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INTRODUCTION:  
Lung cancer is the leading cause of cancer death in the U.S. and throughout the world with adenocarcinoma being the leading subtype 
in the US, Japan and other countries. One of the major driving forces of carcinogenesis is somatic mutagenesis. Over 75% of lung 
cancers bear driver mutations that are causally implicated in cancer development, while the remainder of lung cancers does not bear 
mutations in known oncogenes or tumor suppressors. Distal airways of many lung cancer patients and subjects at risk for developing 
lung cancer often contain small focal proliferative lesions designated atypical adenomatous hyperplasia (AAH). Current studies 
suggest that AAH may be a precursor of adenocarcinoma in situ (AIS) and, subsequently, to invasive pulmonary adenocarcinoma 
(ADC). Factors that determine the fate of a premalignant lesion, i.e. whether it will progress to cancer or recede, remain enigmatic. 
Early attempts to evaluate somatic mutations in premalignant pulmonary lesions revealed mutations in known driver genes, such as 
KRAS, EGFR and TP53. Furthermore, clonal analysis demonstrated identical monoclonal patterns in AIS and AAH adjacent to it, 
strengthening the notion that AAH is a preneoplastic lesion rather than reactive hyperplasia. A recent study utilizing targeted 
sequencing of AAH lesions and related tumors identified mutations in other cancer-related genes as well as clonality between 
premalignant lesions and cancer. This study also highlighted the importance of the mutational landscape variations in progression 
from premalignancy to cancer, however, the genomic and microenvironmental determinants of progression have not yet been 
elucidated. 

1. KEYWORDS:  

Lung cancer, premalignancy, progression, driver mutations, neoantigens, whole exome sequencing (WES). 

2. ACCOMPLISHMENTS:  

o What were the major goals of the project?  

Specific Aim 1(specified in proposal) Timeline Site 1 Status after Year 1 
Major Task 1 Months   
Subtask 1: Review the slides to identify the areas of interest 
for LCM and IHC 1-3 Dr. Wallace Completed 

Subtask 2: To isolate areas of interest by LCM 2-4 Dr. Krysan Completed 
Subtask 3: To isolate genomic DNA and perform quality 
control 5 Dr. Krysan Completed 

Milestone(s) Achieved   Completed 
Local IRB/IACUC Approval: Active, IRB#10-001096-CR-
00005  Dr. Krysan Completed 

Milestone Achieved: HRPO/ACURO Approval   Completed 
Major Task 2    
Subtask 1: To construct sequencing libraries and perform 
exome enrichment (50 cases) 6-8 Dr. Krysan Completed 

Subtask 2: To perform next generation sequencing 9-11 Sequencing Core 
facility Completed 

Subtask 3: To perform data analysis and identify 
progression-associated mutations 12-14 Drs. Krysan and 

Tran  Completed 

Milestone(s) Achieved:   All 
Specific Aim 2    
Major Task 3    

Subtask 1: To perform multi-color IHC, slide scanning and 
image analysis 15-20 

TPCL, Drs. 
Wallace and 

Krysan 

Staining and 
scanning completed, 

analysis ongoing 
Subtask 2: To relate the expression of immune regulators to 
the mutational landscapes of the tissues 21-24 Drs. Tran and 

Krysan Ongoing 

Milestone(s) Achieved:   Ongoing 

o What was accomplished under these goals?  

During the no-cost extension period we partially completed the Major Task 3. The pathology sections form 41 lung cancer patients 
were stained for 9 immune-related markers utilizing multiplex immunofluorescence (MIF) staining to evaluate the differences in 
immune microenvironment between premalignancy and cancer. Our laboratory recently purchased the Vectra Polaris instrument 
(Akoya Biosciences) that allows to perform up to 9-color multiplex immunofluorescence staining. We currently developed and 
optimized three 6-marker panels that cover a broad array of immune cell subtypes. This way, we significantly expanded the initially 
proposed immune marker panels thus allowing to define the infiltrating immune cell landscapes with much higher resolution. We 
assessed the tumor and premalignant regions for the expression of CD3 (a marker of total T cells), CD4 (T helper cells), CD8 
(activated cytotoxic T cells), CD11c (antigen-presenting dendritic cells), HLA-DR (activated dendritic cells), CD68 (macrophages), 
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Granzyme B (activated cytotoxic T cells), FOXP3 (immunosuppressive regulatory T cells), PD-1 (immune checkpoint, a negative 
regulator of immune responses), PD-L1 (a ligand for PD-1, helps tumor to escape the immune response), TIM3 (immune checkpoint, 
a negative regulator of immune responses), LAG3 (immune checkpoint, a negative regulator of immune responses), Ki67 
(proliferating cells) and pan-cytokeratin (CK, tumor cells). Figure 1 demonstrates a representative staining and the analysis of one 
ADC case from the current study. The MIF data analysis is ongoing. We anticipated to complete the data analysis during the No Cost 
Extension period, but due to unforeseen challenges the staining took longer than expected. The data analysis will be completed 
utilizing other funding mechanisms. The first part of the study has been published in Cancer Research journal and was accompanied 
by the Cancer Research Highlights Editorial. 

A                                                                                                       B 

 

 

PanCK CD8 PD-L1 CD68 CD3 PD-1 DAPI H&E 

H&E 

AAH 

ADC 

PanCK Ki67 FoxP3 CD8 CD4 GZMB DAPI 

PPaanneell  ##  22 

Figure 1. Pipeline for characterization of the immune microenvironment. A. Pathological identification of the regions of interest. 
B. MIF staining for 2 marker panels. C. Identification of immune phenotypes in AAH lesion. The X axes in the upper and lower 
panels indicate the cell count. The numbers on top of the bars indicate the number of cells expressing single or co-expressing 
multiple immune markers. D. Spatial mapping of the premalignant and LUAD tumor microenvironment. White lines indicate 
distance between the cells of interest. The distances between cells are quantified in panel E (in micrometers), cells localized 20 or 
less µm apart are considered co-localized. 
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o What opportunities for training and professional development has the project provided?  

The preliminary results of this study were presented in form of the oral presentation at the American Association for Cancer Research 
2017 annual meeting in Washington, DC. 

o How were the results disseminated to communities of interest?  
The first part of this study has been published in Cancer Research journal. 

o What do you plan to do during the ext reporting period to accomplish the goals?  
Nothing to Report. 

3. IMPACT:  

o What was the impact on the development of the principal discipline(s) of the project?  

