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INTRODUCTION 

1.1. State-of-the-art for patients with substantial bleeding 

Hemorrhage is recognized as the most important, treatable cause of death after injury [1, 2].  A recent series 
of reports [3, 4] has shown improved outcomes when trauma centers employ so-called “substantial bleeding 
protocols” [5].   

Underlying these protocols are two basic strategies.  First, damage-control resuscitation (DCR) includes 
aggressive measures to avoid coagulopathy (via permissive hypotension that slows blood loss, adequate 
restoration of coagulation factors via transfusion, and minimization of hypothermia).  This is very important, 
because trauma-induced coagulopathy affects between 24 and 56% of critically injured patients [6, 7].  
Second, DCR is paired with damage-control surgery, an operative strategy prioritizing early surgical control 
of bleeding, while sparing non-critical surgical repairs that are undertaken only after the patient has 
sufficiently recovered. 

1.2. An unresolved question:  when to initiate the “substantial bleeding protocol” 

The care protocols for substantially bleeding patients are resource intensive and time sensitive.  It is therefore 
notable that there is no well-established, evidence-based method about when and how to activate the 
protocols.  Consider two recent reports from centers that have demonstrated mortality benefit of these 
practices, where the protocols are initiated based on subjective assessments: 

• Riskin et al. [3] reported that the Stanford Protocol is activated “at the discretion of the attending
physician.”

• Holcomb and Gumbert [5], who have previously shown mortality benefits of these protocols [4],
remark that in their experience, activation is subjective:  “The process of activating … varies with each
institution.  Generally, on arrival to the emergency department, the attending trauma surgeon
evaluates the patient’s physiology and injury complex … Once a clinical diagnosis of substantial
bleeding is made, the attending clinician activates [the protocol].”

In theory, there are three reasons to seek an improved, objective method for the initiation of substantial 
bleeding protocols: 

• Centers that are pioneering these protocols are staffed by thought-leaders in the trauma-care world,
whose ability to make appropriate subjective decisions may be far superior to typical facilities that
lack leading experts.  Thus, the benefits of these protocols may not be accrued by centers or facilities
that lack caregivers with the expertise necessary to apply them appropriately.

• Many of the measures are time sensitive.  Yet, delaying initiation of the substantial bleeding protocol
until after evaluation by a high-level specialist may result in preventable delays.  For example,
awaiting the evaluation of a trauma surgeon at the receiving hospital is at odds with the finding that
the earlier plasma and platelets are received in the setting of substantial bleeding, the better the
outcomes.  Consider that the Stanford Medical Center [3] showed significant mortality benefit in a
protocol that successfully reduced average time-to-first fresh frozen plasma (FFP) from 254 to 169
min.  It seems entirely possible that FFP could be administered even earlier with potential to further
benefit the patient.

• Activations of the protocols after arrival at the receiving facility forestall pre-hospital interventions
specific to the substantially bleeding patient (i.e., pre-hospital practices that should only be applied to
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substantially bleeding patients but not to every trauma patient, either because the practices are too 
resource intensive or have an unfavorable risk-benefit profile in the non-bleeding patient). 

 
1.3. Is it possible to use an automated pre-hospital alerting system for detecting patients at high risk of 

substantial bleeding? 
 
Over the past decade, in close collaborator with the MRMC BHSAI, we have established that routine pre-
hospital vital signs indicate trauma patients with substantial bleeding.   
 
This proposal provided four categories of deliverables. First, we developed analytic computational algorithms 
to risk-stratify trauma patients so that patients with substantial bleeding would be identified early and treated 
optimally. Second, overlapping with the first category, we completed sets of comparative analyses to identify 
what physiological metrics (based on routine vital signs), and what ancillary metrics (based on novel sensors) 
could provide optimal operational value for the early identification of substantial bleeding in trauma patients. 
Third, we developed operational decision-support capabilities, culminating in a software system that provides 
real-time risk assessment of actual trauma patients and additional decision-support messaging. Fourth, we 
provided support to the BHSAI in preparing for FDA regulatory submissions related to our novel 
computational methodology. 
 
 
 

 
 
  

Operational 
Decision-Support 

Capabilities 
- APPRAISE Platform 
- Hemorrhage alerting 
- Mortality prediction 
- Severe TBI alerting 

Analytic Methods for 
Real-world Function 

- for unreliable vital 
signs 
- for data through time 
- for incomplete data 

Systematic 
Comparative Analysis 
- Novel physiological 
measurements 
- Novel computational 
methods 
- Different patient sub-
populations 
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BODY 

In collaboration with the MRMC BHSAI, we produced four sets of deliverables.  

First, we developed analytic methodologies that are effective during real-time performance.  In the recent 
past, we have developed techniques for unreliable vital sign identification [8-10], decision-making of serial 
data through time [10,12-14], and incomplete data [11].  These capabilities were validated through two 
investigational foci:  prehospital [13] and within the MGH ED.  As well, we collaborated with the BHSAI to 
examine how these aforementioned techniques need to be customized to different environments (i.e., 
prehospital versus ED).  We have completed our analysis of the prehospital dataset, and a report has been 
published [17].  In addition, we have collected a dataset with over 2000 trauma patients, and we have 
identified opportunities to make the analytic methodology even more clinically relevant. The first version 
algorithm yielded a binary output (indicating whether or not the patient is likely bleeding); this was the 
version tested prospectively on-board Boston Medflight.  The second version algorithm yielded the 
probability that the patient is bleeding, and the probability that any given life-saving intervention will be 
necessary for that patient. The final version of the algorithm yielded an ordinal category of risk, where each 
higher risk level had a significantly higher association with a set of hemorrhage-related outcomes (see 
Appendix I). The final version was the version incorporated into our software with a functional user interface 
(see below). 

Second, we completed a set of comparative analyses.  Collaborating with the BHSAI, we investigated whether 
heart rate variability enhanced routine vital signs [18], and whether the CareGuide muscle oxygenation sensor 
enhances routine vital signs [26].  We also examined different analytic techniques for detecting abnormalities 
in time-series data (such as the cumulative-sum versus sequential probability ratio test [12,16]).  Overall, here 
were the major findings of this scope of analysis: 

• Almost all patients with major hemorrhage had patently abnormal vital signs within 60 min of
monitoring (i.e., high sensitivity & high specificity using basic vital signs) [28].

• Within the first hour, differentiation of patients with and without hemorrhage on the basis of
routine vital signs was improved with the application of statistical algorithms [17].

• Within the first hour, differentiation of patients with and without hemorrhage was also
improved by tissue oximetery [27].

• There was no additional diagnostic value in heart rate variability [18], which supplements
findings from preceding analyses by this collaborative team which found no additional value in
SpO2 waveform analysis [29] nor in vital sign trend analysis [14].

Third, we developed operational decision-support software capabilities to make the computational techniques 
into operational tools suitable for real-time clinical use.  As noted, our prehospital real-time use results have 
been described in a manuscript [17].  To this end, since the start of this project, we were awarded two US 
patents for this technology US 8,977,349 and 8,694,085.  We have implemented a graphical user interface 
(GUI) for the system, which displays decision-support messages for supporting clinicians during the care of 
actual trauma patients (see Appendix II).  We have developed a methodology for validating the system, 
which involves both objective performance metrics as well as subjective case reviews by clinicians to identify 
whether there are any episodes whereby clinicians judge the system to be confusing or misleading.  To this 
end, we also developed a database that will support multiple key needs:  offline simulation testing of the new 
APPRAISE operational system; clinical validation (for regulatory approval) of the APPRAISE system; and a 
clinical trial studying the benefit of the system on the performance of the trauma team. 

Finally, we provided support for the FDA pre-submission application being prepared by the BHSAI.  This 
support included providing documentation, technical details, and technical review of the algorithm 
methodology, the validation methodology, potential regulatory claims, and the risk assessment. 
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KEY RESEARCH ACCOMPLISHMENTS 
 

1. We completed data analysis of our prehospital trial, and a manuscript that reports these findings was 
accepted for publication in the journal SHOCK [17].  Briefly, we found that the hemorrhage 
identification algorithm performed as well in prospective real-time use on-board prehospital 
helicopters as it did in its earlier development phase.  This supports the value of the technology for 
Combat Casualty Care. For this work done in collaboration with MGH, the BHSAI team was awarded 
the prestigious Heyman Service to America medal. 

 
2. In close collaboration with our TATRC/BHSAI colleagues, we published an analysis of the value of 

heart rate variability metrics for the identification of major hemorrhage in prehospital settings [18,19]. 
 

3. With our collaborators at TATRC/BHSAI, we reported in the Journal of Neurotrauma in the a new 
analytic technique that uses routine vital signs to identify prehospital trauma patients with the highest 
risk of fatal traumatic brain injury [20].  This could be used for adjusting prehospital care protocols 
based on TBI risk, and could be used for mobilizing neurosurgical resources at the receiving facilities.  

 
4. With our collaborators at TATRC/BHSAI, we received two US patents for our computing platform, 

the APPRAISE system, “Collection and analysis of vital signs” (US Patent #8,694,085 and 
#8,977,349) 

 
5. With our collaborators at TATRC/BHSAI, we made a series of conference presentations about 

technical aspects of our work [21-26]. 
 

6. We completed Emergency Dept data collection for testing an investigational configuration of the 
advanced sensor suite (specifically, standard vitals signs plus muscle O2 saturation).  With our 
collaborators at TATRC/BHSAI, we reported the value of the CareGuide tissue sensor in trauma 
patients for early identification of life-threatening hemorrhage [27].  This manuscript was selected as 
key article for practicing clinicians in the prestigious New England Journal “Journal Watch” review. 

 
7. With our collaborators at TATRC/BHSAI, we have completed our review of hemodymanic patterns in 

our database of  > 2,000 trauma patient.  We identified that there are no significant temporal trends in 
heart rate in trauma patients with life-threatening hemorrhage; that tachycardia is a weak but significant 
indicator of hemorrhagic injury; and that the vast majority of patients with life-threatening hemorrhage 
develop hypotension within 30 min from the onset of monitoring.  This was published in the journal 
Injury [28]. 
 

8. With our collaborators at TATRC/BHSAI, we developed three iterations of our hemorrhage risk 
algorithm. The final version outputs an ordinal category, and each category carries a higher association 
with a set of different hemorrhage-related clinical outcomes. Evaluation of the final version is found in 
Appendix I. 
 

9. We led the implementation of an enhanced database of  > 2,000 trauma patient physiological data, and 
associated clinical details and outcomes data, for algorithm assessment, which can be used for offline 
assessment of any investigational algorithm, e.g., heart rate variability, CRI, etc. This was shared with 
our collaborators at TATRC/BHSAI. This database can support multiple key needs:  offline simulation 
testing of the new APPRAISE operational system; clinical validation (for regulatory approval) of the 
APPRAISE system; and a clinical trial studying the benefit of the system on the performance of the 
trauma team. 
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10. We designed a graphical user interface for the APPRAISE system and implemented an operational
software prototype. This software electronically interfaces with GE monitor; displays vital signs through
time; displays hemorrhage risk through time; and displays conditional clinical advisory messages.
Technical details of this software are available in Appendix II. We developed a clinical testing protocol
that was approved by the local IRB, and passed the safety requirements of the hospital’s biomedical
engineering department.

11. We supported the preparation of an FDA pre-submission application being prepared by the BHSAI.
This support includes providing documentation, technical details, and technical review of the algorithm
methodology, the validation methodology, potential regulatory claims, and the risk assessment.

A compilation of the published manuscripts supported by this award are found in Appendix III. 
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REPORTABLE OUTCOMES 

Below we report progress towards key outcomes. 

Quarter 1:  In this quarter, we added new pre-hospital patients transported 
to the BIDMC; initiated our ED clinical study; and made 
progress on algorithm development (specifically for TBI). 

Quarter 2: In this quarter, we nearly completing chart review for the new 
pre-hospital patients transported to the BIDMC; screened our 
98th subject for the Emergency Dept study; successfully worked 
with the vendor to enhance the investigational sensor, and 
prepared a report about our algorithm for TBI diagnosis using 
standard vital signs. 

Quarter 3: In this quarter, we focused on retrospective data analysis (i.e., 
analysis of vital sign patterns for TBI patients); ongoing clinical 
studies (i.e., data collection for Boston Medflight patients and 
data collection of MGH ED patients using the investigational 
muscle O2 sensor), and development of new technology (i.e., 
real-time vital sign analysis in the MGH ED). 

Quarter 4 As of this quarter, prehospital data collection was completed 
and we undertook analysis (in collaboration with 
TATRC/BHSAI); analysis should be complete by next quarter 
and a manuscript submitted by the quarter thereafter; ED data 
collection continues successfully; our advancement plan 
suggests we will have a productive subsequent 12 months. 

Quarter 5 
(Year 2, 
Q1) 

Prehospital data analysis is now largely complete and we are 
preparing reports and presentations of the findings which 
demonstrate that multivariate analysis of prehospital vital 
signs can identify patients with substantial bleeding long 
before arrival at the receiving facility; ED data collection 
continues to proceed as planned; in collaboration with 
BHSAI/TATRC, we have successfully deployed our real-
time analysis system within the hospital Emergency Dept. 

Quarter 6 
(Year 2, 
Q2) 

Prehospital data analysis is complete and a manuscript has 
been prepared for imminent submission.  ED data collection 
proceeds and we have received approval for increasing the 
number of total subjects to ensure enough of the subjects 
have substantial bleeding.  Preparation of reports has been a 
high-priority, spanning:  1) diagnostic and prognostic value of 
the Glasgow Coma Scale for casualties with life-threatening 
traumatic brain injury (in submission);2) techniques for 
identifying abnormal patterns in time-series data (in 
preparation); 3) comparative analysis of heart rate variability 
measures versus routine vital signs for the early identification 
of substantial bleeding (in preparation); and 4) development 
and validation of the system for real-time analysis in the MGH 
ED (in preparation). 

Quarter 7 
(Year 2, 
Q3) 

Prehospital data analysis is complete and a manuscript has 
been submitted.  A second manuscript, about how a 
mathematical model can be used to assess for high-mortality 
traumatic brain injury on the basis of routine vital signs, has 
been accepted to the Journal of Neurotrauma.  ED data 
collection proceeds and we expect to close enrollment in 
approximately 2 additional quarters.  Preparation of reports 
has been a high-priority, spanning:  1) techniques for 
identifying abnormal patterns in time-series data (in 
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preparation); 2) comparative analysis of heart rate variability 
measures versus routine vital signs for the early identification 
of substantial bleeding (in preparation); and 3) development 
and validation of the system for real-time analysis in the MGH 
ED (in preparation); we anticipate these will be submitted in 
the upcoming quarter. 

Quarter 8 
(Year 2, 
Q4) 

In terms of prehospital functionality, we have begun planning 
for a potential prospective, outcomes trial.  For this, we have 
examined the data to better understand the APPRAISE 
system’s functionality for patients who receive CPR (during a 
real-time trial, it will be important that the algorithm recognize 
when a patient is ineligible for automated hemorrhage 
identification, i.e., CPR) and we have held conversations with 
a potential industry partner, Zoll.  We received a US patent 
for our prehospital system US 8,694,085.  We have 
submitted three new papers (related to real-time analysis in 
the hospital; a comparison of different techniques for 
assessing continuous vital sign data to account for temporal 
variability that is unrelated to blood loss; and an examination 
of when, in trauma patients, the oscillation in sinus heart rate 
is coupled to respiration and when it is not. 

Quarter 9 
(Year 3, 
Q1) 

This quarter, we have submitted a new paper (related to heart 
rate variability in identification of bleeding patients).  Our 
prehospital report (about real-time vital signs automated 
analysis) is undergoing major revision at the behest of the 
journal editor.  We have a total of 5 conference papers 
accepted this quarter: 3 papers accepted by the IEEE EMBC 
and 2 presentations accepted by MHSRS.  We have collected 
CareGuide data in over 600 trauma patients and expect to 
complete subject enrollment in Sept 2014 (Quarter 10).  We 
are engaged in discussions with MRMCs technology transfer 
office and Zoll medical about next steps for our hemorrhage 
detection algorithms. 

Quarter 10 
(Year 3, 
Q2) 

This quarter, we have revised the two journal reports 
described in the prior quarter, and we await the decision of 
the journal reviewers and editors.  We presented the 5 
conference papers described in the prior quarter.  We 
completed data enrollment for the CareGuide SmO2 sensor 
and we are undertaking analysis of the final results.  We have 
commenced data collection for another 710 trauma subjects, 
archiving routine vital sign data for these patients, which will 
allow for testing of any algorithm that uses routine vital signs 
and/or pulse oximetry waveform analysis and/or heart rate 
variability analysis.  We have proceeded to contract 
negotiations with Zoll medical for technology licensing and a 
cooperative research agreement. 

Quarter 11 
(Year 3, 
Q3) 

This quarter, the two journal reports described in the prior 
quarter were accepted for publication.  We have 
conducted data analysis on the CareGuide SmO2 sensor 
project described in the prior quarter, with plans to complete a 
manuscript in the next quarter.  We have also worked with the 
vendor of CareGuide, RMI, to re-analyze our dataset using 
their reportedly improved SmO2 algorithm (for estimating 
SmO2 based on our pre-existing, archive of spectroscopy 
data from the CareGuide sensor in trauma patients). 
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Quarter 12 
(Year 3, 
Q4) 

This quarter, we prepared a manuscript about the CareGuide 
SmO2 sensor.  As well, we had two related conference 
presentations submitted and accepted:  to the annual 
Society of Academic Emergency Medicine (SAEM) meeting 
and the regional New England Research Directors’ annual 
conference for SAEM.  We had a second patent awarded 
(Collection and analysis of vital signs US 8,977,349).   We 
have initiated data collection on physiological data for an 
additional 700 trauma patients within the Emergency Dept. 

Quarter 13 
(Year 4, 
Q1) 

The abstracts from Q12 were presented in this quarter.  
The associated full journal manuscript was prepared and 
submitted, describing our experience evaluating the CareGuide 
tissue sensor in trauma patients.  We initiated an enhanced, 
exhaustive investigation of automated statistical analysis for 
early detection and decision-support of trauma patients, 
seeking to validate the method throughout our complete 
archive of > 1,500 trauma patients. 

Quarter 14 
(Year 4, 
Q2) 

The manuscript (based on the abstracts presented in Q13) 
was accepted for publication in the peer-reviewed journal 
Academic Emergency Medicine.  We continue our enhanced 
investigation of automated statistical analysis of vital signs 
using our largest dataset; this will establish the version of the 
algorithm to be deployed in our outcomes trial.  We have 
initiated development of the GUI, starting with defining the 
specifications, in close collaboration with BHSAI.  We 
developed a prospective testing plan, in close collaboration 
with BHSAI. 

Quarter 15 
(Year 4, 
Q3) 

Enhanced investigation of automated statistical analysis of vital 
signs has revealed two issues that need to be addressed prior 
to clinical deployment of the system.  First, the SPRT results in 
a “persistence artifact” whereby low-level hemodynamic 
abnormalities will (given enough time) be determined to be 
hemorrhagic, even if the abnormality is mild and unchanging.  
Second, SPRT also causes latency that is an issue in the 
hospital, whereby hemorrhagic patients are frequently moved 
in-and-out of the resuscitation bay quickly, therefore its 
properties that were valuable during prehospital transport are 
potentially disadvantageous in the hospital.  Based on the 
evaluation of this algorithm in > 1500 trauma patients, we have 
designed a modification to the algorithm which will give rise to 
the version 2.0.  As well, we have recruited the software 
engineer and initiated design of the APPRAISE system for real-
world clinical deployment. 

Quarter 16 
(Year 4, 
Q4) 

We have developed a modified methodology for automated 
statistical analysis of vital signs.  Preliminary testing (through 
simulation of real-time use, inputting archived trauma patient 
data from our curated dataset of > 1500 trauma patients) 
suggests that this methodology will enhance performance.  
We plan to finalize this analysis and document it in a peer-
reviewed manuscript within the next quarter.  In addition, we 
have made progress in the design and implementation of the 
APPRAISE system that is being built for true interaction with 
clinicians, i.e., clinicians will view the decision-support in real 
time and can use the information to potentially enhance 
patient care.  Specifically, we have developed an 
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implementation plan and initiated software coding, in 
consultation with our collaborators at the BHSAI. 

Quarter 17 
(Year 5, 
Q1) 

This quarter has focused on preparations for deploying the 
real-time APPRAISE system with a goal for completing a 
functional system that is ready for deployment within Quarter 
19 (noting that there are regulatory hurdles in terms of the 
hospital dept. of Biomed engineering and possibly IRB issues 
that may also affect the deployment date).  The architecture 
of this system was finalized and implementation is underway, 
as is the v.0 version of the so-called message library of 
possible messages provided to caregivers.  In parallel, we 
have examined the function of the new hemorrhage detection 
algorithm (“2.0”) to examine, case-by-case in our dataset of 
>1800 trauma patients, what types of messages should be
crafted.  This will culminate in a manuscript ready for
submission in Quarter 18.

Quarter 18 
(Year 5, 
Q2) 

Work continues as per Quarter 17.  An initial version of the 
real-time system intended for testing has now been 
implemented and is undergoing reliability testing.  The 
message library is being implemented into the real-time 
system.  A clinical advisory group of physicians and nurses 
has been convened for ratifying the message library.  A web-
developer has been brought in to the program to improve the 
graphical user interface such that it is suitable for real-time 
clinical use.  In parallel, the operation of the new hemorrhage 
detection algorithm (“2.0”) has yielded a set of new results 
and authoring of a new report has been initiated. 

Quarter 19 
(Year 5, 
Q3) 

The “alpha” version of the real-time APPRAISE system 
complete with GUI has been completed, including the 
graphical enhancements of the professional graphic designer.  
A protocol for testing this version (with clinicians blinded to 
the output) has been submitted to the IRB.  The new 
hemorrhage detection algorithm has been further improved 
(“2.1”) now including a new approach named the “time-
adjusted binormal distribution” method and final validation is 
being completed of this algorithm, which is expected to lead 
to a journal report and possibly a patent application.  Another 
report, examining hemodynamic patterns during trauma 
patient deterioration, has been submitted for publication. 

Quarter 20 
(Year 5, 
Q4) 

The “alpha” version of the real-time APPRAISE system 
complete with GUI has been subjected to off-line non-clinical 
user acceptance reviews (a panel of clinicians including 
emergency medicine and trauma surgery, and including 
nurses and doctors-in-training), with important evolution of 
the system’s specifications. Enhancements of the labeling 
and messages have been undertaken.  As well, new 
enhancements, related to the necessity for clinicians to input 
information that is perceived as important by the panel, are 
being implemented.  A revised algorithm optimized for real-
time use is being implemented, in coordination with the 
MRMC BHSAI.  The APPRAISE system was evaluated by the 
MGH Biomedical Engineering Dept. leading to safety 
requirements for both “blind” clinical testing (no display to 
clinicians) as well as future live clinical testing were 
developed.  We are currently adapting the system to meet all 
safety requirements (related to issues such as network 



12 

security, patient privacy, and electrical safety).  We have also 
initiated planning for future necessary regulatory approvals, 
with a focus on the US FDA.  The research report submitted 
last quarter, examining hemodynamic patterns during trauma 
patient deterioration, has been revised for publication. 

Quarter 21 
(Year 6, 
Q1) 

The implementation of the revised algorithm (for detecting 
hemorrhage risk) has been completed and we are now 
initiating extensive validation of that new algorithm.  As well, 
we have initiated redesign of the graphical user interface so 
that it is optimized for the characteristics of the new algorithm 
(which is based on risk strata, rather than a continuous 
output).  We have initiated planning meetings to develop a 
regulatory clearance strategy, working closely with the 
USAMRMC BHSAI.  We have initiated the implementation of 
a database that will support multiple key needs:  offline 
simulation testing of the new APPRAISE operational system; 
clinical validation (for regulatory approval) of the APPRAISE 
system; and a clinical trial studying the benefit of the system 
on the performance of the trauma team.  The research report 
being revised last quarter, examining hemodynamic patterns 
during trauma patient deterioration, has been completed and 
submitted for publication. 

Quarter 22 
(Year 6, 
Q2) 

After revising the algorithm (now based on risk strata), we 
have started documenting its implementation and 
performance in a manner that is compliant with FDA 
regulations and software development standards.  In parallel, 
we have invested significant effort to identify the optimal 
regulatory strategy.  It should be understood that this level of 
specification and documentation of our system and 
preparation of the supporting clinical data is highly resource 
intensive.  Specifically, we have begun exploring the potential 
claims for our software; how to validate those claims in an 
FDA-compliant manner (in terms of clinical investigation), 
how to scope the software (in terms of what functionality 
versus the trade-off of additional need for 
documentation/testing); and overall the documentation 
needed for our regulatory strategy.  This has involved working 
with an FDA consultant.  In parallel, we continue to work on 
the database started in the preceding quarter and the offline 
simulation started in the preceding quarter, and are on-track 
to complete these tasks in the first-half of the upcoming 
quarter. 

Quarter 23 
(Year 6, 
Q3) 

A pilot system has been fully implemented including a revised 
graphical user display, a revised message engine/library of 
guidance messages, and a revised version of the 
hemorrhage-risk algorithm.  This quarter was focused on 
revising the database of > 2000 trauma patients that is 
maintained in collaboration with the BHSAI, so that different 
parameters (from the individual datasets that make up the 
master database) are represented in consistent format, so 
that parameter values are verified, and so that parameter 
availability is documented and, if feasible, optimized by de 
novo chart review.  The value of this new revised database is 
to enable a final phase of offline system software testing and 
validation, and user acceptance testing, which involves 
showing a panel of clinicians the various clinical situations 
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and the output of the system through time, to ensure that the 
decision-support is always suitable for optimal patient care.  
We intend to conduct this final phase of testing (as well as 
associated software fixes and other optimizations) in the 
remainder of the funded time. 

Quarter 24 
(Year 6, 
Q4) 

We completed reorganization and documentation of the 
previously collected datasets of vital signs and other clinical 
and outcome data from over 1500 trauma patients has been 
reorganized with improved annotation to allow improved 
simulation analysis of the APPRAISE system; specifically, 
studying minute-to-minute functionality and the clinical 
conditions and interventions associated with any unexpected 
system behavior.  We started work to merge the software 
functionality that has been previously developed for bedside 
use and the hemorrhage risk assessment algorithm 
developed in the MATLAB environment.  This has involved a 
new generation of “quality assurance” measures that are 
intended to suffice from a regulatory standpoint, for 
investigational human use and also obtaining 510(K) 
clearance for the software.  This new functionality is generally 
more conservative, i.e., the algorithm is designed to become 
inoperable except when suitable data are available. 

Quarter 25 
(Year 7, 
Q1) 

We worked to finalize the computational methodology for the 
“Vital Signs Risks Level” whereby trauma patients are risk-
stratified into one of four ordinal categories; to finalize the 
validation methodology for the algorithm whereby each risk 
stratum has a demonstrably higher association with a set of 
hemorrhage-associated outcomes, and the risks for each 
stratum will not change through time; and to attempt to 
specify an exhaustive set of possible failure scenarios for the 
VRL; this set of possible failure scenarios will be used in final 
user acceptance testing. 

Quarter 26 
(Year 7, 
Q2) 

We implemented the final computational methodology into the 
user interface; supported the BHSAI preparation of an FDA 
pre-submission filing for the APPRAISE computational 
decision-support system; and we reviewed patient files to 
quantify the frequency with which the aforementioned failure 
scenarios occurred, and the frequency with which the risk-
assessment algorithm offered a demonstrable advantage 
over routine vital signs. 

CONCLUSIONS 

This technology development project is nearly complete, yielding a functional, well-validated system suitable 
for pilot testing during clinical care.  Prehospital validation of the hemorrhage identification algorithm was a 
success, operating as specified.  Two US patents have been awarded for the prehospital analysis system.  A 
method for prehospital TBI assessment has been reported in the J Neurotrauma.  A report about the validation 
of our prehospital system, APPRAISE, for detecting life-threatening hemorrhage was published.  Our 
investigations have also shown that during the initial evaluation of actual trauma patients, a novel sensor, the 
CareGuide tissue oximeter, added significant diagnostic power beyond routine vital signs for identifying 
patients with life-threatening hemorrhage.  We have now accumulated an archive of over 2000 trauma 
patients’ electronic data, which is being used to enhance our decision-support algorithms.  We studied patterns 
associated with hemorrhage, and have identified that almost all patients with life-threatening hemorrhage 
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develop hypotension within 30 minutes of monitoring, whereas our technology can identify high-risk patients 
before the onset of hypotension.  We have implemented a pilot GUI for the aforementioned APPRAISE 
system which can be used in a new series of clinical investigations whereby investigational decision-support 
is made visible to clinicians, to study whether this new generation of technology improves clinical 
management of trauma patients.  We are on track for the USAMRMC BSHAI to have all the scientific and 
technical support necessary for their preparation and submission of a FDA pre-submission application by the 
end of this funded project. 
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Appendix I:  
Key findings about the “VRL” (Vital-sign Risk Level), which was the hemorrhage risk category 
assigned to the subject by the final version of the automated algorithm, for each subject in our merged 
dataset of over 2,000 trauma patients 

Out of 66 with massive transfusion, 43 (65%) were identified as Level III, IV, or patent hypotension, in the 
initial 15 min: 

• 21 massive transfusion cases detected on the basis of hypotension
• 11 massive transfusion cases detected (Level IV) prior to patent hypotension
• 12 massive transfusion cases detected (Level III) prior to patent hypotension

• Most of these cases (8 of 12) were short durations of monitoring (<15 min)
• Only a minority (4 of 12) detected (Level III) were longer duration with adequate data

Out of 66 with massive transfusion, 23 (35%) were not identified as Level III, IV, or patent hypotension, in the 
initial 15 min: 

• 8 appeared to be truly “missed” based on reassuring vital signs
• 10 had some form of objectively incomplete vital signs (e.g.: absence of BP data; missing exogenous

BP; or pulselessness)
• 4 massive transfusion cases were detected at a delayed time-point, after the initial 15 min

• Most (3 of 4) had incomplete vital-sign data (e.g.: absence of any data; missing exogenous BP;
or pulselessness) associated with the delay in detection

• We did not identify measurement artifact (e.g., spurious BP or HR that is deceptively normal) associated
with any of the missed detections

Out of 10 patients with 24-hr RBC = 5 units, 4 (40%) were identified as Level III, IV, or patent hypotension, in 
the initial 15 min 

• 1 of the hemorrhage cases detected on the basis of hypotension
• 3 of the hemorrhage cases had subtle “drift” patterns that were correctly detected by the VRL

Out of 10 patients with 24-hr RBC = 5 units, 6 (60%) were not identified as Level III, IV, or patent 
hypotension, in the initial 15 min 

• 1 appeared to be truly “missed” based on reassuring vital signs
• 4 had some form of objectively incomplete vital signs (e.g.: absence of BP data; short records; missing

exogenous BP; or pulselessness)
• 1 of the hemorrhage cases had subtle “drift” pattern correctly identified, but delayed after 15 min
• We did not identify measurement artifact (e.g., spurious BP or HR that is deceptively normal) associated

with any of the missed detections

Observations 
• The majority of hemorrhage cases were detected

• Half of the detections were associated with patent hypotension
• Half represent enhanced detection compared with basic hypotension threshold

• Objectively incomplete vital signs (e.g.: absence of BP data; missing exogenous BP; or pulselessness) is
associated with the vast majority of missed or delayed detections

• Incomplete data was identified in 14 of 66 massive transfusion patients with missed (n=10) or
delayed (n=4) detection
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• Incomplete data was identified in 5 of 10 24-hr RBC=5 units patients with missed (n=4) or
delayed (n=1) detection

• For many massive transfusion patients with correct detection < 15 min, there was often a small
delay between APPRAISE detection versus clinical recognition of significant hemorrhage, on the
basis of additional information, e.g., visually apparent bleeding; pre-hospital hypotension or
imaging

• Incomplete data was identified in 8 of 66 massive transfusion cases with only Level III detection

• Missed detections in records with duration > 15 min and without missing information are relatively rare
• 8 of 66 massive transfusion cases appeared to be truly “missed” based on reassuring vital signs
• 1 of 10 24-hr RBC=5 units patients had reassuring vital signs
• We did not identify measurement artifact (e.g., spurious BP or HR that is deceptively normal)

associated with any of the missed detections
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VRL Positive Predictive Value (PPV) for 24-hr RBC >= 3 units  
 
Top panel: PPV for each VRL at the end of 15 min (blue); 30 min (orange); and 45 min (yellow). 
 
Bottom panels: Associated histograms for each VRL, showing total numbers of patients with RBC >= 3 units 
and RBC < 3 units at each VRL for the different time intervals of vital-sign data. Also shown are the total 
number of patients without VRL due to inadequate data (“NaN”). 
 
Key findings: 
 

• Monotonically increasing PPV? Generally, yes [caveat: VRL 1 not distinct from VRL 2] 
 

• Is PPV similar through time (i.e., similar PPV between each set of blue/orange/yellow)? Yes, after 
accounting for error bars 
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Receiver Operator Receiving Curves for VRLs and Outcome of 24-hr RBC >= 3 units 

Key finding: 
• ROC AUC stable through time
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VRL Positive Predictive Value (PPV) for Massive Transfusion 
 
Top panel: PPV for each VRL at the end of 15 min (blue); 30 min (orange); and 45 min (yellow). 
 
Bottom panels: Associated histograms for each VRL, showing total numbers of patients with massive 
transfusion and without massive transfusion at each VRL for the different time intervals of vital-sign data. 
Also shown are the total number of patients without VRL due to inadequate data (“NaN”). 
 
