(5–25)</td>
<td>(100)</td>
</tr>
</tbody>
</table>
TABLE III. Injury Pattern of Iraqi Patients Treated at a Role 2 in Al Taqqadum, Iraq from July 17, 2015–January 31, 2016

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Laceration</td>
<td>197 (21)</td>
</tr>
<tr>
<td>Penetrating injury</td>
<td>185 (19)</td>
</tr>
<tr>
<td>Fracture</td>
<td>174 (18)</td>
</tr>
<tr>
<td>Penetrating skin injury</td>
<td>59 (6)</td>
</tr>
<tr>
<td>Amputation</td>
<td>43 (5)</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>42 (4)</td>
</tr>
<tr>
<td>Burn</td>
<td>38 (4)</td>
</tr>
<tr>
<td>Ear injury</td>
<td>37 (4)</td>
</tr>
<tr>
<td>Hemopneumothorax</td>
<td>31 (3)</td>
</tr>
<tr>
<td>Avulsion</td>
<td>17 (2)</td>
</tr>
<tr>
<td>Eye injury</td>
<td>17 (2)</td>
</tr>
<tr>
<td>Inhalation injury</td>
<td>16 (2)</td>
</tr>
<tr>
<td>Body region</td>
<td></td>
</tr>
<tr>
<td>Lower extremity/pelvis and buttocks</td>
<td>200 (21)</td>
</tr>
<tr>
<td>Upper extremity</td>
<td>160 (17)</td>
</tr>
<tr>
<td>Abdomen and pelvic contents</td>
<td>145 (15)</td>
</tr>
<tr>
<td>Thorax</td>
<td>144 (15)</td>
</tr>
<tr>
<td>Face</td>
<td>136 (14)</td>
</tr>
<tr>
<td>External</td>
<td>97 (10)</td>
</tr>
<tr>
<td>Head, neck and spine</td>
<td>75 (8)</td>
</tr>
<tr>
<td>Military Injury Severity Score</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>129 (43)</td>
</tr>
<tr>
<td>Moderate</td>
<td>38 (13)</td>
</tr>
<tr>
<td>Severe</td>
<td>56 (19)</td>
</tr>
<tr>
<td>Critical</td>
<td>77 (26)</td>
</tr>
<tr>
<td>Cause of injury</td>
<td></td>
</tr>
<tr>
<td>Gunshot</td>
<td>119 (40)</td>
</tr>
<tr>
<td>Burn</td>
<td>27 (9)</td>
</tr>
<tr>
<td>Mortar/rocket</td>
<td>19 (6)</td>
</tr>
<tr>
<td>Blast</td>
<td>146 (49)</td>
</tr>
<tr>
<td>Other</td>
<td>19 (6)</td>
</tr>
<tr>
<td>Number of procedures</td>
<td></td>
</tr>
<tr>
<td>Gunshot</td>
<td>368 (37)</td>
</tr>
<tr>
<td>Burn</td>
<td>70 (7)</td>
</tr>
<tr>
<td>Mortar/rocket</td>
<td>82 (8)</td>
</tr>
<tr>
<td>Blast</td>
<td>531 (53)</td>
</tr>
<tr>
<td>Other</td>
<td>42 (4)</td>
</tr>
</tbody>
</table>

TABLE IV. Procedures for Iraqi Patients Treated at a Role 2 in Al Taqqadum, Iraq from July 17, 2015–January 31, 2016

<table>
<thead>
<tr>
<th>Procedure</th>
<th>x (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debridement</td>
<td>221 (22)</td>
</tr>
<tr>
<td>Other</td>
<td>117 (12)</td>
</tr>
<tr>
<td>Suture</td>
<td>115 (11)</td>
</tr>
<tr>
<td>Irrigation</td>
<td>108 (11)</td>
</tr>
<tr>
<td>Reduction</td>
<td>82 (8)</td>
</tr>
<tr>
<td>Insertion</td>
<td>81 (8)</td>
</tr>
<tr>
<td>Amputation</td>
<td>41 (4)</td>
</tr>
<tr>
<td>Ligation</td>
<td>39 (4)</td>
</tr>
<tr>
<td>Exploration</td>
<td>35 (3)</td>
</tr>
<tr>
<td>External fixator</td>
<td>33 (3)</td>
</tr>
<tr>
<td>Resection</td>
<td>31 (3)</td>
</tr>
<tr>
<td>Laparotomy</td>
<td>29 (3)</td>
</tr>
<tr>
<td>Splinting</td>
<td>28 (8)</td>
</tr>
<tr>
<td>Fasciectomy</td>
<td>23 (2)</td>
</tr>
<tr>
<td>Anastomosis</td>
<td>22 (2)</td>
</tr>
</tbody>
</table>

civilians to include women and children. Of the casualties treated, 10% were Iraqi civilians. Similarly, Chambers et al reported 13% of casualties were civilians treated by a US Marine Corps’ Surgical Shock Trauma Platoon, comparable to an Army FST in personnel and capability, in Iraq from March 1, 2004 to February 28, 2005. Indigenous forces are often not equipped with the protective gear that has become the standard for USA and Coalition military personnel. While there were a high number of extremity wounds, the lack of sufficient body armor, protective helmets and eye protection by Iraqi Security Forces may have resulted in the high numbers of thoracic, abdominal and ophthalmic injuries.

There are some limitations to consider when interpreting the results of this study. Prehospital transport to the FST was lengthy, unregulated, and point of injury and transport care was non-existent; thus, a survival bias may exist in these results as patients may have died before reaching the FST. In addition, there is no follow-up data available on these patients. All patients were immediately transferred out of the FST after recovery from the postoperative period to host nation hospitals. Despite the clinical outcomes limitations and the survival bias, one of the strengths of this study is that it portrays the realistic scenario of host national care in early entry operations and what care looks like without an established trauma system. Another strength of this analysis is that every patient cared for at this FST was captured in this dataset, therefore providing valuable information regarding workload in this type of environment as well as and accurate representation of injuries seen in initial entry (or in this care re-entry) operations.

The results of this study may be generalizable to Iraqi patients injured in an austere environment with limited resources that included: blood, some diagnostic tools, and communications for quick transfer of patients. Additionally, since the majority of patients were without body armor, the injury patterns were not typical of U.S. military casualties and may represent injury patterns observed in mass shooter and terrorist attacks. This analysis is also relevant to humanitarian missions in areas that do not have a good prehospital system of care given that the patients in this analysis frequently arrived in extremis with complex wounding patterns due to insufficient protective gear, long transit times and no prehospital care.

In conclusion, the combat experience of this single split-operations FST during the re-entry stages of Operation Inherent Resolve was distinct from other recent utilizations of FSTs, Forward Surgical Elements, and Damage Control Resuscitation Teams. Given the unique challenges of early entry operations: lack of established logistical support; immature patient transport system; lack of holding capacity at forward sites; and lack of fixed location – this analysis can inform manning and equipping for potential future operating environments. Given the large volume of blood products transfused to this study population, to prepare for future operations, we need to ensure blood is available as far forward as possible. Additionally, this analysis can also help inform
training in terms of case type and workload. As we look towards the future and as we continue to have a changing operational environment in the U.S. Central Command Theater of Operations – it is paramount that surgical teams are capable of managing severely injured and critically ill patients in an austere far-forward environment with markedly limited resources. Surgeons should have training in patient assessment with little to no diagnostic modality, resuscitating with a limited supply of blood products, and operating independently on all body regions in both adults and children. This analysis will help facilitate overall preparedness for the future operating environment.

PREVIOUS PRESENTATION
Military Health System Research Symposium (MHSRS) held on 27–30 August 2017 at the Gaylord Palms Resort and Convention Center, Kissimmee, FL, USA.

FUNDING
This work was supported by the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No.W81XWH-15-2-0085. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. This supplement was sponsored by the Office of the Secretary of Defense for Health Affairs.

ACKNOWLEDGMENTS
The author(s) acknowledge the Department of Defense Joint Trauma System for providing Role 2 Database data for this study. This study was conducted under a protocol reviewed and approved by the U.S. Army Medical Research and Materiel Command Institutional Review Board and in accordance with the approved protocol.

REFERENCES
Introduction

- Combat casualty care (CCC) competency is achieved by practicing CCC skills repeatedly in a real-life application.
- There is limited volume and access to critically injured trauma patients within military treatment facilities.
- The U.S. Army Burn Center, co-located with Brooke Army Medical Center (BAMC, a level 1 trauma center), cares for the most critically ill patients in the DoD; the skills required to care for these patients are likely to improve CCC competency.
- Deployable units/individuals, tri-service, attend a 1-3 week clinical rotation through the U.S. Army Burn Center prior to a deployment.
- Clinical rotation allows providers the opportunity to become familiar with the basic elements of trauma care, receive didactic training, and attend Joint Trauma System case review sessions.
- There is limited data to describe how sending clinicians through these environments for short-term rotations prior to deployment effects CCC competency.

Methods

- A universal CCC nursing competency assessment tool (CAT) was developed using evidence-based principles. This tool incorporated the 8 Knowledge, Skills, and Ability (KSA) domains.
- CCC competencies that could be achieved during a clinical experience were identified by the U.S. Army Burn Center Education Department.
- Self-reported clinical hours were reported daily on a log by each pre-deployer.
- The Readiness Estimate and Deployability Index Survey (READI), a validated tool, was administered before and after each clinical rotation. Questions were on a 5-point scale, 1=low; 2=moderate; 3=high.
- A self-assessment of the ability to independently care for patients within the burn unit was administered before and after training. The rating scale included novice (1-3), advanced beginner (4-6), and competent (7 or above); on a 1-10 Benner's scale.
- Skills/knowledge within the defined nursing competency areas were deployed utilizing the Baylor’s Clinical Performance Manager.
- During their clinical exposure, pre-deployers were assigned to preceptors to facilitate clinical experience.

Results

- From April 2016 to June 2019, 92 pre-deployers completed rotations through the U.S. Army Burn Center.
- Of 169 competencies identified in the universal CCC tool, 53 could feasibly be incorporated into the clinical exposure period.
- Average length of rotation was 10 ± 2.5 days and included both didactic training and clinical exposure.
- In 2019, the program was updated to incorporate online skill review and competency tracking. Since the program update, 31 pre-deployers have participated, making a clinical dashboard prototype feasible.
- Average length of clinical exposure was 41 ± 6 hours (28-56; n=19), of which 17.8 ± 12.2 hours (0-38) were in critical care (burn intensive care or post anesthesia care unit).
- Readiness in clinical nursing increased 4-14%, overall, with the greatest self-reported improvements in training and experience in the areas of hemorrhagic shock, ballistic missile injuries, and burn resuscitation (>10%).
- In the category of operational nursing, blood transfusion and burn injured patient competencies had the greatest increase in self-reported training and experience, improving 13% and 16%, respectively.
- Initial self-perceived competency in the ability to independently care for patients averaged 5 ± 2.4 (advanced beginner). Post-rotation average was 7 ± 2.6 (competent).

Conclusions

- Clinical exposure is beneficial to military medical personnel, however it is insufficient to cover all CCC competencies during a short, 1-3 week rotation.
- Essential competencies, skills, and abilities should be standardized to ensure competency in caring for a combat casualty is achieved over time.
- Currently, no standard competencies exist for tri-service nurses.

Introduction

A 1-3 week rotation in a level 1 burn and trauma center improves some aspects of clinical and operational preparedness, but is insufficient to cover all combat casualty care competencies for pre-deployers.

Additional Results

- Pre-deployer personnel job code breakdown: Surgeon/Physician/Advanced Practice Provider=7; Nurse=29; Medic=21; Other=29.
- The conversion from paper to electronic documentation resulted in 100% capture of skill and knowledge review (including Joint Trauma System Clinical Practice Guideline content), and provided pre-deployers with a 43.5 continuing education hours.