According to the Cancer Research Highlights Editorial by a renowned expert in the field, accompanying the paper in Cancer research, 

“Analysis of a large group of patients with multifocal premalignant disease by Krysan and colleagues in this issue of Cancer Research 
provides an informative view of the processes that may underlie progression of these lesions to invasive adenocarcinoma of the lung. 
The identification of the type and distribution of mutational changes reveals that common processes may be occurring within 
individuals but that these are generally unique between patients at risk for developing lung cancer. Furthermore, predicted neoantigens 
are identified and associated with characteristics of immune infiltrates supporting the role of alterations in adaptive immune 
surveillance in progression of these premalignant lesions. These findings provide critical insights that will help establish a foundation 
of knowledge for developing personalized prevention strategies with the potential to significantly impact overall mortality in lung 
cancer.” PMID: 31575628. 

o What was the impact on other disciplines?  

Nothing to Report. 

o What was the impact on technology transfer?  

Nothing to Report. 

o What was the impact on society beyond science and technology?  

Nothing to Report. 

4. CHANGES/PROBLEMS: 

o Changes in approach and reasons for change  

No changes were made to the original research plan. 

o Actual or anticipated problems or delays and actions or plans to resolve them  

Challenges with optimization of 6-color multiplex immunofluorescence staining delayed fulfillment of the Major Task 3. These have 
been resolved and the staining has been successfully completed. 

o Changes that had a significant impact on expenditures  

Nothing to Report. 

o Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents  

Nothing to Report. 

o Significant changes in use or care of human subjects  

Nothing to Report. 

o Significant changes in use or care of vertebrate animals.  

Nothing to Report. 

o Significant changes in use of biohazards and/or select agents  
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Nothing to Report. 

5. PRODUCTS: 

o Publications, conference papers, and presentations 
 

 Journal publications. 
Krysan K, Tran LM, Grimes B, Fishbein G, Seki A, Gardner BK, Walser TC, Salehi-rad R, Yanagawa J, Lee JM, Sharma S, Aberle 
D, Spira A, Elashoff D, Wallace WD, Fishbein MC, Dubinett SM; The genomic landscape and immune contexture of lung 
adenomatous premalignancy; Cancer Research; 79: 2019; 5022-5033. PMID: 31142513. Federal support acknowledgement: Yes. 

 Books or other non-periodical, one-time publications. 

Kadara H, Tran LM, Vachani A, Liu B, Zhou XJ, Sinjab A, Li S, Dubinett SM, Krysan K. (accepted) Early diagnosis and screening 
for lung cancer. In: Carbone D, Lovly C & Minna JD (Eds.), The Science of Lung Cancer and Potentials for Clinical Translation. 
Cold Spring Harbor Laboratory Press. Federal support acknowledgement: Yes. 

 Other publications, conference papers, and presentations. 

Nothing to Report. 

o Website(s) or other Internet site(s) 

Nothing to Report. 

o Technologies or techniques 

Nothing to Report. 

o Inventions, patent applications, and/or licenses 

Nothing to Report. 

o Other Products 

Nothing to Report. 

6. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS  

o What individuals have worked on the project?  

Kostyantyn Krysan. 
No change. 
Linh M. Tran. 
No change. 
William D. Wallace. 
No change. 

o Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last 
reporting period?  

Nothing to Report 

o What other organizations were involved as partners?  

Nothing to Report. 

7. SPECIAL REPORTING REQUIREMENTS  

Nothing to Report. 

8. APPENDICES: 

Published Cancer Research paper. 



Tumor Biology and Immunology

The Immune Contexture Associates with the
Genomic Landscape in Lung Adenomatous
Premalignancy
KostyantynKrysan1,2, LinhM.Tran1, BrandonS.Grimes1,GregoryA.Fishbein3,AtsukoSeki3,
Brian K. Gardner1, Tonya C.Walser1, Ramin Salehi-Rad1,2, Jane Yanagawa4, Jay M. Lee4,
Sherven Sharma2, Denise R. Aberle5,6, Arum E. Spira7, David A. Elashoff8,
William D.Wallace3, Michael C. Fishbein3, and Steven M. Dubinett1,2,3,6,9

Abstract

Epithelial cells in the field of lung injury can give rise to
distinct premalignant lesions that may bear unique genetic
aberrations. A subset of these lesions may escape immune
surveillance and progress to invasive cancer; however, the
mutational landscape that may predict progression has not
been determined. Knowledge of premalignant lesion compo-
sition and the associated microenvironment is critical for
understanding tumorigenesis and the development of effective
preventive and interception strategies. To identify somatic
mutations and the extent of immune cell infiltration in ade-
nomatous premalignancy and associated lung adenocarcino-
mas, we sequenced exomes from 41 lung cancer resection
specimens, including 89 premalignant atypical adenomatous
hyperplasia lesions, 15 adenocarcinomas in situ, and 55 inva-
sive adenocarcinomas and their adjacent normal lung tissues.
We defined nonsynonymous somatic mutations occurring in

both premalignancy and the associated tumor as progres-
sion-associated mutations whose predicted neoantigens
were highly correlated with infiltration of CD8þ and CD4þ

T cells as well as upregulation of PD-L1 in premalignant
lesions, suggesting the presence of an adaptive immune
response to these neoantigens. Each patient had a unique
repertoire of somatic mutations and associated neoantigens.
Collectively, these results provide evidence for mutational
heterogeneity, pathway dysregulation, and immune recog-
nition in pulmonary premalignancy.

Significance: Thesefindings identify progression-associated
somatic mutations, oncogenic pathways, and association
between the mutational landscape and adaptive immune
responses in adenomatous premalignancy.

See related commentary by Merrick, p. 4811

Introduction
One of the major driving forces of carcinogenesis is somatic

mutagenesis (1). Atypical adenomatous hyperplasias (AAH),
small focal proliferative lesions often found in the distal airways
of patients with lung adenocarcinoma (ADC), as well as those at
risk, are considered to be the earliest premalignant lesions in the
progression from normal airway epithelium to ADC (2). Targeted
sequencing of AAH lesions identifiedmutations in several cancer-
related genes and clonality between AAHand associated ADC (3).
As suggested by the clinical efficacy of checkpoint blockade
immunotherapies for lung cancer (4, 5), nonsynonymous muta-
tions can yield neoepitopes, resulting in immune recognition.

However, the earliest molecular events associated with lung
carcinogenesis and the clinical evidence for neoepitope recogni-
tion in pulmonary premalignancy have not yet been defined.
Here, we report evidence for mutational heterogeneity, pathway
dysregulation, and immune recognition in pulmonary adenoma-
tous premalignancy. We performed whole-exome sequencing of
AAH, the associated noninvasive adenocarcinoma in situ (AIS)
and invasive adenocarcinoma in 41 surgical resection specimens
and characterized the genomic relationship in the lung cancer
continuum. We identified progression-associated somatic muta-
tions and oncogenic pathways as well as the association between
putative neoantigens and adaptive immune responses in AAH.