Key findings: 
 

• Monotonically increasing PPV? Generally, yes [caveat: VRL 3 not distinct from VRL 4] 
 

• Is PPV similar through time (i.e., similar PPV between each set of blue/orange/yellow)? Yes, after 
accounting for error bars 
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Receiver Operator Receiving Curves for VRLs and Outcome of Massive Transfusion 
 
Key finding:  

• ROC AUC appears to increase through time 
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VRL Positive Predictive Value (PPV) for Hemorrhage-control Surgery (within 4 hrs of arrival) 
 
Top panel: PPV for each VRL at the end of 15 min (blue); 30 min (orange); and 45 min (yellow). 
 
Bottom panels: Associated histograms for each VRL, showing total numbers of patients with hemorrhage-
control surgery and without at each VRL for the different time intervals of vital-sign data. Also shown are the 
total number of patients without VRL due to inadequate data (“NaN”). 
 
Key findings: 
 

• Monotonically increasing PPV? Generally, yes [caveat VRL 2 not distinct from VRL 3] 
 

• Is PPV similar through time (i.e., similar PPV between each set of blue/orange/yellow)? Yes, 
after accounting for error bars 
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Receiver Operator Receiving Curves for VRLs and Outcome of Hemorrhage-control Surgery (within 4 
hrs of arrival) 
 
Key finding: 
 

• ROC AUC appears to increase, slightly, through time 
 

 
 

  



 

25 
 

Summary of Key Findings: VRL as ordinal rating of set of outcomes 
 

• Each increased VRL is associated with increased risk for each of the trio of hemorrhage outcomes 
 

• For each outcome, there exists a VRL pair with similar PPV (i.e, no ordinal increase) but this is likely due to 
random chance 

 
• 24-hr RBC >= 3 units: VRL 1 not dissimilar to VRL 2 
• Massive transfusion: VRL 3 not dissimilar to VRL 4 
• Hemorrhage-control surgery: VRL 2 not dissimilar to VRL 3 

 
• Mortality was not predicted effectively by the VRL, likely due to head trauma (results not shown) 

 
• Generally speaking, the results support that the VRL provides an ordinal risk level for set of hemorrhage 

outcomes 
 

• Generally speaking, the results support that the risk associated with each VRL does not vary through time 
 

• Increasing AUC through time indicates fewer patients with mid-tier VRL 
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INTRODUCTION 
 
Automated clinical decision support systems may improve clinical protocol compliance in high acuity 
settings such as Trauma. To assess the effect of automated CDS in Trauma, the APPRAISE project aims to: 
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• Develop a protocol-guidance system and clinician-facing display 
• Quantify errors of decision-making and protocol compliance 
• Assess the impact of automated decision-support 

 
The APPRAISE project is creating a prototype software application (titled APPRAISE) to display key 
information to clinical staff in the patient room as well as to persist data for retrospective analysis. 
 
The APPRAISE software prototype application aims to evolve into a configurable protocol-guidance system 
for any diagnostic algorithm and any treatment protocol as the system matures. 
 
 

SYSTEM DESCRIPTION 
 
The first implementation of the APPRAISE system will be in Acute Bay 1 (Trauma) of MGH’s ED. The 
system will consist of hardware and software: a single computer physically located in Bay 1. The computer 
will be connected to the patient’s physiological monitor, a GE Solar 8000i, via a serial connection. The 
system will feature a wall mounted, large format, commercial-grade monitor to display the user interface. 
 
The software’s user interface will display: 

● Current vital signs sourced from the bedside monitor as well as vitals plotted over time to 
illustrate trends 

● Current output of the APPRAISE algorithm computation (Hemorrhage Index) as well as a 
plot of the trend of the index 

● Protocol guidance messages applicable to the current state of the patient 
● Timer for the patient’s length of stay 
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Figure: A mockup of the APPRAISE user interface on a large format display 

 
In addition to the clinical display, the software will persist data required for retrospective analysis. The 
APPRAISE GUI system attempts to be highly configurable. The configuration options are specified in a file 
titled app_configuration.json. The file is included by default but can also be customized by the user. 
 
The APPRAISE system will sit passively in the patient bay (i.e. no user inputs) collecting data and 
displaying the metrics, plots and guidance messages listed above. Interaction with the software and display 
will not be possible in the initial versions of the system. A future feature will be a discrete touchscreen 
monitor to accept input data. 
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HARDWARE SETUP 
 
The APPRAISE system consists of a computer, monitor, and serial connection infrastructure. Due to the 
Solar being mounted on a boom in the installation area (Acute Bay 1), the serial cable will be connected 
with “paired” serial-to-Ethernet adapters connected over a point-to-point Ethernet cable, shown in the 
figure below. Both the Solar and Computer will operate as if they are directly connected to one another 
with no knowledge of the serial-to-Ethernet adapters. 

 
Figure: The proposed installation for the serial connection to the GE Solar 8000i 

 
The display will be a large format flat screen - 48” Samsung DME Series - 24 Hour Rated Commercial LED 
Display. The screen will be mounted on the wall in proximity of the location typically used for charting. 
 

 
Figure: A rendering of the planned system installation in Acute Bay 1. 

Installation Inventory: 
● GE Solar 8000i Patient Monitor (Existing) 
● 2 x B&B Electronics VESP211 Serial-to-Ethernet Converters 
● Samsung DM48E Commercial LED Display 
● Dell Optiplex 7040 Micro Form Factor CTO serial port 

SOFTWARE SETUP 
 
The APPRAISE application is a standalone, cross platform desktop application built using the Electron 
framework. The Electron framework provides a JavaScript interpreter (node.js) and DOM rendering engine 
(Chromium) to run a node.js-backed web view as a native application. This concept is similar to having a 

https://electron.atom.io/


 

30 
 

dedicated, lightweight web browser that only has one website (a web browser without the web). 
 
Electron uses a multi-process architecture with each view (or window) contained it’s own process with a 
“main” controller process as described here. Electron’s entry point is main.js which serves to start the 
APPRAISE GUI, the system tray menu, and configuration window. To open the APPRAISE window, we 
instruct the main process to open a new window from the resource location index.html. This HTML file 
has a script tag in the body with the source attribute pointing to ./index.bundle.js, which is our GUI 
entry point. The file ./index.bundle.js is a self contained bundle of all JS files for the GUI. 
 
The APPRAISE GUI is a React-based webapp. APPRAISE is written with React’s JSX and uses ES6+ 
language features such as the import keyword. For this code to run with Electron, it must first be 
“transpiled” to ES5 JS. To accomplish this, the babel.js library is invoked using a Webpack based build 
process. The configuration of this process is found in webpack.config.js, 
webpack.config.main.js, and .babelrc. It can be run using 
`./node_modules/.bin/webpack --config webpack.config.js` (or with the custom 
package.json script `npm run pack-app`). This process generates the index.bundle.js file. 
 
The APPRAISE GUI utilizes the following libraries: 
 
http://electron.atom.io/ - Electron runs the webapp as a native app 
https://facebook.github.io/react/ - View library for writing UI components 
http://redux.js.org/ - State container library that pairs well with React 
https://github.com/EmergingTechnologyAdvisors/node-serialport - Serial port interaction from Node.js 
https://d3js.org/ - Data visualization library for plots and animated graphics 
https://babeljs.io/ - “Transpiling” JSX and ES6+ to ES5 JS 
https://webpack.js.org/ - JS script bundling and task runner 
https://github.com/electron/electron-rebuild - Compile Node modules for different architectures 
https://github.com/electron-userland/electron-builder - Package and distribute Electron on different 
archtectures and operating systems 
https://github.com/winstonjs/winston - Logging framework 
 
See Appendix E for instructions installing and running APPRAISE. 

SOFTWARE COMPONENT FUNCTIONALITY 
 
Overview 
 
The APPRAISE GUI system’s core functionality is to record and calculate the necessary information to 
populate the user interface. The user interface consists of the following components: vital signs, 
hemorrhage algorithm plot, clinical protocol reminder messages, and length of stay timer. The raw vital 
signs data from the patient monitor is used to calculate Parameters (e.g. two minute median filtered heart 
rate) and Algorithms (e.g. probability of hemorrhagic injury). The Parameter and Algorithm data are in 
turn used to determine which clinical protocol Messages should be displayed, if any. 
 
The data needed to plot the vitals signs, algorithm, and determine which messages to display are stored in a 

https://electron.atom.io/docs/tutorial/quick-start/
http://electron.atom.io/
https://facebook.github.io/react/
http://redux.js.org/
https://github.com/EmergingTechnologyAdvisors/node-serialport
https://d3js.org/
https://babeljs.io/
https://webpack.js.org/
https://github.com/electron/electron-rebuild
https://github.com/electron-userland/electron-builder
https://github.com/winstonjs/winston
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tabular data structure titled the Flowsheet. The configuration information needed to populate the 
Flowsheet is found in a JSON file titled app_configuration.json. 
 

Figure: A high-
level block diagram of the data-flow in the APPRAISE GUI renderer process. 

 
The block diagram above illustrates the data flow for the APPRAISE system. Data enters the system at the 
Device Interface that connects to the GE Solar 8000i (or a playback interface). The raw data captured in the 
Flowsheet Buffer. The raw data is processed and stored in the Flowsheet. This is the central point of the 
application. The parameters and algorithms are calculated every time a new row is created. The Flowsheet 
is the source of data for the UI, including the plots and messages. 
 
See Appendix D for an example of the application’s state (a Redux data store). 
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Flowsheet (Parameters and Algorithms) 
 
One key piece of the APPRAISE GUI system’s core functionality is to create a tabular record of data 
calculated from the input patient data. This tabular record is titled the Flowsheet. The columns of the 
Flowsheet correspond to Parameter and Algorithm values. Parameters represent data aggregated from the 
patient monitor such as hrMedian2min (the median value of the previous two minutes of heart rate data 
from the patient monitor) and nibpSysCount (the total count of the systolic noninvasive blood pressure 
measurements). Flowsheet columns are also used for Algorithms, such as sysBp_diff (the difference 
between the last two systolic blood pressure measurements.) Algorithms provide the user with a 
mechanism for creating columns that are calculations derived from one or more Parameters or even from 
other Algorithms. 
 
Each patient encounter with the monitor creates a new Flowsheet. The individual patient encounters are 
titled Sessions. When the patient monitor detects a gap in data which can be reasonably associated with a 
new patient, the APPRAISE system will start a new Session with a new Flowsheet. 
 

 
Figure: The first six columns of a Flowsheet for a data playback session. 

 
The rows of the Flowsheet are created once per interval of time. This time interval is configurable – the 
default value is 10 seconds. Since the Flowsheet is only interested in data from the patient monitor that is 
an aggregate of the raw data, the raw data needs to be held in between Flowsheet intervals. This holding 
area is called the FlowsheetBuffer. The FlowsheetBuffer has an array for each unique Metric as defined by 
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ISO 11073-10101 and maintained by NIST Harmonized Rosetta Terminology mapping. Metrics names not 
described by the standard are inferred from the MDC naming pattern. At the end of each row time interval 
(i.e. once every 10 seconds) the FlowsheetBuffer is read. The values in the buffer are reduced to a single 
value that is added to the appropriate table cell in the Flowsheet. Algorithms require the value of other 
table cells to calculate their values (e.g. hemorrhage index inputs: heart rate, systolic and diastolic NIBP) 
are evaluated after the Parameters and the resulting values added to the Flowsheet. Algorithms can use any 
column to its left (listed before it in the configuration) as input to its calculations. 
 
 
Messages 
 
The resulting data in the Flowsheet is used to determine which Clinical Messages should be displayed. The 
clinical messages are short reminders, suggestions, or alerts that are intended to assist clinical staff in 
adhering to the Emergency Department’s official protocols. Every 30 seconds, the Message Library is used 
to determine if a new message(s) should be added to the UI. Each message relies on three factors to 
determine if it should be added to the UI: if the message’s logic is “active” (i.e. the boolean logic in the 
app_configuration.json file resolves to true), if the message has not been shown recently (specifically, has 
the message been displayed within the its refractory time), and if the message critical. 
 
 
Device Interface 
 
The data input to the application is a serial port connection to the GE Solar 8000i. This is accomplished 
using the ge-serial-node repository. This JavaScript module will send the request packet to the patient 
monitor every two seconds (described in detail in Appendix A). When a full message is received, the 
module will translate the contents of the message as described in the GE serial specification manual. The 
translated responses from the monitor, now a JS object with human readable keys/values, are emitted from 
the module (ge-serial-node implements EventEmitter). The application state will listen for these events and 
dispatch a state update action when received (NEW_FLOWSHEET_BUFFER_VALUE). For testing and 
evaluation purposes, the serial interface can be replaced by a playback interface and a “fake” data interface. 
The playback interface will emit data from a patient data file. The fake data interface will emit heart rate 
and blood pressure data in the shape of an arbitrary sinusoid over time (HR and BP will simply oscillate up 
and down). 
 
 
app_configuration.json 
 
This configuration file describes the parameters to be recorded (parameter_library), the algorithms to be 
calculated (algorithm_library), the messages to be displayed (message_library), and the UI plots (plots). The 
parameters and algorithms entered in the file directly map to the columns of the Flowsheet. Each entry in 
the message_library describes a clinical message to be displayed if the conditions are met. This is the central 
point of business logic in the system. 
 
The following subsections will describe the configuration of each section of the app_configuration.json file. 
 



 

34 
 

 
Message Library 
 
Messages help users adhere to clinical protocols and to operate the system, as described above. This array of 
objects contains the configuration of each message. A message is displayed if it is active and eligible. A 
message is active when its logical statement evaluates to true. A message is eligible when it has not been 
displayed within its refractory time (i.e. the minimum duration between a message being repeated). If one 
or more active and eligible messages are critical, all critical messages will be displayed. If multiple non-
critical messages are active and eligible, the first message in order of the message library array will be used. 
 
The message logic uses a simple, homegrown logical syntax to encode the clinical rulesets. The logic 
statements are recursively evaluated so multiple comparisons can be nested. The logic commonly 
starts with a tuple representing &&, ||, >, ≥, <, ≤, ==, or !==. These logic tuples must be an array of 
length three with first element being one of the following set: 'EQ', 'NEQ', 'GT', 'GTE', 'LT', 'LTE', 
‘AND’, ‘OR’. AND and OR length can be greater than three. 
 

 
Figure: The “Persistent Hypotension” message created from the example message configuration. 

 
Example: 
{ 
 "name": "Persistent Hypotension", 
"text": "Patients systolic blood pressure has been below 90 mmHg for 5 
minutes", 
 "critical": true, 
 "refractory": 300000, 
 "icon": "bp_cuff", 
 "logic": ["LT", { "parameter": "nibpSys5minMax" }, 90] 
} 
 

name – The title of the message on the display. 
 

text – The subtitle of the message on the display that provides more detail. 
 

critical – Boolean - Is the message critical (displayed on the GUI without delay and highlighted with a 
brighter colored background) 
 
refractory – The minimum time (in milliseconds) permitted between the same message being displayed 
again. 
 
icon – The name of the icon to use. Corresponds to SVG files in app/resources/icons as well as 
FontAwesome icon names. 
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logic – The tuple representing the clinical ruleset that pertains to a protocol reminder message.  
 
logic[0] – Must be [EQ, NEQ, GT, GTE, LT, LTE, AND, OR]  
 
logic[1..n] – Must be a number, the string “elapsedTime”, or an object with one key equal to “parameter”, 
“algorithm”, “variable”, or “constant”. The value of the object will be looked up the appropriate “library”. 
 
 
Parameter Library 
 
Columns of the flowsheet – This array describes how the data from patient monitor should be collected, 
aggregated, and reduced to a cell on the Flowsheet. The parameters are referenced by a unique key. The 
message_library, algorithm_library, variable_library, and plots can reference the parameters by key. 
 
Example: 
 { 
  "key": "hrMedian2min", 
  "metric": "MDC_ECG_HEART_RATE", 
  "type": "parameter", 
  "aggregation": "median", 
  "time_filter": 120 
 } 
 
key – The arbitrary titled assigned to parameter. Must be unique. This key is used by message_library, 
algorithm_library, variable_library, and plots to incorporate a parameter. 
 
metric – The data type that this parameter corresponds to such as heart rate (MDC_ECG_HEART_RATE). 
The metric is a string that device interface will emit with each value. The device interface uses NIST hRTM 
(harmonized rosetta terminology mapping). If the data.metric from the serial interface packet matches this 
parameter name, the data is recorded in the flowsheet buffer. 
 
type – [parameter, alarm, meta] Used to differentiate which area of the patient monitor data packet to read 
from. This is an artifact of the GE Serial interface and should be refactored out one day. 
 
subtype – Only required when type is alarm or meta. Again used for reading from the GE serial data packet. 
Represents a tightly coupled feature that should be fixed. 
 
aggregation – [average, median, stdDev, count, countAll, max, min] The array of data from the interface 
with the corresponding metric within the specified time window is aggregated with the method specified 
here. This method will determine how the parameter values in the flowsheet buffer should be reduced. 
 
time_filter – [-1, 0, n, null] The time window the parameter would like to aggregate for a row in the 
flowsheet. The value of time_filter is similar to array.slice. To specify that the flowsheet row should be the 
result of a calculation using all data use time_filter: 0, the most recent measurement only use time_filter: -1, 
a duration of time such as prior 120 seconds use time_filter: n, or all data received since the last row was 
calculated, i.e. tPrev < window < t, use time_filter: null. 
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Algorithm Library 
 
Columns of the flowsheet – The algorithm library lists the configurations of the columns that require more 
than what the Parameters are able to provide. Algorithms can use any column to its left (any Parameter or 
Algorithm listed before it in the configuration) as input. The algorithm scripts export a single default 
function that takes the parameters config and flowsheet (i.e. function myAlgorithm(config, 
flowsheet)). The config parameter is passed the parameters object as its argument and is used to 
provide mappings between names internal to the script and the Flowsheet as well as settings like 
thresholds. 
 
Example: 
 { 
  "key": "hypovolemia_risk", 
  "parameters": { 
   "hrKey": "hrMedian2min", 
   "bpSysKey": "nibpSysRowAvg", 
   "bpDiaKey": "nibpDiaRowAvg", 
   "bpCountKey": "nibpSysCount" 
  }, 
  "path": "appraise" 
 } 
 
key – A unique key that is referenced by algorithms listed prior and message logic. 
 
parameters – A configuration mapping that attempts to abstract the algorithm script from the 
parameter/algorithm Flowsheet column name. This object is passed into the js script as the algorithm 
config. Keys in the parameters object are unique to the algorithm script. It is used to match vital signs to 
flowsheet columns as well as to set thresholds. The algorithm script is responsible for enforcing proper 
parameter values. 
 
path – A file path to the script containing the algorithm. The path omits the file extension “.js” and is 
relative to the /local_modules/ directory. 
 
 
Variable Library 
 
Message logic, found in message_library.logic, can be very verbose and repetitive. There are often 
common logic statements that multiple messages leverage. The variable library provides the user with a 
method of abstracting common patterns that they would like to reuse. The variable library improves 
readability and composability or the message configuration. For example, the risk strata for the APPRAISE 
hemorrhage algorithm are verbose and used frequently. Below is the logic for HEME_PROB_MEDIUM, the 
2nd highest of 4 levels of risk. This statement can be injected by referencing it with the “variable” keyword, 
i.e. { "variable": "HEME_PROB_MEDIUM" } would substitute the “variable” property value with 
the corresponding entry in the variable library. 
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Example: 
 { 
  "HEME_PROB_MEDIUM": ["AND", 
   ["GTE", 
    { "algorithm": "hypovolemia_risk" }, 
    { "constant": "HEME_PROB_MEDIUM_THRESHOLD" } 
   ], 
   ["LT", 
    { "algorithm": "hypovolemia_risk" }, 
    { "constant": "HEME_PROB_HIGH_THRESHOLD" } 
   ] 
  ] 
 } 
 
 
Constant Library 
 
Similar to variables, when writing message logic it is extremely convenient to define your constants in one 
central location. This allows you to change thresholds or time goals that referenced throughout the 
app_configuration.json file from one location. The entries in the library are objects with a unique key that 
are referenced from message logic config. Message logic is found in message_library.logic and in 
variable_library. For example, { "constant": "HEME_PROB_MEDIUM_THRESHOLD" } 
would inject the number 0.09. Constants are numbers but this is not enforced (yet). 
 
Example: 
{ 
"HEME_PROB_MEDIUM_THRESHOLD": 0.09 
} 
 
 
Plots 
 
Configure the plots – Currently only “vitals_plot”, “algorithm_plot”, and “timer_plot” are supported. The 
APPRAISE system expects to find these three configurations only. For now, this configuration is tightly 
coupled to the functionality of the appraise-vitals-plot module. 
 
Example: 
"algorithm_plot": { 
 "type": "algorithm_plot", 
 "parameters": { 
  "primary": "hypovolemia_risk" 
 }, 
 "tickFrequency": 2000, 
 "axis": { 
  "x": { 
   "mode": "30 Min" 
  }, 
  "y": { 
   "mode": "Fixed", 
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   "scale": "Log", 
   "ticks": [0.1, 1, 10], 
   "min": 0.07, 
   "max": 14 
  } 
 }, 
 "series": [ 
  { 
   "title": "appraisePath", 
   "parameter": "primary", 
   "legendLabel": "Hemorrhage Risk", 
   "type": "path" 
  }, 
  { 
   "title": "appraisePathGlow", 
   "parameter": "primary", 
   "type": "path-glow" 
  } 
 ] 
} 
 
parameters – Object whose arbitrary keys correspond to the series.parameter value. The contents of each 
parameter entry must an object with key “key” and a value that matches one of the entries in the 
parameter_library. 
 
tickFrequency – The time (in milliseconds) between plot updates. For example, 2000 would trigger the 
plots to update every two seconds. 
 
axis.X.mode – [15 min, 30 min, 1 hr] Specify the value of the x time scale duration dropdown.  
 
axis.Y.mode – [Fixed, Dynamic] Specify the value of the y scale dropdown to use either a fixed Y axis or a 
dynamic, auto-scaling Y axis. If Fixed is specified, include a min and max value. 
 
axis.Y.scale – [Log, Linear] Choose desired Y axis scale. Remember zero is undefined on a Log scale when 
specifying tick marks and Y scale minimum. 
 
axis.Y.ticks – Array of values to draw tick marks on the Y axis. 
 
series – An array of objects that correspond to the series on the plot (i.e. how to represent the data - linear 
interpolation, points, symbols). 
 
series.title – Unique label used internally to assign CSS classes and SVG groups. 
 
series.parameter – Corresponds to one of the parameters values to determine which data the series will 
represent. 
 
series.legendLabel – Legend label for the series (if falsey i.e. null, undefined, false the entry for the series 
will not be added to the legend) 
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series.type – [path, path-glow, circle, symbol, diff-bars, area] – Used to configure how the data should be 
represented. Linearly interpolated path, a circular point for each data point, a symbol for each data point. 
Diff-bars and area type require special data formats. Diff-bars require { t, value: [0, 1] } and area requires { t, 
sbp, dbp }. 
 
series.r – If series.type = circle, describes the radius of the points. 
 
series.symbol – [triangle-down, triangle-up] – If series.type = symbol, describes what type of symbol to use. 
Only two are implemented. Triangle-up (for diastolic data points) and triangle-down (for systolic data 
points). 
 
 
Application Configuration Validation 
 
The application heavily relies on the validity and accuracy of the app_configuration.json file. The 
app_configuration.json file is examined in two ways: a schema check and a “business logic” check. This 
validation process is found in local_modules/app_config_validation.json. 
 
This script first checks the given config against a JSON schema. The schema version “draft-04” described at 
http://json-schema.org. This schema is found in /app_configuration_schema.json. 
 
The config validation script then checks the given config’s “business logic” to enforce some assumptions in 
the software. For example, all parameter keys must be unique. The business logic validation includes: 

● Message Logic Validation 
○ EQ, NEQ, GT, GTE, LT and LTE tuple length === 3 
○ parameter property values exist in parameter library 
○ constant property values exist in constant library 
○ algorithm property values exist in algorithm library 
○ variable property values exist in variable library 

● Parameter Library 
○ parameter "key" values are unique 
○ if type === alarm or meta, subtype is required 

● Algorithm Library 
○ algorithm "key" values are unique 

● Constant Library 
○ constant names are unique 

● Variable Library 
○ variable names are unique 
○ logic validation 

● Message Library 
○ logic validation 

 
 
  

http://json-schema.org/
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Application Configuration Window 
 
In the host operating system’s tray or dock, the APPRAISE GUI will place an application icon.  
  

 
Figure: APPRAISE GUI system tray icon 

 
Clicking on the icon will reveal a dropdown menu. Selecting the “Open Configuration Window” option 
will create a new application window with a configuration form. The form can be used to change the 
configuration of the application and trigger the application to restart with the Restart App button at the 
bottom. 
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Figure: APPRAISE GUI configuration window 

 
Data Interface Type: Choose where to retrieve incoming data. GE Solar 8000i Serial, Data File Playback, or 
Fake Data Generator. 
 
Serial Options 
 
Serial Device: The physical port that the GE Solar is connected too. Typical /dev/tty.USB0 or similar. 
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Save Data Files to: All serial port traffic is saved to a file. Select which directory you’d like to save data too. 
Defaults to the OS specified temporary location. 
 
No Response Timeout: Specify, in milliseconds, how long the software should send messages to the Solar 
without a response before giving up. 
 
Session Timeout: Specify, in milliseconds, how long the software should wait, without receiving any vital 
signs data, before assuming the patient has left and starting a new session. 
 
Data Playback Options 
 
Data File: Specify the data file to playback with the “Data Interface Type” of “Data File Playback”. 
 
App Configuration 
 
Configuration File: If you’d like to use a custom app_configuration.json file, specify the location of your 
custom file here. 
 
Save Data Files to: Choose a directory to save application data. Every minute, the application saves the app 
state as described below in Data Persistence. 
 
Flowsheet Update Frequency: Specify, in seconds, how frequently rows of the Flowsheet should be created. 
 
Message Update Frequency: Specify, in seconds, how frequently messages should be calculated and 
potentially added to the display. 
 
Logging Options 
 
Console Log Level: If a console is open, specify which level of log messages you would like printed. The 
options are: 'error', 'warn', 'info', 'verbose', 'debug', 'silly', and 'none'. 
 
Save Log Files to: The software will persist a log file to the specified directory. In production mode, the file 
will contain level ‘info’, ‘warn’, and ‘error’ messages. 
 
 
Data Persistence 
 
The APPRAISE GUI persists data required for retrospective analysis. The current data persistence strategy 
is simplistic and will ideally be replaced with a database layer when time allows. Current, the software 
saves a JSON encoded text file to the hard drive every 60 seconds. This file is overwritten with the updated 
data and state information. Specifically, the system records: 

1. application configuration of the running system. This is typically read from a default file. This is the 
part of the system that contains the message library, parameter library, algorithm configurations, 
global variables, and plots configuration. The saved location is chosen by the user. If the 
configuration is changed, it should be noted. Config file is read only once at app startup. 
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2. session start time 
3. flowsheet - tabular representation of calculated parameters and algorithms q10sec. 
4. flowsheet buffer - arrays of “raw” data samples from the monitor for each connected parameter (i.e. 

ECG HR). A sample contains a timestamp, value, and sometimes metadata. NIBP alarms are included 
as a distinct parameter. The monitor is polled q2sec which would generate several data samples. 

5. message states - an object that lists the times at which a message was “active” although not necessary 
displayed. This simply tracks when the message logic is true. Message display is calculated just prior 
to displaying a new message every 30 seconds. 

6. message display - a list of the messages added to the UI with a timestamp (i.e. message ID 15 was 
displayed at 13:35). The six messages prior to any given time are the messages that were on the UI. 
This is updated q30sec after the message states. 

 
In addition, the all data received from the GE Solar’s serial port will be saved to a binary file. This can be 
re-parsed at a later time and represents a “comprehensive”, encoded data record. 
 
  



 

44 
 

APPENDIX II.A – SERIAL PORT INFORMATION 
 
The serial interface to the GE Solar 8000i has only one published function: write all available data from the 
Solar to a connected computer. This sole write function is executed when the requesting computer queries 
the Solar with the appropriate instruction (a call and response paradigm). This is the only operation that 
the APPRAISE software uses and the only operation available in the GE serial interface specification. The 
query sent to the Solar by APPRAISE, titled requestPacket, is described in exhaustive detail below. 
 
The data fields the Solar will transmit are not configurable. The Solar will transmit the data for all the 
connected parameters, if queried. It will not, however, transmit the admitted patient’s name through the 
serial interface. 
 
The Solar’s serial interface does not have the capability to affect the operation of the device. Common 
actions, like discharging a patient or zeroing a transducer, are not possible via the serial interface. (It should 
be noted that the vendor may provide unpublished mechanisms for accomplishing these actions, but the 
‘function’ and ‘subfunction’ codes are totally unknown. There is no way to know how to do this and the 
software does not allow the user to affect this in any way). 
 
 
GE’s Requirements for Serial Connection to Solar 8000i 
 
The GE Solar 8000i Serial Specification lists several requirements for connecting software to the monitor. 
 
Requirement: “Packet structure: Data bits 8; Parity None; Stopbits 1; Speed 9600 bps” 
The serial software used in APPRAISE is configured to communicate via standard “9600 8N1” format. This 
is shown with an excerpt from APPRAISE software code: 
new SerialPort(this.serialportDevice, { 
     baudrate: 9600, 
     databits: 8, 
     stopbits: 1, 
     parser: serialport.parsers.raw, 
   }, false); 
 
Requirement: “Polling frequency: Not more than once every 2 seconds” 
The minimum duration between requests from the software to the Solar is never less than 2 seconds. The 
only instances that the request packet is sent to the Solar monitor are when: 

● The app initially is opened 
● Two seconds after the receipt of a valid response from the Solar 
● A configurable, recurring time (default 5 seconds) after an unanswered request (this polling 

is meant to detect when a disconnected serial cable is reconnected). This polling continues every 5 
seconds until a configurable timeout (configurable; default 10 minutes). 

Laboratory testing has been done and found that the Solar will function soundly at polling frequencies as 
high as 250ms. The 2 second frequency mandated by the vendor, and adhered to by the APPRAISE 
software, is a generous duration that should not threaten the performance of the monitor. 
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Additionally, the GE Solar 8000i appends its serial response messages with a cyclic redundancy check 
(specifically a two byte CRC-16). This given CRC is compared to a calculated CRC value. The message is 
only accepted if the CRCs match. 
 
 
Request Packet Content 
 
Guaranteeing the software only sends the proper command to the Solar is of the highest importance. The 
following section aims to 1) describe, in exhaustive detail, the exact request packet format used for 
communication with the GE Solar monitor and 2) show that the APPRAISE software is precisely adhering 
to this format. 
 
GE Solar 8000i Serial Specification Request Packet Definition 
Copied from Serial Interface Data Services - Service Manual 2001005-128A 
 

 
(PLEASE NOTE: The sloppy arrow placements are present in the official manual.) 
 
GE Solar 8000i Serial Specification Request Packet Content Description 
Adapted from Serial Interface Data Services - Service Manual 2001005-128A 
 
dst_addr - The first byte of the destination address is always set to 64 when using the serial port 
connection. 
src_addr - The source address is not necessary. Set it to 0. 
fun_code - The function code specifies what action the server is to perform. To simply read data from 
the server a function code of 202 would be used. 
sub_code - The subfunction code further defines the request being sent to the server (Solar). The 
subfunction code 35 is sent to request polled parameters. 
version - Determines the message structure to be used. For serial port communications this value is 
always set to 1. 
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seq_num - Not used, set to 0. 
req_res - Not used, set to 0. 
proc_id - Not used, set to 0. 
oln - Not used, set to 0. 
return_status - Not used, set to 0. 
data_count - Not used, set to 0. 
CRC - Used to ensure the monitor’s response message is not corrupted during transmission (bit flips, 
missing bytes, faulty cable, etc) 
 
GE Solar 8000i Serial Specification Request Packet struct 
Copied from Serial Interface Data Services - Service Manual 2001005-128A 
 
typedef struct sbedside_msg_def 
{ 
 UTINY dst_addr[6];           /* destination address */ 
 UTINY src_addr[6];           /* source address */ 
 COUNT fun_code;              /* function code */ 
 COUNT sub_code;              /* subfunction code */ 
 COUNT version;               /* version of bed_msg */ 
 COUNT seq_num;               /* response sequence number */ 
 COUNT req_res;               /* request response flag */ 
 COUNT proc_id;               /* requestors process id */ 
 UTINY oln[32];               /* origin location name */ 
 COUNT return_status;         /* return status */ 
 COUNT data_count;            /* following message data count */ 
 COUNT CRC; 
} 
 
APPRAISE Application Serial Request Packet Generation Code: 
const requestPacket = Buffer.alloc(104); 
requestPacket[0] = 64; 
requestPacket[13] = 202; 
requestPacket[15] = 35; 
requestPacket[17] = 1; 
 
The requestPacket is “hard coded”. There is no way for it to be altered before or during operation of 
the APPRAISE application. This is the only Buffer sent to the serial port at any time. There is no logic or 
code path that can alter what is sent to the serial port or the content of the Buffer requestPacket. 
 
Testing the requestPacket: 
The accuracy of this operation was verified by connecting the serial cable to a terminal emulation program 
“screen” on a second computer. This emulation program observed requestPacket being properly 
emitted from the serial port during operation of the APPRAISE software. 
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APPENDIX II.B – COMPUTER SECURITY AND INFORMATION 
SAFETY 
 
Due to guidance issued by the MGH IRB and MGH Biomed department, the following requirements apply 
to the APPRAISE GUI pilot installation at MGH. 
 
The “client” computer running the APPRAISE software will be password protected. There is no user input 
into the initial revision of the software so the keyboard and mouse will be removed. The software will run 
in kiosk mode, meaning the user desktop will not be accessible to users. 
 