Table 1: Self-reported Competencies on the Readiness Estimate and Deployability Index Survey

<table>
<thead>
<tr>
<th>Competency Description</th>
<th>Before (n=19)</th>
<th>After (n=29)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify components of physical examination (Q33)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Identify components of physical examination (Q35)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Initial self-perceived competency in the ability to independently care for patients averaged 5 ± 2.4 (advanced beginner). Post-rotation average was 7 ± 2.6 (competent).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Pre-deployment Nursing and Medic Dashboard

Conclusions

- Pre-deployer personnel job code breakdown: Surgeon/Physician/Advanced Practice Provider=7; Nurse=29; Medic=21; Other=29.
- The conversion from paper to electronic documentation resulted in 100% capture of skill and knowledge review (including Joint Trauma System Clinical Practice Guideline content), and provided pre-deployers with a 43.5 continuing education hours.

Table 1: Self-reported Competencies on the Readiness Estimate and Deployability Index Survey

<table>
<thead>
<tr>
<th>Competency Description</th>
<th>Before (n=19)</th>
<th>After (n=29)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify components of physical examination (Q33)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Identify components of physical examination (Q35)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Initial self-perceived competency in the ability to independently care for patients averaged 5 ± 2.4 (advanced beginner). Post-rotation average was 7 ± 2.6 (competent).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Pre-deployment Nursing and Medic Dashboard

Conclusions

- Pre-deployer personnel job code breakdown: Surgeon/Physician/Advanced Practice Provider=7; Nurse=29; Medic=21; Other=29.
- The conversion from paper to electronic documentation resulted in 100% capture of skill and knowledge review (including Joint Trauma System Clinical Practice Guideline content), and provided pre-deployers with a 43.5 continuing education hours.

Table 1: Self-reported Competencies on the Readiness Estimate and Deployability Index Survey

<table>
<thead>
<tr>
<th>Competency Description</th>
<th>Before (n=19)</th>
<th>After (n=29)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify components of physical examination (Q33)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Identify components of physical examination (Q35)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Initial self-perceived competency in the ability to independently care for patients averaged 5 ± 2.4 (advanced beginner). Post-rotation average was 7 ± 2.6 (competent).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Pre-deployment Nursing and Medic Dashboard

Conclusions

- Pre-deployer personnel job code breakdown: Surgeon/Physician/Advanced Practice Provider=7; Nurse=29; Medic=21; Other=29.
- The conversion from paper to electronic documentation resulted in 100% capture of skill and knowledge review (including Joint Trauma System Clinical Practice Guideline content), and provided pre-deployers with a 43.5 continuing education hours.

Table 1: Self-reported Competencies on the Readiness Estimate and Deployability Index Survey

<table>
<thead>
<tr>
<th>Competency Description</th>
<th>Before (n=19)</th>
<th>After (n=29)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify components of physical examination (Q33)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Identify components of physical examination (Q35)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Initial self-perceived competency in the ability to independently care for patients averaged 5 ± 2.4 (advanced beginner). Post-rotation average was 7 ± 2.6 (competent).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Pre-deployment Nursing and Medic Dashboard

Conclusions

- Pre-deployer personnel job code breakdown: Surgeon/Physician/Advanced Practice Provider=7; Nurse=29; Medic=21; Other=29.
- The conversion from paper to electronic documentation resulted in 100% capture of skill and knowledge review (including Joint Trauma System Clinical Practice Guideline content), and provided pre-deployers with a 43.5 continuing education hours.

Table 1: Self-reported Competencies on the Readiness Estimate and Deployability Index Survey

<table>
<thead>
<tr>
<th>Competency Description</th>
<th>Before (n=19)</th>
<th>After (n=29)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify components of physical examination (Q33)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Identify components of physical examination (Q35)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Initial self-perceived competency in the ability to independently care for patients averaged 5 ± 2.4 (advanced beginner). Post-rotation average was 7 ± 2.6 (competent).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Pre-deployment Nursing and Medic Dashboard

Conclusions

- Pre-deployer personnel job code breakdown: Surgeon/Physician/Advanced Practice Provider=7; Nurse=29; Medic=21; Other=29.
- The conversion from paper to electronic documentation resulted in 100% capture of skill and knowledge review (including Joint Trauma System Clinical Practice Guideline content), and provided pre-deployers with a 43.5 continuing education hours.

Table 1: Self-reported Competencies on the Readiness Estimate and Deployability Index Survey

<table>
<thead>
<tr>
<th>Competency Description</th>
<th>Before (n=19)</th>
<th>After (n=29)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify components of physical examination (Q33)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Identify components of physical examination (Q35)</td>
<td>3.39 ± 1.07</td>
<td>3.75 ± 1.14</td>
<td>7.2%</td>
</tr>
<tr>
<td>Initial self-perceived competency in the ability to independently care for patients averaged 5 ± 2.4 (advanced beginner). Post-rotation average was 7 ± 2.6 (competent).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Pre-deployment Nursing and Medic Dashboard

Conclusions

- Pre-deployer personnel job code breakdown: Surgeon/Physician/Advanced Practice Provider=7; Nurse=29; Medic=21; Other=29.
- The conversion from paper to electronic documentation resulted in 100% capture of skill and knowledge review (including Joint Trauma System Clinical Practice Guideline content), and provided pre-deployers with a 43.5 continuing education hours.
Introduction

• Far forward surgical units in Afghanistan are responsible for performing damage control surgery and resuscitation. Although equipped and prepared to handle the most severely injured casualties, these teams do not specialize in ocular trauma.
• Ocular injuries are often difficult to detect and triage, and if they are missed or mistreated, they may lead to vision loss. Ideally, only an ophthalmologist should treat patients for ocular trauma, but this specialty is rarely available on the battlefield.
• Additionally, eyesight is often overlooked among the triad of life, limb, and eyesight.
• Currently, far forward surgical units are instructed to use fox shields as a temporary intervention for ocular trauma before transporting patients to the next level of care.
• In a prolonged field care situation, expeditious transport may not be possible.

Methods

• Data from the Joint Trauma System Role 2 database were used to identify patients with ocular injuries.
• Adult patients who were injured in Afghanistan from February 2008 to September 2014 were included in this analysis.
• An ophthalmologist reviewed all eye injuries and determined those that were 1) likely, 2) possibly, and 3) least likely to result in loss of vision. Loss of vision was defined as permanent or significant loss of vision.
• Only initial ocular injuries were considered for potential causes of vision loss.
• Indirect injuries such as severe traumatic brain injury, arterial gas embolism, and post-hypotensive ischemic optic neuropathy were not considered potential causes of loss of vision due to dataset limitations.
• Descriptive statistics were used to evaluate patient characteristics by demographics, mechanism of injury, and interventions.
• Functional capacity index (FCI) was used as an approximate measure of outcomes 12-months following the injury. Possible scores range from 1 (worst) to 5 (best).

Results

• In our dataset, 320 patients with ocular injuries were identified with 375 injuries. Blast injuries accounted for approximately 252 (79%) patients with ocular injuries.
• Out of the 24 injury categories, 9 were likely to result in vision loss, 2 possibly resulted in vision loss, and 13 were least likely to result in vision loss.
• The frequency of these injuries included 102 (27%) likely, five (1%) possibly, and 268 (71%) least likely to result in vision loss.
• Injuries likely to result in vision loss included:
 - eye avulsion/enucleation (n=20)
 - retinal detachments (n=2)
 - cornea lacerations (n=3)
 - sclera laceration/rupture or injury (n=74)
 - choroid rupture (n=1)
 - eye injuries with retained intraocular foreign body (n=1)
 - Face penetrating injury, massive destruction of whole face with eyes (n=1)
• Injuries that possibly resulted in vision loss included:
 - cornea burn (n=4)
 - vitreous hemorrhage (n=1)
 - Of the 102 patients with injuries likely to result in vision loss, 1 had a FCI=1, 20 had a FCI=2, 4 had FCI=3, and 77 had a FCI=5.
 - Primary procedures at the Role 2 included fox shields (n=77, 49%), eye irrigations (n=48, 27%), facial fractures (x-rays and reduction; n=26, 16%), eye exams (n=12, 7%), and other procedures (n=11, 6%).

Exposure to blasts accounted for 79% of patients with ocular injuries.

Almost 1/3 of ocular injuries in combat likely or possibly resulted in vision loss.

Conclusions

• This analysis demonstrated the severity of ocular injuries treated by far forward surgical units in Afghanistan.
• Within our dataset, approximately 27% of injuries were predicted to have significant and permanent loss of vision.
• Almost 1/3 of injuries likely/possibly resulted in vision loss.
• Although infrequent, severe ocular injuries occurred in the battlefield.
• This study should be used to guide clinically-relevant research and training and to resource medical assets on the battlefield.

Acknowledgements

This work was supported by the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No. W81XWH-15-2-0085. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. The authors acknowledge the Joint Trauma System Role 2 Database for providing data for this study.

Statements

This study was conducted under a protocol reviewed and approved by the US Army Institute of Surgical Research Regulatory Compliance Division and in accordance with the approved protocol.
Introduction

- Analgesia choice is a key early decision made by casualty care providers.
- First, do no harm — minimizing iatrogenic resuscitative burden is an ethical mandate.
- Significant differences have been found in blood pressure of combat casualties following different analgesic choices. 8
- Balancing sustained combat lethality against proper analgesia will be a concern for the future warfighter. 9
- Prehospital data is lacking, and hampers potential research efforts to improving care in the early, highest-leverage moments. 10
- The Role 2 Database (R2D) is the largest existing modern wartime prehospital database, and may offer valuable insights on these issues. 11

Objectives

- Examine relationships between analgesic administration and other patient characteristics, particularly mortality and injury severity
- Identify attributes significantly associated with missing vital sign data in the prehospital environment

Methods

- De-identified retrospective review of R2D
- Inclusion: adult patients injured in Afghanistan
- Exclusion: patients who sustained isolated disease or mental health/psychiatric diagnoses
- Primary interests were mortality and analgesic administration.
- Morphine
- Fentanyl
- Ketamine
- NSAIDs
- Other variables included
 - Demographics (e.g., age, nationality)
 - Prehospital Combat mortality index (CMI) 8
 - Figure 1
 - Vital signs
 - Time of transport
 - Additional analysis was performed to identify patterns related to missing prehospital data.
 - Prehospital data were construed as missing if all vital signs were absent in the record: blood pressure, pulse, oxygen saturation and temperature.
 - Data were analyzed using chi-square, Fisher’s Exact, Mantel-Haenszel (M-H), Kruskal-Wallis, or Cochran-Armitage as appropriate.

Results

Table 1: Demographics of study patients with (n=1,084) and without (n=11,698) documented analgesia.

<table>
<thead>
<tr>
<th>Total, n (%)</th>
<th>Analgesia, n (%)</th>
<th>No analgesia, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Forces</td>
<td>4,687 (36.5)</td>
<td>431 (39.8)</td>
</tr>
<tr>
<td>Non-US Military</td>
<td>4,523 (36.5)</td>
<td>432 (39.3)</td>
</tr>
<tr>
<td>Other</td>
<td>339 (24.9)</td>
<td>221 (20.4)</td>
</tr>
<tr>
<td>Category of Injury</td>
<td>Total</td>
<td>Analgesia</td>
</tr>
<tr>
<td>Battle Injury</td>
<td>9,773 (76.2)</td>
<td>880 (81.2)</td>
</tr>
<tr>
<td>Non-Battle Injury</td>
<td>3,047 (23.8)</td>
<td>204 (18.8)</td>
</tr>
<tr>
<td>Prehospital CMI</td>
<td>Total</td>
<td>Analgesia</td>
</tr>
<tr>
<td>Mild</td>
<td>7,003 (53.4)</td>
<td>639 (61.1)</td>
</tr>
<tr>
<td>Moderate</td>
<td>2,941 (22.5)</td>
<td>253 (24.3)</td>
</tr>
<tr>
<td>Severe</td>
<td>747 (5.9)</td>
<td>69 (6.6)</td>
</tr>
<tr>
<td>Critical</td>
<td>537 (4.2)</td>
<td>47 (4.5)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1,002 (7.7)</td>
<td>75 (7.0)</td>
</tr>
<tr>
<td>Outcome</td>
<td>Total</td>
<td>Analgesia</td>
</tr>
<tr>
<td>Alive - RTO</td>
<td>4,498 (35.2)</td>
<td>389 (36.0)</td>
</tr>
<tr>
<td>Alive - Transported</td>
<td>7,321 (57.3)</td>
<td>614 (56.9)</td>
</tr>
<tr>
<td>Dead</td>
<td>720 (5.7)</td>
<td>55 (5.3)</td>
</tr>
<tr>
<td>Unknown</td>
<td>41 (0.3)</td>
<td>2 (0.2)</td>
</tr>
</tbody>
</table>

Table 2: Prehospital/arrival vital signs by analgesic group.