1Department ofMedicine, DavidGeffen School ofMedicine atUCLA, LosAngeles,
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High heterogeneity between premalignant lesions in different
patients suggests that future therapies that target progression-
associated neoantigens (PAN) in cancer interception and immu-
noprevention may need to be tailored to individual patients. We
anticipate that based on thesefindings, future studieswill develop
approaches for targeting clinically actionable neoepitopes across
the spectrum of premalignancy to invasive disease, before the
development of invasive cancer.

Materials and Methods
Specimen identification and processing

Formalin-fixed paraffin-embedded (FFPE) tissue blocks from
41 patients with premalignant lesions and lung adenocarcinoma
were obtained from the University of California Los Angeles
(UCLA) Lung Cancer Tissue Repository, and were subjected to
pathology review by two independent pathologists to identify
specific histologic areas for laser capture microdissection (LCM).
All patients provided written informed consent. The studies were
approved by the UCLA Institutional Review Board. Tissues were
first sectioned at 7-mm thickness onto membrane PEN slides
(LeicaMicrosystems), and serial sections were stainedwith hema-
toxylin & eosin (H&E). LCM was performed utilizing a Leica
LMD7000 in the California NanoSystems Institute Advanced
Light Microscopy/Spectroscopy Core at UCLA. The following
regions were dissected from distal airways: (i) at least one region
of normal airway epithelial cells (type I and II pneumocytes)
adjacent to but not contiguous with the tumor, (ii) aminimumof
two premalignant AAH lesions, (iii) all AIS regions (if present),
and (iv) at least one ADC region. The location of the resection
specimens from which the regions of interest were excised is
indicated in Supplementary Table S1.

Genomic DNA isolation and library preparation for DNA
sequencing

DNA was extracted from microdissected cells utilizing the
HiPure FFPE DNA Isolation Kit (Roche). Sequencing libraries
were constructed using NuGen Ovation Ultralow V2 system,
followed by exome capture using the Roche SeqCap EZ Kit as
recommended by the manufacturers. The quality of each library
preparation and exome capture reaction was evaluated by utiliz-
ing a Bioanalyzer instrument (Agilent), Quant-iT assay, and
qPCR. Sequencing was then performed on an Illumina
HiSeq2000 instrument as 100-bp paired-end runs with the aim
of approximately 50� per base (based on the Illumina Sequenc-
ing Coverage Calculation with an assumption of 35% PCR
duplication and a minimum of 85% target coverage). Samples
with an estimated library size < 2 � 107 based on Picard Mark-
Duplicates function were resequenced to achieve a higher depth
of coverage.

Whole-exome sequencing analysis and variant calling
Sequencing alignment. Sequence reads were aligned to the human
genome based on the NCBI human genome reference build 37
(GRCh37) by following the pipeline suggested by Genome Anal-
ysis Toolkit (GATK; ref. 6). In brief, raw reads were first prepro-
cessed to remove adapter contamination by scythe adapter trim-
mer (https://github.com/vsbuffalo/scythe) and low-quality base
calls (Phred score Q < 15) and short reads (length < 20) by sickle
(https://github.com/najoshi/sickle). Reads were mapped to the
reference human genome by Burrows–Wheeler Aligner (v 0.7.7;

ref. 7), and then marked for PCR and optical duplicates with the
Picard (v 1.77) MarkDuplicates tool. The GATK 2.7 was used for
local indel realignment and base recalibration. For cases with
multiple normal samples, their bam files from the bases recali-
bration step were combined and realigned to local indels before
being subjected to variant calling analysis. In case samples were
resequenced by multiple runs, raw reads in each run were first
aligned and base recalibrated independently. Their bam files were
then combined and realigned for indel realignment. Default
values were set for the parameters unless noted otherwise.

Variant calling and annotation. Somatic variants between pairs of
abnormal regions (i.e., AAH, AIS, and ADC) andmatched normal
tissue were determined by VarScan2 (8). Tumor and normal cells
having exomes sequenced were obtained from LCM, and VarS-
can2 was performed with (i) tumor purity set to 1 and (ii)
minimum coverage for normal and abnormal exomes set to 4.
Becausemultiple exomes fromdifferent areas were sequenced per
patient, the P value threshold was set to 0.1 in somatic variant
calling of individual exomes and adjusted further in the next step
of mutation calling in which somatic variants from all regions
were analyzed together to identifymutations for each patient. The
remaining VarScan2 parameters were set at default values. The
output single nucleotide variant (SNV) calls were filtered further
to remove false positive calls due to sequencing- or alignment-
related artifacts by utilizing VarScan2's associated fpfilter.pl script.
The resulting somatic SNV and indel calls were then annotated by
ANNOVAR (9) to identify nonsynonymous (n.s.) variants from
silent variants and common SNPs.

Mutation calling. For each patient, a nonsynonymous somatic
mutation was defined if a nonsynonymous variant was: (i)
supported by at least three reads, and (ii) observed in either more
than one lesion with P � 0.1 or a single lesion with P � 0.01.

Genetic homogeneity analysis
The similarity in nonsynonymous somatic mutations between

any pair of regions was assessed by Jaccard index, which was
defined as the ratio between the number of shared mutations
between the regions and the total number of mutation identified
in the regions.

Phylogenetic analysis
Nonsynonymous somatic mutations were first converted into

the format with 1 being mutated and 0 otherwise. For each
patient, the analysis only considered nonsynonymous somatic
mutations thatwere present inmore thanone region to determine
resemblance among AAH, AIS, and ADC regions based on their
mutation profiles. The analysis was performed in R by using ape
and phangorn packages (10, 11). In brief, the Unweighted Pair
Group Method with Arithmetic Mean approach was utilized to
cluster regions based on their mutation-defined binary format
matrix. Unrooted phylogenetic trees were then drawn with rela-
tive branch lengths disproportionate to the number of shared
mutations among corresponding regions.

Mutational architecture analysis
For each individual patient, nonsynonymous mutations in all

regions were pooled together and categorized into three groups:
premalignant mutations, progression-associated mutations
(PAM) and malignant-specific mutations (MSM) based on their
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presence in different regions. A premalignant mutation was
defined as nonsynonymous mutation observed only in AAH
lesion(s), while a MSM was only identified in AIS/ADC lesion
(s), and finally a PAM was present in both AAH and AIS/ADC
lesions. For each patient, the number of mutations in each
category was then normalized to the total number of nonsynon-
ymousmutations observed in the corresponding patient. For each
individual region, its PAMwas normalized to the total number of
mutations identified in the respective region.

Identification of patient human leukocyte antigen typing
The OptiType algorithm (12) was applied to deduce a four-

digit human leukocyte antigen (HLA) genotype from whole-
exome sequencing data. Before applying the algorithm, raw reads
were first preprocessed to (i) remove adapter contamination by
scythe and (ii) remove low-quality base calls (Phred scoreQ < 20)
by sickle and c) keep reads that mapped onHLA reference regions
by bwa and had a length of at least 50 bp by fastqutils (13). For
pair-end data, sequences from each end were preprocessed inde-
pendently before subjecting them to the OptiType algorithm.

