
Digital Forensics Tools Integration

THESIS

Alexander D.H. Kim, Captain, USAF

AFIT-ENG-MS-20-M-031

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-031

Digital Forensics Tools Integration

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Alexander D.H. Kim, B.S.

Captain, USAF

March 19, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-031

Digital Forensics Tools Integration

THESIS

Alexander D.H. Kim, B.S.
Captain, USAF

Committee Membership:

Gilbert L. Peterson, Ph.D
Chair

Douglas D. Hodson, Ph.D
Member

Robert F. Mills, Ph.D
Member

AFIT-ENG-MS-20-M-031

Abstract

As technology has become pervasive in our lives we record our daily activities both

intentionally and unintentionally. Because of this, the amount of potential evidence

found on digital media is staggering. Investigators have had to adapt and change their

methods of conducting investigations to address the data volume. Digital forensics

examiners current process consists of performing string searches to identify potential

evidentiary items. Items of interest must then go through association, target com-

parison, and event reconstruction processes. These are manual and time consuming

tasks for an examiner. This thesis presents a user interface that combines both the

string searching capabilities that begin an investigation with automated correlation

and abstraction into a single timeline visualization. The capability to improve an

examiner’s process is evaluated on the tools ability to reduce the number of results

to sort through while accurately presenting key items for three use cases.

iv

Acknowledgements

First, I would like to thank Dr. Gilbert Peterson for all his advice and support.

This would not have been possible without your guidance. I would also like to thank

Capt Daniel Schelkoph and Capt Nikolai Adderley for helping me continue their

research. Lastly, I would like to thank my wife. Mona Aquino, in supporting me

throughout this endeavor.

Alexander D.H. Kim

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . xi

I. Introduction . 1

1.1 Problem Background. 1
1.2 Motivation . 1
1.3 Research Objectives . 3
1.4 Results . 4
1.5 Conclusion . 4

II. Background and Literature Review . 5

2.1 Forensic Process . 5
2.1.1 Common Phases of Digital Forensics . 6
2.1.2 Forensic Computing . 8
2.1.3 Analysis . 9

2.2 Information Visualization . 9
2.2.1 Forensic Analysis through Visualization . 11

2.3 Forensically Sound. 12
2.3.1 Four Rules of a Forensically Sound Process 13
2.3.2 Evaluation Criteria for Forensic Soundness 15

2.4 Forensic Tools . 16
2.4.1 Commercial Tools . 16
2.4.2 Open Source Tools . 18

2.5 The Sleuth Kit and Autopsy . 21
2.5.1 TSK . 21
2.5.2 Autopsy . 23

2.6 Custom Forensic Tool . 28
2.6.1 Property Graph Event Reconstruction . 28
2.6.2 Temporal Analysis Integration Management

Application . 30
2.6.3 Neo4j Full-Text Index . 32

2.7 Summary . 33

vi

Page

III. Integration . 34

3.1 Overview . 34
3.2 Design . 35

3.2.1 Tools . 35
3.2.2 Integration Process . 36

3.3 Ingest . 39
3.3.1 Phase One of Ingest . 39
3.3.2 Phase Two of Ingest . 48

3.4 User Interface . 51
3.5 Summary . 53

IV. Event Correlation and Abstraction Timeline Visualization
(ECATV) and Digital Forensics Examination Process 54

4.1 Assessment . 54
4.2 Common Digital Forensics Examination Process . 55
4.3 User Stories . 56
4.4 Scenario 1 . 59
4.5 ECATV Walkthrough . 59

V. Results and Analysis . 67

5.1 Overview . 67
5.2 Scenario 1 . 67

5.2.1 Scenario 1 Analysis and Results . 67
5.3 Scenario 2 . 68

5.3.1 Scenario 2 ECATV Walkthrough . 68
5.3.2 Scenario 2 Analysis and Results . 83

5.4 Scenario 3 . 84
5.4.1 Scenario 3 ECATV Walkthrough . 85
5.4.2 Scenario 3 Analysis and Results . 96

5.5 Summary . 97

VI. Conclusions . 98

6.1 Summary . 98
6.2 Limitations . 99
6.3 Future Work . 99

Appendix A. Windows 7 Lab 3 . 101

Appendix B. Windows 10 Lab 3 . 102

Bibliography . 103
Acronyms . 108

vii

List of Figures

Figure Page

1. Generic Computer Forensic Investigation Model . 7

2. Forensic Process . 8

3. Rules for Forensic Computing . 14

4. Evaluation Criteria for Forensic Soundness . 16

5. The Sleuth Kit’s Analysis Process Framework . 22

6. The Sleuth Kit’s Blackboard . 23

7. Autopsy’s Timeline . 26

8. Autopsy’s Timeline . 26

9. Timeline Filters . 27

10. GRANDstack Architecture . 31

11. TAIMA Timeline . 32

12. Autopsy Example . 35

13. Neo4j Subgraph . 37

14. ECATV . 38

15. Plaso . 40

16. LNK Filter . 42

17. Neo4j LNK Example . 43

18. EventLog Txt . 44

19. EventLog Filter . 45

19. EventLog Filter . 46

20. EventLog Neo4j Subgraph . 47

21. Program Execution Cypher Query . 49

viii

Figure Page

22. Autopsy Blackboard Communication . 50

23. Abstraction Schema . 51

24. Abstraction Queries . 52

25. Resolver Function . 52

26. Scenario 1 Timeline . 63

27. Scenario 1 Timeline Ethereal Search . 64

28. Scenario 1 Timeline Ethereal & Password Search . 65

29. Scenario 1 Timeline Credit Cards Search . 66

30. Scenario 2 Timeline “startup” Search . 69

31. Scenario 2 Timeline “install” Search . 70

32. Scenario 2 Timeline “install” Search . 70

33. Scenario 2 Timeline Search . 72

34. Scenario 2 Timeline “mustard” Search . 73

35. Scenario 2 Timeline “mustard” Search 2 . 74

36. Scenario 2 Timeline “peacock” Search . 76

37. Scenario 2 Timeline “peacock” Search 2 . 77

38. Scenario 2 Timeline “peacock” Search 3 . 78

39. Scenario 2 Boddy Inc. Database Snippet . 79

40. Scenario 2 “peacock” Search 4 . 80

41. Scenario 2 Emails . 82

42. Scenario 2 Timeline “peacock mustard Microsoft” Search 82

43. Scenario 3 Timeline “startup” Search . 85

44. Scenario 3 Timeline User Activity Search . 87

45. Scenario 3 Timeline “white jpg” Search . 88

ix

Figure Page

46. Scenario 3 Timeline “white jpg” Search . 89

47. Scenario 3 Timeline “white jpg” Search . 90

48. Scenario 3 Timeline “white jpg” Search . 91

49. Scenario 3 Timeline “green” Search . 93

50. Scenario 3 Timeline “green” Search . 94

51. Scenario 3 Parse Keys.lnk . 95

x

List of Tables

Table Page

1. ECATV and Scenario Results . 97

xi

Digital Forensics Tools Integration

I. Introduction

1.1 Problem Background

The digital age ushered in various forms of technology for entertainment and

productivity purposes. People now own computers, laptops, tablets, mobile phones,

smart TVs, and other Internet of Things devices that store the details of their ac-

tivities. It is estimated by 2025, the number of connected devices would rise to 75

billion devices with the average person estimated to own nine smart devices [1]. These

numbers do not include the various devices people may have in the form of virtual

machines and such that are utilized in cloud environments.

With the growing number of both physical and virtual devices, the demand for

investigators capable of conducting digital forensics is increasing. Law enforcement

agencies have been attempting to catch-up by using digital forensics tools that provide

high-level abstraction and hide the intricate details, increasing the user base capable

of collecting digital evidence. But even with this increase, case backlog is an on-going

issue because of the sheer number of devices a single person may own.

1.2 Motivation

The first 48 hours of an investigation are critical [2]. After an allegation is received

and an investigation is launched, the first few hours can determine the outcome. Per-

ishable evidence such as DNA or testimony, can be permanently lost if the correct

actions are not taken immediately. Investigators must utilize the initial hours effec-

1

tively to determine the best course of action based on the limited information they

gathered. Because of this, digital media is typically not utilized to create investigative

leads but rather used to confirm hypotheses developed later. The time it takes to

process and analyze digital evidence is not conducive to quickly generating a favorable

course. Many factors contribute to the lengthy time it takes to process digital evi-

dence; not having an investigator with the skills to conduct the examination readily

available, the speed of the tools, the number of devices, and the locations to search on

said devices. But as technology becomes more pervasive in our lives, the information

stored on these devices have become increasingly necessary to produce investigative

leads within this 48-hour window.

Even outside of this window, the number of devices gathered throughout inves-

tigations has created a backlog for the digital forensics examiners who are in short

supply.

“The requirement for digital forensics investigation has
ballooned, and law enforcement agencies throughout the world
are scrambling to address this demand. While more and more
members of law enforcement are being trained to perform the
required investigations, the supply is not keeping up with the
demand. Current digital forensics techniques are arduously
time consuming and require a significant amount of man

power to execute [3].

There is a need to create digital forensics tools that can triage the devices for

important information necessary during the initial phase of the investigation. At the

same time, there is a need to be able to process and analyze devices in a timely

manner to keep up with the demand and prevent delays in investigations.

2

1.3 Research Objectives

The methods of analysis require change as the amount of data produced and stored

on disk media continues to grow. Some of the challenges that require address are the

correlation of data from heterogeneous event sources [4]. New applications and uses of

technology are being developed daily. With this comes a variety of different methods

of storage and data is no longer confined to the local single workstations. In fact

important pieces of information can be stored in “the Cloud” where only remnants of

the original data remain in the local cache. Because of this, digital forensics analysis

will have to address the challenge of taking data from different sources and combining

them into some base-level commonality for analysis.

The overarching research goal is to reduce the analysis time spent by exam-

iners during the digital forensics process. The research objective was to improve

upon a visualization method Temporal Analysis Integration Management Applica-

tion (TAIMA) employed, which allowed examiners to quickly digest the results of

disk media analysis, and its back-end database, Property Graph Event Reconstruc-

tion (PGER), that provided a method for efficient data queries and enabled automated

event correlation. This research first examined how the tools fit into a common dig-

ital forensics examination process and adding the string searching capabilities they

require to improve an examiner’s process.

The resulting application Event Correlation and Abstraction Timeline Visualiza-

tion (ECATV) creates a keyword filterable timeline to be used in conjunction with

Autopsy, an open source digital forensics tool. The filterable timeline visualization

was created to make analysis easier by combining various tools and sources of data.

3

1.4 Results

ECATV was tested on three different scenarios and evaluated based on its abil-

ity to reduce the number of results an examiner must sort through and its ability

to still locate the key pieces of digital evidence. The tool was able to reduce the

number of hits by upwards of 90% and located over 70% of the key pieces of digital

evidence. Overall, ECATV significantly reduces the amount of data to sort through

while maintaining the ability to locate the necessary information.

1.5 Conclusion

Humans produce data at an increasing rate and digital forensics must develop

new tools and methods to keep up with technology. Native graph databases have

proven to provide an efficient means for data queries and abstraction creation through

relationships created between events. Visualization methods have proven to allow

digital forensics examiners to spend less time during the human-analysis portion of

the digital forensics process. ECATV was made to combine the benefits of using a

native graph database through PGER and a visualization method through TAIMA

with a new keyword search filter option. This research examines the benefits of

combining multiple digital forensics results from multiple sources and tools leading

to a more efficient examination.

4

II. Background and Literature Review

There are many facets that need to be taken into account to create a forensically

sound tool. Digital forensics examinations are a complicated process that involves not

only technical aspects but also legal considerations. Development of Event Correlation

and Abstraction Timeline Visualization (ECATV) requires first closely examining

what the digital forensics process entails and where in that process the tool can

improve the efficiency of examinations. It also needs to ensure it follows the criteria

for forensic soundness for a viable tool. Lastly, it is important to review tools and

the features they already employ to both warrant the development of a new tool and

for inspiration.

The first section goes over the aspects of the digital forensics process and the

common phases associated to an examination. The next section explains information

visualization and how it applies to the forensic analysis phase. The third section

explains the rules and criteria for a forensically sound process. The last three sections

provide an overview of the currently available and widely used digital forensics tools.

2.1 Forensic Process

Before looking into building a tool for digital forensics, we present the current

process used for digital investigations. There are many models out there with one of

the first outlined in 1984, called the Computer Forensic Investigative Process (CFIP).

It was a simple model that helped establish a basic outline. CFIP consisted of four

phases: acquisition, identification, evaluation, and admission. The acquisition phase

involved acquiring the physical evidence in an acceptable manner with proper au-

thority, just like any evidence in an investigation. The identification phases involved

tasks to identify the digital components from the evidence and converting it into a

5

format understood by humans. The evaluation phase was to determine which dig-

ital pieces of evidence were relevant to the investigation and final admission phase

involved presenting said evidence in the court of law.

2.1.1 Common Phases of Digital Forensics

Yousef, et al. [5] reviewed a total of 15 different models suggested by various

authors from 1984 to 2010. Through a systematic process, they identified the common

digital investigation phases. In total, the authors extracted 46 phases associated to

the 15 digital forensics investigation models. Then the authors sorted the phases and

placed them into 5 generic groups based on tasks performed in each of the phases.

The resulting Generic Computer Forensic Investigation Model (GCFIM) [5] in-

volves five different phases. The first phase, pre-process, involves all the tasks needed

to be done prior to obtaining the data. These tasks include obtaining the necessary

approval from authority, setting up the tools needed, and other preparatory tasks.

The second phase, acquisition and preservation, involves identifying, acquiring, col-

lecting, transporting, storing, and preserving of data [5]. The third phase, analysis,

involves the various types of analysis on the acquired evidence to identify the rele-

vant evidence for the crime being investigated. Phase 4, presentation, involves the

proper documentation from the analysis phase and presenting evidence in a manner

understood by all. The last phase, post-process, involves proper return of evidence,

review of the investigative process/lessons learned to improve future investigations.

GCFIM, illustrated in Figure 1, is also cyclic. Because the investigative tools,

technology, skills of the digital forensics examiner, and crime scenes are always chang-

ing, the authors wanted to ensure that the ability to go back to previous phases was

always present. Lastly, the authors placed the phase, Incident Response, into the

post-process phase of their model because they believe any action or response taken

6

Figure 1: Generic Computer Forensic Investigation Model [5].

should be done after the evidence has been properly analyzed and presented. But

there may be cases where immediate response is required, and the authors leave that

prerogative up to the investigator. Most investigators prefer to delay action until all

possible evidence has been gathered and analyzed. But there are instances when time

is the dominating factor and investigators must act on the information immediately,

for safety concerns or securing perishable evidence. It is important to recognize the

digital forensics investigative process requires a flexible framework.

The authors present a model that accounts for all the different phases represented

by various digital forensics models published throughout the years. But they do not

consider the different phases for specific investigations. For example, the phases for an

arson investigation will be different from the phases for a sexual assault case. Though

the authors main purpose is to create a generic model for digital forensics investiga-

tions, it seems a little oversimplified. Nonetheless, there is still merit in establishing

a standard model that aggregates all the various models presented throughout the

years to base off of for future work.

