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Abstract

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because

the latency between the pilot and the aircraft is too great to safely perform aerial

refueling maneuvers. However, an automated aerial refueling (AAR) system removes

this limitation by allowing the tanker to directly control the RPA. The tanker quickly

finding the relative position and orientation (pose) of the approaching aircraft is

the first step to create an AAR system. Previous work at Air Force Institute of

Technology (AFIT) demonstrates that stereo camera systems provide robust pose

estimation capability. This thesis first extends that work by examining the effects of

the cameras’ resolution on the quality of pose estimation. Next, it demonstrates a

deep learning approach to accelerate the pose estimation process. The results show

that this pose estimation process is precise and fast enough to safely perform AAR.
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Object Detection with Deep Learning to Accelerate Pose Estimation for Automated

Aerial Refueling

I. Introduction

Automated aerial refueling (AAR) is an important emerging technology for the

United States Air Force (USAF). Currently, remotely piloted aircraft (RPAs) cannot

perform in-air refueling maneuvers due to the multi-second latency between the pilot

and the remote aircraft. An AAR system bypasses this limitation by allowing the

tanker to automatically control the receiver during the refueling process. The ability

to refuel RPAs in-flight would provide a valuable increase in operational endurance for

their mission set. Additionally, an AAR system serves as an important intermediate

step to a fully autonomous tanker. An AAR system needs the capability to control

the tanker, its refueling boom, and the receiver for the duration of the aerial refueling

procedure. Before control logic can be safely implemented, the system must have

high precision relative position and orientation (pose) estimation process that tracks

the receiver in real time. To do this, the tanker requires a vision system that meets

AAR system requirements.

The greatest challenge for an AAR computer vision system is difficulty in depth

estimation caused by the long range from the cameras on a tanker to the refueling

contact point. The contact point is approximately 30m from the stereo cameras. At

contact, the 3D pose estimation error must be less than 10cm. Due to aerial refuel-

ing mission constraints, existing aircraft cannot be modified and Global Positioning

System (GPS) signals cannot be used to augment a vision-based approach. AFIT re-

searchers have previously proposed a method for solving this problem using a stereo

1



vision system [5]. This thesis seeks to validate and improve that system.

One method for improving the accuracy of pose estimates is to increase the stereo

images’ resolution. Unfortunately, an increase in pixel count leads to a proportional

increase in processing time.1 To mitigate this limitation, this work draws inspiration

from nature. The neural structure dedicated to processing imagery is too small to

support high-resolution sensory over a wide field of view. Therefore, the biological eyes

in predators have small, ultra-high-resolution fovea and a low-resolution periphery.

This natural, ultra-high-resolution stereo vision system allows precise ranging and

pose estimation in predators’ brains without requiring more neural processing power.

To replicate this nature-based approach, this work uses a convolutional neural network

(CNN) to localize the receiver in each image and crop the images to only contain a

tightly-bound rectangle with the receiver inside it. Then, the more computationally

expensive image processing steps need only be applied to the region containing the

receiver.

1.1 Problem Statement and Research Objectives

In its current state, pose estimation presents the largest limiting factor for

AAR. Finding the precise relative pose of the receiver and then controlling it pre-

cisely enough to connect with the tanker is difficult. This thesis aims to answer two

questions:

1. Can higher resolution stereo camera systems provide the pose estimation accu-

racy that AAR requires?

2. Can a machine learning approach speed this process up enough to use it in a

real-time system?
1The complexity of the algorithm used to generate a 3D point cloud is O(n) where n is the total

number of pixels in a stereo image pair.
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To answer these questions, this research augments the AAR vision pipeline pro-

posed by Parsons et. al. in [5] by adding a CNN that autonomously detects the

region of interest containing the receiver in the stereo image pair. This research seeks

to demonstrate the following:

1. Higher resolution camera systems produce better pose estimates in simulations

and real-world tests.

2. A CNN augmentation decreases pose estimation time.

3. A CNN augmentation does not decrease the accuracy of a given camera system’s

pose estimation.

Combined, these goals lead to an improvement of the AAR vision pipeline that

creates a better solution to meet operational constraints for the Air Force.

1.2 Assumptions

To accurately model aerial refueling scenarios, this research assumes the receiver

approaches on a linear flight path. A linear flight path is much easier to model in a

ground experiment. Next, this research assumes the contact point is 30m from the

stereo baseline. While this is not an exact measurement, it is close to the actual value,

and allows an easy location for direct comparisons between systems and experiments.

The region of greatest interest is when the receiver is 50m to 30m away from the stereo

baseline. This research assumes the orientation variation is very small in a refueling

approach, since a variation of more than one degree would quickly take the receiver

out of a refueling approach. For this reason, the error analysis focuses exclusively on

the 3D offset vector instead of a full position and orientation solution. This research

assumes adequate lighting for the electro-optical (EO) cameras to function properly

3



and no occlusion from clouds or other aerial debris; it does not seek to quantify

exactly how much light is required, and all experiments are performed in daylight.

1.3 Document Overview

Chapter II further explores previous efforts in AAR and computer vision. Chap-

ter III details the design and implementation of the real-time computer vision pipeline

for AAR. It then explains the design and integration of the image segmentation CNN.

Chapter IV discusses the accuracy improvement in a real-world ground test from using

4K+ resolution cameras and the performance benefits of a deep learning augmenta-

tion by showing the speedup in simulations. Finally, Chapter V discusses the benefits

that this process can yield in computer vision challenges facing the Air Force.
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II. Background and Literature Review

This chapter outlines the problem domain for this thesis and surveys related

work. Section 2.1 overviews aerial refueling and outlines constraints that guide this

work. Section 2.2 explains the pinhole camera model, which is essential to computer

vision. Section 2.3 describes how to calibrate a real camera to fit the pinhole camera

model. Section 2.4 discusses how images are processed to produce depth maps using

epipolar geometry and stereo block matching. Section 2.5 examines deep learning’s

role in computer vision. Section 2.7 discusses the use of simulations in the automated

aerial refueling (AAR) domain. Section 2.8 examines the theory behind using better

cameras to perform long range pose estimation. Finally, Section 2.9 explains how this

work continues previous AFIT AAR work.

2.1 Aerial Refueling

Aerial refueling is the process of transferring fuel from one aircraft to another

in-flight. A tanker aircraft transfers fuel to a receiver aircraft. There are two primary

ways to perform aerial refueling: the boom method and the probe-and-drogue method.

This research focuses on the boom method employed by the United States Air Force

(USAF) as shown in Figure 1. In the boom method, the receiver approaches the

tanker from behind and below. The approach maneuver begins when the receiver is

approximately 1

2
km from the tanker. The approach ends when the receiver reaches

the contact position. For this research, contact is approximated as 30m from the

tanker’s camera system. At the contact position, a boom operator injects the boom

into a receptacle on the receiver and begins refueling. The space the receiver occupies

during refueling is called the refueling envelope. The following constraints guide this

research:
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• AAR should not depend on precision GPS information because GPS is jammable

and spoofable.

• Receiver aircraft cannot be modified with sensors or markers to aid the pose

estimation process. While adding sensors or markers to the receiver would

provide better results, these solutions are impractical and could adversely affect

receiver performance.

• The navigation solution must run in real time. A system that takes too long to

calculate its navigation solution cannot safely control the refueling procedure.

• The boom method requires precise control of the tanker, boom, and receiver

from the pilots of both aircraft and the boom operator. Aircraft that cannot

perform these movements within minimal fault tolerances cannot refuel in-air.

• Pose estimation is the most difficult component of the process in almost all cases.

To safely control the receiver, the tanker must know the exact relative position

and orientation of the receiver. Inaccurate pose estimation risks putting the

receiver on an incorrect flight path. This could lead to failure to connect and

damage to both aircraft.

To safely and properly control the receiver, the tanker must know the exact relative

position and orientation of the receiver. Inaccurate pose estimation risks putting the

receiver on an incorrect flight path. This could lead to failure to connect and damage

to both aircraft. Several efforts have been made to perform AAR. One effort to

accomplish pose estimation added markers to the tanker and receiver, next using

geometric algorithms to calculate pose [6]. Another approach used precision GPS

and inertial measurement unit (IMU) with Kalman Filtering to estimate pose [7].

These solutions do not meet mission constraints outlined previously: specifically, this
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work seeks to have a real-time, vision-only approach pose estimation at ranges from

30m− 50m.

Figure 1: F-35 connects with KC-46 Tanker using the boom method [1]

The latency from remote control of remotely piloted aircraft (RPAs) makes AAR

maneuvers unsafe [8]. AAR would give RPAs the ability to refuel in-air, because

a tanker that can control the receiver would bypass the latency problem. Allowing

RPAs to refuel in-air would have several benefits. The aircraft could remain on station

virtually indefinitely, limited only by maintenance requirements or munitions load.

Crew fatigue could be mitigated in RPAs by changing the crew during flight. The

ability to autonomously connect to receivers could serve as a stepping stone towards a

fully autonomous tanker aircraft, which could help alleviate pressures on pilot supply.

2.2 Pinhole Camera Model

The pinhole camera model applies to most conventional cameras. A set of digital

sensors creates a 2D image from light focused through a lens. Each sensor creates

a pixel, and the pixels correspond to spatial properties based on camera’s physical
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properties. The pinhole model works because it models how light passes through the

camera’s aperture [9]. Figure 2 shows how the light from an object at point p passes

through pixel (u, v). However, any point on the line extending from Fc through P

and onward could also be represented in pixel (u, v). At a higher resolution, (u, v)

will correspond to a smaller volume of space and can help derive a more precise 3D

re-projection.

