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1. Introduction
1.1 Motivation
Military operations for the Soldier, whether dismount or vehicle-borne, are cur-
rently highly dependent upon satellite-based navigation, including the use of GPS
signals, which provide location and time with relatively high accuracy and preci-
sion. The typical commercially available GPS on smartphones claims accuracy of
5m in open sky areas, with reduced accuracy around tall buildings.1 Real Time
Kinematic differential ranging techniques for the Global Navigation Satellite Sys-
tem (GNSS), which utilize base station and rover pairs with carrier signals and
transmitted error corrections, can provide accuracy on the order of 1 cm + 1 ppm,2

thus trivially solving the localization problem for many outdoor applications. How-
ever, GNSS signals are weak by design, balancing energy allocation for the constant
multivariate broadcast from solar powered satellites, which open them up to vul-
nerabilities of jamming and spoofing.3–5 Jammers, being inexpensive and commer-
cially available (albeit illegal), have been shown to disrupt civil services in many
cases.5 GPS spoofing is an additional threat to trajectory tracking, as instead of
blocking the signal, it deceives the receiver with false location or time. Thus, there
is a critical need and growing research to mitigate the unreliability of GPS signals
for localization scenarios by developing alternative or auxiliary methods for accu-
rate position recovery.

1.2 Visual Localization
Given the limited power and weight capacity of the dismount Soldier, we consider
the use of low cost, size, weight, and power (C-SWaP) sensors. It is typical for pose
or position estimation to be performed via algorithms for the ubiquitous camera.
The process of determining the pose or odometry of a camera-equipped body using
vision is called visual odometry (VO). Another commonly used navigation sensor
is the inertial measurement unit (IMU), which contains accelerometers, gyroscopes,
and optionally magnetometers, measuring linear acceleration, rotational rates, and
compass direction, respectively. Commercial smartphones often utilize small form
microelectromechanical systems-based IMUs. Both camera and IMU are typically
contained on handheld devices, such as smartphones, as well as on small robotic
platforms, such as the micro aerial vehicle. Localization pipelines that use both
vision and IMU data are called visual-inertial odometry (VIO).
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Despite VO and VIO algorithms performing well on numerous computer vision
benchmarks,6 they are not robust to failures stemming from environmental artifacts.
The algorithms often produce drift that grows with time in the absence of correction
from a global sensor (e.g., GPS) or loop closure from a simultaneous localization
and mapping (SLAM) system. In a SLAM system, the loop closure component is
usually contained in an offline module, decoupled from the online pose estimation.
In order to close the loop on the map, the system must perform a task called visual

place recognition, in which it determines if the current image matches a location
previously visited, after which the map and trajectory are adjusted accordingly.

In this work, we consider not only the place recognition component, but also the
full visual localization approaches of determining the 6-degrees-of-freedom (DOF)
pose of a query image, given a representation of the known environment, available
as a database of images or a 3D model. We provide an overview of the state-of-the-
art in outdoor visual localization for GPS-denied environments of various scales,
across changing appearances, with consideration for multiple sensory and ancillary
modalities.

1.3 Overview
There is much overlap between the fields of place recognition, visual localization,
and SLAM, which are well studied in various surveys. Most similar to this report
is the work of Brejcha and Čadík,7 which provides an overview of visual geolo-
calization. The recent survey of Piasco et al.8 provides a more comprehensive re-
view focused on all components of city-scale visual-based localization, which is
the most widely studied scale in the area of visual localization. The work of Lowry
et al.9 gives an overview of place recognition, detailing its main modules of im-
age processing, mapping, and belief generation. The mapping component of place
recognition, in which the system decides which information to add or remove from
the world representation, is not studied in this survey. Place recognition and visual
localization are also vital in SLAM for the detection and closing of loops in a tra-
jectory. We do not discuss the details of SLAM in this report, but refer the reader
to existing works10,11 for a comprehensive look at the visual-based approaches to
SLAM.

The organization of the remainder of this report is as follows: Section 2 discusses
sensory modalities and ancillary environmental data modalities used in visual lo-
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calization; Section 3 reviews techniques for scene matching between a query and
database images as used for image retrieval in visual localization; Section 4 dis-
cusses pose estimation techniques for matched images; Section 5 outlines classi-
fications of visual localization approaches and highlights specific works utilizing
different types of approaches; Section 6 discusses cross-domain visual localization
for a wide demonstration of applications and capabilities; Section 7 describes met-
rics and datasets for evaluation and benchmarking of approaches; and Section 8
provides a discussion of the findings and conclusions for future work needed to
adapt the field for military relevance.

2. Sensor and Ancillary Modalities
2.1 Visual
2.1.1 Electro-Optical
The most ubiquitous sensor used in visual localization is the electro-optical camera.
This is due to its low C-SWaP, as well its wide commercial availability. For this rea-
son, it is the most commonly studied modality for place recognition and visual lo-
calization. However, there are inherent weaknesses to using purely visual imagery.
Visual imagery is affected by artifacts, such as exposure, noise, and motion blur,
as well as time-of-day, weather, and seasonal changes. Many methods attempt to
achieve robustness against such changing conditions by augmenting data with ran-
dom transformations, as well as training algorithms across multiple environmental
conditions.

While most commercial cameras capture red, green, blue (RGB) images, many
conventional image descriptors, and the VO algorithms that employ them, require
grayscale images. However, some whole image descriptors and learning-based meth-
ods have been using RGB images. RGB imagery is often unreliable during the
daytime in the presence of illumination changes from sunlight and weather, but
has demonstrated consistency at nighttime.12 Color information can also be used to
identify and remove shadows, which can cause scene matching failures.

2.1.2 Stereo / Depth
Some localization systems utilize stereo cameras, because depth can be estimated
with a known stereo baseline and known camera calibration. Monocular VO and
depth estimation suffer from scale ambiguity. However, the use of stereo allows for

3



recovery of true scale. Wide stereo baselines provide discernment of greater depths,
but have a larger blind range, in which objects are too near and cannot be seen by
both cameras. There are also depth cameras, which can be units containing stereo
cameras whose data are processed and outputted as a depth image, or red, green,
blue, and depth (RGB-D) cameras. RGB-D cameras produce dense depth registered
with visual imagery, and can exploit 3D data to improve place recognition.9 RGB-D
data is also widely used in SLAM to produce dense point cloud models with color
information also useful for semantic segmentation.

2.1.3 Infrared (IR) / Thermal
It is critical in military operations to have sensors that can see regardless of time
of day, illumination, weather, and environmental conditions, such as fog and dust.
For this reason, we consider infrared (IR) imagers, which capture wavelengths be-
yond the visual spectrum, encompassing the near infrared (NIR), short-wave in-
frared (SWIR), and long-wave infrared (LWIR) ranges. Moving away from the fo-
cus of improving single modality performance, there is a desire to fuse additional
sensor modalities to improve performance and robustness to sensor failures and
changing environmental conditions. Using IR sensors can bypass some of the issues
present in visual imagery, discussed above, that often cause localization failures. It
has been shown that a combined visible-IR representation provides promising place
recognition results.13 We refer the reader to Section 6.3 for a more detailed descrip-
tion of cross-spectral work.