Identification of putative neoantigens
For every patient, each nonsynonymous single nucleotide

mutationwas able to generate amaximumof ten 10-mer peptides
having the mutated amino acid at different locations. Similarly,
for each indel that did not cause early termination, ten 10-mer
peptides were also created that had from 1 to 9 amino acids
altered from the reference sequence. MHC-I–binding prediction
toolsdownloaded fromImmuneEpitopeDatabase (IEDB; ref. 14)
were utilized to predict the binding affinity of 10-mer peptides to
the patient's HLA germline alleles. IEDB protocol recommended
using multiple algorithms including: (i) artificial neural net-
work (15, 16), (ii) stabilized matrix method (17), and (iii)
NetMHCpan (18) for predicting binding strength to a given HLA
allele due to the allele's available database and preferred algo-
rithms previously proven to have outstanding performance for
such allele. The smallest IC50 value derived from multiple algo-
rithms was used as the predicted binding affinity of each peptide
toeachHLAallele. Approximately60peptide–MHCcombinations
(i.e., 10 peptides � 6 MHC-I) were derived from a single non-
synonymous mutation. The peptide–MHC pair with the lowest
predicted IC50 was selected to represent the candidate mutant
peptide and its bindingMHC-I partner. Finally, candidate neoanti-
gens were defined as those with the predicted binding strength
IC50<500nmol/L.Neoantigenswere categorizedaspremalignant,
(PAN), and malignant-specific neoantigen in accord with their
corresponding tissue mutation group.

Pathway analysis
In pathway analysis, every affected gene should be counted

once for each individual patient even thoughmultiple nonsynon-
ymousmutation siteswere identifiedon the samegene. Therefore,
nonsynonymous mutated sites were first consolidated to their
corresponding gene identity. In our study, nonsynonymous
somatic mutations were categorized into three different groups
based on their presence in various tissues. Thus, their affected
genes should be assigned to the corresponding groups to evaluate
their effects on molecular pathways, especially related to tumor
initiation and development. To achieve this, for each patient,
eligible genes were first labeled on the basis of PAMs, which were
then removed from the available gene list before labeling MSMs

and premalignant mutations. The labeling procedure was then
repeated for MSMs, followed by premalignant mutations. This
meant that each patient had threemutually exclusive gene groups
representing their PAMs, MSMs, and premalignant mutations.

For each individual patient, the enrichment ofmutated genes in
the group i involved in a specific pathway j is measured by an
enrichment score, ESij, defined as:

ESij ¼
(

0 if Hij < 2
Hij

Mi�ðSj=PÞ ¼
Hij=Mj

Si=P
if Hij � 2

ðAÞ

where Hij is the number of mutated genes in the group i (e.g.,
PAM-, MSM-, and premalignant mutation–bearing genes)
involved in the pathway j. Mi, Sj, and P are the number of genes
in group i, pathway j, and the genome. In otherwords, theES is the
number of mutated genes involved in a pathway normalized by
the estimated number based on the numbers of genes in the
interested groups i, pathways j, and the genome. Note that a
nonzero ES requires aminimumof twomutated genes associated
with the pathway of interest. Furthermore, for a given pathway j
(i.e., denominator is constant in the right most side of Eq. A), the
discrepancy in ES between two groups of interest is proportional
to the difference of the percentage of genes that are associatedwith
the pathway in those groups.

The FDR of ES was estimated by the permutation approach in
whichmutated genes in each patient were first randomly sampled
from the genome, and then assigned to PAM- and MSM-bearing
groups. ES were then calculated according to Eq. A for a total of
123 mutated gene groups (41 patients � 3 groups: PAM-, MSM-,
and union of PAM- and MSM-bearing genes) based on 1,341
canonical and hallmark pathways downloaded from the Molec-
ular Signature Database (19). A total of 100 permutations were
executed.

Finally, a pathway was defined to be deregulated by a certain
mutated gene group if the corresponding ES was greater or equal
to 2 (FDR ¼ 0.03). In each patient, the deregulation states of all
pathways based on PAM- and MSM-bearing genes were repre-
sented in binary format with 1 being deregulated and 0 for
otherwise. The pathway-based binary data from all patients were
then combined into the matrix form and subjected to unsuper-
vised clustering analysis to stratify patients into subgroups. The
cluster analysis was performed in R by utilizing Ward clustering
method (i.e., ward.D2).

Analyses using TCGA datasets (DNAseq, RNAseq, and survival
analysis)

Processed datasets from whole-exome DNA and mRNA
sequencing, as well as clinical information for lung adenocarci-
noma (LUAD) samples were downloaded from the Cancer
Genome Atlas (TCGA) data portal. The information of mutated
genes in samples was extracted from somaticmutation calls (level
2maf file), and organized into a table inwhich onewas employed
to indicate whether the gene of interest had at least one nonsilent
mutation call located on its coding regions, and zero for otherwise
in the specific sample. The frequency of how often a gene was
mutated in the cohort was then calculated from the table.

In gene expression analysis, RSEM-normalized gene expression
(level 3 text files) files were utilized to build a data matrix of all
samples. The expression data were processed by removing (i)
genes with low abundance (i.e., < 1 copies per million reads in
>30% samples) and (ii) tumor samples without whole-exome
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sequencing data. Pathway activities per individual sample were
derived from its gene expression by using Gene Set Variation
Analysis (GSVA; ref. 20). The information of gene sets involved in
the immune-regulated pathways was obtained from the Molec-
ular Signature Database. To eliminate the effect of genes com-
monly shared among pathways, the original gene sets were
modified such that the overlapping genes were kept in the "child"
and removed from the "parent" set. A "child" set was defined as
the one having more than 90% of members overlapping with the
parent set. The GSVA scores of the interested pathways were then
subjected to the unsupervised hierarchical cluster analysis to
stratify samples into subgroups. The cluster analysis, which was
performed in R, used Ward clustering method (i.e., ward.D2) and
Spearman correlation coefficient as the metric measuring simi-
larity between sample pairs. Finally, patient survival among the
subgroups was compared by log-rank test.

Evaluation of lymphocytic infiltration
For each lesion, a section stainedwithH&Eunderwent an initial

qualitative evaluation by a board-certified pathologist to assess
the overall degree of lymphocytic infiltration. This assessment
utilized a simple graded scale: 0 (absent), 1 (focal with <3 clusters
of 3 lymphocytes), 2 (multifocal with 3 or more clusters), and 3
(diffuse). x2 test was used to compared distributions of scores in
different histologic lesions (normal, AAH, AIS, and ADC).