Figure 2: Pinhole Camera Model [2]

2.3 Camera Calibration

Camera calibration allows real cameras to more accurately represent the pinhole

camera model. Physical lenses and sensors introduce small distortions and transla-

tions that prevent direct derivation of 3D information from the 2D image. To allow

this transformation, camera calibration parameters are used to un-distort and rectify

8



the stereo images. A stereo camera system that is undistorted and rectified can then

function as if the two cameras were ideal pinhole cameras. Rectifying stereo image

pairs requires knowledge about the intrinsic characteristics of each camera and the

relative pose of the cameras. The intrinsic camera calibration is denoted as M1 for

the left camera and M2 for the right camera. These matrices take the form

M =













fx 0 cx

0 fy cy

0 0 1













where f is the camera’s focal length in pixels for x and y, and c is the center-pixel

coordinate in x and y. Additionally, the relative pose of the cameras needs to be

determined. This pose takes the form of a 3× 4 matrix

[R|t] =













r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3













where R is the direction cosine matrix (DCM) and t is the vector from the left camera’s

principle point to the right camera’s principle point. Knowing these parameters, it

is possible to create rectification maps that allows a computer to remap images into

rectified pairs in real time.

Images must also be undistorted before rectification; generally the distortion is

modeled using a polynomial with coefficients denoted k1...kn. Distortions for high-end

cameras tend to be small.

Camera calibration can be solved manually; however, the most common practice

is to take images of a checkerboard of known dimensions at different poses and then

allow a computer vision library (such as OpenCV) function to solve for the necessary

parameters. Figure 3 shows an example calibration image pair for each set of cameras

used in this research. In theory, it is possible to calibrate off of one image, but in

reality, ten to twenty good image pairs are required.
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Camera calibration is difficult: there are 24 correlated parameters. Some have

linear effects, and others have nonlinear effects on 3D re-projection. For example,

on a given image, it may be difficult to determine if a re-projection error is properly

minimized by a narrow stereo baseline and the cameras facing forward or a wider

stereo baseline where the cameras are rotated in. Small variations in rotation add

more error the farther a target feature is from the stereo baseline. Currently, OpenCV

struggles to make these small distinctions which can lead to large errors at longer

ranges.
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(a). Left low-res EO camera (b). Right low-res EO camera

(c). Left high-res EO camera (d). Right high-res EO camera

(e). Left IR Camera (f). Right IR Camera

Figure 3: Calibration Images for EO and IR Cameras, low-res images from [3]

11



2.4 Epipolar Geometry and Stereo Block Matching

The pinhole camera model allows pixels to be re-projected into 3D space if

relative orientation of the cameras is known. Because real cameras are not pinhole

cameras, the images must first be undistorted and rectified. Next, 3D information is

derived using epipolar geometry. Figure 4 shows how the location of pixels XL and

XR can be used to triangulate the position of point X given eL, eR, OL, and OR [10].

Figure 4: Epipolar Geometry [4]

The line eL → eR is an epipolar line. A pair of images where all of the epipolar

lines are parallel is called a rectified image pair. Rectification allows much faster

feature searches in the image pair because a feature must be on the same line of

pixels in a rectified image pair; no such guarantee exists for a raw image pair.

Stereo block matching allows the transform of rectified image pairs into depth

maps based on features in both images. If the disparity (distance in pixel-space
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coordinates) is larger, the object is closer. Conversely, a smaller disparity denotes a

more distant feature. A disparity of zero occurs when the feature is so distant that

the same pixel in both cameras finds it. Figure 5 shows how the stereo block matching

algorithm finds the tree top in both images. Once it is found, the disparity allows the

distance to the tree to be calculated. When this process is completed on the entire

scene that is visible to both cameras, it creates a depth map. This depth map can be

reprojected into 3D space to create a point cloud of the environment.

Figure 5: Rectified stereo images. This figure shows how a sliding window can perform
stereo block matching. In this case, the feature being found is the top of the tree.

One clear limitation of stereo block matching is computational intensity. The

computational cost comes from the total number of pixels in the stereo image pair:

the algorithm’s complexity is O(n) where n is the number of pixels. For example, if

the resolution for each camera in a stereo image system is doubled, the total num-

ber of pixels is eight times greater, and the algorithm will require eight times more

computation to complete.
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2.5 Deep Learning in Computer Vision

Deep learning provides different trade-offs and benefits for real-time computer

vision than conventional methods like stereo block matching [9]. Convolutional neural

networks (CNNs) require training time, which depends on the hardware used, the size

and structure of the network, and the training data. Training times thus vary greatly,

and range from several minutes to several weeks. CNNs also require large, labeled

training datasets. However, on-line a CNN will execute in a short, constant time

for each input. The execution time is a function of the size of the model and the

computer system running the model. As [11] discusses, hybridization of techniques

may provide robust solutions.

Deep learning techniques have made substantial progress in recent years towards

recognizing various objects in images. Since 2010, error rates in detecting objects in

an image of a large dataset has decreased from over 20% down to 1%. Architectures

vary from a sequential series of convolution filters all the way to dense connections

where each layer takes in the output of every previous layer as input [12; 13]. Ad-

ditionally, many newer CNNs have demonstrated an ability to localize the objects

they identify in an image [14; 15; 16]. There have been experiments that show deep

learning can outperform traditional methods [17]; however, conventional computer vi-

sion algorithms’ intermediate representations, such as point clouds, have been shown

to improve performance of deep learning solutions compared to image-only networks

[18; 19].

In this work, a CNN is trained and tested using simulated imagery. Recent liter-

ature suggests that a network capable of performing well on the simulated imagery

could be trained to perform as well on imagery from physical cameras. The work in

[20; 21] suggests that the main issue is that the virtual camera is a different sensor

from a physical camera, and domain adaptation is required when changing sensors.
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Goyal et. al. [22] also show that augmenting semantic segmentation image datasets

with synthetic imagery can improve results. Ros et. al. [23] demonstrate the benefits

of this approach. CNN architectures that demonstrate capability when trained and

evaluated on virtual imagery tend to perform just as well when trained and evaluated

on physical imagery.

2.6 6DoF Pose Estimation

The primary goal in many computer vision systems is to derive a 3D model

of the environment from 2D images. In monocular vision, information comes from

a single camera or image. Zhang et. al. [24] demonstrate a deep learning process

that performs object detection and pose estimation from a single camera. While their

approach does run in real time, their neural network performs pose estimation on small

objects that are very close to the camera. Similarly, Ferrara et. al. [25] use monocular

and stereo systems to perform pose registration at ranges from 0.5m− 4.0m. These

approaches are not adequate solutions, because our problem requires a high precision

solution for a very distant, large object.

Early AAR pose-estimation efforts focused on using monocular vision as a single

component of a sensor-fusion relative navigation solution [6; 26]. Since both of these

added markers to the aircraft, they do not meet the first or second constraints outlined

in Section 2.1.

Stereo vision finds features in images and, after a calibration and rectification

process, re-projects these features into 3D space relative to the cameras using epipolar

geometry (for more information, see [10]). The stereo block matching algorithm

locates features in both images and calculates the disparity, or distance in pixel-space,

between them. Once disparities have been calculated for an image pair, the disparity

map can be converted into a depth map. Stereo block matching requires a series of
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pixel-wise comparisons. Increasing the number of pixels in the image pair leads to a

linear increase in computation time. Our real-time constraint imposes a limit on the

resolution that can be used in for this process. Once a point cloud has been generated,

there are many techniques to perform pose estimation. In [27], Tam et. al. survey

several registration methods. Since aircraft are rigid bodies, point-to-point iterative

closest point (ICP) [28] was chosen for this work. However, alternate methods such

as parallel ICP [29], fast global registration (FGR) [30], or a deep learning approach

[31] may provide different performance and precision trade-offs.

2.7 3D Virtual World

Flight tests can be prohibitively expensive and take long planning periods.

Moreover, truth data can be difficult to obtain. Simulation in a 3D virtual world can

mitigate these problems and allow rapid prototyping and development. Campa et.

al. [32] created a 3D virtual world to simulate aerial refueling approaches in 2009.

Similarly, Parsons et. al. [5] created a more modern 3D virtual world that models

the AAR environment. Fravolini et. al. [26] also used a 3D virtual world for their

tests. In short, simulations are standard for this type of work.

In general, a computer vision algorithm’s results in a 3D virtual world can be

directly compared with a different algorithm’s results in the same simulated envi-

ronment. There is ongoing work to determine how well certain 3D virtual worlds

correspond to physical experiments [33].

2.8 Camera Resolution and Depth Estimation

Intuitively, one expects that a higher resolution camera pair would improve

depth estimation fidelity. In this subsection, we simulate the error in depth re-

projection for a single point using OpenCV. With properly calibrated cameras, it
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is possible to have a mean depth estimation error near zero at long ranges; however,

the mean error is often misleading because individual depth estimations may signif-

icantly over-estimate or under-estimate an individual feature’s depth. As outlined

in Section 2.6, the entire point cloud contributes to the accuracy of pose estimation.