2.2 Environment Map / Model
Place recognition and visual localization require prior knowledge of an environ-
ment. In many approaches, a database of geotagged images is used. For more ac-
curate pose estimation, some image databases have been processed to build 3D
reconstructions. The points in the databases typically include associated feature
descriptors for matching. Many datasets for visual localization are catalogued in
Section 7.

2.2.1 2D Maps
Several methods utilize 2D data, including satellite/aerial imagery14,15 and land at-
tribute cover maps.14 Land cover data for the United States, provided through the
National Land Cover Database∗,16–18 is publicly available from 2001 to present,

∗https://www.usgs.gov/centers/eros/science/national-land-cover-database
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at 5-year-update intervals. It is a more general land cover database, with 16 land
cover classes, at 30-m resolution. Additional US land cover data more focused on
habitat identification is available∗, including more classes of land cover. Figure 1
illustrates a land cover map and example classes correponding to aerial data of the
same geographic location.

Fig. 1 2D map data used in visual localization, including aerial data (left) and land cover
data (right). Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, Pattern Analysis and Applications, State-of-the-art in visual geo-localization.
Brejcha, Jan and Čadík, Martin, 2017

2.2.2 3D Models
City-scale (urban) approaches typically rely upon sparse 3D models, represented
as a point cloud. These models can be generated using light detection and ranging
(LIDAR) data, or reconstructed from multi-view stereo (MVS)19 or Structure-from-
Motion (SfM).20 Recent benchmarking datasets have generated SfM models from
database images using the open-source COLMAP.21 SfM constructs a 3D model
from many overlapping images, and thus not all images require geotags for the
model to be geo-registered. Other 3D models used in urban environments may be
voxel-based or coarse computer-aided design (CAD) models.22

For natural (mountainous) landscapes, approaches usually utilize a digital elevation
model (DEM), digital surface model (DSM), or digital terrain model (DTM). These
models are typically available publicly through government databases. The National
Elevation Dataset†23 provided DEMs for the United States. However, it has recently

∗http://gapanalysis.usgs.gov/gaplandcover/
†https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
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been updated with the ongoing 3D Elevation Program∗, started in 2016, to produce
high resolution elevation data using LIDAR, combined with the bare earth elevation
data, to be completed within a decade. The multitude of point clouds currently
available contain more than 12 trillion LIDAR points.

3. Scene Matching
In order to perform visual scene matching, the query and database images require
data representation, in the form of descriptive and distinctive features. These fea-
tures, often highly dimensioned, may require aggregation and quantization to allow
for efficient detection, description, and matching.

3.1 Features
Data representation in an image conventionally consists of features, which are ex-
tracted using interest point detectors, to produce a set of stable regions under various
viewing conditions. For detected regions, descriptors encode the distinctive content
of the feature for matching. Some features were originally designed as joint detec-
tors and descriptors, but are typically decoupled for the purpose of image retrieval,
which is the search for image similarity. See Table 1 for a list of commonly used
feature detectors and descriptors in place recognition and visual localization.

Local features are detected and described at the pixel and sub-pixel level, and are
typically more robust than global features against changes in appearance and occlu-
sions. Introduced two decades ago, the Scale-Invariant Feature Transform (SIFT)24

is still the most widely used and a top performing local feature descriptor. Al-
though SIFT is both a detector and a descriptor, it is often used as a desciptor
with the Hessian-affine25 point detector. The Principal Components Analysis-SIFT
(PCA-SIFT)26 descriptor reduces the SIFT dimension from 128 to 36, thus lowering
its discriminative ability, in order to expedite the matching process. RootSIFT27 im-
proves the matching performance of SIFT with minor overhead cost. For real-time
applications, Speeded Up Robust Features (SURF)28 have been employed as a light
alternative to SIFT. Binary features, such as Binary Robust Independent Elementary
Features (BRIEF)29 and Binary Robust Invariant Scalable Keypoints (BRISK),30 ac-
celerate matching speed using the Hamming distance instead of Euclidean distance.

The survey of Mikolajczyk and Schmid31 provides an evaluation of early traditional

∗https://www.usgs.gov/core-science-systems/ngp/3dep
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local descriptors. With the introduction of convolutional neural networks (CNNs)
to the field of image description, it has been necessary to evaluate learned descrip-
tors against traditional descriptors, which has been performed by Schönberger et
al.,32 while Balntas et al.33 introduce a benchmark for evaluating these two classes
of local descriptors. Several learned descriptors, such as TFeat34 and Patch-CKN,35

seek to be a drop-in for the default SIFT descriptor, used with a traditional inter-
est point detector. Other learned features, such as DeepDesc,36 Learned Invariant
Feature Transform (LIFT),37 SuperPoint,38 and D2-Net39 provide the full detection

Table 1 Feature detectors and descriptors

Name Type Learned Detector Descriptor
Hessian-affine25 Local x
FAST40 Local x
SIFT24 Local x x
PCA-SIFT26 Local x
RootSIFT27 Local x
SURF28 Local x x
BRIEF29 Local x x
BRISK30 Local x x
ORB41 Local x x
FREAK42 Local x
TFeat34 Local x x
Patch-CKN35 Local x x
DeepDesc36 Local x x x
LIFT37 Local x x x
SuperPoint38 Local x x x
D2-Net39 Local x x x

Color histogram43 Global x
Gist44 Global x
BRIEF-Gist45 Global x
WI-SURF46 Global x
HOG47 Patch x
DoG48 Blob x
MSER49 Blob x

Lines50 Semantic x
Edges51 Semantic x
Skyline52 Semantic x x
PointRay53 Semantic x x
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and description pipeline.

Global features do not require detection, but describe the whole image with a single
signature of high dimensionality, which tends to be less computationally intensive
than describing multiple local salient regions in an image. Gist44 is a commonly
used global image descriptor using averaged Gabor filters at various orientations
and frequencies to represent the "gist" of a scene. Color histograms43 are another
global descriptor well used in image retrieval.

Global features can be used on image patches, typically extracted on a grid or with
a sliding window. Patches can also be automatically selected using saliency with
an attention mechanism. Histogram of Oriented Gradients (HOG)47 is a patch de-
scriptor used for describing architectural features in landmarks. Maximally Stable
Extremal Regions (MSER) and difference of Gaussians (DoG) are blob detectors
that extract regions of interest in an image. Global features can also be combined
with or formed from local features extracted on a grid. Sünderhauf and Protzel45

use a global descriptor based on the local BRIEF descriptor to perform loop clo-
sure. Badino et al.46 use a whole image SURF (WI-SURF) for localization.

Global features can be learned for place recognition using the highly accessible and
versatile CNN.54 Many of these learned global descriptors are used in end-to-end
pipelines that will be discussed in greater detail in the following sections.

Semantic features use higher-level representation to add meaning to data. These can
be geometric shapes such as lines,50 which are good for man-made structures such
as buildings, or contours from edge detection.51 For methods like horizon match-
ing, semantic features such as skylines52 are often used. For urban geo-localization,
Bansal and Daniilidis introduced PointRay,53 pairing points with direction vectors
to represent building corners.