IHC analyses
For 9 cases, additional serial sections of 5-mm thickness were

obtained from FFPE tissue blocks. Single-color immunostaining
was performed on the Leica Bond III autostainer using Bond Low
(H1) and High (H2) heat retrieval solutions, wash buffer, and
Refine Polymer Detection system. Heat-induced epitope retrieval
was performed in the autostainer, except for PD1 and PD-L1,
which were treated in a pressure cooker. Antibodies used for
detection of a single marker per slide included: CD8 (Dako
#M7103), CD4 (Cell Marque #104R-16), granzyme B (Dako
#M7236), PD1 (Cell Marque #315M), PD-L1 (Spring Bio
M4420), and FOXP3 (Bio SB #BSB676).

All slides were scanned at an absolute magnification of 3,200
(resolution of 0.5 mm per pixel). Bright-field image analysis
was performed using the Indica Labs Halo platform. With the
assistance of a board-certified pathologist, each region of inter-
est (AAH, AIS, and ADC) was identified and outlined on the
H&E guide slide, excluding necrotic areas and stroma. The
guide slide was aligned and synchronized with the correspond-
ing serial sections immunostained for each marker. Existing
Halo algorithms developed for detection of positive staining
were accepted or modified on the basis of the positive control
slide for each marker. The final algorithm was then used to
analyze the density (cells/mm2) and percentage cellularity (%
positive cells/all nucleated cells) for each marker on each
region of interest. These raw data were then exported for
statistical analysis.

Statistical analyses
All analyses were performed utilizing R 3.2. Appropriate rank-

based statistical tests were applied according to the nature of
variables. For instance, Kendal t coefficient was used to assess
association between the pairs of variables, such as percentage of
PAMs, percentage of positively stained cells, and log-transformed
neoantigen numbers, while the Kruskal–Wallis rank sum was

applied to compare variables of interest between groups. R
lmerTest package was utilized in linear mixed effects model,
which incorporates individual patient variation.

Results
Pulmonary premalignant lesions reveal a spectrum of intra-
and interpatient genetic heterogeneity

To identify the somatic mutations relevant for progression
from premalignancy to cancer, we performed whole-exome
sequencing of 89 AAH, 15 AIS, and 55 ADC lesions (Supplemen-
tary Table S1) from lobectomy specimens from 41 patients who
had undergone surgery for early-stage ADC (Supplementary
Tables S1 and S2). All patients provided written informed con-
sent. The cells of interest were dissected from the following
regions of distal airways utilizing LCM: (i) normal airway epi-
thelial cells (1–3 regions per patient), (ii) AAH lesions (1–4
anatomically independent lesions per patient), (iii) AIS (all
independent lesions per patient where present), and (iv) ADC
(all independent primary lung tumors per patient).Whole-exome
sequencing was conducted with at least 2� 1010 bases sequenced
per exome. The median number of unique mutations per patient
was 1,323, whereas in individual premalignant and malignant
lesions, it was 351 per lesion (Supplementary Table S1). The
mutational load per patient did not increase significantly by the
addition of more sequenced regions (Kruskal–Wallis rank sum
test, P¼ 0.20), and within individual patients it was independent
of lesion type (linear mixed effects model F test, P ¼ 0.46).
Analysis of the mutations in oncogenes and tumor suppressor
genes (from the UniProt database) demonstrated that somatic
mutations in these genes are found more frequently in ADC than
in AAH lesions (Fig. 1A). Somatic variants between abnormal
lesions and matched normal lung tissue were determined as
described inMaterials andMethods. Recent studies demonstrated
that normal lung epithelium can harbor oncogenic driver muta-
tions (21, 22). The mutation calling algorithm would not call the
mutations if they were present in both normal and abnormal
tissues. To avoid the oncogenic mutations in normal lung
tissues mutations being undetected, we inspected whole-exome
sequencing data of the normal lung tissues aligned against the
human genome reference for mutations in driver genes. This
analysis did not reveal any additional known driver mutations.
To characterize the genomic heterogeneity among sequenced
lesions, we utilized the Jaccard index, which measures the sim-
ilarity of nonsynonymous somatic mutations between a pair of
lesions, and is inversely proportional to the level of heterogeneity.
We found that lesions obtained from within individual patients
most often had significantly higher Jaccard indices and, thus,
lower heterogeneity compared with lesions between different
patients (Kruskal–Wallis rank sum test, P < 10�16; Fig. 1B). With
the exception of the first four patients (P01 — P04, Fig. 1C),
individual patients had higher indices (lower heterogeneity)
among lesions compared with those from different patients. In
some patients, certain lesion pairs had very low heterogeneity
indicated by high (>95 percentile) Jaccard indices (black circles
in Fig. 1C) compared with the rest of the lesion pairs. Thus,
the individual patients most often demonstrated unique reper-
toires of nonsynonymous somatic mutations rarely shared with
other patients.

To explore the relationship between sequenced lesions for each
individual patient, phylogenetic treeswere constructed. AAH, AIS,
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Figure 1.

Genetic heterogeneity of pulmonary lesions.A, A density heatmap of mutated oncogene and tumor suppressor gene frequencies in ADC (y-axis) or AAH
(x-axis). Oncogenes (top) and tumor suppressor genes (bottom) are mutated at higher frequencies in ADC than in AAH (above diagonal line; Wilcoxon test,
� , P < 7.2� 10�9 and �� , P < 1.7� 10�8). B, Distribution of Jaccard indices comparing nonsynonymous somatic mutation heterogeneity between pairs of lesions
from the same (intra) or different (inter) patients. C,Distribution of intrapatient Jaccard indices in 41 individual patients. The subjects are displayed in the low-to-
high order based on their median values. Black circles indicate lesion pairs with >95 percentile Jaccard indices. In B and C, the side triangles represent the
heterogeneity levels inversely proportional to Jaccard indices, and the dashed line marks the 90 percentile level of intersubject Jaccard index. D, Phylogenetic
trees for 10 patients with AAH (blue), AIS (orange), and ADC (brown). The numbers are lesion IDs. Phylogenetic trees for the entire cohort are shown in
Supplementary Fig. S1.

Krysan et al.

Cancer Res; 79(19) October 1, 2019 Cancer Research5026

on February 12, 2020. © 2019 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 29, 2019; DOI: 10.1158/0008-5472.CAN-19-0153 

http://cancerres.aacrjournals.org/


andADCwere all present in10of 41patients and theirmutational
profile–based phylogenetic trees are illustrated in Fig. 1D. In the
majority of cases, the mutational profiles of ADC (brown labels)
were closely related to the profiles of AIS (orange labels), but not
AAH (blue labels), except: (i) case P30 where one of two primary
ADCs was related to AAH, while another primary ADC—to AIS,
(ii) case P34 where ADC clustered with AAH but not AIS, and (iii)
case P10 where AAH and AIS lesions were closely related to each
other, but not to the ADC (Fig. 1D). Phylogenetic trees for the
remainder of the patients that had only AAH and ADC, but not
AIS, are shown in Supplementary Fig. S1.