The GCFIM is a starting point to building ECATV. The two phases ECATV

should focus on are the analysis and presentation phase. Analysis should process

7

large amounts of events and artifacts simultaneously and triage the relevant hits.

This will help identify areas containing potential evidence and a digital forensics ex-

aminer can do a deeper dive into the relevant locations instead of having to conduct

a full examination on the entire device. The presentation is an output in a pre-

sentable format to authorities. A solution is a timeline sorted by relevant events and

timestamps presented in an easy-to-read format.

2.1.2 Forensic Computing

McKemmish [6] provides a similar framework to the GCFIM. His description of the

digital forensics process identifies four phases: identification, preservation, analysis,

and presentation, shown in Figure 2.

Identification allows examiners to determine what evidence is present and the tools

necessary to extract the relevant evidentiary data from electronic media. Once exam-

iners have identified the tools and methods necessary to conduct examinations, proper

preservation of physical items is necessary to ensure the data obtained is admissible

in court. This requires preserving the original data and conducting examinations that

minimally impact the original data, usually done by taking either logical or physical

extractions of the digital media. The main bulk of digital forensics centers around

the analysis process, where examiners extract, process, and interpret digital data [6].

The last piece is presentation, where examiners must prepare a report for court that

is easily digestible for all present, especially the jury and the judge. The first three

phases are centered around technical aspects while the final phase is based entirely

on legal issues, such as policy and law.

Figure 2: Forensic Process.

8

2.1.3 Analysis

The Analysis phase is considered the primary element of digital investigations

and involves the process of “extraction, processing, and interpretation of digital data

[6].” This phase takes a significant portion of the time to complete a digital forensics

investigation. Thus, digital forensics tools developed to reduce the time consumed in

this phase will have a larger impact in decreasing case back-logs than tools focused

on reducing time spent on the other phases.

The period of analysis can be reduced in two main ways. One path involves

increasing the efficiency of the digital forensics tool’s extraction and processing of

data through hardware and/or software upgrades. The overall goal would be to

reduce the time forensic examiners wait for a tool to create an image of the data

and to process the image into human readable format. The other method decreases

the time an examiner spends during the interpretation portion of the analysis phase.

Examiners are faced with the issue of sorting through tons of information irrelevant to

the investigation. The reduction in human analysis can be accomplished by presenting

the processed data in a way that allows examiners to quickly analyze the information

or by providing only data that is relevant to the investigation. But the latter is difficult

because each investigation is unique and developing a tool that is able to determine

what information is relevant to a case is a non-trivial task. Instead this study focuses

on presenting the information provided by digital forensics tools in a more manageable

format, thereby reducing the human analysis time spent by examiners.

2.2 Information Visualization

Information visualization has been shown to provide examiners and analysts with

the ability to process large amounts of data in a meaningful way [7] [8]. The De-

partment of Homeland Security (DHS) established the National Visualization and

9

Analytics Center (NVAC) to “advance the state of the science to enable analysts to

detect the expected and discover the unexpected from massive and dynamic infor-

mation streams and databases consisting of data of multiple types and from multiple

sources, even though the data are often conflicting and incomplete [9].” Though

NVAC was originally established to combat terrorism issues, its goals closely align

with the needs for the digital forensics field [4].

Visual analytics is defined as the science of analytical reasoning facilitated by

interactive visual interfaces. It is utilized to develop meaning from massive and

dynamic data [9]. The insights from this field of research [10] can be directly applied

to developing better digital forensics tools to reduce the human analysis time of a

digital investigation. There are many visualization techniques that can be used to

display data for digital forensics, ranging from simple x-y plots and line graphs to

more complex methods such as dense pixel visualization [11]. There is no one method

that is considered the best technique to visualize data. The performance of each

visualization technique is data dependent and purpose driven.

This is further reinforced by the taxonomy of visualization, which has been his-

torically categorized into scientific and information visualization [12]. Scientific visu-

alization often involves scientific data with a spatial component such as wind tunnel

data whereas information visualization involves discrete and non-spatial data such as

financial information. Typically continuous visualization models are utilized to render

scientific visualizations while discrete visualization models are used for information

visualization. [12] illustrates though digital forensics data lies under the information

visualization umbrella, because not all data sets contain only one type of data, both

discrete and continuous visualization methods can be used. What is more impor-

tant is the conceptualization of the data drives the most appropriate visualization

technique.

10

2.2.1 Forensic Analysis through Visualization

Teerlink [13] argues there is a need for software tools that reduce efforts spent

by examiners, especially when it comes to handling large amounts of data. Analysts

squander a lot of time trying to sort through massive amounts of data that are un-

correlated to the investigation. Teerlink proposes visualization techniques can reduce

time wasted and direct examiners to the “suspicious files”. His tool differs from the

traditional forensic tools such as EnCase by providing advanced visualization tech-

niques that aid data correlation and analysis beyond a simple front-end GUI [13]. The

tool utilizes two different techniques: non-hierarchical and hierarchical visualization

techniques.

Non-hierarchical visualization displays files and their statistics without taking

into consideration the relationships between files and directories. For example, the

tool highlights larger files with light colored blocks and smaller files with darker col-

ored blocks. This helps the examiner quickly identify anomalous files. The tool can

also be filtered based on a different attribute, such as time where the lighter col-

ored blocks represent files with more recent activity. Ultimately Teerlink allows the

tool to filter accordingly to any available file attributes because different investiga-

tions require examinations of different file attributes. The hierarchical visualization

technique employed allows the tool to show the relationships between files and its di-

rectory structures. Teerlink’s tool utilizes filtered tree maps that are filterable based

on file attributes, not just the traditional method of display based on file size. Again

this allows flexibility for the examiners to filter accordingly to the different scenarios

of their investigation. For example, the tool can display a tree map of the files and

use red to represent image files while yellow represents system binaries. This allows

examiners to easily spot out-of-place files, such as a red colored image file contained

in a file structure full of yellow colored system binaries.

11

Teerlink conducted a user test to determine the effectiveness of the tool’s visu-

alisation environment. He instructed users to locate an unknown number of files

related to drug trafficking using two different methods. The first method involved

using traditional Linux commands such as ls, cd, grep, file, md5sum, state, and find

[13]. Teerlink argued these commands provided similar capabilities to those of En-

Case’s analysis tools, minus the front-end GUI. The second method involved analysis

through Teerlink’s developed visualization techniques. Users were also asked to record

the time their examination began, the discovery time and name of each suspect file,

and when their examination ended. Based on this data, Teerlink discovered the visu-

alization techniques helped examiners discover on average 53% more files than using

the more traditional method. More importantly to this study, the test showed there

was a 35% reduction in time and examiners were 57% faster in locating the first

suspicious file. In digital forensics, it is nearly impossible for examiners to say with

a 100% certainty they found every piece of digital evidence. Instead they conclude

their examinations when they have enough evidence to present in court, based on

legal advice and law enforcement guidance. Sometimes all an examiner needs is to

find the first piece of the puzzle in the sea of ambiguous data, which leads to vari-

ous pieces of evidence until eventually the necessary amount to prove criminality is

collected. Teerlink concludes the goal was not to develop a complete tool to compete

with EnCase, but rather to integrate EnCase’s outputs of its search capabilities as

an input for the visualization environment.

2.3 Forensically Sound

Defining what it means for a process to be forensically sound is essential to en-

suring the admissibility of digital evidence [6]. From a legal perspective, admissible

evidence must be reliable; key factors include whether the evidence is generally ac-

12

cepted in its respective scientific community as well as whether the methods used to

derive the evidence are repeatable and produce the same results. There are many

companies and organizations that state their digital forensics tool utilizes a forensi-

cally sound process to produce its data. Because of this, many different definitions of

a digitally forensic process float around.

McKemmish [14] provides a more stable framework for the definition of “foren-

sically sound” in regards to digital forensics. The paper considers a disk imaging

process to be forensically sound when the process produces an exact representation

of the original, the duplicated data is independently authenticated as being a true

copy, and the process produces an audit trail. Overall the goal is to produce evi-

dence that preserves the data in the state it was first discovered while the process

does not diminish the evidentiary value of the data “through technical, procedural,

or interpretive errors.”

2.3.1 Four Rules of a Forensically Sound Process

The overall objective of digital forensics is to provide evidence in the court of

law. Along those lines, McKemmish [6] provides four rules aimed at maximizing the

admissibility of evidence produced by a digital forensics process, outlined in Figure 3.

Rule 1 is considered the absolute important rule as examination in any forensic process

(digital or physical) should minimize the likelihood of alteration of the evidentiary

item. If alteration is necessary, then the examiners should do their best to duplicate

the original and examine the duplicate data. Rule 2 follows the same vein as rule

1 where if changes to the item are unavoidable, these changes must be properly

documented with proper reasoning for doing so. This is part of the reason why

being a digital forensics examiner is difficult as the ability to identify the extent of

alterations is directly correlated to the examiner’s skill and knowledge. The examiner

13

must be able to provide testimony as to why the changes were unavoidable as well as

its extent and at the same time in a way the common person in a jury can understand.

Rule 3 states the application and development of forensic tools should be done

with the rules of evidence in mind. This means whatever is done to the data, it should

not lessen the admissibility of the final product. Lastly, rule 4 is similar to rule 2

in that an examiner should not conduct an examination that is beyond his or her

knowledge. As stated in rule 2, it is essential an examiner has the ability to explain

in detail the process of the examination and the extent of unavoidable changes done

on the evidentiary item. It does not matter how forensically sound a tool is if the

examiner is unable to properly explain the process in court.

Rule 2 and 4 are relevant but are cursory to goals of this research. It is impor-

tant the tool has some level of granularity, such as providing file paths for artifacts

discovered. But the two rules correlate more to the abilities of the examiner. Rule

3 relates to the forensic process and policies of how the examiners secure evidence.

Generally most examiners and investigatory agencies will image drives and operate on

the duplicates [15], which also relates to rule 1. Rule 1 is met by importing the cloned

data into a visualization software. It introduces additional steps and time spent to

analyze the image, but [6] states it is justified if it allows examiners to identify key

Figure 3: Rules for Forensic Computing [6].

14

items in a shorter time.

2.3.2 Evaluation Criteria for Forensic Soundness

McKemmish [14] provides four criteria for determining forensic soundness of the

process, which are outlined in figure 4. Tassone, et al. [16] further breaks down the

evaluation criteria into additional steps for consideration with regards to visualization

methods. Criterion one, meaning, needs to consider repeatability, allowing data to be

visualized without altering or changing the actual artifacts. This means if the same

data is revisualized at a different time or location, it produces the same results. It

also needs to consider lucidity, where the visualization generated by the tool is easily

understood by the forensic examiner. Criterion two requires anomaly detection where

it provides the examiner with the ability to identify unusual data sets.

Criterion three is the most important area for this research. Tassone, et al. [16]

further breaks down the transparency criterion for forensic visualization into granu-

larity and filterable. Granularity with respect to the visualization method means it

provides an overview of the data while allowing the examiner to delve into greater

details of the artifacts if necessary. And filterable allows examiners to refine the vi-

sualization to key items either through text searches or time stamps. Filtering allows

examiners to identify key items in less time, which is relevant to rule one mentioned

in Section 2.3.1.

Criterion four does not directly correlate to developing a forensically sound visu-

alization tool. But Tassone, et al. [16] states that it can be aided by the use of a

timeline visualization method. Timelines provide the examiners with how the data

was utilized over time, allowing them to analyze large data sets. Usually investigators

are focused on a specific time period and timelines allow examiners to focus on these

periods and expanding the scope if needed.

15

Figure 4: Evaluation Criteria for Forensic Soundness [14].

2.4 Forensic Tools

There are many different open source and commercial forensic tools available.

Each tool processes and analyzes drive images using different methods. The tools also

utilize varying visualization methods depending on what its developers determined

is suitable to forensic examiners. Because these tools were developed with different

interpretations of what data is relevant and how it should be displayed, it is important

to keep in mind rule four of a forensically sound process, as mentioned in Section 2.3.1.

These visualization methods can provide an overview of all the data for convenient

navigation, but it is necessary for these methods to be provide some granularity and

filters based on a property.

2.4.1 Commercial Tools

Tassone, et al. [16] provides a list of popular commercial forensic tools. The study

selected tools based on the following criteria:

1. Commercial because open source software are not liable for any inconsistencies.

2. Used in at least one court transcript and/or officially provided to a government

16

agency for use in criminal investigations.

3. Provide a visualization method.

4. Its forms of visualization are public knowledge.

Based on these criteria, Tassone, et al. [16] identified the following forensic tools:

• Nuix: Visual Analytics (Nuix)

• Micro Systemation: XAMN/XRY (XAMN)

• Cellbrite’s UFED Link Analysis (UFED)

• EnCase Analytics (EnCase)

• Oxygen Forensic Suite 2015 Analyst (Oxygen)

• Katana Forensics Lantern (Katana)

• Susteen Secure View 3 (Susteen)

• Forensic Toolkit FTK AccessData (FTK)

• Internet Evidence Finder IEF Magnet Forensics (IEF)

• Intalla Vound (Intella)

• i2 Analysts Notebook by IBM (i2)

XAMN, UFED, EnCase, Susteen, FTK, IEF, and Intella all provide timelines as

a method of visualization. Timelines can fulfill all the evaluation criteria mentioned

in Section 2.3.2, which include repeatablity, lucidity, anomaly detection, filterable,

and granularity. But these tools do not provide high-level abstraction of events and

instead provide artifacts as is and with limited temporal information, which can lead

17

to information overload. They utilize various search capabilities such as time range

or keyword searches to help combat this issue, but without the correlation of related

events, these searches still suffer from having to sort through a quagmire of artifacts.

As a base, this study looks to utilize a timeline as its visualization method because

many popular commercial forensic tools employ this technique and has the potential

to meet the requirements for a forensically sound process.

2.4.2 Open Source Tools

There are debates about whether open source tools provides evidence that is

admissible in court. Tassone, et al. [16] focused its study on commercial tools because

open source software was not liable for inconsistencies, which runs into the issue of

evidence produced by the open source tools being reliable. Section 2.1.2 explains

the presentation phase is based on the legal environment of where the evidence is

being presented. Before looking at the visualization methods of various open source

tools, this study looks at the legal admissibility of evidence produced by such tools.

Though the presentation phase is not the technical piece of digital forensics, it is still

necessary to consider because all the effort placed into producing the evidence is null

if it cannot be admissible in trial.

2.4.2.1 Admissibility

Scientific evidence must pass the “Daubert Test” in order to be admissible in a

United States legal proceeding. This means the evidence must be both relevant and

reliable. The judge determines “whether the underlying methodology and technique

used to identify the evidence was sound and the evidence is reliable [17].” The test

uses the following categories when assessing the reliability of a scientific procedure:

• Testing: Can and has the procedure been tested?

18

• Error Rate: Is there a known error rate of the procedure?

• Publication: Has the procedure been published and subject to peer review?