3.2 Quantization
The Bag-of-Words (BoW) approach was originally used for modeling documents
with the use of word histograms. It was introduced to the image retrieval community
in the work of Sivic and Zisserman.55 DBoW256 is an open-source method utilizing
a Bag-of-Binary-Words for fast place recognition, and has been used in SLAM
methods for loop closure. In the image domain, the BoW model, also called Bag-
of-Features, represents the image similarly to a document as a bag of visual words,
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and is made usable with the introduction of features such as SIFT. Local features
are quantized to visual words, which are encoded into a vocabulary, a pre-trained
codebook. This can be done as a hard quantization, or a soft quantization, where
each feature can be quantized to multiple visual words.

The visual words are assigned specific weights, emphasizing discriminative features
for matching. Feature weighting commonly uses term frequency-inverse document
frequency, which is the product of the term frequency, which is defined by the oc-
currence count of the word within the image, and the inverse document frequency,
which is a global measure of the word in the vocabulary. Visual burstiness57 is a
phenomenom in word weighting that occurs in the presence of repetitive structures
in an image, which corrupts visual similarity measures. Jégou et al.57 proposed ef-
fective solutions adjusting the term frequency during the detection phase. Torii et
al.58 utilize burstiness as a distinguishing feature in buildings and modify the simi-
larity measurements accordingly.

Jégou et al.59 introduced the Hamming embedding, providing a more efficient and
discriminative encoding by subdividing Voronoi cells, and assigning binary sig-
natures to features. The Fisher Vector60 uses a Gaussion mixture model (GMM) to
model the distribution of features extracted in an image, trained using the maximum
likelihood estimation. The encoding aggregates the first and second order statistics
of the features under the GMM. Jégou et al.61 introduced a new method for aggre-
gating local descriptors into a compact image representation called Vector of Lo-
cally Aggregated Descriptors (VLAD), which is capable of searching a 10 million
image dataset in about 50ms. Rather than assigning the closest visual word to the
feature, VLAD uses the difference between them. Many image retrieval techniques
have employed the VLAD descriptor, including DenseVLAD62 and the learning-
based NetVLAD,63 which will be detailed in Section 5.2.1.

The codebook is clustered using an approach such as k-means, and partitioned into
Voronoi cells with the visual words at the centroids. For large codebooks, approx-
imate methods are critical for scalability. The hierarchical k-means (HKM)64 algo-
rithm first partitions the space into a few clusters, and then recursively partitions
each cluster into smaller clusters, resulting in a significally lower complexity than
a flat k-means clustering. The approximate k-means65 algorithm indexes the cen-
troids using a random forest, and has been shown to yield lower quantization error

9



than the HKM, leading to higher performance.

3.3 Matching
Matching of descriptors is a search for the closest distance, using Euclidean (L2)
distance for floating point descriptors and Hamming distance for binary descrip-
tors. For small scale applications, a simple nearest neighbor (NN) search can be
used. Approximate nearest neighbor (ANN) search methods have been utilized, in-
cluding Principal Components Analysis (PCA) for dimension reduction and binary
encoding for hashing-based methods. Muja and Lowe66 present scalable NN meth-
ods for high dimensional spaces, released in a popular library called Fast Library
for Approximate Nearest Neighbors.

For more efficient storage and retrieval, large codebooks for BoW approaches often
employ the inverted index, which makes use of the sparsity of the visual vocabulary.
The inverted index entries are the visual words, which have attached inverted lists,
posting the image IDs and binary features.

Several machine learning methods have been used in place of NN and ANN meth-
ods. Linear and Support Vector Machine classifiers have been used to treat matching
as a classification task, or to predict descriptor robustness for improved matching
with the removal of poorly discriminant features.

Re-ranking methods improve image retrieval performance by post-processing the
candidates to remove irrelevant ones. Lowe’s ratio test48 uses the ratio of the dis-
tances of the nearest neighbor and second-nearest neighbor, noting that a simple
threshold on distance to closest feature is invalid due to differences in descrip-
tor discriminative ability. For the task of visual geo-localization in particular, it is
practical to consider geographical consistency. Zamir and Shah67 utilize geographic
re-ranking in geo-localization to quickly remove geographically inconsistent can-
didates. One shortfall of the BoW model is the disregard of geometry, and thus
many researchers choose to use spatial re-ranking to enforce geometric consistency
in candidates. One widely used method for geometric re-ranking is Random Sam-
ple Consensus (RANSAC),68 which calculates affine transformations for correspon-
dences to reject outliers that are not consistent with the consensus transformation.
RANSAC provides robust estimation but suffers from inefficiency. Hough voting
in parameter space is another spatial verification technique that is more efficient
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than RANSAC at the cost of lower accuracy. Many RANSAC variants have been
created to mitigate the efficiency shortcomings. Philbin et al.65 utilize spatial verifi-
cation with LO-RANSAC,69 or locally optimized RANSAC, using subclasses of 3-
to 5-DOF affine transformations.

As an alternative or addition to re-ranking, Jégou et al.59 introduce a weak geomet-
ric constraint to verify consistency of the angle and scale of matching descriptors,
integrated into the BoW inverted indexing via additional scores computed from
histograms. Toft et al.70 introduce a semantic match consistency check for scor-
ing correspondences and rejecting poor matches, using the semantic labels associ-
ated with the feature points. The semantic consistency scores are used to bias the
RANSAC sampling toward semantically consistent correspondences, increasing ro-
bustness and efficiency.

3.4 CNN Methods
A variety of CNN-based methods have been used for image retrieval and demon-
strated state-of-the-art performance surpassing the traditional approaches. The meth-
ods include approaches that follow the traditional pipeline, but replace the conven-
tional features with learned features, as well as models trained end-to-end to pro-
duce encoded global descriptors. Models trained for large scale image classification,
such as AlexNet,71 can be fine-tuned for the task of place recognition.

Fully connected layers can be used as global feature descriptors, due to global re-
ceptive field, achieving fair retrieval accuracy using Euclidean distance. Lower-
level convolutional filters can be extracted as intermediate local descriptors, due to
smaller receptive fields, often densely applied over the whole image, and are more
robust to image transformations including occlusions.

Features can be aggregated using pooling, through both sum-pooling and max-
pooling. Sum-Pooled Convolutional72 features sum the responses for each activa-
tion map. Maximum Activations of Convolutions (MAC)73 compute a global de-
scriptor, using the maximum value of each intermediate feature map, concatenated
within a convolutional layer, in a single pass. Regional Maximum Activations of
Convolutions (R-MAC)73 improve upon MAC by computing the maximum activa-
tions over multiple-sized regions in the image. Gordo et al.74 use R-MAC with a
Region Proposal Network to select the max-pooled regions on the activation map.
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NetVLAD63 is an end-to-end trainable aggregation layer modeled after the VLAD
descriptor.

Figure 2 compares traditional and CNN-based pipelines. We refer the reader to the
decade survey of Zheng et al.75 for a comprehensive comparison of traditional and
CNN-based techniques in the broader field of content-based image retrieval.