For this reason, we seek to decrease mean absolute error (MAE). To demonstrate the

necessity for using higher-resolution camera, we used the scenario demonstrated in

Figure 6, where the point being triangulated was 30m away from a stereo camera sys-

tem employing a 1

2
m stereo baseline. Using cameras with a fixed, 56◦ field of view, the

cameras’ resolution was varied and compared the average error in depth estimation as

a function of distance from the camera baseline. With Gaussian noise and a 1-pixel

standard deviation in both images, a 1280× 960 image resulted in 0.4598m MAE in

distance from the cameras. By using a higher resolution camera of 4896 × 3264, a

0.38m MAE is achieved. This demonstrates the potential for significantly improving

the relative pose computation of a stereo vision system by increasing the resolution

of the cameras. These results correspond well to the error equation ǫz = z2

bf
ǫ̇d [34],

where ǫz is the depth error, z is the depth, b is the baseline, f is the focal length (in

pixels), and ǫd is the matching error in pixels (disparity values, assumed to be one).

Table 1: Estimated depth for a feature located 30m away from stereo cameras

Resolution Mean Depth Estimation MAE Calculated Error
1280× 960 30.10m 1.427m 1.496m
1920× 1440 30.02m 0.9435m 0.997m
3840× 2880 30.00m 0.4650m 0.498m
4896× 3264 30.00m 0.3844 0.3910m
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Figure 6: scenario for single-point depth estimation

2.9 Previous AFIT Work

This work follows Dallmann’s thesis work [3]. Dallmann conducted a ground

experiment to evaluate the capability of the pipeline designed by Parsons et. al. [5] to

provide pose estimation for AAR. Analysis of his results shows that pose estimation

errors at the contact point (assumed to be 30m) for a 1280 × 960-resolution stereo

electro-optical (EO) camera system are too high to safely control a receiver. This

work seeks to improve these processes to meet precision and timing requirements

for AAR. While Dallmann’s results are presented in Chapter IV to provide context

for the high-resolution vision system this work examines, it is important to discuss

his results here as well, since these previously represent the state-of-the-art in near-

real-time pose estimation. In the ground experiment, a pseudo-receiver is pushed

towards a pseudo-tanker carrying a stereo vision system (Chapter III fully details the

experimental methodology). Figure 7 shows the path estimation error as a function

of distance for the EO camera system in his experiment. To safely perform AAR, the
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3D error1 would need to be below 10cm at a range of 30m.
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Figure 7: scenario for single-point depth estimation

Similarly, Figure 8 shows the infrared (IR) camera system’s performance. Again,

the errors are substantially larger than the requirements for AAR. This thesis work

implements a system that meets the precision requirements but runs in approximately

the same amount of time as this benchmark.
1The 3D error is the Euclidean distance between the truth position and the sensed position.
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Figure 8: scenario for single-point depth estimation
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III. Methodology

This chapter explains the experiments that were conducted to validate the pro-

posed computer vision pipeline. The base pipeline comes from [5]. First, Dallmann’s

ground experiment is re-created using higher resolution camera system [3]. Next, a

deep learning model is leveraged in the 3D virtual world to accelerate the pose esti-

mation process. The model crops the stereo images to only include a tightly-bound

rectangular portion containing the receiver, thus significantly fewer pixels need to be

processed using the stereo block matching algorithm. This results in a significant

speedup.

Section 3.1 describes the ground experiment that was recreated to show the affects

of higher resolution cameras on the stereo vision pipeline’s effective range. Section 3.2

describes how the deep learning model was designed and implemented. Finally, Sec-

tion 3.3 explains how the convolutional neural network (CNN) was fully integrated

into the vision pipeline.

3.1 Ground Experiment

The ground experiment seeks to validate the computer vision pipeline from

Parsons et. al. [5]. The pipeline is as follows:

1. Capture stereo imagery

2. Generate a disparity map

3. Convert the disparity map into a 3D point cloud

4. Use iterative closest point (ICP) to register the receiver’s pose

This section examines the affects of camera resolution on long range pose esti-

mation using a ground experiment designed to mimic an aerial refueling approach.
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Ongoing work suggests that this experiment’s residual errors at a given range closely

reflect a real test flight’s residual errors at the same range [33]. The ground test used

to compare the high-resolution cameras with lower resolution cameras was designed

specifically to mimic an aerial refueling approach as much as possible. The experi-

ment was run in two parts: the first with lower resolution electro-optical (EO) and

infrared (IR) cameras [3], the second with high-resolution EO cameras.

3.1.1 Stereo Camera System

Two separate stereo vision systems comprised of two pairs of stereo EO cameras

and one pair of IR cameras were employed. Using both EO and IR cameras increases

the variability of the experiments and provides multiple data collection sources for

analyzing. The use of IR cameras provides the opportunity to validate stereo IR

cameras as a viable option for stereo vision in the AAR domain.

Allied Vision Proscilica GT1290C EO cameras were chosen for the low-resolution

EO stereo vision system. The GT1290Cs capture 24-bit RGB images at a resolution

of 1280 × 960 and have adjustable focal points and apertures. The adjustable focal

point has the advantage of setting the focus to infinity to maximize image clarity for

objects at long distances, since a receiver in the experiments is at a contact distance

of about 30m. Additionally, the cameras do not auto focus, which interferes with the

camera calibration. For the high-resolution cameras, Allied Vision Prosilica GT4905C

EO cameras were chosen. These have a compatible application programming interface

(API) with the GT1290C, allowing for the same configuration except for the resolu-

tion. The cameras are capable of a full resolution of 4896× 3264; however, to achieve

10Hz frame rates, the high-resolution cameras were configured to capture images at

a resolution of 2448×1632 in a smaller field of view; they maintain 4K+ pixel-density

if extended to the full field of view. The IR cameras chosen for the project had an
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image resolution of 1024× 768 and the images produced are 16-bit grayscale images.

Like the EO cameras, the IR cameras were also focused to infinity. All three systems

have similar full fields of view and aspect ratios.

Figure 9 shows the stereo camera configuration for the low-resolution EO cameras

and the IR cameras. Figure 10 shows the mounted high-resolution cameras. The

IR cameras can also be mounted with the high-resolution cameras as shown. The

cameras were configured to trigger on a hardware signal controlled by the collection

program. This ensures that each stereo image pair is captured at exactly the same

time, and the pairs are timestamped for alignment with truth data. Images were

collected at 10Hz.

Figure 9: Low-resolution EO cameras and IR cameras mounted for the first experi-
ment

3.1.2 Calibration

To perform image rectification and feature extraction, cameras must be cali-

brated properly. Dallmann used a metallic checkerboard with 30mm square tiles to

capture calibration images for the low-resolution EO cameras and the IR cameras.

The high-resolution EO cameras were calibrated using a larger, matte checkerboard.

OpenCV’s stereo calibration function was used to compute the calibration parame-
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Figure 10: High-resolution EO cameras and IR cameras mounted for the first exper-
iment

ters as described in [9]. The checkers on the metalic board were painted using white,

heat-insulating paint. This creates a temperature differential that mimics the color

differential, and the same board could be used to calibrate the EO and IR cameras,

however, it is easier to calibrate accurately with the larger board.

3.1.3 Truth Data

To produce accurate position truth data for the psuedo receiver that is used

during experiments, a differential GPS (DGPS) system creates a differential solution

between a Primary system and Secondary system. The DGPS data is used to calculate

the pose truth data. Changes in orientation more than one degree would quickly force

the receiver out of the refueling envelope in an aerial refueling approach. Therefore,

while ICP returns a 6DoF rigid body registration, the main concern is the 3D offset

vector. The Primary and Secondary systems both collect and save their GPS data

for post-processing. The DGPS system collects at at 5Hz. To ensure that the pose is

correlated to the correct stereo image pair, the computer’s clock is synced with GPS
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time using a Time Machine TM2000A time server, and each image is time-stamped.

The two closest DGPS solutions are linearly interpolated to the time that the image

pair was captured: this solution is used as the truth data for a given image pair. The

DGPS system has centimeter-level error. An error this small would be sufficient for

an aerial refueling connection using the tanker method. A system verified by this

methodology would be directly deployable.

3.1.4 Pseudo-Tanker and Pseudo-Receiver

The pseudo tanker was designed using a wagon that could securely support the

vision system, the data collection computer, the Primary DGPS system, and a power

supply system. Additionally, the GPS antenna was placed above all of the equipment

to prevent the blocking or multi-path GPS signals traveling to it. Figure 11a shows

the pseudo tanker with the IMU axis attached.

The pseudo-receiver was designed to mimic the scaled-down behavior of a generic

receiver in a refueling approach. The main structure is a wing and body with patterns

printed on it. Figure 11b shows the front view of it. Patterns are placed on the

surface to mimic the paint variations, rivets, and other surface features that stereo

block matching can locate on the surface of an approaching aircraft.

For pose registration, a reference point cloud (red) is matched onto a sensed point

cloud (yellow) using ICP [28]. Figure 12 shows the reference point cloud for the

pseudo-receiver and an example of a sensed point cloud.

3.1.5 Running the Experiment

The experiment was conducted in a parking lot to allow a large, relatively flat,

open space. The pseudo-tanker remained stationary, and the pseudo-receiver was

pushed towards it. Several approaches were conducted.