The computer will be collecting anonymous (de-identified) patient vital signs. There will be absolutely no 
patient identifying information on the computer. Additionally, the hard drive will be encrypted. 
 
The APPRAISE computer will not be connected to a network. The only external connection will be to the 
serial interface of the Solar. This configuration will prevent the computer from being compromised by a 
network-based attack vector, which is the most common method a computer receiving malware or a virus. 
To be safe, the computer will have a firewall configured and up-to-date anti-virus running. 
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APPENDIX II.C – SOFTWARE GLOSSARY 
 
Algorithm - The APPRAISE GUI makes several calculations based on vital signs parameter data which are 
collectively titled Algorithms. These Algorithms, along with Parameters, are recorded as columns in the 
Flowsheet. Any Flowsheet data that requires calculation or other parameter/algorithm as input are 
considered Algorithms. This includes, most notably, the hemorrhage risk index. For example, addition 
Algorithms include hemProbTransitionMediumToHigh which takes the hemorrhage index as input and 
returns true if it has risen over the High threshold. 
 
algorithm_library - Configured in app_configuration.json and entered into the application state at startup. 
The order matters - each Algorithm can take any Algorithm or Parameter listed before it as input. 
Algorithm key must be unique, as enforced by app_config_validation.js. Keys listed on the “parameters” 
property are unique to the script found at the “path” property value. 
 
Constant - When writing “logic” for the Messages in the app_configuration.json, it is very convenient to 
have an abstraction for reusing common thresholds or times. This enables the system thresholds to be 
adjusted in one location. Similar to Variables, the Constants allow numbers to be inserted into 
message.logic or other variables. For example, “constant: INITIAL_BP_GOAL_TIME” will insert the time 
allotted for taking the first cuff based blood pressure before the BP is considered late. 
 
constant_library - Configured in app_configuration.json and entered into the application state at startup. 
Contains the definitions of the configuration Constants. It is accessed whenever a key in a logic statement is 
“constant”. 
 
Device Interface - The interface between the APPRAISE application and a medical device. The Device 
Interface is responsible for IO with the device, parsing the bytes, translation of the data to a common 
format, and determining when a patient is connected to delineate Sessions. The APPRAISE system 
currently interfaces with the GE Solar 8000i via a serial port connection only. A data playback interface 
and a fake data generator are also available. 
 
Flowsheet - A tabular record of clinical data for each patient Session. The columns correspond to the 
parameters described in the parameter_library and algorithms described in the algorithm_library. The rows 
are calculated every n seconds (default: 10 seconds). 
 
FlowsheetBuffer - The Flowsheet rows are calculated every 10 seconds. During the 10 seconds between 
Flowsheet row calculations, data received from the Device Interface that match a metric needed for a 
Parameter are added to the FlowsheetBuffer. When a new Flowsheet row is calculated, the 
FlowsheetBuffer is read and all appropriate values are reduced to value for a cell in the Flowsheet table. 
The keys of the FlowsheetBuffer correspond to the intersection of Metric names that the APPRAISE GUI is 
interested in receiving and Metric names that have been provided by the Device Interface. 
  
Hemorrhage Index - A novel algorithm for assessing the likelihood of a patient requiring  blood 
products (RBCs ≥ 1) based on their current vital signs (HR and BP). This algorithm is displayed on 
the UI and used to determine which reminder messages are applicable. 
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local_modules - A directory in the code repository where a variety of scripts are located, including the 
algorithms, the playback and fake data interfaces, and the app_configuration validation. 
 
Message - A card displayed on the user interface that contains a picture/icon, title and short message. The 
message content relates to the current state of the patient (Flowsheet). The messages relate to clinical 
protocol adherence (e.g. “No crystalloid resuscitation”) and technical functionality (e.g. “Unable to 
determine hemodynamic state: no blood pressure available”).  
 
message_library - The messages that the system will display when the message criteria are met. The library 
is read from the file system from the app_configuration.json file. The message_library is stored in the app 
state. The message_library entries contain the title, content, and a logical statement that describes when to 
display the message. The message_library is described in detail above. 
 
Metric - Metrics are the unique data types provided by the Device Interface. Metric names are defined by 
ISO 11073-10101 and maintained by NIST Harmonized Rosetta Terminology Mapping (hRTM). These 
names provide a standardized approach to encoding physiological concepts. For example, the patient’s heart 
rate, as measured by an electrocardiogram in beats per minute, is encoded as “MDC_ECG_HEART_RATE” 
with units “MDC_DIM_BEAT_PER_MIN”. 
 
metric_list - An array of Metric names created when the parameter_library is imported that represents all 
Metrics the APPRAISE GUI is interested in receiving. This list is used to determine whether an incoming 
message from the Device Interface should be added to the Flowsheet Buffer. 
 
Parameter - A Parameter is a summarization of a measurement made by the device connected to the Device 
Interface (e.g. hrMedian2min which would correspond to the median value of the heart rate 
measurements from the previous two minutes). 
 
parameter_library - Configured in app_configuration.json and entered into the application state at startup. 
The parameter_library describes the Parameters to record in the Flowsheet (the columns). The parameters 
in the parameter_library contain a parameter name that corresponds to the metric title in the data from the 
Device Interface as well as the method to reduce the parameter data (average, median, count, etc). 
 
Session - A unique patient encounter. The Device Interface will determine if there has been a gap in the 
data stream from the patient. A gap in the data is defined by either the patient discard button being pressed 
on the monitor or a 10 minute time continuous interval where no new ECG HR, SpO2, or NIBP data are 
received. When a gap is detected, the current session is set to no_patient. When a new valid measurement 
is received, the Session name is set to the date and time. 
 
Variable - When writing “logic” for the Messages in the app_configuration.json, it is very convenient to 
have an abstraction for reusing branches of your logic statement. Similar to Constants, the Variables allow 
logic statements to be inserted into message.logic or other variables. The variables follow the same syntax as 
message.logic. For example, “algorithm: FAILED BP” is used to encapsulate the logic for when blood 
pressure measurements are absent or have failed. 
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variable_library - Configured in app_configuration.json and entered into the application state at startup. 
Contains the definitions of the configuration Variables. It is accessed whenever a key in a logic statement is 
algorithm. 
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APPENDIX II.D – APPLICATION STATE EXAMPLE 
 

The top level keys are: currentSession, sessions, parameterLibrary, variableLibrary, algorithmLibrary, 
messageLibrary, plots, metricList, and constantLibrary. The libraries and plots come directly from 
app_configuration.json (with) and are described  
 
 
{ 
  "currentSession": "20161206_1226_playback=23", 
  "sessions": { 
    "20161206_1226_playback=23": { 
      "startTime": 1481045162422, 
      "flowsheet": [ 
        { 
          "t": 1481045190003, 
          "hrMedian2min": 114, 
          "hrMedian1min": 114, 
          "hrCount": 24, 
          "hrLastValue": 126, 
          "hr2minStdDev": 6.619494567815079, 
          "hypovolemia_risk": null, 
          "sysBp_diff": null, 
          "diaBp_diff": null, 
          "high_heme_prob_time": null, 
          "dbpTransition120": false, 
          "hemProbTransitionMedium": false, 
          "hemProbTransitionHigh": false 
        }, 
        { ... }, 
        { ... }, 
        { ... }, 
        // ...truncated for clarity 
      ], 
      "flowsheetBuffer": { 
        "MDC_ECG_HEART_RATE": [ 
          { 
            "value": 103, 
            "t": 1481045166445, 
            "meta": { 
              "highLimitViolation": false, 
              "leadFail": false, 
              "lowLimitViolation": false 
            } 
          }, 
          { 
            "value": 109, 
            "t": 1481045167445, 
            "meta": { 
              "highLimitViolation": false, 
              "leadFail": false, 
              "lowLimitViolation": false 
            } 
          } 
          { ... }, 
          { ... }, 
          { ... }, 
          // ...truncated for clarity 
        ] 
      }, 
      "messageStates": [ 
        { 
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          "id": 0, 
          "active": true, 
          "startTime": [ 
            1481045190003 
          ] 
        } 
        // ...truncated for clarity 
      ], 
      "messageDisplay": [ 
        { 
          "id": 0, 
          "displayTime": 1481045190003 
        } 
        // ...truncated for clarity 
      ] 
    } 
  }, 
  "parameterLibrary": { 
    "hrMedian2min": { 
      "metric": "MDC_ECG_HEART_RATE", 
      "type": "parameter", 
      "subtype": "value", 
      "aggregation": "median", 
      "time_filter": 120000 
    }, 
    "hrMedian1min": { ... }, 
    "fakeParameter": { ... }, 
    "hrCount": { ... }, 
    "hrLastValue": { ... }, 
    "hr2minStdDev": { ... }, 
    "hrLeadsFail2minCount": { ... }, 
    "nibpSys1minAvg": { ... }, 
    "nibpDia1minAvg": { ... }, 
    "nibpMean1minAvg": { ... }, 
    "nibpSysRowAvg": { ... }, 
    "nibpDiaRowAvg": { ... }, 
    "nibpSysLastValue": { ... }, 
    "nibpDiaLastValue": { ... }, 
    "nibpSysCount": { ... }, 
    "nibpDiaCount": { ... }, 
    "nibpSysCount10min": { ... }, 
    "nibpFailedAttempts1minCount": { ... }, 
    "nibpFailedAttemptsCount": { ... }, 
    "spo22minMedian": { ... }, 
    "spo22minStdDev": { ... }, 
    "spo2SigQual2minAvg": { ... } 
  }, 
  "variableLibrary": { 
    "HEME_PROB_LOW": ["LT", 
      { "algorithm": "hypovolemia_risk" }, 
      { "constant": "HEME_PROB_MEDIUM_THRESHOLD" } 
    ], 
    "HEME_PROB_MEDIUM": ["AND", 
      ["GTE", 
        { "algorithm": "hypovolemia_risk" }, 
        { "constant": "HEME_PROB_MEDIUM_THRESHOLD" } 
      ], 
      ["LT", 
        { "algorithm": "hypovolemia_risk" }, 
        { "constant": "HEME_PROB_HIGH_THRESHOLD" } 
      ] 
    ], 
    // ...truncated for clarity 
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  }, 
  "algorithmLibrary": [ 
    { 
      "key": "hypovolemia_risk", 
      "parameters": { 
        "hrKey": "hrMedian2min", 
        "bpSysKey": "nibpSysRowAvg", 
        "bpDiaKey": "nibpDiaRowAvg", 
        "bpCountKey": "nibpSysCount" 
      }, 
      "path": "appraise" 
    }, 
    { 
      "key": "sysBp_diff", 
      "parameters": { 
        "key": "nibpSysRowAvg" 
      }, 
      "path": "diff" 
    } 
    // ...truncated for clarity 
  ], 
  "messageLibrary": { 
    "0": { 
      "name": "For Trauma Patients Only", 
      "text": "New session: APPRAISE protocol reminder system", 
      "category": "general", 
      "critical": true, 
      "icon": "caution_symbol", 
      "logic": ["LT", "elapsedTime", 10800000], 
      "id": 0 
    }, 
    "1": { 
      "name": "Prepare for Transport", 
      "text": "If high-risk patient: fluid bags, travel monitor, etc. should be readied 
for travel", 
      "category": "general", 
      "critical": false, 
      "icon": "patient_transport", 
      "logic": ["AND", 
        ["GT", "elapsedTime", 960000], 
        ["LT", "elapsedTime", 1200000], 
        { "variable": "HEME_PROB_MEDIUM" } 
      ], 
      "id": 1 
    }, 
    "2": { 
      "name": "Repeat Cuff BP", 
      "text": "Most recent DBP may not be accurate (too high); repeat cuff BP to 
confirm", 
      "category": "monitoring", 
      "critical": false, 
      "refractory": 600000, 
      "icon": "bp_cuff", 
      "logic": ["OR", 
        ["AND", 
          ["GTE", { "parameter": "nibpDiaLastValue" }, 120], 
          ["EQ", { "parameter": "nibpDiaCount" }, 1] 
        ], 
        { "algorithm": "dbpTransition120" } 
      ], 
      "id": 2 
    }, 
    // ...truncated for clarity 
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  }, 
  "plots": { 
    "vitals_plot": { ... }, 
    "algorithm_plot": { 
      "type": "algorithm_plot", 
      "parameters": { 
        "primary": "hypovolemia_risk" 
      }, 
      "tickFrequency": 2000, 
      "axis": { 
        "x": { 
          "mode": "30 Min" 
        }, 
        "y": { 
          "mode": "Fixed", 
          "scale": "Linear", 
          "ticks": [ 
            1, 
            50, 
            100 
          ], 
          "min": 0, 
          "max": 100 
        } 
      }, 
      "series": [ 
        { 
          "title": "appraisePath", 
          "parameter": "primary", 
          "legendLabel": "Probability (%)", 
          "type": "path", 
          "data": [] 
        }, 
        { 
          "title": "appraisePoints", 
          "parameter": "primary", 
          "type": "circle", 
          "r": 2, 
          "data": [] 
        } 
      ], 
      "containerId": "algorithmPlot" 
    } 
  }, 
  "metricList": [ 
    "MDC_ECG_HEART_RATE", 
    "THIS_DOESNT_EXIST", 
    "MDC_ALARM_ECG_HEART_RATE", 
    "MDC_PRESS_CUFF_SYSTOLIC", 
    "MDC_PRESS_CUFF_DIASTOLIC", 
    "MDC_PRESS_CUFF_MEAN", 
    "MDC_ALARM_PRESS_CUFF", 
    "MDC_PULS_OXIM_SAT_O2" 
  ], 
  "constant_library": { 
    "HEME_PROB_MEDIUM_THRESHOLD": 0.09, 
    "HEME_PROB_HIGH_THRESHOLD": 1, 
    "HEME_PROB_VERYHIGH_THRESHOLD": 7, 
    "CT_OR_GOAL_TIME": 1200000, 
    "INITIAL_BP_GOAL_TIME": 600000 
  } 
} 
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APPENDIX II.E – INSTALLATION INSTRUCTIONS 
 

Prerequisites: 
 

1. Install Node.js from https://nodejs.org/en/ or a package manager of your choosing 
2. We need to be able to compile binaries on our system. It is required by the node-gyp tool to 

enable compiling node.js “native addon” code (e.g. C/C++ code to communicate with a serial-port). 
Installation instructions can be found here: https://github.com/nodejs/node-gyp#installation 

a. Regardless of platform, Python 2.7 should be installed. 
b. Unix: you will need make and a compiler like gcc 
c. MacOS: install make and gcc via Command Line Tools (Xcode -> Preferences 

-> Downloads) 
d. Windows: Additional instructions for installation in Windows can be found 

here: https://github.com/nodejs/node-gyp/wiki/Visual-Studio-2010-Setup 
e. You are not required to install node-gyp globally (-g) but node-gyp 

recommends it 
 
 

Install and Run APPRAISE (development): 
 

1. Copy and extract the source code zip file to a location of your choice (we’ll call it the 
project directory from here on) 

2. Open a terminal or command prompt and navigate to the project/appraise directory. 
This is the main directory of our application. 

3. Install required /node_modules/ via `npm install`. This will install all dependencies 
and devDependencies listed in the package.json file. 

a. Additionally, this step will compile node addon binaries for the current 
platform architecture automatically using the postinstall script found in 
package.json. (This is where node-gyp is invoked under the hood of electron-rebuild) 

4. Run the software with `npm run go`. This will invoke the go script in  package.json. 
a. npm run go will invoke a code packaging routine via webpack then start the 

software 
i. Specifically, webpack.config.js will use app/index.js 

to create app/index.bundle.js and app/index.bundle.js.map as defined 
in the webpack config file 

b. Why is cross-env NODE_ENV= needed? 

https://nodejs.org/en/
https://github.com/nodejs/node-gyp#installation
https://github.com/nodejs/node-gyp/wiki/Visual-Studio-2010-Setup
https://github.com/electron/electron-rebuild
https://webpack.js.org/
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i. NODE_ENV affects the webpack builds as well as file paths in 
main.js 

ii. If running from a local development environment (as described 
above), the code is packaged and run with the NODE_ENV environment variable set 
to ‘development’. This points file paths to the local directory and does not “minify” 
the code. 

iii. When the code is packaged and installed as an application (as 
opposed to running from terminal) the NODE_ENV is set to ‘production’. This 
minifies the code and points files to an .asar archive in application. 

iv. Trying to run the software with the wrong NODE_ENV (i.e. 
locally in production or application in development) will potentially produce errors. 

5. Click on the  icon in system tray or menu bar and select “Open Configuration Window”. 
The under “Data Interface Type:” select “Fake Data Generator” then press “Restart App” at the 
bottom. This will replace the serial port interface with arbitrary vital signs data to allow you use the 
system with the bedside monitor. 

 
 
Creating an Installer (production): 
 

1. In a terminal or command prompt, navigate to the appraise repository and enter `npm run 
package` 

a. This command uses electron-builder. It will compile code with your current 
architecture as the target. 

 
 

https://github.com/electron-userland/electron-builder
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Abstract
Purpose: Measurement error and transient variability affect vital signs. These issues are inconsistently
considered in published reports and clinical practice. We investigated the association between major
hemorrhagic injury and vital signs, successively applying analytic techniques that excluded unreliable
measurements, reduced transient variation, and then controlled for ambiguity in individual vital signs
through multivariate analysis.
Methods: Vital sign data from 671 adult prehospital trauma patients were analyzed retrospectively.
Computer algorithms were used to identify and exclude unreliable data and to apply time averaging. An
ensemble classifier was developed and tested by cross-validation. Primary outcome was hemorrhagic
injury plus red cell transfusion. Areas under receiver operating characteristic curves (ROC AUCs) were
compared by the test of DeLong et al.
Results: Of initial vital signs, systolic blood pressure (BP) had the highest ROC AUC of 0.71 (95%
confidence interval, 0.64-0.78). The ROC AUCs improved after excluding unreliable data, significantly
for heart rate and respiratory rate but not significantly for BP. Time averaging to reduce temporal
variability further increased AUCs, significantly for BP and not significantly for heart rate and
respiratory rate. The ensemble classifier yielded a final ROC AUC of 0.84 (95% confidence interval,
0.80-0.89) in cross-validation.
Conclusions: Techniques to reduce variability in vital sign data can lead to significantly improved
diagnostic performance. Failure to consider such variability could significantly reduce clinical
effectiveness or confound research investigations.
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1. Introduction

Vital signs measurement is a routine aspect of clinical
practice and research protocols. Although it is known that
transient variability and measurement error can, in principle,
affect the accuracy of vital signs, what is unknown is the
extent to which these factors affect diagnostic capabilities in
actual clinical practice. Vital signs fluctuate through time
because of transient perturbations (eg, medication boluses,
bouts of pain, anxiety, coughing) as well as natural steady-
state variability. In addition, the accuracy of vital sign data is
affected by clinicians' technique [1]. For example, accurate
blood pressure (BP) measurement using a cuff requires
proper fit and positioning of the cuff, a relaxed and properly
positioned extremity, and the absence of patient motion [2].
Significant discrepancies have been reported between
different methods of measuring noninvasive BP [3].
Similarly, respiratory rate (RR) measurement is prone to
technical error, whether measured by a clinician [4] or by a
bedside monitor via impedance pneumography (IP) [5]. In
one report, both triage nurses' measurements of RR and
electronic measurement of RR revealed poor sensitivity for
bradypnea and tachypnea, and the authors referred to RR as
“the vexatious vital”[4]. Heart rate (HR) monitored by
electrocardiography (ECG) can be unreliable, that is, if
electrodes are improperly affixed, and false arrhythmia
alarms are commonplace [6]. Multiple authors have called
into question the value of HR in assessing the hemodynamic
state of a patient because of its variable relationship with
hypovolemia [7,8]. Finally, it is worth noting that the
accuracy of vital sign data may vary considerably for
different makes and models of measurement devices [9-11].

The extent to which these factors affect diagnostic
capabilities in actual practice is relevant to the design and
interpretation of clinical investigations. If vital sign data were
often polluted by inaccuracies, then there would be a bias
toward the null hypothesis, where positive study effects
might be masked (ie, type II study errors). Alternatively,
failure to describe key methodology that improved vital sign
accuracy (eg, superior equipment, training, or study pro-
tocols) would make it harder for others to replicate a
successful study. Consider that some reports support the
usefulness of prehospital severity scores for trauma patients
[12-14], whereas other studies found those scores ineffective
[15,16]. In these examples, the reports lacked any explicit
consideration of the measurement apparatus, clinical pro-
tocols, and quality assurance processes related to vital sign
measurements; and inconsistency in how vital signs were
measured could have contributed to the heterogeneous
findings. More broadly, there are diverse sets of conflicting
reports with a shared failure to detail vital sign measurement
methodology, for example, the risk of volume resuscitation
of trauma patients with uncontrolled hemorrhage [17,18], the
benefit of rapid response teams for inpatients with physio-
logic deterioration [19-22], and the benefit of early goal-

directed resuscitation for septic shock [23]. It is possible that
different approaches to vital sign measurements contributed
to the inconsistencies of the reports' findings.

We investigated the association between standard vital
signs and major hemorrhagic injury in a population of
prehospital trauma patients using computational techniques
that excluded unreliable measurements, reduced transient
perturbations, and reduced ambiguity of individual vital
signs. We compared these results with conventional
analyses. The findings are applicable to the clinical
evaluation of hemorrhage, which is the single most treatable
cause of mortality in trauma patients [24,25]. Moreover, the
findings may relate to a range of applications because the
extent to which different analytic methods yield significantly
different results indicates the importance of considering
these factors in clinical practice and research studies.

2. Materials and methods

2.1. Clinical data collection

This was a retrospective analysis of a database, originally
collected and analyzed by Cooke et al [26] with institutional
review board approval, of trauma patients during transport
by air ambulance from the scene of injury to a level I trauma
center [26]. Between August 2001 and April 2004, the
following physiologic data were measured in a convenience
sample by Propaq 206EL monitors (Protocol Systems,
Beaverton, Ore) and archived using a networked personal
digital assistant: ECG and IP recorded at 182 and 23 Hz,
respectively; the corresponding HR and RR output at
1-second intervals; and systolic BP (SBP) and diastolic BP
(DBP) measured intermittently at multiminute intervals.
Clinical data were collected during retrospective chart
review, including demographics, prehospital interventions,
hospital treatments, and injury descriptions. Subsequently,
vital sign data from 788 patients were uploaded to our data
warehousing system [27]. Protected health information was
not included.

All data analysis was performed using MATLAB v7
(MathWorks, Natick, Mass).

2.2. Vital sign reliability

For each vital sign value, reliable data were identified
by automated algorithms that rated each datum on an
integer scale of 0 to 3 from least reliable to most reliable.
Vital sign data rated 2 or 3 were considered reliable;
otherwise, they were unreliable. Detailed descriptions of
these algorithms have been previously reported [28-30].
Here, we provide an overview of the methodology. The
algorithms analyze moving windows of physiologic data.
The algorithms rate the reliability of vital signs computed
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from the data windows based on (1) a computerized
assessment of the ECG or IP waveforms' reliability and (2)
a comparison between the rates output by the Propaq
206EL vs an independent calculation of the HR or RR
performed by the algorithm. In practice, when waveforms
demonstrate clear, rhythmic beats or breaths and the rates
output by the Propaq 206EL match the algorithms' own
calculations, then the corresponding HR or RR is rated as
reliable. Conversely, when the waveforms are noisy with
irregular, heterogeneous beats or breaths and/or there were
major discrepancies between the rates output by the Propaq
206EL vs the algorithms' own calculations, then the HR or
RR is rated as unreliable. The underlying rationale is the
assumption that clean ECG or IP waveforms lead to
reliable HR or RR measurements and that HR or RR tends
to be reliable when 2 independent calculation methods
yield similar results.

In prior validation, the reliability rating of RR using the
automated algorithms typically concurred with clinicians
who independently applied the reliability criteria to a set of
test cases [28,30]. In 99% of the test cases, the automated
algorithm agreed with the clinician RR rating (±1 level),
where high RR reliability ratings were found to be
associated with smaller differences between computer-
calculated and human-calculated RR (average differences
of 1.7 and 8.1 breaths per minute for the best and worst
RR reliability ratings, respectively). Likewise, there was
close agreement (within ±5 beats per minute) between
computer-calculated and human-calculated HR in 97% of
the test cases rated 2 or 3 by the automated HR reliability
algorithm [30].

The BP reliability algorithm determined if the ratio
between SBP, DBP, and mean pressure is physiologic and
if the HR measured by the inflatable oscillometric cuff
matches the ECG HR [29]. The algorithm does not attempt
to distinguish between unequal HRs because of motion
artifact vs unequal HRs because of nonperfusing electrical
beats, for example, premature contractions; in the latter case,
it would be possible for reliable BP data to be misclassified
as unreliable.

2.3. Subject selection

The primary study population consisted of patients with
any reliable vital sign datum within the initial 15 minutes of
prehospital monitoring. We also studied 3 subgroups:
patients with pairs of at least 1 reliable and 1 unreliable (a)
HR, (b) RR, and (c) BP. In the primary analysis, we excluded
the “ambiguous outcome” patients who received red blood
cell (RBC) transfusions but lacked documented injuries that
were indisputably hemorrhagic (see below). These cases
were reincluded in sensitivity analyses (see below). Also
excluded were the few patients who died before any
diagnostic imaging or surgical exploration, when it could
not be determined whether the patient died to major
hemorrhage vs other critical pathology.

2.4. Primary outcome

Major hemorrhagic injury was defined as a documented
injury that unequivocally causes some loss of blood volume
(laceration or fracture of a solid organ, thoracic or abdominal
hematoma, vascular injury that required operative repair, or
limb amputation) and RBC transfusion within 24 hours.

2.5. Comparison of reliable vs unreliable vital signs

We computed the patients' proportions of reliable vital
signs (median and interquartile range). For the 3 subgroups
with at least 1 reliable and 1 unreliable vital sign—HR, RR,
and BP—we computed each patient's mean of the reliable
and of the unreliable data and compared the population mean
of the subjects' means with Student t test for paired data
(note that the t test is valid for normal and nonnormal
distributions as long as there are enough subjects per
distribution, eg, 30 or more [31]).

To compare diagnostic performance, we repeated the
following statistical computation 100 times for each vital
sign: from each patient, we randomly selected 1 reliable and
1 unreliable measurement, then computed receiver operating
characteristic (ROC) curves for the selected reliable and the
unreliable data using the method of DeLong et al [32]. We
computed the difference between the areas under those
curves (ROC AUCs) and averaged the results from the 100
cycles. This methodology avoided biases due to those
patients with a surplus of measurements and unequal ratios
of reliable vs unreliable measurements between patients.

2.6. Association between vital signs and major
hemorrhagic injury within the initial 15 minutes

For each vital sign, we computed the univariate ROC
AUC for (a) the first nonzero value, (b) the first reliable
value, (c) the last reliable value, and (d) the average of all
reliable values within 15 minutes.

We performed multivariate analysis using ensemble
classification, a collection of multivariate regression models.
Each of the models within the ensemble is a standard linear
regression model, and their outputs are simply averaged to
yield the ensemble classifier output [33]. Ensemble classi-
fication is able to classify subjects with incomplete data, as is
explained below. This property was important because many
patients lacked reliable data for every vital sign.

Each regression model within the ensemble used 1, 2, or 3
of the following parameters: HR, RR, SBP, and SBP − DBP.
Thefinal ensemblewas composed of all possible combinations
(14 total regression models). We applied cross-validation,
randomly partitioning 50% of the study population for
classifier training. Each model was trained using the subset
of patients who possessed at least 1 reliable measurement of
each model parameter within the initial 15 minutes, using the
average of all reliable values from the initial 15 minutes. Next,
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we tested the ensemble classifier in the remaining 50% of the
patients. For each patient, we only used those regression
models for which the patient had the necessary reliable data
during the initial 15 minutes and used the models' average
output as the final output. This process was repeated for 100
cycles, each time randomly repartitioning the patients into
training/testing sets. We computed the mean ROC AUC of
those 100 testing cycles.

2.7. Sensitivity analyses

We repeated the ensemble classification using 4 alterna-
tive methodologies: (a) reinclusion of the “ambiguous out-
come” patients, treating them as nonhemorrhage control
cases; (b) redefining “major hemorrhagic injury” as a docu-
mented hemorrhagic injury, as above, plus RBC transfusion
or at least 3 L of crystalloid infusion; (c) redefining “major
hemorrhagic injury” as the receipt of at least 5 U of RBC

regardless of the documented injuries; and (d) using reliable
vital sign data from only the initial 10 minutes.

3. Results

The database had 788 records with at least 1 nonzero vital
sign datum. One hundred seventeen cases were excluded
(105 were “ambiguous outcome” cases subsequently rein-
troduced in the sensitivity analysis described below, whereas
12 lacked any reliable vital sign data). Table 1 shows the
population characteristics, with 12% having major hemor-
rhagic injury, 17% with prehospital intubation, and 6%
overall mortality. Respiratory rate data had the lowest rate of
reliability, whereas BP data had the highest.

Table 2 shows reliable data compared with unreliable
data. Unreliable measurements of HR, RR, and SBP all had
significantly elevated values vs their reliable counterparts
and tended to have reduced ROC AUCs.

Table 3 reports the cumulative diagnostic yields of
the investigative techniques. The ROC AUCs were signi-
ficantly improved for initial HR and initial RR when relia-
bility was considered. The ROC AUCs were significantly
improved for SBP when the average of all its reliable values
was used, whereas these were nonsignificantly increased
for the average of reliable HR or RR. (In regard to the
effects of mechanical ventilation on RR, the average of all
reliable RR yielded an ROC AUC of 0.72 [95% confidence
interval {CI}, 0.62-0.80] for spontaneously breathing
patients and 0.64 [95% CI, 0.46-0.78] for mechanically
ventilated patients.)

Applied to all 671 patients in the study population, the
ensemble classifier yielded an ROC AUC of 0.84 (95% CI,
0.80-0.89) in cross-validation. This AUC was significantly
greater than any univariate vital sign. The classifier could
identify 36% of major hemorrhagic injury cases with greater

Table 1 Population description

Characteristic Study population

Population size, n 671
Male/female, n a 498/172
Age (y), mean (SD) 38 (15)
Blunt injury, n (%) 596 (89)
Mortality, n (%) 41 (6)
Prehospital intubation, n (%) 115 (17)
Major hemorrhagic injury, n (%) 78 (12)
% Reliable HR for patient, median (IQR) 62 (4-84)
% Reliable RR for patient, median (IQR) 16 (0-45)
% Reliable SBP for patient, median (IQR) 100 (83-100)

Patients with at least 1 reliable vital sign datum within 15 minutes after
exclusion of cases who received RBC transfusions but lacked
documented injuries that were indisputably hemorrhagic (see text for
details). IQR indicates interquartile range.

a Sex unknown for 1 patient in the database.

Table 2 Reliable compared with unreliable vital signs

Vital
sign

Population with
at least 1 reliable
and 1 unreliable
vital sign, n

Patients with
major
hemorrhagic
injury, n (%)

Patients'
proportion of
reliable data (%),
median (IQR)

Reliable data,
mean (SD)

Unreliable data,
mean (SD)

Reliable vs
unreliable data,
P value
(Student t test)

Unreliable vital signs:
ΔROC AUC for Dx
of major hemorrhagic
injury, mean
(upper/lower range)

HR 632 72 (11) 65 (7-85) 95 (20) 99 (20) b.001 a −0.02 (−0.05/+ 0.01)
RR 388 52 (13) 39 (20-61) 27 (7) 37 (17) b.001 a −0.11 (−0.18/−0.03)
SBP 217 34 (16) 75 (67-86) 127 (22) 138 (37) b.001 b −0.12 (−0.21/−0.03)
DBP 221 34 (15) 75 (67-86) 72 (15) 76 (75) NS −0.02 (−0.09/+ 0.04)

Populations included only those patients determined to have at least 1 reliable and 1 unreliable vital sign measurement, according to the reliability algorithms,
at any time during their transport. Shown are the patients' means of reliable vs unreliable data for all patients (computing first the mean of each patient and
then computing the mean of the patients' means). Student t test for paired data was used to test for significant differences between patients' means. Finally,
the change in ROC AUC in the diagnosis of major hemorrhagic injury is shown, when one random unreliable measurement was used in place of a random
reliable measurement (see text for details of this calculation). NS indicates not significant. Dx indicates diagnosis.

a Reliable vs unreliable data are also significant (P b .001) in hemorrhage cases alone and in control cases alone.
b Reliable vs unreliable data are also significant in hemorrhage cases alone (P = .01) and in control cases alone (P b .001).
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than 60% positive predictive value (PPV) and greater than
85% of hemorrhage cases with 24% PPV (Fig. 1).

