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Abstract

Despite its security impact, Windows kernel fuzzing has gained less attention in research
community. Windows kernel fuzzing is challenging as its kernel source code is not available,
and many of the system calls are undocumented. In this research project, we build our own
binary analyzer for Windows kernel, which infers dependence relationship between system
call parameters as well as their data types. The inferred information is then used to create a
C program that randomly fuzzes the Windows kernel code by invoking various combinations
of system calls. Our system found several real-world kernel panic bugs, and we reported
them to Microsoft.

1 Introduction

Kernel vulnerabilities are significant threats to computer security as attackers use them to
obtain unauthorized root privilege and bypass security mitigation [24]. Accordingly, security
exploits that involve local privilege escalation get higher prices [26], and the number of kernel
CVEs is sharply increasing every year.

Therefore, many researchers including ourselves have been studying ways to automatically
find kernel vulnerabilities [7, 21, 22]. Our previous work [7] on finding kernel vulnerabilities,
which we referred to as IMF, had presented a novel technique that leverages an inferred
dependence model between system API functions. The key intuition is to produce valid-
looking sequences of system calls based on the model to explore deep kernel code without
raising apparent type errors. IMF found more than 50 previously undisclosed vulnerabilities,
all of which were reported to Apple.

Although IMF was successful in finding vulnerabilities on macOS; it is not straightforward
to apply the same technique on Windows for several reasons. First, Microsoft does not
provide enough documentation for their system calls. There are several known function
prototypes for a few system calls, but the kernel has numerous undocumented system calls.
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This means it is not even clear which system calls we should monitor. Second, system calls
in Windows are dependent to each other, and it is not straightforward to group them into an
independent set. In macOS, for instance, one could focus on the IOKit library functions as
they are independently usable without requiring other external libraries. Finally, parameter
types for Windows system calls are not unique. For example, the second parameter of
LoadCursor function is known to be const char*, but it can become an integer depending
on the value of the first parameter. All these challenges make it radically difficult to apply
the IMF technique on Windows.

In this research project, we present a novel way to fuzz Windows kernel, and discuss the
design and implementation of our system. Our system has found various realistic Windows
kernel panics, and we are going to submit our paper to CCS this year, which is one of the
top security conferences.

2 Background

2.1 Windows System Calls

Since IMF' fuzzes system calls, it is imperative to understand how Windows system calls
work. Windows uses two libraries ntd11.d11 and win32u.d1ll to invoke system calls: both
libraries provide system call stubs such as NtCreateFile and NtSetEvent. Although possi-
ble, programmers normally do not call such functions directly. Instead they write a program
with regular Windows API functions, which internally call such system call stubs. This
is mainly because Microsoft provides well-written documentation for Windows API func-
tions [15], but not for Windows system calls. Specifically, it is known that there are various
distinct system calls that can be invoked either from ntdl11l.d11 or win32u.d1ll, but only
a hundred of them have public description in MSDN [16]. Reverse engineers and security
researchers have published their findings in an ad-hoc manner [2, 9, 10}, but it is not enough
to fully understand the system calls.

2.2 Existing Windows Fuzzers

Unlike user-land fuzzing, kernel fuzzing mostly focuses on invoking a series of system calls
as system calls form a trust boundary between user code and kernel code. For example, if
we can crash the target kernel by invoking system calls with specific parameters, that means
user code can perform a denial-of-service on kernel code. Of course, one can further craft
the way of invoking system calls to obtain unauthorized root access.

We can categorize existing Windows kernel fuzzers into three main groups based on their
target. First, there are general-purpose fuzzers that target any Windows system calls [5, 11,
14,17, 19]. Second, there are fuzzers focusing on fuzzing IOCTL (Input and Output Control)
interface [4, 13, 18, 20]. Finally, there are fuzzers that aims to test a specific file format such
as font fuzzer [12]. All these fuzzers are more or less the same in that they fuzz system
API functions even though their target may differ. One notable exception is CAB-Fuzz [13],
which leverages dynamic symbolic execution to explore kernel code. However, it suffers from
the traditional path explosion problem [3] as it explores one execution path at a time.