25



(a). Rear view of pseudo tanker cart with
primary axes shown (b). Front view of pseudo receiver cart

Figure 11

(a). Red Reference Point Cloud (b). Yellow Sensed Point Cloud

Figure 12: Reference Model and Sensed Model as Point Clouds

After the tests were conducted and truth data was obtained from post-processing

the DGPS data, the computer vision pipeline was applied to estimate the pseudo-

receiver’s pose. Figure 13 shows an example of registration being visualized in the

virtual environment. This allows for recreation of the experiment and visualization

of the pose estimation in post-processing. The data from [3]’s experiment was re-

processed in this way to provide better comparison with the high-resolution camera

system.
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Figure 13: Registration of the Reference Point Cloud with the Sensed Point Cloud

3.2 Pipeline Augmentation with a CNN

To generate a 3D point cloud faster while using high-resolution imagery, the

base vision pipeline (shown in Section 3.1) is modified by cropping the high-resolution

images before generating a disparity map. This leads to an improved pipeline that

this thesis now seeks to evaluate:

1. Capture high-resolution stereo imagery
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2. Use CNN to dynamically crop the stereo images

3. Generate a disparity map only for the region of interest

4. Convert the disparity map into a 3D point cloud

5. Use ICP to register the receiver’s pose

To perform the dynamic cropping, the vision pipeline is augmented with a deep

learning model that is trained to segment computer-simulated imagery of a receiver

aircraft. This model is deployed in a 3D virtual world refueling simulation. The

model crops the stereo images to only include a tightly-bound rectangular portion

of the original image containing the receiver; thus, significantly fewer pixels need to

be processed using the stereo block matching algorithm. This results in a significant

speedup without sacrificing precision. Section 3.2.1 describes the 3D virtual world.

Section 3.2.2 details how our deep learning model was designed and tested.

3.2.1 Computer Simulation

To quantify performance benefits and simulation accuracy, simulations are per-

formed in the AFTR Burner Engine [35]. The AFTR Burner Engine is a custom

3D graphics engine based on OpenGL that uses geometrically accurate models, high

quality textures, and realistic lighting to replicate real refueling approaches. This is

the same simulation environment that several researchers have used [5; 36; 37] for

their automated aerial refueling (AAR) experiments. The cameras in the simulation

have the same resolution and field of view as their physical counterparts used in the

ground experiment. OpenGL’s rendering pipeline introduces small variations and

distortions due to the discretization of the pinhole camera model, so it is necessary to

perform multi-sample anti-aliasing (MSAA) and camera calibration. The calibration

is performed using a virtual checkerboard and OpenCV’s stereo calibration function
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as described by Kaehler and Bradski [9]. To verify that increased resolution im-

proves pose estimation, a simulated refueling approach was conducted in the virtual

world using cameras at different resolutions and the fidelity of the pose estimation is

compared.

3.2.2 CNN Design

For this research, a basic deep CNN architecture was created. There are many

existing architectures, such as YOLO [14], that could perform a similar function.

The work here exists to demonstrate how a deep learning augmentation to improve a

computer vision pipeline can be implemented, and even a basic model can yield large

performance benefits. The remainder of this subsection explains how the network was

trained and evaluated. Its image segmentation performance is then briefly discussed.

3.2.2.1 Data

The dataset for this project was created using the AFTR Burner engine de-

scribed in Section 3.2.1. In the simulation, a virtual receiver was placed at random,

uniformly distributed locations within the camera’s field of view at distances between

20m and 100m and its orientation was randomly adjusted by small amounts to ensure

diversity. One of several background images of real landscapes from aerial views was

placed in the background. The engine used a virtual camera to capture a 1280× 960

resolution image of the simulated scene. Next, the simulation was modified to re-

skin the receiver in a flat, distinct color. After a pair of images was captured, the

background was changed and the receiver was moved. Figure 14 shows an example

of an image pair. For this research, 5, 500 input/truth image pairs were generated.

The project used 5, 000 pairs for training and validation and 500 pairs for testing.

The test set was generated using different background images that were unseen in
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training.

Figure 14: Example training image pair captured from AFTR Burner

To create the truth data, a mask was applied to the image to locate the pink skin

on the receiver in the truth images. The minimum and maximum pixel coordinates

were used to calculate the center x, center y, width, and height of the box in pixel

space. These were saved in a CSV with the associated image number. Each of the

training images was blurred using a 3× 3 low-pass blurring filter to help prevent the

model from over-fitting potential sharp edges in the simulated imagery.

The model was further designed to perform image segmentation specifically for

AAR. High-resolution cameras can often capture at higher frame rates in grayscale

than in color; however, full resolution is not necessary to localize the receiver. Down-

sampling images allows for accurate localization with smaller networks. For these

reasons, training images were converted to 512×386 grayscale. Brightness was varied

in each image between 5% and 300% to help feature selection become less dependent

on specific lighting. Pixel values were then rescaled to floats between 0 and 1. For

testing, the pixel values are rescaled but not otherwise augmented.
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3.2.2.2 Model

This research used a new deep CNN model. The model has 16 convolution

layers and two fully connected layers before output. It takes an image as described

in Section 3.2.2.1 and outputs regression values for the bounding box as center-x,

center-y, width, and height values, normalized to be in range [0− 1] as a proportion

of the original image. Figure 15 shows a high level view of the model.

Figure 15: The CNN model used for this research

Batch normalization is performed at each layer. A leaky ReLU function1 serves

as the activation function for each layer. Leaky ReLU can prevent dead nodes that

activation functions with finite ranges on an infinite (or very large) domain can create.

For example, the sigmoid2 function has a range (0, 1) but is greater than σ(x) > 0.99

for 4.6 < x < inf and σ(x) < 0.01 for − inf < x < −4.6. It is likely that with
1

f(x) =

{

0.1x x ≤ 0

x x > 0

2σ(x) = e
x

e
x+1

; the sigmoid function has fallen out of favor in newer architectures.
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a range this big, the back-propagation process will cause some nodes to always be

”on” or ”off” regardless of input, which decreases the model’s capacity. In contrast,

leaky ReLU function ensures that all of the parameters associated with nodes will

contribute to the model’s solution.

There is a 40% dropout before each fully connected layer and a 20% dropout

before the output layer. These regularization techniques help the model train faster

and on smaller datasets, but do not affect the model’s execution speed or capacity,

and are evident in many deep learning architectures [14; 15; 12; 13].

The first convolution layer uses large 12× 9 filters with a 4× 3 stride. This takes

in the 512×386×1 images and outputs a square 128×128×128 feature map. Using a

large filter with a stride on the first layer is common practice [14; 15] and helps reduce

the dimensionality of the initial image while finding features and having relatively

few parameters. The remaining convolution layers vary between 3 × 3 convolutions,

1× 1 convolutions, and periodic max pooling. The 3× 3 convolution layers perform

much of the feature extraction. The 1× 1 convolution layers add nonlinearity (since

they perform a linear transform and pass through the non-linear activation function)

while adding fewer parameters than a larger filter would. Keeping the parameter

count small makes the model train and execute more quickly. When the final pooling

occurs, the feature map is 1×1×1024, and is flattened to a one-dimensional vector of

1024 features. The two dense layers of 1024 nodes and 512 nodes perform regression

from the feature map, and then the output layer predicts the bounding box. See

Appendix 1.3 for information on the code base for the model.

The workstation training and evaluating the model had an Intel i7-7820X proces-

sor, 96GB of main memory, and an Nvidia 1080Ti GPU. The model trained in less

than three hours. By functioning on a consumer-level computer, the model demon-

strates that it can be used in practical settings.
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3.2.2.3 Testing

Test results are calculated using a set of 500 images that were generated and

labeled as described in Section 3.2.2.1. The backgrounds used in these images are

totally different from the backgrounds used in training, and are not seen by the

model prior to the testing. The model’s prediction can be directly compared to the

truth data. To quantify the model’s performance, the distance between the predicted

bounding box’s center and the true bounding box’s center in pixel space is measured.

The CNN’s error is measured in pixel space because stereo block matching generates

disparity values in pixel space as well. Several test images will also be examined in

Chapter IV.

3.3 CNN Application Procedure

To provide a speedup to the AAR pose estimation process, the CNN’s bounding

box must be used to accelerate the pose estimation process. Once the stereo images

are captured, the left image is down-sampled from the original resolution to 512×386

and passed as input to the CNN. While it would be possible to perform bounding on

both images, the disparities at 30m are only a few pixels. This means that the error

from assuming both bounding boxes are the same is small enough that it does not

appreciably decrease the CNN’s performance. Additionally, this means the network

only runs once, saving valuable computation time. The bounding box is then used

to mask a pre-computed rectification map (Kaehler and Bradski give an in-depth

explanation for the rectification process [9]). The captured images are remapped

using this now-cropped rectification map into a final pair of rectified, undistorted,

and cropped images. These images are then passed into OpenCV’s stereo block

matcher to generate a disparity map. Finally, the disparity map is reprojected into

3D space for use as a point cloud for pose registration. To compare the previous
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pipeline with the new one, data is collected on the precision of the pose estimation

process for a simulated approach and also time the point-cloud generation process for

stereo camera pairs at a variety of resolutions. Appendix A gives an in-depth guide,

including code, for this process.
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IV. Results and Analysis

This chapter discusses the results of the ground test and examines the benefits

of adding the convolutional neural network (CNN) augmentation to the stereo vision

pipeline. Section 2.8 motivated this research by previewing the effects of higher

resolution cameras in a virtual approach. The ground experiment supports those

calculations using electro-optical (EO) camera pairs at two resolutions, as well as an

infrared (IR) camera pair at a different resolution.

Section 4.1 shows the results from the ground experiment, which confirms that

high-resolution imagery provides the necessary increase in pose estimation precision

for automated aerial refueling (AAR). Next, Section 4.2 quantifies the deep learning

model’s performance. Finally, Section 4.3 examines the speedup gained from using

the augmented vision pipeline.