The sensitivity analyses yielded the following ROC
AUCs for major hemorrhagic injury, which were similar

to the primary analysis: (a) inclusion of the ambiguous
outcome patients, 0.82 (95% CI, 0.77-0.87); (b) use of RBC
transfusion or at least 3 L of crystalloid infusion as the
outcome, 0.83 (95% CI, 0.79-0.87); (c) inclusion of

Table 3 Areas under receiver operating characteristic curves for the diagnosis of major hemorrhagic injury with application of vital sign
reliability criteria, time averaging, and multivariate (ensemble) classification

Vital sign Population ROC AUC (95% CI)

First nonzero First reliable Last reliable All reliable

HR At least 1 reliable HR (n = 625) 0.60 (0.53-0.68) 0.71 (0.63-0.77) a 0.72 (0.65-0.78) a 0.73 (0.65-0.79) a

RR At least 1 reliable RR
and intubated (n = 85)

0.52 (0.46-0.58) 0.64 (0.55-0.72) a 0.63 (0.53-0.71) 0.67 (0.58-0.75) a

RR At least 1 reliable RR and
spontaneous breathing (n = 313)

0.55 (0.48-0.61) 0.64 (0.53-0.74) 0.68 (0.56-0.77) a 0.72 (0.62-0.80) a

SBP At least 1 reliable SBP (n = 648) 0.71 (0.64-0.78) 0.74 (0.67-0.80) 0.77 (0.70-0.83) 0.79 (0.73-0.85) a,b

DBP At least 1 reliable DBP (n = 648) 0.62 (0.54-0.69) 0.64 (0.56-0.71) 0.64 (0.56-0.71) 0.63 (0.55-0.71)
Ensemble classifier At least 1 reliable HR or reliable

RR or reliable SBP (n = 671)
NA NA NA 0.84 (0.80-0.89) c

Ensemble classification was applied to the overall study population. For RR, results are also provided separately for intubated patients and for spontaneously
breathing patients. The method of DeLong [32] for paired data was used to test for statistically significant differences of ROC AUCs. NA indicates
not applicable.

a ROC AUC significantly (P b .05) increased vs ROC AUC for “first nonzero” value.
b ROC AUC significantly (P b .05) increased vs ROC AUC for “first reliable” data.
c Ensemble ROC AUC significantly increased vs ROC AUC for “all reliable” HR data (P b .001), “all reliable” RR data (P b .001), “all reliable” SBP

data (P b .05), and “all reliable” DBP data (P b.001).

Fig. 1 Histograms of basic vital signs and of the multivariate ensemble classifier for major hemorrhagic injury cases vs control cases.
Histograms for each basic vital sign (HR, RR, SBP, and DBP) using the first nonzero value and the output of the multivariate ensemble
classifier (using cross-validation with distinct training/testing data; see text for details). Patient populations for each histogram correspond to
the populations in Table 3, whereas multivariate ensemble classification was applied to the entire study population. Right: Ensemble output
(testing data) averaged from 100 iterations of cross-validation. Using one cutoff, ensemble classification yielded a sensitivity of greater than
85% and a PPV of 24%; patients below this threshold lie in the green background field. Using an alternative cutoff, ensemble classification
offered a sensitivity of 36% and a PPV of greater than 60%; patients above this threshold lie in the red background field. ⁎Green zone: 383
control cases and 11 major hemorrhagic injury cases; †yellow zone: 192 control cases and 39 major hemorrhagic injury cases; ‡red zone: 18
control cases and 28 major hemorrhagic injury cases.
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ambiguous outcome patients and changing the outcome
to the receipt of at least 5 U of RBC, 0.81 (95% CI, 0.76-
0.86); and (d) use of only the initial 10 minutes, 0.81 (95%
CI, 0.76-0.86).

4. Discussion

We found that accounting for measurement error and
physiologic variability can significantly improve the associ-
ation between vital signs and major hemorrhagic injury. Vital
signs may be more informative about a trauma patient's
circulatory state than previously appreciated in reports that
did not explicitly consider these factors [26,34-36]. More-
over, these findings may inform the design and interpretation
of a range of clinical trials that involve vital signs and how
vital signs are used in clinical practice. The implications are
cautionary, suggesting that such factors are important to
consider. At the same time, these findings also suggest
potential solutions.

The computational techniques used in this analysis have
been previously described [28-30,33,37,38]. Here, the
techniques were integrated to determine their cumulative
effects in a population of trauma patients. These techniques

significantly improved the association of vital signs and
major hemorrhagic injury without the need for consideration
of the patients' baseline vital signs, administration of
medications, anatomical location of the injury, age, or
mechanism of injury. Applied cumulatively, diagnostic
performance exceeded prior reports on the individual
techniques [33]. The vital sign patterns correctly classified
by these techniques were not always self-evident by eye
(eg, Fig. 2).

4.1. Clinical implications

We have shown that reliable vital sign data have a
significantly higher association with a life-threatening
pathophysiology, even as unreliable measurements were
commonplace (Table 1). These findings support the
adherence to proper vital sign measurement techniques;
even better than excluding unreliable data, as was done in
this retrospective study, would be reducing unreliable
measurements in the first place. When procuring monitoring
apparatus, it would be desirable to prioritize makes and
models that possess maximum accuracy [11-13]. In addition,
the study implies a potential benefit to continuing training of
clinical staff to enhance the diagnostic value of vital sign

Fig. 2 Case examples for which the presence or absence of major hemorrhagic injuries can be identified by patterns in the vital signs. Both
cases had HRs of more than 120 beats per minute and normotension. In patient 1, the ensemble multivariate classifier—which weighs the HR,
RR, and systolic and pulse pressures—indicated that major hemorrhagic injury was unlikely (ie, the classifier output lay in the low-risk green
zone, with a 97% negative predictive value; see Fig. 1). Patient 1 did not require RBC transfusion and was diagnosed with a cerebral contusion
and a neck injury without major vascular involvement. In patient 2, the ensemble multivariate classifier indicated that major hemorrhagic
injury was probable (ie, the classifier output lay in the high-risk red zone, with a 60% PPV; see Fig. 1). Patient 2 had a grade III liver laceration;
a fractured, disrupted pelvis; and a femur fracture and received 3 U of RBC. Thin lines and open triangles indicate unreliable data according to
the automated algorithms; thick lines and solid triangles indicate reliable data.
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measurement. Sources of unreliable vital sign data include
poor electrode placement (eg, chest hair causing poor skin
adhesion), excessive patient movement, and poor placement
of BP cuffs. It would be truly revealing to study,
prospectively, which sources of error are the most problem-
atic and whether the association between vital signs and
pathology can be enhanced through focused training.

Certain techniques suggested by this report might be
applied at the bedside to assess the state of the casualty.
For example, when patients arrive at the hospital, clinicians
expecting obvious vital sign trends might be misled because
we have found that transient perturbations may mask the
underlying trends and that measurements made at the end
of transport are not necessarily more useful than the
preceding prehospital measurements. Shapiro et al [39] and
Lipsky et al [40] reported that, among patients who arrived
normotensive in the emergency department, one or more
episodes of preceding hypotension were associated with
higher acuity. Our findings suggest that, in addition to the
most recent measurements, clinicians should consider the
time average of recent data, which we have shown can be
significantly more diagnostic.

This raises the question of what duration of time window
is optimal for computation of average values of recent vital
sign data, for example, 5, 15, or 60 minutes. The goal of the
time averaging is to filter out transient perturbations; but if
the time window gets too large, then time averaging can
actually obscure trends developing in later data. Therefore, it
is important that the time window should not be too large.
We speculate that averaging over more than 15 minutes may
not be diagnostically optimal, but this is difficult to answer
definitively with the current data set because the records are
of such heterogeneous duration.

Simultaneous consideration of multiple vital signs can
also improve the value of the data. For instance, low BP
could represent significant blood loss, the patient's normal
baseline, or reduced adrenergic tone. Tachycardia and
tachypnea suggest the former, normal rate and respiration
suggest baseline physiology, and bradycardia and bradypnea
suggest sympatholysis. Clinicians may be unable to mentally
compute a multivariate statistical model; but a simple
multivariate metric, such as the shock index (the ratio of
HR and SBP [41,42]), can be applied at the bedside.

4.2. Research implications

We demonstrated that accounting for sources of mea-
surement variability can yield significantly different results
when analyzing vital sign data. Accordingly, we recommend
the following steps for clinical research involving vital
sign data: (a) report the make and model of any monitoring
equipment used and, when available, provide accuracy
citations [12,13,43]; (b) report relevant in-service training, or
its absence, of the clinical staff; (c) keep the measurement
environment as consistent as possible to reduce transient
variability, or else use the average of several measurements;

and (d) consider the use of validated clinical scores or
propensity scores to supplement or replace individual
vital signs.

In addition, we note that there has been academic interest
in novel types of physiologic sensors intended to improve
patient monitoring. The cost and effort necessary to adopt
new sensor modalities might be weighed against the findings
in this report, which are that standard vital signs can be
significantly improved through application of some simple
techniques. Academically, we suggest that new monitoring
modalities should be directly compared against conventional
monitoring, with consideration given to the sources of
variability highlighted here.

4.3. Specific findings

Systolic BP was the best univariate predictor. We [37]
and others [44,45] have previously found that prehospital
trauma patients demonstrate substantial temporal variability.
We reduced the effects of transient perturbations by using the
time average of serial vital sign measurements, which
yielded significantly higher ROC AUCs for SBP, higher
than either the initial or final prehospital SBP. Diastolic BP
alone was a weak predictor; but we found that it provides
additional information independent of SBP because it is
useful to compute pulse pressure, the difference between
SBP and DBP [33]. In spontaneously breathing patients,
reliable RR was a useful predictor of hemorrhage. This
finding was anticipated by classic physiologic reports that
demonstrated that blood flow to the carotid body chemore-
ceptors is reduced in early hemorrhage because of compen-
satory vasoconstriction. “Stagnant” hypoxia then develops in
the chemoreceptors, triggering an increased respiratory drive
and tachypnea [46-49]. Interestingly, this RR reliability
algorithm was not originally developed to diagnose major
hemorrhagic injury per se, but to identify intervals in the IP
that matched clinicians' opinions that the respiratory
waveform was rhythmic and consistent [28]. Used as a
diagnostic tool, we found that reliable RR data were
significantly more diagnostic than unreliable RR. We
observed that unreliable RR was often falsely elevated (ie,
biased) because of motion artifacts in the pneumogram that
were incorrectly counted as additional breaths.

Only a subset of patients (59%) had a complete set of
reliable vital signs within 15 minutes. This was consistent
with prior reports that unreliable vital sign data are all too
typical in clinical practice [1,2,4-6]. To deal with missing
data, we used an ensemble classifier for multivariate
classification, which was significantly better than univariate
classification. In a prior report, the ensemble classifier was
applied to a moving 2-minute window of vital sign data [33].
That approach was not as successful because, in any given
2-minute window, there was an exaggerated proportion of
missing data and there was major minute-to-minute vari-
ability that, here, we successfully filtered out by time
averaging over 15 minutes (see above). In addition, the
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current ensemble uses pulse pressure instead of DBP and
does not incorporate oxygen saturation, thus excluding weak
univariate predictors.

4.4. Automated diagnostic algorithms

It is technically feasible to run this investigation's
analysis algorithms in real time, automatically distinguishing
between normovolemic vs hemorrhagic vital sign patterns.
We speculate that such automated, continuous analysis
could improve the quality and safety of any monitored
patient, especially when the clinical staff is distracted or
inexperienced. In addition, protocols for triage or resusci-
tation could be considered using the algorithm's output as a
starting point that may be more clinically valid than any sole
vital sign. Lastly, in some cases, the algorithm could
enhance the judgment of the clinician (eg, cases such as in
Fig. 2). Similar types of automated analysis of vital sign data
may likewise prove useful for other clinical applications,
such as early detection of acute deterioration of hospital
ward patients [50].

4.5. Limitations

There are several factors to consider in terms of the
internal validity of this study. First, there is no gold standard
definition to retrospectively distinguish true hemorrhagic
injury vs minor (or non) hemorrhagic injures. We therefore
analyzed several alternative outcome definitions. The similar
results, regardless of the specific definition, suggest that the
findings were not an artifact of the outcome definition but
will be similar given any reasonable definition of hemor-
rhagic injury (note that our database did not contain
parameters such as base deficit and pH). Our findings
would be further strengthened if future investigations
demonstrate comparable findings given additional end points
and pathologic processes.

As a second limitation, the present findings depended on
our algorithms to identify reliable vital signs; and the results
might be different with different algorithms. However, in
developing these algorithms, we found that most analytic
methodologies that we explored yielded similar results
because, in practice, the different algorithms only differed
about borderline cases, a minority of the data set [51]. In
most of the cases, which were clearly reliable (eg, HR based
on very clean ECG) or clearly unreliable (eg, HR based on
very noisy ECG), different versions of the algorithms that we
explored yielded consistent ratings of vital sign reliability.
(Note that these reliability algorithms were not a priori
developed to diagnose major hemorrhage but to match
clinicians' opinions regarding whether waveform segments
were clean with well-defined heartbeats [27] or breaths [28].)

Third, the data set was notable in that many patients were
missing a full set of reliable data. However, we contend that
this is a salient finding of the study, rather than a limitation,

because it emphasizes the prevalence of unreliable vital sign
data. At the same time, it did not hamper the univariate
analyses because there were suitably large populations for
each analysis. Finally, for the multivariate analysis, we were
able to report a valid ROC AUC for the broadest study
population (any patient with at least 1 reliable vital sign
within the first 15 minutes) by using an ensemble classifier,
which can tolerate missing data. The performance of the
ensemble classifier was assessed through cross-validation,
that is, with distinct training and testing patient populations.

In terms of the external validity of the study, the issues
that we studied have been previously recognized [1,2,4-6].
This report offers a novel, quantitative analysis of their
magnitude of effect in actual prehospital practice. It is not
certain to what extent the quantitative results of this analysis
will apply to different clinical settings, for example,
emergency department vs hospital ward vs ground EMS,
and different make and model of patient monitors. Likewise,
there may be salient differences given alternative popula-
tions, for example, patients older in age with a higher rate of
β-blocker medication. However, the study population of this
report was reasonably large (N600 subjects); and such
considerations were outside its scope. This analysis provides
a prima facie demonstration that each of the factors is
important and that specific strategies can significantly alter
diagnostic test characteristics of routine clinical data. Further
work is warranted to explore these factors in a diversity of
clinical arenas and populations.

5. Conclusion

The study is notable for quantifying the magnitude of the
effect of physiologic variability and measurement error on a
diagnostic application of vital signs. These sources of
variability were commonplace in this clinical data analysis.
Techniques that accounted for the variability yielded
significantly improved diagnostic test characteristics. Vital
sign data are often treated uncritically in published reports.
The findings here suggest that these factors should be
carefully considered when using vital signs in clinical
practice or research protocols.
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Are Standard Diagnostic Test
Characteristics Sufficient for the Assessment

of Continual Patient Monitoring?

Liangyou Chen, PhD, Andrew T. Reisner, MD, Xiaoxiao Chen, PhD,
Andrei Gribok, PhD, Jaques Reifman, PhD

Background. For diagnostic processes involving continual
measurements from a single patient, conventional test char-
acteristics, such as sensitivity and specificity, do not con-
sider decision consistency, which might be a distinct,
clinically relevant test characteristic. Objective. The authors
investigated the performance of a decision-support classifier
for the diagnosis of traumatic injury with blood loss, imple-
mented with three different data-processing methods. For
each method, they computed standard diagnostic test char-
acteristics and novel metrics related to decision consistency
and latency. Setting. Prehospital air ambulance transport.
Patients. A total of 557 trauma patients. Design. Continu-
ally monitored vital-sign data from 279 patients (50%)
were randomly selected for classifier development, and the
remaining were used for testing. Three data-processing
methods were evaluated over 16 min of patient monitoring:
a 2-min moving window, time averaging, and postprocessing
with the sequential probability ratio test (SPRT). Measure-
ments. Sensitivity and specificity were computed.

Consistency was quantified through cumulative counts of
decision changes over time and the fraction of patients
affected by false alarms. Latency was evaluated by the frac-
tion of patients without a decision. Results. All 3 methods
showed very similar final sensitivities and specificities.
Yet, there were significant differences in terms of the fraction
of patients affected by false alarms, decision changes
through time, and latency. For instance, use of the SPRT
led to a 75% reduction in the number of decision changes
and a 36% reduction in the number of patients affected by
false alarms, at the expense of 3% unresolved final deci-
sions. Conclusion. The proposed metrics of decision consis-
tency and decision latency provided additional information
beyond what could be obtained from test sensitivity and
specificity and are likely to be clinically relevant in
some applications involving temporal decision making. Key
words: continual patient monitoring; decision-support algo-
rithm; sequential probability ratio test; physiological data.
(Med Decis Making 2013;33:225–234)

Continual physiological monitoring is standard
practice in many health care arenas, e.g., hospi-

tal wards and operating rooms, where vital-sign data
are measured repeatedly so that if instability occurs
it can be detected and treated promptly. However,
false alarms are a major problem because standard
alarms are triggered when certain parameter thresh-
olds are reached.1–3 All too often, the abnormality
that triggers an alarm is either a measurement arti-
fact or a benign transient event. Yet, when false
alarms occur frequently, there is a deleterious effect
on patients in that caregivers may be slow to
respond to alarms with low positive predictive
value.4
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In this report, we considered a set of analytic meth-
ods for detecting abnormalities from continual phys-
iological data and examined how the techniques
compared through time. We examined whether stan-
dard test characteristics (sensitivity and specificity)
were adequate for describing the resultant alarm
behaviors from one time interval to the next. Specifi-
cally, we developed metrics to measure the temporal
stability of test decisions, which we termed consis-
tency, and examined the extent to which patient
alarms were consistent through time. Our intent
was to describe whether alarms tended to reoccur in
the same patients from one time period to the next
(on whom the clinical staff would be able to focus
attention) or if (false) alarms were distributed through-
out the entire monitored population (so that many
disparate patients would—unnecessarily—require
attention as the alarms were triggered).

We focused on several basic methods for pre- and
postprocessing of continual vital-sign data into and
out of a core alarm algorithm. Analytic methods for
identifying irregularities from a set of time-series
data have been well established in the manufacturing
quality control literature. Methods dealing with this
problem include the sequential probability ratio test
(SPRT),5,6 which evaluates the likelihood ratio of 2
hypotheses based on sequentially available eviden-
ces. Alternatives include the control chart method,7,8

the belief-modeling method,9 and other Bayesian-
based methods.10,11 Among these methods, the SPRT
is simple to calculate and, for given false-positive
and false-negative probabilities, requires the smallest
number of samples to achieve a decision (unless the
statistical model is grossly incorrect).5

Our goal was to investigate if conventional test
characteristics were adequate for assessing the basic
performance of an alarm or if it was also necessary
to consider its temporal consistency. In a comparative
analysis, we employed 3 methods for pre- and post-
processing of continual data into and out of our core
alarm algorithm. Compared with a 2-min moving
window, we examined if additional time averaging
and the SPRT could alter the overall accuracy, the
temporal consistency, and the latency of the algo-
rithm output. The core alarm algorithm was a multi-
variate classifier for the diagnosis of traumatic
injury with blood loss, given data from a standard
prehospital patient monitor.12 This analysis has
implications for any diagnostic process involving
continual vital-sign measurements from a single
patient.

METHODS

This is a retrospective, comparative analysis,
based on a previously reported ensemble classi-
fier,12 which provides automated detection of trau-
matic injury with blood loss in prehospital
patients based on basic vital signs. We simulated 3
methods to process real-time data during the initial
16 min of prehospital patient transportation. The mov-
ing window method involved a moving 2-min analysis
window; at every moment in time, the classifier was
applied to the most recent 2 min of physiological
data. The time-averaging method analyzed all avail-
able data from a given patient, from the onset of the
data record to the current time (up to a maximum of
16 min). In the SPRT method, we applied the SPRT
to the output of the classifier.

Trauma Patient Data

The physiological time-series data were collected
from 643 trauma-injured patients during their first
16 min of helicopter transport to a trauma center.13

The time-series variables were measured by ProPaq
206EL vital-sign monitors (Protocol Systems, Bea-
verton, OR) and consisted of electrocardiogram,
photoplethysmogram, and respiratory waveform
signals recorded at various frequencies and their
corresponding monitor-calculated vital signs,
including heart rate (HR), respiratory rate (RR), and
arterial oxygen saturation (SaO2), recorded at 1-s
intervals, and systolic (SBP), mean, and diastolic
(DBP) blood pressures collected intermittently at
multiminute intervals.

We performed chart reviews to determine whether
the transported trauma patients had traumatic injury
with blood loss. Traumatic injury with blood loss was
defined as requirement of a blood transfusion within
24 h upon arrival at the trauma center and also docu-
mentation of an explicitly hemorrhagic injury, either
a) laceration of solid organs, b) thoracic or abdominal
hematomas, c) explicit vascular injury and operative
repair, or d) limb amputation. Patients who received
blood but did not meet the documented injury criteria
(60 cases), and patients who died before arrival at the
hospital (26 cases) were excluded from the analyses
because of uncertainty about whether they truly suf-
fered traumatic injury with blood loss. Thus, we
used a total of 557 patients, of which 61 were catego-
rized as patients with traumatic injury and blood loss
and the remaining 496 as controls.
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Decision-Support Classifier: Training

The ensemble classifier aggregates 25 least-squares
linear classifiers, each trained with a different subset
of 5 input variables (HR, RR, SaO2, SBP, and DBP) and
with target values of 0.0 and 1.0, standing for control
and traumatic injury with blood loss outcomes,
respectively, to generate an (arithmetic) average out-
put that can be used to discriminate the 2 outcomes.12

We assigned ensemble-averaged outputs of � 0.5 as
control outcomes and outputs of . 0.5 as traumatic
injury with blood loss. The ensemble classifier has
been shown to provide more consistent performance
than a single linear classifier, and importantly, it
accommodates missing data, providing an output as
long as any 1 of the 5 inputs is available.12

We randomly selected 50% of the study popula-
tion (279 patients; 248 controls and 31 patients with
traumatic injury and blood loss) to train (i.e.,
develop) the classifier. In prior studies,14 we found
that prehospital vital-sign data are very noisy, and
hence, we developed algorithms that automatically
assess the reliability of each vital sign used as input
to the classifier.15–17 We also reported that reliable
data are diagnostically superior to unreliable
data.15,18 In another study,14 we found that there are
no major time-series trends in these vital-sign data,
and averaging the most reliable data during transport
yielded the best discriminatory performance. Conse-
quently, we used the average value of the most reli-
able training data points from the first 16 min of
transport time as input to train the ensemble
classifier.

Evaluation of the Moving Window, Time-Averaging,
and SPRT Methods

We investigated 3 methods to pre- and postprocess
the ensemble classifier data. In each method, 1) the
first 2 min of transport vital-sign data were used as
a buffer where no classifications were made; 2) every
1 s we averaged the most reliable available vital-sign
data (HR, RR, etc.) over a specified time window,
input the averaged values to the classifier, and
obtained an output; and 3) every 15 s, we averaged
the previous 15 classifier outputs to generate a deci-
sion. The 3 methods differed on the length of the pre-
processing time window of the classifier input data in
item 2 (above) and on any additional postprocessing
in the classifier outputs in item 3.

For the moving window, we averaged the classifier
inputs over a 2-min time window and compared the
averaged decision every 15 s with a 0.5 threshold.

The time-averaging method differed from the first
method in that the length of the time window for aver-
aging the vital-sign input data grew continually up to
the current decision time so that all available data
were considered for each decision. In the SPRT
method, the classifier outputs were further processed
as inputs to the SPRT to generate a SPRT decision (or
no decision), as described below.

The Sequential Probability Ratio Test

We investigated the ability of Wald’s SPRT5,6 to
consider the sequential nature and postprocess the
outputs of the ensemble classifier while balancing
decision accuracy, consistency, and latency. Given
a sequence of outputs Y1, Y2, . . . not necessarily inde-
pendent from the ensemble classifier, so that Y =
N(mY,s2

Y) is a normal Gaussian process with an
unknown mean mY and a known constant variance
s2

Y, the SPRT classifies a patient as control or trau-
matic injury with blood loss, or makes no decision,
based on hypothesis testing. Note that s2

Y was esti-
mated as the variance of the ensemble classifier out-
puts at the end of the transport, i.e., at 16 min, and
was kept fixed throughout the analysis. The SPRT
tests a null hypothesis (H0) that mY = m0 against an
alternative hypothesis (H1) that mY = m1, where m0 and
m1 denote the arithmetic mean values of the classifier
outputs for the control and traumatic injury with
blood loss cases, respectively, with m0 \ m1. If we
let p0 and p1 be the probability density functions gov-
erning the two hypotheses, H0 and H1, respectively,
then the observed likelihood ratio at decision time J

can be represented as lJ ¼
QJ

j¼1

p1ðYjÞ
p0ðYjÞ ; with J = 1, 2, . . . .

According to Wald’s SPRT methodology,5 we

accept H0 ðcontrolÞ; if logðlJÞ\ B; or

accept H1 ðtraumatic injury with blood lossÞ; ð1Þ
if logðlJÞ . A; or

continue to decision time J þ 1; if B � logðlJÞ � A;

where A and B are constants, with 0\B\A\N, cho-
sen using Wald’s criteria,5 as to yield nominal false-
positive probability (a; 0.0 \ a \ 0.5) and nominal
false-negative probability (b; 0.0\b\0.5) as follows:

A ¼ log
1� b

a
; and

B ¼ log
b

1� a
:

ð2Þ

When a and b are relatively small (e.g.,\0.05), the
SPRT tends to delay making a decision until
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additional corroborating classifier outputs become
available. Conversely, when a and b are large (e.g.,
’ 0.5), the SPRT makes quicker, albeit less accurate,
decisions. Thus, by appropriately selecting these two
parameters, we can balance decision accuracy, con-
sistency, and delay. To this end, we determined the
nominal probabilities a and b by minimizing a cost
function ¢, which linearly combined the accuracy
of the decisions, defined by its sensitivity (Se) and
specificity (Sp), at the end of the transport (i.e., at 16
min); the cumulative incidences of decision changes
(Dc; from control to traumatic injury with blood loss
and vice versa) over the 16 min of transport time;
and the fraction of patients with no decision (Nd) at
the end of the transport. Accordingly, we defined ¢
as follows:

¢ ¼ 1� Se

0:05
1

1� Sp

0:05
1

Dc

10
1

Nd

0:01
; ð3Þ

where the rescaling factors of the summands were
empirically obtained through SPRT trial simulations
on the training data so to normalize the effect of each
of the four summands on ¢.

Under the Gaussian model, the log-likelihood ratio
log(lJ) in equation 1 can be recursively calculated as
follows:

logðlJ11Þ5 logðlJÞ1
m1 � m0

sY
2
ðYJ11 �

m11m0

2
Þ; J ¼ 0; 1; 2; . . . ;

ð4Þ

where the initial log-likelihood log(l0) can be selected
arbitrarily and was set to 0.0 in this study. While it has
been shown that the SPRT achieves a selected confi-
dence in the shortest decision time,5 it may not always
arrive at a decision. However, when a decision was
made, we noted the decision, stuck to it, and restarted
the SPRT process from that time point until a new
decision emerged.

Investigational Metrics

Wecompared theperformanceof the3data-processing
methods using testing data from 278 patients where we
evaluated the accuracy, latency, and consistency (in
a sense to be defined) of the methods in aggregate using
the following 5 performance metrics:

1. Sensitivity: at any given time t, the fraction of
patients with traumatic injury and blood loss who
were correctly identified by the algorithm at time t;

2. Specificity: at any given time t, the fraction of control
patients who were correctly identified by the algo-
rithm at time t;

3. No decisions: at any given time t, the fraction of
patients without a decision out of the total number
of patients;

4. Cumulative decision changes: the cumulative count
up through time t of decision changes Dc; and

5. False-alarm-affected patients: the fraction of control
patients incorrectly identified as having traumatic
injury with blood loss, at or before time t, out of the
total number of patients.

Every 2 min, from 2 to 16 min of transport time, we
performed statistical tests of significance with pair-
wise comparisons between the investigational meth-
ods (i.e., moving window, time averaging, and
SPRT). For proportions (sensitivity, specificity, no
decisions, and false-alarm-affected patients), we
employed Liddell’s exact test.19 The counts of total
decision changes throughout the population cannot
be statistically evaluated, so we also computed the
total decision changes per subject and applied the Wil-
coxon signed–rank test to the distributions. For all sta-
tistical tests, we considered a P value of \ 0.05 to be
statistically significant.

RESULTS

Figure 1 illustrates the continual output of the 3
data-processing methods, the moving window,
time-averaging, and SPRT methods, in monitoring 4
control subjects (panel A) and 3 subjects with trau-
matic injury and blood loss (panel B). Each tile in
the figure represents a 15-s outcome decision, with
red (or dark) representing traumatic injury with blood
loss decisions, green (or medium gray) control, and
yellow (or light gray) no decisions. The selected con-
trol subjects illustrate different patterns in outcome
decisions that we observed in the 248 control subjects
in the testing data. For example, for subject 364, all 3
methods made correct and consistent control deci-
sions over the 16-min transport time. For subject
607, each method generated some false-positive
(i.e., false traumatic injury with blood loss) decisions.
However, the moving window method generated the
most frequent number of decision changes (3 changes
from control to traumatic injury with blood loss and 3
from traumatic injury with blood loss to control, for
a total of 6 decision changes), while the other 2 meth-
ods generated 2 decision changes each. For the third
subject (640), unlike the other 2 methods, the SPRT
method avoided making incorrect decisions (and
decision changes), but the decision was delayed by
more than 4 min. Finally, for subject 749, the SPRT
was not able to make a definite decision during the
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16-min transport time, while the other 2 methods
generated decision changes and mostly incorrect
decisions.

Panel B illustrates 3 patterns of decisions observed
within the 31 patients in the testing set with trau-
matic injury and blood loss: for subject 580, all meth-
ods generated a consistent decision; for subject 64,
the methods generated intermittent false-negative
(i.e., false control) decisions, with the moving win-
dow method yielding an incorrect decision at 16
min; and for subject 46, all methods generated the
correct final decision—however, the moving window

produced decision changes and some incorrect deci-
sions, while the SPRT did not produce a decision
until almost 4 min.

Figure 2 illustrates the performance of the methods
based on the 5 metrics (sensitivity, specificity, no deci-
sions, cumulative decision changes, and false-alarm-
affected patients) used to evaluate the accuracies,
latencies, and consistencies of the methods for the
278 testing subjects over the 16-min transport time.
Each of the 3 methods—moving window, time averag-
ing, and SPRT—yielded comparable performance in
terms of sensitivity and specificity at the end of the

Figure 1 Continual outcome decisions over the 16 min of transport time for each of the 3 data-processing methods. (A) Selected pattern for

4 control subjects, and (B) 3 subjects with traumatic injury and blood loss. Each tile represents a 15-s outcome decision, with red (or dark)
representing traumatic injury with blood loss decisions, green (or medium gray) control, and yellow (or light gray) no decisions. SPRT,

sequential probability ratio test.
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transport time (sensitivity: 83%, 80%, and 80%,
respectively; specificity: 71%, 75%, and 73%, respec-
tively). Note that the SPRT method provided relatively
low sensitivity and specificity (� 60%) during the first
6 min of transport because of a large fraction of patients
without SPRT decisions (see panel C). For instance, at
2 min, fewer than 25% of the patients had a decision

rendered by the SPRT, and consequently, the corre-
sponding sensitivity was also less than 25%. The
SPRT method failed to make a decision at 16 min for
8 subjects (or 3% of the subjects), while the other 2
methods showed no decision latency (panel C).

In terms of consistency of decisions, the SPRT
demonstrated a significantly reduced fraction of

Figure 2 Comparison of 3 data-processing decision methods for the 278 testing subjects analyzed over the 16-min transport time based on

5 performance metrics: (A) sensitivity, (B) specificity, (C) fraction of patients with no decisions, (D) cumulative number of decision changes,

and (E) false-alarm-affected patients. Pairwise tests of significance were performed every 2 min. Proportions were compared by Liddell’s
exact test (panels A–C, E). Panel D illustrates cumulative count of total-population decision changes, and the Wilcoxon signed–rank test

was applied to the per patient counts of decision changes.*P \ 0.05, time averaging v. moving window. yP \ 0.05, SPRT v. both moving

window and time averaging.
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false-alarm-affected patients throughout and at the
end of the 16-min transport, compared with both
other methods—27% of the subjects, which was
36% lower than the time-averaging method (42% of
the subjects) and 48% lower than the moving window
method (52% of the subjects; panel E). The SPRT also
consistently generated fewer numbers of decision
changes over time (29 total decision changes v. 118
for the time-averaging method and 348 for the moving
window method; panel D).

The time-averaging method was more consistent
than the moving window method, with significantly
fewer false-alarm-affected patients and average deci-
sion changes per patient. The time-averaging method
did not demonstrate the latency of the SPRT method.

DISCUSSION

In this article, we studied the accuracy, consis-
tency, and latency of a decision-support classifier
employing three different data-processing methods
for the continual prehospital diagnosis of traumatic
injury with blood loss in 557 trauma patients. It is
striking that all methods showed very similar sensi-
tivities and specificities yet very different temporal
behaviors. For instance, Wald’s SPRT was much
more consistent, generating false alarms in signifi-
cantly fewer patients, with significantly fewer deci-
sion changes.

There are 2 major implications. First, for some con-
tinual monitoring applications, standard test charac-
teristics, e.g., sensitivity and specificity, are
insufficient for describing the performance of a classi-
fier because they do not describe if false alarms occur
repeatedly in a limited subpopulation or if false alarms
are evenly distributed throughout a population. Sec-
ond, as a corollary, it is apparent that pre- and postpro-
cessing of time-series data can significantly alter
temporal consistency, as was seen in the application
of time averaging and of the SPRT, a classic technique
intended for precisely this type of application.

Insufficiency of standard test characteristics for
describing the continual performance of a classifier.
For the continual monitoring of patients, standard
test characteristics do not consider the sequential
nature of the algorithm’s decisions when there are
repeated decisions being made on each subject. For
example, while 2 binary decision classifiers may
have similar overall sensitivity and specificity, 1
may be less stable than the other, continually ‘‘flip-
ping’’ its decisions through time (which is naturally
exacerbated the more that a classifier is sensitive to

transient noise in the signal). We found this exact
phenomenon in our data set: After 5 to 10 min, the
3 investigational methods had similar sensitivities
and specificities, but there were significant differen-
ces in the total number of patients affected by a false
alarm. Using the SPRT significantly reduced the
fraction of false-alarm-affected patients by approxi-
mately half, compared to the moving window
method.