• Acceptance: Is the procedure generally accepted in the relevant scientific com-

munity? [17]

Based on these categories, Carrier [17] states open source tools are actually more

reliable than closed source commercial tools. The open source forensic tools provides

its source code to all, allowing for increased scrutiny in all categories. Carrier ar-

gues that for the acceptance guideline, closed source tools were accepted based on

non-procedural factors such as interface and support because it did not disclose its

procedures. The developers of the commercial tools cited the large number of user

they had as a way to get around this category of the admissibility test [18]. Open

source tools on the other hand provide its procedures allowing for the digital forensics

community to evaluate it and choose whether or not to accept or reject them.

Carrier offers a balanced solution that takes into account the commercial interests

of forensic tool development. Carrier [19] and Carrier, et al. [20] splits tools into two

main categories, extraction and presentation. Extraction tools process data and ex-

tract a subset, while presentation tools arrange the data from an extraction tool into a

useful format [17]. There are tools that provide both capabilities while others provide

one role. Carrier presents a solution where extraction tools are open source so inves-

tigators can verify the output while the presentation tools remain closed source. The

source code for the open source extraction tools allow the digital forensics community

to properly validate the procedures used to produce digital evidence.

19

2.4.2.2 Popular Open Source/Free Forensic Media Imaging Tools

There are many open source forensic tools available as of 2019. As mentioned in

Section 2.4.2.1, most of these tools are split into extraction tools and presentation

tools.

The popular forensic imaging tools are FTK Imager, Linux “dd” and IXImager.

FTK Imager allows the examiner to create an exact replica of the drive, allowing

them to view deleted files. It also brings the capability to mount forensic images to

view its contents and file structure in the FTK Imager browser [21]. Linux “dd” is

a tool that comes with most Linux distributions. The tool creates drive duplications

and can also send data streams over the network. But examiners need to be careful

with this tool because it can also provides other capabilities, such as filling a drive

with random data, and has the potential to destroy evidence[22]. IXImager is a tool

developed by the U.S. Treasury Department IRS Criminal Investigation Electronic

Crimes Program, tested by National Institute of Standards and Technology (NIST),

and made to meet Law Enforcement requirements for digital media acquisition. “IX-

imager supports imaging devices which cannot otherwise be imaged in a Windows

environment, including notebooks and server RAID systems. It supports hot swap-

pable and plug-n-play devices such as, tape drives, USB and Firewire devices, as well

as SCSI, IDE and fiber channel [23]”

Popular open source analysis tools include SANS Investigative Forensic Toolkit

(SIFT) and Sleuth Kit/Autopsy. SIFT is an ”open source incident response and

forensic tool suite” created off an Ubuntu LTS 16.04 Base. It supports a large variety

of file systems, from standards such as NTFS, HFS+, and FAT16/32 all the way to

vmdk. The suite includes various open source tools such as log2timeline (for timeline

visualization), Plaso, Autopsy and Sleuth Kit, and Volatility (a memory analysis

tool) [24]. Oxygen (the free version) and Digital Evidence and Forensics Toolkit

20

Zero (DEFT) are popular free forensic tools as well. DEFT is very similar to SIFT

which offers various tools in its suite and is a Linux Distribution. It includes Digital

Advanced Response Toolkit (DART) which contains various open source and closed

source Windows applications for live forensic analysis and incident response [25].

2.5 The Sleuth Kit and Autopsy

The Sleuth Kit (TSK) is a collection of command line tools for forensic analysis of

disk images. It’s core functionality is to “analyze volume and file system data [26].”

Autopsy provides a graphical interface to TSK and various other forensic tools.

2.5.1 TSK

TSK’s interesting feature is its plug-in framework that allows examiners to incor-

porate additional modules created by the open source community. TSK focuses on

volume and file systems and produces information about files. The examiner must

then use various tools with different interfaces to analyze the data at the application

layer [26]. Because there are so many different file types and analysis techniques, with

new ones developed everyday, it is impossible to have one tool that is a solution to

all. TSK provides an open platform for modules to operate.

“The Sleuth Kit provides a plug-in framework that makes it
easier to build end-to-end digital forensics solutions.” [26]

TSK’s framework documents provide detail specifics of how it operates, but the

basics start with the design philosophy of the framework. The analysis process is split

into the following three phases and illustrated in Figure 5:

• File Extraction: Files identified through file system data, carving, and other

data recovery techniques.

21

• File Analysis: Each file analyzed individually through the pipeline

• Post-Processing: Results of analyzed individual files combined with analysis

of entire image.

Communication between the modules within the framework is handled by the

blackboard. It is a collection of artifacts which are associated to a file. And each of

these artifacts contain a collection of name-value pairs called attributes [28]. Each

file has various artifact types associated to it. TSK’s framework provides a set of

standard artifact types, such as TSK GEN INFO (which groups attributes that are

related to the file but not to each other in any way). Module developers are able to

create new artifact types if necessary, which require a unique type name and display

name that does not have to be unique. TSK’s framework also provides standard

attribute types, which consists of a unique type name and a display name that does

not have to be unique. Module developers are also able to create new attribute types

as needed. These name-value pairs are closely related to its associated artifact. For

Figure 5: The Sleuth Kit’s Analysis Process Framework [27].

22

example, each individual log entry in a log file would be its own unique artifact, with

the same artifact type, and each of these entries would have a collection of attributes

such as date/time created associated to the artifacts. Figure 6 provides an illustration

of the blackboard concept.

TSK’s framework comes with several standard modules such as HashCalcMod-

ule, which calculates MD5 and SHA1 hashes for files. The standard tool TSK uses

currently is tsk analyseimg, which is a command line tool that loads a disk image

into SQLite and runs various pipelines on each file [27]. The standard modules that

come with TSK are rudimentary to what forensic tools are capable of because TSK

is meant to be further developed through the open-source community, which leads us

to Autopsy.

2.5.2 Autopsy

Autopsy is an open source digital forensics tool that uses TSK’s framework and

additional modules. The following are Autopsy’s current features, taken from their

documentation web page [29]:

• Multi-User Cases: Collaborate with fellow examiners on large cases.

Figure 6: The Sleuth Kit’s Blackboard [28].

23

• Timeline Analysis: Displays system events in a graphical interface to help

identify activity.

• Keyword Search: Text extraction and index searched modules enable you to

find files that mention specific terms and find regular expression patterns.

• Web Artifacts: Extracts web activity from common browsers to help identify

user activity.

• Registry Analysis: Uses RegRipper to identify recently accessed documents

and USB devices.

• LNK File Analysis: Identifies short cuts and accessed documents

• Email Analysis: Parses MBOX format messages, such as Thunderbird.

• EXIF: Extracts geo location and camera information from JPEG files.

• File Type Sorting: Group files by their type to find all images or documents.

• Media Playback: View videos and images in the application and not require

an external viewer.

• Thumbnail Viewer: Displays thumbnail of images to help quick view pictures.

• Robust File System Analysis: Support for common file systems, including

NTFS, FAT12/FAT16/FAT32/ExFAT, HFS+, ISO9660 (CD-ROM), Ext2/Ext3/Ext4,

Yaffs2, and UFS from The Sleuth Kit.

• Hash Set Filtering: Filter out known good files using NSRL and flag known

bad files using custom hashsets in HashKeeper, md5sum, and EnCase formats.

• Tags: Tag files with arbitrary tag names, such as ’bookmark’ or ’suspicious’,

and add comments.

24

• Unicode Strings Extraction: Extracts strings from unallocated space and

unknown file types in many languages (Arabic, Chinese, Japanese, etc.).

• File Type Detection: based on signatures and extension mismatch detection.

• Interesting Files Module: Flags files and folders based on name and path.

• Android Support: Extracts data from SMS, call logs, contacts, Tango, Words

with Friends, and more.

Autopsy is able to support either raw/dd images or E01 format. Many of Au-

topsy’s features stem from TSK’s modules, such as its registry analysis and hash set

filtering.

2.5.2.1 Timeline Analysis

Its feature of interest for this research is the timeline analysis, which utilizes

timeline visualization to display results from the various modules used to analyze the

disk image. The timeline pulls timestamps from files, web artifacts, and other data

sets such as EXIF and GPS [30]. It provides two different timeline visualizations, a

bar chart that displays the amount of data occurring in a given time frame, similar

to a histogram and shown in Figure 7, and a timeline with detailed events, shown in

Figure 8. Figure 8 includes criterion three mentioned in Section 2.3.2 and implements

filterable attributes.

digital forensics timelines can overwhelm examiners with the amount of data they

display. Autopsy’s timeline visualization aims to alleviate the issue by allowing the

events to be filtered not just by time, but also based on type, such as file system,

web activity, or miscellaneous, which includes messages, GPS routes, location history,

email, and more. Figure 9 shows the complete list.

25

Figure 7: Autopsy’s Timeline [30].

Figure 8: Autopsy’s Timeline [30].

Autopsy also groups similar events together to help prevent data overload. For

example, it will cluster events from the same folder into a single event or URLS from

the same domain are shown as a single event [30]. The examiner can zoom in to learn

more details about the events, which covers the granular aspect mentioned in Section

2.3.2. The timeline is also filterable using keywords, which is detailed in the next

section.

26

Figure 9: Timeline Filters.

Autopsy eventually hopes to integrate Plaso, another open source digital forensics

tool for timeline generation. But currently, its documentation states more research is

required because their method of clustering to prevent data overload does not work

for possible arbitrary input types from Plaso. This is because the Autopsy’s timeline

generation is hard coded for the input types Autopsy produces, but eventually hopes

to develop “ more advanced clustering approach though so that we can leverage the

parsing support from Plaso [30].” More about Plaso and its uses are explained in

Section 2.6.1.

2.5.2.2 Keyword Search and Indexing

Autopsy uses Apache SOLR as the engine behind the keyword search features.

Examiners can use pre-defined keyword lists or ad-hoc keyword searches and can be

run directly either during or after the ingest process of the image. Apache SOLR

also allows for regular expressions. All files containing text that Autopsy discovers

is indexed into a SOLR database, where its text is extracted using Tika and other

27

libraries. The actual keyword and regular expression searches are done over this

text index [31]. Apache SOLR allows files to be indexed via JSON, XML, CVS, or

binary over HTTP and users can retrieve the results via HTTP GET. The results are

returned in either JSON, XML, CSV, or binary format [32].

2.6 Custom Forensic Tool

Two tools developed to address the timeline clustering issue are Property Graph

Event Reconstruction (PGER) and Temporal Analysis Integration Management Ap-

plication (TAIMA).

2.6.1 Property Graph Event Reconstruction

PGER abstracts user actions on digital media. ”Ontological data representation

and data normalization can provide a structured way to correlate digital artifacts

[33].” Though this reduces the amount of data an examiner sorts through, the tradi-

tional method of ontology data processing requires large amounts of disk space and

incurs high computational costs. PGER provides a solution by reducing the compu-

tational costs of processing events from a disk image by storing the data extracted

into a native graph database, Neo4j, that improves query speeds.

2.6.1.1 Data Extraction

From the digital forensics process, it first extracts data using two different tools,

Plaso or Temporal Event Abstraction and Reconstruction (TEAR). TEAR uses al-

gorithms and pattern matching to help identify high-level events [34]. It is a C++

program that creates various CSV files by extracting artifacts from a disk image. The

artifacts’ data sources are from the file table, registry, and Windows events as well as

Chrome and Firefox history [33].

28

Plaso on the other hand is a Python-based engine for log2timeline [35]. log2timeline

extracts timestamps from the disk image, its partitions and volume shadow copies,

and combines them into a unique data storage. Plaso then adds psort, which converts

the unique Plaso data storage into an Elasticsearch database.

2.6.1.2 Graph Conversion

PGER converts the extracted data into Neo4j, a native graph database. Depend-

ing on what tool was utilized for the data extraction step, it uses two different tools

for graph conversions. If the data was extracted using Plaso and the events are placed

in an Elastic database, PGER requires logstash to convert the events into various sub-

graphs stored in Neo4j. If TEAR was utilized, PGER uses a custom Python script

to convert the events. [33] explains the graph conversion process is dictated by the

event type. Plaso stores its event type in parser field while TEAR identifies its event

type in the filename. Based on these, different profiles and filters can be applied

to properly parse the event data, allowing the user to pick which events appear in

Neo4j. This allows the examiner to focus on a small set of relevant events rather than

sorting through the entire image. PGER creates various object nodes for filenames

of extracted artifacts, action nodes for specific actions taken at the timestamps, and

parser nodes that explain the data’s source of information. All of these nodes are

related to each other through timestamps. This saves on the computational costs;

for example, there is one parser node created for all the events extracted from the

Windows Registry, instead of a parser node being created for each extracted registry

event. Each of the registry events will have its own unique object node connected

to the one parser node. But these artifacts are differentiated by the different action

nodes (with a timestamp property) created that are connected to the object and

parser nodes. The action nodes are also related to each other through a time tree, to

29

make it easier to find relationships occurring in a specified time frame.

2.6.2 Temporal Analysis Integration Management Application

TAIMA [36] is an application built using a full stack development platform called

GRANDstack. GRANDstack includes GraphQL, React, Apollo, and Neo4j [37].

GraphQL is a language for building Application Program Interface (API)s to query

application data as a graph. It allows the developers to define types and avail-

able queries, allowing the user to only request data necessary. React, developed by

Facebook, is a JavaScript library for building an interactive user interface (UI). The

back-end database GRANDstack uses is Neo4j, a NoSQL, native open source graph

database that allows developers to store and query data as a graph. Neo4j allows for

complex graph travels using its Cypher query language, rather than an index search

that comes with a traditional SQL database. Lastly, GRANDstack uses Apollo to

interact with GraphQL. Apollo Client is used on the frontend to package queries into

a GraphQL query and the server side GraphQL API is able to translate such requests.

Figure 10 provides an illustrative overview of the full stack.

2.6.2.1 Data Abstraction

TAIMA creates high-level events based on specific predetermined logic using Cypher

query searches. It creates abstracted events for program installation, power events

for startup and shutdown, program executions, file downloads, and web history [36].

Each of these abstraction events are created from the events extracted using PGER.

It searches the graph for specific object and parser node relationships connected to

each other by action nodes. When all three are found, TAIMA creates a new high-

level abstraction node describing the event in more human readable format, such as

“Program Installation” or “System Startup”.

30

Figure 10: GRANDstack Architecture [38].

2.6.2.2 Timeline Visualization

TAIMA uses React to develop a UI for the examiners to interact with. Currently it

allows the high-level abstraction nodes to be filtered based on a time range as shown in

Figure 11. React allows TAIMA to enable tooltips, accessed by mousing over an event,

which displays the abstracted events source. For example, for a “System Uptime

Report, Event Log Service Started” abstraction event, mousing over it displays its

source as “EventLog/6013 and EventLog/6005”. TAIMA is also able to interactively

filter the time range displayed depending on the level zoom. This allows the examiners

to search a time frame of interest and zoom in on areas with clusters of activities for

increased scrutiny.

31

Figure 11: TAIMA Timeline [36].