4.1 Ground Experiment Results

Figure 16 shows the results for one approach using the IR, low-resolution EO,

and high-resolution EO cameras, respectively. In this approach, the pseudo-receiver

was pushed towards the pseudo-tanker as directly as possible. Note that the IR and

low-resolution EO cameras struggle to find a meaningful registration at a range of

20m, with residual errors near 0.5m. In contrast, the high-resolution cameras have

errors smaller than 0.1m at ranges near 35m.
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Figure 16: Residual errors for the first approach
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Figure 17 shows the results for the second approach. In this approach, the pseudo-

receiver was pushed a short distance and then halted for a few seconds. Since a real

AAR approach might not be fully continuous, it is important to show that the tech-

nique can accurately track changes in motion as well. The results are nearly indis-

tinguishable from the first approach, which further validates that the high-resolution

cameras provide a solution accurate enough for this application.
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Figure 17: Residual errors for the second approach
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In the approaches shown by Figure 181, the pseudo-receiver was moved side-to-

side as it approached. This was designed to imitate an approach with suboptimal

conditions that required frequent correction. Each camera system performed slightly

worse; however, the high-resolution system still maintained errors smaller than 0.1m

at the target contact point of 30m.
1The receiver briefly left the IR cameras’ field of view twice in this experimental approach; this

is why there is no data from 35m to 30m and an uptick in error at 12m.
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Figure 18: Residual errors for the third approach
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In all, it is clear that increasing resolution does improve pose estimation accuracy.

Moreover, while the low-resolution camera system struggles to obtain meaningful

registrations at 20m, the high-resolution system can perform well at ranges near

50m. Figure 19 shows the aggregate path estimation errors for each approach. The

x, y, and z components display the mean absolute error at a given range across all

three approaches. The 3D error is obtained by taking the Euclidean distance between

the sensed position and the truth position at each range. The error bars show a one

standard deviation certainty associated with each mean. Importantly, the 3D error

for the high-resolution cameras plus the error bound is less than the 10cm benchmark

required for AAR.
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Figure 19: Aggregate errors for each camera system across all three approaches. The
3D error is the Euclidean distance from the truth position to the sensed position.
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Figure 20 shows the 3D path estimation error for each camera system as a function

of distance from the cameras. This clearly demonstrates the superior performance

of high-resolution cameras for AAR systems. Figure 21 shows the relative error,

calculated by taking the magnitude of the error vector and dividing it by the distance

to the cameras. This shows that the high-resolution camera system maintains error of

less than 1% for the range of interest, while the low-resolution and IR camera systems

appear to level off around 3% error and 2.5% error, respectively.
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Figure 20: 3D position estimation errors for each camera system as a function of
distance.

Figure 22 examines the standard deviation of the errors directly. The deviation

of the errors gives important insight into the behaviors of different camera systems.

While a suboptimal calibration shows residual errors for the low-resolution EO system

are much higher than the IR system, examining the deviation in the errors gives the

insight that the best-case scenario for those systems is actually quite similar. On the

other hand, the deviation of the high-resolution EO system is much lower and much

smoother as range increases.
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Figure 21: Relative error in each camera system as a function of distance.
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Figure 22: Standard deviation of the error in each camera system as a function of
distance. The standard deviation allows us to remove lever-arm or calibration errors
to compare camera systems’ performance to each other in best-case scenarios.

These results indicate that our high-resolution camera system is capable of safely

providing a sensed point cloud as a basis for pose estimation in AAR. However, as dis-

cussed in Chapter I, the increase in pixel count drastically increases the computation
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time required to generate a point cloud.

4.2 CNN Results

Table 2 shows the quantitative measures of the network’s performance. root

mean squared error (RMSE) and mean absolute error (MAE) are evaluated by com-

paring the predicted bounding box to the truth bounding box in pixel space. A few

outliers slightly skew the errors; however, most are very near zero. Figure 23 shows

the distribution of errors in x, y, width, and height. From these histograms, it is

clear that the errors are dominated by a few outliers, and on average the network

performs very well. Figure 24 shows how the errors stay fairly consistent across the

entire range of the test data. Figure 25 shows the amount of the true bounding box

that the predicted bounding box covers as a function of distance between the cam-

era and the receiver. In the entire test set of 500 images, there is only one image

where the predicted bounding box does not overlap the truth bounding box (a failure

rate of 0.2%). Moreover, on average the model’s prediction overlaps 90% of the true

bounding box. These results demonstrate stable behavior throughout the refueling

approach.

Table 2: Errors for the deep learning model (in pixels, images at 1280× 960) on the
test set

x y width height

RMSE 14.72 9.99 19.41 10.43

MAE 10.46 6.21 13.18 6.31
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Figure 23: CNN predicted bounding box errors in x, y, w, h (in pixels)
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Figure 24: CNN predicted bounding box residual errors in Euclidean distance from
truth box center to predicted box center and error in bounding box width and height
(in pixels) as a function of distance from tanker to receiver (in meters).
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Figure 25: This measures the percent of the true bounding box that the predicted
bounding box covers and shows a best fit line for convenience

Figure 26 shows four examples of the CNN’s typical performance. These are

consistent with the model’s performance across the test data set. The model can also

be used without transfer learning or other modification to evaluate images from a real

flight test. Figure 27 shows an example of the model directly being used on imagery

from a physical camera.
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(a) (b)

(c) (d)

Figure 26: Examples of CNN model performance. The green box represents the
ground-truth bounding box. The purple represents the network’s predicted bounding
box.
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Figure 27: Performance example for the CNN model with real flight test imagery.

4.3 Point Cloud Generation Timing and Pose Estimation Precision

This subsection evaluates the CNN’s performance at improving the pose estima-

tion process for AAR. First, the affects the CNN has on the time needed to generate

a 3D point cloud are analyzed. Next, the affects of using the CNN on the precision

and deviation in pose estimation accuracy are examined. Table 3 shows the time

required to generate a 3D point cloud at four sample resolution with and without the

CNN augmentation. It is clear that the CNN provides a substantial speed-up at all

resolutions. Creating a 3D point cloud for the 1280× 960 image pairs is 3.6× faster

with the CNN augmentation. When the resolution increases to 4896×3264, the CNN

gives an 11.2× speedup.
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Table 3: Point-cloud generation time with and without using the CNN

Resolution CNN Off CNN On
1280× 960 36.13ms 10.57ms
1920× 1440 76.77ms 14.67ms
3840× 2880 357.49ms 35.03ms
4896× 3264 524.28ms 46.52ms

Finally, it is important to verify that the CNN augmentation does not adversely

affect pose estimation. As with the ground experiment, the path estimation error

and the standard deviation of the error over the distance of the approach are shown.

Figure 28 shows the 3D path estimation errors for the 1280× 960 camera system and

the 4896 × 3264 camera system with and without CNN augmentation to the vision

pipeline.
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Figure 28: Path estimation error (Euclidean distance from truth position to sensed
position in meters). Note that the low-resolution system’s solution, even in the sim-
ulation, is consistently worse than the high-resolution system. Also note there is not
an appreciable difference between the high-resolution systems error with or without
the CNN augmentation. This shows the system can reliably perform as well as the
original pipeline, while also gaining a large speedup.
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Figure 29: Standard deviation of the error of each camera system’s pose estimation as
a function of distance. There is no appreciable difference between the high-resolution
system with and without the CNN augmentation, further validating its viability.
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V. Conclusions

The results in Section 4.1 validate AFIT’s stereo vision pipeline [5] to perform

pose estimation for automated aerial refueling (AAR) using a high-resolution stereo

camera system. The system consistently achieves 3D pose estimation errors of less

than 6cm. Based on these results, a stereo camera system with adequate resolution

can safely control a receiver in the refueling envelope to make and maintain contact.

However, high-resolution imagery comes with a computation-time cost.

Next, this thesis outlines a new computer vision pipeline that combines conven-

tional stereo vision with deep learning greatly accelerate the process of generating a

3D point cloud of the receiver. It further verifies that the speedup does not decrease

the precision gained from using high resolution stereo imagery. While this system

was developed specifically for AAR, any real-time computer vision application could

benefit from its use. For example, a convolutional neural network (CNN) can identify

and label several objects of interest in a stereo image pair and then perform the pose

estimation process quickly on each of them. Since the point clouds are generated

from finely cropped images, the resulting 3D point clouds are already semantically

segmented. This technique could be used provide benefits for many computer vi-

sion applications, including autonomous vehicles, robot navigation, or structure from

motion. All of these fields could provide important capabilities to the Air Force.

The greatest remaining limitation for pose estimation speed is point cloud reg-

istration. Using a parallel iterative closest point (ICP) or development of a faster

point cloud registration algorithm will be important for any future efforts to increase

pose estimation rates. Further study could be done to determine if pixel-wise image

segmentation could yield even greater speedups for the AAR domain. A pixel-wise

mask could be used to crop the images similarly to the rectangle this thesis uses.

Additionally, error in pose estimation and image segmentation could likely be greatly
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reduced by leveraging the time-series nature of most relative navigation tasks. Since

the receiver moves less than 2m/s, it is generally safe to assume that its pose does

not change dramatically from one frame to another. For segmentation, leveraging

a recurrent neural network (RNN) to perform image segmentation may allow better

tracking of objects. Future work to improve pose estimation may employ a Kalman

filter.

In conclusion, AAR imposes strict requirements on a pose estimation system.

High-resolution camera systems meet these requirements at a high computational

cost. However, by leveraging deep learning techniques, it is possible to vastly reduce

this cost. A computer vision pipeline using the techniques outlined here can provide

high-precision pose estimates at long ranges. The system described here can provide

the high-precision relative navigation solution for a complete AAR system.
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Appendix A. Model Deployment and Usage

This appendix demonstrates how to perform real-time image segmentation in

C++. Appendix 1.1 demonstrates how to deploy a pre-trained TensorFlow model

in a C++ environment using the C application programming interface (API). Next,

Appendix 1.2 shows how the image processing pipeline can be implemented to per-

form real-time cropping and generate a 3D point cloud from a stereo image pair using

a CNN. Appendix 1.3 gives relevant information for future students regarding the

location of different data sets and code bases.