We speculate that this effect was notable in this
analysis because the prehospital vital signs showed
considerable intrasubject variability through time,
with sizable fluctuations in HR, blood pressure,
etc., during the course of prehospital transport.14

Comparable fluctuations in the prehospital vital
signs of trauma patients have been observed in other
prehospital studies as well,20–22 which may be phys-
iological responses to episodic stimuli (e.g., pain and
fear), to episodic therapies (e.g., fluids), or to underly-
ing pathology, as well as some degree of routine bio-
logical variability and measurement error.

In general, are standard diagnostic test characteris-
tics sufficient for the assessment of continual patient
monitoring, or is it appropriate to quantify classifier
consistency? It is likely that the frequency of decision
changes in diagnostic classification is dependent on
the classifier evaluation frequency, the temporal fluc-
tuations in the diagnostic data, and the proximity of
the classifier output to the decision boundary. Pre-
sumably, there is a continuum of diagnostic applica-
tions in terms of the classifier consistency through
time. If the diagnostic data are temporally stable dur-
ing intervals of disease and health, then standard test
characteristics are likely sufficient. At the other
extreme, if the diagnostic data fluctuate through
time, then the diagnostic classification will also fluc-
tuate through time, and it may be illuminating to con-
sider metrics of consistency (as we have done in this
report) in addition to standard test characteristics. In
many reports, continual classifiers are evaluated
without explicit consideration of their performance
and consistency through time, such as reports by
our group12 and by others.23–25 It is likely that, at least
for a subset of continual monitoring applications,
standard diagnostic test characteristics are insuffi-
cient and it would be valuable to consider consis-
tency to quantify clinically relevant properties of
the diagnostic test.

In addition, evaluating a temporal classifier
through time can reveal if performance changes
because of temporal disease progression. Presum-
ably, it is easier to diagnose blood loss or septic shock
as the pathology progresses, due to the spectrum
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effect (e.g., when a diagnostic test performs better in
a study population with more severe disease. Con-
sider that the sensitivity of a hypothetical dip-test
for leukocyte esterase in the diagnosis of urinary tract
infection may be higher in patients of an underserved
population, who tend to receive evaluation later in
the course of disease, rather than in patients of an
affluent population, who are promptly evaluated
after the earliest symptoms). Spectrum effects also
affect the temporal consistency of a diagnostic classi-
fier, because small fluctuations in diagnostic data for
a borderline case would be more likely to affect diag-
nostic classification (e.g., during early stages of blood
loss). By contrast, cases with more advanced pathol-
ogy will often have more frankly abnormal diagnostic
data, and so temporal fluctuations are unlikely to
alter diagnostic classification. That diagnostic classi-
fication may become easier as the disease process
progresses is often well recognized. For instance,
Cuthbertson26 reported test characteristics for an
investigative early warning score over hourly inter-
vals, e.g., 1 h prior to patient acute deterioration, 2 h
prior, etc. However, it was not reported to what extent
the true and false alarms occurred in the same patients
hour by hour, i.e., consistency. In this report, we
describe the minute-by-minute performance of an
investigational algorithm during the initial 16 min of
prehospital transportation, including the temporal
variation of decision changes in the same patients
and the fraction of total patients affected by some of
these changes. At least in our application, the addi-
tional statistics provide information beyond standard
test characteristics, perhaps in part because we exam-
ined data measured soon after traumatic injury.

Pre- and postprocessing of time series alters per-
formance of an automated continual classifier. Pre-
and postprocessing of time-series data is appropriate
for removing noise that occurs over faster time scales
than the process of interest, thus enhancing the
underlying signal. In this study, the narrow 2-min
moving window caused a large number of patients
to trigger false alarms (24% more than the time-averag-
ing approach and 93% more than the SPRT approach).
Failure of developers of monitoring algorithms to
explicitly consider classifier output stability, or con-
sistency, through time will presumably exacerbate
the well-described problem of false alarms in medical
monitoring systems1–4 and will likely decrease the
incentive for caregivers to adopt novel decision-sup-
port technologies. Conversely, excessively stable clas-
sifiers are also problematic, causing unacceptable
latency when a patient’s state does change. The

challenge is to optimize the tradeoffs between classi-
fier accuracy, consistency, and latency.

Consider time averaging. As long as the noise in
the time series has no major bias, this is a practical
technique for filtering out measurement error and
transient physiological events. For a monitoring algo-
rithm, the time-averaging window should be shorter
than the onset time of the disease of interest. In other
words, time averaging over 15 min may be useful
when seeking hemorrhage physiology, although
time averaging over 60 min might be too large a win-
dow, causing unacceptable latency to the detection of
hemorrhage physiology that can progress in less than
an hour. In this report, the time-averaging method
was able to improve decision consistency (with
66% fewer decision changes) and reduce false-
alarm-affected patients (with 20% fewer false-
alarm-affected patients) compared with the simple
2-min moving window method.

A prior report corroborates this principle: that it is
often possible to reduce false alarms at the expense of
clinically acceptable latency. In monitoring children
at home by pulse oximetry, Gelinas and others27 sug-
gested that the rate of hypoxia alarms (SpO2 \ 85%)
could be reduced from 3.6 to 0.2 alarms per night with-
out missing any clinically significant events, simply by
requiring a 10-s duration of hypoxia (rather than alarm-
ing the instant that the hypoxia threshold was met).

The SPRT: a classic technique that can improve
temporal consistency during continual monitoring.
One classic application of the SPRT is for the evalu-
ation of a shipment of manufactured components.
Components are measured 1 by 1 until a SPRT deci-
sion is rendered that the set of components is within
(or outside of) the acceptable tolerances. Our investi-
gational algorithm is analogous in that measurements
were taken repeatedly from 1 trauma patient, and the
SPRT was used to decide whether the patient was
within (or outside of) the range of vital signs typical
of patients with traumatic injury and blood loss. Of
course, given a shipment of components, individual
measurements are statistically independent, while
there is temporal correlation when measurements
are repeated in the same patient. Regardless, our find-
ings suggest that the SPRT is suitable for improving
the consistency of the investigational classifier based
on continual physiological data.

In the medical area, the SPRT has been previously
applied to the performance monitoring of clinical
teams26–30 (to continually monitor the surgical out-
come rate and ensure it does not deviate from the
expected success rate), routine surveillance of drug
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safety31 (to continually monitor whether a new vac-
cine is safe over a period of time), and determination
of early stopping criteria of clinical trials32,33 (to allow
the trial to be stopped as soon as the information accu-
mulated is considered sufficient to reach a conclu-
sion). Our results demonstrated that the SPRT may
be effective for continual physiological monitoring,
in the reduction of false-alarm-affected patients (36%
fewer patients than the time-averaging method) and
overall decision changes (75% fewer decision
changes). The tradeoff was the occurrence of some
decision latency because, unlike the other investiga-
tive methods, the SPRT can yield an ‘‘undecided’’ out-
put (see Figure 2). Indeed, for several cases (3% of the
total), there was never a diagnostic decision generated
when applying the SPRT. For applications in which
such a tradeoff is acceptable, the SPRT is optimal in
the sense that, mathematically, it guarantees the small-
est number of samples to achieve a decision for given
false-positive and false-negative probabilities.5 The
performance of the SPRT depends on the selected
nominal probabilities a and b, which can be set either
arbitrarily or by optimizing certain cost function dur-
ing classifier training. Properly chosen a and b may
improve the sensitivity and specificity, and decrease
the cumulative incidences of decision changes, with
acceptable final unresolved decisions. However,
improperly chosen a and b may significantly down-
grade the sensitivity or the specificity. As well, when
we first attempted to optimize the SPRT with a cost func-
tion customized wholly to yield small false-positive a

and false-negative b probabilities, we improved the final
accuracy but simultaneously increased the unresolved
decisions to 40% on the testing data. In the end, the
cost function defined in equation 3 provided a simple
yet effective tool to balance accuracy, consistency, and
latency.

This tradeoff between latency and consistency may
limit the application of the SPRT in the detection of con-
ditions that involve an imminent threat to life, e.g., car-
diac tachyarrhythmia. However, in the monitoring of
early disease states, when some latency is acceptable,
e.g., early hemorrhage detection,12 sepsis detection,25,34

or other early warning functionality,23,24 we suggest
that the SPRT may provide a means to improve classifier
stability and to reduce false alarms, without any neces-
sary loss in decision accuracy.

Identification of traumatic injury with blood loss
via continual physiological monitoring. The potential
usefulness of the diagnostic classifier described in this
report is not the focus of this study, and an assessment

of potential clinical value must be tempered by the fact
that the analysis is retrospective, based on post hoc
classification as to whether each subject had traumatic
injury with blood loss. Having said that, we believe that
there is potential clinical value to the methodological
application of conventional and commonsense analysis
techniques to standard vital-sign data, e.g., noise rejec-
tion, time averaging, and multivariate classification. We
previously found that automated techniques are diag-
nostically equivalent to prehospital severity scores
based on medics’ documentation.15 In this case, we
focused on the identification of hemorrhage because
blood loss is 1 of the 2 primary reasons why trauma
patients die,35,36 but in many cases it can be treated
effectively with blood transfusion and surgical hemor-
rhage control. We speculate that formal quantitative
analysis of continual vital signs may be able to supple-
ment today’s convention, which relies on informal cli-
nician judgments to integrate vital-sign data with other
important clinical data. For instance, automated algo-
rithms during prehospital care could be useful for triage
and to aid the receiving hospital to efficiently mobilize
proper resources, such as surgical teams and units of
blood. Similar techniques could identify hospitalized
patients who suffer unexpected episodes of blood loss
during convalescence, e.g., early warning systems.
However, actual performance and clinical usefulness
must be prospectively assessed, and the optimal
approach to decision support for trauma patients (e.g.,
attempt to identify any patients with traumatic injury
and blood loss v. attempt to identify patients with
uncontrolled, ongoing blood loss) involves open ques-
tions that are not addressed in this analysis.

CONCLUSION

Over time, all 3 methods converged to demonstrate
very similar diagnostic accuracy (i.e., sensitivity and
specificity). However, their consistency was signifi-
cantly different. The SPRT significantly reduced the
total number of patients affected by false alarms, but
with significantly greater latency, compared with
the moving window method and the time-averaging
method. Time averaging showed significantly fewer
patients affected by false alarms compared with mov-
ing window, and without latency. These findings
highlight how there are continual monitoring appli-
cations for which the proposed test characteristics
provide additional, useful information. Metrics of
consistency and latency can demonstrate additional
properties that are likely relevant to clinical practice.
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 

Abstract— We sought to better understand the physiology 

underlying the metrics of heart rate variability (HRV) in 

trauma patients without serious injury, compared to healthy 

laboratory controls. In trauma patients without serious injury 

(110 subjects, 470 2-min data segments), we studied the 

correlation between sinus arrhythmia (SA) rate, heart rate 

(HR), and respiratory rate (RR). Most segments with 2.4 ≤ 

HR/RR < 4.8 exhibited SA-RR matching, whereas rate 

matching was absent in 81% of the segments with HR/RR < 2.4 

and in 86% of the segments with HR/RR ≥ 4.8. The findings 

were comparable, in some cases remarkably so, to previous 

reports from healthy laboratory subjects. The presence (or 

absence) of SA-RR matching, when SA is largely controlled by 

respiration, can be anticipated in this trauma population. This 

work provides a valuable step towards the definition of patterns 

of HRV found in trauma patients with and without life-

threatening injury. 

I. INTRODUCTION 

We sought to better understand the physiology that 
underlies metrics of heart rate variability (HRV). Respiration 
is a predominant determinant of HRV. Hence it has been 
argued that it is crucial to consider the relationship between 
HRV and respiration when interpreting HRV data [1]. In 
some circumstances, the frequency of sinus rhythm variation 
(sinus arrhythmia [SA]; rhythmic fluctuations in heart rate 
[HR]) is wholly driven by the respiratory rate (RR), such that 
their rates will be identical [2-5]. The amplitude of SA is 
also correlated, inversely, to RR [3]. Rate matching between 
the SA oscillation rate and RR can be so tight that some 
research protocols accept the SA rate as a proxy 
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measurement for RR [2, 4]. Yet the SA rate and RR are not 
equal under all physiological conditions. For instance, during 
exertion or bradycardia, the SA rate is driven by non-
respiratory factors, even in subjects with otherwise normal 
autonomic control systems [6, 7].  

This physiology has major implications for 
comprehending why a particular HRV pattern would be 
diagnostically associated with a particular disease state or a 
healthy state. Consider the case of a patient exhibiting an 
atypical HRV pattern. This atypical HRV could be caused by 
any of the following: 1) an atypical respiratory pattern 
driving an atypical SA pattern via a typical autonomic 
control system; 2) an atypical driver (i.e., non-respiratory) 
causing an atypical SA pattern; or 3) an atypical control 
system directly producing an atypical SA pattern. 
Interestingly, most prior reports in trauma patients ascribed 
distinctive HRV patterns to differences in autonomic tone, 
without detailed consideration of the underlying causes, such 
as respiratory or non-respiratory drivers [8-11]. 

The present study is intended to better understand the 
causes of HRV patterns in trauma patients, here focusing on 
neurologically intact, hemodynamically stable patients. We 
seek to answer the following questions: First, under what 
conditions are the SA rate and the RR tightly matched? 
Second, are the findings consistent with reports of healthy 
laboratory subjects? To address this, we explored a 
population of patients monitored during transport to the 
hospital after an episode of physical trauma. We examined 
how the relationship between SA rate and RR changed as a 
function of HR, RR, and their ratio (HR/RR). 

II. METHODS 

A. Clinical Data Collection 

Physiological data for this study was collected from 898 
trauma patients during medical helicopter transport between 
August 2001 and April 2004 from the scene of injury to the 
level I unit at the Memorial Hermann Hospital in Houston, 
TX [8]. Additional attribute data were collected 
retrospectively via chart review. The time-series variables 
were measured by Propaq 206EL vital-sign monitors (Welch 
Allyn, Skaneateles Falls, NY), downloaded to an attached 
personal digital assistant, and ultimately stored in our 
database. Physiological data included the electrocardiogram 
(ECG; sampled at 182 Hz), a respiratory waveform (an 
impedance pneumograph, IP, measured through the ECG 
leads and sampled at 23 Hz), their corresponding monitor-
computed HR and RR (recorded at 1-s intervals), and other 
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standard vital-sign data. Patient attribute data included 
demographics, injury descriptions, pre-hospital interventions, 
and hospital treatments. Data collection and analysis was 
performed with the approval of both the local and the United 
States Army’s human subjects Institutional Review boards 
(the latter at Fort Detrick, MD). 

B. Study Population 

We selected relatively healthy subjects for analysis 
according to the following attributes: no major hemorrhage 
that required the transfusion of red blood cells, no 
prehospital or hospital intubation, head abbreviated injury 
scale equal to 0, and Glasgow coma scale of 13 or higher.  

In these subjects, we split time-synchronized ECG and IP 
waveforms into successive 2-min data segments and only 
analyzed those with reliable waveforms based on our 
previously developed quality index, which rated the 
waveforms as reliable if they were clean with rhythmic and 
consistent beats or breaths [12, 13]. Visual inspection to 
ensure that the ECG contained no ectopic beats resulted in 
the exclusion of a total of five 2-min data segments, all from 
the same subject. In total, 470 2-min recordings from 110 
subjects (age, mean ± standard deviation): 39 ± 12 yr, age 
range: 18-76 yr, 86 men and 24 women, median of three data 
segments per subject) formed the study dataset. 

C. Estimation of SA Rate, HR, and RR 

For each 2-min ECG and IP waveform, we computed 
second-by-second HR and RR values using automated 
computer algorithms that have been previously reported and 
demonstrated to match human experts’ estimation [12, 13].  

We used the following method to construct the R-R 
interval (RRI) time series used to estimate the SA rate. First, 
we upsampled each ECG segment to 2000 Hz by cubic 
spline interpolation and detected R-wave time locations in 
the upsampled ECG using the method described in [13]. 
Second, we calculated RRIs as the difference between the 
time locations of successive R-waves, i.e., RRIi = Ri+1 – Ri (i 
= 1, …, N-1; where N is the total number of R-waves), and 
located them at time location Ri+1. Third, we transformed the 
unevenly spaced RRI time series into an evenly spaced one 
with a sampling frequency of 23 Hz (the same as that of the 
IP waveforms) using cubic spline interpolation. Next, to 
count the SA cycles within the RRI waveform, we treated the 
RRI time series as a form of respiratory waveform and 
applied our previously developed RR estimation and 
reliability algorithms to compute the second-by-second SA 
rate and determine whether the waveform was of adequate 
reliability [12]. Finally, we averaged the reliable SA rate and 
corresponding HR and RR within the same time period for 
each 2-min recording and performed an analysis based on the 
mean SA rate, HR, and RR. Because the HR and RR were 
estimated from reliable ECG and IP waveforms, no further 
reliability filtering was implemented. 

D. Determination of SA-RR Matching 

Although the overall relationship between SA and 
respiration can be mathematically quantified by coherence 
and cross-approximate entropy [14, 15], the results may be 

difficult to interpret. For a simple and practical approach to 
determine whether or not each 2-min data segment showed 
SA-RR matching, we visually inspected the 2-min 
normalized RRI time series and IP waveform pairs by 
examining every non-overlapping 15-s data segment, and 
identified whether there was a consistent pattern of alteration 
between each SA oscillation and each respiratory oscillation. 
If at least 75% of consecutive 15-s RRI and IP waveform 
pairs exhibited alternating SA and RR oscillations, we 
considered the whole 2-min data segment to represent an 
SA-RR matching case. Otherwise, it was considered as not 
rate matched.  

Visual determination of SA-RR matching was based on 
the judgment of a single investigator and objectively 
corroborated using automated algorithms to calculate the 
difference between the SA rate and RR (confirming that for 
matched segments, the difference between SA rate and RR 
was within ±5 cycles per minute [cpm]). 

E. Data Analysis 

To quantify the agreement between SA rate and RR, we 
calculated the Pearson’s correlation coefficient (rp) and the 
concordance correlation coefficient (rc) between SA rate and 
RR. While the well-known rp quantifies the linear 
relationship between two variables regardless of the slope 
and x-intercept of the regression line, rc quantifies the linear 
relationship with respect to the identity line [16] and is thus a 
better metric to measure the degree to which two variables 
are equal to each other. Next, we computed the percentage of 
data segments that lack SA-RR matching within each HR, 
RR, and HR/RR range. The 95% confidence intervals (CIs) 
of the percentages were also calculated [17]. 

III. RESULTS 

In this dataset, rp between the SA rate and RR was 0.43, 
and rc was 0.39, reflecting a significant but moderate overall 
correlation. Of the 110 subjects under study, 43% of the 
subjects exhibited SA-RR matching for each of their 2-min 
data segments, 27% of the subjects lacked SA-RR matching 
for each of their 2-min data segments, and the remaining 
30% of the subjects exhibited a mix of present and absent 
SA-RR matching in different 2-min data segments. For the 
data segments that exhibited matching via visual inspection, 
we found a high agreement between the automatically 
computed SA rate and RR (the difference between the SA 
rate and RR was within ±5 cpm for 93% of those segments). 

Fig. 1 illustrates the SA-RR relationship using three 
selected pairs of sample ECG, RRI, and IP waveforms. A 
tight SA-RR matching with 2.4 ≤ HR/RR < 4.8 (left), lack of 
SA-RR matching with a higher (than RR) SA rate and 
HR/RR ≥ 4.8 (middle), and lack of SA-RR matching with a 
lower (than RR) SA rate and HR/RR < 2.4 (right) were some 
of the typical patterns observed. 

Fig. 2 shows the percentage (along with 95% CIs) of data 
segments that lacked SA-RR matching in different HR/RR, 
RR, and HR ranges. Fig. 2A shows that both low and high 
HR/RR values were associated with a high fraction of data 
segments that lacked SA-RR matching. When HR/RR < 2.4, 
81% of the 2-min data segments lacked SA-RR matching; 
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when HR/RR ≥ 4.8, 86% of the 2-min data segments lacked 
SA-RR matching. We also found independent associations 
between rate matching and RR, as well as HR. Figs. 2B and 
2C show that ≥ 57% of the 2-min data segments with RR ≥ 
30 cpm, and 55% of the 2-min data segments with HR < 60 
beats per minute (bpm), respectively, lacked SA-RR 
matching.  

IV. DISCUSSION  

In this study, in a population of relatively healthy patients 
(i.e., no hemorrhage nor serious neurological injury) early 
after major trauma, we investigated when SA oscillation was 
predominantly driven by respiration and we proposed a 
simple metric that can determine when SA-RR matching is 
likely. 

We found a lack of SA-RR matching when RR was 
elevated ≥ 28 cpm (Fig. 2), where the SA rate tended to be 
lower than the RR. This likely reflected the inability of the 
sinoatrial node to oscillate fast enough to keep up with rapid 
respiration, as reported in previous studies [18, 19] wherein 
the transfer function between vagal nerve impulses and the 
sinoatrial node rate exhibited the characteristics of a low 
pass filter with a cutoff frequency of ~0.5 Hz, or 30 cpm. 
Above this cut-off, the SA rate cannot keep up with RR. This 
was very close to our cut-off of 28 cpm suggesting 
comparable SA rate cut-offs in both uninjured trauma 
patients and healthy laboratory subjects.  

In this dataset, there was an absence of SA-RR matching 
when HR was low, e.g., < 60 bpm. This is related to cardiac 
aliasing [7]. Cardiac aliasing is mathematically inevitable 
unless HR is equal to or greater than twice RR (i.e., HR/RR ≥ 
2), because it requires at least two heart periods for each 
respiratory cycle to establish an oscillation (an oscillation 
requires, at minimum, one shorter interval that alternates 
with a second, longer interval). 

When HR was elevated, e.g., HR > 100 bpm, the SA rate 
exceeded RR in approximately 50% the cases, whereas in the 
other 50% there was SA-RR matching. The association 
between tachycardia and reduced SA-RR matching was 
previously observed in athletes during exercise, who 
exhibited rapid SA rates (> RR) [6]. This phenomenon was  

 

 

 

 

 

 

 

 

 

 

 

 

attributed to the fact that the cardiovascular system that 
coupled respiration to HR had nonlinear components and 
that harmonics of RR could appear in the output HR time 
series [20]. Furthermore, in normal subjects, the cardiac 
vagal system served as strong, fast negative feedback, 
attenuating the harmonics in the HR time series. However, in 
young athletes during exercise, as well as in heart transplant 
patients, the vagal control was either minimal or absent, and 
a higher (than RR) SA rate was observed. It was concluded 
that elevated SA rate was thus an indicator of reduced vagal 
control of the heart. 

In terms of anticipating whether or not rate matching 
would occur in our dataset, it was more effective to consider 
the ratio HR/RR than to look for the presence of tachycardia 
alone (Fig. 2). What we found in terms of HR/RR versus rate 
matching was wholly consistent with a prior report by Cysarz 
et al. [2], wherein an rc of 0.64 was observed between SA 
rate and RR within a laboratory population (for a population 
with 3.0 < HR/RR < 8.7, approximately). For the comparable 
subset of our study population who had 3.0 < HR/RR < 8.7, 
we found a rather similar result with rc = 0.60. 

In contrast, the correlation between SA rate and RR was 
reported to be rc = 0.95 (when 6 cpm < RR < 30 cpm) in [4]. 
For a comparable subset of our study population who had 6 
cpm < RR < 30 cpm, we obtained an rc = 0.27, which is far 
lower than the value reported in [4]. Does this mean our 
findings are inconsistent? Not necessarily. The study in [4] 
did not report the HR (unlike [2]); It is entirely possible, if 
not likely, that our population had a relative elevation in HR. 
Also, in [4] subjects were studied during supine rest in a 
laboratory, whereas we studied acute trauma patients during 
prehospital care. This underlies one of our major findings, 
that it is necessary to consider HR and RR simultaneously 
when trying to determine whether SA-RR matching is likely 
to occur in a typical population. 

In general, the HR/RR metric provided a compact 
summary of all of our aforementioned findings: (a) when 2.4 
≤ HR/RR < 4.8, SA and respiration were typically rate 
matched; (b) when HR/RR was high (i.e., ≥ 4.8), there might 
be high HR indicating vagal withdrawal and the resultant 
elevated SA rate [20]; and (c) when HR/RR was low (i.e., <  
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Figure 1. Examples of ECG, RRI, and impedance pneumogram waveforms. Left: Rate matching between SA and respiration. Middle: Absence of SA-RR 

matching (with tachycardia and bradypnea). Right: Absence of SA-RR matching (with HR almost double RR). Symbols above the respiratory and RRI 

waveforms (* and numerals, respectively) denote distinct oscillations that were identified by automated computer algorithms. ECG: electrocardiogram, 

HR: heart rate, RR: respiratory rate, RRI: R-R interval time series, SA: sinus arrhythmia. 
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2.4), there were two phenomena that caused the absence of 
SA-RR matching. First, the RR might be so elevated that the 
sinoatrial node could not keep up with the rapid respiratory 
oscillations [18]. Second, cardiac aliasing would likely have 
occurred. 

Our findings support the validity of laboratory-based 
investigation as a model for actual trauma patients, and 
confirm that respiration is frequently the predominant driver 
of SA in trauma patients without major injuries. A second 
implication relates to studies that investigate whether or not 
SA rate monitoring can serve as a suitable RR proxy [2, 4]. 
Our findings suggest that, in a population similar to these 
trauma patients, this methodology will work provided that 
HR is neither too fast nor too slow and there is no tachypnea. 
The HR/RR metric might have anticipated the findings in [4], 
wherein a very high correlation was reported between SA 
rate and RR at rest, as well as the findings in [2], wherein 
reduced correlation was seen in subjects during low levels of 
exercise. Finally, we expect that our findings may be 
informative to future studies into the determinants of HRV in 
trauma patients, by providing a better understanding of those 
trauma patients without serious injury.  
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Figure 2. The percentage of data segments that lacked SA-RR 

matching for different (A) HR/RR, (B) RR, and (C) HR ranges. The 

vertical bars represent the 95% confidence intervals. The grey gridline 

indicates 50% of data segments. The largest percentage of data 

segments that lacked SA-RR matching was observed when HR/RR < 

2.4 or HR/RR ≥ 4.8. bpm: beats per min, cpm: cycles per min, HR: 

heart rate, RR: respiratory rate, SA: sinus arrhythmia. 
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 

Abstract—Early and accurate identification of physiological 

abnormalities is one feature of intelligent decision support.  The 

ideal analytic strategy for identifying pathological states would 

be highly sensitive and highly specific, with minimal latency. In 

the field of manufacturing, there are well-established analytic 

strategies for statistical process control, whereby aberrancies in 

a manufacturing process are detected by monitoring and 

analyzing the process output. These include simple 

thresholding, the sequential probability ratio test (SPRT), risk-

adjusted SPRT, and the cumulative sum method. In this report, 

we applied these strategies to continuously monitored 

prehospital vital-sign data from trauma patients during their 

helicopter transport to level I trauma centers, seeking to 

determine whether one strategy would be superior. We found 

that different configurations of each alerting strategy yielded 

widely different performances in terms of sensitivity, 

specificity, and average time to alert. Yet, comparing the 

different investigational analytic strategies, we observed 

substantial overlap among their different configurations, 

without any one analytic strategy yielding distinctly superior 

performance. In conclusion, performance did not depend as 

much on the specific analytic strategy as much as the 

configuration of each strategy. This implies that any analytic 

strategy must be carefully configured to yield the optimal 

performance (i.e., the optimal balance between sensitivity, 

specificity, and latency) for a specific use case. Conversely, this 

also implies that an alerting strategy optimized for one use case 

(e.g., long prehospital transport times) may not necessarily 

yield performance data that are optimized for another clinical 

application (e.g., short prehospital transport times, intensive 

care units, etc.). 

I. INTRODUCTION 

Real-time alerting of life-threatening conditions based on 
vital signs has the potential to help prehospital caregivers 
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better manage trauma patients and, via advance notification, 
to expedite time-sensitive interventions delivered at the 
receiving facilities. For instance, early transfusion of fresh 
frozen plasma (FFP) has been shown to be associated with 
improved outcomes for trauma patients with life-threatening 
hemorrhage [1]. In theory, prehospital alerting with advance 
radio notification could allow for the receiving trauma center 
to prepare FFP for immediate transfusion upon arrival. 

Prehospital vital signs, however, can show considerable 
intra-individual fluctuations during the course of transport, 
due to transient stimuli, such as pain, fear, medications, 
movement, etc. [2]. These fluctuations can trigger false 
alarms when they (transiently) appear consistent with serious 
pathology. Moreover, they can obscure the evolution of the 
individual’s true pathophysiology. When seeking to identify 
physiological abnormalities indicative of life-threatening 
pathology, an optimal alerting strategy would ignore 
transient, benign abnormalities, while remaining highly 
sensitive to the earliest physiological indicators of actual life-
threatening pathology.  

Classic test characteristics for diagnostic tests include 
sensitivity and specificity [3]. For alerts based on continuous 
monitoring over time, it is also important to consider the 
temporal behavior of the alert, because its accuracy may 
change as a function of time, and because some alerting 
algorithms may yield inconsistent output over time due to the 
aforementioned fluctuations in vital signs.  

In prior work, we demonstrated that the sequential 
probability ratio test (SPRT) could be applied for post-
processing of a multivariate classifier that identifies life-
threatening hemorrhage in trauma patients based on patterns 
in heart rate (HR), systolic blood pressure (SBP), pulse 
pressure (PP), and respiratory rate (RR) [2]. The SPRT 
reduced the fraction of patients who triggered false alarms, 
but at the expense of some temporal latency for those who 
generated true alarms. 

Yet if the goal of the alerting system is to provide the 
earliest possible identification of patients with life-
threatening hemorrhage—to allow maximum time for 
preparation at the receiving hospital—this latency is sub-
optimal. In the field of manufacturing, there are well-
established analytic strategies for statistical process control, 
whereby aberrancies in a manufacturing process are detected 
by monitoring and analyzing the process output [4]. These 
include simple thresholding, the SPRT [5], the risk-adjusted 
SPRT (RASPRT) [6], and the cumulative sum (CUSUM) 
method [4]. In this paper, we compared these alerting 
strategies for identifying hypovolemia based on prehospital 
vital signs during helicopter transport of trauma patients. Our 
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TABLE 1. STUDY POPULATION CHARACTERISTICS 

 Memorial 

Hermann Life 

Flight 

Boston 

MedFlight 

Population, n 646 209 

Sex, male/female, n 479/167 155/54 

Age (year), mean (SD)     38      (15)   45    (20) 

Blunt, n (%)   577   (89%) 188 (90%) 

Penetrating, n (%)     61     (9%)    21 (10%) 

ISS, median (IQR)     16   (9-34)   16  (9-26) 

Prehospital airway intubation, n (%)   113   (17%)   80 (38%) 

Prehospital GCS, median (IQR)     15 (13-15)   15 (8-15) 

24-hour PRBC volume > 0 units, n (%)     75   (12%)   31 (15%) 

24-hour PRBC volume ≥ 9 units, n (%)     25     (4%)     9   (4%) 

Survival to discharge, n (%)   608   (94%) 191 (91%) 

GCS: Glasgow coma scale; IQR: interquartile range; ISS: injury severity score; 

PRBC: packed red blood cell; SD: standard deviation. 

 

goal was to elucidate the achievable performance of the 
different investigational methods. 

II. MATERIAL AND METHODS 

A. Data Collection and Subject Selection 

The study was based on physiological data collected with 
Institutional Review Board approval during helicopter 
transports of adult trauma patients (age ≥ 18 years) to several 
level I trauma centers via Memorial Hermann Life Flight 
(MHLF) between August 2001 and April 2004 [7], and 
Boston MedFlight (BMF) between February 2010 and 
December 2012. Propaq 206 patient monitors (Welch-Allyn, 
Beaverton, OR) recorded the data. The dataset consisted of 
physiological waveforms, such as electrocardiograms 
(ECGs), and vital signs, such as HR, RR, SBP, and diastolic 
blood pressure (DBP). We collected clinical outcome data, 
including demographics, prehospital interventions, in-
hospital interventions, and injury descriptions, retrospectively 
via chart review at the receiving hospitals. 

The study population consisted of patients with at least 
one blood pressure measurement. In the analysis, we 
excluded patients who died prior to hospital admission 
because resuscitation was often terminated before a large 
volume of packed red blood cells (PRBCs) could be 
administered. Our primary outcome was 24-hour PRBC 
transfusion volume in patients with explicitly documented 
hemorrhagic injury, such as laceration of solid organs, 
thoracic or intraperitoneal hematoma, vascular injury that 
required operative repair, or limb amputation. Patients who 
received blood transfusions without explicitly documented 
hemorrhagic injuries were excluded. Table 1 lists the 
characteristics of the study population. 

B. Physiological Data Processing 

Because of noise and artifacts that were commonly 
present in the physiological signals, we used automated 
quality assessment algorithms [8, 9] to identify clean and 
reliable measurements, which have been shown to offer 
superior diagnostic performance [10]. We used a previously 
developed ensemble classifier [11] to assess whether the 
patient had hypovolemia based on HR, RR, SBP and pulse 

pressure (PP = SBP − DBP). The ensemble classifier is a set 
of linear regression models with one, two, or three input 
parameters which comprise all possible combinations of SBP, 
PP, HR, and RR. The ensemble classifier’s output is the 
average of the outputs of the set of regression models.  The 
output generally ranged from 0 to 1, quantifying the 
similarity between the input vital-sign features and those of 
patients with hypovolemia. We re-applied the ensemble 
classifier every two minutes during the course of transport 
and used a moving window to smooth the vital-sign features 
before processing by the ensemble classifier. 