<table>
<thead>
<tr>
<th>Vital Signs, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP (mmHg)</td>
</tr>
<tr>
<td>131 (127-142)</td>
</tr>
<tr>
<td>134.5 (128-141)</td>
</tr>
<tr>
<td>131 (118-143)</td>
</tr>
<tr>
<td>131 (116-141)</td>
</tr>
<tr>
<td>129 (114-144)</td>
</tr>
<tr>
<td>Unassisted Respiratory Rate (BPM)</td>
</tr>
<tr>
<td>18 (16-20)</td>
</tr>
<tr>
<td>18 (16-20)</td>
</tr>
<tr>
<td>18 (16-20)</td>
</tr>
<tr>
<td>19 (16-22)</td>
</tr>
<tr>
<td>18 (16-22)</td>
</tr>
<tr>
<td>Pulse (BPM)*</td>
</tr>
<tr>
<td>80 (77-106)</td>
</tr>
<tr>
<td>80 (72-94)</td>
</tr>
<tr>
<td>88 (77-102)</td>
</tr>
<tr>
<td>90 (75-107)</td>
</tr>
<tr>
<td>90 (82-117)</td>
</tr>
<tr>
<td>O2 Saturation (%)</td>
</tr>
<tr>
<td>98 (96-100)</td>
</tr>
<tr>
<td>97 (96-99)</td>
</tr>
<tr>
<td>98 (96-100)</td>
</tr>
<tr>
<td>98 (97-100)</td>
</tr>
<tr>
<td>98 (96-100)</td>
</tr>
<tr>
<td>Temperature (°F)</td>
</tr>
<tr>
<td>98.2 (97.5-98.6)</td>
</tr>
</tbody>
</table>

Figure 2. Numbers and percentages of documented pain medications provided to casualties.

Figure 3. M-H posted odds comparison, Non-US military versus US Military receiving ketamine.

Figure 4. M-H posted odds comparison, Non-US military versus Civilian receiving ketamine.

Conclusions

- Of 12,780 casualties included in this study, 1,084 (8.5%) received documented analgesia.
- Casualties who received analgesia were generally male (86.2%) with a median age of 25 (IQR 21-27).
- Mortality, injury mechanism, CMI-PH and national affiliation were significantly associated with missing prehospital vital sign data.
- Time of transport and sex were not associated.

Acknowledgements

- The authors acknowledge the Joint Trauma System R2D for providing data for this study.
- This work was supported by the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No. W81XWH-15-2-0085. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.
- This study was conducted under a protocol reviewed and approved by the US Army Institute of Surgical Research Regulatory Compliance Division and in accordance with the approved protocol.

References

Patient injury patterns and procedural burden experienced by U.S. military Role 2 forward surgical teams in Afghanistan

Amanda M. Staudt, PhD, MPH
Jennifer D. Trevino, MBA
COL Jennifer M. Gurney, MC, USA
Krystal K. Valdez-Delgado, BSN, RN
Mithun R. Suresh, MD
CAPT Frank K. Butler, Jr., MC, USN, (Ret.)
COL Elizabeth A. Mann-Salinas, ANC, USA (Ret.)
LTC Christopher A. VanFosson, ANC, USA
COL Russ S. Kotwal, MC, USA, (Ret.)
The opinions or assertions contained herein are the private views of the author and not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

This study was reviewed and approved by the U.S. Army Institute of Surgical Research institutional regulatory department and was determined to be exempt from Institutional Review Board.
Background

Evaluation of role 2 (R2) medical resources in the Afghanistan combat theater: Initial review of the joint trauma system R2 registry

Elizabeth A. Mann-Salinas, PhD, RN, Tuan D. Le, MD, DrPH, Stacy A. Shackelford, MD, Jeffrey A. Bailey, MD, Zsolt T. Stockinger, MD, Mary Ann Spott, PhD, Michael D. Wirt, MD, PhD, Rory Rickard, PhD, FRCS, Ian B. Lane, BDS, MPH, Timothy Hodgetts, PhD, FRCP, Sylvain Cardin, PhD, Kyle N. Remick, MD, and Kirby R. Gross, MD, San Antonio, Texas

Combat surgical workload in Operation Iraqi Freedom and Operation Enduring Freedom: The definitive analysis

Caryn A. Turner, MPH, Zsolt T. Stockinger, MD, and Jennifer M. Gurney, MD, FACS, Fort Sam Houston, Texas

Original Investigation
Use of National Burden to Define Operative Emergency General Surgery

John W. Scott, MD, MPH; Olubode O. Olufajo, MD, MPH; Gabriel A. Brat, MD; John A. Rose, MD, MPH; Cheryl K. Zogg, MSPH, MHS; Adl H. Haider, MD, MPH; Ali Salm, MD; Joaquin M. Havens, MD

(Incorporated Scott’s methodology)
Objectives

Among battle and non-battle injured casualties treated at Role 2 facilities in Afghanistan:

- Describe the injuries
- Calculate procedural burden received by casualties

Weight procedures by frequency, mortality, and morbidity
Data sources

- Secondary data analysis
- Retrospective study
- Role 2 Database
 - Abbreviated Injury Scale (AIS)
 - International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM)
- Healthcare Cost and Utilization Project (HCUP) Clinical Classifications Software categorization scheme
Study population, n = 10,992

- Adult
- Surgical Role 2 patients
- Battle or non-battle injured
- Afghanistan
- February 2008 to September 2014

- US military 35%
- non-US military 40%
- Other 25%

- Documented injury (x = 12,450)
- Procedures (x = 27,251)
- 97.8% male
- Median (IQR) age = 25 (22-30)
- Median (IQR) ISS = 2 (1, 5)
- Mortality = 4.4%

- Blunt 33%
- Burn 2%
- Any penetrating 65%
Injured body region

- Lower Extremity, Pelvis, Buttocks: 24%
- Upper Extremity: 17%
- Head: 16%
- External (skin) and Thermal Injuries: 15%
- Face: 9%
- Abdomen: 7%
- Thorax: 7%
- Spine: 3%
- Neck: 2%
Body region by severity (x = 12,450)

- Lower Extremity, Pelvis, Buttocks, x=2,973
- Upper Extremity, x=2,184
- Head, x=1,938
- External and Thermal Injuries, x=1,870
- Face, x=1,109
- Abdomen, x=912
- Thorax, x=832
- Spine, x=389
- Neck, x=219
- Other trauma, x=24

Severity levels:
- Minor
- Moderate
- Serious
- Severe
- Critical
- Maximum
- Not further specified
Non-operative therapeutic procedures

- Other therapeutic procedures: 21%
- Nasogastric tube: 4%
- Incision of pleura; thoracentesis; chest drainage: 5%
- Prophylactic vaccinations and inoculations: 6%
- Suture of skin and subcutaneous tissue: 6%
- Other vascular catheterization; not heart: 20%
- Traction; splints; and other wound care: 14%
- Respiratory intubation and mechanical ventilation: 11%

Note: non-operative therapeutic procedures were not included in operative procedural burden calculations.
Non-operative diagnostic procedures

- Other diagnostic radiology and related techniques (i.e. X-ray) 74%
- Diagnostic ultrasound of abdomen or retroperitoneum 21%
- Psychological and psychiatric evaluation and therapy 4%

Note: non-operative diagnostic procedures were not included in operative procedural burden calculations
Morbidity (n = 1,632)

- 14.9% of study population

- Top 3
 - Hypothermia (n = 866)
 - Anemia/Blood loss (n = 685)
 - Hypovolemia (n = 260)
Burden calculation

• John Scott’s Methodology in JAMA Surg 2016 manuscript on civilian Emergency General Surgery

• HCUP operative procedure groups were weighted by injury by frequency of procedure, mortality, and morbidity

\[\text{Rank}_\text{burden} = \text{Rank}_\text{mortality}(\%\text{mortality} \times n_{\text{procedure}}) + \text{Rank}_\text{morbidity}(\%\text{morbidity} \times n_{\text{procedure}}) \]

• Cumulative burden by procedure group

Frequency of procedure:
\[\frac{\sum_{i=1}^{n=3,573} i}{n} \times 100 \]

Mortality:
\[\frac{\sum_{i=1}^{n=163} i}{n} \times 100 \]

Morbidity:
\[\frac{\sum_{i=1}^{n=1,191} i}{n} \times 100 \]
Cumulative burden of procedures by burden rank

Cumulative Burden of Procedures, %

Burden Rank

- Frequency
- Mortality
- Morbidity
~75% of cumulative procedural burden

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Non-therapeutic exploratory laparotomy</td>
</tr>
<tr>
<td>• Vascular procedures other than head and neck</td>
</tr>
<tr>
<td>• External fixation</td>
</tr>
<tr>
<td>• Debridement</td>
</tr>
<tr>
<td>• Resection, Repair, Suture, or incision of large or small intestine, duodenum, or colon</td>
</tr>
<tr>
<td>• Amputation of lower extremity</td>
</tr>
<tr>
<td>• Suture of liver, abdominal wall, pancreas, or omentum; Laparotomy NEC; Pancreatectomy; Groin Exploration</td>
</tr>
<tr>
<td>• Therapeutic procedures on muscles and tendons</td>
</tr>
<tr>
<td>• Debridement of open fracture, internal fixation, or reduction to lower extremity (other than hip or femur)</td>
</tr>
<tr>
<td>• Thoracotomy</td>
</tr>
</tbody>
</table>
Limitations

• No follow-up data

• Database not validated against medical records

• Convenience sampling

• No data on injuries not treated
How should we use this information?

• Focus pre-deployment training programs on these common and complex skill sets

• Inform surgical benchmarks for Role 2s

• Resource medical assets at Role 2 facilities in similar operational environments

• Support for additional research to improve the surgical procedures with the greatest burden
Future efforts

• Continue data collection (including long-term follow-up) in austere environments to support future research efforts

• Consider both frequency and severity of illness/injury to determine the greatest burden to readiness for the military health system
This work was supported by the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No. W81XWH-15-2-0085.

The authors acknowledge the Joint Trauma System Role 2 Database for providing data for this study.

This work was supported by the TOSR team (Nicole Caldwell & Tricia Garcia-Choudary).

Co-authors:
• Jennifer D. Trevino, MBA
• COL Jennifer M. Gurney, MC, USA
• Krystal K. Valdez-Delgado, BSN, RN
• Mithun R. Suresh, MD
• CAPT Frank K. Butler, Jr., MC, USN, (Ret.)
• COL Elizabeth A. Mann-Salinas, ANC, USA (Ret.)
• COL Russ S. Kotwal, MC, USA, (Ret.)
• LTC Christopher A. VanFosson, ANC, USA
Development of a Standardized Competency Program for Combat Medical Readiness

MAJ Allison Ferro1, Krystal Valdez-Delgado1, Patricia Colston1
LTC Christopher VanFosson1, COL Booker King2, COL (Ret.) Elizabeth Mann-Salinas1, 1US Army Institute of Surgical Research; 2Womack Army Medical Center,

The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense

Introduction/Background

- There is currently no standard program for clinical pre-deployment readiness, nor documentation tool of individual competency and training.
- The 2017 National Defense Authorization Act included a requirement to establish a standardized training curriculum for pre-deployment training and to formally partner with civilian trauma centers to ensure military clinicians are exposed to the volume and acuity of trauma and burn patients.
- USAISR/BAMC has been established as a premier military readiness platform at DoD's only Level I Trauma and Burn Center. Preliminary results from this pilot have reflected self reported improvements on key skills.
- From Jan. 2015-Sept. 2018 a total of 229 personnel have rotated through the USAISR program.
- Standardized training curriculum in development with the following goals:
 - Nursing content for Knowledge/Skill/Abilities (KSA) competency development and assessment
 - Documentation tools for nursing combat readiness
 - Knowledge assessment test (Nursing, Medic, Tech, Corpsmen) and novel training platforms (gaming)
 - Simulation scenarios that are easily replicated
 - Standardized curriculum exportable to a civilian facility

Objectives

- Demonstrate that a comprehensive platform to prepare providers for combat deployment is improved with implementation of a standardized program.
- Aim 1: Create standardized training and sustainment modules for identified combat related skills.
- Aim 2: Demonstrate that a program created for the Burn/Trauma Center is adaptable across the Military Health System (MHS) and Civilian partners.