Fig. 2 Comparison of traditional (SIFT-based) and CNN-based image retrieval pipelines.
c©2017 IEEE. Reprinted, with permission, from Zheng L, Yang Y, Tian Q. SIFT meets CNN:

A decade survey of instance retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 2017;40(5):1224–1244

4. Pose Estimation
4.1 2D-2D
2D image retrieval–based localization techniques require extra post-processing to
obtain 6-DOF camera poses. The baseline approach is to simply use the position
or pose associated with the selected nearest neighbor. Spatial re-ranking is also
a method for retrieving pose, based on inliers or geometric burstiness. Sattler et
al.76 propose performing small-scale SfM on the fly for the local neighborhood
of the query image, and obtaining the global pose by registering the local SfM
reconstruction with the geotags from the database images. Pose recovery from 3D
structure is discussed in the following section.

For predominantly planar problems, a simple homography can be used. For more
generic cases, many multi-view geometry algorithms77 have been utilized. Nistér’s
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five-point algorithm78 is an efficient and robust solution to the relative pose problem
with five correspondences, evaluated against the traditional eight-point algorithm,79

which provides a unique solution to the relative pose between two uncalibrated
images. Rocco et al.80 used CNNs to estimate an affine transformation, followed
by a thin-plate spline transformation between two images. Recently, many deep
learning VO algorithms have been introduced to estimate relative pose between
images, but without stereo or depth, cannot recover metric scale.

4.2 2D-3D
For 6-DOF pose estimation using 3D structure, in the form of a reconstructed SfM
point cloud, with associated feature descriptors, Features to Points (F2P) with es-
tablished 2D-3D correspondences is employed. Hartney and Zisserman outlined the
widely used Perspective-n-Point (PnP)77 formulation for obtaining absolute camera
pose relative to an SfM model. Without known camera intrinsincs, pose can be re-
covered with a minimum of six F2P correspondences, called the P6P formulation,
using a RANSAC scheme and Direct Linear Transformation.77 If camera intrin-
sics are known, the problem can be reduced to a P3P problem solvable with three
correspondences.81

Pose refinement with 3D point clouds has widely been achieved using bundle ad-
justment or the Iterative Closest Point82 algorithm.

4.3 Pose Regression
Some methods approach visual localization as a pose regression problem. In such
cases, machine learning and CNN approaches can be used. For localization using
depth data, a regression forest or GMM may be utilized, but needs to be trained for
each known environment.

PoseNet83 uses a CNN for camera relocalization. The network is trained on paired
image-pose data to automatically regress the 6-DOF pose of a camera from a color
image, without the need for depth. The network is able to relocalize within 2m and
3◦ in real-time, with a 5-ms runtime. The authors introduce a Bayesian variant84 that
leverages the uncertainty measure to estimate localization error. The authors again
improve performance with the use of novel loss functions based on geometry and
scene reprojection.85 Walch et al.86 use long short-term memory (LSTM) units on
CNNs for structured feature dimensionality reduction and demonstrate improved
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performance over PoseNet.

5. Visual Localization
Visual localization, also called visual geo-localization, can be categorized by a few
different factors. Following Brejcha and Čadík,7 we consider the first factor of in-
terest to be the scale and environment of the approach. Some work is geared toward
working on the global scale, while others focus on a smaller scale, in a city-scale or
natural environment. The second factor is the algorithmic approach, which typically
falls under 2D image retrieval or 3D structure based, as detailed in Section 3. In the
following sections, we review the state-of-the-art approaches under these two types
of classifications.

5.1 Scale and Environment Categories
For this work to be militarily relevant, it is necessary for visual localization to be
accomplished at multiple scales and environments. Many military operations may
take place in areas outside of large civilian populations. It is important to be able
to localize using both man-made structures, abundant in urban environments, and
natural scenes. Missions may be long-term, and it is thus also necessary to consider
both global and city-scale localization.

5.1.1 City-Scale
City-scale visual localization is the most studied scale categorization of the field.
For this reason, there are also the most publicly available datasets designed for
benchmarking city-scale visualization. Because of the smaller scale of the problem,
high accuracy can often be achieved, particularly with the use of 3D structure. Many
of these urban approaches will be discussed in greater detail in Sections 5.2.1 and
5.2.2.

Horizon matching has been used in city-scale urban settings, often with upward
facing omni-directional cameras. Meguro et al.87 used an omni-directional IR cam-
era to compare skylines to a DSM with extracted edges. The use of an IR camera
instead of a color camera reduces the effects of light exposures that cause errors in
the extraction of the skyline. Another approach is SKYLINE2GPS,22 which uses
omni-skylines extracted from color images, and requires a coarse 3D CAD model
of the city. Sky segmentation is used for images with clear skies in the daytime, with
an alternative algorithm not requiring sky detection for more complex conditions.
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5.1.2 Natural Environments
Several methods exist to tackle the problem of visual localization in natural (moun-
tainous) landscape environments. These approaches typically require the use of a
digital land model (DEM, DSM, or DTM). It is typical when working with moun-
tainous terrain to utilize skyline or horizon lines as distinct features for match-
ing. Baboud et al.88 introduced a method for automatic photo-to-terrain alignment.
Edges are extracted from query images, and silhouettes from the 3D terrain model,
and aligned to produce a registered image. The approach achieved 86% correctly
aligned at 0.2◦ orientation accuracy, at 10min per image. The method requires
known camera field-of-view and a viewpoint position estimate on the order of 100-
m accuracy. Baatz et al.89 performed geo-localization in mountainous terrain, under
the assumption of small roll and low camera height. The method was able to achieve
88% top 1 correct within 1-km radius, at 2 s per image. Continued work52 improved
sky segmentation, demonstrating image-based geo-localization in the Swiss Alps,
covering an area of 40,000 km2.

There is a sparsity of data and algorithms to tackle other natural environments, such
as desert or forest scenes. Some urban and suburban benchmarks contain vegeta-
tion, but these countryside and park scenes prove to be more challenging for visual
localization, due to dynamic objects and changing appearances. Methods that uti-
lize land cover attribute maps also make determined efforts to localize in natural
areas that are removed from dense populations.

5.1.3 Global
Global geolocation estimates image location (typically 3-DOF GPS-like position)
as a probability distribution over the Earth’s surface. Global geolocation approaches
have been studied, with models trained on large datasets containing millions of
crowd-sourced geotagged images. These approaches typically retrieve global lo-
cation on the order of 1000-km accuracy. An early state-of-the-art approach for
geolocation was IM2GPS,90 which utilized a dataset with 6 million geotagged im-
ages, the majority of which represent more highly populated areas. Figure 3 shows
the global image density of the database used in IM2GPS. The authors evaluate a
selection of conventional local and global features for scene matching and perform
mean-shift clustering of matched image geolocations.

A more recent learning-based approach called PlaNet91 used an adaptive partition-
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Fig. 3 IM2GPS image distribution over the Earth. c©2008 IEEE. Reprinted, with permission,
from Hays J, Efros AA. IM2GPS: estimating geographic information from a single image. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2008; p. 1–8.

ing of the world into cells and LSTM networks to exploit temporal coherence in
images. The approaches perform best in images with man-made or natural land-
marks, with median localization error growing in city and natural scenes without
distinctive landmarks. Vo et al.92 revisit IM2GPS in the age of deep learning by
treating geolocation as a retrieval rather than classification problem, and estimate
density of the retrieved nearest neighbors. The authors achieve similar performance
gain to PlaNet with a fraction of the database.