2.6.3 Neo4j Full-Text Index

Both [36] and [33] explain Neo4j and its capabilities well but do not talk about

Neo4j’s full-text search index capabilities as it is a newer feature introduced with

Neo4j version 3.5. Neo4j’s full-text index is powered by Apache Lucene and sup-

ports various features such as “indexing of both nodes and relationships, can be

queried using Lucene query language or Cypher procedures, kept up to date au-

tomatically as nodes and relationships are added, removed, or updated, and can

support any number of documents in a single index.” [39]. Neo4j will tokenize the

indexed string values, allowing the database to match within the contents of in-

dexed string properties, and does not require a literal string match [39]. The full-

text search index can be created using a simple Cypher procedure such as “CALL

db.index.fulltext.createNodeIndex(“nameOfIndex”, [“nodeLabel”, “anotherNodeLa-

bel”], [“indexedProperty”, “anotherIndexedProperty”]”. In this example, Neo4j will

consider any nodes labeled as “nodeLabel” and/or “anotherNodeLabel” and search

them for the two properties mentioned in the next argument. Those properties and

32

the strings it contains would be indexed. It is important to note Neo4j will index

any nodes with the one or both labels and if they have values in one or both of the

properties specified. Because this index is powered by Lucene, it supports wildcard,

regular expression, fuzzy, and proximity searches as well as boolean terms.

2.7 Summary

This chapter went over the various common phases involved in digital forensics,

which were pre-process, acquisition and preservation, analysis, presentation, and post-

process. It then went over information visualization and how it improves examiners

efficiency with conducting digital forensics. The chapter looked into the four rules of

a forensic computing as well as the various evaluation criteria for forensic soundness.

It also went over the different popular forensic tools and how their employment of

visualization timelines were lacking. Lastly, the chapter reviewed the features within

in Neo4j’s full-text index, the data abstraction done with PGER, and TAIMA’s in-

formation visualization methods.

33

III. Integration

3.1 Overview

The purpose of this study is to reduce the human analysis portion of a digital

forensics examination. Current practices involve string searches to identify potential

evidentiary items, then taking them through various steps to determine its eviden-

tiary value. The research looks to combine the string searching capabilities that

initiate an investigation with automated correlation and abstraction logic to further

streamline this process. Event Correlation and Abstraction Timeline Visualization

(ECATV) uses the output of Autopy’s keyword search ingest and combines it with the

automated correlation capabilities of Property Graph Event Reconstruction (PGER)

and the user interface of Temporal Analysis Integration Management Application

(TAIMA) to provide a more complete tool. Autopsy has a timeline, as mentioned in

Section 2.5.2.1 but its features are essentially a histogram or the same information

generated by various Autopsy modules placed on a timeline. It provides an easier

view of which artifacts occurred when but still suffers from information overload is-

sues. The automated correlation helps reduce the number of events on a timeline

while maintaining accuracy and the abstraction logic takes the concept a step further

by collecting similar events that occurred at the same timestamp.

The overall design of ECATV is described below and is further broken down into

the details of its ingest process as well as its user interface. It is assumed that the

evidence and data was obtained through a forensically sound process described in

Chapter 2. This study is more focused on the analysis phase of the process. The

study also processed and analyzed Windows images as this is the more prevalent

operating system and continues on the research of [36] and [33].

34

3.2 Design

ECATV includes the capabilities of many tools using the benefits discovered by

Adderley [36] and Schelkoph [33] to create a granular and filterable visual timeline.

The full design concept can be split between the ingest phase and the user interface

(UI). The ingest phase contains the bulk of the behind-the-scenes processing of taking

a raw, physical image and converting its artifacts into a form that provides examiners

with relevant information faster than a traditional database with key-value pairs,

such as Figure 12. The traditional database is a double-edged sword that provides a

plethora of information which will eventually be necessary during an examination but

at the same time overloads the examiner making it difficult to find a place to start.

It also provides a poor overview of user(s) activity within the image. ECATV aims

to resolve these issues by using the abstraction methods in [33] and the visualization

method of a timeline used in [36] but also maintaining the value traditional databases

provide.

Figure 12: Autopsy Example.

3.2.1 Tools

The tools involved in ECATV are:

35

• Disk Imager: Specifically used AccessData’s FTK Imager.

• Temporal Event Abstraction and Reconstruction (TEAR): A custom

tool developed by Okolica to extract artifacts [34].

• Plaso: Another tool to extract artifacts and timestamps.

• The Sleuth Kit (TSK)/Autopsy: A digital forensics software for image

analysis.

• Neo4j: A native graph database.

• GraphQL: API to interface with Neo4j.

• Apollo: Integrates GraphQL with React.

• React: Used to develop front-end UI.

• docker: [33] developed various containers to compartmentalize its process.

3.2.2 Integration Process

ECATV used FTK Imager to create raw dd images for its Windows hard drives.

As mentioned earlier, evidence acquisition is not the focus of this study and it is

assumed examiners have their own method of acquiring images. ECATV will work

regardless of the acquisition tool as long as the images are a raw physical copy. The

next step is to process the images through TEAR and Plaso. The extracted artifacts

are then placed into Neo4j using specific filters to create various sub graphs of various

events within the image. These sub graphs consist of action, parser, time, and object

nodes, as illustrated in Figure 13. Schelkoph [33] explains the time nodes are a unix

time stamp and represents when the action occurred. The action node contains the

description of the action that affects the digital object. The object node is a digital

36

object identified by a URL, file path, registry key, log event, or some other object.

Finally the parser node contains the origin of the information. Then Cypher queries,

Neo4j’s graph query language, are used to create high-level abstracted events, similar

to ones in [36].

Figure 13: Neo4j Subgraph [33].

Autopsy’s keyword search module is used to discover artifacts containing keywords

from an examiner’s pre-defined list. The high-level abstract events that contain the

artifacts associated to the keywords are linked to the same keywords within Neo4j.

This is done by adding a new searchKeyword property to the abstraction nodes in

the Neo4j database. Finally a text index is created on the searchKeyword property to

allow for text searches within the graph database. The ingest phase of ECATV creates

the final back-end database the timeline visualization uses to query and display its

data. ECATV uses a modified UI from [36], allowing examiners to analyze the high-

level events from the image, sorted by a user specified time range. The examiner can

then further filter this timeline view with desired text searches. Figure 14 provides

an overview of the entire process.

37

dd image

TEAR Plaso

text files elasticDB

Neo4j

Neo4j
Keyword
Search

Abstraction
Logic

Autopsy
Keyword
Results

React
Timeline

Autopsy
Ingest

Figure 14: ECATV Flow Chart.

38

3.3 Ingest

The ingest phase of the process can be split into two parts. The first part involves

extracting the events of a raw physical image. Then this data is transformed and

packaged into a form that makes use of Neo4j’s native graph database capabilities.

ECATV makes use of the research done by Schelkoph [33] and adapts its tools to do

so.

The second part involves using outputs from Neo4j and applying abstraction logic

to further the robustness of this database. The abstraction logic are adaptations of

Adderley’s research [36]. Lastly, it uses the outputs from Autopy’s keyword search

module to identify objects associated to specific keywords, helping set the groundwork

for a keyword filterable timeline.

3.3.1 Phase One of Ingest

PGER utilizes docker containers to build its native graph database. A “Docker

container image is a lightweight, standalone, executable package of software that

includes everything needed to run an application: code, runtime, system tools, system

libraries and settings.”[40] Docker containers are essentially packaged software that

allows code to be packaged into a single unit and allows applications to be run from

one computing environment to another. Because of this, ECATV was able to pick

and choose the containers necessary to build the graph database and cut down on the

processing time rather than processing an image through PGER’s entirety. ECATV

used containers “elasticDB”, “plaso”, and “neo4jInput”.

The elasticDB container contained code setting up the ELK Stack. The ELK stack

contains Elasticsearch, Kibana, Beats, and Logstash [41]. Elasticsearch is the “heart”

of the ELK Stack and centrally stores the data produced by Plaso. Kibana is a front-

end graphical UI that allows the users to easily view the data in the Elasticsearch

39

database. Finally, logstash is the data-processing pipeline that ingests data from

sources, transform the data through the use of filters, and outputs the new data into

a database. The elasticDB container set up the environment for Plaso to input the

data produced by log2timeline, mentioned in Section 2.6.1.1, into an Elasticserach

database through psort. Once Plaso processed the image, this study examined the

contents of Elasticsearch to determine how to configure the filters of logstash to

identify the necessary data and to transform said data for Neo4j. Figure 15 shows

an example of how Plaso extracted a Windows Eventlog artifact from the image and

placed it into the Elasticsearch database.

Figure 15: Plaso Example.

The last container, neo4jInput, handled the process of taking the data from the

Elasticsearch database, changing its format, and placing it into a Neo4j database out-

put, all through the logstash pipeline. The filters queried the Elasticsearch database

for specific instances and transformed its output into various Cypher queries utilized

to create new nodes in Neoj or update existing ones with new properties and/or re-

40

lationships to complete the various subgraphs like the one in Figure 13. Figure 16 is

an example filter used to find various artifacts within the Elasticsearch database that

Plaso extracted using the parser “lnk”. These events show when link shortcut files,

pointing to an executable file, were accessed within the Windows image. Figure 17

shows an example of this filter’s end result. It created one parser node in the Neo4j

database, containing the parserName property with a value of the string “lnk”. This

node was associated to all the different action nodes with the properties, “action”

and “timestamp”. Each action node represented a different entry within the Elastic-

search database that was extracted with Plaso’s “lnk” parser. Each of these action

nodes were also associated to an object node, containing the file path of the shortcut

accessed. If the same shortcut was accessed multiple instances throughout the image,

the filter only created one distinct object node but associated it to various action

nodes which were distinguishable by the different timestamps.

41

1 if [parser] == "lnk" {
2 #complete standard parameters: filename, parser, and action
3 translate {
4 add_field => {
5 "[statement1][parameters][objProps][filename]" => "%{filename}"
6 "[statement1][parameters][parserProps][parserName]" => "%{parser}"
7 }
8 field => "timestamp_desc"
9 destination => "[statement1][parameters][actProps][action]"
10 dictionary => ["Creation Time", "Link Created",
11 "Content Modification Time", "Link Modified",
12 "Last Access Time", "Link Accessed"
13]
14 fallback => "Unknown Action: %{timestamp_desc}"
15 }
16 #create queries and properties to link obj to link target
17 if [link_target] {
18 #find the target of the linkfile
19 grok { match => { "link_target" => ["%{GREEDYDATA}? %{PATH:linkTarget}",
20 "%{GREEDYDATA:linkTarget}"] } }
21 #change link target path to match filestat (TSK)
22 mutate { gsub => ["linkTarget", "^.*:", "", "linkTarget", "[\\]", "/"] }
23
24 mutate {
25 add_field => {
26 "[statement1][parameters][lnkTgtProps][filename]" => "%{linkTarget}"
27 "ss4" => "MERGE (lnkTgt:object {filename: $lnkTgtProps.filename}) ON CREATE SET

lnkTgt=$lnkTgtProps"
28 "ss5" => "MERGE (obj)-[:TARGET]->(lnkTgt)"
29 }
30 }
31 #update statement1 to add the new queries
32 mutate {
33 update => { "[statement1][statement]" => "%{[statement1][statement]} %{ss4}

%{ss5}" }
34 }
35 }
36 }

Figure 16: LNK Filter [33].

42

Figure 17: Neo4j LNK Example.

43

The dd image was then processed through TEAR, the custom tool developed

by Okolica [34]. This C++ program extracted data such as Windows Event Logs,

prefetch instances, Windows Registry information, and various Windows user data.

The information was then collected and placed into various text files in CSV format.

Figure 18 show an example of the Windows Event Log data collected from the image

using TEAR. Logstash was used again to transform the collected events from TEAR

into Cypher queries for Neo4j. Figure 19 shows the filter utilized for Windows Event

Log data.

Figure 18: EventLog Txt.

44

1 if [path] =~ /.*eventlog\.txt/ {
2 mutate { gsub => ["message", "\t", "|", "message", '"', "'"] }
3 csv {
4 separator => "|"
5 columns => [
6 "TimeGenerated",
7 "EventID",
8 "SourceName",
9 "Message"
10]
11 }
12 if [TimeGenerated] {
13 mutate {
14 add_field => {
15 "[statement1][parameters][objProps][filename]" => "%{SourceName}/%{EventID}"
16 "[statement1][parameters][parserProps][parserName]" => "eventLog"
17 "[statement1][parameters][actProps][message]" => "%{Message}"
18 }
19 }
20 ruby { code => '
21 timeStr = event.get("TimeGenerated")
22 timeInt = (Time.strptime(timeStr, "%Y-%m-%d %H:%M:%S").to_i + 25200) * 1000
23 event.set("[statement1][parameters][actProps][timestamp]", timeInt)
24 '
25 }
26 if [SourceName] == "Microsoft-Windows-Winlogon" {
27 translate {
28 field => "[EventID]"
29 destination => "[statement1][parameters][actProps][action]"
30 dictionary => [
31 "7001", "Logon CEI Notification",
32 "7002", "Logoff CEI Notification"
33]
34 fallback => "Unknown Action: %{EventID}"
35 }
36 }
37 else if [SourceName] == "EventLog" {
38 translate {
39 field => "[EventID]"
40 destination => "[statement1][parameters][actProps][action]"
41 dictionary => [
42 "6006", "Event Log Service Stopped",
43 "6009", "Windows Version",
44 "6005", "Event Log Service Started",
45 "6013", "System Uptime Report",
46 "6011", "Computer Name Changed"
47]
48 fallback => "Unknown Action: %{EventID}"
49 }
50 }
51 else if [SourceName] == "e1iexpress" {
52 translate {
53 field => "[EventID]"
54 destination => "[statement1][parameters][actProps][action]"
55 dictionary => [
56 "32", "Network Interface Connected",
57 "27", "Network Interface Disconnected"
58]
59 fallback => "Unknown Action: %{EventID}"
60 }
61 }
62 else if [SourceName] == "Microsoft-Windows-Power-Troubleshooter" {
63 translate {
64 field => "[EventID]"
65 destination => "[statement1][parameters][actProps][action]"
66 dictionary => [

Figure 19: EventLog Filter.

45

67 "1", "System Returned from Low Power State"
68]
69 fallback => "Unknown Action: %{EventID}"
70 }
71 }
72 else if [SourceName] == "Microsoft-Windows-RestartManager" {
73 translate {
74 field => "[EventID]"
75 destination => "[statement1][parameters][actProps][action]"
76 dictionary => [
77 "10000", "Starting Session",
78 "10001", "Ending Session",
79 "10002", "Shutting Down Application"
80]
81 fallback => "Unknown Action: %{EventID}"
82 }
83 }
84 else if [SourceName] == "MsiInstaller" {
85 translate {
86 field => "[EventID]"
87 destination => "[statement1][parameters][actProps][action]"
88 dictionary => [
89 "1040", "Beginning Install Transaction",
90 "11707", "Installation Completed",
91 "1033", "Install Info",
92 "1042", "Install Transaction Complete",
93 "1005", "Installer Initiated Restart"
94]
95 fallback => "Unknown Action: %{EventID}"
96 }
97 }
98 else { mutate { remove_field => ["[statement1][parameters][objProps]"] } }
99 }
100 }

Figure 19: EventLog Filter.