Methods

A prospective, cohort project to compare the observed skill and knowledge of combat casualty care (CCC) for nurses/medics/corpsmen/technicians expected to deploy. Objective metrics:
- Readiness Estimate and Deployability Index (READI) and Periodic Evaluation Tool (PET) instrument will be used for self assessment
- CCC Competency Assessment Tool will be used to evaluate and document clinical skills and patient care hours
Each group was assessed using the aforementioned tools and categorized into two groups: those who received no simulation training and those who did.

USAISR/BAMC Pre-deployment Program

- Pre-deployment - Forward Resuscitative Surgical Teams
 - Hospital Centers
 - Individuals
- Duration - 1-4 week rotation
- Location - Burn Center and Emergency Department
- Goals - Clinical experience, burn knowledge
- Documentation of competency in CCC

Didactic Content*

- Advanced Burn Life Support Course
- Thermal Injuries 1 & II
- Fluid Resuscitation
- Inhalation Injury
- Prolonged Care & Burn CPG
- Burn Sepsis
- Infection Control
- Don't get burned by drugs
- Wound Care Foundation
- JTS Teleconference

Preliminary Results

Demographics
- 42 total: 18 Female, 28 Male
- Average age 26-30
- All assigned to field units with 28/42 having deployed previously in current role
- 40/42 have conducted field training in the last year
- Specialties: CRNA=1, RN=8, LPN=17, medic=10, surgical tech=3, other=3

Summary/Future Implications

- Upon completion of training, both groups reported improved competence on critical elements.
- USAISR/BAMC collaboration will optimize assets of both organizations.
- Project is directly aligned with Defense Health Agency aims through the KSA Project and 8 domains of Combat Casualty Care.
- Pilot project will result in a program that is standardized, exportable, and offers clear documentation of required readiness elements.
- Efforts underway to maximize efficiency of documentation using available electronic resources (e.g., Elsevier Clinical Skills Learning Management System) and add Knowledge assessment test to assess understanding of Clinical Practice Guidelines and CCC concepts.
- Civilian centers could replicate this training platform for community partners to facilitate hands-on experience in preparation for real world civilian mass casualty.

Acknowledgements

This work was supported by the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No.W81XWH-15-2-0085 and the US Army Combat Casualty Care Research Program RAD 2 - A2_061_2017_USAISR
Photo Credit: Dr Steven Galvan, USAISR PAO
An Assessment of Pre-deployment Training of Army Nurses and Medics

LTC Christopher A. VanFossen, PhD, MHA, RN; Jennifer D. Trevino, MBA; Amanda M. Staudt, PhD, MPH; Mithun R. Suresh, MD; Kristal K. Valdez-Delgado, BSN, RN; Tricia L. Garcia-Choudary, MPH, BSN, RN; Nicole W. Caldwell, BA, RN; COL (Ret.) Elizabeth A. Mann-Salinas, PhD, RN
US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

Background

Clinicians face several challenges when caring for trauma patients on the battlefield. Combat casualty care may include:
- Treating patients while under attack
- Resource constraints
- Periods of limited visibility/darkness
- Rugged terrain
- Extreme temperatures
Therefore, optimal preparation for clinicians

Inclusion criteria:

- 5.0
- Army nurses and combat medics undergo
- 54 years
- 74.3
- 1.9
- 329
- 264
To better understand the effectiveness of combat using d
- a wide
- Targeted
- for Military Nursing
- 62
- Army nurses from active (n=2,344) and
- 9.5
- and not for non
- 54.9
- Army nurses and medics felt confident and
- 17
- 269
- Deployed to a combat theater since 2001
- 30.5
- 47.3
- 13
- 64
- Periods of limited visibility/darkness

Therefore, optimal preparation for clinicians

This project was conducted under a protocol

Sample not representative of all nurse specialties

Objectives

The purpose of this study was to survey trauma care-oriented Army nurses and combat medics to describe the range of pre-deployment trainings they experienced in order to provide guidance on future pre-deployment training requirements

Methods

- Survey link sent to military email accounts
- provided by US Army Human Resource
- Command
- Army nurses from active (n=2,344) and reserve (n=2,458) components
- Active duty combat medics (n=17,535)
- Inclusion criteria:
- Deployed to a combat theater since 2001
- Registered nurse (medical-surgical, emergency, critical care), certified registered nurse anesthetist (CRNA), or medic (technician or licensed vocational nurse)
- Intake.gov survey platform
- Targeted up to two most recent deployments
- Captured demographic information, deployment history, and military training received prior to deployment
- Three monthly reminder emails sent to all potential participants
- Survey data analyzed using descriptive statistics

Results

- Of 22,337 emails sent, there were 1,181 respondents (5.3% response rate); 696 (58.9% of respondents) met inclusion criteria

Discussion

- Most nurses and medics were satisfied with the quality of their pre-deployment training (when it occurred)
- Nurses and medics believed they were capable of providing effective combat casualty care
- Combat died of wounds rates started to rise recently, indicating that the trauma system may have previously unidentified limitations
- Currently unable to link pre-deployment training to patient outcomes; success of training is subjective

Implications for Military Nursing

- Army nurses and medics felt confident and adequately trained to provide trauma care during their deployments. This study is ongoing. Further analysis of the complete data will inform Army Medical Department leaders about pre-deployment training for Army nurses and medics, as well as the respondents’ views of the effectiveness of this training.

Limitations

- Survey data only captured pre-deployment training for deployers and not for non-deployers
- Sample not representative of all nurse specialties

Conclusions

- Army nurses and medics felt confident and sufficiently prepared to provide trauma care during their deployments
- Increases in died of wounds rates may indicate that training was not sufficient
- To better understand the effectiveness of combat casualty care training, the Army must be able to link training events to objective measures, such as patient outcomes

Acknowledgements

- This project was funded by the Defense Health Program JPC-6 Intensive Forward Surgical Critical Care, Award Number W81XWH-15-2-0085
- This project was conducted under a protocol reviewed and approved by the US Army Institute of Surgical Research Regulatory Office
- Conduct of the survey was approved by the Army Research Institute, Control Number DAPE-ARI-AQ-18-01

References

1. Nesson SC, Gumer J, Cap AP, et al. Unrealized potential of the US military battlefield trauma system: DOW rate is higher in Iraq and Afghanistan than in Vietnam, but CPR and KIA rate are lower. J Trauma. 2018;85(1(S1)):S4-S12.

The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.
Evaluation of Pre-deployment Training for Army Nurses and Medics

LTC Christopher A. VanFossen, PhD, MHA, RN; Jennifer D. Trevino, MBA; Amanda M. Staudt, PhD, MPH; Mithun R. Suresh, MD; Krystal K. Valdez-Delgado, BSN, RN; Tricia L. Garcia-Choudary, MPH, BSN, RN; Nicole W. Caldwell, BA, RN; COL (Ret.) Elizabeth A. Mann-Salinas, PhD, RN
US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

Background

Clinicians face several challenges when caring for trauma patients on the battlefield. Combat casualty care may include:
- Treating patients while under attack
- Resource constraints
- Periods of limited visibility/darkness
- Rugged terrain
- Extreme temperatures

Therefore, optimal preparation for clinicians includes exposure to as many combat trauma situations as possible prior to deployment.

Army nurses and combat medics undergo a wide variety of pre-deployment training events.

The literature contains no evaluation of Army nurse or combat medic pre-deployment training.

Objectives

The purpose of this study was to survey trauma care-oriented Army nurses and combat medics to describe the range of pre-deployment trainings they experienced in order to provide guidance on future pre-deployment training requirements.

Methods

Survey link sent to military email accounts provided by US Army Human Resource Command.
- Army nurses from active (n=2,344) and reserve (n=2,458) components
- Active duty combat medics (n=17,535)

Inclusion criteria:
- Deployed to a combat theater since 2001
- Registered nurse (medical-surgical, emergency, critical care), certified registered nurse anesthetist (CRNA), or medic (technician or licensed vocational nurse)
- Intelink.gov survey platform
- Targeted up to two most recent deployments
- Captured demographic information, deployment history, and military training received prior to deployment
- Three monthly reminder emails sent to all potential participants
- Survey data analyzed using descriptive statistics

Results

Of 22,337 emails sent, there were 1,181 respondents (5.3% response rate); 696 (58.9% of respondents) met inclusion criteria.

Characteristics of the Participants

<table>
<thead>
<tr>
<th>Total Participants</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Duty</td>
<td>644 (92.5)</td>
</tr>
<tr>
<td>Reserve</td>
<td>36 (5.3)</td>
</tr>
<tr>
<td>Other</td>
<td>35 (5.0)</td>
</tr>
</tbody>
</table>

Number of Deployments

- 1: 249 (38.6)
- 2: 212 (30.5)
- 3: 115 (16.5)
- 4: 58 (8.3)
- 5 or more: 42 (6.0)

Location of Most Recent Deployment

- Afghanistan: 364 (52.3)
- Africa: 13 (1.9)
- Iraq: 198 (28.4)
- Kosovo: 7 (1.0)
- Kuwait: 59 (8.5)
- Syria: 17 (2.4)
- Other area (Middle East): 18 (2.6)
- Other area (global): 20 (2.9)

Most Important Combat Casualty Care Skills Used (n=696)

- **Diagnose and stabilize the patient**
- **Initiate and maintain vital signs**
- **Manage shock and hemorrhage**
- **Administer drugs and fluids**
- **Provide advanced airway management**

Discussion

Most nurses and medics were satisfied with the quality of their pre-deployment training (when it occurred).

Nurses and medics believed they were capable of providing effective combat casualty care.

Combat died of wounds rates started to rise recently, indicating that the trauma system may have previously unidentified limitations.

Currently unable to link pre-deployment training to patient outcomes; success of training is subjective.

Implications for Military Nursing

Army nurses and medics felt confident and adequately trained to provide trauma care during their deployments. This study is ongoing. Further analysis of the complete data will inform Army Medical Department leaders about pre-deployment training for Army nurses and medics, as well as the respondents’ views of the effectiveness of this training.

Limitations

- Survey data only captured pre-deployment training for deployers and not for non-deployers.
- Sample not representative of all nurse specialties.

Conclusions

Army nurses and medics felt confident and sufficiently prepared to provide trauma care during their deployments.

Increases in died of wounds rates may indicate that training was not sufficient.

To better understand the effectiveness of combat casualty care training, the Army must be able to link training events to objective measures, such as patient outcomes.

Acknowledgements

This project was funded by the Defense Health Program JPC-6 Intensive Forward Surgical Critical Care, Award Number W81XWH-15-2-0085.

Publication

Conduct of the survey was approved by the Army Research Institute, Control Number DAPE-ARI-18-01.