5.2 Approach Categories
Most visual localization approaches fall under two algorithmic categories, which
have traditionally been investigated independently. The first is the 2D image-based
approach and the second is the 3D structure-based approach. Both of these ap-
proaches utilize the techniques discussed in Sections 3 and 4. Figure 4 gives a visual
comparison of the 2D and 3D visual localization pipelines.

5.2.1 Image-Based Approaches
Image-based approaches to visual localization use image retrieval, with 2D-2D
matches from a database of images annotated with 3-DOF location or 6-DOF pose.
Image retrieval approaches are widely used in computer vision tasks outside of
place recognition and visual localization, such as image classification and scene
recognition, and thus have been widely studied at large scale. When used for place
recognition, these approaches are typically more robust to appearance changes, and
easier to maintain at large scale.
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Fig. 4 Illustration of 2D and 3D visual localization. c©2017 IEEE. Reprinted, with permis-
sion, from Sattler T, Torii A, Sivic J, Pollefeys M, Taira H, Okutomi M, Pajdla Tomas. Are
large-scale 3D models really necessary for accurate visual localization? In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR); 2017; p. 1637–1646.

DisLocation93 is a state-of-the-art approach that uses the BoW quantization with
the Hamming embedding, adapted to prioritize feature distinctiveness by examining
the density of the Hamming space. Zamir and Shah94 perform camera localization
using Google Street View images, with nearest neighbor tree search and a Confi-

dence of Localization parameter to determine the reliability of the localization esti-
mate. DenseVLAD62 also utilizes a combination of synthetic views with the VLAD
scheme to aggregate RootSIFT27 descriptors, densely sampled on a regular grid of
the image, for a compact image representation. These methods evaluated on Google
Street View images demonstrate potential for world-wide scalability. NetVLAD63

uses a CNN to learn descriptors, which are aggregated into the VLAD descriptor.
The authors developed a weakly supervised training procedure using the Google
Street Time Machine to obtain imagery of places from various times. NetVLAD
demonstrated performance gain over both traditional approaches using RootSIFT
and end-to-end learned approaches such as AlexNet.

5.2.2 Structure-Based Approaches
A second approach to visual localization is structure-based, leveraging a 3D model
of the environment typically reconstructed using SfM. In many approaches, 2D-3D
matching is used to directly regress a 6-DOF pose of the query image, bypassing
the image retrieval step used in 2D image-based approaches. Structure-based ap-
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proaches typically produce higher accuracy than image retrieval approaches. How-
ever, maintaining a large model uses excessive memory, and searching it requires
computation capabilities that do not scale well with model size.

Sattler et al.95 use direct 2D-3D matching with visual word quantization and in-
verted files, prioritizing cheaper correspondences. Li et al.96 exploit both the co-
occurrence and co-visibility to demonstrate state-of-the-art performance on sev-
eral large datasets. Co-occurrence relationships are illustrated within an image in
the frequent appearance of two features spatially close in a place, and in the rare
appearance of two features at different times of day. Co-visibility considers bidi-
rectional matching of both 2D-3D and 3D-2D correspondences. Active Search97,98

is a method that improves performance through actively searching for additional
matches using both 2D-3D and 3D-2D matching, the latter of which is more effi-
cient due to matching a single point against features. After a 2D-3D correspondence
is found, a 3D-2D search is initiated for the neighboring 3D points.

Several approaches assume known camera height and gravitational direction, using
IMUs or accelerometers from smartphones under zero or fixed velocity assump-
tions, in which pitch and roll can be recovered. Camera Pose Voting99 is one such
method that refines pose using a Hough voting scheme and RANSAC with a 3-point
solver. City-Scale Localization100 is another related method that uses fast outlier re-
jection, and 3-point or 4-point solvers to perform point-to-cone registration, with
reprojection error of points propagated as cones in 3D.

Structure-based approaches have used SfM models, but to address the growing
availability and superior quality of LIDAR-based point clouds, Nadeem et al.101

proposed a method to directly match 2D image descriptors with 3D point cloud de-
scriptors for 6-DOF camera localization. The authors trained a descriptor matcher
network and demonstrated competitive performance on indoor and outdoor datasets.
However, despite its intended usage with LIDAR point clouds, the datasets for train-
ing and evaluation use point clouds developed using photogrammetry.

5.2.3 Hybrid Approaches
Some researchers have been using a hybrid between the image and structure based
approaches. Irschara et al.102 used vocabulary tree-based indexing of features to re-
trieve relevant places in a 3D model, synthetic views to cover image views not ev-
ident in the reference database, and a compressed scene representation to increase
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signal-to-noise ratio of vocabulary tree queries. Sattler et al.103 revisited image re-
trieval for visual localization and analyzed the gap between retrieval-based and di-
rect 2D-3D matching approaches. The authors identified the false positive matches
as the main source of the performance gap, and demonstrated that a selective vot-
ing scheme can improve performance even when compared with direct matching
methods.

Sattler et al. introduced Hyperpoints,104 which searches for locally unique matches,
called hyperpoints, containing no co-visible points, and uses an inverted index with
a fine visual vocabulary of 16M words. Sattler et al.76 later sought to evaluate
whether memory-heavy 3D SfM models are necessary for high performance on
city-scale visual localization. The authors demonstrated that it was sufficient to use
local SfM models inspired by single-photo SfM105 reconstruction to achieve state-
of-the-art performance similar to fully structure-based methods, and provided the
first datasets intended for direct comparison of 2D and 3D approaches.

Recently, hierarchical and semantic approaches have achieved state-of-the-art per-
formance in challenging city-scale visual localization benchmarks, winning the
2019 CVPR Long-Term Visual Localization Challenge∗, and are thus detailed in
Sections 5.2.4 and 5.2.5.

5.2.4 Hierarchical Approaches
Hierarchical approaches use both image-based and structure-based methods advan-
tageously in a two-step process. The pipelines start with a coarse image retrieval
to reduce the 3D model size, and finish with a fine local feature matching and pose
regression. Sarlin et al. introduced HF-NET,106 a learned global and local descriptor
network, and the authors performed global retrieval to obtain location hypotheses,
only matching local features within the retrieved candidate places, as illustrated in
Fig. 5. The method is able to achieve 96% daytime and 49% nighttime localization
performance on the RobotCar Seasons dataset,107 at the (5m, 10◦) error thresh-
old. Germain et al.108 utilized a similar hierarchical approach with sparse-to-dense
matching, using sparse features from the database images and dense aggregated
intermediate features, called hypercolumns, from the query images. The authors
achieve similar high performance on the benchmark for visual localization under
changing conditions.

∗https://www.visuallocalization.net/workshop/cvpr/2019/
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Fig. 5 Hierarchical Localization. c©2019 IEEE. Reprinted, with permission, from Sarlin PE,
Cadena C, Siegwart R, Dymczyk M. From coarse to fine: Robust hierarchical localization
at large scale. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR);
2019; p. 12716–12725

5.2.5 Semantic Approaches
Semantic approaches use semantic segmentation to bring a higher level represen-
tation to features for improved visual scene understanding. Semantic mappings are
inherently invariant to appearance changes and thus can provide more robustness
to visual localization. These earlier approaches109–112 focused on using semantics
to determine salient information and discard ambiguous information in order to im-
prove place recognition. Other methods utilize semantic objects such as lane mark-
ings found on roads to guide localization in more focused applications.