The filters again created subgraphs similar to Figure 17. Specific to the event

log filter, logstash created one parser node with an “eventLog” paserName property

and several action nodes, again distinguishable by timestamps. The properties from

the Event Log subgraphs were labeled and constructed differently because these log

events did not necessarily have, for example, a file path of the shortcut accessed such

as the LNK subgraphs mentioned earlier. Instead, the event log subgraphs created

object nodes with specific Windows Event Log IDs and action nodes with the Event

Log message along with the timestamps. Figure 20 shows an example of one entry

from events produced by TEAR, placed into the Neo4j database. The object nodes

for these subgraphs contained information of the log data’s origin, such as Microsoft

Windows Winlogon or Msi Installer logs.

46

Figure 20: EventLog Neo4j Subgraph.

Overall, phase one of the ingest process involved using Plaso and TEAR to extract

events from a Windows image and place them in their respective outputs, Elastic-

search database for Plaso and CSV format text files for TEAR. Then logstash is a

pipeline to accept as inputs these two difference sources of events, transform the data

into Cypher queries to create desired subgraphs, and insert the results into a Neo4j

database. ECATV created the same subgraphs in [33] but modified filters to correctly

convert the data from two different sources into Neo4j.

Two different sources were used to create a more robust database for the ab-

straction portion of the ingest phase. This was because TEAR captured events in a

different manner than Plaso and provided more information for certain events. For

example, Plaso extracted the Event Log artifacts from the image but was unable to

pull the actual message as shown in Figure 15. TEAR on the other-hand was able to

extract the source of the logs as well as the specific messages associated to each of

these events. So ECATV used logstash with Event Log filters that accepted TEAR

Event Log text files for its inputs. Meanwhile it used the LNK filters and used Plaso’s

extracted events to create the File Table subgraphs mentioned in [33]. It is important

to note, as mentioned earlier, all subgraphs were also related to time nodes, which

were important during the creation of high-level abstracted events in phase two of

ingest.

47

3.3.2 Phase Two of Ingest

Phase Two involves applying the abstraction logic through Cypher queries to

the Neo4j database and creating high level abstracted nodes. Adderley [36] created

high level events for power events, installation information, program execution, file

download, and web history. ECATV follows the same concept and created the same

high-level events. These events were represented in Neo4j as new abstraction nodes.

Abstraction nodes were created by identifying and collecting multiple low level events

and collecting its properties to populate the abstraction nodes’ properties. For exam-

ple, for the installation information abstraction nodes, the query searched for various

object nodes containing the log entries 11707, 1042, and 1033 from the Msi Installer

logs. Msi Installer Event ID 11707 translated to “Successful installation”, Event ID

1042 translated “Notification of the installation process completion” and Event ID

1033 translated “Records the end result of a program installation. Status code 0

means the installation was successful” [36].

ECATV utilized similar queries to Adderley’s research, essentially looking for the

same low level events. The logic for creating Program Execution abstraction nodes

was overhauled due to the change in some of the subgraphs’ schema of the low level

events in Neo4j. Because both TEAR and Plaso were applied for ECATV, the Cypher

query required a significant change. Figure 21 contains the Cypher query used to

create the Program Execution abstraction nodes within ECATV’s Neo4j database.

Once these abstraction nodes were created, ECATV used Autopsy’s keyword

search module to locate files associated to keywords an examiner was interested in.

Autopsy ingested the files of the Windows images by extracting and indexing their

text into a SOLR database. This allowed for quick regular expression and keyword

searches across the image. The results of the searches were ultimately stored into a

SQL database, called autopsy.db, for the Autopsy “case” of the image. This database

48

1 //Program Execution
2 MATCH (parser:parser)<-[:PARSER]-(act:action)-[:EFFECTS]->(obj:object)
3 WHERE parser.parserName = 'prefetch'
4 MATCH (act) -[:AT_TIME]->(sec:Second)
5 MATCH p = (sec) -[:NEXT *10]->()
6 WITH p
7 UNWIND nodes(p) AS secNodes
8 MATCH (secNodes)

<-[:AT_TIME]-(act:action)-[:EFFECTS]->(obj:object)-[:TARGET]->(obj2:object)
9 WITH act.timestamp as timestamp, COLLECT(DISTINCT obj.filename) as filenames,

collect(DISTINCT act) AS collection,
10 collect(DISTINCT obj) AS b, COLLECT(DISTINCT act.action) AS acts, collect

(DISTINCT obj.title) as titles
11 WITH [event in filenames | (SPLIT(event, "/"))][0][2] as extractedValues, filenames,

acts, titles, timestamp, collection, b
12 CREATE (a:Abstraction{ Event: [extractedValues], Trace: filenames, Description: acts +

titles , timestamp:timestamp})
13 FOREACH (pair in collection | MERGE (pair)-[:LVL1_ABSTRACTION_LINK]->(a)
14 FOREACH (set in b | MERGE

(set)-[:LVL1_ABSTRACTION_LINK]->(a)))

Figure 21: Program Execution Cypher Query.

followed the same schema for module communication within TSK, called the black-

board (reference Section 2.5.1).

Autopsy stored the artifacts it discovered into the blackboard artifacts table

with attributes artifact id, obj id, artifact obj id, and artifact type id.

The artifact type id referenced the table blackboard artifact types with at-

tributes artifact type id, type name, and display name. Artifact type id nine

corresponded to type name of TSK KEYWORD HIT with a display name of Keyword

Hits. Once all the artifacts with artifact type id of nine were isolated within the

blackboard artifacts table, the next step was to examine the actual artifact id.

These values were connected to the blackboard attributes table with properties

artifact id, attribute type id, and value text. The value text attribute con-

tained the actual strings of the keywords or regular expressions the module searched

for. The attribute type id attribute was related to the

blackboard attribute types table which contained attributes of

attribute type id, type name and display name. The attribute type ids of in-

terest for this study were 10 and 11, which had type names of TSK KEYWORD and

TSK KEYWORD REGEXP respectively. The blackboard attributes table was then iso-

49

lated for values 10 and 11 of the attribute type id to determine which search key-

words corresponded to which artifact. The last bit of necessary information was the

file paths of the actual keyword search hits. These resided in the tsk files table

with attributes obj id and various other attributes but the ones of interest were

name and parent path. The obj id values related to the same obj id values within

the blackboard artifacts table. The combination of the parent path value and

the name value within the tsk files table contained the full directory of the files

within the Windows image, associated to the keyword search hits. A Python script

was written to extract the necessary information of the search keywords with a hit

and its associated files. Figure 22 provides a relational overview of the various tables

within the Autopsy database.

TSK_FILES

obj_id: 3841

name: green

parent_path: /Users/

blackboard_artifacts

artifact_id: 9223372036854775742

obj_id: 3841

artifact_obj_id: 157366

artifact_type_id: 9

blackboard_artifact_types

artifact_type_id: 9

type_name: TSK_KEYWORD_HIT

display_name: Keyword Hits

blackboard_attributes

artifact_id: 9223372036854775742

artifact_type_id: 9

source: Keyword Search

attribute_type_id: 10

value_text: green

blackboard_attributes_types

attribute_type_id: 10

type_name: TSK_KEYWORD

display_name: Keyword

Figure 22: Autopsy Blackboard Communication.

This information then was integrated into Neo4j through a series of Cypher

queries. The queries first matched the object node associated to the file path. It

then searched for its corresponding abstraction node and added a searchKeyword

property with a string value of the original keyword used in the Autopsy Keyword

50

Search Module. The base keyword was used as the value within this property and not

a series of its associated regular expressions because Neo4j’s text indexing features

already include regular expressions as a capability.

3.4 User Interface

ECATV uses a similar REACT timeline as TAIMA with a few modifications.

ECATV uses the same GraphQL API but with a modified schema. A new query type

was added to take into account the possible queries for search keywords. Figure 23

shows the abstraction schema that returns the same properties from Neo4j as TAIMA

did, but with the added searchKeyword property.

1 type abstraction {
2 startTime: Float!
3 endTime: Float!
4 Event: [String]
5 Trace: [String]
6 Description: [String]
7 timestamp: Float
8 searchKeyword: String
9 }

Figure 23: Abstraction Schema.

Figure 24 illustrates the actual queries that were made to Neo4j. The first query

remained the same as the one in TAIMA to account for examiners wanting the timeline

to return all events within the given time frame. The second query was added for

ECATV to query Neo4j’s database using its full text search capabilities mentioned in

Section 3.3.2. This query first pulled the nodes that successfully matched the keyword

search and returned only the nodes that also matched the examiner’s requested time

frame. It is also important to note that the second abstraction query now requires

a searchKeyword argument on top of the already required startTime and endTime

51

arguments.

1 abstraction(startTime: Float!, endTime: Float!):
2 [abstraction] @cypher(statement:
3 "MATCH

(:Second)<-[:AT_TIME]-(act:action)-[:LVL1_ABSTRACTION_LINK]->(abs:Abstraction)
4 WHERE abs.timestamp >= startTime AND abs.timestamp <= endTime with

abs.timestamp as timestamp,
5 COLLECT (DISTINCT abs) AS abs
6 UNWIND abs AS x
7 RETURN x"
8)

1 abstractionSearch(startTime: Float!, endTime: Float!, searchKeyword: String):
2 [abstraction] @cypher(statement:
3 "CALL db.index.fulltext.queryNodes('keyword', searchKeyword)
4 YIELD node as y
5 MATCH

(:Second)<-[:AT_TIME]-(act:action)-[:LVL1_ABSTRACTION_LINK]->(abs:Abstraction)
6 WHERE abs.timestamp >= startTime AND abs.timestamp <= endTime AND abs.Trace =

y.Trace
7 WITH abs.timestamp as timestamp,
8 COLLECT (DISTINCT abs) AS abs
9 UNWIND abs AS x
10 RETURN x"
11)

Figure 24: Abstraction Queries.

The resolver function in charge of translating GraphQL queries into a Cypher

query was also modified to account for the new query, as shown in Figure 25. The

other parts of the UI such as the viewing transformation, rendering, and visual display

components of ECATV remained largely the same as TAIMA [36]. A text box was

added to the visual display component for examiners to submit the desired search

keyword.

1 export const resolvers = {
2 Query: {
3 object: neo4jgraphql,
4 Second: neo4jgraphql,
5 abstraction: neo4jgraphql,
6 abstractionSearch: neo4jgraphql
7 }
8 }

Figure 25: Resolver Function.

52

3.5 Summary

ECATV’s ingest process involves multiple tools and combines their capabilities

into a single entity. The process goes from a raw physical image of a Windows

machine to a timeline visualization that maps out user and system activity over a

specified time period. The image was processed through TEAR where its output is

placed into CSV formatted text files. It was also processed through Plaso and the

events were placed into an Elasticsearch database. All these events were processed

through logstash where the pipeline’s filters transformed the information into Cypher

statements for a Neo4j database. These statements created various subgraphs consist-

ing of action, object, parser, and time nodes. The Neo4j database was supplemented

with additional abstraction logic in the form of Cypher statements to connect a col-

lection of low-level events into a high-level event. These abstraction nodes were also

supplemented with the results of Autopsy’s Keyword Search Module and added a new

searchKeyword property to the abstraction nodes. These properties were indexed us-

ing Neo4j’s fulltext search feature and allowed the timeline to conduct string searches.

ECATV allows examiner to visualize the user and system activities across a specified

time period, similar to TAIMA, while also allowing the examiner to further filter to

results down to specific search keywords, such as a user name. The new feature allows

examiner to filter the results, for example, down to the events of a single user, a spe-

cific program, or a user’s association to a specific program. It also provides examiners

with the high-level events’ trace, allowing them to closely examine the potential items

of evidence through Autopsy or other digital forensics tool.

53

IV. ECATV and Digital Forensics Examination Process

This chapter presents how the Event Correlation and Abstraction Timeline Visual-

ization (ECATV)’s effectiveness was assessed. The next section explains the different

phases in the common digital forensics examination process. Then it explains the

three user stories that were selected to test ECATV. Lastly, it walks through how

ECATV can be used and how it fits within the digital forensics process. Scenario one

was selected for the initial walkthrough because it was the same scenario used in the

Adderley’s user study [36] and due to the differences explained in Section 4.3.

4.1 Assessment

The previous chapter discussed the process of taking a physical image all the

way to a timeline visualization with an added keyword search capability. Keyword

search was added to provide examiners with a method to reduce the number of events

displayed on the timeline and allow the user to control what he or she desired.

Evaluation of ECATV consist of use cases for three different images to measure

its capabilities in the current digital investigation process. First it tested whether or

not this process was viable in creating the desired timeline with the high level events

and search keywords for a different data set. The details of the three images and the

scenarios for each were outlined in the next section “User Stories”. Though ECATV

was researched with the data agnostic concept in mind, it is currently limited to

Windows images as many of the rules, logic, and filters developed were targeted for

the Windows operating system. The measurement is ECATV’s accuracy in presenting

the necessary pieces of information for each scenario. This was done to provide a

more objective measure of its viability as an operational module. The many benefits

of a timeline were difficult to measure as there are many subjective categories and

54

its usability as an investigative tool would rely on the examiners’ level of ability in

conducting digital forensics. But [36] conducted a user study confirming the usability

benefits of a timeline visualization. Thus it was necessary to test ECATV on a more

objective level before continuing with an updated usability test.

4.2 Common Digital Forensics Examination Process

Carrier [42] breaks down a digital forensics investigation into three phases; digital

crime scene preservation and documentation, digital evidence searching and documen-

tation, and digital event reconstruction and documentation. The first phase pertains

to imaging and preserving the original copy and is not the focus of this study. The

focus is on finding evidence which partially overlaps into the third phase, recon-

struction. Documentation standards differ based on legal requirements of where the

investigation was conducted and again is not the focus.

Carrier explains the evidence searching phase, or the digital forensics examination

process, is broken down into four phases. Phase one is target definition used to

locate evidence, such as a specific file name or content within a file. This is the

most challenging aspect and targets are “defined from either experience or existing

evidence” [42]. The examiners use their experience from similar investigations to

define common targets. They can also derive additional targets from the evidence they

already discovered during the examination. The second phase involves data extraction

and interpretation. Once the target is defined, investigators conduct a search of the

digital crime scene for evidence through interpretation of different abstraction layers.

Carrier explains looking at each file, or sector, or each network packets provides

different levels of information and searches conducted at different abstraction layers

provide different amounts of information used to locate the targets. This is akin to a

physical crime scene search. For example, in a homicide, an investigator would define

55

his/her target as the blood and would use an ordered pattern to search the physical

crime scene for blood. The investigator may discover a tiny blood splot causing

him/her to pay closer attention to a particular area in hopes of locating a better

sample. digital forensics examinations are similar where instead of ordered patterned

physical searches, examiners use visualization techniques to locate files modified at a

given time, or keyword searches to find specific values in its name or content, or hash

databases to find files with content of a specific value [42].