C. Alerting Strategies 

Statistical process control has been widely used in the 
industrial context, where quick detection of “out-of-control” 
process variation is essential for quality control [4]. We 
compared four commonly used alerting strategies based on 
the output of the ensemble classifier over time.  

The simple thresholding used in our analysis consisted of 
a single upper limit  , and an alert was raised when  ( )  
  for the first time, where  ( ) denotes the output of the 
ensemble classifier at time  . SPRT consisted of an upper 
limit   and a lower limit  , and the system issued an alert 
when the accumulated log likelihood ratio    ( ) exceeded 
the upper limit  . We calculated    ( ) as follows: 

   ( )     (   )     
 ( ( )   )

 ( ( )   )
  

but if    ( )   , then    ( ) was reset to zero, where 
 ( ( )   ) and  ( ( )   ) denoted the probability density 
functions governing the null hypothesis (e.g., control) and 
alternative hypothesis (e.g., hypovolemia), respectively.    

and    were estimated from the MHLF dataset. RASPRT 
was exactly the same as SPRT, except that the probability 

density functions  ( ( )   ( )) and   ( ( )   ( )) were 

time varying depending on the availability of the vital signs 
at each time instant    (15 pairs of    and    were estimated 
from the MHLF dataset for 15 possible scenarios of vital-
sign availability). CUSUM consisted of an upper limit   and 
an offset  , and the system issued an alert when the 
accumulated      ( ) exceeded  .      ( ) was 
computed as follows: 

     ( )     (     (   )   ( )     )  

We investigated the performance of each alert strategy by 
systematically varying the values of configurable parameters. 
Table 2 lists the configurable parameters for each alerting 
strategy and the range of values we explored for each 
parameter. We chose values to cover the full range of 
sensitivity and specificity from 0 to 100%. For each 
configuration, we applied the alerting strategy to each patient 
using the ensemble classifier output over the course of the 
entire transport. We recorded the decision and then computed 
the sensitivity, specificity, and mean/median time to alert as 
detailed in Section II.D. We repeated the same analysis for 
different sizes of moving windows (2 minutes, 15 minutes, 
and 60 minutes). 

D. Performance Measures 

We defined massive transfusion as receipt of 9 or more 
units of PRBCs within the initial 24 hours. Routine test 
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Figure 1. The trade-off between mean time to alert and specificity at fixed 

sensitivity levels of 76.5% and 85.3%. A 60-minute moving window was 

used to filter the vital-sign features. SPRT: sequential probability ratio 

test; RASPRT: risk-adjusted SPRT; CUSUM: cumulative sum. 

TABLE 2. ALERTING STRATEGIES 

  Parameters Range explored 

Simple thresholding 1. Upper limit A 
2. Window size L 

0  < A  < 1 
L = 2, 15, 60 minutes 

Sequential probability 

ratio test (SPRT) 
1. Upper limit A 

2. Lower limit B 
3. Window size L 

-2.2  < A  < 6.9 
-6.9  < B  < 2.2 
L = 2, 15, 60 minutes 

Risk-adjusted SPRT 
(RASPRT) 

1. Upper limit A 

2. Lower limit B 
3. Window size L 

-2.2  < A  < 6.9 
-6.9  < B  < 2.2 
L = 2, 15, 60 minutes 

Cumulative sum 
(CUSUM) 

1. Upper limit A 

2. Offset w 
3. Window size L 

0  < A  < 1 
0  < w  < 1 
L = 2, 15, 60 minutes 

characteristics [3] were computed for the prehospital 
diagnosis (alert) of subsequent massive transfusion. The 
mean and median times to alert were calculated for patients 
with massive transfusions.  We also computed the specificity 
for patients who did not receive any PRBCs (i.e., < 1) within 
24 hours. 

III. RESULTS 

We computed a total of 56,000 data points, where each 
data point consisted of the 1) sensitivity, 2) specificity, and 3) 
time to alert for each configuration of the four investigational 
strategies. These data points spanned the full range of 
sensitivities and specificities, from 0% to 100%. None of the 
four alerting strategies demonstrated any consistent, 
observable advantage. Alerting strategies that were more 
accurate overall tended to be less responsive and vice versa. 
Considering specific configurations of the four alerting 
strategies, besides the obvious trade-off between sensitivity 
and specificity, increased specificity generally was associated 
with increased mean time to alert. Because of space 
limitations, it is not possible to report all of these results, but 
it is possible to show representative subsets of the findings. 

First, consider the trade-off between specificity and time 
to alert. Here, we examine one subset of results from one 

fixed level of sensitivity (76.5%) with a moving window of 
60 minutes. Among a set of 780 data points, we observed a 
wide spectrum of performance achieved by different 
configurations of each investigational alerting strategy, 
with substantial overlap between the four strategies, as 
illustrated in Fig. 1. There was no investigational strategy that 
offered distinctly superior performance. 

Similarly, we may examine another subset of results from 
another fixed level of sensitivity (85.3%), again with a 
moving window of 60 minutes. In general, among a set of 
280 data points, we observed lower specificity, and again, 
substantial overlap between the four investigational strategies 
(see Fig. 1). 

Table 3 further shows the performance of various types of 
alerting strategies at a fixed sensitivity of 76.5% for various 
permutations of alerting strategies and window sizes. We 
chose 76.5% sensitivity because it represented an operating 
point of interest specific to our application. We chose the 
configuration of each permutation to maximize the specificity 
for patients who did not receive massive transfusions. The 
maximal specificity for SPRT, RASPRT, and CUSUM was 
higher than that of simple thresholding. This, however, came 
at a cost of increased time to alert. Among the three alerting 
strategies (SPRT, RASPRT, and CUSUM) that explicitly 
accumulate evidence before making a decision, RASPRT 
offered a shorter time to alert but had a slight decrease in 
maximal specificity. Overall, at the fixed sensitivity of 
76.5%, higher maximal specificity tended to be associated 
with a longer time to alert.  

The size of the moving window had a minimal impact on 
the diagnostic accuracy, and the specificity remained largely 
unchanged except in the case of simple thresholding. Further 
increasing the size of the moving window did not introduce 
sizable changes in the time to alert.  

IV. DISCUSSION 

In this report, we studied the performance of four 
different types of alerting strategies for diagnosing 
hypovolemia. None of the investigational strategies offered a 
distinct advantage in terms of accuracy versus 
responsiveness. Within each strategy, different configurations 
made it possible to trade-off between sensitivity, specificity, 
and time to alert. Configurations that were more accurate 
overall tended to be less responsive and vice versa.  

Our results suggest that the nuanced differences among 
various alerting strategies were predominated by the 
fundamental trade-off between accuracy and responsiveness. 
Minor differences between these strategies, or whether a 
more elaborate alerting strategy (e.g., combination of two 
alerting strategies) could offer better performance, cannot be 
answered without a larger patient population.  

It seems likely that the fundamental trade-off between 
accuracy and responsiveness was imposed by the innate 
characteristics of the vital-sign time series, with substantial 
fluctuations not directly related to hypovolemia (e.g., due to 
pain or medication therapy [2]) that could trigger a false alert. 
Techniques that tolerate transient fluctuations without 
alerting reduced the incidence of false alarms but were 
slower to react to early changes indicative of true 
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TABLE 3. PERFORMANCE OF CONTROL CHARTS AT A FIXED SENSITIVITY OF 76.5% 

Alerting strategies Size of moving 

window, minutes 

Specificity for 24-

hour PRBC < 9 
(95% CI), % 

Specificity for 24-

hour PRBC < 1 
(95% CI), % 

Median time to 

alert, minutes 

Mean time to 

alert, minutes 

Simple thresholding   2  73 (70, 76)   77 (74, 80)    4   7 

15  79 (76, 82)   83 (80, 85)    2   8 

60  78 (75, 81)   82 (79, 84)    2   5 

Sequential probability 

ratio test (SPRT) 

  2  84 (81, 86)   88 (85, 90)  12 14 

15  84 (81, 86)   88 (85, 90)  10 13 

60  84 (81, 86)   87 (85, 90)    9 13 

Risk-adjusted SPRT 
(RASPRT) 

  2  83 (81, 86)   87 (84, 89)  11 14 

15  81 (78, 84)   85 (82, 87)    6 11 

60  81 (78, 83)   84 (81, 87)    5 11 

Cumulative sum 

(CUSUM) 

  2 82 (79, 85)   86 (83, 89)  14 15 

15 84 (81, 86)   87 (85, 90)  10 13 

60 83 (81, 86)   87 (85, 90)  11 14 

CI: confidence interval; PRBC: packed red blood cell 

hypovolemia. Our findings suggest that none of the 
investigative methods were able to overcome this 
fundamental trade-off, and that a reasonably designed 
alerting strategy must simply balance accuracy versus 
responsiveness; it may not be possible to simultaneously 
excel at both by any large margin. 

The optimal balance between accuracy and 
responsiveness may need to be customized to a clinical use 
case. Consider a prehospital alerting system intended to 
trigger labor-intensive preparations at the receiving trauma 
center (e.g., clearing operating rooms, mobilizing surgeons 
and blood products, etc.). At least 15 minutes of advance 
warning would be desirable, while false alarms would be 
costly, squandering the time of busy staff. If the typical 
(hypothetical) flight was 45 minutes, then an alerting strategy 
that afforded high specificity despite 13-14 minutes of 
latency would be appropriate (e.g., the SPRT; see Table 3). 
But if the typical (hypothetical) flight was 20 minutes, then it 
would be more appropriate to apply simple thresholding, with 
its median alert time < 5 minutes. 

These findings have implications beyond prehospital 
decision support. Generally, medical alerts may be beneficial 
if they are configured for specific clinical uses. For an 
operating room or intensive care unit, when there is already a 
clinician at the bedside (and therefore an alert carries a low 
operational cost) it may be appropriate to employ very early 
alerts. By contrast, for ward patients, if an alert mobilizes a 
full rapid response team (at a high operational cost), it may 
be worth a degree of latency to reduce false alarms. For each 
application, the cost of latency should be weighed against the 
cost of false alerts.  

In conclusion, we found that the investigational strategies 
offered a wide spectrum of performance levels, and the 
performance spectra from different strategies often 
overlapped substantially. Our findings suggest that the 
optimization of an alerting strategy requires careful 
examination of both clinical requirements and patient data 
characteristics, and caution needs to be exercised when 
applying the same configuration to a different clinical setting.  

DISCLAIMER 

The opinions and assertions contained herein are the 
private views of the authors and are not to be construed as 
official or as reflecting the views of the U.S. Army or of the 
U.S. Department of Defense. This paper has been approved 
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Prehospital Heart Rate and Blood Pressure Increase
the Positive Predictive Value of the Glasgow Coma Scale

for High-Mortality Traumatic Brain Injury

Andrew Reisner,1,2 Xiaoxiao Chen,1 Kamal Kumar,1 and Jaques Reifman1

Abstract

We hypothesized that vital signs could be used to improve the association between a trauma patient’s prehospital Glasgow

Coma Scale (GCS) score and his or her clinical condition. Previously, abnormally low and high blood pressures have both

been associated with higher mortality for patients with traumatic brain injury (TBI). We undertook a retrospective analysis of

1384 adult prehospital trauma patients. Vital-sign data were electronically archived and analyzed. We examined the relative

risk of severe head Abbreviated Injury Scale (AIS) 5–6 as a function of the GCS, systolic blood pressure (SBP), heart rate

(HR), and respiratory rate (RR). We created multi-variate logistic regression models and, using DeLong’s test, compared

their area under receiver operating characteristic curves (ROC AUCs) for three outcomes: head AIS 5–6, all-cause mortality,

and either head AIS 5–6 or neurosurgical procedure. We found significant bimodal relationships between head AIS 5–6

versus SBP and HR, but not RR. When the GCS was < 15, ROC AUCs were significantly higher for a multi-variate

regression model (GCS, SBP, and HR) versus GCS alone. In particular, patients with abnormalities in all parameters (GCS,

SBP, and HR) were significantly more likely to have high-mortality TBI versus those with abnormalities in GCS alone. This

could be useful for mobilizing resources (e.g., neurosurgeons and operating rooms at the receiving hospital) and might enable

new prehospital management protocols where therapies are selected based on TBI mortality risk.

Key words: blood pressure; Glasgow Coma Scale; heart rate; prehospital; traumatic brain injury

Introduction

The Glasgow Coma Scale (GCS) was developed to stan-

dardize the assessment of coma and impaired consciousness

after traumatic brain injury (TBI).1 As originally intended, the GCS

is to be assessed only after hemodynamic resuscitation and in the

absence of pharmacologic sedation, paralysis, or other forms of

chemical intoxication.2 The GCS was an innovation, providing an

objective method for measuring patients’ global brain function. In

the absence of established alternatives, use of the GCS spread to a

multitude of applications outside the researchers’ original intent.

For example, in national guidelines for trauma patient manage-

ment, a below-normal prehospital GCS is one criterion for emer-

gency medical service (EMS) transport from the field directly to a

level 1 trauma center3 and for emergency tracheal intubation after

traumatic injury.4 In addition, the GCS is often relied upon in

prehospital research to help control for degree of TBI (for example,

see Davis and colleagues5), even though it was not originally in-

tended, nor validated, for this clinical context. Indeed, the GCS is

currently being used for non-TBI patients, for instance, to measure

brain function in meningitis6 and hypothyroidism7 cases. Overall,

the GCS has evolved to become a near-universal measure for global

mental function, despite its original intent and validation in TBI

patients subsequent to stabilization.

Unsurprisingly, because the GCS is applied in different ways

distinct from its original intent, there is growing recognition that it

may not be optimal for all these applications8 and that such

widespread, inconsistent application of the GCS can cloud its

interpretation.9,10 Fundamentally, the provisos for the classic

GCS—measurement after hemodynamic resuscitation and in the

absence of intoxication—are incompatible with clinical decision

making or research into early trauma care. Further, EMS care-

givers may have less capacity for careful clinical evaluation,

which may be one factor why significant discrepancies between

prehospital GCS versus emergency department (ED) GCS have

been reported.11 For the early stages of trauma care, it has been

suggested that a simplified score, for example, either the motor-

only score, or the ‘‘alert, voice, pain, unresponsive’’ rating, would

offer reliability and convenience without much loss of clinical

accuracy, because the three GCS subscales are largely redundant

1Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army
Medical Research and Materiel Command, Ft. Detrick, Maryland.

2Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts.
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(because of the high correlation between the three).8 However,

a simplified coma score is decidedly low resolution (i.e., pa-

tients are stratified into just a small number of severity levels)

and does not overcome another deficiency: mediocre outcome

prediction.8

Overall, there is an unanswered need for an accurate, practical

method of assessing the severity of TBI during early trauma patient

care, which could be employed in clinical decision algorithms or

research investigations. A series of reports has suggested that blood

pressure (BP) offers prognostic information relevant to TBI. It is

intuitive that, for the initial evaluation of the trauma patient, a low

GCS and low BP are correlates of mortality;12,13 the relationship

between a low GCS, hypotension, and higher mortality has been

quantified in classic prehospital severity scores, such as the trauma

score,14 the prehospital index,15 and the ‘‘circulation, respiration,

abdomen, motor, speech’’ (CRAMS) score.16

At the same time, hypertension is recognized as another corre-

late of mortality in TBI patients. In a population of TBI patients,

Zafar and colleagues17 found that high and low BP were both as-

sociated with increased short-term mortality. These findings were

consistent with an earlier analysis of TBI patients by Butcher and

colleagues18 and another report of an association between elevated

BP and reduced survival in trauma patients.19 Our group has pre-

viously examined how real-time computerized vital-sign analysis

can enhance prehospital recognition of hemorrhagic hypovole-

mia,20,21 and we decided to investigate whether the findings of

Zafar and colleagues17 and Butcher and colleagues18 could be di-

agnostically applicable to a general prehospital trauma population

(i.e., patients without and with TBI). In addition to examining BP,

we also sought to explore the diagnostic significance of other vital

signs, such as heart rate (HR) and respiratory rate (RR), in the early

evaluation of TBI, because abnormalities such as bradycardia and

bradypnea are hallmarks of severe TBI. We hypothesized that it

would be possible to use routine vital signs to improve the corre-

lation between the prehospital GCS and high-mortality TBI. Ac-

cordingly, we undertook a retrospective analysis of a prehospital

trauma patient database to test the hypothesis.

Methods

Clinical data collection

This was a retrospective analysis of clinical data originally
collected and analyzed by Cooke and colleagues,22 with institu-
tional review board approval, of trauma patients during transport by
air ambulance from the scene of injury to a level 1 trauma center. In
a convenience sample of prehospital trauma patients, vital-sign
data were obtained using a Propaq 206EL monitor (Welch Allyn,
Beaverton, OR) between August 2001 and April 2004 and using a
PIC 50 monitor (Welch Allyn) between March 2005 and May 2007.
The following data were archived using a networked personal
digital assistant: electrocardiogram (ECG) and associated contin-
uous HR; impedance pneumogram (IP) and associated continuous
RR; and systolic BP (SBP) and diastolic BP (DBP) measured in-
termittently at multi-minute intervals. Prospectively, prehospital
GCS was assessed and documented by EMS caregivers (para-
medics and critical care flight nurses) as per routine clinical oper-
ations; no focused training related to GCS assessment was provided
to these EMS providers as part of this investigation. Retro-
spectively, clinical data for analysis were collated by chart review,
including demographics, prehospital GCS, prehospital interven-
tions, hospital treatments, coded injury descriptions (Abbreviated
Injury Scale; AIS), and overall outcomes (mortality). The com-
plete investigational data set was subsequently uploaded to our
data warehousing system.23 Protected health information was not

included. All subsequent data analyses were performed using
MATLAB (version 7; MathWorks, Natick, MA).

Vital-sign data processing

Vital signs and other physiological data measured during pre-
hospital clinical operations are often corrupted by artifacts. Pre-
vious research has demonstrated that automated computer
algorithms can identify and remove unreliable data, leading to
significant improvements in the association between vital signs and
traumatic hemorrhage.20,24,25

Here, we used the same validated methodology, summarized as
follows: For each vital-sign value, reliable data were identified by
automated algorithms that rated each datum on an integer scale
from least to most reliable.24,26,27 HR and RR reliability algorithms
involved analysis of ECG and IP waveforms, respectively.26,27

Briefly, when the waveforms were clean with rhythmic, consistent
beats or breaths, the corresponding rates tended to be rated as re-
liable. Conversely, when the waveforms were noisy with irregular,
heterogeneous beats or breaths, the rates were rated as unreliable. In
previous validation, these algorithms’ ratings of ECG and IP
waveforms and reliability of the corresponding HR and RR typi-
cally concurred with the opinion of clinicians. The BP reliability
algorithm determined whether the ratios between SBP, DBP, and
mean pressure were physiological and whether the HR measured by
the inflatable oscillometric cuff matched the ECG HR.24

For the TBI analysis, we studied the mean of the reliable HR,
RR, and SBP in the initial 15-min transportation, so each patient
had no more than one HR, RR, and SBP datum. In previous research
investigating the relationship between prehospital vital signs and
clinically significant blood loss, we found that taking the average
over 15 min was an effective measure to reduce transient variability
and unreliable measurements, leading to an improved association
with clinical outcomes.20,28

Subject selection

For analyses involving HR as an independent variable, we
studied patients with an available GCS score and at least one reli-
able HR value in the initial 15 min of transportation. For analyses
involving RR as an independent variable, we studied patients with
an available GCS score and at least one reliable RR value in the
initial 15 min of transportation (and further examined a subset of
patients who were spontaneously breathing, i.e., nonintubated). For
analyses involving SBP as an independent variable, we studied
patients with an available GCS score and at least one reliable SBP
value in the initial 15-min transportation. For the multi-variate
analyses, we studied patients with available GCS scores and at least
one reliable HR value and one reliable SBP value in the initial
15 min of transportation. We excluded the 1 patient who left against
medical advice, because his injuries and outcome were unknown.

Definition of high-mortality traumatic brain injury
for investigation of diagnostic test characteristics

It can be difficult to differentiate between patients who died as a
result of TBI versus coexistent injuries and other clinical fac-
tors. Therefore, we investigated three parallel definitions of high-
mortality TBI. Our assumption was that any valid study finding
should be consistent for any reasonable definition of high-mortality
TBI (i.e., consistent across all three outcome definitions).

Our primary outcome definition was head AIS score of 5 or 6.
The AIS is a well-validated, widely used scoring system that as-
signs a score from 0 to 6 based on the anatomic injury pattern, rating
how likely the patient is to die from the injury.29 The specific AIS
cutoff (i.e., 5–6) for high-mortality TBI was selected post hoc after
a preliminary analysis to identify the discriminatory capability of
SBP, HR, and RR as a function of specific AIS scores. For that
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preliminary analysis, we calculated the relative risk of head AIS
3–6, 4–6, and 5–6 as a function of different ranges of SBP
(x ‡ SBP > x + 25 mm Hg), HR (x ‡ HR > x + 20 beats/min), and RR
(x ‡ RR > x + 5 breaths/min). Relative risk was defined as the risk
for patients within the range (i.e., ratio of positive cases to total
cases within the range) divided by the risk for patients outside of the
range (i.e., ratio of positive cases to total cases outside of the range).
Confidence intervals (CIs) were computed as per Daly.30 For
testing the significance of relative risks for different ranges, we
compared each against the relative risks of specific reference ranges
(reference ranges for SBP, 100–125 mm Hg; HR, 80–100 beats/
min; RR, 30–35 breaths/min) using the method of Altman and
Bland.31 This analysis led us to define the primary outcome as head
AIS 5–6.

We explored two secondary definitions of high-mortality TBI.
Specifically, we examined all-cause mortality. We also examined
head AIS 5–6 or documented neurosurgical procedure (‘‘head AIS
5–6/procedure’’) as a secondary outcome for those cases in which a
neurosurgical intervention was performed that may have prevented
an otherwise fatal TBI.

Diagnostic test characteristics of Glasgow Coma
Scale, systolic blood pressure, and heart rate
for high-mortality traumatic brain injury

After the preliminary analysis suggested that there was no sig-
nificant association between RR and TBI, RR was excluded from
further analysis.

We investigated the diagnostic performance of the following:

� GCS alone as the independent variable.

� SBP and HR; to accommodate their bimodal relationship with

TBI (i.e., both high and low values of SBP and HR are as-

sociated with an increased risk of TBI), we used relative risks

as follows. The preliminary analysis (detailed above) yielded

relative risk as a function of each SBP and HR. We fitted a

cubic spline to these curves, obtaining a mathematical ex-

pression for TBI relative risk as a function of SBP or HR

values. We then used the computed relative risks (SBPRisk and

HRRisk) as inputs to multi-variate logistical regression models

trained to predict each of the investigational outcomes.

� A multivariate logistic regression model using all three in-

vestigational predictors (GCS, SBPRisk, and HRRisk).

We computed receiver-operating characteristic (ROC) curves for
the investigational outcomes to evaluate their diagnostic perfor-
mance. We compared the areas under each ROC curve (ROC AUC)
using DeLong and colleagues’ method32 (significance level of
p < 0.05).

Results

Our data set contained 1384 subjects with at least one nonzero

vital-sign datum. We identified 1289 subjects with at least one

reliable HR value in the first 15 min, 649 with at least one reliable

RR value (of these, 499 were spontaneously breathing), 1247 with

at least one reliable SBP value, and 1158 with at least one reliable

SBP and one reliable HR value. Table 1 shows the characteristics of

these 1247 subjects, as well as the two subpopulations (GCS < 15

and GCS £ 8) analyzed in the multi-variate analysis. GCS from the

ED was available for 88% of the study population. Compared with

prehospital GCS, average ED GCS was 0.03 points lower and the

standard deviation of their differences was 2.1.

Unless otherwise specified, we used p < 0.05 for significant re-

sults reported below.

Relative risk of traumatic brain injury as a function
of prehospital vital signs

When we computed the relative risk of high-mortality TBI (i.e.,

head AIS 5–6, 4–6, and 3–6) as a function of prehospital SBP, we

found the following:

� The relative risks given low SBP ( < 100 mm Hg) were signif-

icantly different than the relative risks given SBP within the

reference range for all three head AIS cutoffs (i.e., AIS 5–6, 4–

6, and 3–6). Relative risks given SBP < 100 mm Hg were 2.6

(95% CI, 1.3–5.2), 2.0 (1.3–3.0), and 1.5 (1.1–2.0) for head AIS

5–6, 4–6, and 3–6, respectively. Given SBP within the reference

range (125 mm Hg ‡ SBP > 100 mm Hg), relative risks were 0.5

(0.2–1.1), 0.7 (0.5–1.0), and 0.9 (0.7–1.2), respectively.

Table 1. Population Description for the Overall Study Population and Key Subpopulations

Population
Characteristics Any GCS GCS < 15 GCS £ 8

Population size (n) 1,158 530 225
Men (%) 836 (72) 374 (71) 162 (72)
Women (%) 319 (28) 154 (29) 62 (28)
Mean age, years 38 (15) 36 (15) 36 (15)
Blunt injury (%) 1,012 (87) 478 (90) 191 (85)
Penetrating injury (%) 125 (11) 44 (8) 31 (14)
Mortality (%) 82 (7) 73 (14)a 65 (29)a

Tracheal intubation (%) 253 (22) 236 (45)a 203 (90)a

24-h PRBC vol ‡ 1 (%) 220 (19) 122 (23)a 75 (33)a

24-h PRBC vol ‡ 1 and hemorrhagic injury (%) 106 (9) 50 (9) 31 (14)a

24-h PRBC vol ‡ 4 (%) 109 (9) 64 (12)a 42 (19)a

24-h PRBC vol ‡ 4 and hemorrhagic injury (%) 66 (6) 34 (6) 23 (10)a

Head AIS 3 (%) 116 (10) 87 (16)a 49 (22)a

Head AIS 4 (%) 76 (7) 64 (12)a 41 (18)a

Head AIS 5–6 (%) 41 (4) 40 (8)a 35 (16)a

Intracranial pressure monitoring or craniotomy (%) 57 (5) 56 (11)a 45 (20)a

‘‘Hemorrhagic injury’’ was a documented laceration or fracture of a solid organ, a thoracic or abdominal hematoma, a vascular injury that required
operative repair, or a limb amputation.

aSubpopulation significantly different from the ‘‘Any GCS’’ study population (using chi-squared test for proportion data; Student’s t-test for mean age).
AIS, abbreviated injury scale; GCS, Glasgow Coma Scale; PRBC, packed red blood cells.
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� The relative risks given high SBP ( ‡ 175 mm Hg) were

significantly different than the relative risks given HR within

the reference range for head AIS 5–6 and for AIS 4–6 (but

not for AIS 3–6). Relative risks given SBP ‡ 175 mm Hg

were 3.6 (95% CI, 1.5–8.7), 1.6 (0.8–3.3), and 1.3 (0.8–2.2),

for head AIS 5–6, 4–6, and 3–6, respectively.

When we computed the relative risk of high-mortality TBI as a

function of prehospital HR, we found the following:

� The relative risks given low HR ( < 60 beats/min) were sig-

nificantly different than the relative risks given HR within

the reference range for all three head AIS cutoffs (i.e., AIS

5–6, 4–6, and 3–6). Relative risks given HR < 60 beats/min

were 5.9 (95% CI, 2.9–12.3), 3.0 (1.8–5.1), and 2.0 (1.3–3.0)

for head AIS 5–6, 4–6, and 3–6, respectively. Given HR

within the reference range (100 beats/min ‡ HR > 80 beats/

min), relative risks were 0.7 (0.4–1.3), 0.7 (0.5–1.0), and 0.8

(0.6–1.0), respectively.

� The relative risks given high HR ( ‡ 120 beats/min) were not

significantly different than the relative risks given HR within

the reference range for head AIS 5–6, but they were signif-

icantly different for head AIS 4–6 and for AIS 3–6. Relative

risks given HR ‡ 120 beats/min were 1.0 (95% CI, 0.5–2.2),

1.2 (0.8–1.9), and 1.2 (0.9–1.6), for head AIS 5–6, 4–6, and

3–6, respectively.

When we computed the relative risk of high-mortality TBI as a

function of prehospital RR, we found no statistically significant

risks. This absence of significant findings persisted through all

definitions of high-mortality TBI (head AIS 5–6, 4–6, and 3–6).

Moreover, there were no significant findings related to RR for either

the entire study population or the subset of patients who were

spontaneously breathing (no airway intubation).

Figure 1 shows the relative risk of head AIS 5–6 as a function of

different ranges of SBP, HR, and RR.

Multi-variate regression models

� Multi-variate models that included SBPRisk and HRRisk: For

the models that did not include the GCS, we found that

HRRisk was a significant term in all of the nine investigated

multi-variate regression models, whereas SBPRisk was a

significant term in eight of nine of the models (see Table 2).

� Multi-variate models that included GCS, SBPRisk, and

HRRisk: For the models that did include GCS, we found that

HRRisk was a significant term in eight of the nine investigated

multi-variate regression models, with elevated statistical sig-

nificance ( p < 0.01) in the three models for head AIS 5–6/pro-

cedure. SBPRisk was a significant term in six of the nine multi-

variate models (head AIS 5–6 and all-cause mortality), but not

in the three models for head AIS 5–6/procedure (see Table 2).

Diagnostic test characteristics of the Glasgow Coma
Scale alone versus multi-variate regression models

� For the overall study population (n = 1158): GCS provided ra-

ther good ROC AUCs, and the multi-variate models, including

GCS, SBPRisk, and HRRisk, did not offer a significant increase in

ROC AUCs versus the GCS used alone (see Table 2).

� For patients with GCS < 15: The GCS alone was less dis-

criminatory, that is, it yielded lower ROC AUCs. The models

that included the GCS, SBPRisk, and HRRisk offered signifi-

cant improvements over the GCS for all three definitions of

high-mortality TBI: head AIS 5–6 (ROC AUC + 0.04); all-

cause mortality (ROC AUC + 0.03); and head AIS 5–6/

procedure (ROC AUC + 0.03; see Table 2).

� For patients with GCS £ 8: In this subpopulation, the GCS

alone was less discriminatory for high-mortality TBI. The

models that included the GCS, SBPRisk, and HRRisk offered

significant improvements over the GCS for all three out-

comes, head AIS 5–6 (ROC AUC + 0.12), mortality (ROC

AUC + 0.09), and AIS 5–6/procedure (ROC AUC + 0.07;

see Table 2).

Example of improved risk stratification using the
Glasgow Coma Scale, heart rate, and systolic blood
pressure versus the Glasgow Coma Scale alone

Figure 2 shows another distinction between the prehospital GCS

alone and the multi-variate model.

� For GCS, its positive predictive value (PPV) for high-mor-

tality TBI gradually increased as the GCS score grew more

abnormal.

� The multi-variate regression model was different from the

GCS (see Fig. 2). Like the GCS, the PPV for the multi-

variate model rose gradually as the model output was more

abnormal. Unlike the GCS, there was an apparent threshold

above which the PPV rose quite steeply and above which it

demonstrated significantly higher PPV for high-mortality

TBI, as compared with the GCS alone. This implies that

patients with a combination of an abnormal GCS, abnormal

BP (too high or too low), and abnormal HR (too high or too

low) had a > 50% probability of high-mortality TBI.

Discussion

In this report, we investigated whether vital signs could be used

to improve prehospital GCS as a diagnostic indicator of high-

mortality TBI. Improved prehospital identification of high-

mortality TBI could be valuable, guiding prehospital protocols and

mobilizing resources at the receiving facility in an efficient manner.

It could also offer an improved tool for research.

This investigation built on previous reports observing a distinct

bimodal relationship between BP and clinical outcomes in TBI

patient populations.17,18 Consistent with those earlier reports, we

identified a bimodal relationship between prehospital BP and the

study outcomes as well as several novel findings:

� We identified a bimodal relationship between high-mortality

TBI and prehospital HR.

� We found that the GCS, as documented by the EMS care-

givers, did not provide additional risk stratification once the

GCS was £ 8 (in other words, all patients with GCS £ 8 had

similar rates of high-mortality TBI; see Table 2).

� By combining the GCS and prehospital vital signs in a multi-

variate model, after accounting for the bimodal relation-

ships, it was possible to improve the identification of the

highest-mortality TBI. For example, it was possible to

identify an extremely high-risk subgroup that evidenced

> 50% probability of all-cause mortality. In contrast, the

lowest GCS did not offer such positive predictive value (see

Fig. 2). Of course, a clinical score involving relative risk

calculation plus multi-variate regression is not feasible for

a bedside clinician, but it is well within the capabilities

of emerging information technologies (for examples, see

previous reports20,21).
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Hemodynamics of high-mortality traumatic brain injury:
examining the bimodal relationships

What was the basis of the bimodal relationship between he-

modynamics and high-mortality TBI? High BP and low HR are

hallmarks of the Cushing reflex, a well-known hemodynamic

response to elevated intracranial pressure. The association be-

tween low BP and high HR in high-mortality TBI is not as clear.

Major mechanism polytrauma is likely a root cause, which can

result in hemorrhagic hypovolemia (and hypotension and tachy-

cardia) as well as high-mortality TBI. This is suggested by Table

1, where it is apparent that the subpopulation with lower GCS had

higher rates of blood transfusion coincident with explicitly hem-

orrhagic injuries. In addition, in a few cases, the low BP could be a

correlate of spinal shock. Finally, the association between mor-

tality and hypotension may be causal, in that low BP causes

secondary harm to the injured brain. Overall, it seems likely that

the basis of the hypotension and/or tachycardia relationship with

TBI is multi-factorial.

We hypothesized that there would be an association between RR

and TBI. However, we did not identify any significant relationships

involving RR. Possibly, the patients in this data set who had re-

spiratory depression tended to receive early tracheal intubation, and

so their RR was under control of the caregivers, not the patient’s

own depressed respiratory drive.