3 Motivation

Windows kernel is an attractive target for attackers as it is the most popular OS for desk-
top and laptop computers. Indeed, most malicious applications are targeting Windows OS
today [1]. Therefore, finding security vulnerabilities from Windows kernel and debugging
them is crucial for software security.

Most existing Windows kernel fuzzers are not systematic in that they try to fuzz system
API functions with random parameter values. However, simply passing random parameter
values to system API functions is not enough to explore deep kernel code as they are likely to
return an error. We should aware of the relationship between API functions to execute deep
kernel code. To see why understanding such a relationship matters, consider an example
program that triggers CVE-2017-8487 shown in Figure 1.

In this example code, an attacker passes an IOCTL request to \Device\KsecDD in order
to leak uninitialized kernel memory values. With this vulnerability, the attacker can bypass
kernel address space layout randomization. There are five API functions used in the example,
and they are dependent on each other. For example, Rt1InitUnicodeString should always
proceed NtOpenFile in order to specify the device name, and InitializeObjectAttributes
function initializes objattr used as the third parameter of NtOpenFile.

Suppose we are given the five functions, and we want to design a fuzzer that randomly
call the functions with random parameter values. It is not straightforward to find the vul-
nerability with our fuzzer because (1) it needs to correctly order the function calls, and (2) it
needs to correctly connect output values of a function to input values of other functions. We
call such relationships as ordering dependence and value dependence, respectively, in IMF [7].

Unfortunately, unlike macOS, we are not aware of the specification of most of the Win-
dows system calls. In other words, there is no documentation on how we call such system
calls, as they are internally used by the system, but not by the users. Therefore, we cannot
directly leverage the design of IMF [7], which assumes the knowledge of API specification.
Instead, we should analyze the Windows kernel binary in order to figure out such informa-
tion from scratch. The very first step, therefore, is to study the organization of the current
Windows system calls.

4 Study on Windows System Calls

Unlike macOS, Windows system calls are largely unknown, and thus, we do not even know
which system calls to instrument. Therefore, we first studied how many system calls are
available on Windows. According to [25], system call stubs are defined in either ntd11.d11
or win32u.d1ll.

With manual inspection, we found that system call stubs have a certain syntactic pattern
for each architecture. For instance, Figure 2 presents a stub for NtAccessCheck system
call for both x86 and x86-64. Notice we first set the system call number to eax with the
mov instruction in both cases, and call a function that raises a software interrupt with the
sysenter or int instruction. On x86-64 Windows, it uses WOWG64 (Windows on Windows
64) to call 32-bit system calls.

By looking at the stub code, we can figure out several useful information about system



HANDLE hksecdd;
OBJECT_ATTRIBUTES objattr;
UNICODE_STRING ksecdd_name;
IO_STATUS_BLOCK iob;
NTSTATUS st;

RtlInitUnicodeString(&ksecdd_name, L"\\Device\\KsecDD");
InitializeObjectAttributes(&objattr, &ksecdd_name, O, NULL, 0);
st = NtOpenFile(&hksecdd,
FILE_READ_DATA | FILE_WRITE_DATA | SYNCHRONIZE,
&objattr,
Ziob,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
FILE_SYNCHRONOUS_IO_NONALERT) ;
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if (!NT_SUCCESS(st)) {
printf ("NtOpenFile failed, %x\n", st);
return 1;
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w0 N O

}
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BYTE InputBuffer[] = "\x4d\x3c\x2b\x1a\x00\x00\x02\x00\xff\xff\xff\xff\x00\x00\x00\x00\x20\x00\x00\x00\xff"
"\xff\xff\xff\x01\x00\x00\x00\x02\x00\x00\x00\x33\x00\x44\x00\x45\x00\x53\x00\x00\x00" ;
BYTE OutputBuffer[0x200] = { /* zero padding */ };
DWORD BytesReturned = 0;
if (!DeviceIoControl(hksecdd, 0x390400, InputBuffer, sizeof (InputBuffer),
OutputBuffer, sizeof (OutputBuffer), &BytesReturned, NULL))
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{

N
oo

printf("DeviceloControl failed, %d\n", GetLastError());
CloseHandle (hksecdd) ;
return 1;

w W N
= o ©
-

Figure 1: An example triggering CVE-2017-8487 on Windows.