More recently, Schönberger et al.113 performed semantic visual localization using
semantic scene completion and a Bag-of-Semantic-Words for quantization. The ap-
proach learned 3D descriptors, but required the use of depth alongside the query im-
ages and their semantic segmentation, and still struggled with the common failure
point of repetitive structures. Toft et al.70 introduced a semantic match consistency
check looking at semantic inliers for feature correspondences to improve long-term
visual localization performance. However, the method requires camera height and
gravity direction from ground truth. Shi et al.114 take semantic visual localization
one step further by using a sparse semantic 3D map created from semantic segmen-
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tations of the database images. Semantic segmentation is used to remove dynamic
objects (e.g., pedestrians and vehicles) from the map to produce a more sparse and
static representation of the environment. The method is able to achieve 97% daytime
and 47% nighttime localization performance on the RobotCar Seasons dataset,107

at the (5m, 10◦) error threshold.

5.2.6 Sequence-Based Approaches
It has been shown that using a sequence of query images rather than a single im-
age improves performance of visual localization. Newman et al.115 used sequences
of images in a visual-laser SLAM approach with traditional descriptors and addi-
tional algorithms to handle self-similar foliage and architecture. SeqSLAM116 is a
sequence-based approach that does not use features, but instead uses global image
descriptors with local best matching. SeqSLAM demonstrated significant improve-
ment over the early state-of-the-art feature-based SLAM algorithm, FAB-MAP.117

Recent deep VO approaches118,119 have also used CNNs and LSTMs with sequences
of images for camera localization.

6. Cross-Domain Localization
It is vital for visual localization algorithms to be robust across a variety of appear-
ance changes.

6.1 Cross-Time
The world is by nature a conglomeration of transient places. Some of these are
long-term changes, but even over the course of the day, the appearance of a land-
mark, particularly in the visible domain, will change drastically due to lighting and
weather conditions, as well as dynamic objects such as pedestrians and vehicles.
Over the course of a year, seasonal changes will be prominent, exhibiting major
weather and precipitation changes, as well as vegetation growth. Finally, over the
long-term, changes in both natural and man-made landmarks will be evident, as
new objects crop up and existing objects change. Examples of these cross-time en-
vironment changes within a single place are shown in Fig. 6.

For this reason, many recent datasets focus on benchmarking robust visual localiza-
tion, across time-of-day and seasonal changes. Google Street View Time Machine
tracks the appearance of a location over several years’ time. DEMs and land cover
maps are also updated every few years to track changes in land.
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Fig. 6 Visual localization in changing urban conditions, including day-night, weather, and
seasonal changes over time. c©2018 IEEE. Reprinted, with permission, from Sattler T et al.
Benchmarking 6DOF outdoor visual localization in changing conditions. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR); 2018; p. 8601–8610

6.2 Cross-View
Robustness to viewpoint changes is also important for visual localization, as many
images are taken with different cameras at different angles. To this end, many pub-
licly available datasets contain small changes in viewpoint angles. However, it has
been noted that most of the available ground-level imagery, typically used as query
images in visual localization, only cover the more densely populated areas of the
world. Satellite imagery, however, covers much of the world, from an aerial per-
spective. There has been some work recently which seeks to perform ground-to-
aerial localization, querying ground-level imagery against databases of aerial-view
(orthogonal or oblique) imagery.

The work of Lin et al.14 utilized ground-level, aerial, and land cover attribute im-
agery during training for cross-view geolocalization. In later work,15 the authors
performed ground-to-aerial geolocalization by querying ground-level images from
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a large oblique (45◦) aerial-view database, providing a dataset of 78,000 aligned
cross-view image pairs. Viswanathan et al.120 focused on localizing an unmanned
ground vehicle capturing ground-level images in remote areas with few features,
and analyzed the performance of various feature descriptors on the cross-view match-
ing. Shan et al.121 addressed the geo-registration of MVS models using ground-to-
aerial matching. Workman et al.122 used learned features rather than hand-crafted
features, represented in a semantic feature space. Vo and Hays123 introduced several
CNN architectures for cross-view matching. Zhai et al.124 learned semantic features
in ground and aerial imagery. Tian et al.125 used a Faster R-CNN126 to detect build-
ings in query and database images to improve cross-view localization. CVM-Net127

used a Siamese architecture and NetVLAD63 global descriptors, demonstrating sig-
nificant improvement over many earlier state-of-the-art approaches.

6.3 Cross-Spectrum
Li et al.128 discussed state-of-the-art image fusion, including cross-spectral fusion.
Sappa et al.129 performed a comparative study of wavelet-based image fusion of
visible and infrared images. Maddern et al.13 investigated methods for fusing visual
and long-wave infrared (LWIR) thermal imagery for robust night and day place
recognition. Rather than fusing the imagery itself, the authors combined the BoW
representations of the visual and thermal modalities, and demonstrated that the joint
representation yields the best performance in place recognition. Aguilera et al.130

used CNNs to learn cross-spectral similar measures for matching across images in
the visible and IR spectra.

Ricuarte et al.131 evaluated state-of-the-art feature descriptors on LWIR imagery
and compared its performance with the visual domain, in the presence of scale, ro-
tation, blur, and noise. The authors report that SIFT is among the top performer, but
results are otherwise inconclusive. Johansson et al.132 performed further evaluation,
adding viewpoint changes and downsampling of feature detectors and descriptors
on IR imagery in a systematic approach with standard metrics.31 Aguilera et al.133

introduced a feature descriptor (LGHD) for matching across nonlinear intensity
variations, including changes in illumination, modality, and spectrum, as well as
providing a visual-LWIR dataset. Bonardi et al.134 also designed a feature descrip-
tor (PHROG) for working across visual modalities, and evaluated performance on
datasets including RGB, NIR, SWIR, and LWIR imagery. Firmenichy et al.135 in-
troduced a gradient direction invariant SIFT (GDISIFT), providing a multi-spectral
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interest point descriptor for visible-NIR registration.

Vidas and Sridharan136 introduced the first monocular SLAM approach employ-
ing the thermal-IR modality. They evaluated the algorithms using handheld and
bicycle-mounted sequences at human walking speed. Maddern et al.12 presented
applications of localization and mapping using illumination invariant imaging (sim-
ilar to IR), demonstrating 6-DOF localization over a 24-h day. Color images were
converted into an illumination invariant color space to reduce the effects of sun-
light and shadows. Borges and Vidas137 proposed a monocular VO approach using
a thermal camera.

Very few datasets exist for benchmarking IR localization algorithms, when com-
pared to visual benchmarks detailed in Section 7. Most IR datasets are geared to-
ward other computer vision tasks such as pedestrian detection or object tracking.
Many of the datasets that are taken from a moving camera do not provide ground
truth camera pose data. There are a few small IR datasets that could potentially be
used for place recognition and visual localization. The Barcelona133 dataset con-
tains 44 visual-LWIR registered image pairs. The Multi-spectral SIFT138 dataset
contains several hundred scenes in color and NIR imagery, for the purpose of scene
category recognition. CVC-13139 and CVC-15140,141 Multimodal Stereo Datasets
contain hundreds of visual-LWIR image pairs capturing outdoor urban scenes.