Premalignant lesions bear somatic mutations associated with
progression

To determine how nonsynonymous somatic mutations affect
tumor development at various stages, we classified them into
three different categories: (i) premalignantmutations, whichwere
observed only in AAH lesions; (ii) PAMs, which were located in
both AAH and AIS/ADC lesions; and (iii) MSMs, which were only
identified in AIS/ADC lesions (Supplementary Fig. S2). Recent
studies that have focused on tumor heterogeneity and cancer
evolution, have classified mutations as trunk (or clonal), branch,
and private (subclonal) mutations (23, 24). Our classification
takes into account the histology of the lesion in which the
mutations are located. Thus, MSMs are composed of branch and
privatemutations, while PAMs are comprised of trunk andbranch
mutations and are indicative of the homogeneity amongAAHand
ADC within each patient. The distribution of mutation groups in
41 cases is summarized in Fig. 2A (the cases are ordered on the
basis the percentage of PAMs in the total number of somatic
mutations identified in the corresponding patient). The percent-
age of PAMs per patient varied over a wide range (0.2%–

44%; Fig. 2A). In addition to the aggregated patient level analysis,
PAMswere also characterized in each individual lesion.We found
that the percentages of PAMs in the individual AAH lesions were
similar to those in the associated ADC (Supplementary Table S1;
linear mixed effects model F test, P ¼ 0.25). The percentage of
PAMs per individual AAH lesion varied over a wide range (0.2%–

77.8%; Fig. 2B). AAH lesions with high PAM percentages (Fig. 2B
rightmost patients) have higher homogeneity with the associated
ADC, whereas those with low PAM percentages (Fig. 2B leftmost
patients) are distantly related to the associated ADCandmayhave
independently accumulated additional mutations over time. For
instance, patient P06 has three AAH lesions, of which one has
significantly higher PAM percentage compared with two others,
suggesting that the two AAH lesions with low PAM percentages
might have originated from the same precursor, which was
distinct from the third AAH (Supplementary Fig. S1).

PAMs and MSMs lead to deregulation of distinct cancer-related
pathways

We next evaluated the role of somatic mutations in tumor
development. We found that 49% of patients had somatic muta-
tions in at least one of 29 driver genes known to be frequently
mutated in lung ADC (1, 25). Here, these driver mutations were
predominantly found in ADC but rarely in AAH (Supplementary
Table S3). Of note, oncogenicKRASmutations were also found in
ADC from 4 patients that were not included in Supplementary
Table S3 because these mutations were present in low numbers
of reads and our mutation calling algorithm could not classify
them as true positives; nonetheless, these mutations produced a

positive signal on allele-specific PCR. Oncogenic BRAF and KRAS
mutations were found only in ADC, but not in AAH lesions from
the same patients. Consistent with findings of Sivakumar and
colleagues (26), BRAF and KRASmutations were mutually exclu-
sive within the lesions. Previous studies have shown that a
significant percentage of lung ADCs lack mutations in known
driver genes (1, 27). Therefore, to assess the possible driver gene
mutation–independent mechanisms of progression, we next
investigated the mutations in the context of molecular pathways.

For the pathway analysis, enrichment scores (ES) of the mutat-
ed genes involved in each specific pathway were defined (see
Materials and Methods). Deregulation of the 1,341 well-defined
hallmark gene sets and canonical pathways from the Molecular
Signature Database (19) was evaluated in both the current cohort
and TCGALUAD.We found that these pathwayswere deregulated
at similar frequencies in both datasets (Supplementary Fig. S3A;
Supplementary Table S4). We identified 59 and 42 frequently
deregulated pathways for the current cohort and TCGA datasets,
respectively (Supplementary Fig. S3A). Twenty-four of these path-
ways involved in tumor proliferation and invasion were shared
between the datasets (Fisher exact test, P ¼ 3.2 � 10�24). Thus,
patients in both cohorts demonstrated common affected path-
ways involved in carcinogenesis.

Because some genes in ADC were affected by PAMs and other
genes by MSMs, it was essential to dissect the input of each of the
gene groups in the pathway regulation context. The ESof each gene
group was calculated for all 1,341 pathways. The majority of the
pathways were deregulated by MSMs at significantly higher fre-
quencies than by PAMs. The recurrence rate of the top 27 pathways
that are frequentlyderegulatedby theMSM-bearing genes is shown
in Fig. 2C. The O-glycan biosynthesis pathway was the only
pathway more frequently deregulated by PAMs then by MSMs.

To dissect the role of PAM- and MSM-deregulated pathways in
tumor initiation and development, we performed unsupervised
hierarchical cluster analysis and identified three patient groups
designated as high (H, n¼ 12), intermediate (I, n¼ 20), and low
(L, n ¼ 9) according to the number of pathways deregulated by
PAM- andMSM-bearing genes (Fig. 2D). GroupHhad the highest
number of deregulated pathways among the three groups (Sup-
plementary Fig. S3B) and pathways and driver genes in this group
were frequently affected by both PAMs and MSMs (Fig. 2D;
Supplementary Fig. S3B). In Group H, mutations in KRAS, BRAF,
and EGFR genes were MSMs, whereas PI3KCA and PI3K/AKT
pathway components were PAMs. However, these PAMs were
present only in a subset of AAH lesions in each patient, appearing
to be branch mutations and suggesting that deregulation of
additional driver gene(s) was required for progression. Similarly,
higher overall number of deregulated pathways in group H
suggests higher genetic complexity of the tumors in this group.
The intermediate group included themajority of study patients, in
which MSMs (but not PAMs) were the predominant source of
pathway deregulation and were frequently found in the driver
genes (Fig. 2D; Supplementary Fig. S3A). Thus, in theHgroup, the
somatic mutations in driver genes were likely essential for malig-
nant progression. Group L, the smallest group, had infrequent
pathway deregulation by either PAM- or MSM-bearing genes,
suggesting that the transformation in this group could be caused
by events other than the somatic driver mutations that were not
readily detectable by whole-exome sequencing, such as gene
rearrangements, copy number variation, epigenetic changes,
deregulation of gene expression, or alternative splicing.