Phase three then compares the extracted data to the target and the examiner

determines if the object is evidence. Referring back to the physical investigation, an

investigator may locate a large pool of substance that appears to look like blood to

the naked eye. He/she can then conduct a field test, such as using luminol or UV

light, to determine whether or not the object containing the blood stain should be

considered evidence for further examination at a forensic lab. digital forensics ex-

amination is slightly different where the processes of seizing the evidence for further

analysis is unnecessary and the examination to determine if the object is evidence can

be conducted immediately. Phase four updates the knowledge base of the investiga-

tion which further defines additional targets to search for. This process repeats until

the examiner is satisfied with the amount of evidence necessary for the investigation.

4.3 User Stories

A Windows 98, Windows 7, and Windows 10 operating system images were used

as the base for the timeline visualizations. The Windows 98 image was selected

because it was the same image used in Adderley’s user study in [36]. The details of

the scenario are outlined in Appendix C of [36] and the following search keywords

were used to develop the search index within Neo4j:

56

Greg Schardt; Starbucks; T-mobile; Evil; Mr. Evil; password;
Cain & Abel; Ethereal; 123 Write All Stored Passwords;

Anonymizer; CuteFTP; Look&Lan 1.0; NetStumbler; sniffer;
cracker; access point; discovery; tool; Interception; Credit;
Cards; username; hackers; hacking; hackerz; adware; back

door; black hat; bot; botnet; cookies; Denial of Service; DOS;
Distributed Denial of Service Attack; Dumpster Diving;

Easter Egg; Firewall; Gray Hat; hackers; keylogger; logic
bomb; malware; master program; payload; phishing; phreaker;
rootkit; polymorphic virus; script kiddie; social engineering;

spam; spoofing; spyware; time bomb; trojan; virus;
wardriving; white hat; worm; zero day; exploit; zombie;

install; startup

These were selected based off the scenario as well as the user study conducted in

[36].

The Windows 7 and Windows 10 images were taken from Computer Science and

Computer Engineering (CSCE) 527 Cyber Forensics class offered at Air Force Insti-

tute of Technology (AFIT). The details of the scenarios and assignments were outlined

in Appendix A and Appendix B. The Windows 7 image consisted of a scenario where

the owner of a company was murdered and the company workstation was taken as

evidence. For the Windows 10 image, the scenario involved a drug investigation where

a public computer at a library was the main source of digital evidence. These images

and scenarios were chosen to test the capabilities of ECATV on newer operating sys-

tem as well as its ability to perform when multiple users were involved on a single

image. The following search keywords were used to develop the search index for the

Windows 7 image:

Boddy; Mustard; Green; Plum; Scarlet; Peacock; White;
clients; contracts; information; technology; support; research;
development; office; manager; accountant; researcher; lead;

Boddy, INC; contracting; Google; chat; cooked books; jpg; pdf;
keylogger; outlook; emails; e-mails; startup; installation

57

The Windows 10 scenario was slightly different because most of the e-mails were

not located on the actual image and were stored on an e-mail server. Because of this,

the e-mails were analyzed prior to examining the image and the following keywords

were selected:

Green; Forest; White; Pearl; Mustard; Golden; Scarlet; Ruby;
Plum; Liseran; Iris; Peacock; Pym; Gerald; txt; log; key;

keylogger; jpg; drug; pickup; locations; hackers; hack;
keystroke; logging; fish; logged; drop; and Park;

forest.green13@protonmail.com; proprietor pym’s country
store; leader copy; slots; gambling; blackmail; startup; install

These two images were unique from the first scenario because the images involved

multiple users on a single workstation. The keywords were chosen based on what

examiners may typically search in their initial examination based on the preliminary

scenario information. The usernames as search keywords also makes it easy for the

examiners to filter the events on the timeline based on the events only associated to

said user. This made it easier to view the overall activities of specific users or track

specific usage patterns. The final difference of interest between these two images

and the first was their development process. The first Windows 98 image was made

specifically to answer the questions of the scenario and in total the image was only

5 GB. The Windows 7 and Windows 10 images were developed to mimic actual user

usage in a workstation environment such as having event logs enabled and were 40

GB and 120GB respectively. It also logged onto each user account and contained the

activities done on that account to what the “user” would have fictionally accomplished

within the scenario. For example, the user Green in both scenarios was in charge of

Information Technology (IT) support and thus his activities on both images mirrored

what a typical IT support staff would conduct. ECATV makes analysis easier by

isolating events of these images down to a specific user. Then the examiner can look

58

through these events and quickly determine if any activity stands out as an anomaly

not only in general sense, but also more tailored to the specifics of an investigation.

For example, as an IT staff member, Green would not normally access the contents

of client records or email the company’s customers. If these events are shown on the

timeline after a search keyword of “Green” was submitted, it would raise flags and

the examiner can began going down this trail of analysis.

4.4 Scenario 1

This scenario involved a hacker named Greg Schardt who utilized a notebook

computer and a wireless PCMCIA card attached to a external homemade 802.11b

antennae to intercept internet traffic for username & passwords and credit card num-

bers. Schardt also went by the online nickname of “Mr. Evil”. His associates stated

“Mr. Evil” would park his car within range of wireless access points and would inter-

cept traffic in hopes of obtaining sensitive information. The goal of the scenario was

to locate any hacking software Schardt utilized within the given suspect’s Windows

98 image.

4.5 ECATV Walkthrough

Scenario one was selected to demonstrate how ECATV could be used within the

digital forensics process. The first step was finding a suitable time range to search that

would make identifying the artifacts of interest easier. In the scenario, the notebook

computer was seize on 20 September 2004 so it would make sense to begin searching

from January 2004 to September 2004. The examiner can then see where the clusters

of activities were and begin narrowing down the scope. For this specific scenario, the

time range of interest was already identified during the user study. The time range

specified in [36] of 27 Aug 2004 12:00:00 AM - 27 Aug 2004 12:00:00 PM provided the

59

results necessary to find the six important results of the hacking software, as shown

in Figure 26. These nodes were mostly program execution nodes and were missing

the power event and installation information abstraction nodes. This was due to the

image being a Windows 98 operating system which at the time did not have Windows

Event Log features. Since it was missing these low level events, phase two of the ingest

process failed to produce those two abstraction node types. Regardless, the timeline

was able to produce the necessary results to find the six hacking programs.

Another useful feature of a keyword search timeline is its ability to discover pat-

terns and correlation between these events, as mentioned in Section 4.3. For example

when the timeline in Figure 26 was filtered based on “ethereal” keyword search, it

produced Figure 27. This kept the program execution nodes of the packet sniffer,

Ethereal, as expected. But it also kept the nodes for NetStumbler which was a wire-

less access point discovery tool. This view also showed the user executed the access

point discovery tool prior to executing a packet sniffer. Scenario one involved the

hacker used the notebook computer and a wireless PCMCIA card to intercept in-

ternet traffic for username and passwords and credit card numbers. Based on this,

the examiner can then search for “ethereal” and “password” to discover that Cain, a

password cracker, was executed soon after, as shown in Figure 28.

Searching for “credit cards” during the same time period produced a node for

“channels.txt; keys.txt; Receipt.rtf” which was different from the normal NetStumbler

program execution nodes. The tooltip showed the traces for the node as shown in

Figure 29. Because the scenario involved stealing credit card numbers as well, the

examiner can use this as an initial point to start digging deeper into these files for

the possibility of finding what numbers were stolen. It was also interesting that a

internet relay chat program’s channel text files were executed around the same time

these tools were used. It raises the flag that the hacker was potentially part of a group

60

61

62

Figure 26: Scenario 1 Timeline.

63

Figure 27: Scenario 1 Timeline Ethereal Search.

64

Figure 28: Scenario 1 Timeline Ethereal & Password Search.

65

that discussed these techniques for intercepting wireless traffic or he was selling these

usernames & passwords and/or credit card numbers via mIRC.

Figure 29: Scenario 1 Timeline Credit Cards Search.

Overall, ECATV helped locate the six hacking software as originally intended.

But it also helped narrow down files of interest through the use of keyword searches

and automated correlation of events organized by time. The tool helps examiners

create multiple hypotheses to test and locate evidence. The traces associated to the

nodes and the timestamps also help with the reconstruction portion of the digital

forensics examination process.

66

V. Results and Analysis

5.1 Overview

This chapter goes over the results and analysis of the three scenarios. Scenarios

two and three also include an example of how Event Correlation and Abstraction

Timeline Visualization (ECATV) can benefit the examination process.

ECATV was evaluated based on its ability to reduce the number of results to sort

through and also its completeness in presenting the key items for the three different

user scenarios. The study also examined the number of hits the keyword search of

the timeline visualization produced compared to what an Autopsy keyword search

module would produce for each of the search terms. Most examiners begin their

analysis using keyword searches to find a good place to start and to establish an

idea of what evidence can be found. ECATV aims to reduce the number of hits an

examiner must go through to identify a starting point while still having the ability to

discover the necessary information. The reduction in the number of results presented

can potentially cause the examiners to miss necessary pieces so it was important to

evaluate ECATV’s ability on result reduction and completeness.

5.2 Scenario 1

The summary of the scenario and the walkthrough of using ECATV for scenario

were outlined in Section 4.4 and Section 4.5 respectively.

5.2.1 Scenario 1 Analysis and Results

Autopsy’s Keyword Search Module produced 13,107 hits across all the terms men-

tioned in Section 4.3. On the other hand, the timeline visualization produced 397

hits to sort through, which reduced the number of hits by 97%.

67

As expected, the new timeline included all six hacking programs. ECATV pro-

vided the added benefit of being able to determine and find usage patterns compared

to the previous version from Adderly’s study [36].

5.3 Scenario 2

This fictitious scenario involved a millionaire and philanthropist, Boddy having

been murdered and the investigators determined whoever murdered him worked in

his contracting company, Boddy, Inc. This company consisted of Col Mustard, Mr.

Green, Prof Plum, Miss Scarlet, Mrs. Peacock, and Mrs. White. Mustard was the

vice presiden who was in charge of garnering contracts and liasing with clients. Plum

was in charge of research and development while White worked with him as the lead

researcher. Lastly, Scarlet was the office manager and Peacock was the company’s

accountant. The goals of the scenario were to reconstruct the crime that took place

based on the information found on the image and to build a narrative for the lead

investigator.

5.3.1 Scenario 2 ECATV Walkthrough

The first step for this scenario was to narrow down the time range of interest.

Figure 30 shows the initial time range of 1 Jan 1990 1:01:01 AM - 1 Jan 2019 1:01:01

AM and “startup” keyword used to see when the system was started. These power

events were generated from Windows Event Logs, specifically from entries of 6013 and

6005, as the tooltip in the figure shows. Log entries 6013 identified system uptime

reports while 6005 identified that the event logging service started. The results showed

the time range could be narrowed down to 26 Jul 2011 - 27 Jul 2011. The time range

of 25 Jul 2011 12:00:00 AM - 28 Jul 2011 12:00:00 PM was used for each subsequent

searches to ensure all activity between these dates were captured.

68

Figure 30: Scenario 2 Timeline “startup” Search.

The next step involved looking for installation information to develop an idea of

what sorts of software the users interacted with. A search of 25 Jul 2011 12:00:00 AM

- 28 Jul 2011 12:00:00 PM and “install” keyword revealed various programs installed

within this time period. Figure 31 shows an attempted installation of Microsoft Office

Enterprise 2007 with an installation error status of 1603. A successful installation

would contained an installation success code of 0, as shown in Figure 32.

69

Figure 31: Scenario 2 Timeline “install” Search.

Figure 32: Scenario 2 Timeline “install” Search.

70

The next step was to search for clues and usage patterns to find the key pieces of

evidence within this scenario. Figure 33 confirms that Microsoft Office was success-

fully installed because Mustard was able to executed Outlook.exe the next day. The

user then narrowed down the search to Col Mustard’s activity by using the “mus-

tard” keyword. This isolated all of his program execution activities. Figure 34 shows

Mustard using Google Talk. Based on the information thus far, the user can begin

searching Google Talk logs and/or chat messages and outlook e-mail messages to

find additional clues. The user can click through the various nodes to see Mustard

also accessed various pictures/JPGs as the tooltip shows him accessing /Users/mus-

tard/AppData/Roaming/Microsoft/Windows/Recent/pics.lnk (shown in Figure 35).

Autopsy revealed this LNK file was linked to a public folder stored on the main

drive as C:/pics. The timeline specifically shows Mustard opening DSCF0734 and

DSCF0923 multiple times throughout the day. The user can also find that Mustard

accesses readme2.htm, USB Disk (E) drive, and “too late.txt”. The user takes note

of these patterns and should also be on the lookout for a USB drive as an additional

piece of evidence.

71

Figure 33: Scenario 2 Timeline Search.

72

Figure 34: Scenario 2 Timeline “mustard” Search.

73

Figure 35: Scenario 2 Timeline “mustard” Search 2.

74

The next user that had a high amount of activity was Peacock. The timeline

was filtered using the “peacock” keyword and the user is able to see Peacock ac-

cessed “Re new plan.txt” and “too late.txt” on the day prior to Mustard’s access,

as shown in Figure 36. Figure 37 shows Peacock accessing USB Disk (E) drive and

“Re new plan.txt” the next day. Between this time, Peacock accessed Boddy Inc.

with a trace of /Users/peacock/AppData/Roaming/Microsoft/Office/Recent/Boddy

Inc.LNK, as shown in Figure 38. The user can then use Autopsy with that specific

trace and find that the lnk file is associated to a database named Boddy Inc. Figure 39

shows a snippet of the database which contains various information on the company’s

customers. The user can take note that Peacock was the company’s accountant but

should raise a flag that the database was specifically accessed between the two times

shown in Figure 36 and Figure 37 where Peacock accessed “Re new plan.txt”. The

timeline also revealed prior to Peacock accessing the database, Microsoft Excel and

Microsoft Access were launched. Another item of interest was Peacock accessing Cisco

3550 manual PDF shortly after touching USB Disk (E) drive and “Re new plan.txt”

(Figure 40). The scenario stated Green was the company’s Information Technology

support. This behaviour of an accountant going through an ethernet switch manual

should raise a flag.

75

Figure 36: Scenario 2 Timeline “peacock” Search.

76

Figure 37: Scenario 2 Timeline “peacock” Search 2.

77

Figure 38: Scenario 2 Timeline “peacock” Search 3.

78

Figure 39: Scenario 2 Boddy Inc. Database Snippet.

79

Figure 40: Scenario 2 “peacock” Search 4.