References

Evaluation of Pre-deployment Training for Army Nurses and Medics

LTC Christopher A. VanFosson, PhD, MHA; Jennifer D. Trevino, MBA; Amanda M. Staudt, PhD, MPH; Mithun R. Suresh, MD; Krystal K. Valdez-Delgado, BSN, RN; Tricia L. Garcia-Choudary, MPH, BSN, RN; Nicole W. Caldwell, RN; COL (ret.) Elizabeth A. Mann-Salinas, PhD, RN
The opinions or assertions contained herein are the private views of the author and not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

This study was conducted under a protocol reviewed and approved by the US Army Medical Research and Materiel Command Institutional Review Board and in accordance with the approved protocol.
To survey trauma care-oriented Army nurses (RNs and LVNs) and combat medics to describe the range of pre-deployment trainings they experienced in order to provide guidance on future pre-deployment training requirements.
Methods

» Survey method
 » Approved by IRB (exempt) and ARL
 » Intelink.gov survey platform
 » Questions based on READI tool\(^3\)

» Link sent to military email accounts
 » Army nurses from active (n=2,344) and reserve (n=2,458) components
 » Active duty combat medics (n=17,535)

» 3 monthly reminders

» Targeted up to 2 most recent deployments
Inclusion criteria:

- Deployed to combat theater since 2001
- Registered nurse or medic
 - Medical/surgical nurse
 - Emergency nurse
 - Critical care nurse
 - Nurse anesthetist
 - Licensed vocational nurse
 - Combat medic (or variants)
Results

» 22,337 initial emails sent
 » 1,181 respondents (5.3% response rate)
 » 696 met inclusion criteria (58.9% of respondents)

» 73.4% (n=511) male

» 91.1% (n=634) active duty

» 45.1% (n=314) officers (Army Nurse Corps)

» Multiple deployments
 » 61.2% had 2 or more
 » 14.2% had 4 or more
Results

Location of Most Recent Deployment

Afghanistan, 52.3%
Iraq, 28.4%
Kuwait, 8.5%
Syria, 2.4%
Kosovo, 1.0%
Africa, 1.9%
Other (Middle East), 2.6%
Other (global), 2.9%
Results

Years in Specialty at Beginning of Deployment

- Nurse Anesthetist
- Medical/Surgical Nurse
- Critical Care Nurse
- Emergency Nurse
- Combat Medic
- Flight Medic
- Licensed Vocational Nurse
- Other

Legend:
- < 3 years
- ≥ 3 to < 5 years
- ≥ 5 to < 10 years
- ≥ 10 to < 15 years
- ≥ 15 years
Results

Proportion Assigned to Roles of Care

- Role 3
- Role 2 and Role 3
- Role 2 (BCT)
- Role 2 (FST, FST+, FST-)
- Role 2 (Special Operations)
- Point of Injury or Role 1
- Medical Evacuation
- Other

Nurse Anesthetist
Medical/Surgical Nurse
Critical Care Nurse
Emergency Nurse
Combat Medic/EMT-B
Flight Medic
Licensed Vocational Nurse
Other
Results

Topics of Individual Pre-Deployment Training (n)*

<table>
<thead>
<tr>
<th>Topic</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns</td>
<td>350</td>
</tr>
<tr>
<td>Continuity of care</td>
<td>200</td>
</tr>
<tr>
<td>Cultural awareness</td>
<td>300</td>
</tr>
<tr>
<td>"Damage control" surgery/resuscitation</td>
<td>250</td>
</tr>
<tr>
<td>Equipment familiarization</td>
<td>400</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>500</td>
</tr>
<tr>
<td>Joint operations</td>
<td>350</td>
</tr>
<tr>
<td>Orthopedics</td>
<td>250</td>
</tr>
<tr>
<td>Palliative care</td>
<td>100</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>150</td>
</tr>
<tr>
<td>Position-specific skills</td>
<td>200</td>
</tr>
<tr>
<td>Resiliency</td>
<td>300</td>
</tr>
<tr>
<td>Resuscitation</td>
<td>450</td>
</tr>
<tr>
<td>Trauma</td>
<td>500</td>
</tr>
<tr>
<td>Other</td>
<td>50</td>
</tr>
<tr>
<td>None</td>
<td>100</td>
</tr>
</tbody>
</table>

* - Totals may be greater than 696 because participants could select more than one option.
Results

Evaluation of Deployment Readiness (n)*

* - Totals may be greater than 696 because participants could select more than one option
Results

Perceived Quality of Predeployment Training

- Nurse Anesthetist
- Medical/Surgical Nurse
- Critical Care Nurse
- Emergency Nurse
- Combat Medic/EMT-B
- Flight Medic
- Licensed Vocational Nurse
- Other

- Extremely Poor
- Poor
- Adequate
- Good
- Excellent
Results

Confidence in Providing Combat Casualty Care Prior to Deployment

- Not at all confident
- Slightly confident
- Moderately confident
- Very confident
- Fully confident

Nurse Anesthetist
Medical/Surgical Nurse
Critical Care Nurse
Emergency Nurse
Combat Medic/EMT-B
Flight Medic
Licensed Vocational Nurse
Other
* - Totals may be greater than 696 because participants could select more than one option
Results

Team Pre-Deployment Training Attended (n)*

* Totals may be greater than 696 because participants could select more than one option
Results

Most Important Combat Casualty Care Skills Used (n)*

<table>
<thead>
<tr>
<th>Skill</th>
<th>Nurses</th>
<th>Medics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achieving hemostasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airway management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breathing support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Care for penetrating eye injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caring for CBRNE patient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communicating/documenting care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intravenous (IV) access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV fluid therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing a mass casualty event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing burns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing fractures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring vital signs (electronic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring vital signs (manual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparing for evacuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventing hypothermia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providing care during air evacuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providing care during ground evacuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providing care under fire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providing prolonged field care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - Totals may be greater than 696 because participants could select more than one option
Results

Skills That Would Have Benefitted From More Training (n)*

- Totals may be greater than 696 because participants could select more than one option.
» Most nurses and medics were satisfied with the quality of their pre-deployment training (when it occurred)

» Nurses and medics believed they were capable of providing effective combat casualty care

» Combat died of wounds rates started to rise recently, indicating that the trauma system may have previously unidentified limitations

» Currently unable to link pre-deployment training to patient outcomes; success of training is subjective
Survey data only captured pre-deployment training for deployers and not for non-deployers

Sample not representative of all nurse specialties
Conclusions

» Army nurses and medics felt confident and sufficiently prepared to provide trauma care during their deployments

» Increases in died of wounds rates may indicate that training was not sufficient

» To better understand the effectiveness of combat casualty care training, the Army must be able to link training events to objective measures, such as patient outcomes
Role 2 Grant Update:
Injury Patterns, Procedural Burden, & Pre-Deployment Training

Amanda Staudt, PhD, MPH
LTC Chris VanFosson, PhD, MHA, RN
Trauma Outcomes and Systems Research (TOSR) Branch
The opinions or assertions contained herein are the private views of the author and not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

This study was conducted under a protocol reviewed and approved by the US Army Medical Research and Materiel Command Institutional Review Board and in accordance with the approved protocol.
» Purpose: To describe and understand impact of Role 2 utilization during OEF and beyond, with emphasis on patient outcomes and provider competency.

» Aims:
 » To describe all available OEF Role 2 information for combat casualties.
 » To identify the ideal provider training and competency assessment, sustainment, and evaluation for medical staff deployed to Role 2 environment.
Role 2- far-forward surgical unit used for resuscitation and surgical stabilization of patients\(^1,^5\)
Army Forward Surgical Team

» 72 hour continuous operations
 » 2 OR tables; 10 cases/day
 » Post OP care 8 patients

» 20-person team
 » 3 general surgeons
 » 1 orthopedic surgeons
 » 2 Nurse anesthetists
 » 1 OR nurse
 » 2 ICU nurses
 » 2 ER nurses
 » Techs
 +2 Emergency physicians
» 10 Providers
 » 2 Surgeons
 » 1 Nurse anesthetist
 » 1 ICU nurse
 » 1 ER nurse
 » 5 Techs

» Capabilities
 » Damage control surgery
 » Damage control resuscitation
 » Patient hold
 » Life support
» Injury Pattern & Procedural Burden
» Pre-Deployment Training
» Pre-proposal ideas
 » Whole blood
 » Pressure Ulcers

» Supplemental: Continuum of care overview
Role 2 Injury pattern and procedure burden analysis
Background

» 20,000 U.S. battle-injured casualties + >60,000 other casualties

» Until recently, no consistent data collection before Role 3 from DoDTR

» Data collection requires leadership support

» Other barriers to data collection at far-forward facilities include:
 » Harsh/austere conditions
 » Hazardous terrain
 » Weather extremes
 » Limited resources
» Started 2008

» Data from **surgical** teams

» Role 2 clinical providers voluntarily collect

» Convenience sampling
Evaluation of role 2 (R2) medical resources in the Afghanistan combat theater: Initial review of the joint trauma system R2 registry

Elizabeth A. Mann-Salinas, PhD, RN, Tuan D. Le, MD, DrPH, Stacy A. Shackelford, MD, Jeffrey A. Bailey, MD, Zsolt T. Stockinger, MD, Mary Ann Spott, PhD, Michael D. Wirt, MD, PhD, Rory Rickard, PhD, FRCS, Ian B. Lane, BDS, MPH, Timothy Hodgetts, PhD, FRCP, Sylvain Cardin, PhD, Kyle N. Remick, MD, and Kirby R. Gross, MD, San Antonio, Texas
Combat surgical workload in Operation Iraqi Freedom and Operation Enduring Freedom: The definitive analysis

Caryn A. Turner, MPH, Zsolt T. Stockinger, MD, *and* Jennifer M. Gurney, MD, FACS, Fort Sam Houston, Texas

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Total</th>
<th>Afghanistan</th>
<th>Iraq</th>
<th>Not available</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amputation, n (%)</td>
<td>1,278 (5.43)</td>
<td>7,325 (4.42)</td>
<td>342 (0.21)</td>
<td>8,603 (4.55)</td>
<td>23,548 (12.45)</td>
</tr>
<tr>
<td>Cardiac, n (%)</td>
<td>84 (0.36)</td>
<td>342 (0.21)</td>
<td>426 (0.23)</td>
<td>5,627 (2.97)</td>
<td>8,603 (4.55)</td>
</tr>
<tr>
<td>Neurosurgical, n (%)</td>
<td>143 (0.61)</td>
<td>5,484 (3.31)</td>
<td>4,000 (2.11)</td>
<td>7,975 (4.22)</td>
<td>12,384 (6.33)</td>
</tr>
<tr>
<td>Endoscopy, n (%)</td>
<td>205 (0.87)</td>
<td>3,795 (2.29)</td>
<td>4,860 (2.57)</td>
<td>8,283 (4.38)</td>
<td>16,055 (8.53)</td>
</tr>
<tr>
<td>External fixation, n (%)</td>
<td>1,608 (6.33)</td>
<td>6,367 (3.84)</td>
<td>7,975 (4.22)</td>
<td>15,778 (8.34)</td>
<td>25,048 (13.45)</td>
</tr>
<tr>
<td>Fasciotomy, n (%)</td>
<td>1,100 (4.67)</td>
<td>3,760 (2.27)</td>
<td>2,183 (1.15)</td>
<td>6,043 (3.25)</td>
<td>10,343 (5.43)</td>
</tr>
<tr>
<td>Genitourinary, n (%)</td>
<td>163 (0.69)</td>
<td>2,020 (1.22)</td>
<td>2,183 (1.15)</td>
<td>4,203 (2.27)</td>
<td>6,489 (3.48)</td>
</tr>
<tr>
<td>Head and neck, n (%)</td>
<td>643 (2.73)</td>
<td>7,640 (4.61)</td>
<td>8,283 (4.38)</td>
<td>15,566 (8.34)</td>
<td>23,548 (12.45)</td>
</tr>
<tr>
<td>Hand, n (%)</td>
<td>156 (0.66)</td>
<td>1,665 (1.01)</td>
<td>1,821 (0.96)</td>
<td>3,642 (1.98)</td>
<td>5,209 (2.77)</td>
</tr>
<tr>
<td>Ophthalmologic, n (%)</td>
<td>92 (0.39)</td>
<td>4,635 (2.8)</td>
<td>4,727 (2.5)</td>
<td>5,282 (2.8)</td>
<td>9,509 (5.06)</td>
</tr>
<tr>
<td>Orthopedic, n (%)</td>
<td>3,289 (13.97)</td>
<td>22,894 (13.82)</td>
<td>26,183 (13.84)</td>
<td>996 (0.53)</td>
<td>26,183 (13.84)</td>
</tr>
<tr>
<td>Peripheral nervous system, n (%)</td>
<td>112 (0.48)</td>
<td>884 (0.53)</td>
<td>638 (0.34)</td>
<td>996 (0.53)</td>
<td>996 (0.53)</td>
</tr>
<tr>
<td>Spine, n (%)</td>
<td>0</td>
<td>638 (0.34)</td>
<td>638 (0.34)</td>
<td>638 (0.34)</td>
<td>638 (0.34)</td>
</tr>
<tr>
<td>Soft tissue, n (%)</td>
<td>7,570 (32.15)</td>
<td>63,377 (38.27)</td>
<td>70,947 (37.5)</td>
<td>12,384 (6.33)</td>
<td>136,321 (72.73)</td>
</tr>
<tr>
<td>Thoracic, n (%)</td>
<td>268 (1.14)</td>
<td>1,489 (0.9)</td>
<td>1,757 (0.93)</td>
<td>3,188 (1.69)</td>
<td>5,353 (2.85)</td>
</tr>
<tr>
<td>Tracheostomy/Cricothyroidotomy, n (%)</td>
<td>297 (1.26)</td>
<td>2,891 (1.75)</td>
<td>3,188 (1.69)</td>
<td>6,379 (3.48)</td>
<td>9,567 (5.08)</td>
</tr>
<tr>
<td>Vascular, n (%)</td>
<td>2,375 (10.09)</td>
<td>9,973 (6.02)</td>
<td>12,384 (6.33)</td>
<td>7,393 (4.02)</td>
<td>21,768 (11.62)</td>
</tr>
<tr>
<td>Grand Total, n (%)</td>
<td>23,548 (12.45)</td>
<td>165,619 (87.55)</td>
<td>1,89,167 (100)</td>
<td>94,600 (50.01)</td>
<td>189,167 (100)</td>
</tr>
</tbody>
</table>

Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Afghanistan</th>
<th>Iraq</th>
<th>Not available</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>15,778 (67)</td>
<td>7,767 (32.9)</td>
<td>3 (0.01)</td>
<td>23,548 (12.45)</td>
</tr>
<tr>
<td>Iraq</td>
<td>7,767 (32.9)</td>
<td>86,796 (52.4)</td>
<td>4 (0)</td>
<td>165,619 (87.55)</td>
</tr>
<tr>
<td>Not available</td>
<td>3 (0.01)</td>
<td>1 (0)</td>
<td>189,167 (100)</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>23,548 (12.45)</td>
<td>165,619 (87.55)</td>
<td>189,167 (100)</td>
<td></td>
</tr>
</tbody>
</table>
» Among battle and non-battle injured casualties treated at Role 2 facilities in Afghanistan:

» Describe the injuries

» Calculate procedural burden received by casualties

» Identify those at an increased risk for loss of life, limb, or eyesight

Weight procedures by frequency, mortality, and morbidity
Data sources

» Secondary data analysis
» Retrospective study
» Role 2 Database
 » AIS
 » FCI
 » ICD-9-CM
» Healthcare Cost and Utilization Project (HCUP) Clinical Classifications Software categorization scheme
Study population, $n=10,992$

- Adult
- Surgical Role 2 patients
- Battle or non-battle injured
- Afghanistan
- February 2008 to September 2014
- Documented injury ($x=12,450$)
- Received an intervention ($x=27,251$)
» **Mortality**

» **Non-fatal unanticipated findings**
 » Hypothermia
 » Anemia/Blood loss
 » Hypovolemia
 » Shock
 » Cardiopulmonary resuscitation
 » Progression of original neurologic insult
 » Compartment syndrome extremity
 » Hemothorax
 » Respiratory failure
 » Organ/nerve/vessel perforation or injury
 » Among other measures
Variables

» Demographics
» Blood products/fluids
» Injuries
 » Body region
 » Anatomic structure
 » Specific anatomic structure (whole area injuries)
 » Severity
» Procedures
 » Non-operating
 » Operating
Life, limb, or eyesight identification

» Used multiple metrics to identity patients at risk of losing their life, limb, or eyesight

» Risk of loss of life
 » Procedure burden rank (percent mortality)
 » AIS=6
 » Deceased
 » FCI=1

» Risk of loss of limb
 » Procedure burden rank (procedure group)
 » FCI
 » AIS extremity body regions
 » Anatomic structure
 » Severity

» Risk of loss of eyesight
 » Procedure burden rank (procedure group)
 » FCI
 » SME judge potential injury caused blindness
» Descriptive analysis

» Operative procedures
 » Counts < 5 not presented
 » Cumulative burden of procedures
 » Frequency
 » Mortality
 » Morbidity
97.8% male

Median (IQR) age = 25 (22-30)

Median (IQR) ISS = 2 (1, 5)

Mortality = 4.4%
<table>
<thead>
<tr>
<th>In-Hospital 1st 24 hour</th>
<th>n</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid, L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystalloids</td>
<td>9,187</td>
<td>1.1 (1.0, 2.1)</td>
</tr>
<tr>
<td>Colloids</td>
<td>531</td>
<td>0.5 (0.5, 1.0)</td>
</tr>
<tr>
<td>Blood product, units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole blood</td>
<td>366</td>
<td>4.0 (2.0, 7.0)</td>
</tr>
<tr>
<td>packed Red Blood Cells</td>
<td>1,971</td>
<td>4.0 (2.0, 8.0)</td>
</tr>
<tr>
<td>Platelets</td>
<td>249</td>
<td>2.0 (1.0, 3.0)</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>262</td>
<td>3.0 (2.0, 7.0)</td>
</tr>
<tr>
<td>Fresh frozen plasma</td>
<td>1,617</td>
<td>4.0 (2.0, 7.0)</td>
</tr>
</tbody>
</table>
Non-fatal unanticipated outcomes

- Hypothermia
- Anemia/Blood loss
- Hypovolemia
- Shock
- Compartment syndrome abdominal
- Major arrhythmia
- Organ/nerve/vessel perforation or injury
- Respiratory failure
- Hemothorax
- Compartment syndrome extremity
- Progression of original neurologic insult
- Cardiopulmonary resuscitation
- Seizures
- Hypovolemia
- Anemia/Blood loss
- Hypothermia
Non-operative therapeutic procedures

- Other therapeutic procedures
- Other vascular catheterization; not heart
- Traction; splints; and other wound care
- Physical therapy exercises; manipulation; and other procedures
- Incision of pleura; thoracentesis; chest drainage
- Prophylactic vaccinations and inoculations
- Suture of skin and subcutaneous tissue
- Nasogastric tube
- Respiratory intubation and mechanical ventilation
Non-operative diagnostic procedures

- Other diagnostic radiology and related techniques (i.e. X-ray)
- Diagnostic ultrasound of abdomen or retroperitoneum
- Psychological and psychiatric evaluation and therapy
Table 3. All operating room procedures groups by burden rank

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exploratory laparotomy</td>
<td>444</td>
<td>10.4</td>
<td>43.5</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Vascular procedures other than head and neck</td>
<td>228</td>
<td>6.1</td>
<td>44.7</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Debridement</td>
<td>577</td>
<td>1.0</td>
<td>18.9</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>External fixator</td>
<td>423</td>
<td>1.2</td>
<td>27.0</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Thoracotomy</td>
<td>60</td>
<td>61.7</td>
<td>75.0</td>
<td>2</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Resection, Repair, Suture, or incision of large or small intestine, duodenum, or colon</td>
<td>110</td>
<td>10.0</td>
<td>46.4</td>
<td>5</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Suture of liver, abdominal wall, pancreas, or omentum; Laparotomy NEC; Pancreatectomy; Groin I</td>
<td>86</td>
<td>12.8</td>
<td>54.7</td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Amputation of lower extremity</td>
<td>159</td>
<td>2.0</td>
<td>52.3</td>
<td>10</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Therapeutic procedures on muscles and tendons</td>
<td>445</td>
<td>0.7</td>
<td>29.4</td>
<td>15</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>Debridement of open fracture, internal fixation, or reduction to lower extremity (other than hip)</td>
<td>202</td>
<td>2.0</td>
<td>17.3</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Resection of large intestine</td>
<td>58</td>
<td>6.9</td>
<td>58.6</td>
<td>10</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>Splenectomy</td>
<td>42</td>
<td>11.9</td>
<td>69.0</td>
<td>8</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>Debridement of open fracture, internal fixation, or reduction to hip and femur</td>
<td>78</td>
<td>5.1</td>
<td>33.3</td>
<td>10</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td>Cardiopulmonary resuscitation, pericardial window</td>
<td>13</td>
<td>100.0</td>
<td>92.3</td>
<td>4</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>Debridement of open fracture, internal fixation, or reduction to radius and ulna</td>
<td>139</td>
<td>0.7</td>
<td>21.6</td>
<td>17</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>Skull and brain procedures</td>
<td>25</td>
<td>16.0</td>
<td>56.0</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>Amputation, Disarticulation of upper extremity or unspecified</td>
<td>68</td>
<td>1.5</td>
<td>41.2</td>
<td>17</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>18</td>
<td>Arthrotymy</td>
<td>86</td>
<td>1.2</td>
<td>25.6</td>
<td>17</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>19</td>
<td>Exploration, neck</td>
<td>85</td>
<td>1.2</td>
<td>23.5</td>
<td>17</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>20</td>
<td>Suture of diaphragm or lung, Trachea repair</td>
<td>36</td>
<td>2.8</td>
<td>55.6</td>
<td>17</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>21</td>
<td>Debridement of open fracture, internal fixation, or reduction to humerus, hand or unspecified</td>
<td>171</td>
<td>0.0</td>
<td>20.5</td>
<td>25</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>22</td>
<td>Nephrectomy</td>
<td>23</td>
<td>4.3</td>
<td>60.9</td>
<td>17</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>23</td>
<td>Lung Lobectomy, Lung resection</td>
<td>10</td>
<td>20.0</td>
<td>80.0</td>
<td>16</td>
<td>23</td>
<td>39</td>
</tr>
<tr>
<td>24</td>
<td>Exam of Eye Under Anesthesia</td>
<td>19</td>
<td>5.3</td>
<td>26.3</td>
<td>17</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>25</td>
<td>Canthotomy, Canthoplasty</td>
<td>9</td>
<td>11.1</td>
<td>44.4</td>
<td>17</td>
<td>30</td>
<td>47</td>
</tr>
<tr>
<td>26</td>
<td>Arterial bypass</td>
<td>15</td>
<td>0.0</td>
<td>53.3</td>
<td>25</td>
<td>23</td>
<td>48</td>
</tr>
<tr>
<td>27</td>
<td>Stomach suture</td>
<td>12</td>
<td>0.0</td>
<td>58.3</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>28</td>
<td>Debridement of open facial fracture</td>
<td>24</td>
<td>0.0</td>
<td>25.0</td>
<td>25</td>
<td>26</td>
<td>51</td>
</tr>
<tr>
<td>29</td>
<td>Orchietomy, Penis Suture, Scrotum repair</td>
<td>15</td>
<td>0.0</td>
<td>40.0</td>
<td>25</td>
<td>26</td>
<td>51</td>
</tr>
</tbody>
</table>
Cumulative Burden of Procedures by Burden Rank

Cumulative Burden of Procedures, %

Burden Rank

Frequency Mortality Morbidity
Top 10 Most Important Operative Procedures

1. Exploratory laparotomy
2. Vascular procedures other than head and neck
3. Debridement
4. External fixator
5. Thoracotomy
6. Resection, Repair, Suture, or incision of large or small intestine, duodenum, or colon
7. Suture of liver, abdominal wall, pancreas, or omentum; Laparotomy NEC; Pancreatectomy; Groin Exploration
8. Amputation of lower extremity
9. Therapeutic procedures on muscles and tendons
10. Debridement of open fracture, internal fixation, or reduction to lower extremity (other than hip or femur)
Injured body region