Idx DLL file Windows Version Number of Matches

1 ntdll.dll 10.0.17134.1 456
2 win32u.dll 10.0.17134.1 1,132

Table 1: Windows 10 syscall stubs we found.

calls. First, we know which syscall number is used in the stub. Second, by looking at the
operand value of the retn instruction, we can deduce the number of parameters used for
each system call. Finally, we can see the name of the system call by looking at the debugging
symbol of the stub.

We analyzed all the DLL files installed in a default Windows 10 environment to find the
syscall stub pattern. Specifically, we enumerated functions in each DLL file and check if each
function matches the patterns shown in Figure 2 while allowing the green parts to be any
value. Table 1 summarizes the result. We found a total of 1,588 system calls from ntd11.d11
and win32u.d1l. Since our analysis always finds a function that invokes a system call (with
software interrupt), we can say that there are at least 1,588 system call stubs on Windows
10, which are potential instrumentation target for our fuzzer.

Due to the lack of documentation, about 100 out of 1,588 system calls are currently
known. However, other system calls are not publicly known, and we do not even know their
function prototypes. Without knowing the parameter types, we can only get the first-level



public NtAccessCheck public _NTAccessCheck

NtAccessCheck proc near sub_6A29044D proc near mov eax, 0
mov eax, 0 mov edx, esp mov edx, offset _Wow64SystemServiceCall
call sub_6A29044D sysenter call edx
retn 20h retn retn 20h
NtAccessCheck endp sub_6A29044D endp _NTAccessCheck endp
(a) Windows 10 x86 (b) Windows 10 x86-64 (WOWG64)

Figure 2: Examples of Windows 10 syscall stubs.

pointer values for each system call parameter, and thus, it is not possible to obtain precise
API model as in IMF on macOS.

To overcome this challenge, one may design a static analyzer that infers parameter types
for each syscall stub we found. Indeed, this is the key intuition of our approach. There are
publicly known Windows API functions (user-level), and those user-level functions often call
kernel system API functions internally. Thus, our main aim here is to build a binary analyzer
that infers parameter types of kernel API functions by propagating the type information
obtained from the known user-level functions.

5 System Design

In this section, we present the overall design of our system for analyzing kernel bina-
ries. Our target binaries include ntd11.d11, kernelbase.dll, kernel32.d11, win32u.dll,
gdi32.d11, and user32.d11.

5.1 Analyzing Syscall Parameter Types

Our system first parses WinSDK header files to obtain type information of high-level user
API functions. We leverage SAL (Source Annotation Language) [6] to understand the uses
of the API parameters too. For example, SAL indicates which of the parameters are used as
input or output. The main idea here is to correctly figure out the type information of known
API functions, and then propagate such information to parameters used to call system calls.

Consider an example code snippet in Figure 3, where API X is a known user-level API
function, and syscall A is a system call. We first figure out the types of the two parameters
of APT X, and then propagate the information to function f to figure out the data types for
the parameters of syscall_A. In this example, we know the system call takes in a struct as
the first parameter, and one of the field of the struct has the ACL type. Similarly, we can
easily see that the second parameter of the system call has a HANDLE pointer type.

To propagate the known data type information to system calls, we perform a flow-sensitive
bottom-up style analysis from known API function parameters to system call parameters. To
cope with loops, we unroll them by a factor of n, where n is a user-configurable parameter.



void API_X(HANDLE handle, ACL*x acl) {

f(handle, acl);
}

void {(HANDLE h, ACL acl) {
Data xs = malloc(sizeof(Data));
s—>acl = acl;

syscall_A (s, &h, 0);
}

Figure 3: Parameter type analysis.

5.2 Syscall Logging

After figuring out data types for system calls, we should log uses of the system calls by
observing the real program executions. System call logs serve as a basis for generating a
program for fuzzing the Windows kernel.