80

The examiner can then determine a connection between Mustard and Peacock

based on the information thus far. Autopsy’s e-mail search module produced mes-

sages between Peacock and Mustard, taken from various Outlook.pst sources. These

messages, Figure 41, showed Mustard and Peacock stating they left messages but with

no additional context of the actual message. A close look at the programs executed

(Figure 33) between the time range of 25 Jul 2011 12:00:00 AM - 28 Jul 2011 12:00:00

PM showed “Microsoft” nodes with a trace of /ProgramData/Microsoft/Windows/S-

tart Menu/Programs/Camouflage. A simple Google search revealed Camouflage was

a program that provided steganography capabilities. A keyword search of “peacock

mustard Microsoft”, shown in Figure 42, revealed that this program was executed

between the time Peacock accessed “Re new plan.txt” and reaccessed the same file

as well as USB Disk (E) drive. The examiner can also determine Camouflage was

accessed after Peacock touched the Boddy, Inc. database. It was evident through

Autopsy that Boddy sent Mustard an e-mail needing to talk about accounting er-

rors, as shown in Figure 41. Based on the e-mails, the activity between Mustard

and Peacock, the examiner can determine some scheme was going on between Mus-

tard and Peacock involving the company’s clients and Boddy was beginning to notice

the errors. Due to Camoflouge’s presence, the user should also use steganography

on the the various files Mustard and Peacock touched between this time period to

find more information. These files include DSCF0734.JPG, DSCF0923.JPG, “too

late.txt”, “Re new plan.txt”, and “cisco 3550 man.pdf”.

81

Figure 41: Scenario 2 Emails.

Figure 42: Scenario 2 Timeline “peacock mustard Microsoft” Search.

82

5.3.2 Scenario 2 Analysis and Results

Autopsy’s Keyword Search Module produced 65,513 hits across all the terms men-

tioned in Section 4.3. On the other hand, the timeline visualization produced 142

hits to sort through, which reduced the number of hits by 99%.

The combination of Autopsy and ECATV was able to locate most of the im-

portant evidence. The tools located 9 out of 13 pieces of digital evidence planted

for the scenario. Many of the pieces of evidence were e-mail messages between the

various employees, which were located using the e-mail search module of Autopsy.

ECATV helped spur this search by showing the installation process of Microsoft Of-

fice 2007 as well as various employees accessing Outlook. Unfortunately, the timeline

was unable to pinpoint the actual Google Talk messages, but at least notified the

examiner of its existence and usage. Three pieces of digital evidence were “hidden”

using stegonagraphy on the following files: “cisco 3550 man.pdf”, DSCF0744.JPG,

and “README2.HTM”. ECATV was able to locate “cisco 3550 man.pdf” and

“README2.HTM” and the employee(s) who accessed them. It was unable to find

DSCF0744.JPG being executed by an employee, but it did demonstrate Mustard ac-

cessing similar JPEGs, DSCF0734.JPG and DSCF0923.JPG. These files were located

in C:/pics, which was the parent directory for the key piece, DSCF0744.JPG, that

ECATV was unable to display on its timeline. More importantly, Scenario 2 was able

to demonstrate ECATV’s capabilities in usage patterns. The tool made it easy to

discover Camoflauge and led examiners down the path of stenography as a technique

to look out for and even the specific software utilized. It also helped draw the con-

nection between Mustard and Peacock. The last piece of evidence was an e-mail from

Boddy that Scarlet forged using his account. This piece was found entirely using Au-

topsy’s e-mail search module. The e-mails alone made it evident Boddy was involved

in an affair with Scarlet and when Boddy attempted to end it, Scarlet threatened

83

him, stating “You will be sorry if you break up with me boddy.” The forged e-mail

sent to the entire company shows the e-mail was sent from Boddy, but the source of

the message originated from Scarlet’s Outlook.pst.

ECATV was unable to find the actual “cooked books” hidden through an alternate

data stream. But Scenario 2 demonstrated that the tool and the e-mails helped

establish the theory Peacock and Mustard were altering what were written in the

accounts. The examiner would have eventually found the actual document through

the clues and information discovered throughout this process. It is just that ECATV

was unable to locate the actual file. The last two pieces of digital evidence missed

were the clues in the slack space of the master boot record and the main drive. These

would not have been discovered because the ingest process did not account for data

located in the slack space and is a limitation of ECATV. Overall, ECATV was able

to help locate 69% pieces of digital evidence.

5.4 Scenario 3

This scenario began with an altercation that took place in the Bredon Library.

Police responded to a report that Golden Mustard and Ruby Scarlet were arguing over

use of one of the library’s computers. During the arrest, police discovered narcotics

in Mustard’s possession. The computer’s hard drive, along with a pile of USB drives

near the computer were seized as well. The lead investigator submitted a request

to the email providers of the local users and copies of the emails were provided to

the forensic examiner. The goals were similar to scenario two and examiners were

charged with building a narrative of the case for the lead investigator as well as a

reconstruction of the crimes.

84

5.4.1 Scenario 3 ECATV Walkthrough

Again, the first step for this scenario was to narrow down the time range of interest.

Figure 43 shows the initial time range of 1 Jan 1990 12:00:00 AM - 1 Jan 2019 12:00:00

PM and “startup” keyword used to see when the system was started. The results

showed the time range could be narrowed down to 30 May 2017 - 22 Jun 2017. The

time range of 30 May 2017 12:00:00 AM - 22 Jun 2017 12:00:00 PM was used for each

subsequent searches to ensure all activity between these dates were captured.

Figure 43: Scenario 2 Timeline “startup” Search.

The second step is the same as the second step in scenario two, which entailed

searching for installed programs. A search of a 30 May 2017 12:00:00 AM - 22 Jun

2017 12:00:00 PM and “install” showed a Google update finishing. The other events

showed various Microsoft programs, the English versions, were installed as well as a

Windows 10 update.

This scenario was different from scenario two in Section 5.3 because there were

seven different USB’s that potentially contained key pieces of evidence. This scenario

also involved a lead investigator who submitted a request to e-mail providers to obtain

the messages of the local users. Many of the actual key pieces of digital evidence

85

were not found on the Windows image, but ECATV was still useful in identifying

the remnants these pieces left behind when interacting with the workstation. The

scenario essentially involved the user, Pearl White, having Golden Mustard set up

drug deals. Mustard accomplished this through various e-mails he sent to Pym.

During this time, White embedded a message using stegonagraphy onto fish 4.jpg.

The text file contained the message “The next exchange will at 4pm on the corner

of 9th and Lake.” White also embedded a message onto the Black Moor Fish.jpg’s

alternate data stream that contained the message “Blackmail is your problem not

mine - you owe me, even more now. Next exchange at 7th and Maple at 7pm.” The

other pieces of digital evidence were associated to Forest Green. This user installed

a keylogger Powershell script onto the system and began blackmailing Mustard. The

key pieces of evidences that revealed this information were logged.txt and and e-mail

from Green to Mustard which stated “I have proof that you are working for the

notorious Queen White and if you don’t leave me $1,000 in the pipe by the computer

tomorrow I will notify the authorities!” ECATV was evaluated based on not only

its ability to find the digital evidence of the Windows image, but also its ability to

provide the examiner with a solid base to work on rather than aimlessly searching

the image.

The third search, Figure 44, provided an overview of the active users within the

time range of 30 May 2017 12:00:00 AM - 22 Jun 2017 12:00:00 PM. We determined

that Mustard, Green, White, and Peacock were the most active users based on the

results. A search with the same time range but with the “white” keyword revealed

White accessed various JPGs. This search was further filtered to include “jpg” which

showed a Windows Powershell was launched (Figure 45) at approximately 21 Jun

2017 06:20 AM. Then between 07:40 AM and 07:50 AM, White accessed fish 4.lnk,

Black Moor Fish.lnk, and the Public Pictures file location, as shown in Figures 46,

86

47, and 48.

Figure 44: Scenario 3 Timeline User Activity Search.

87

Figure 45: Scenario 3 Timeline “white” Search.

88

Figure 46: Scenario 3 Timeline “white jpg” Search.

89

Figure 47: Scenario 3 Timeline “white jpg” Search.

90

Figure 48: Scenario 3 Timeline “white jpg” Search.

91

It is important to note these searches and ECATV did not provide the actual

pieces of evidence, such as the message that were hidden within the alternate data

stream or embedded using stenography. But it located the items of interest allow-

ing the examiners to begin drilling down on these specific files. The same can be

said when using the keyword “green”. This search revealed a USB was inserted and

mounted as the F: drive and was named GREEN (Figure 49). Soon after Green ac-

cessed Parse Keys.lnk (Figure 50). A deeper dive into Autopsy showed this link file

originated from Parse Keys.ps1 from the GREEN USB, as shown in Figure 51. This

search through ECATV identified that out of the seven USB’s, the GREEN USB re-

quired further examination. The USB in fact contains evidence of a keylogger and the

trace revealed in Figure 50, which was /Users/Green/AppData/Roaming/Microsoft-

/Windows/Recent/Parse Keys.lnk, helped tie in the fact the key logger originated

from Green or whoever had access to Green’s user account on the Windows worksta-

tion.

92

Figure 49: Scenario 3 Timeline “green” Search.

93

Figure 50: Scenario 3 Timeline “green” Search.

94

Figure 51: Scenario 3 Parse Keys.lnk.

95

5.4.2 Scenario 3 Analysis and Results

Autopsy’s Keyword Search Module produced 159,918 hits across all the terms

mentioned in Section 4.3. On the other hand, the timeline visualization produced

225 hits to sort through, which reduced the number of hits by 99%.

The scenario involved locating 13 pieces of key evidence but two of them were

e-mails which were obtained from the email providers. Thus ECATV was evaluated

based on its ability to find the other 11 pieces. The tool helped locate eight of

these pieces, which included the alternate data stream from Black Moor Fish.jpg, the

embedded message on fish 4.jpg, the keylogger, the Powershell being executed, the

downloading of the fish pictures into the Public folder, and the associated activities.

ECATV was unable to locate two pieces of digital evidence associated to the

execution of WinHex; one by Mustard and one by White. These pieces of evidence

would tip the examiner to look for embedding in the partition slack, but ECATV alone

was unable to identify this. The tool also failed to locate the log file the keylogger

produced. This text file contained all the keys that were logged since Green installed

the program. It showed evidence of Mustard typing an email to White stating it

was “the last time I arrange a drop for you” as well as the message “My debts

should be fully repaid!” The actual file, logged.txt, was on the GREEN USB and the

examiner would have eventually located it after discovering the USB was important.

But ECATV was unable to create an abstraction node for the execution of logged.txt

associated to any of the users. This is because for some reason the Windows image

did not create a prefetch or LNK associated to logged.txt. Autopsy revealed no such

artifact existed. Regardless this was one of pieces of digital evidence planted for the

scenario and ECATV was unable to identify it.

96

5.5 Summary

This research evaluated ECATV based on two objective measurements; the num-

ber of the key pieces of evidence the tool was able to locate and the number of search

results it produced compared to another open source digital forensics tool, Autopsy.

Overall, ECATV reduced the number of search results by at least 90% for the three

scenarios, significantly reducing the amount of search terms an examiner would have

to sort through. The tool also located around 70% of the key pieces of digital ev-

idence. There were some limitations to ECATV and its ingest process that caused

the tool to be unable to locate some of the evidence. Table 1 shows the breakdown

of the results for each scenario.

Table 1: ECATV and Scenario Results.

Scenario 1 Scenario 2 Scenario 3

Digital Evidence Located 6 out of 6 (100%) 9 out of 13 (69%) 8 out of 11 (73%)

Search Results
Produced by ECATV

397 142 225

Search Results
Produced by Autopsy

13,107 65,513 159,918

Percentage of Reduction
of Search Results

97% 99% 99%

97

VI. Conclusions

6.1 Summary

This study looked into the possibility of integrating temporal abstraction [33] and

interactive visualization [36] into a digital forensics examiners’ current process. This

document presents the entire digital forensics examination process. Event Correlation

and Abstraction Timeline Visualization (ECATV) is presented as a novel examination

capability that works with the existing process. Specifically, ECATV adds a keyword

search feature onto the timeline to match the process, better filter results, and in-

crease the robustness of its operational capabilities. This was done through dissecting

Autopsy’s communication method, called the Blackboard, between various modules

and locating the necessary data to augment the timeline visualization’s database.

Overall, ECATV was able to significantly reduce the number of search results

by more than 90%. The tool was tested on three different scenarios and was able to

locate about 70% of the key pieces of digital evidence. The objective of this study was

to reduce the amount of time spent during the analysis portion of a digital forensics

examination by combining different strategies aimed at the same goal. This was done

by combining the research done in [33] and [36] to create a timeline visualization

backed with a native graph database that was filterable with keywords. Testing

ECATV through the three different scenarios revealed that the tool made it easier

to detect patterns and user behavior. When the image contained multiple users, the

keyword filterable timeline made it easier to isolate the activities of a single user. It

also had the ability to filter results down to multiple specific users making it easier to

detect interactions between various users, a feature useful on enterprise workstations.

98

6.2 Limitations

Currently there are three main limitations with ECATV. First, the tool relies on

Windows Event Logs to create its power events abstraction nodes. If logging was not

enabled, ECATV ultimately will be unable to show when the computer in question

was started. This brings us to the second limitation being the operating system. The

tools used during the ingest process were specific to Windows images. ECATV would

not work on Linux and Mac operating systems. Lastly, the tool was unable to locate

key pieces of digital evidence if they were hidden in the slack space. For these cases,

the examiner would have to manually search through the space to find the evidence.

6.3 Future Work

Future work for the development of ECATV would involve streamlining the pro-

cess into a single module for Autopsy. Currently the ingest process combines the use

of various tools and different stages. It can be a labor intensive process that requires

knowledge of multiple different languages, databases, and schemas. The tools written

for the first phase of the ingest process was also split up into multiple different docker

containers. Streamlining the ingest process into a single pipeline would allow a larger

population of forensic examiners to take advantage of ECATV’s benefits. Developing

a single module for Autopsy would also enable the ability for adhoc keyword searches.

ECATV currently takes the results from Autopsy’s keyword search and combines its

results into ECATV’s Neo4j database. But if it were developed as a single module for

Autopsy, it would be able to communicate with Autopsy through the Blackboard and

automatically add the results into its Neo4j database. This would allow for evolving

search terms and examiners to add search keywords on-the-fly.

The other piece of future work would involve conducting a user study on ECATV.

This research evaluated the objective benefits of ECATV but was unable to test the

99

subjective ones. A user study would test whether the tool works as intended and

reduces the human analysis time spent during a digital forensics examination. It

would also determine the ease of the tool’s usability. If the tool was difficult to utilize

for the average user, it would defeat the purpose of attempting to reduce the human

analysis portion.

100

Appendix A. Windows 7 Lab 3

Cyber Forensics - CSCE 527 Media Imaging and Analysis

Purpose: Image and examine a HD and unlock its many secrets.

Scenario: Millionaire and noted philanthropist Mr. Boddy has been murdered.

Since Mr. Boddys wife was out of the country and is the primary interest owner of

the company, the investigators have ruled out romantic and inheritance as motives.

The investigators are certain that whoever murdered Mr. Boddy must work in his

AF contracting company Boddy, Inc. Boddy, Inc. is a small business and consists

of Mr. Boddy, Col Mustard, Mr. Green, Prof Plum, Miss Scarlet, Mrs. Peacock,

and Mrs. White. Col Mustard is the vice president, and is in charge of schmoozing

clients and garnering contracts. Mr. Green is in charge of Information Technology

support. Prof Plum is director in charge of research and development. Miss Scarlet

is the office manager. Mrs. Peacock is the companys accountant. Mrs. White works

with Prof Plum as the lead researcher.