- Head
- Upper Extremity
- Lower Extremity, Pelvis, Buttocks
- Thorax
- Abdomen
- Face
- External (skin) and Thermal Injuries
- Spine
- Neck
- Other trauma
Body region by severity (x=12,450)

- Lower Extremity, Pelvis...
- Upper Extremity, x=2,184
- Head, x=1,938
- External (skin) and Thermal...
- Face, x=1,109
- Abdomen, x=912
- Thorax, x=832
- Spine, x=389
- Neck, x=219
- Other trauma, x=24

Legend:
- Minor
- Moderate
- Serious
- Severe
- Critical
- Maximum
- Not further specified
Body region by anatomic structure (x=10,953)

- Lower Extremity, Pelvis, Buttocks, x=2,973
- Upper Extremity, x=2,184
- External (skin) and Thermal Injuries, x=1,870
- Face, x=1,109
- Abdomen, x=912
- Thorax, x=832
- Head, x=830
- Neck, x=219
- Other trauma, x=24

Legend:
- Not further specified
- Whole area
- Vessels
- Nerves
- Organs
- Skeletal
Injuries with AIS>2 among deceased (n=249)

- Lower Extremity, Pelvis, Buttocks, x=47
- Upper Extremity, x=13
- External (skin) and Thermal Injuries, x=3
 - Face, x=0
- Abdomen, x=10
- Thorax, x=60
- Head, x=111
- Neck, x=1
- Other trauma, x=4

Legend:
- Not further specified
- Whole area
- Vessels
- Nerves
- Organs
- Skeletal
Anatomical structure

- Skeletal
- Organs
- Nerves
- Vessels

Whole area

Skin abrasion
Contusion
Amputation
Burn/compartment syndrome
Avulsion
Other

Not further specified

Penetrating
Laceration
<table>
<thead>
<tr>
<th>Primary body region</th>
<th>Other</th>
<th>Head</th>
<th>Face</th>
<th>Neck</th>
<th>Thorax</th>
<th>Ab</th>
<th>Spine</th>
<th>UE</th>
<th>LE</th>
<th>Skin & Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Head</td>
<td>0</td>
<td></td>
<td></td>
<td>6<sup>a</sup></td>
<td>2<sup>a</sup></td>
<td>2</td>
<td>6<sup>b</sup></td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Face</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Thorax</td>
<td></td>
<td></td>
<td></td>
<td>12<sup>a,c</sup></td>
<td>10</td>
<td>4<sup>d</sup></td>
<td>9</td>
<td>1<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aIncludes 1 injury to the Lower Extremity, Pelvis and Buttocks as a tertiary body region
^bIncludes 3 injuries to the Lower Extremity, Pelvis and Buttocks as a tertiary body region
^cIncludes 1 injury to the Spine as a tertiary body region
^dIncludes 1 injury to the Lower Extremity, Pelvis and Buttocks as tertiary body regions

Poly-trauma patients (n=89)
Life-threatening injuries

77.4% were amputations

FCI

- AIS=6 for 11 patients
- Diagnoses
 - massive burns
 - myocardium avulsions
 - multiple organ injury with loss of one or more limbs and/or decapitation
 - spinal injuries
- 6/11 survived Role 2 discharge

- Procedures with >15% mortality
 - #14 Cardiopulmonary resuscitation, pericardial window
 - #5 Thoracotomy
 - #23 Lung Lobectomy, Lung resection
 - #16 Skull and brain procedures
Procedure burden for limb-threatening injuries

» #4 External fixator
» #8 Amputation of lower extremity
» #9 Therapeutic procedures on muscles and tendons
» #10 Debridement of open fracture, internal fixation, or reduction to lower extremity (other than hip or femur)
» #13 Debridement of open fracture, internal fixation, or reduction to hip and femur
» #15 Debridement of open fracture, internal fixation, or reduction to radius and ulna
» #17 Amputation, Disarticulation of upper extremity or unspecified
» #21 Debridement of open fracture, internal fixation, or reduction to humerus, hand or unspecified
Eye-threatening injuries

» Procedure burden
 » #24 Exam of Eye Under Anesthesia
 » #25 Canthotomy, Canthoplasty

» 369 eye injuries
 » 30 likely blind
 » 5 potentially blind

» Diagnoses
 » eye avulsion/enucleation
 » retinal detachments
 » cornea lacerations
 » sclera laceration/rupture or injury
 » choroid rupture
 » eye injuries with retained intraocular foreign body
Summary

» Many minor injuries, some poly-trauma injuries
» Risk of losing their life, limb, or eyesight
» ~20% predicted to suffer long-term morbidity
» Most common non-operative procedures:
 » x-ray
 » ultrasound
 » wound care
 » catheterization
 » intubation
» 10 procedure groups are attributable to ~75% of all operations, deaths, and unexpected outcomes
» 80% received crystalloids (median=1.1 L)
» 19% received transfusion
» Top 4 non-fatal unanticipated findings
 » hypothermia
 » anemia/blood loss
 » hypovolemia
 » shock
Limitations

- Data collected by healthcare professionals:
 - Voluntary data collection
 - Limited data entry training
 - Role 2 Database is not validated against medical records

Largest source of Role 2 data available
Policy Implications

» Research and pre-deployment training programs should focus on these injuries and common and complex procedures

» Resource medical assets at Role 2 facilities using this information

» Continue data collection at these facilities to support future efforts
Pre-deployment training analysis
To survey trauma care-oriented Army nurses (RNs and LVNs) and combat medics to describe the range of pre-deployment trainings they experienced in order to provide guidance on future pre-deployment training requirements.
Methods

» Survey method
 » Approved by IRB (exempt) and ARL
 » Intelink.gov survey platform
 » Questions based on READI tool

» Link sent to military email accounts
 » Army nurses from active (n=2,344) and reserve (n=2,458) components
 » Active duty combat medics (n=17,535)

» 3 monthly reminders

» Targeted up to 2 most recent deployments
Inclusion criteria:

- Deployed to combat theater since 2001
- Registered nurse or medic
 - Medical/surgical nurse
 - Emergency nurse
 - Critical care nurse
 - Nurse anesthetist
 - Licensed vocational nurse
 - Combat medic (or variants)
Results

» 22,337 initial emails sent
 » 1,181 respondents (5.3% response rate)
 » 696 met inclusion criteria (58.9% of respondents)

» 73.4% (n=511) male

» 91.1% (n=634) active duty

» 45.1% (n=314) officers (Army Nurse Corps)

» Multiple deployments
 » 61.2% had 2 or more
 » 14.2% had 4 or more
Results

Location of Most Recent Deployment

Afghanistan, 52.3%
Kuwait, 8.5%
Iraq, 28.4%
Kosovo, 1.0%
Syria, 2.4%
Other (Middle East), 2.6%
Other (global), 2.9%
Africa, 1.9%
Results

Evaluated for Clinical Competency Prior to Deployment

- Yes: 62%
- No: 38%

- Combat Medic/EMT-B: 49%
- Medical/Surgical Nurse: 13%
- Nurse Anesthetist: 12%
- Critical Care Nurse: 9%
- Flight Medic: 3%
- Others: 4%
- Emergency Nurse: 6%
- Licensed Vocational Nurse: 4%
Results

Proportion Assigned to Roles of Care

- Role 3
- Role 2 and Role 3
- Role 2 (BCT)
- Role 2 (FST, FST+, FST-)
- Role 2 (Special Operations)
- Point of Injury or Role 1
- Medical Evacuation
- Other
* Totals may be greater than 696 because participants could select more than one option
Results

Evaluation of Deployment Readiness (n)*

- Completed prescribed training
- Completed prescribed task checklist
- Civilian specialty certifications
- Local certification exercise
- Other
- Unknown

* - Totals may be greater than 696 because participants could select more than one option
Results

Perceived Quality of Predeployment Training

- Nurse Anesthetist
- Medical/Surgical Nurse
- Critical Care Nurse
- Emergency Nurse
- Combat Medic/EMT-B
- Flight Medic
- Licensed Vocational Nurse
- Other

Categories:
- Extremely Poor
- Poor
- Adequate
- Good
- Excellent
Results

Confidence in Providing Combat Casualty Care Prior to Deployment

- Nurse Anesthetist
- Medical/Surgical Nurse
- Critical Care Nurse
- Emergency Nurse
- Combat Medic/EMT-B
- Flight Medic
- Licensed Vocational Nurse
- Other

Legend:
- Not at all confident
- Slightly confident
- Moderately confident
- Very confident
- Fully confident
* Totals may be greater than 696 because participants could select more than one option
Results

Team Pre-Deployment Training Attended (n)*

- Army Trauma Training Detachment
- Brigade Combat Team Tactical Training
- Critical Care Air Transport Team
- Joint Regional Training Center
- National Training Center
- Other
- None

* Totals may be greater than 696 because participants could select more than one option
Results

Most Important Combat Casualty Care Skills Used (n)

<table>
<thead>
<tr>
<th>Skill</th>
<th>Nurses</th>
<th>Medics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achieving hemostasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airway management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breathing support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Care for penetrating eye injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caring for CBRNE patient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communicating/documenting care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intravenous (IV) access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV fluid therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing a mass casualty event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing burns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing fractures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring vital signs (electronic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring vital signs (manual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparing for evacuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventing hypothermia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providing care during air evacuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providing care during ground evacuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providing care under fire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providing prolonged field care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - Totals may be greater than 696 because participants could select more than one option
Results

* Totals may be greater than 696 because participants could select more than one option.
Most nurses and medics were satisfied with the quality of their pre-deployment training (when it occurred)

Nurses and medics believed they were capable of providing effective combat casualty care

Combat died of wounds rates started to rise recently, indicating that the trauma system may have previously unidentified limitations

Currently unable to link pre-deployment training to patient outcomes; success of training is subjective
Limitations

» Survey data only captured pre-deployment training for deployers and not for non-deployers

» Sample not representative of all nurse specialties
Conclusions

» Army nurses and medics felt confident and sufficiently prepared to provide trauma care during their deployments

» Increases in died of wounds rates may indicate that training was not sufficient

» To better understand the effectiveness of combat casualty care training, the Army must be able to link training events to objective measures, such as patient outcomes
Whole Blood pre-proposal idea

COL Jennifer M. Gurney, MD; Amanda M. Staudt, PhD; Deborah J. del Junco, PhD; COL Andre P. Cap, PhD, MD; COL (Ret.) Elizabeth A. Mann-Salinas, PhD; LTC Chris VanFosson, PhD
Background

» WB vs. CT
 » Observational studies inadequate adjustment [1-5]
 » Injury and hemorrhage severity
 » Time-dependency of blood transfusion
 » Controlled trials are challenging

» Association between blood type O and mortality [6]
Data sources

» DoDTR
» TMDS
» CENTCOM blood program
Study population

Inclusion Criteria
» RBC-containing blood products or plasma
» Non-missing values for key variables

Exclusion Criteria
» >20% total body surface burn
» <18 years of age
» Expectancy
» Inhalation injury
» Requiring thoracotomy prior to ER arrival
» CPR>5 minutes prior to ER arrival
Primary measures

» Exposure
 » Blood product transfusion (Aim 1 & 2)
 » ABO blood type (Aim 3)

» Outcome - Survival
 » 6 hours post injury
 » 24 hours post injury
 » 30 days post injury

» Matching factors
 » Injury mechanism and type
 » Patient affiliation
 » Tourniquet use
 » Prehospital blood transfusion
 » Admission base deficit
 » Age
 » Gender
 » Prehospital high shock risk
 » Time from injury to first surgical treatment facility arrival
 » Severity of head injury
 » Hemorrhagic torso injury
 » Severity of traumatic limb amputation
To determine the association of survival at 6 hours, 24 hours, and 30 days in combat casualties who received either whole blood or red blood cells (RBCs) solely from component therapy after appropriate statistical adjustment for time-dependency of blood transfusion and bleeding severity.