Immune Contexture Associates with Genomic Landscape in LUAD

www.aacrjournals.org Cancer Res; 79(19) October 1, 2019 5027

on February 12, 2020. © 2019 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 29, 2019; DOI: 10.1158/0008-5472.CAN-19-0153 

http://cancerres.aacrjournals.org/


Cell-mediated immunity and adaptive responses in pulmonary
premalignancy

To evaluate the presence of early adaptive immune
responses against pulmonary premalignancy, we first assessed
the degree of lymphocyte infiltration in premalignant (n ¼
328) and malignant lesions (n ¼ 15 AIS and 50 ADC), along
with adjacent histologically normal areas (n ¼ 50) in the entire
cohort of study patients. The median number of lesions

evaluated per patient was six for AAH and two for malignant
lesions. Lymphocyte infiltration was graded 0–3 based on H&E
staining (see Materials and Methods) and was significantly
increased in AAH versus normal areas (x2 test, P < 10�16), and
became highest in AIS and ADC versus AAH (x2 test, P <
10�14; Fig. 3A). We then assessed the expression of regulators
of cell-mediated immunity, including CD4, CD8, FOXP3,
PD-1, and PD-L1 in AAH and ADC by IHC (Supplementary

Figure 2.

PAM and MSM distribution and the role in pathway deregulation. A,
Distribution of PAMs and MSMs in 41 study patients. The patients are
displayed in the low-to-high order based on their percentages of PAMs.
Red arrows inA and in B indicate 9 patients whose cellular immune
response was evaluated. B, Percentage of PAMs in individual AAH
lesions from 41 patients. The cases are displayed in the low-to-high
order based on their median levels and not in the same order as those
in A. C, The top 27 pathways frequently affected by MSM- (red) and
PAM- (blue) bearing genes.D, Heatmap of the pathways affected (red)
by PAM- (top) and MSM- (bottom) bearing genes. Themutations in the
29 driver genes observed in PAM andMSM are indicated by orange bars
above the heatmap.
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Fig. S4).We foundboth infiltrationof T effector and cytotoxic cells
and expression of the PD-L1 checkpoint in premalignancy, sug-
gesting that cell-mediated immunity and possible recognition of
neoepitopes occur in pulmonary premalignancy.

Somaticmutationsproduceputativeneoantigens inpulmonary
premalignancy

We next sought to determine whether somatic mutations
and corresponding putative neoantigens were associated with

Figure 3.

Immune cell infiltration, neoantigens, and the immune response in adenomatous premalignancy. A, Local lymphocyte infiltration index (0, lowest; 3, highest) in
adjacent normal tissue, AAH, AIS, and ADC (�� , x2 test, P < 10�10). B, Average percentages of infiltrating CD8þ T cells observed in AAH (top) and ADC (bottom)
plotted against percentage of patient-wise PANs. Each patient is represented by a data point indicated by a unique symbol. ADC in one patient was not
evaluated. C, Correlation between the percentage of infiltrating CD8þ T cells and the percentage of PANs in corresponding AAH lesions. Correlation between the
percentage of infiltrating CD4þ T cells (D) and PD-L1þ cells (E) plotted against the corresponding log-transformed neoantigen number identified in AAHs. In C–E,
each region is represented by a point and each patient is marked by the symbol identical to those in B. P values are based on Kendall rank correlation coefficient.
The trend line (dashed line) in C–E indicates the linear association between variables. Other pair-wise comparisons between immune marker levels and
neoantigen-related variables were insignificant.
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immune responses observed in AAH lesions. Putative neoanti-
gens were derived from nonsynonymous somatic mutations as
outlined in Supplementary Fig. S2. Multiple algorithms were
applied to predict binding affinity (IC50) between mutant pro-
teins andpatientHLAsbasedon the IEDB recommendations (14).
Mutant peptides with predicted IC50 < 500 nmol/L were consid-
ered neoantigens. In accordance with our mutation classification,
the neoantigens were also categorized into three groups as pre-
malignant, PANs, and malignant-specific neoantigens. The total
number of aggregated putative neoantigens per lesion was highly
correlated with the corresponding mutational load (Kendall t ¼
0.9; Supplementary Table S1).

We next evaluated the association of putative neoantigen
load and the number and phenotypes of infiltrating immune
cells by lesion- and patient-wise comparisons. The lesion-wise
comparison evaluated neoantigens and infiltrating immune
cell characteristics from the individual AAH lesions, while in
the patient-wise analysis these endpoints were aggregated for
the corresponding patient. At the patient level, the percentage
of PANs significantly correlated with the average percentage of
CD8þ T cells infiltrating AAH lesions (Kendall t ¼ 0.61, P ¼
0.02; Fig. 3B, top) but not to those infiltrating AIS/ADC
(Kendall t ¼ 0.14, P ¼ 0.7; Fig. 3B, bottom). At the lesion
level, we found that the percentage of CD8þ T cells infiltrating
AAH correlated strongly with the percentage of PANs in the
respective lesions (Kendall t ¼ 0.56, P ¼ 0.0003; Fig. 3C).
Furthermore, AAH lesions with greater neoantigen loads had
significantly more infiltrating CD4þ T cells (Kendall t ¼ 0.32,
P ¼ 0.05; Fig. 3D) and PD-L1–positive cells (Kendall t ¼ 0.44,
P ¼ 0.01; Fig. 3E). These results indicate that the high percent-
age of PANs promotes CD8þ T-cell infiltration in AAH lesions,
whereas the overall neoantigen load in AAH is associated with
CD4þ T-cell infiltration and PD-L1 expression.

The evidence of apparent immune responses in lung cancer
premalignancy and the notion that somatic mutations can con-
tribute to modulation of the pathways regulating tumor immu-
nity prompted us to determine whether the activity of such
pathways was associated with outcomes in early-stage ADC. The
expression of genes involved in 16 pathways from the Molecular
Signature Database (19) was analyzed in the TCGA LUAD cohort
(444 tumors and 58 normal samples). GSVA (20) was utilized to
estimate the activities of immune-modulating pathways in indi-
vidual patients, and these were then subjected to unsupervised
hierarchical cluster analysis to stratify samples. On the basis of the
pathway activity, we identified three major groups (Fig. 4A).
Among them, group 0 (Gr0, annotated by black) had the highest
levels of immune-related gene expression and included51 tumors
and the majority of normal samples (n ¼ 52), whereas the other
two groups included the remainder of the tumor samples (x2 test,
P < 10�16): Gr1 (n ¼ 198, blue) with intermediate and Gr2 (n ¼
201, red) with lowest expression of immune-related genes. These
groups were not significantly associated with tumor stage (x2 test,
P ¼ 0.14 for stage I vs. stage II and higher); however, the overall
survival was marginally higher in Gr1 compared with Gr2 (log-
rank test, P ¼ 0.063). Remarkably, the difference in survival
between Gr1 and Gr2 was most prominent for stage I patients
(log-rank test, P ¼ 0.05; Fig. 4B), but not for stage II and higher
patients (log-rank test, P ¼ 0.44; Fig. 4C). Together, these results
suggest that modulation of the immune-related pathways, espe-
cially at the earliest stages of lung ADC, may have a significant
impact on outcomes of patients with lung cancer.