7. Evaluation
7.1 Datasets
Most benchmarking datasets contain scenes from urban and suburban environments,
many focused on cities with distinctive manmade landmarks. A few datasets are
geared toward natural, mountainous terrains (e.g., in the Alps). Methods that seek
to perform global geolocation utilize unordered geotagged images sourced from the
internet via sites such as Flickr. Generally, visual localization algorithms are evalu-
ated on more densely populated areas, where more images are found. Methods that
seek to prove potential with less populated regions of the world often utilize aerial
or satellite imagery, or landcover and terrain models as described in Sections 2.2.1
and 2.2.2.

A recent benchmark for outdoor visual localization in changing conditions107 con-
tains subsets of previous public datasets,103,142,143 with added ground truth 6-DOF

24



poses for all query images and reference 3D SfM models. This dataset contains a
wide variety of urban, suburban, and park images, including day and night images,
seasonal changes, precipitation, and a range of vegetation. The complete dataset
contains over 32K database images, 88K query images, and 10M 3D points from
53M features. Table 2 illustrates some of the state-of-the-art results for city-scale vi-
sual localization, comparing 2D image-based, 3D structure-based, hierarchical, and
semantic localization approaches using this benchmark. Table 3 details character-
istics and performance from an encompassing representative of visual localization
and place recognition approaches, excluding those already listed in Table 2. Table 4
provides a list of datasets used in outdoor visual localization, arranged by data type,
application, and environment.

7.2 Metrics
For strict place recognition or image retrieval, where success is characterized by the
matches found by the system, evaluation is typically based on the metrics of preci-
sion and recall. Correct matches are true positives (TP), incorrect matches are false

positives (FP), and actual matches not recognized by the system are false negatives

(FN). Precision is then defined as the percentage of the retrieved matches that are
true positive matches. Recall is defined as the percentage of all actual matches that
are retrieved as true positive matches.

Table 2 Results (%) from a selection of city-scale visual localization approaches on the
RobotCar Seasons and CMU Seasons datasets107

RobotCar Seasons CMU Seasons
Day Night Urban Suburban Park

m 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0
deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

Name Type Runtime
DenseVLAD62 2D 0.3 s 7.6 / 31.2 / 91.2 1.0 / 4.4 / 22.7 22.2 / 48.7 / 92.8 9.9 / 26.6 / 85.2 10.3 / 27.0 / 77.0
NetVLAD63 2D 0.1 s 6.4 / 26.3 / 90.9 0.3 / 2.3 / 15.9 17.4 / 40.3 / 93.2 7.7 / 21.0 / 80.5 5.6 / 15.7 / 65.8

Active Search97,98 3D 0.6 s 35.6 / 67.9 / 90.4 0.9 / 2.1 / 4.3 55.2 / 60.3 / 65.1 20.7 / 25.9 / 29.9 12.7 / 16.3 / 20.8
City-Scale Loc.100 3D 50 s 45.3 / 73.5 / 90.1 0.6 / 2.6 / 7.2 36.7 / 42.0 / 53.1 8.6 / 11.7 / 21.1 7.0 / 9.6 / 17.0

HF-NET106 Hier. 0.05 s 53.8 / 80.4 / 96.0 11.2 / 27.1 / 49.1 91.6 / 96.4 / 99.1 84.7 / 91.5 / 98.6 69.3 / 77.8 / 90.5
Germain et al.108 Hier. 0.4 s 45.7 / 78.0 / 95.1 22.3 / 61.8 / 94.5 65.7 / 82.7 / 91.0 66.5 / 82.6 / 92.9 54.3 / 71.6 / 84.1

Toft et al.70 Sem. N/A 50.6 / 79.8 / 95.1 7.6 / 21.5 / 45.4 75.2 / 82.1 / 87.7 44.6 / 53.9 / 63.5 30.4 / 37.8 / 48.0
Shi et al.114 Sem. N/A 54.5 / 81.6 / 96.7 12.3 / 28.5 / 46.5 88.8 / 93.6 / 96.3 78.0 / 83.8 / 89.2 63.6 / 70.3 / 77.3
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Table 3 Results and characteristics from a selection of visual localization approaches

Name Application Environment/Scale Metric Performance Runtime
IM2GPS90 Global geolocation Global Localized within Region threshold (200 km) 15% N/A
PlaNet91 Global geolocation Global Localized within Region threshold (200 km) 38% N/A
Vo et al.92 Global geolocation Global Localized within Region threshold (200 km) 44% N/A

Meguro et al.87 Horizon matching Urban Mean error 1.3m N/A
SKYLINE2GPS22 Horizon matching Urban Mean error 2.8m N/A
Baboud et al.88 Horizon matching Mountains Correctly aligned at 0.2◦ accuracy 86% 2min

Baatz et al.89 Horizon matching Mountains Top 1 correct within 1 km radius 88% 10 s

Lin et al.14 Cross-view Urban/Suburban Recall @ Top 1% 17% N/A
Where-CNN15 Cross-view Urban/Suburban Recall @ Top 1% 22% N/A
Workman et al.122 Cross-view Urban/Suburban Recall @ Top 1% 34% N/A
Vo and Hays123 Cross-view Urban/Suburban Recall @ Top 1% 64% N/A
Zhai et al.124 Cross-view Urban/Suburban Recall @ Top 1% 43% N/A
CVM-Net127 Cross-view Urban/Suburban Recall @ Top 1% 91% N/A

Zamir and Shah94 Image-based Urban/Suburban Localized within 100m 38% N/A
Zamir and Shah67 Image-based Urban/Suburban Localized within 100m 47% N/A
DisLocation93 Image-based Urban/Suburban Localized within 5m 55% N/A
Li et al.96 Structure-based Urban/Suburban Recall 68% ~5 s
Camera Pose Voting99 Structure-based Urban/Suburban Localized within 5m 47% 4 s

Irschara et al.102 Hybrid Urban/Suburban Recall @ Top 10 88% 0.3 s

Hyperpoints104 Hybrid Urban/Suburban Localized within 5m 58% ~5 s

PoseNet83 Pose regression Urban Median localization error 1.66m, 4.86◦ ~0.005 s
Baysian PoseNet84 Pose regression Urban Median localization error 1.74m, 4.06◦ ~0.005 s
Kendall et al.85 Pose regression Urban Median localization error 0.99m, 1.06◦ ~0.005 s
Walch et al.86 Pose regression Urban Median localization error 0.99m, 3.65◦ N/A

FAB-MAP117 SLAM Urban/Suburban Recall @ 100% precision 11% N/A
SeqSLAM116 SLAM Urban/Suburban Recall @ 100% precision 60% N/A
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Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

Precision and recall are not typically evaluated in isolation, but are related on a
precision-recall curve. Precision and recall can be combined into a single mea-
sure (e.g., precision at 80% recall). Because false positive matches can cause catas-
trophic failure in mapping and localization, place recognition approaches tradition-
ally prioritize achieving 100% recall, and use precision at 100% recall as the key
metric.