At a high-level, our syscall logger hooks Windows system call stubs in ntd11.d11 and
win32u.d11 to log system call sequences with their parameter values. We execute a userland
program with an input to log system calls because any userland program will eventually
invoke a valid sequence of system calls to operate. Unlike IMF, however, we do not need
to log the same program execution multiple times because we have already analyzed the
parameter relationships during our static analysis phase.

The main aim of syscall logging is to provide a “seed” for kernel fuzzing. In other words,
we take a valid sequence of system calls, and then mutate the system calls in such a way that
the sequence does not violate syscall parameter relationships. If a return value of a syscall
should be used in another syscall based on our inferred model, we connect them accordingly
during the mutation phase.

5.3 Handling User-Mode Callbacks

Performing the above two steps is not enough to handle many system calls especially when
they include user-mode callbacks. Several kernel functions take in a user-level callback
function as input, which means they can run user-level functions during their execution.
Oftentimes, this process is performed by fetching a function pointer from a callback function
table, which stores every possible callback functions. If our fuzzers does not properly initialize
the table, we may hit user-mode crashes during fuzzing.

Figure 4 describes the user-mode callback mechanism. The kernel calls the dispatch
function, called KiUserCallbackDispatcher, to call the user-mode callback function, which
is __ClientThreadSetup. When the callback function terminates, it should call the function
NtCallbackReturn, which is defined in ntd11.d11, to jump back to the kernel code. The
security impact of this user-mode callback mechanism is that both kernel and user code can
reference the same memory object. In particular, when a kernel allocates a user object and
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Figure 4: User-mode callback mechanism.

a callback function frees the object, then the kernel code may see a freed object, which leads
to a use-after-free vulnerability.

To properly initialize the callback function table, we analyze our syscall traces to learn
which functions are used as a callback, and we set the table to hole the list of observed
callback functions.

5.4 Model Program Generation

Now that we have both (1) execution traces and (2) the type information of syscall param-
eters, the final step of our fuzzer is to create a model program in C to fuzz the Windows
kernel. The program essentially contains various functions that invoke a system call while
probabilistically mutating the parameter values. Since we already know the dependency
relationships between syscall parameters, our model program should properly handle the
dependency while generating the code. As an example, our model program looks as below.
ret = syscall_A (mut_int (1));

xbuf = ...
syscall_B (mut_ptr(buf), mut_handle(ret));

There are two system calls A and B, and every parameter is wrapped by a mutation
function, such as mut_int and mut_ptr, based on their inferred data types. For instance,
when a parameter has an int type, then we randomly mutates the value of it to have a
random integer value. However, we do not always mutate all the parameter values as doing
so can break the dependency relationship between system calls, which will cause most of the
system calls to fail in the end.

Note we do not mutate HANDLE type parameters as it can largely affect the success rate
of system calls. This is a common design choice found in many kernel fuzzers for other OSes
too, e.g., Syzkaller [23].
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Figure 5: Our Fuzzer Architecture.

5.5 Implementation

Our prototype system consists of three main modules: type analyzer, syscall logger, and
model generator. Figure 5 depicts the overall architecture of it. The type analyzer first
analyzes Windows native binaries to infer system call parameter types. The syscall logger
then instruments system call stubs to obtain system call traces while executing userland pro-
grams. Finally, the model generator use leverage the trace along with the type specification
to create a model program for fuzzing the Windows kernel.

We implemented our system on our binary analysis framework [8], that we refer to B2R2.
The system consists of 16K lines of F# code, and 1K lines of C++ code.

6 Evaluation

6.1 Evaluation Setup

We evaluated our system to check if it can find any realistic bugs on the Windows kernel.
To run the system, we first took system call traces by running various user-land programs.
Particularly, we manually crafted user inputs to run the six Windows programs: Nodepad,
Wordpad, SumatraPDF, Internet Explorer, Windows media player, and Chess. The user
inputs mainly consist of clicking mouse buttons and firing keyboard shortcuts in order to
open a file. For example, we ran Windows media player and used an MP4 file as input. As
a result, we obtained six different syscall traces.