1.1 Deploying A CNN in C++

First, the model must be trained in using either TensorFlow or Keras with a

TensorFlow back end. This Python 3 function can be used to save the model into

a version deployable in C and C++ environments. The output is a ”frozen” model

that can be used for real-time inference.

Listing A.1: Function to save a trained CNN
1 def my_freeze_graph(output_node_names, destination , name=”frozen_model.pb”) :

2 ”””

3 Freeze the current graph alongside its weights (converted to constants) into a protobuf f i l e .

4 :param output_node_names: The name of the output node names we are interested in

5 :param destination : Destination folder or remote service (eg . gs://)

6 :param name: Filename of the saved graph

7 : return :

8

9 assume ”import tensorflow as tf

10 import keras as K”

11 ”””

12 tf . keras .backend.set_learning_phase(0) # set inference phase

13

14 sess = K. get_session()

15 input_graph_def = sess .graph.as_graph_def() # get graph def proto from keras session ’s graph

16

17 with sess . as_default() :

18 # Convert variables into constants so they will be stored into the graph def

19 output_graph_def = tf . graph_util .convert_variables_to_constants(

20 sess ,

21 input_graph_def,

22 output_node_names=output_node_names)
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23

24 tf . train .write_graph(graph_or_graph_def=output_graph_def, logdir=destination , name=name, as_text=False)

25

26 K. clear_session()

Next, the model must be read into the C++ environment. TensorFlow’s C API

must already be installed for this functionality. This code was compiled and tested

using the C++17 standard, but should work with any C++11 or later version. The

AftrAI class serves as a basic, generic wrapper for a TensorFlow model. The header

includes several utilities the class needs to function.

Listing A.2: AftrAI.h
1 # pragma once

2

3 /∗

4 Andrew Lee

5 5 September 2019

6 AftrAI.h

7

8 This module serves as a convenient wrapper for the TensorFlow C API,

9 allowing us to deploy ML models without knowing exactly how the API/TensorFlow work.

10 ∗/

11

12 #include <tensorflow/c/c_api.h>

13 #include <memory>

14 #include <iostream>

15 #include <algorithm>

16 #include <cstddef>

17 #include <iterator>

18 #include <vector>

19 #include <assert .h>

20 #include <string .h>

21 #include <fstream>

22 #include <stdint .h>

23

24 namespace AI

25 {

26

27 static TF_Buffer ∗read_tf_buffer_from_file(const char∗ f i l e ) ;

28

29 /∗∗

30 ∗ A Wrapper for the C API status object .

31 ∗/

32 class CStatus {

33 public :

34 TF_Status ∗ptr ;
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35 CStatus()

36 {

37 ptr = TF_NewStatus() ;

38 }

39

40 /∗∗

41 ∗ Dump the current error message.

42 ∗/

43 void dump_error()const

44 {

45 std : : cerr << ”TF status error : ” << TF_Message(ptr) << std : : endl ;

46 }

47

48 /∗∗

49 ∗ Return a boolean indicating whether there was a failure condition .

50 ∗ @return

51 ∗/

52 inline bool failure ()const

53 {

54 return TF_GetCode(ptr) != TF_OK;

55 }

56

57 ~CStatus()

58 {

59 i f (ptr)TF_DeleteStatus(ptr) ;

60 }

61 };

62

63 namespace detail {

64 template<class T>

65 class TFObjDeallocator;

66

67 template<>

68 struct TFObjDeallocator<TF_Status> { static void run(TF_Status ∗obj) { TF_DeleteStatus(obj) ; } };

69

70 template<>

71 struct TFObjDeallocator<TF_Graph> { static void run(TF_Graph ∗obj) { TF_DeleteGraph(obj) ; } };

72

73 template<>

74 struct TFObjDeallocator<TF_Tensor> { static void run(TF_Tensor ∗obj) { TF_DeleteTensor(obj) ; } };

75

76 template<>

77 struct TFObjDeallocator<TF_SessionOptions> { static void run(TF_SessionOptions ∗obj) { TF_DeleteSessionOptions(obj) ; }

→֒ };

78

79 template<>

80 struct TFObjDeallocator<TF_Buffer> { static void run(TF_Buffer ∗obj) { TF_DeleteBuffer(obj) ; } };

81

82 template<>

83 struct TFObjDeallocator<TF_ImportGraphDefOptions> {

84 static void run(TF_ImportGraphDefOptions ∗obj) { TF_DeleteImportGraphDefOptions(obj) ; }

85 };

86

87 template<>
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88 struct TFObjDeallocator<TF_Session> {

89 static void run(TF_Session ∗obj) {

90 CStatus status ;

91 TF_DeleteSession(obj , status . ptr) ;

92 i f (status . failure ()) {

93 status .dump_error() ;

94 }

95 }

96 };

97 }

98

99 template<class T> struct TFObjDeleter {

100 void operator()(T∗ ptr) const {

101 detail : : TFObjDeallocator<T>::run(ptr) ;

102 }

103 };

104

105 template<class T> struct TFObjMeta {

106 typedef std : : unique_ptr<T, TFObjDeleter<T>> UniquePtr;

107 };

108

109 template<class T> typename TFObjMeta<T>::UniquePtr tf_obj_unique_ptr(T ∗obj) {

110 typename TFObjMeta<T>::UniquePtr ptr(obj) ;

111 return ptr ;

112 }

113

114 class MySession {

115 public :

116 typename TFObjMeta<TF_Graph>::UniquePtr graph;

117 typename TFObjMeta<TF_Session>::UniquePtr session ;

118

119 TF_Output inputs , outputs ;

120 };

121

122 /∗∗

123 ∗ Load a GraphDef from a provided f i l e .

124 ∗ @param filename : The f i l e containing the protobuf encoded GraphDef

125 ∗ @param input_name: The name of the input placeholder

126 ∗ @param output_name: The name of the output tensor

127 ∗ @return

128 ∗/

129

130 MySession∗ my_model_load(const char ∗filename , const char ∗input_name, const char ∗output_name) ;

131

132 template<class T> static void free_cpp_array(void∗ data, size_t length) {

133 delete [ ] ( (T ∗)data) ;

134 }

135

136 /∗∗

137 ∗ Deallocator for TF_NewTensor data.

138 ∗ @tparam T

139 ∗ @param data

140 ∗ @param length

141 ∗ @param arg
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142 ∗/

143 // Use this function i f the data for the TensorFlow model is manually allocated on the heap

144 template<typename T> static void cpp_array_deallocator(void∗ data, size_t length , void∗ arg) {

145 delete [ ] ( (T ∗)data) ;

146 }

147

148 // Use this function i f the data for the TensorFlow model is on the stack or stored by a smart pointer

149 static void null_deallocator(void∗ data, size_t length , void∗arg)

150 {

151 ; // do nothing

152 }

153

154 static TF_Buffer∗ read_tf_buffer_from_file(const char∗ f i l e ) ;

155

156 constexpr int MY_TENSOR_SHAPE_MAX_DIM = 16;

157 struct TensorShape {

158 int64_t values [MY_TENSOR_SHAPE_MAX_DIM] ;

159 int dim;

160

161 int64_t size ()const {

162 assert(dim >= 0) ;

163 int64_t v = 1;

164 for ( int i = 0; i < dim; i++)v ∗= values [ i ] ;

165 return v;

166 }

167 };

168

169 class AftrAI

170 {

171 public :

172 enum class INPUT_CLASS { LIST, IMAGE_2D, POINTCLOUD_3D };

173

174 static std : : unique_ptr<AftrAI> New(INPUT_CLASS ModelInput, TF_DataType InputDataType, size_t OutputLength) ;

175

176 void set_input_shape(std : : array<int , 2> ListInputDimensions) ;

177 void set_input_shape(std : : array<int , 3> Image2dInputDimensions) ;

178 void set_input_shape(std : : array<int , 4> Pointcloud3dInputDimensions) ;

179

180 virtual bool valid_session() const ;

181 virtual void load_model(std : : string filename , std : : string input_tensor_name, std : : string output_tensor_name) ;

182

183 template<typename T>

184 std : : vector<T> run_model(void∗ input_data) const noexcept; // run_model owns no memory. It will not delete anything.