Discussion
Recent studies suggest the immune response exerts selective

pressure on tumor cells, as well as premalignant cells, throughout
the course of carcinogenesis (28–30). This process of immune
editing may result in resolution of a premalignant lesion or,
alternatively, progression with persistent or newly developed
neoantigens in the context of a microenvironment hostile to
effective cell-mediated immune responses (31). Here, we report
that neoantigens are expressed in the earliest pulmonary prema-
lignant lesions. Neoantigen load in these lesions correlates with
the extent of CD8 T-cell infiltration and levels of PD-L1 expres-
sion. These findings suggest that specific immune recognition of
neoepitopes can occur at the earliest points of pulmonary pre-
malignancy and lung cancer development, indicating the poten-
tial for future strategies utilizing immunoprevention in lung
cancer interception.

We sought to identify somatic mutations in adenomatous
premalignancy and associated lung adenocarcinoma and also,
to determine the extent of immune cell infiltration of premalig-
nant lesions and the associated tumors. Our findings indicate that
premalignant AAH lesions fromwithin an individual patientmay
have distinctmutational profiles (Fig. 1D; Supplementary Fig. S1)
and bear a range of PAMs (Figs. 2A and B). Analysis of 29 driver
genes, frequently mutated in ADC, demonstrated that driver
mutations were predominantly found in ADC but rarely in AAH
(Supplementary Table S3), suggesting thatmalignant progression
was induced by the driver mutations occurring in some, but not
all, premalignant lesions.

Furthermore, we demonstrate that heterogeneity between dif-
ferent lesions from an individual patient is significantly lower
than that among lesions fromdifferent patients (Fig. 1B andC). In
the majority of cases, the mutational profiles of AIS are distinct
from those of AAH and highly overlap with those of ADC
(Fig. 1D). Previous studies suggest that passenger mutations can
promote malignant progression by modulating the activity of
oncogenic or tumor suppressor pathways (32, 33). Therefore,
beyond the individual mutations, we assessed the effect of pre-
malignant somatic mutations in the context of pathways. One of
the most frequently deregulated pathways in both the UCLA and
TCGA cohorts is theO-glycan biosynthesis pathway that includes
mucin proteins, which protect epithelial cells from physical and
chemical damage. Deregulated expression of mucins promotes
tumor cell invasion and migration, and increases drug resistance
in a variety of malignancies (34, 35). Genetic variation ofMUC4
has been associated with increased lung cancer risk (36), and here
we find that PAMs ofMUC4were present in over 90% of patients.
These mutations produced a total of 132 PANs in 31 of 41
patients. Two of the recurring PAN-producing mutations in
MUC4 were found in 4 patients, 6 of these were in 3 patients
and18 in 2patients. The functional significance of these andother
recurring PANs will be assessed in our future studies. Also, focal
adhesion, extracellular matrix–receptor interaction, and calcium
signaling pathways were frequently deregulated (Supplementary
Table S4). These pathways have established roles in carcinogen-
esis, including proliferation, invasion, and resistance to
therapy (37, 38).

The analysis of an immune contexture of the lung cancer
continuum revealed histologic evidence of immune recognition
of AAH lesions, characterized by lymphocyte infiltration and
checkpoint molecule upregulation consistent with adaptive
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immune responses. From the whole-exome sequencing data,
putative neoantigens were identified. We demonstrated that the
neoantigen load in AAH lesions correlates significantly with
CD4þ T-cell infiltration and PD-L1 expression. PANs were
detected in all patients, with 37 of 41 patients expressing them
at greater than1% frequency.CD8þT-cell infiltrationwas strongly
correlatedwith the percentage of PANs in individual AAH lesions.
These findings provide evidence of adaptive immunity in pul-
monary premalignancy and are consistent with recent studies
demonstrating that gene sets associated with suppressed antitu-
mor and elevated protumor immune signaling are enriched in
AAH development and progression (26). Furthermore, we iden-
tified frequent premalignancy-specific putative neoantigens. Con-
sistent with the immunoediting concept of Mittal and collea-
gues (39), this suggests active immunoediting in the progression
of adenomatous premalignancy to invasive adenocarcinoma.

Neoantigens, produced by PAMs, are potential immunother-
apy targets, but these neoantigens do not necessarily correspond
to known driver genes. Consistent with findings in melano-
ma (40) and colorectal cancer (41), our analysis of mutations
in lung adenocarcinoma indicates that while there are many
commondrivermutations among tumors fromdifferent patients,
mutations producing PANs are most often unique to individual

patients. Because of high genomic plasticity, established cancers
have highly heterogeneous mutational landscapes in different
areas of the tumor due to potential parallel evolution and sub-
clonal expansion (42–44). This has been postulated to be one of
the reasons for tumor resistance to therapies targeting actionable
somatic events. Our data suggests that future therapies targeting
PANs in cancer interception (45), as well as prevention strategies,
may need to be tailored to individual patients.

The notion that genes bearing somatic mutations often encode
tumor-specific neoantigens capable of eliciting immunity and
tumor rejection was first described in murine models 60 years
ago (46). Furthermore, the concept of immune surveillance first
proposed by Burnet (47), suggests that the host immune response
is able to recognize and destroy the incipient tumors at the earliest
point of development before clinical recognition.While extensive
data exist in laboratory models, the clinical evidence for the
relevance of immune surveillance in human lung cancer has not
yet been defined, nor is it yet known when an individual's
immune system begins to engage in the defense against the
disease. Our findings warrant further investigations to evaluate
the efficacy of persisting neoantigens, such as PANs, as intercep-
tion targets for immunoprevention strategies. This approach may
include "vaccination" of postsurgery lung cancer patients with the

Figure 4.

Analysis of immune pathway deregulation and patient outcomes in TCGA LUAD. A, Heatmap of gene expression scores of 16 immune-related pathways in TCGA
LUAD and normal lung samples. Kaplan–Meier survival curves of stage I (B) and stage II and higher (C) patients from the groups identified inA.
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autologous T-cell clones recognizing strong persisting neoanti-
gens. Alternatively, autologous dendritic cells presenting persis-
tent neoantigens could be administered to block the progression
of remaining premalignant lesions.

In accord with the cancer immune surveillance theory, our
current findings support the concept that the immune system is
capable of recognizing cancer precursors (48, 49). Because
evasion of immune surveillance has been implicated as an
emerging hallmark of cancer development, future investiga-
tions will focus on stimulating specific immune responses (50).
Thus, it has been suggested that unleashing the immune
response against pulmonary premalignancy may facilitate a
blockade of the progression of premalignancy to invasive
cancer at the earliest stages of disease (51). This will require
a more complete understanding of the immune microenviron-
ment of pulmonary premalignancy as well as the identification
of premalignant markers that could be targeted in immuno-
prevention strategies.
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