6.2 Replaying Traces

To evaluate the precision of the model generated by our system, we first generated six
different model programs from the six different traces. We then simply replay the trace
by running the model program without mutating any parameter values and measured how
many system calls were returning the same results compared to the original syscall traces.
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Notepad Wordpad SumatraPDF IExplorer WMPlayer Chess

# of Succ. Calls 5,604 22,149 12,372 48,490 61,536 71,387
# of Calls 8,599 28,714 23,992 77,185 109,110 91,314
Success Rate 65.17%  77.14% 51.57% 62.82% 56.40% 78.18%

Table 2: The rate of successful system calls during replay.

Table 2 summarizes the results. The success rate was at least 51.5%, and 65% on average.
This roughly means, our analysis can precisely model more than a half of the system calls.
Note our goal is not on precisely modeling the system call specification, but rather on fuzzing
system calls. We believe the current success rate of 65% is enough for effectively fuzzing the
kernel to find vulnerabilities.

6.3 Bugs Found

Finally, we ran all the model programs for 24 hours each to find bugs resulting a kernel
panic. We used the latest (at the time of writing) Windows 10 64-bit, version 1903. In total,
we found 11 unique crashes based on stack traces, and we reported all of them to Microsoft.
One of the reported bugs was assigned with a CVE number (CVE-2020-0792).

Listing 1 shows a simplified model program that our system automatically generated. To
ease the representation we manually minimized the program. Although our experiment was
limited to those six trace files we manually generated, it was able to effectively find many
unique kernel panic bugs. We expect our fuzzer to be more lucrative in terms of bug finding,
when we use more trace files.

Listing 1: Example model program that found a previously unknown kernel panic.

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <stdint .h>
#include <windows.h>
#include <winnt.h>
#include <psapi.h>
#include <subauth.h>
#include 7stub.h”

#define CALLBACK TABLESIZE 0x400

#define TARGADDR ( 0xFFFFF78000000030 )
#define PADDING (0x40)

void * callback_table_nop [CALLBACK TABLESIZE | ;

// Function body is definied in assembly code.
void set_callback_table(voidx tablePtr);

void callback_nop (void) {
ntdll_NtCallbackReturn (0, 0, 0);



}

void deactivate_callback (void) {
set_callback_table (callback_table_nop);
}

void init_callbacks (){
int i;
// Initialize user—mode callback table.
for(i = 0; i < CALLBACK.TABLESIZE; i++) {
callback_table_nop[i] = callback_nop;

}

set_callback_table(callback_table_nop);

}

unsigned short register_-win_msg(void) {
unsigned short atom = 0;
UNICODESTRING str ;
wchar_t % name = L”myatom” ;
size_t len = wcslen (name);

str.Length = 1;

str . MaximumLength = 1;

str.Buffer = (wchar_t *) TARGADDR;

atom = (unsigned short) win32u_NtUserRegisterWindowMessage ((uint64_t) &str);
printf (” NtUserRegisterWindowMessage () .=-%hx\n” , atom);

return atom;

}

void get_atom_name (unsigned short atom) {
UNICODE_STRING str ;
wchar_t buf[64];
memset (buf, 0, sizeof(buf));
str.Length = 0;
str.MaximumLength = sizeof (buf);
str.Buffer = buf;

win32u_NtUserGetAtomName ((uint64_t) atom, (uint64_t) &str);
wprintf (L”NtUserGetAtomName ( ): - Buffer .=%ls\n”, str.Buffer);
}
int main(void) {
unsigned short atom;
init_callbacks ();
atom = register_win_msg ();

get_atom_name (atom );

return 0;
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7

Conclusion and Future Plan

We have studied several challenges to apply model-based fuzzing technique on Windows
kernel. One of the key challenges was to infer the type information of system calls, which
are largely undocumented in the first place. We also have presented our prototype design
for windows kernel fuzzer, and evaluated it on the latest Windows kernel, which results in
11 unique kernel panic bugs based on the stack trace. We plan to finalize our prototype
implementation by employing more advanced mutation techniques, and we will submit a
paper to CCS 2020, which is one of the most renowned conferences in security.
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