185

186 AftrAI(const AftrAI&) = delete ;

187 AftrAI& operator=(const AftrAI&) = delete ;

188 virtual ~AftrAI() = default ;

189 protected :

190 AftrAI() = default ;

191 INPUT_CLASS ModelInputType;

192 TensorShape input_shape;

193 size_t DataSizeInBytes = 1;

194 size_t OutputLength = 0;

195 TF_DataType InputDataType = TF_DataType: :TF_FLOAT;
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196 std : : unique_ptr<MySession> session = nullptr ;

197 };

198

199 } // namespace AI

Listing A.3: AftrAI.cpp
1 // AftrAI.cpp implements the AI wrapper for TensorFlow

2

3 #include ”AftrAI.h”

4 #include <array>

5 #include <vector>

6 using namespace AI;

7

8 std : : unique_ptr<AftrAI> AftrAI : :New(INPUT_CLASS ModelInput, TF_DataType InputDataType, size_t OutputLength)

9 {

10 auto model = std : : unique_ptr<AftrAI>(new AftrAI) ;

11 model−>ModelInputType = ModelInput;

12 model−>InputDataType = InputDataType;

13 model−>OutputLength = OutputLength;

14 return std : :move(model) ;

15 }

16

17 void AftrAI : : set_input_shape(std : : array<int , 2> ListInputDimensions)

18 {

19 i f (this−>ModelInputType != INPUT_CLASS: :LIST)

20 {

21 std : : cout << ”Input shape error . For a l i s t /vector input , you need to specify 0: length and 1: number of

→֒ channels (typically 1)\n”

22 << ”Example expected format: {1024, 1} corresponds to a normal l i s t with 1024 items.\n”;

23 exit(1337) ;

24 }

25 int dtypesize = static_cast<int>(TF_DataTypeSize(this−>InputDataType)) ;

26 this−>input_shape = { {1, ListInputDimensions . at(0) , ListInputDimensions . at(1)}, dtypesize };

27 for (const auto& dim : ListInputDimensions)

28 {

29 this−>DataSizeInBytes ∗= dim;

30 }

31 this−>DataSizeInBytes ∗= dtypesize ;

32 }

33

34 void AftrAI : : set_input_shape(std : : array<int , 3> Image2dInputDimensions)

35 {

36 i f (this−>ModelInputType != INPUT_CLASS: :IMAGE_2D)

37 {

38 std : : cout << ”Input shape error . For an image input , you need to specify 0: height , 1:width, and 2: number of

→֒ channels (typically 1)\n”

39 << ”Example expected format: {960, 1280, 3} corresponds to a 3−channel (RGB/BGR/etc) image with heigh 960px and

→֒ width 1280px.\n”;

40 exit(1337) ;

41 }
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42 int dtypesize = static_cast<int>(TF_DataTypeSize(this−>InputDataType)) ;

43 this−>input_shape = { {1, Image2dInputDimensions. at(0) , Image2dInputDimensions. at(1) , Image2dInputDimensions. at(2)},

→֒ dtypesize };

44 for (const auto& dim : Image2dInputDimensions)

45 {

46 this−>DataSizeInBytes ∗= dim;

47 }

48 this−>DataSizeInBytes ∗= dtypesize ;

49 }

50

51 void AftrAI : : set_input_shape(std : : array<int , 4> Pointcloud3dInputDimensions)

52 {

53 i f (this−>ModelInputType != INPUT_CLASS: :IMAGE_2D)

54 {

55 std : : cout << ”Input shape error . For an PC input , you need to specify 0: x shape, 1: y shape, 2: z shape, and 3:

→֒ number of channels (typically 1)\n”

56 << ”Example expected format: {10, 10, 10, 1}\n”;

57 exit(1337) ;

58 }

59 int dtypesize = static_cast<int>(TF_DataTypeSize(this−>InputDataType)) ;

60 this−>input_shape = { {1, Pointcloud3dInputDimensions. at(0) , Pointcloud3dInputDimensions. at(1) ,

→֒ Pointcloud3dInputDimensions. at(2) , Pointcloud3dInputDimensions. at(3)}, dtypesize };

61 for (const auto& dim : Pointcloud3dInputDimensions)

62 {

63 this−>DataSizeInBytes ∗= dim;

64 }

65 this−>DataSizeInBytes ∗= dtypesize ;

66 }

67

68 bool AftrAI : : valid_session() const

69 {

70 i f ( ! this−>session)

71 return false ;

72 return true ;

73 }

74

75 void AftrAI : : load_model(std : : string filename , std : : string input_tensor_name, std : : string output_tensor_name)

76 {

77 this−>session = std : : unique_ptr<MySession>(my_model_load(filename . c_str() , input_tensor_name. c_str() ,

→֒ output_tensor_name. c_str())) ;

78 }

79

80 template std : : vector<float> AftrAI : :run_model(void∗ input_data) const noexcept;

81 template std : : vector<double> AftrAI : :run_model(void∗ input_data) const noexcept;

82 template std : : vector<int> AftrAI : :run_model(void∗ input_data) const noexcept;

83 template std : : vector<char> AftrAI : :run_model(void∗ input_data) const noexcept;

84 template<typename T>

85 std : : vector<T> AftrAI : :run_model(void∗ input_data) const noexcept

86 {

87 std : : vector<T> ret ;

88 auto input_values = tf_obj_unique_ptr(

89 TF_NewTensor(this−>InputDataType, this−>input_shape. values , this−>input_shape.dim,

90 input_data, this−>DataSizeInBytes , null_deallocator , nullptr)

91 ) ;
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92 i f ( ! input_values)

93 {

94 std : : cout << ”Tensor creation failed !” << std : : endl ;

95 exit(17) ;

96 }

97 CStatus status ;

98 TF_Tensor∗ inputs [ ] = { input_values . get() };

99 TF_Tensor∗ outputs [1] = {};

100 TF_SessionRun(this−>session−>session . get() , nullptr ,

101 &session−>inputs , inputs , 1,

102 &session−>outputs , outputs , 1,

103 nullptr , 0, nullptr , status . ptr) ;

104 auto _output_holder = tf_obj_unique_ptr(outputs [0]) ;

105 i f (status . failure ())

106 {

107 status .dump_error() ;

108 exit(18) ;

109 }

110 TF_Tensor &output = ∗outputs [ 0 ] ;

111 i f (TF_TensorType(&output) != this−>InputDataType)

112 {

113 std : : cout << ”Error , unexpected output tensor type.\n”;

114 exit(19) ;

115 }

116 size_t output_size = TF_TensorByteSize(&output) / TF_DataTypeSize(this−>InputDataType) ;

117 assert(output_size == this−>OutputLength) ;

118 auto output_array = static_cast<const T∗>(TF_TensorData(&output)) ;

119 for ( int i = 0; i < output_size ; i++)

120 ret .push_back(output_array[ i ]) ;

121 return ret ;

122 }

123

124 static TF_Buffer∗ AI: : read_tf_buffer_from_file(const char∗ f i l e )

125 {

126 std : : ifstream t( f i le , std : : ifstream : : binary) ;

127 t . exceptions(std : : ifstream : : fai lbit | std : : ifstream : : badbit) ;

128 t . seekg(0 , std : : ios : : end) ;

129 size_t size = t . tellg () ;

130 auto data = std : :make_unique<char[]>(size ) ;

131 t . seekg(0) ;

132 t . read(data. get() , size ) ;

133

134 TF_Buffer ∗buf = TF_NewBuffer() ;

135 buf−>data = data. release () ;

136 buf−>length = size ;

137 buf−>data_deallocator = free_cpp_array<char>;

138 return buf ;

139 }

140

141 MySession∗ AI: :my_model_load(const char ∗filename , const char ∗input_name, const char ∗output_name)

142 {

143 std : : cout << ”Loading model ” << filename << ”\n”;

144 CStatus status ;

145
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146 auto graph = tf_obj_unique_ptr(TF_NewGraph()) ;

147 {

148 // Load a protobuf containing a GraphDef

149 auto graph_def = tf_obj_unique_ptr(read_tf_buffer_from_file(filename)) ;

150 i f ( !graph_def) {

151 return nullptr ;

152 }

153

154 auto graph_opts = tf_obj_unique_ptr(TF_NewImportGraphDefOptions()) ;

155 TF_GraphImportGraphDef(graph. get() , graph_def. get() , graph_opts. get() , status . ptr) ;

156 }

157

158 i f (status . failure ()) {

159 status .dump_error() ;

160 return nullptr ;

161 }

162

163 auto input_op = TF_GraphOperationByName(graph. get() , input_name) ;

164 auto output_op = TF_GraphOperationByName(graph. get() , output_name) ;

165 i f ( !input_op | | !output_op)

166 {

167 return nullptr ;

168 }

169

170 auto session = std : :make_unique<MySession>();

171 {

172 auto opts = tf_obj_unique_ptr(TF_NewSessionOptions()) ;

173 session−>session = tf_obj_unique_ptr(TF_NewSession(graph. get() , opts . get() , status . ptr)) ;

174 }

175

176 i f (status . failure ())

177 {

178 return nullptr ;

179 }

180 assert(session) ;

181

182 graph.swap(session−>graph) ;

183 session−>inputs = { input_op, 0 };

184 session−>outputs = { output_op, 0 };

185

186 return session . release () ;

187 }

The ImageSegmentationModel class allows further abstraction between the sim-

ulation environment and the details of the CNN’s implementation. This allows a user

with little knowledge of machine learning to employ the model effectively.