Assignment: Perform an analysis of the imaged drive and media. The hard drive

image is available on the LISSARD share drive. You will have imaged all of the media,

except for the hard drive during scene processing. The goal is a full reconstruction of

the crime(s). Find as much evidence as you can. Determine who has committed the

crime, why they committed the crime, and the timeline associated with the crime.

Build a narrative of the case for the lead investigator. Document where and how

you find it. The search terms cleared by the warrant for this search include all the

employees names, and aspects concerning Mr. Boddys demise. If you evolve search

terms, justify why you evolved them. Prepare a written report indicating the teams

findings and the techniques used. Be careful to maintain a correct trail of evidence,

including tagging, checking in and out of evidence, etc. Also, discuss in length the

tools that you used.

101

Appendix B. Windows 10 Lab 3

Cyber Forensics - CSCE 527 Media Imaging and Analysis

Purpose: Examine a HD image and unlock its secrets.

Scenario: A hard drive from a computer from the Bredon Library has been seized.

It is requested that you examine the image, it is suspected of containing evidence

related to illegal narcotics. The hard drive is part of an ongoing investigation in which

police responded to a report of an altercation between Mr. Golden Mustard and a

Miss Ruby Scarlet arguing over the computer. During the course of the response,

narcotics were found in Mr. Mustards possession. There are also a pile of USB drives

that were seized as well. The lead investigator has submitted a request to the email

providers for the local users. You should have the cloud email available for analysis

in a week.

Assignment: Perform an analysis of the imaged drive and media. The hard drive

image is available on the LISSARD share drive. You will have imaged all of the media,

except for the hard drive during scene processing. The goal is a full reconstruction of

the crime(s). Find as much evidence as you can. Determine who has committed the

crime, why they committed the crime, and the timeline associated with the crime.

Build a narrative of the case for the lead investigator. Document where and how you

find it. As presented in the scenario, the search terms associated with the warrant

are for information on narcotics. If you evolve search terms, justify why you evolved

them. Prepare a written report indicating the teams findings and the techniques used.

Be careful to maintain a correct trail of evidence, including tagging, checking in and

out of evidence, etc. Also, discuss in length the tools that you used.

102

Bibliography

1. Bardia Safaei, Amir Mahdi Hosseini Monazzah, Milad Barzegar Bafroei, and

Alireza Ejlali. Reliability side-effects in internet of things application layer pro-

tocols. In 2017 2nd International Conference on System Reliability and Safety

(ICSRS), pages 207–212. IEEE, 2017.

2. Office of Juvenile Justice U.S. Department of Justice, Office of Justice Programs

and Delinquency Prevention. When your child is missing: a family survival guide.

http://www.ojjdp.gov/pubs/childismissing/.

3. Mark Scanlon. Battling the digital forensic backlog through data deduplication.

In 2016 Sixth International Conference on Innovative Computing Technology (IN-

TECH), pages 10–14. IEEE, 2016.

4. George Mohay. Technical challenges and directions for digital forensics. In First

International Workshop on Systematic Approaches to Digital Forensic Engineer-

ing (SADFE’05), pages 155–161. IEEE, 2005.

5. Yunus Yusoff, Roslan Ismail, and Zainuddin Hassan. Common phases of computer

forensics investigation models. International Journal of Computer Science &

Information Technology, 3(3):17–31, 2011.

6. Rodney McKemmish and Australian Institute of Criminology. What is forensic

computing? Australian Institute of Criminology, 1999.

7. Emmanouil Vlastos and Ahmed Patel. An open source forensic tool to visualize

digital evidence. Computer Standards & Interfaces, 29(6):614–625, 2007.

103

http://www.ojjdp.gov/pubs/childismissing/

8. Salvatore Amato Catanese and Giacomo Fiumara. A visual tool for forensic

analysis of mobile phone traffic. In Proceedings of the 2nd ACM workshop on

Multimedia in forensics, security and intelligence, pages 71–76. ACM, 2010.

9. James J. Thomas and Kristin A. Cook. A visual analytics agenda. IEEE Com-

puter Graphics and Applications, (1):10–13, 2006.

10. Kristin A. Cook and James J. Thomas. Illuminating the path: The research and

development agenda for visual analytics. Technical Report No. PNNL-SA-45230,

Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2005.

11. Sushilkumar Chavhan and S.M. Nirkhi. Visualization techniques for digital foren-

sics: A survey. International Journal of Advanced Computer Research, 2(4):74,

2012.

12. Melanie Tory and Torsten Moller. Rethinking visualization: A high-level taxon-

omy. In IEEE Symposium on Information Visualization, pages 151–158. IEEE,

2004.

13. Sheldon Teelink and Robert F. Erbacher. Improving the computer forensic anal-

ysis process through visualization. Communications of the ACM, 49(2):71–75,

2006.

14. Rodney McKemmish. When is digital evidence forensically sound? In IFIP

international conference on digital forensics, pages 3–15. Springer, 2008.

15. Albert Antwi-Boasiako and Hein Venter. A model for digital evidence admissi-

bility assessment. In IFIP International Conference on Digital Forensics, pages

23–38. Springer, 2017.

16. Christopher Tassone, Ben Martini, and Kim Kwang Raymond Choo. Forensic

Visualization: Survey and Future Research Directions. In Contemporary Digital

104

Forensic Investigations of Cloud and Mobile Applications, pages 163–184. Elsevier

Inc., oct 2016.

17. Brian Carrier. Open source digital forensics tools: The legal argument. Technical

report, stake, 2002.

18. John Patzakis and Victor Limongelli. EnCase Legal Journal. Guidence Software:

Pasadena, California, 2002.

19. Brian Carrier. Defining digital forensic examination and analysis tools. In Digital

Research Workshop II, 2002.

20. Brian Carrier. Defining digital forensic examination and analysis tools using

abstraction layers. International Journal of digital evidence, 1(4):1–12, 2003.

21. AccessData. Forensic ToolKit. https://accessdata.com/products-services/

forensic-toolkit-ftk, 2019.

22. LinuxConfig.org. Learning Linux commands: dd. https://linuxconfig.org/

learning-linux-commands-dd, 2016.

23. ILook-Forensics. ILook IXImager: A forensic data imaging system. http://www.

ilook-forensics.org/iximager.html, 2006.

24. SIFT. SIFT Workstation. https://digital-forensics.sans.org/community/

downloads, 2008-2019.

25. Mohd Sohail. DEFT Linux A Linux Distribution For Computer

Forensics. http://www.linuxandubuntu.com/home/deft-linux-a-linux-

distribution-for-computer-forensics, 2019.

26. Brian Carrier. The Sleuth Kit. http://www.sleuthkit.org/sleuthkit/, 2003-

2019.

105

https://accessdata.com/products-services/forensic-toolkit-ftk
https://accessdata.com/products-services/forensic-toolkit-ftk
https://linuxconfig.org/learning-linux-commands-dd
https://linuxconfig.org/learning-linux-commands-dd
http://www.ilook-forensics.org/iximager.html
http://www.ilook-forensics.org/iximager.html
https://digital-forensics.sans.org/community/downloads
https://digital-forensics.sans.org/community/downloads
http://www.linuxandubuntu.com/home/deft-linux-a-linux-distribution-for-computer-forensics
http://www.linuxandubuntu.com/home/deft-linux-a-linux-distribution-for-computer-forensics
http://www.sleuthkit.org/sleuthkit/

27. Brian Carrier. The Sleuth Kit Framework. https://www.sleuthkit.org/

sleuthkit/docs/framework-docs/index.html/, 2011-2013.

28. Brian Carrier. The Blackboard. https://www.sleuthkit.org/sleuthkit/

docs/framework-docs/mod_bbpage.html, 2011-2013.

29. Brian Carrier. Autopsy Analysis Features. https://www.sleuthkit.org/

autopsy/features.php, 2003-2019.

30. Brian Carrier. Autopsy Timeline Analysis. https://www.sleuthkit.org/

autopsy/timeline.php, 2003-2019.

31. Brian Carrier. Autopsy Keyword Searching and Indexing. http://www.

sleuthkit.org/autopsy/keyword.php, 2003-2019.

32. Apache. Solr Features. https://lucene.apache.org/solr/features.html,

2019.

33. Daniel J. Schelkoph, Gilbert L. Peterson, and James S. Okolica. Digital forensics

event graph reconstruction. In International Conference on Digital Forensics and

Cyber Crime, pages 185–203. Springer, 2018.

34. James S. Okolica. Temporal event abstraction and reconstruction. Journal Ar-

ticle No. AFIT-ENG-DS-17-D-004, Air Force Institute of Technology Wright-

Patterson AFB OH, 2017.

35. Plaso. log2timeline/Plaso. https://github.com/log2timeline/plaso, 2016.

36. Nikolai A. Adderley. Graph-based temporal analysis in digital forensics. Master’s

thesis, Air Force Institute of Technology Wright-Patterson AFB OH, 2019.

37. GRANDstack. GRANDstack; Build full stack graph applications with ease.

https://grandstack.io/.

106

https://www.sleuthkit.org/sleuthkit/docs/framework-docs/index.html/
https://www.sleuthkit.org/sleuthkit/docs/framework-docs/index.html/
https://www.sleuthkit.org/sleuthkit/docs/framework-docs/mod_bbpage.html
https://www.sleuthkit.org/sleuthkit/docs/framework-docs/mod_bbpage.html
https://www.sleuthkit.org/autopsy/features.php
https://www.sleuthkit.org/autopsy/features.php
https://www.sleuthkit.org/autopsy/timeline.php
https://www.sleuthkit.org/autopsy/timeline.php
http://www.sleuthkit.org/autopsy/keyword.php
http://www.sleuthkit.org/autopsy/keyword.php
https://lucene.apache.org/solr/features.html
https://github.com/log2timeline/plaso
https://grandstack.io/

38. GRANDstack. Getting Started With GRANDstack. https://grandstack.io/

docs/getting-started-neo4j-graphql.html.

39. Neo4j. Indexes for full-text search. https://neo4j.com/docs/cypher-manual/

current/administration/indexes-for-full-text-search/.

40. Docker. What is a Container? A standardized unit of software. https://www.

docker.com/resources/what-container.

41. elastic. The Elastic Stack. https://www.elastic.co/products/elastic-

stack.

42. Brian Carrier and Eugene H. Spafford. An event-based digital forensic investiga-

tion framework. In Digital Forensic Research Workshop, pages 11–13, 2004.

107

https://grandstack.io/docs/getting-started-neo4j-graphql.html
https://grandstack.io/docs/getting-started-neo4j-graphql.html
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-full-text-search/
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-full-text-search/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.elastic.co/products/elastic-stack
https://www.elastic.co/products/elastic-stack

Acronyms

AFIT Air Force Institute of Technology. 57

API Application Program Interface. 30

CFIP Computer Forensic Investigative Process. 5

CSCE Computer Science and Computer Engineering. 57

DART Digital Advanced Response Toolkit. 20

DEFT Digital Evidence and Forensics Toolkit Zero. 20

DHS Department of Homeland Security. 9

ECATV Event Correlation and Abstraction Timeline Visualization. vii, viii, xi, 3,

4, 5, 7, 34, 35, 36, 37, 39, 46, 47, 48, 51, 52, 54, 57, 58, 59, 66, 67, 68, 83, 84,

85, 92, 96, 97, 98, 99

EnCase EnCase Analytics. 17

FTK Forensic Toolkit FTK AccessData. 17

GCFIM Generic Computer Forensic Investigation Model. 6, 7, 8

i2 i2 Analysts Notebook by IBM. 17

IEF Internet Evidence Finder IEF Magnet Forensics. 17

Intella Intalla Vound. 17

IT Information Technology. 58

108

Katana Katana Forensics Lantern. 17

NIST National Institute of Standards and Technology. 20

Nuix Nuix: Visual Analytics. 17

NVAC National Visualization and Analytics Center. 9

Oxygen Oxygen Forensic Suite 2015 Analyst. 17, 20

PGER Property Graph Event Reconstruction. 3, 4, 28, 29, 30, 33, 34, 39

SIFT SANS Investigative Forensic Toolkit. 20

Susteen Susteen Secure View 3. 17

TAIMA Temporal Analysis Integration Management Application. 3, 4, 28, 30, 33,

34, 51, 52

TEAR Temporal Event Abstraction and Reconstruction. 28, 29, 36

TSK The Sleuth Kit. 21, 22, 23, 25, 36, 48

UFED Cellbrite’s UFED Link Analysis. 17

UI user interface. 30, 34, 36, 37, 39, 52

XAMN Micro Systemation: XAMN/XRY. 17

109

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

26-03-2020 Master's Thesis May 2018 - Mar 2020

Digital Forensics Tools Integration

Kim, Alexander D.H., Capt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT-ENG-MS-20-M-031

Intentionally Left Blank

Distribution Statement A. Approved for Public Release; Distribution Unlimited.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

As technology has become pervasive in our lives we record our daily activities both intentionally and unintentionally.
Because of this, the amount of potential evidence found on digital media is staggering. Investigators have had to adapt and
change their methods of conducting investigations to address the data volume. Digital forensics examiners current process
consists of performing string searches to identify potential evidentiary items. Items of interest must then go through
association, target comparison, and event reconstruction processes. These are manual and time consuming tasks for an
examiner. This thesis presents a user interface that combines both the string searching capabilities that begin...

digital forensics, autopsy, timeline visualization, forensic examination

U U U UU 109

Dr. Gilbert L. Peterson, AFIT/ENG

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Background
	Motivation
	Research Objectives
	Results
	Conclusion

	Background and Literature Review
	Forensic Process
	Common Phases of Digital Forensics
	Forensic Computing
	Analysis

	Information Visualization
	Forensic Analysis through Visualization

	Forensically Sound
	Four Rules of a Forensically Sound Process
	Evaluation Criteria for Forensic Soundness

	Forensic Tools
	Commercial Tools
	Open Source Tools

	The Sleuth Kit and Autopsy
	TSK
	Autopsy

	Custom Forensic Tool
	Property Graph Event Reconstruction
	Temporal Analysis Integration Management Application
	Neo4j Full-Text Index

	Summary

	Integration
	Overview
	Design
	Tools
	Integration Process

	Ingest
	Phase One of Ingest
	Phase Two of Ingest

	User Interface
	Summary

	ASDF and Digital Forensics Examination Process
	Assessment
	Common Digital Forensics Examination Process
	User Stories
	Scenario 1
	ASDF Walkthrough

	Results and Analysis
	Overview
	Scenario 1
	Scenario 1 Analysis and Results

	Scenario 2
	Scenario 2 ASDF Walkthrough
	Scenario 2 Analysis and Results

	Scenario 3
	Scenario 3 ASDF Walkthrough
	Scenario 3 Analysis and Results

	Summary

	Conclusions
	Summary
	Limitations
	Future Work

	Windows 7 Lab 3
	Windows 10 Lab 3
	Bibliography
	Acronyms