We found it necessary to consider the bimodal relationships

between TBI risk versus SBP and HR. When we first performed a

routine regression analysis on TBI versus BP and HR, without

accounting for the bimodal relationship, we did not find linear

correlations because the TBI cases with abnormally high values

FIG. 1. Prehospital vital signs versus relative risk of head abbreviated injury scale (AIS) 5–6. Error bars signify 95% confidence
interval. Solid line indicates the cubic spline fit to data. *Statistically significant difference ( p < 0.05) from the baseline reference range
(reference ranges: systolic blood pressure, 100–125 mm Hg; heart rate, 80–100 beats/min; respiratory rate, 30–35 breaths/min).
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cancelled out TBI cases with abnormally low values. Interestingly,

most of the classic prehospital severity scores (e.g., the trauma

score,14 the prehospital index,15 the CRAMS score,16 and the

newer Glasgow Coma Scale, Age, and Systolic Blood Pressure13/

Mechanism, Glasgow Coma Scale, Age, and Arterial Pressure

scores12) do not account for the prognostic value of hyperten-

sion and bradycardia in patients with TBI. We speculate that

superior overall severity scores could be developed by account-

ing for the bimodal relationship between hemodynamics and

high-mortality TBI.

Clinical implications

Although originally intended for use after initial resuscitation,

the GCS has been adopted for the earliest stages of trauma care,

although it is not optimal for that context (see Introduction).

Indeed, in this study, we found that below a cutoff of 8, the

prehospital GCS offered no additional discriminatory value (see

ROC AUCs in Table 2). Given the lowest level of prehospital

GCS ( = 3), the likelihood of mortality was 37% (see Fig. 2). In

contrast, using prehospital HR and SBP with the GCS, it was

possible to further risk stratify patients with a prehospital GCS

£ 8. For example, given those patients with a low GCS and ab-

normal HR and SBP, we found a probability ( > 50%) of mor-

tality risk (see Fig. 2).

How could a superior tool for early estimation of TBI mortality

risk be useful? First, this measure could be applied in research to

control for TBI severity in biostatistical analyses of prehospital

care (for instance, studies such as Davis and colleagues5). Second,

such a tool may be useful for triage applications, such as deter-

mining which patients should receive priority care or involvement

of a neurosurgeon at the earliest juncture. Third, improved risk

stratification could be used to develop more rational clinical de-

cision-making algorithms for prehospital management. For ex-

ample, transport speed might be the highest priority (e.g., no delay

for tracheal intubation) for patients with the highest TBI risk, in

case the patient requires immediate decompressive neurosurgery,

and osmotherapy may be useful, whereas permissive hypoten-

sion33 would be contraindicated. In contrast, for patients with

depressed consciousness who are unlikely to have high-mortality

TBI based on the patterns of GCS, HR, and SBP, it may prove

judicious to delay transportation long enough to secure the airway

and protect against aspiration, and permissive hypotension could

offer more benefit than risk. In summary, based on a patient’s

quantitative risk of high-mortality TBI, different prehospital in-

terventions may offer different risk-benefit profiles. Further re-

search is warranted into novel prehospital protocols in which

decision making is dependent on the quantitative risk of life-

threatening TBI.

As a practical matter, the multi-variate analysis used in this

investigation requires computer analysis; such a tool is well within

today’s in- and prehospital capabilities. Indeed, our research team

has currently deployed such automated computational devices,

networked to a Propaq 206 patient monitor (Welch Allyn), on board

Boston Medflight helicopters for prospective trials of advanced

decision-support algorithms.21 In practice, after the GCS score was

electronically documented by a caregiver, the informatics system

could process the patient’s recent BP and HR measurements, au-

tomatically identify and exclude any unreliable vital-sign values,

compute HRRisk and SBPRisk, and output the multi-variate regres-

sion model result.

Limitations

In a few of the multi-variate models, either the SBPRisk term or

the HRRisk term did not reach statistical significance. However, we

do not consider each and every outcome as a distinct hypothesis.

Rather, we are testing the overall hypothesis that information from

SBPRisk and HRRisk can significantly improve on the ability of the

GCS to identify patients with high-mortality TBI. The results

shown in Table 2 demonstrate a consistent pattern supporting this

hypothesis in patients with a GCS < 15. In contrast, GCS = 15 was

Table 2. Comparison of Areas Under Receiver-Operating Characteristic Curves of the Investigative Parameters

ROC AUC (95% CI)

Population Any GCS GCS < 15 GCS £ 8
Investigated variables Total = 1,158 subjects Total = 530 subjects Total = 225 subjects

Head AIS 5–6 Cases = 41, Controls = 1,117 Cases = 40, Controls = 490 Cases = 35, Controls = 190
GCS 0.90 (0.86–0.93) 0.80 (0.76–0.85) 0.59 (0.52–0.66)
SBPRisk, HRRisk 0.64 (0.54–0.73)a,b,c 0.68 (0.58–0.76)a,b,c 0.65 (0.54–0.74)a,b

GCS, SBPRisk, HRRisk 0.91 (0.85–0.94)a,b 0.84 (0.78–0.89)a,b,c 0.71 (0.61–0.79)a,b,c

All-cause mortality Cases = 82, Controls = 1,076 Cases = 73, Controls = 457 Cases = 65, Controls = 160
GCS 0.85 (0.80–0.90) 0.82 (0.77–0.86) 0.65 (0.59–0.70)
SBPRisk, HRRisk 0.68 (0.61–0.74)a,b,c 0.66 (0.59–0.73)a,b,c 0.66 (0.58–0.74)a,b

GCS, SBPRisk, HRRisk 0.88 (0.83–0.91)a,c 0.85 (0.80–0.89)a,b,c 0.74 (0.66–0.81)a,b,c

Head AIS 5–6/procedure Cases = 83, Controls = 1,075 Cases = 81, Controls = 449 Cases = 68, Controls = 157
GCS 0.89 (0.86–0.92) 0.78 (0.73–0.82) 0.55 (0.49–0.62)
SBPRisk, HRRisk 0.62 (0.55–0.68)a,b,c 0.63 (0.56–0.69)a,b,c 0.59 (0.50–0.67)b

GCS, SBPRisk, HRRisk 0.90 (0.86–0.93)b 0.81 (0.77–0.86)b,c 0.62 (0.54–0.70)b

Shown are comparisons of areas under receiver operating characteristic curves (ROC AUCs) of the following investigative variables: 1) GCS; 2) the
multi-variate regression model using the relative risk of traumatic brain injury computed from SBP (SBPRisk) and from HR (HRRisk); and 3) the multi-
variate regression model using GCS, SBPRisk, and HRRisk.

aSBPRisk term was statistically significant in the multi-variate regression model.
bHRRisk term was statistically significant in the multi-variate regression model.
cROC AUC was statistically significantly different from that of GCS.
AIS, abbreviated injury scale; CI, confidence interval; GCS, Glasgow Coma Scale; ROC, receiver operating characteristic; AUC, area under the curve;

SBP, systolic blood pressure; HR, heart rate.
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very effective at identifying the majority of patients who had a very

low risk of high-mortality TBI; the associated ROC AUC was quite

high, without much room for improvement.

Second, this analysis focused on early identification of high-

mortality TBI, because optimizing survival is a primary goal of

prehospital and early hospital care. However, preventing disability

is as important to consider as survival. Whether BP and HR offer

prognostic information about functional neurological outcome was

not addressed in this analysis, and future investigation into this

important question is warranted.

Third, this analysis focused on the GCS measured by EMS

caregivers. Our findings may not extend to the classic GCS care-

fully measured in-hospital after patient stabilization and the elim-

ination of intoxicants, which are often different from prehospital

measurements.9,10 Prehospital conditions are more demanding,

whereas staffing is often limited to a couple of caregivers, so nu-

anced GCS scoring is unlikely to be a high priority: The field medic

will probably not heed the difference between flexion versus ex-

tension motor responses when it is obvious that the patient has time-

sensitive injuries.

The final limitation relates to the precise numerical results of our

analysis. For some HR and SBP ranges, there were not enough

cases for a tight estimation of the associated relative risk. A larger

data set would presumably yield a more accurate quantification of

the HR and SBP bimodal relationship and the optimal coefficients

for the multi-variate model. All the same, our findings were qual-

itatively consistent with findings from other reports.17,18 We sug-

gest that the overall findings of this report are likely valid.

Conclusion

We found that the prehospital GCS alone was unable to effec-

tively distinguish between trauma patients with moderate risk

versus the highest risk of high-mortality TBI. A multi-variate re-

gression model with three terms—GCS, SBP, and HR—offered

significantly improved test performance after accounting for the

bimodal relationships between TBI versus SBP and HR. This score

could be useful for guiding operations at the receiving hospital

(e.g., early consultation by a neurosurgeon and readying an oper-

ating room). Further, we speculate that improved methods for the

prehospital assessment of TBI risk could facilitate new prehospital

management practices.
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variate model output (bottom row). Distribution of patients with each GCS score is also shown (shaded bars, top row) as is the
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 

Abstract— An opportunity exists for automated clinical 

decision support, in which raw source data from a conventional 

physiological monitoring system are continuously streamed to 

an independent analysis platform. Such a system would enable a 

wider range of functionality than offered by the source 

monitoring system. Although vendor solutions for this purpose 

are emerging, we developed our own system in order to control 

the expense and to permit forensic analysis of the internal core 

functionality of the system. In this report, we describe a 

platform that can provide decision support for trauma patients 

in an Emergency Department (ED). System evaluation spanned 

39 days, and included a total of 2200 patient session hrs of real-

time monitoring. We highlight the technical issues that we 

confronted, including protection of the core monitoring 

network, the real-time communication of electronic medical 

data, and the reliability of the real-time analysis. Detailing these 

nuanced technical issues may be valuable to other software 

developers or for those interested in investing in a vendor 

solution for similar functionality. 

I. INTRODUCTION 

Automated alerting and decision support are possible 
when hospitalized patients receive continuous monitoring, 
such as physiological alarms embedded within core 
monitoring systems. A newer form of decision support also 
exists in which vital-sign data are fed (e.g., using Health 
Level Seven [HL7] standards) to electronic medical records 
(EMRs). However, EMR decision-support algorithms 
usually operate on clinical data that have been reviewed and 
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verified by clinicians (as opposed to raw source data from 
the monitoring network).  

A third opportunity for implementing decision support 
exists, in which the raw source data from the monitoring 
network are continuously streamed to an independent 
analysis platform, enabling a wider range of functionality 
than offered by the source monitoring system [1]. A number 
of emerging vendor solutions are available to support such 
functionality, including the BedMasterEx (BM) Data 
Acquisition Software (Excel Medical Electronics Inc., 
Jupiter, FL) with its StreamingAnalytics platform powered 
by IBM InfoSphere Streams (IBM, Yorktown Heights, NY); 
Bernoulli Enterprise Software (Cardiopulmonary Corp., 
Milford, CT); and DocBox (DocBox Inc., Newton, MA). 

Our research team was interested in implementing a set 
of investigational decision-support algorithms that analyze 
streaming physiological data in realtime. Our focus is the 
development of decision support for trauma patients, and this 
project is named for its intended purpose: Automated 
Processing of the Physiological Registry for Assessment of 
Injury Severity in the Emergency Department (APPRAISE-
ED). APPRAISE-ED is a follow-up to a similar system 
previously developed for prehospital air ambulances [2].  

Also in prior work, we studied whether the BM system 
for data acquisition would have any identifiable harmful 
effects on the hospital’s core monitoring network [3]. In that 
preliminary work, our testing did not reveal any deleterious 
impact on the core monitoring network, although a telephone 
poll of customers using the vendor’s product revealed that a 
majority experienced at least one episode of unanticipated 
failure to archive data due to the difficulties in managing a 
distributed, network-based data acquisition system. This 
suggested that the system was safe and effective, but that the 
support and oversight necessary for the product were often 
underestimated by novice users. 

The next step for our research team was in-hospital real-
time data analysis, requiring a platform for acquisition and 
analysis of physiological signals for automated decision 
support. We considered using one of the aforementioned 
vendor solutions, but decided to develop our own solution 
because these were (in our subjective assessment) relatively 
expensive, without an established track record of good 
performance, and also lacked sufficient documentation for us 
to decisively evaluate their core functionality. 

In this report, we describe our system, its evaluation, and 
the lessons we learned. For those who are considering the 
development or the purchase of such a system, this report 
may help them to better understand several key underlying 
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performance issues. We carefully examined two aspects of 
the system: first, reliability of data communication between 
the core monitoring network and the novel analysis platform, 
and second, the reliability of the real-time analysis. 

II. METHODS 

A. Description 

Fig. 1 illustrates the complete system, consisting of three 
major components: the core monitoring network, which is a 
system of 16 Solar patient monitors (General Electric [GE], 
Milwaukee, WI); the proprietary BM software system; and 
our APPRAISE-ED system.  

BM is hosted on a dedicated personal computer (PC) 
and, as per the manufacturer’s specifications, collects 
physiological data from the GE patient monitors and saves it 
to binary (STP) files archived on the Windows file system. 
In parallel, BM archives associated data in an SQL Server 
(Microsoft Corp., Redmond, WA) database [4] archives 
associated data, including patient identifying information 
(i.e., protected health information [PHI]), monitor status, and 
indices of how data are stored within each STP file. The BM 
system standardizes waveform and vital-sign data 
frequencies to 240 and 1 Hz, respectively, and provides a 
common name for signals, thus offering a uniform means for 
access and analysis of collected data at the expense of 
averaging or missing higher frequency sensor data. 

The APPRAISE-ED software runs on a dedicated server. 
The software consists of an executive module responsible for 
managing overall APPRAISE-ED system functionality. Also, 
for each monitor/bay under analysis, it creates an instance of 
a dedicated worker module.  

The executive module includes three key sub-modules. 
The executive controller sub-module directs the tasks to be 
performed by the other sub-modules. The poller sub-module 
determines which monitor/bays are in active use by querying 
the BM SQL Server database. In addition, as new 

physiological data are continuously accumulated through 
time, the poller sub-module determines the timing 
information about when each BM STP file was updated, as 
well as the location of the new data within the updated STP 
file. The poller’s queries are performed every 5 s (query 
intervals are configurable), and this information is passed on 
to the scheduler sub-module.  

The scheduler sub-module creates instances of the 
worker modules for each monitor/bay in active use. The 
scheduler also coordinates the transfer of newly acquired 
physiological data to each worker module, depending on its 
estimate of the time required to perform each analysis. 

It is the individual worker modules which, as directed by 
the scheduler, are responsible for actually extracting 
physiological data from BM and then performing analyses. 
The worker controller sub-module in each worker directs the 
operations to be performed by each of the sub-modules. Each 
worker’s data isolator sub-module locates and extracts the 
newest physiological data from the STP file. We rely on a 
software tool, Stp2Xml, available from the BM vendor, to 
transform the STP file into an intermediate data format. The 
data isolator sub-module then reads this intermediate XML 
file and deletes PHI from the extracted data. Finally, the data 
isolator stores the physiological data in a new portable 
binary file format (HDF: Hierarchical data format [5]).  

Each worker’s processor sub-module performs additional 
data handling and monitoring, such as tracking update times 
and verifying that new physiological data were obtained. The 
processor also checks the physiological data for indications 
that the patient was off-monitor and/or that a new patient 
may have been swapped into that monitor/bay. We found 
that, in a busy ED, there were often cases where patients 
were being removed from the monitor/bay without being 
electronically discharged, or patients were swapped without 
any update of the patient identity within the GE monitoring 
network. Accordingly, when no physiological data are 
detected for 5 min (configurable) the active session is 

 
Figure 1. Illustration of the major components that comprise the proposed platform for the real-time acquisition and processing of physiological signals 

in the emergency department. APPRAISE-ED: Automated Processing of the Physiological Registry for Assessment of Injury Severity in the 

Emergency Department. 
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terminated. If data re-appear after that, a new session 
handled by a new instance of the worker module is started. 

Each worker’s analysis interface sub-module 
communicates with a MATLAB process (The Mathworks 
Inc., Natick, MA) to perform an analysis of isolated data via 
the MATLAB application programming interface (API). 
Algorithms are used to determine the reliability of waveform 
(e.g., electrocardiogram) and vital-sign data (e.g., heart rate) 
[6-8]. A primary focus of our research is early identification 
of patients with hemorrhage, and we have investigated a 
methodology involving multivariate classification [9] with 
the sequential probability ratio test [10] (the latter is an 
established technique for identifying abnormal patterns in a 
series of repeated measurements). The analysis interface has 
the ability to simultaneously run multiple instances of the 
analytic algorithms on the data from a given session at the 
same time, so that results from different algorithms can be 
compared. We constructed an analysis viewer to allow for 
real-time viewing of analysis results from a remote, 
networked location. At the end of each session, the HDF 
files and the analysis results are saved on the storage server 
for post-hoc review. 

In prior work, we examined the impact of BM on the 
function of the core GE monitoring network and its 
constituent monitors [3]. For the current project, it was a 
priority that any newer functionality should not pose any 
additional risk to the same core monitoring network. 
Accordingly, the core GE monitoring network remains an 
isolated network without direct connection to the internet or 
the APPRAISE-ED software, except indirectly through the 
BM host PC, which serves as a bridge between the two 
networks. The APPRAISE-ED software resides on a separate 
server which communicates (read-only) with the BM host PC 
through select open ports. Queries from the APPRAISE-ED 
software to the SQL Server database (on the BM host PC) 
are designed to be low impact, i.e., minimum number of 
queries. Other aspects of query design were to limit the size 
of returned data corresponding to a given query, and to 
minimize the number of connections to the database. The 
core GE monitoring network thus remains a closed network, 
with its data travelling first to the BM host PC and then, 
through highly restricted ports and read-only access, to the 
APPRAISE-ED server and storage systems. In order to 
minimize any exposure to malware, neither the BM host PC 
nor the APPRAISE-ED analysis server is used for any other 
purpose than the aforementioned data processing. 

B. Testing 

Overall, testing was similar to that employed by Khitrov 

et al. [2], although the current system adds the complexity of 

up to 16 bays/monitors to analyze at a time, rather than a 

single transport monitor. We tested the APPRAISE-ED 

software component by component by using a unit-testing 

approach that exercised each module and sub-module. Next, 

we tested integrated system function during real-time 

operation by implementing a “simulated” ED consisting of 

three networked GE monitors, a virtual BM installation 

bridging the GE network and the general laboratory network, 

and a virtual server installation hosting the APPRAISE-ED 

software. Patients were simulated using Netech MiniSim 

1000 (Netech Corp, Farmingdale, NY) patient simulators.  

Real-time functionality, including BM data extraction, 
algorithm processing, and result archiving, were compared to 
offline analysis of the same raw data (sourced from the BM 
archive). We confirmed that the software met all the 
aforementioned functional specifications (see Description 
above). 

We conducted an exploration of several potential failure 
scenarios. We attempted to operate the GE Solar monitors in 
unusual fashions (e.g., turning monitors off in the middle of a 
session; swapping patients without formally discharging the 
initial patient within the GE network, etc.). Also, we 
simulated network failure scenarios during an ongoing 
session, such as interrupting APPRAISE-ED access to the 
SQL Server by blocking the SQL Server port, and blocking 
access to the STP file location by unmapping the shared 
drive on the PC running BM. 

     After successful laboratory testing, the system was tested 
in clinical use, in the Massachusetts General Hospital’s ED, 
where we compared the system’s resultant HDF files and 
real-time analysis results to offline analysis of data sourced 
directly from the BM archive. We also reviewed Windows 
Performance Monitor to assess the function of the BM host 
PC during clinical use. 

III. RESULTS 

Here, we summarize the main results and present several 
notable findings. During laboratory testing, we confirmed 
that the software met all the aforementioned functional 
specifications. The system was able to begin and end 
analysis sessions when new patients were placed on or 
removed from the monitor. The system was able to process 
simultaneous patient sessions as intended. During simulated 
network communication interruptions, the system 
appropriately logged the events and recovered from those 
interruptions as designed.  

We performed clinical testing on weekdays, mostly 
during morning hrs, over a span of 39 days. Over a total of 
230 hrs (2200 patient session hrs) of real-time ED operation, 
we did not observe network communication errors between 
the components of the overall system. Real-time analysis was 
executed as per our design, on up to 16 monitors/bays 
simultaneously, without any operational errors.   

Based on the data within the HDF files (both vital-sign 
numeric as well as waveform data), we ascertained that the 
data passed from BM in real time matched the source BM 
record, with one exception. We uncovered one trivial but 
consistent discrepancy in the data values for the pulse 
oximetry (SpO2) waveform that were passed to the real-time 
system. Specifically, the first three samples of the waveform 
(representing the first 0.0013 ms) at the beginning of each 
60-s segment received by the real-time system did not match 
the source BM data. Based on our internal analysis and in 
discussion with the BM vendor [11], we learned that the 
Stp2Xml data export tool applied a moving-window average 
after extracting SpO2 waveform data excerpts from the BM 
STP file. This moving-window average distorted the data at 
the beginning of the excerpt where it lacked preceding SpO2 
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waveform for proper averaging. We addressed this issue by 
using the Stp2Xml tool to transform the previous SpO2 
waveform excerpt along with the current segment so all data 
within the BM extraction window would be available. 

When we compared real-time analysis in the ED (the 
results of which were available within the HDF data archive) 
versus offline retrospective analysis of the same source data 
(as archived by the BM system), there was convincing 
agreement. The mean standard error between these methods 
was 0.00. There were no episodes of unusual operation of the 
BM host PC, according to the logs of the Windows 
Performance Monitor. 

IV. DISCUSSION 

We have successfully developed, validated, and deployed 
the APPRAISE-ED system for prospectively testing real-
time decision-support algorithms during clinical operations. 
The goal of this report is to highlight the technical issues that 
we confronted. Details of these issues may be valuable to 
other software developers or to those interested in procuring 
a vendor solution for similar functionality, which is often a 
six-figure investment. These issues may not be readily 
apparent to clinicians, administrators, and researchers 
interested in acquiring this functionality. 

First, we felt it was important to carefully consider the 
integrity of the core GE monitoring network. In prior work, 
we assessed whether the BM archiving system could alter the 
functionality of the core GE monitoring network [3]. By 
design, the newly added functionality did not interact with 
the core monitoring network, but used the BM host PC as the 
indirect communication bridge through which real-time 
physiological data were obtained. Interactions between the 
APPRAISE-ED server and the BM host PC were kept to a 
minimum (i.e., read-only access, query frequency minimized, 
query date returns minimized, and working within elevated 
levels of BM host PC security). 

Second, we felt it was important to consider the 
reliability of the communication between the software 
components. In our system design, we added functionality to 
log interruptions and gracefully recover from such 
interruptions automatically. We also identified at least one 
condition in which the data passed from the BM system in 
real time were not exactly the same as the data actually 
archived by BM for retrospective analysis. Although the 
differences were trivial, this issue—the integrity of data 
communicated for real-time analysis—is not trivial. It will be 
essential to consider this issue for any and all interoperable 
systems if such healthcare decision-support functionality 
becomes normative in the future. 

Third, we felt it was important to carefully consider the 
validity of the real-time paradigm. Our paradigm involved 
“quasi” real-time processing, where there were brief but non-
zero delays in the frequency of checking for new real-time 
data, then additional brief delays in processing those data. 
(We felt that delays of 2 min or less were acceptable when 
seeking to identify a physiological condition that is unlikely 
to progress substantially in that time frame.) Overall, we 
validated that this integrated system was able to perform as 
intended, within a 2-min analysis latency. Obviously, if such 

real-time analyses become normative in healthcare, it is 
important to consider the “worst case scenario” in terms of 
latency for any decision support upon which tomorrow’s 
clinicians grow to depend. An important corollary is that the 
latency and overall performance are a function of the 
computational complexity of the algorithms; a system that 
performs suitably with one set of algorithms may not 
perform well with a different set of algorithms. 

Lastly, although largely out of the scope of the current 
report, it is important to consider the “meta-data” of the 
system. For instance, is there any risk of clock error, or of 
associating data with the wrong patient? An expanded 
discussion of these issues can be found in [12]. 
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Objective: During initial assessment of trauma patients, metrics of heart rate variability (HRV) have been associ-
ated with high-risk clinical conditions. Yet, despite numerous studies, the potential of HRV to improve clinical
outcomes remains unclear. Our objective was to evaluate whether HRVmetrics provide additional diagnostic in-
formation, beyond routine vital signs, for making a specific clinical assessment: identification of hemorrhaging
patients who receive packed red blood cell (PRBC) transfusion.
Methods: Adult prehospital trauma patients were analyzed retrospectively, excluding those who lacked a com-
plete set of reliable vital signs and a clean electrocardiogram for computation of HRV metrics. We also excluded
patients who did not survive to admission. The primary outcome was hemorrhagic injury plus different PRBC
transfusion volumes. We performed multivariate regression analysis using HRV metrics and routine vital signs
to test the hypothesis that HRVmetrics could improve the diagnosis of hemorrhagic injury plus PRBC transfusion
vs routine vital signs alone.
Results: As univariate predictors, HRV metrics in a data set of 402 subjects had comparable areas under receiver
operating characteristic curves compared with routine vital signs. In multivariate regression models containing
routine vital signs, HRV parameters were significant (P b .05) but yielded areas under receiver operating charac-
teristic curves with minimal, nonsignificant improvements (+0.00 to +0.05).
Conclusions: A novel diagnostic test should improve diagnostic thinking and allow for better decisionmaking in a
significant fraction of cases. Our findings do not support that HRV metrics add value over routine vital signs in
terms of prehospital identification of hemorrhaging patients who receive PRBC transfusion.
Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/3.0/).

1. Introduction

A series of investigations have suggested that measures of heart rate
variability (HRV) offer a promising capability for the identification of

trauma patients who require life-saving interventions (LSIs), which
are time-sensitive clinical interventions, such as packed red blood cell
(PRBC) transfusion, endotracheal intubation, and operative interven-
tions. Heart rate variability, which can be measured via routine electro-
cardiography, represents the beat-to-beat fluctuations in the R-R
intervals (RRIs) of the electrocardiogram (ECG), revealing the state of
the patient's autonomic nervous system. A wide range of different
HRV metrics have been investigated [1], including frequency domain
metrics [2-7], time domain metrics [2,3,5-11], and complexity metrics
[2-4,6,8,10,12].

In trauma patients, it is clear that, on average, those patients who
subsequently require an LSI have reduced HRV during prehospital and
emergency department (ED) monitoring [4,6,8,12]. There are also sig-
nificant differences in HRV group averages between trauma patients
with and without traumatic brain injury [7,11] and between survivors
vs fatalities [2,3,5,7]. Moreover, diagnostic test characteristics have
been encouraging, with 80% sensitivity and 75% specificity reported in
patients who require surgical intervention in the operating room [9]
and 86% sensitivity with 74% specificity reported in patients who
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require any LSI [10]. However, these findings are tempered by several
other reports, which suggest that, for that subset of trauma patients
with normal vital signs, HRV metrics have a low sensitivity (16%) for
LSI prediction [6], and their diagnostic potential is reduced by notable
intersubject variability as well as intrasubject temporal variability [13].

To date, HRV monitoring has not become routine practice, although
PubMed lists more than 10000 citations relevant to HRV from over 3
decades, spanning a diversity of potential clinical applications. This
suggests that there may be some barrier (eg, economic, regulatory,
educational, etc) that is hampering the dissemination of a potentially
useful technology. Alternatively, it may be that the aforementioned
research studies have been suboptimal in terms of answering precisely
how (or if) HRV can improve patient care. Many of the published
reports about HRV offer intriguing associations but do not provide
explicit comparisons vs the routine clinical data used in standard deci-
sionmaking. For instance, if HRV is to be used in decidingwhether a trau-
ma patient requires trauma center care, itmay be elucidating to compare
it against standard criteria for trauma center transport [14]. Likewise, if

HRV is to be used for diagnosing traumatic brain injury, it could be com-
pared against standard criteria for neuroimaging after head injury, for
example, the Canadian head computed tomography rule [15].

To better understand the value of HRV for decision making, we de-
cided to focus on the identification of trauma patients with major hem-
orrhage who receive PRBC transfusion because exsanguination is a
leading cause of death in both civilian [16] and military [17] trauma
populations, whereas many hemorrhagic deaths can be prevented
with time-sensitive interventions such as surgery and optimal resusci-
tation [18,19]. In theory, a reliable and simple diagnostic indicator of
which patients require such interventions could enhance the quality
and efficiency of clinical decision making, leading to optimal patient
outcomes. Fig. 1 illustrates 2 cases in which the patients' vital signs
are similar, but HRV metrics indicate whether or not the patients are
suffering life-threatening hemorrhage.

To this end, we conducted amultivariate analysis, using routine vital
signs as the comparator, to test the hypothesis that HRVmetrics can im-
prove the identification of patients withmajor hemorrhage. By focusing

Fig. 1. The 2 cases—30-second excerpts of ECG, HR, and RRI waveforms from 2 different subjects—are selected examples where HRVmetrics, but not routine vital signs, can differentiate
between patients with (left) and without (right) hemorrhagic injuries requiring substantial 24-hour PRBC transfusion. For each subject, the RRI waveform is illustrated, along with each
cycle of sinus arrhythmia that was identified by computer algorithm (each cycle indicated by numerals above the RRI waveform); see text for more details about computation of HRV
metrics. The “normal ranges” listed in the tables above represent the interquartile range for subjects who did not receive any 24-hour PRBC transfusion.
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on a specific clinical condition of clear importance, that is, substantial
hemorrhage after injury, and quantitatively comparing HRV metrics vs
routine vital signs as diagnostic tests, it may be possible to better under-
stand if and how HRV metrics may be used to improve trauma patient
management.

2. Materials and methods

2.1. Clinical data collection

We examined 2 pooled datasets, the first originally collected on
board Memorial Hermann Life Flight (MHLF, Houston, TX) air ambu-
lances [5,20] between August 2001 and April 2004 and the second
from Boston Medflight (BMF, Bedford, MA) air ambulances between
February 2010 and December 2012 with institutional review board ap-
proval. Routine vital sign and ECG data sourced from Propaq 206 patient
monitors (Welch-Allyn, Beaverton, OR) were acquired from adult (age
≥18 years) trauma patients en route to level 1 trauma centers and ulti-
mately archived in our database. Additional clinical data, including de-
mographics, injury descriptions, prehospital interventions, hospital
treatments, etc., were obtained via retrospective chart review.

We studied all subjects with at least 1 reliable measurement of each
investigational metric, allowing for a meaningful comparison of the
investigational metrics (see below for definition of measurement reli-
ability). Subjects who died before hospital admission were excluded
because it was difficult to determine what volume of blood transfusion
they would have received within 24 hours (or, in some cases, whether
they were truly bleeding or not). For the primary analysis, we excluded
patients who received PRBC transfusion but lacked explicitly hemor-
rhagic injuries, that is, no documented solid organ injury, no thoracic
or abdominal hematoma, and no vascular injury requiring a procedure
for hemostasis. (We reexamined these patients in a secondary sensitiv-
ity analysis to determine whether the major findings of the primary
analysis were different for the excluded population.)

2.2. Routine vital signs

We studied the average of reliable vital signs (heart rate [HR], respira-
tory rate [RR], systolic blood pressure [SBP], and pulse pressure [PP=SBP
− diastolic blood pressure]) measured up to the 15th minute of each
subject's prehospital data record. The reliability of each vital sign was de-
termined using automated computer algorithms [21-23]. The HR reliabil-
ity algorithm [23] evaluated whether the ECG waveform was clean,
whether the heart rhythm was regular, and whether the Propaq HR was
close in value to the algorithm's independent computation of HR. The RR
reliability algorithm [21] evaluatedwhether the impedance pneumogram
waveformwas clean, whether the breaths were regular, and whether the
Propaq RRwas close in value to the algorithm's independent computation
of RR. The blood pressure reliability algorithm [22] evaluatedwhether the
relationship between SBP, mean arterial pressure, and diastolic blood
pressure was normative and whether the HR measured from the
oscillometric cuff was close to the HR measured by the ECG.

2.3. Heart rate variability metrics

Westudied the average value of 3 reliableHRVmetrics (SD of the RRIs
in the ECG signal [SDNN], sample entropy [SampEn], and rate of sinus
arrhythmia [RSA]) measured up to the 15th minute of each subject's
prehospital data record. SDNN [8-11] and SampEn [2-4,6,8,10,12] have
been investigated in recent reports, whereas RSA offered encouraging
performance in prior exploratory analysis.

To compute SDNN, we upsampled each ECG segment to 2000 Hz by
cubic spline interpolation and identified the location of each R-wave
using an HR estimation algorithm [23]. We computed the difference
between successive R-waves, which established the RRI time series.
Fig. 1 shows examples of these RRI time series. For every second of ECG

recorded, we computed SDNN: the SD of RRIs from the preceding 5
minutes. The computed SDNNwas considered reliablewhen the preced-
ing 5 minutes of ECG waveforms were at least 80% clean and reliable,
per the ECG waveform reliability algorithm [23]. We used a 5-minute
window for SDNN calculation in accordance with consensus guidelines
[24]. When the change in RRI from one beat to the nextwas too large or
too small (as per the quantitative criteria of Malik et al [25]), that beat
was considered aberrant. R-R intervals from the interval immediately
before or immediately after the aberrant beat were excluded whenever
SDNN was computed.