Listing A.4: ImageSegmentationModel.h
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1 #pragma once

2

3 // Andrew Lee

4 // 5 September 2019

5 // ImageSegmentationModel serves as a wrapper for TensorFlow so that the GLView does not have to interact with it

→֒ directly

6 // based on https://github .com/aljabr0/from−keras−to−c

7

8 #include ”AftrAI.h”

9 #include <array>

10 #include ”opencv2/imgproc.hpp”

11 using namespace AI;

12

13 namespace LeeAI

14 {

15

16 constexpr int IMG_WIDTH = 512;

17 constexpr int IMG_HEIGHT = 384;

18 constexpr size_t OUTPUT_LENGTH = 4;

19 constexpr size_t NUM_CHANNELS = 1; // 1 for grayscale , 3 for RGB

20

21 class ImageSegmentationModel

22 {

23 public :

24 ImageSegmentationModel() ;

25 ImageSegmentationModel(std : : string saved_model_name, std : : string inputtensorname, std : : string outputtensorname, int

→֒ h, int w) ;

26

27 void load_model_from_file(std : : string filename , std : : string inputtensorname, std : : string outputtensorname) ;

28 void set_native_image_dimensions( int h, int w) ;

29

30 std : : array<float , 4> bound_C12(const cv : :Mat& img) const ;

31 virtual ~ImageSegmentationModel() = default ;

32 protected :

33 std : : unique_ptr<AftrAI> tensorflow_model = nullptr ;

34 std : : unique_ptr<MySession> session = nullptr ;

35 int NATIVE_W = 1280;

36 int NATIVE_H = 960;

37 };

38

39

40 } // namespace LeeAI

Listing A.5: ImageSegmentationModel.cpp
1 #include ”ImageSegmentationModel.h”

2 using namespace LeeAI;

3

4 #include ”opencv2/imgproc.hpp”

5

6
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7 ImageSegmentationModel : : ImageSegmentationModel()

8 {

9 this−>tensorflow_model = AftrAI : :New(AftrAI : :INPUT_CLASS: :IMAGE_2D, TF_DataType: :TF_FLOAT, OUTPUT_LENGTH) ;

10 this−>tensorflow_model−>set_input_shape(std : : array<int , 3>({ IMG_HEIGHT, IMG_WIDTH, NUM_CHANNELS })) ;

11 }

12

13 ImageSegmentationModel : : ImageSegmentationModel(std : : string saved_model_name, std : : string inputtensorname, std : : string

→֒ outputtensorname, int h, int w)

14 {

15 this−>tensorflow_model = AftrAI : :New(AftrAI : :INPUT_CLASS: :IMAGE_2D, TF_DataType: :TF_FLOAT, 4) ;

16 this−>tensorflow_model−>set_input_shape(std : : array<int,3>({ IMG_HEIGHT, IMG_WIDTH, NUM_CHANNELS })) ;

17 assert(h / w == IMG_HEIGHT / IMG_WIDTH) ; // enforce aspect ratio

18 this−>tensorflow_model−>load_model(saved_model_name, inputtensorname, outputtensorname) ;

19 this−>NATIVE_W = w;

20 this−>NATIVE_H = h;

21 }

22

23 void ImageSegmentationModel : : load_model_from_file(std : : string filename , std : : string inputtensorname, std : : string

→֒ outputtensorname)

24 {

25 this−>tensorflow_model−>load_model(filename , inputtensorname, outputtensorname) ;

26 }

27

28 void ImageSegmentationModel : : set_native_image_dimensions( int h, int w)

29 {

30 assert(h / w == IMG_HEIGHT / IMG_WIDTH) ;

31 this−>NATIVE_H = h;

32 this−>NATIVE_W = w;

33 }

34

35 std : : array<float , 4> ImageSegmentationModel : :bound_C12(const cv : :Mat& img) const

36 {

37 assert(this−>tensorflow_model−>valid_session()) ;

38 std : : array<float , 4> retval={ −1.0f ,−1.0f ,−1.0f ,−1.0f };

39 cv : :Mat reformat ;

40 cv : : resize (img, reformat , cv : : Size(IMG_WIDTH, IMG_HEIGHT)) ;

41 reformat .convertTo(reformat , CV_32FC1, 1.0/255.0) ;

42 auto output = this−>tensorflow_model−>run_model<float>(static_cast<void∗>(reformat .data)) ;

43 retval . at(0) = output. at(0) ;

44 retval . at(1) = output. at(1) ;

45 retval . at(2) = output. at(2) ;

46 retval . at(3) = output. at(3) ;

47 return retval ;

48 }

To use the ImageSegmentationModel, it must be properly initialized. In the Aftr-

Burner Engine, ManagerEnvironmentConfiguration::getVariableValue() allows

the proper values to be loaded from a configuration file. You could also call the con-

structor directly, instead of making a unique pointer; this choice is generally stylistic.
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Listing A.6: Initialize ImageSegmentationModel
1 AI = std : :make_unique<LeeAI: : ImageSegmentationModel>(ManagerEnvironmentConfiguration : : getVariableValue(”CNNmodelFile”) ,

2 ”input_1” , ”out/BiasAdd” ,

3 AftrUtilities : : toInt(ManagerEnvironmentConfiguration : : getVariableValue(”stereoFrustumVertSensorPixels”)) ,

4 AftrUtilities : : toInt(ManagerEnvironmentConfiguration : : getVariableValue(”stereoFrustumHorzSensorPixels”))) ;

1.2 Image Processing Implementation

Once the image segmentation model has been loaded as demonstrated in Ap-

pendix 1.1, a function such as the one below can be used to generate a disparity map

and 3D re-projection from the cropped images.

Listing A.7: Example function that performs image segmentation
1 // assume library inclusions , such as OpenCV

2 // map1x, map2x, map1y, map2y are ”cv : :Mat”s pre−computed to rectify images; assumed global here

3 // AI is a properly instantiated ImageSegmentationModel

4 // horzSensorPixels and vertSensorPixels are known values for the cameras

5 cv : :Mat CropStereoImagesAndProject3D(leftRawImg, rightRawImg)

6 {

7 boundingBox = AI−>bound_C12(leftRawImg) ;

8 auto boundingBoxAsRectangle = cv : : Rect(cv : : Point(( int)(boundingBox. at(0)∗horzSensorPixels − boundingBox. at(2)∗

→֒ horzSensorPixels / 2) , ( int)(boundingBox. at(1)∗vertSensorPixels − boundingBox. at(3)∗vertSensorPixels / 2)) ,

9 cv : : Point(( int)(boundingBox. at(0)∗horzSensorPixels + boundingBox. at(2)∗horzSensorPixels / 2) , ( int)(boundingBox. at

→֒ (1)∗vertSensorPixels + boundingBox. at(3)∗vertSensorPixels / 2))) ;

10

11 cv : :Mat leftStereoImg ;

12 cv : :Mat rightStereoImg ;

13 // Crop the rectification maps using coordinates from raw images

14 auto cropped_map1x = map1x(boundingBoxAsRectangle) ;

15 auto cropped_map1y = map1y(boundingBoxAsRectangle) ;

16 auto cropped_map2x = map2x(boundingBoxAsRectangle) ;

17 auto cropped_map2y = map2y(boundingBoxAsRectangle) ;

18

19 cv : :remap(leftRawImg, leftStereoImg , cropped_map1x, cropped_map1y, cv : :INTER_LINEAR) ;

20 cv : :remap(rightRawImg, rightStereoImg , cropped_map2x, cropped_map2y, cv : :INTER_LINEAR) ;

21

22 // perform stereo block matching

23 cv : :Mat bmDisparity = cv : :Mat(leftStereoImg .rows, leftStereoImg . cols , CV_16S) ;

24 // numDisparities and SADWindowSize are constants

25 cv : : Ptr<cv : :StereoBM> stereoBM = cv : :StereoBM: : create(numDisparities , SADWindowSize) ;

26 stereoBM−>compute(leftStereoImg , rightStereoImg , bmDisparity) ; //Output disparity values are implicitly multiplied

→֒ by 16.

27 // Q is a reprojection DCM

28 cv : :Mat reprojection ;

29 cv : :Mat qCoordinateTransform(4 ,4 , CV_64F) ;

30 qCoordinateTransform. at<double>(0, 0) = 1.0;

31 qCoordinateTransform. at<double>(0, 1) = 0.0;
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32 qCoordinateTransform. at<double>(0, 2) = 0.0;

33 qCoordinateTransform. at<double>(0, 3) = (boundingBox. at(0) − boundingBox. at(2)/2)∗horzSensorPixels ;

34 qCoordinateTransform. at<double>(1, 0) = 0.0;

35 qCoordinateTransform. at<double>(1, 1) = 1.0;

36 qCoordinateTransform. at<double>(1, 2) = 0.0;

37 qCoordinateTransform. at<double>(1, 3) = (boundingBox. at(1)−boundingBox. at(3)/2)∗vertSensorPixels ;

38 qCoordinateTransform. at<double>(2, 0) = 0.0;

39 qCoordinateTransform. at<double>(2, 1) = 0.0;

40 qCoordinateTransform. at<double>(2, 2) = 1.0;

41 qCoordinateTransform. at<double>(2, 3) = 0.0;

42 qCoordinateTransform. at<double>(3, 0) = 0.0;

43 qCoordinateTransform. at<double>(3, 1) = 0.0;

44 qCoordinateTransform. at<double>(3, 2) = 0.0;

45 qCoordinateTransform. at<double>(3, 3) = 1.0;

46 cv : :Mat cropped_Q = Q ∗ qCoordinateTransform;

47 cv : : reprojectImageTo3D(bmDisparity, reprojection , cropped_Q, false , CV_32F)

48

49 return reprojection ;

50 }

1.3 Repository Information

All deployed code for AftrAI and ImageSegmentationModel can be found on

the Lee_MLProject branch of the AARViz repository maintained by Dr. Nykl. This

includes the CMake files that link to the TensorFlow library. Instructions for in-

stalling TensorFlow are located in the AAR share drive. Currently, that is located at

/aar_folder/stud/AndrewLee/TensorFlow Install Guide/.

Data processing was generally performed in Python 3. Initial experimentation

with calibration is located in the AAR repository at ”aar/students/andrew.lee/Lever-

arm Bias”. The data for the journal article can be generated using the AARViz

yardTrashBranch. This code was not designed to be maintainable: only use it if

you must regenerate data for some reason. The data and the scripts responsi-

ble for processing it into graphic form for the journal article and thesis are located in

”aar/students/andrew.lee/Journal Article”.
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