- WB vs others
- WB dose vs no dose
- Only WB vs 1:1:1 CT
Aim 2

» To determine differences in **survival** at 6 hours, 24 hours, and 30 days in combat casualties who received either **fresh whole blood** or low-titer O whole blood (LTOWB)
Cox proportional hazards
» Exposed recipients with the matched non-exposed recipients
» Delayed entry approach
 » Adjust for left truncation
 » To reduce immortal time bias among transfusion recipients who were selected for analysis because they survived long enough to receive whole blood transfusion
» Proportional hazards assumption will be assessed using the Schoenfeld residuals and log-log plots

Survival curves
» Each covariate will be set at its median value
Aim 3

» To evaluate differences in survival at 6 hours, 24 hours, and 30 days in combat casualties by ABO blood type

» Multivariable logistic regression
Pressure Ulcer pre-proposal idea

Shelia Savell, PhD, RN; LTC Christopher VanFosson, PhD, MHA, RN; Amanda Staudt, PhD, MPH; Mica Barba, CNS; Sarah Shingleton, CNS; Krystal Valdez-Delgado, BSN; Jennifer Trevino, MBA
Pressure Ulcers

» Occur in a localized area, typically over a bony prominence, due to pressure, shear, and/or friction

» Associated with poor outcomes
 » ↑ length of hospital stay
 » ↑ mortality rates
 » ↑ cost of care
 » ↑ pain
 » ↓ patient satisfaction

» Critically ill burn patients are a high risk population, especially BFT patients
 » ↓ movement
 » ↓ room to maneuver the patient
 » ↑ inflight stress
 » ↑ in vibration
 » Temperature changes
 » Moisture build up, ↑ friction
 » ↑ pressure due to gravitational forces
» Microclimate in a local region
 » Temperature
 » Moisture (relative humidity)
 » Airflow experienced

» In 2014, National Pressure Ulcer Advisory Panel CPG recommended microclimating

» New type of medical device called **specialty linens**
 » FDA approved
 » Wicks away moisture faster, smoother, cooler, antimicrobial coating

» Positive clinical findings
 » Cardiovascular and surgical: 5.2% → 2.8%
 » Telemetry, Urology, & ICU: 10.3% → 2.5%
 » Medical renal and surgical: 17% → 4.5%
Aim 1

Evaluate use of a specialty linen on occurrence of posterior pressure ulcers during a 36-month period in burn patients

» Pre-implementation: 18 month data collection period
» Post-implementation: 18 month data collection period
» Pre-specified secondary analysis on military casualties transported by the Army Burn Flight Team and admitted into the USAISR Burn Center
Methods

» All USAISR Burn Center and US Army Burn Flight Team patients
 » 600 USAISR Burn Center burn patients/year
 » 10-25 Burn Flight team patients/year

» Exposure
 » Cotton blend bed linens (non-exposure)
 » Silk-like specialty bed linen (exposure)
» Pressure ulcer formation incidence rate (multiple pressure ulcer formations/patient)

» Measurements
 » National pressure ulcer advisory panel grading scale USAISR Burn Center
 » Include all stages
 » Burn center patients
 » within 72 hours
 » Weekly
 » BFT patients
 » 24-48 hours
 » 3 days post transport
 » Weekly
 » Evaluated until a patient is discharged or can independently ambulate
Table 1. Sample sizes for 80%, 85%, and 90% power for two-sided type 1 error rate of 0.05 with excessive, moderate and conservative differences

<table>
<thead>
<tr>
<th>Difference</th>
<th>Sample size per arm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80% Power</td>
</tr>
<tr>
<td>2.4</td>
<td>1046</td>
</tr>
<tr>
<td>7.8</td>
<td>154</td>
</tr>
<tr>
<td>12.5</td>
<td>96</td>
</tr>
</tbody>
</table>
Aim 2

» Modify the Braden scale for predictive use in burn patients
 » Used to evaluate the patient’s risk of pressure ulcers
 » Not developed for burn patients
 » Modify score for the burn patient population
 » Logistic regression
 » Prediction model
 » Weighted scoring system
 » Evaluated with sensitivity and specificity
References

This work was supported by the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No. W81XWH-15-2-0085.

The authors acknowledge the Joint Trauma System Role 2 Database for providing data for this study

This work was supported by the TOSR team (Jennifer Trevino, Krystal Valdez-Delgado, Mithun Suresh, Nicole Caldwell, Tricia Garcia-Choudary, Amanda Staudt, LTC Chris VanFosson, Elizabeth Mann-Salinas), Jennifer Gurney, Frank Butler, and Russ Kotwal
Questions?
<table>
<thead>
<tr>
<th>ICD-9-CM Code</th>
<th>Description</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploratory laparotomy</td>
<td>Laparotomy, Exploratory</td>
<td>444</td>
<td>100.0</td>
</tr>
<tr>
<td>Vascular procedures other than head and neck</td>
<td>Ligation, Blood Vessels</td>
<td>118</td>
<td>51.3</td>
</tr>
<tr>
<td></td>
<td>Repair, Blood Vessel with suture or tissue patch graft</td>
<td>51</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>Graft, Blood vessel</td>
<td>21</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>Suture (laceration), Vein</td>
<td>16</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Suture (laceration), Artery</td>
<td>15</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Control, hemorrhage</td>
<td>7</td>
<td>3.0</td>
</tr>
<tr>
<td>Debridement</td>
<td>Debridement</td>
<td>577</td>
<td>100.0</td>
</tr>
<tr>
<td>External fixator</td>
<td>External fixator</td>
<td>423</td>
<td>100.0</td>
</tr>
<tr>
<td>Thoracotomy</td>
<td>Thoracotomy</td>
<td>60</td>
<td>100.0</td>
</tr>
<tr>
<td>Resection, Repair, Suture, or incision of large or small intestine, duodenum, or colon</td>
<td>Resection, Repair, Suture, or incision of large or small intestine, duodenum, or colon</td>
<td>110</td>
<td>100.0</td>
</tr>
<tr>
<td>Suture of liver, abdominal wall, pancreas, or omentum; Laparotomy NEC; Pancreatectomy; Groin Exploration</td>
<td>Suture (laceration) of liver, abdominal wall, pancreas, or omentum; Laparotomy NEC, Pancreatectomy Exploration, Groin</td>
<td>54</td>
<td>62.8</td>
</tr>
<tr>
<td>Amputation of lower extremity</td>
<td>Amputation, Disarticulation</td>
<td>199</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Exploration, Groin</td>
<td>32</td>
<td>37.2</td>
</tr>
<tr>
<td></td>
<td>Fasciotomy</td>
<td>239</td>
<td>53.5</td>
</tr>
<tr>
<td></td>
<td>Debridement, muscle</td>
<td>114</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>Removal, Foreign body, Soft tissue</td>
<td>58</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>Suture, Fascia or Muscle</td>
<td>18</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Other*</td>
<td>16</td>
<td>3.6</td>
</tr>
<tr>
<td>Debridement of open fracture, internal fixation, or reduction to lower extremity (other than hip or femur)</td>
<td>Debridement, Open fracture</td>
<td>172</td>
<td>80.8</td>
</tr>
<tr>
<td></td>
<td>Fixation, Internal</td>
<td>20</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>10</td>
<td>4.7</td>
</tr>
<tr>
<td>Procedure</td>
<td>Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resection of large intestine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splenectomy</td>
<td>42 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debridement of open fracture, internal fixation, or reduction to hip and femur</td>
<td>78 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52 66.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 15.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiopulmonary resuscitation, pericardial window</td>
<td>13 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debridement of open fracture, internal fixation, or reduction to radius and ulna</td>
<td>139 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>118 84.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 15.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skull and brain procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniotomy, Burr holes, Foreign body removal in skull or brain</td>
<td>14 56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skull debridement, Cranietomy</td>
<td>11 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amputation, Disarticulation of upper extremity or unspecified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>68 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrotyomy</td>
<td>86 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration, neck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suture of diaphragm or lung, Trachea repair</td>
<td>36 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debridement of open fracture, internal fixation, or reduction to humerus, hand or unspecified</td>
<td>171 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122 69.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41 23.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephrectomy</td>
<td>23 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung Lobectomy, Lung resection</td>
<td>10 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam of Eye Under Anesthesia</td>
<td>19 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canthotomy, Canthoplasty</td>
<td>9 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial bypass</td>
<td>15 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach suture</td>
<td>12 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debridement of open facial fracture</td>
<td>24 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchiectomy, Penis Suture, Scrotum repair</td>
<td>15 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colostomy</td>
<td>12 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suture of bladder, ureter, or kidney</td>
<td>8 100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small intestine resection</td>
<td>6 100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Combat continuum of care
POI → Role 1: Field Care → Role 2: Forward Surgery Care → Role 3: Deployed Hospitals → Role 4: Regional Evacuation Hub

Patient movement
» Providers
 » Self/buddy aid
 » Combat lifesaver

» Capabilities
 » First aid
 » Lifesaving measures

» TCCC
 » Care Under Fire
 » Tactical Field Care
 » Tactical Evacuation Care
Role 1 - Battalion Aid Station

» Providers
 » Physician assistant
 » Medic

» Capabilities
 » Triage
 » Life saving treatment
 » Stabilization for evacuation

 » Surgical capability
 » Patient holding
<table>
<thead>
<tr>
<th>Regulated</th>
<th>MEDEVAC</th>
<th>CASEVAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated hospital patient transfer</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Medical personnel</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Medical equipment</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>En route care</td>
<td>✓</td>
<td>?</td>
</tr>
</tbody>
</table>
MEDEVAC Air transported the most patients

CASEVAC Air

- Transported a small portion of patients
- Highest percent of KIA patients
- Shortest transport time

Importance of training all deployed personnel in TCCC
Role 2 - Forward Surgery Care

» Providers
 » Surgeons
 » Nurse anesthetists
 » Critical care/ER nurses
 » OR nurse
 » Techs

» Capabilities
 » Damage control surgery
 » Damage control resuscitation
 » Limited patient hold

» Median length of stay: 2.5 (IQR=1.2, 5.5) hours
Transport from Role 2 to Role 3

» Fixed-wing planes or helicopters

» Capabilities
 » Vasopressors
 » Blood
 » Definitive airway

» Providers
 » Paramedic
 » Medic
 » Critical care provider
En route care from Role 2 to 3

» Diagnosis:
 » 38.6% orthopedic injury
 » 23.9% soft tissue trauma

» At transfer:
 » 26.9% intubated
 » 1.6% vasopressors
 » 7.4% temporary chest closure
 » 5.2% pH < 7.3
 » 3.5% base deficit > 5
Role 3- Deployed Hospitals

» Combat support/field hospital
» Highest level of care in theater
» Capabilities
 » Blood banking
 » Advanced imaging
 » Full laboratory
» Ancillary services
 » Rehabilitation
 » Nutrition support
 » Outpatient care

Trauma Bay
Role 3 - Deployed Hospitals

» Full-spectrum trauma care providers
 » Neurosurgery
 » Vascular surgery
 » Definitive orthopedic surgery
» Extended patient hold
» Extended ICU holding capability

Operating Room
» In Vietnam, casualties remained in theater for 21 days

» Most critically injured casualty remain in theater <28 hours
Transport from Role 3 to Role 4

<table>
<thead>
<tr>
<th></th>
<th>CCATT</th>
<th>AE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flying ICU</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>MD</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Nurse</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RT</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>
Aeromedical Evacuation Challenges

» Heavy equipment

» ↑ number of patients

» Unstable physiology in early post-trauma patients

» Limited patient access

» Noise limits diagnostic capabilities

» Providers

 » Fatigue

» Variation of clinical skills
Role 4 - Regional Evacuation Hub

» All specialties

» Capabilities:
 » Full spectrum of care
 » Complex surgical care

» Fixed facility trauma center

» OCONUS or CONUS
Role 2
What is a Role 2?

» Variation in terminology

» Confusion over “Role 2”

» US Army is the ONLY service/partner to NOT consider Role 2 the first surgical capability on the battlefield
Critically injured causalities require timely care1

Reduce time to between injury and surgical care:

- Forward positioned surgical teams2,3,4

- Increase number and dispersion of surgical teams1

- “Golden hour” mandate1
Role 2 Facilities by Region, 2008-2014