For visual localization, recall is often used as the most discriminative metric. It is
typical for an image retrieval system to choose the top-k (1 ≤ k ≤ 10) ranked can-
didates and evaluate whether any of the candidates lie within a tolerance radius for
localization. The percentage of queries localized within the threshold is a measure
of the recall of the system. More recently, benchmarks have used tiered thresholds
of joint position and orientation error, e.g. (0.25m, 2◦)/(0.5m, 5◦)/(5.0m, 10◦) as
high/medium/coarse accuracy metrics.107 Other methods directly evaluate absolute
position and orientation error against ground truth.

8. Conclusion
It has been shown that the bulk of research has been performed in urban, city-scale
environments, with a wealth of distinctive landmarks from manmade buildings.
However, few focus on vegetation-heavy locations. Even on datasets that include
suburban and park environments with more self-similar imagery, it has consistently
been obvious that these places with more natural landscapes cause more failures of
even the most robust algorithms. More research needs to be focused on overcoming
these challenges, which may entail the need to also collect more data in vegetation-
heavy environments. Because the Soldier must often rely on sensor modalities be-
yond the visual spectrum (e.g., IR), there is a great need for additional datasets with
IR imagery, especially paired with registered visual imagery.

Milford et al.157 discussed how small a feature can be to be distinguishable, in an at-
tempt to answer the question of what amount and quality of information are needed

∗https://roboticvision.atlassian.net/wiki/spaces/PUB/pages/14188617/
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Table 4 Datasets for outdoor visual localization

Name Application Environment/Scale Ground Truth Data Type
INRIA Holidays59 Image retrieval Global No RGB
YFCC100M144 Image retrieval Global GPS RGB
World Cities145 Image retrieval Urban (Global) GPS RGB
Oxford5K65 Landmark recognition Urban No RGB
Paris146 Landmark recognition Urban No RGB
San Francisco Landmark147 Landmark recognition Urban GPS RGB
Pittsburgh250K58 Place recognition Urban GPS RGB
VPRiCE 2015∗ Cross-time Urban/Suburban No RGB
SPED148 Cross-time Urban/Suburban GPS RGB
Tokyo 24/762 Cross-time Urban GPS + Compass RGB
Alderley Day/Night116 Cross-time Suburban Location RGB
Nordland149 Cross-time Train route GPS RGB
CMU Visual Localization143 Localization Urban/Suburban GPS RGB
Google Street View67 Localization Multi-city GPS + Compass RGB

CH1+CH252 Localization Mountains GPS RGB (+ DEM)
Alps100K150 Localization Mountains GPS RGB (+ DEM)
GeoPose3K151 Localization Mountains 6-DOF Pose RGB (+ DEM)
CVUSA122 Cross-view Urban GPS RGB + Aerial
GTCrossView123 Cross-view Urban 6-DOF Pose RGB + Aerial
Panorama124 Cross-view Urban 6-DOF Pose RGB + Aerial
Toronto City152 Cross-view Urban 6-DOF Pose RGB + Aerial + Laser
NCLT153 Cross-time Urban/Suburban 6-DOF Pose RGB + Laser
Oxford RobotCar142 Cross-time Urban 6-DOF Pose RGB + Laser
KITTI6 Odometry Urban/Suburban 6-DOF Pose RGB + Laser

Landmarks96 Landmark recognition Urban No SfM
Landmarks 3D154 Landmark recognition Urban No SfM
Vienna102 Landmark recognition Urban No SfM
Aachen103 Localization Urban/Suburban No SfM
Dubrovnik6K155 Localization Urban Location SfM
Rome16K155 Localization Urban Location SfM
Quad6K156 Localization Urban GPS SfM
Cambridge83 Localization Urban 6-DOF Pose SfM
San Francisco76,96 Localization Urban 6-DOF Pose SfM
Aachen Day-Night107 Cross-time Urban/Suburban 6-DOF Pose SfM
RobotCar Seasons107 Cross-time Urban 6-DOF Pose SfM
CMU Seasons107 Cross-time Urban/Suburban 6-DOF Pose SfM
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for localization. Similarly, Latif et al.158 reduced image size down to 5x4 to de-
termine whether meaningful results can still be obtained at low resolution. This
demonstrates that even distant features in an image may be usable as landmarks for
recognition. With the use of a sequence of images, even more data is informative,
taking advantage of both the spatial and temporal coherence.

There is still a tradeoff between scalability and accuracy, as shown in the perfor-
mance and capability of 2D and 3D visual localization techniques. Image retrieval
techniques operate on very large scale image databases capable of covering the
global environment. Cross-view matching techniques offer the ability of global
geo-localization due to the coverage of satellite imagery over the Earth. City-scale
techniques using SfM models cover significantly smaller area, but can achieve near
GPS-level accuracy, recovering orientation in addition to location. In particular,
hierarchical and semantic approaches have shown state-of-the-art performance on
benchmarks focused on long-term visual localization in changing environments,
demonstrating high performance even in nighttime conditions and high-vegetation
park scenes.

CNN-based approaches can have runtimes on the order of milliseconds, and are
often not dependent on factors such as database size and inlier/outlier counts for
RANSAC. Many of the discussed visual localization approaches do not perform
in real-time. However, with applications of place recognition in tasks such as loop
closure for SLAM run in a decoupled manner in parallel with the primary online
localization task, real-time performance may not be necessary. Visual localization
can be used as an offline alternative to GPS, providing absolute pose updates at low
frame rate. Many approaches have demonstrated robustness to changing viewpoints
and changing conditions in a variety of outdoor environments which are applicable
for military operations.
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ANN approximate nearest neighbor

BoW Bag-of-Words

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

CAD computer-aided design

CNN convolutional neural network

COTS commercial off-the-shelf

C-SWaP cost, size, weight, and power

DEM digital elevation model

DOF degrees-of-freedom

DoG difference of Gaussians

DSM digital surface model

DTM digital terrain model

F2P Features to Points

FAST Features from Accelerated Segment Test

FREAK Fast Retina Keypoint

GMM Gaussion mixture model

GNSS Global Navigation Satellite System

HKM hierarchical k-means

HOG Histogram of Oriented Gradients

IMU inertial measurement unit

IR infrared
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LIDAR light detection and ranging

LIFT Learned Invariant Feature Transform

LSTM long short-term memory

LWIR long-wave infrared

MAC Maximum Activations of Convolutions

MSER Maximally Stable Extremal Regions

MVS multi-view stereo

NIR near infrared

NN nearest neighbor

ORB Oriented FAST and Rotated BRIEF

PCA Principal Components Analysis

PCA-SIFT Principal Components Analysis-SIFT

PnP Perspective-n-Point

RANSAC Random Sample Consensus

RGB red, green, blue

RGB-D red, green, blue, and depth

R-MAC Regional Maximum Activations of Convolutions

SfM Structure-from-Motion

SIFT Scale-Invariant Feature Transform

SLAM simultaneous localization and mapping

SURF Speeded Up Robust Features

SWIR short-wave infrared

VIO visual-inertial odometry

VLAD Vector of Locally Aggregated Descriptors

VO visual odometry
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