To compute SampEn, which is a measure of similarity within the RRI
time series, we used the PhysioTools software “sampen.m” [26], which
implements the method of Richman and Moorman [27]. Sample entro-
py is the probability that, if an RRI time series has a repeated “similar”
pattern of data points of length m (where m ≪ N), then the similarity
will also persist when the length of data points is extended to m + 1.
Similarity is defined mathematically, that is, when any 2 sequences of
data points have the same data point values in the same order within
some tolerance r. A detailed explanation of this calculation can be
found in the online PhysioTools tutorial [28]. In this work, for every sec-
ond of ECG recorded, we computed SampEn from the preceding 200
ECG beats (equivalent to N = 201), using r = 0.20 times the SD of the
RRI series, and m = 2. The computed SampEn values were considered
reliable only if all the 200 ECG beatswere reliable (as per the ECGwave-
form reliability algorithm [23]) andwithout any aberrant beats (defined
above). The values of N,m, and rwere selected in accordance with sev-
eral recent reports evaluating SampEn in trauma patients [3,10,12].

Lastly, we computed RSA, which is the frequency of oscillation of the
HR (HR typically varies in a rhythmic fashion, often synchronized to the
rate of respiration [29], although sometimes faster [30] or slower [31]
than respiration). Fig. 1 shows examples of the oscillatory RSA. For com-
putational purposes, we treated the RRI time series as a form of respira-
tory waveform [29] and applied our previously developed RR
measurement and reliability algorithms [21] to compute RSA for every
second and to determine whether the waveform was reliable or not.

2.4. Univariate analysis

We analyzed the association between each investigational metric (HR,
RR, SBP, PP, SDNN, SampEn, and RSA) vs PRBC transfusion received over
24 hours. Specifically, we computed the area under the receiver operating
characteristic curve (ROC AUC) for each investigational metric as a predic-
tor of different 24-hour PRBC volumes (24-hour PRBC vol:≥1,≥5, and≥9
units).We compared eachof theHRVmetrics (SDNN, SampEn, andRSA) vs
routine vital signs (HR, RR, SBP, and PP), testing whether there were any
differences per DeLong's test [32] with a significance threshold of P b .05.

2.5. Multivariate analysis

We conducted multivariate logistic regression analysis using the
“glmfit” routine in MATLAB version 7 (The Mathworks, Inc, Natick,
MA). First, we evaluated a baseline multivariate model containing all
routine vital signs (core feature set: HR, RR, SBP, and PP) and compared
this model vs other models that included an HRV metric and/or lacked
one of the routine vital signs. For each model, we determined which
input parameters were statistically significant, and we computed ROC
AUCs for the same outcomes as the univariate analysis (ie, ≥1, ≥5,
and ≥9 units of 24-hour PRBC vol).

2.6. Net reclassification improvement

We tested whether the HRV metrics were associated with a signifi-
cant net reclassification improvement (NRI), using the statistical meth-
od of Pencina et al [33]. First, we computed the probability of
hemorrhage given pairs of logistic regression models (baseline model
with different combinations of routine vital signs vs a model with the
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same set of vital signs plus anHRVmetric) for the same outcomes as the
univariate analysis (ie, ≥1, ≥5, and ≥9 units of 24-hour PRBC vol). For
each subject, we assessed which model gave an “improved classifica-
tion” (defined as a higher probability of hemorrhage in hemorrhage pa-
tients or a lower probability of hemorrhage in control patients). Then
we evaluated whether one model was significantly different from the
other using the z-test (the null hypothesis was that each model had
an equal likelihood of improved classification).

2.7. Sensitivity analysis

Many subjects were excluded from the primary analyses because
they lacked a complete set of reliable investigational metrics within
their prehospital physiological data. To check whether this led to nota-
ble selection bias, we repeated the univariate analysis on a broader set
of subjects to determine whether the univariate findings were sensitive
to the exclusion criteria. For each investigational metric, we identified
all subjects with at least 1 reliable value (subjects who did not necessar-
ily have a complete set of reliable investigational metrics). We then
computed the univariate ROC AUC of each metric for these larger popu-
lations to predict 24-hour PRBC vol (ie,≥1,≥5, and≥9 units of 24-hour
PRBC vol). However, we could not perform paired comparisons of
these ROC AUCs because each result arose from somewhat different
subject subsets.

In addition, we repeated the multivariate analysis for our 2 popula-
tions, MHLF and BMF. For each, we computed the ROC AUC for the
core feature set (HR, RR, SBP, and PP) with and without the investiga-
tional HRV metrics: SDNN, SampEn, and RSA.

We also repeated the univariate andmultivariate analyses for an alter-
native outcome, namely, subjects who received 24-hour PRBC vol greater
than or equal to 1, greater than or equal to 5, and greater than or equal to
9 units and did not necessarily have explicitly hemorrhagic injuries.

3. Results

We had a total of 999 patients in the overall database (subjects with
at least 1 routine vital sign from the Propaq 206 monitors), from which
402 patients composed the primary study population. We excluded
the following:

1. 43 patients in whom the presence and extent of hemorrhagic injury
was unknowable because of death during transport or before being
admitted to the hospital,

2. 90 patients who received PRBC transfusion without an explicitly
hemorrhagic injury (these 90 patients were reincluded and analyzed
in the sensitivity analysis), and

3. 464 patients in whom a paired comparison could not be performed
because the patients lacked a complete set of all vital signs during
their initial 15 minutes of transport (these 464 patients were
reincluded and analyzed in the sensitivity analysis).

Table 1 shows the overall database and the study population charac-
teristics. Most of the differences between the overall database and the
study population were minor, except for a slightly higher overall mor-
tality rate in the overall database.

Fig. 2 displays the distributions of all investigational metrics (also see
Table A.1). Table 2 reports the univariate ROC AUCs of the basic vital
signs and investigational HRV metrics for the identification of 24-hour
PRBC vol greater than or equal to 1, greater than or equal to 5, and greater
than or equal to 9 units. We observed that both the HRV metrics (ROC
AUCs, 0.60-0.79) and routine vital signs (ROC AUCs, 0.65-0.79) had sta-
tistically significant discriminatory power, but none of the 3 HRVmetrics
were significantly superior to any of the routine vital signs.

Of the investigational HRVmetrics, RSA yielded the highest univari-
ate ROC AUCs. Table 3 shows the multivariate analysis testing whether
RSA provided significant independent information above and beyond
routine vital signs. When added to multivariate logistic regression
models that included the core feature set (and subsets of the core fea-
ture set), RSA was found to be a significant, independent predictor of
24-hour PRBC transfusion. However, the resultant improvements in
ROC AUCs when RSA was added to the core feature set, and its subsets
wereminor, and neither improvements in ROCAUCs nor NRIswere sta-
tistically significant.

We also performed the same multivariate analysis using SDNN and
SampEn (with the same feature sets listed in the first column of
Table 3, but using SDNN and SampEn in place of RSA). We found that
SDNN was a significant, independent predictor of PRBC transfusions
only in the model that consisted of RR, SBP, PP, and SDNN. Similarly,
SampEn was a significant, independent predictor of PRBC transfusion
only in the model that consisted of RR, SBP, PP, and SampEn. When

Table 1
Characteristics of the overall database and the study population

Overall database Study population

MHLF BMF MHLF BMF

Population, n 757 242 273 129
Male, n (%) 562 (74%) 179 (74%) 207 (76%) 97 (75%)
Female, n (%) 195 (26%) 63 (26%) 66 (24%) 32 (25%)
Age, years, mean (SD)a 38 (15) 47 (21) 37 (14) 43 (19)
Mechanism of injury

Blunt, n (%) 664 (88%) 216 (89%) 238 (87%) 118 (92%)
Penetrating, n (%) 84 (11%) 26 (11%) 30 (11%) 11 (9%)

Hospital transfer, n (%) 0 (0%) 118 (49%) 0 (0%) 65 (50%)
Prehospital airway intubation, n (%) 165 (22%) 97 (40%) 52 (19%) 51 (40%)
ISS, median (IQR)b 17 (9-34) 17 (9-26) 13 (8-34) 17 (9-26)
Prehospital GCS, median (IQR)c 15 (12-15) 15 (6-15) 15 (13-15) 15 (5-15)
Prehospital fluid volume, mL, median (IQR)d 300 (100-628) 100 (50-250) 300 (100-600) 100 (50-200)
24-h PRBC transfusion volumes

24-h PRBC vol ≥1 unit, n (%) 153 (20%) 62 (26%) 38 (14%) 16 (12%)
24-h PRBC vol ≥9 units, n (%) 36 (5%) 11 (5%) 11 (4%) 5 (4%)

Overall mortality, n (%) 85 (11%) 28 (12%) 12 (4%) 9 (7%)
Died before admission to ED, n (%) 36 (42%) 7 (25%) 0 (0%) 0 (0%)
Died after admission to ED, n (%) 49 (58%) 21 (75%) 12 (100%) 9 (100%)

The overall database consists of all subjects who had at least 1 available routine vital sign from the Propaq 206monitor. See text for details about the study population. Abbreviations: GCS,
Glasgow Coma Scale; IQR, interquartile range; ISS, injury severity score.

a No age information available for 6 patients in the overall database and 3 patients in the study population.
b No injury severity score information available for 186 patients in the overall database and 64 patients in the study population.
c No Glasgow Coma Scale information available for 75 patients in the overall database and 29 patients in the study population.
d No prehospital fluid volume information available for 36 patients in the overall database and 17 patients in the study population.
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SDNN and SampEnwere separately added to themultivariate models
together with the core feature set (or subsets of the core feature set),
the resultant improvements in ROC AUCs were minor (+0.03 or
lesser), and neither improvements in ROC AUCs nor NRIs were
statistically significant.

Fig. 2. Distributions of routine vital signs and HRVmetrics for trauma patients grouped by different 24-hour PRBC volumes. The medians and interquartile ranges of the distributions are
provided in Table A.1.

Table 2
Areas under the receiver operating characteristic curves and 95% confidence intervals of
routine vital signs and HRV metrics (univariate performance) for predicting 24-hour
PRBC volume

24-h PRBC volume

Features ≥1 ≥5 ≥9

Population (controls,
cases)

402 (348, 54) 402 (377, 25) 402 (386, 16)

Routine vital signs
HR 0.68 (0.59-0.76) 0.74 (0.59-0.84) 0.72 (0.53-0.85)
RR 0.65 (0.56-0.73) 0.74 (0.63-0.83) 0.73 (0.53-0.84)
SBP 0.70 (0.61-0.78) 0.72 (0.58-0.82) 0.73 (0.55-0.86)
PP 0.74 (0.65-0.81) 0.79 (0.68-0.88) 0.79 (0.61-0.90)

HRV metrics
SDNN 0.67 (0.59-0.75) 0.72 (0.61-0.82) 0.71 (0.57-0.82)
SampEn 0.60 (0.53-0.68)a 0.63 (0.52-0.73)a 0.62 (0.46-0.75)
RSA 0.72 (0.64-0.79) 0.76 (0.62-0.85) 0.79 (0.64-0.89)

The 3 HRV metrics are compared to each of the routine vital signs for significant differ-
ences (P b .05) using DeLong's test.

a Area under the receiver operating characteristic curves is significantly different from
the PP ROC AUC.

Table 3
Areas under the receiver operating characteristic curves and 95% confidence intervals of
themultivariate logistic regressionmodels consisting of different combinations of routine
vital signs and rate of sinus arrhythmia for predicting 24-hour PRBC volume

Feature set description (features)

24-h PRBC volume

≥1 ≥5 ≥9

Population (controls, cases) 402 (348, 54) 402 (377, 25) 402 (386, 16)

Core feature set
(HRa, RRa, SBP, PP)

0.79
(0.70-0.85)

0.85
(0.73-0.92)

0.86
(0.73-0.94)

Core feature set + RSA
(HR, RRa, SBP, PP, RSAa)

+0.00 +0.01 +0.02

Core feature set − HR
(RRa, SBP, PPa)

+0.00 +0.01 +0.00

Core feature set − HR + RSA
(RRa, SBP, PP, RSAa)

+0.00 +0.01 +0.02

Core feature set − RR
(HRa, SBP, PP)

−0.02 −0.03 −0.05

Core feature set − RR + RSA
(HR, SBP, PP, RSAa)

+0.00 −0.01 +0.00

Core feature set − (SBP, PP)
(HRa, RRa)

−0.10b −0.07b −0.09

Core feature set − (SBP, PP) + RSA
(HR, RRa, RSAa)

−0.06 −0.07b −0.05

The bold numbers in thefirst row show the performance of the core feature set in terms of
ROC AUCs and the 95% confidence intervals. The subsequent rows represent the relative
change in ROC AUC with respect to that of the core feature set.
Note: Findings for the SDNN and SampEn were similar; see Results section for details.

a The coefficient of the corresponding feature is significantly different from zero (P b .05)
in at least 1 of the models for predicting 24-hour PRBC volume greater than or equal to 1,
greater than or equal to 5, or greater than or equal to 9 units.

b Area under the receiver operating characteristic curves is significantly different (P b .05)
from the core feature set ROC AUC by DeLong's test.
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3.1. Sensitivity analysis

We performed several sensitivity analyses, to test whether our ex-
clusion criteria affected our findings. Here, we summarize the findings
(detailed results are provided in Appendix A under Sensitivity analysis).

We repeated the univariate analysis on a broader set of subjects (sub-
jects who did not necessarily have a complete set of reliable vital signs
and HRV metrics). Compared with the primary results (ie, Table 2),
there were neither any significant changes nor notable trends.

We repeated the primary multivariate analysis for 2 subpopulations
(MHLF vs BMF) for greater than or equal to 1, greater than or equal to 5,
and greater than or equal to 9 units of 24-hour PRBC vol. When we
added RSA to the core feature set (SBP, PP, HR, and RR), respective in-
creases in ROC AUCs were +0.00, +0.00, and +0.02 in MHLF and
+0.01, +0.05, and +0.03 in BMF. When we added SDNN to the core
feature set, respective increases in ROC AUCs were +0.00, +0.01, and
+0.00 in MHLF and +0.00, +0.01, and +0.01 in BMF. When we added
SampEn to the core feature set, respective increases in ROC AUC were
+0.00, +0.00, and +0.00 in MHLF and +0.00, +0.03, and +0.00 in
BMF. Overall, increases in ROC AUCs were very similar in MHLF vs BMF.

We also repeated the primary analysis with an alternative outcome
definition: subjects who received PRBC transfusions whether they had
explicitly hemorrhagic injuries. As in the primary analysis (ie, Table 3),
improvements in the ROC AUCs were minimal after adding RSA,
SampEn, or SDNN to the core feature set or its subsets (ROC AUC
improvements were +0.02 or less).

4. Discussion

After a life-threatening injury, some trauma casualties may tempo-
rarily evidence normal vital signs, belying the severity of their condition.
Thismotivated the substantial interest in HRVmetrics as indexes of car-
diovascular stability for trauma patients, to better distinguish between
patients who require time-sensitive interventions vs those with less
acute conditions.

Our analysis of prehospital vital signs demonstrated that before hos-
pital arrival, many patientswith substantial bleeding (defined by a large
24-hour PRBC vol) had abnormal vital signs consistent with hypovole-
mia: tachycardia, tachypnea, reduced SBP, and reduced PP (ie, reduced
stroke volume). Multivariate analysis allowed for very good separation
between patients with and without substantial bleeding (ie, ROC AUC,
0.86 in Table 3). Heart rate variability metrics of autonomic tone were
also significantly different from controls inmany patients with substan-
tial hemorrhage. However, when combined with routine vital signs,
HRV added negligible additional discriminatory value (see Table 3).
This finding may indicate that discriminatory changes in HRV and
changes in standard vital signs develop at similar stages during progres-
sive hemorrhage.

In theory, there should be compensatory changes in the autonomic
system during the very earliest stages of the response to serious injury.
Indeed, population averages of HRV indexes have been shown to corre-
late with central blood volume loss in animal hemorrhage experiments
[34] and hypovolemia in human lower body negative-pressure studies
[13,35-37]. Clinically, significant group differences in HRV metrics
have been reported between trauma patients who require LSIs and
those who do not [4,6,8,12] and between survivors and fatalities
[2,3,5,7]. In terms of discriminatory power, our own findings suggest
that HRV metrics are comparable to routine vital signs, in terms of
their possible utility for identifying substantial bleeding.

At the same time, there are physiological reasons why HRV metrics
might not add discriminatory value above and beyond routine vital
signs. First of all, vital signs include HR, which alone provides some
basic measure of the autonomic system; that is, tachycardia represents
sympathetic activation, whereas bradycardia represents parasympa-
thetic dominance. Although HRV metrics represent a more nuanced
quantification of the sympathetic and parasympathetic states, it is

worth noting that the autonomic system is highly sensitive to physio-
logic stimuli. For instance, performing mental arithmetic has been
shown to alter HRVmetrics [38]. In theory, such sensitivity to disparate
stimuli might confound the association between HRV and hemorrhage.
Previous studies suggest that the complexity of interindividual and
intraindividual variability in autonomic compensatory responses
weakens the association between HRV metrics and blood loss and
weakens their potential diagnostic value [13].

In terms of specific HRV metrics, we studied 2, which have been the
focus of other trauma reports: SDNN [8-11] and SampEn [2-4,6,8,10,12].
We also studied RSA, which we previously found offered encouraging
performance. Ectopic beats, transient events (ie, nonstationary signal),
motion artifacts, and length of data acquisition are technical factors
that can affect these HRV calculations [6,37], and we used previously
validated algorithms [23] to exclude unreliable segments of ECG (ie, ei-
ther noisy or with ectopic beats). Note that we did not study frequency
domain metrics, which are less robust to some of the aforementioned
factors affecting HRV calculations and are likely impractical for trauma
patient monitoring [24,34,39].

It is worth noting that time averaging of HRV and vital signs, as we
did in our analysis, reduced the effects of temporal variability and,
therefore, may have increased overall diagnostic performance [40].
Time averaging likely represents a “best case” for vital signs and HRV
metrics because, in practice, clinicians do not use time-averaged param-
eters, and episodic fluctuations can result in misleading vital sign pat-
terns [41]. As a point of comparison, Zarzaur et al [42] reported that a
single isolated measurement of SBP and HR (ie, the Shock Index)
yielded an ROC AUC of 0.78 for predicting greater than or equal to 4
units of blood in 48 hours. Moreover, there is room for improvement:
at the 90% sensitivity operating point of our receiver operating charac-
teristic curve for vital signs alone (multivariate model using HR, RR,
SBP, and PP), specificity was only 40%.

In terms of limitations, it is possible that HRV may be valuable for
other clinical applications or that our findings may not be generalizable
to alternative HRV metrics (beyond those studied in this report). How-
ever, our study design, whereby HRVmetricswere directly compared to
routine clinical data for assessing diagnostic thinking efficacy, remains
relevant, with the potential to enhance future HRV investigations. Sec-
ond, HRVmetrics can be affected by disparate factors [38], and it is pos-
sible that another data set may offer significantly different findings.
However, inconsistent findings in different data sets, due to HRV's
established sensitivity to confounding effects, would be another reason
for caution about HRV in trauma care.

There are 2 primary implications of this research. First, froma clinical
standpoint, our findings do not support thatHRVmetrics add value over
routine vital signs, in terms of prehospital identification of substantial
bleeding. Given a multivariate regression model, the HRV metrics
added negligible diagnostic value. Moreover, clinicians are unlikely to
weigh the information from HRV as carefully as this multivariate
model, and there is some theoretical risk to having incorrect decision
making, that is, some clinicians might be overreliant on HRV metrics
rather than routine vital signs.

The second implication relates to research methodology. By way
of background, Pearl [43] described a 7-tier hierarchical approach
to evaluating diagnostic testing. The type of analysis in the current
report—directly comparing HRV to routine vital signs—corresponds
to Pearl's third tier “diagnostic thinking efficacy,” which includes
the “percentage of cases in which the final diagnosis changed after
testing.” What is notable among HRV clinical investigation is a scar-
city of comparisons against standard criteria for decision making,
for example, standard criteria for trauma center transport [14] or
standard criteria for neuroimaging after head injury [15]. Arguably,
there would be a better understanding of the appropriate role of
HRV in clinical medicine if a larger proportion of the 10000 HRV ci-
tations currently listed by PubMed focused on Pearl's third or higher
tiers of evaluation.
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5. Conclusions

We investigated whether HRV was useful for the identification of
trauma patients who require blood transfusion. Heart rate variability
metrics were comparable to routine vital signs in univariate analysis.
However, in multivariate analysis, HRVmetrics did not significantly im-
prove diagnostic performance. Our findings do not support that HRV
would improve today's standard care for this clinical application.

Appendix A. Sensitivity analysis

We repeated the univariate analysis on a broader set of subjects
(subjects who did not necessarily have a complete set of reliable vital
signs and HRV metrics). Table A.2 shows the results. The ROC AUCs in
this secondary population were similar to the primary analysis in
terms of the relative performance of the HRV metrics vs routine vital
signs. There were neither any significant changes nor notable trends.
All ROC AUCs for this secondary analysis were within the 95% confi-
dence intervals of the primary analysis (see Table 2).

We also repeated the primary analysis with an alternative out-
come definition: subjects who received PRBC transfusions whether
they had explicitly hemorrhagic injuries. As before, we excluded
the subjects who died during transport and those who did not have
reliable investigational metrics. The findings were similar to the
primary analysis, with all the ROC AUCs within the 95% confidence
intervals of the primary analysis with the following exceptions: the
ROC AUC corresponding to RR for the prediction of 24-hour PRBC
vol greater than or equal to 1 unit was 0.54; the ROC AUC corre-
sponding to RSA for predicting 24-hour PRBC vol greater than or
equal to 1 unit was 0.63. As in the primary analysis, none of the
HRV metrics were significantly better as univariate predictors of
24-hour PRBC transfusions than routine vital signs (with one
exception: RSA was significantly superior to RR for the prediction
of 24-hour PRBC vol ≥1 unit, but not for ≥5 or ≥9 units).

As in the primary multivariate analysis, RSA was significant in all
multivariate models that included the core feature set (and subsets of
the core feature set) for predicting 24-hour PRBC transfusion. However,
SDNN was not a significant predictor of PRBC transfusions in any of the
multivariate models. SampEn was significant when included in the
model that consisted of RR, SBP, and PP as in the primary analysis and
in the model that consisted of the core feature set, unlike the primary
analysis. Regardless, improvements in the aforementioned ROC AUCs
were minimal after adding RSA, SDNN, or SampEn to the core feature
set or its subsets (ROC AUC improvement was +0.03 or less).
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ABSTRACT—Trauma outcomes are improved by protocols for substantial bleeding, typically activated after physician
evaluation at a hospital. Previous analysis suggested that prehospital vital signs contained patterns indicating the presence
or absence of substantial bleeding. In an observational study of adults (aged Q18 years) transported to level I trauma
centers by helicopter, we investigated the diagnostic performance of the Automated Processing of the Physiological Reg-
istry for Assessment of Injury Severity (APPRAISE) system, a computational platform for real-time analysis of vital signs, for
identification of substantial bleeding in trauma patients with explicitly hemorrhagic injuries. We studied 209 subjects pro-
spectively and 646 retrospectively. In our multivariate analysis, prospective performance was not significantly different from
retrospective. The APPRAISE system was 76% sensitive for 24-h packed red blood cells of 9 or more units (95% confi-
dence interval, 59% Y 89%) and significantly more sensitive (P G 0.05) than any prehospital Shock Index of 1.4 or higher;
sensitivity, 59%; initial systolic blood pressure (SBP) less than 110 mmHg, 50%; and any prehospital SBP less than 90
mmHg, 50%. The APPRAISE specificity for 24-h packed red blood cells of 0 units was 87% (88% for any Shock Index Q1.4,
88% for initial SBP G110 mmHg, and 90% for any prehospital SBP G90 mmHg). Median APPRAISE hemorrhage notification
time was 20 min before arrival at the trauma center. In conclusion, APPRAISE identified bleeding before trauma center
arrival. En route, this capability could allow medics to focus on direct patient care rather than the monitor and, via advance
radio notification, could expedite hospital interventions for patients with substantial blood loss.

KEYWORDS—Trauma, hemorrhage, massive transfusion, decision-support systems, prehospital emergency care

INTRODUCTION

Background

Hemorrhage is recognized as the leading treatable cause of

death after injury (1). Improved outcomes in trauma patients

have been shown when trauma centers apply specific protocols

for patients with substantial bleeding (2, 3). These protocols

encompass damage-control resuscitation, including aggressive

measures to avoid coagulopathy (via permissive hypotension

that slows blood loss, adequate restoration of coagulation

factors via transfusion, and minimization of hypothermia),

which is important because trauma-induced coagulopathy

affects between 24% and 56% of critically injured patients (4).

For these patients, massive transfusion of packed red blood

cells (PRBCs), that is, 10 or more units in 24 h (5), is often

necessary. Damage-control resuscitation is paired with damage-

control surgery, the operative strategy of prioritizing early

surgical control of bleeding, while sparing noncritical surgical

repairs that are undertaken only after the patient has sufficiently

recovered.

Although management protocols for patients with substan-

tial bleeding are associated with mortality benefits (3, 6), there

are no widely accepted criteria for their initiation. Holcomb

and Gumbert (2) commented that, in the report by Cotton et al.

(3), activation had been subjective after a surgeon’s evaluation

of the patient. Riskin et al. (6) reported that the Stanford

Protocol was activated subjectively Bat the discretion of the at-

tending physician.[ Several clinical scores to predict whether

trauma patients will require massive transfusion have been

developed, including the McLaughlin score, the Trauma As-

sociated Severe Hemorrhage (TASH) score, and the Assessment

of Blood Consumption (ABC) score (5). These scores are based

on vital sign data; mechanism of injury or anatomic details

(TASH score and ABC score); and abdominal sonography
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(ABC score), laboratory testing (McLaughlin score), or both

(TASH score).

Our group was interested in whether it would be feasible to

identify patients with substantial bleeding before arrival at the

hospital, without relying on testing or expertise that is nor-

mally hospital based, such as sonography or laboratory testing.

Growing evidence shows that assessment of multiple vital

signs together may be more effective than univariate ap-

proaches for detecting hemorrhagic hypovolemia (7, 8). In

addition, there have been encouraging reports of computa-

tional techniques (9, 10) to account for the fact that high-acuity

trauma patients demonstrate complex temporal fluctuations in

their prehospital vital signs (11Y13), and to identify unreliable

vital signs (14), because spurious measurements are so com-

mon (15Y18).

In this report, we evaluate the hypothesis that it is feasible to

identify patients with substantial 24-h PRBC transfusion re-

quirements by automated analysis of prehospital vital signs. To

test this prospectively, a specialized real-time computing plat-

form was developed and deployed into an active prehospital

operation (19). If it is feasible to identify patients with sub-

stantial bleeding by automated analysis of prehospital vital

signs, there might be improved en route care as well as in-

hospital care. En route, caregivers could focus more on patient

care rather than split attention with reexamining and reevaluating

the vital sign monitor. The automated system could notify the

caregivers when the vital signs were statistically consistent with

bleeding and display an on-screen checklist of expected re-

sponses. The receiving hospital could be provided with advance

radio notification, offering a head start for careful preparation of a

patient with major hemorrhage, for example, prewarming of the

patient’s bay (to prevent hypothermia), preparation of fresh

frozen plasma for immediate transfusion, and mobilization of

surgical assets (for early surgical intervention).

METHODS

Setting and study population
We examined a convenience sample of adult (aged Q18 years) trauma pa-

tients transported by air emergency medical service (EMS) to participating
level I trauma centers. With institutional review board approval, we collected a
prospective data set from Boston MedFlight (BMF, Bedford, Mass) and

compared the findings with an archival data set originally collected from
Memorial Hermann Life Flight (MHLF, Houston, Tex) by Cooke et al. (20)
and Holcomb et al. (21). In both data sets, we analyzed all subjects with at least
one recorded non-zero systolic blood pressure (SBP). Patients who died before
hospital admission (e.g., in the emergency department) were excluded from
analysis, because resuscitation was often terminated before large-volume
PRBC transfusion could be completed, regardless of whether or not the pa-
tient had significant hypovolemia.

Our primary study outcome was 24-h PRBC transfusion volume in patients
with hemorrhagic injury, defined as a documented hemorrhagic injury that
unequivocally caused some loss of blood (laceration or fracture of a solid
organ; documented hematoma within the thorax, peritoneum, retroperitoneum,
or pelvis; vascular injury that required operative repair; or limb amputation)
and PRBC transfusion within 24 h. Patients who received PRBCs but lacked a
documented hemorrhagic injury were excluded from the primary analysis be-
cause, in the absence of an explicitly hemorrhagic injury, it was challenging to
determine whether the transfusion was clinically indicated. Whether the patient
had documented hemorrhagic injury was determined by automated text search,
searching for injuries that met the aforementioned criteria (records were also
jointly reviewed by two investigators, J.L. and A.T.R., who confirmed that the
automated text search had not omitted any applicable hemorrhagic injuries nor
included nonhemorrhagic injuries).

The excluded patients who lacked explicitly hemorrhagic injuries were
reincluded and analyzed in a sensitivity analysis (see Appendix, Supplemental
Digital Content 1, at http://links.lww.com/SHK/A267).

Vital sign data processing
For the prospective cohort, we deployed the APPRAISE (Automated Processing

of the Physiological Registry for Assessment of Injury Severity [19]) system onto
two active BMF helicopters between February 5, 2010, and December 31, 2012.
The APPRAISE system consists of a Propaq 206 patient monitor (Welch-Allyn,
Beaverton, Oreg) networked to the GoBook ultracompact ruggedized personal
computer (General Dynamics Itronix, Sunrise, Fla) running analytic algorithms
developed for this research project (19). As a practical matter, this meant that all
vital sign data processing and analyses for BMF were done automatically and in
real time.

The following routine vital signs were monitored by the Propaq 206 mon-
itor: heart rate (HR), respiratory rate (RR), oscillometric SBP, and pulse
pressure ([PP], the difference between SBP and diastolic blood pressure). The
APPRAISE software created an electronic record of the Propaq data, analyzed
the vital sign data in real time using algorithms described below and archived
the results. The results of the automated analysis were not visible to the flight
crew so that the investigational system would not affect clinical decision
making (this was a matter of human subject protection for a diagnostic system
that had not yet been validated during clinical operation).

The retrospective data originally had been collected onboard MHLF heli-
copters between August 2001 and April 2004 using a personal digital assistant
networked to a Propaq 206 patient monitor to archive the vital sign data (21).
Subsequently, those data were uploaded to our data warehousing system (22)
and analyzed offline.

We analyzed the prospective and the retrospective Propaq 206 data using the
exact same computational methodology. First, the automated algorithms identi-
fied and excluded unreliable vital sign measurements (Fig. 1). The reliability

FIG. 1. Analytic methodology for hemorrhage identification. In the first step (left panel), algorithms were used to identify, and exclude, unreliable vital
signs. In the second step (middle panel), ensemble classification was applied, which consisted of a set of different linear regression models, F1, F2,

I, Fn, that
were subsequently averaged together. Ensemble classification is useful when missing data are commonplace: different regression models contain different
combinations of the vital signs, and it is possible to omit any of those models that contain a missing input parameter. In the third step (right panel), the mean
ensemble classifier was evaluated by the SPRT, a statistical test of whether or not measurements repeated across time are consistent with a control distribution
or with a different (e.g., hemorrhagic patient) distribution. bpmVbeats per minute; ECGVelectrocardiography; VVvolt.
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algorithms for HR and RR involved analysis of the electrocardiography (ECG)
and impedance pneumography waveforms. This allowed us to discriminate be-
tween a clean source signal versus an unreliable segment caused by signal arti-
facts (23, 24). The SBP and PP reliability algorithms assessed signal quality by
analyzing the relationship between systolic, diastolic, and mean arterial pressures
and by comparing HR measured by ECG versus HR measured by oscillometry
(25). These automated algorithms, which have been shown to agree with human
experts’ opinions (23, 24), can significantly increase the diagnostic value of vital
signs by removing spurious measurements (25, 26).

The second step of real-time analysis involved an ensemble classifier,
which is a set of multivariate regression models whose numerical outputs were
averaged to yield the final output (Fig. 1). We trained the multivariate re-
gression models (i.e., set the weights for the input variables) for a binary
outcome as per Chen et al. (27), using the initial 15 min of vital sign data from
each MHLF subject. For the model training, the binary outcome was whether
patients received 1 or more PRBCs for an unambiguous hemorrhagic injury or
not. This model training yielded a classifier that, on the basis of the input vital
signs (HR, RR, SBP, and PP), quantified whether the pattern was similar to the
population with hemorrhage (output closer to 1) or to the nonhemorrhagic
control population (output closer to 0). The ensemble classifier was originally
developed for use at a single time point, for example, on 15 min of prehospital
data collection, for prediction of 24-h PRBC more than 0, and it was cross-
validated using 50%/50% training/testing (27). There were no significant dif-
ferences (P 9 0.05) when the receiver operating characteristic area under the
curve (ROC AUC) of 10-fold cross-validation was compared with the ROC
AUC for 100%/100% training/testing ($ROC AUC T 0.01). Compared with
routine multivariate regression, an ensemble classifier can provide two ad-
vantages. First, the ensemble can still classify patients even when a complete
set of reliable vital signs is unavailable. Second, it can offer performance that is
more consistent from one data set to the next (27, 28).

Every 2 min, this analysis was repeated. For the prospective trial, this oc-
curred in real time. For the retrospective analysis, we reapplied the algorithms
at every 2-min mark of the patient’s electronic record, simulating real-time
application. Every time the ensemble classifier was applied (i.e., every 2 min),
we analyzed the time-averaged value of all reliable HR, RR, SBP, and PP
measured since the beginning of the record up to the time of analysis. (For
example, at t = 6 min, all vital sign data from t = 0 to t = 6 min were analyzed.
At t = 8 min, all vital sign data from t = 0 to t = 8 min were analyzed.) The
rationale for analyzing data reaching back to the start of the mission arose from
previous analysis suggesting that prehospital vital signs contained enormous
variabilityVlikely caused by pain, medications, or other transient stimuliVand
that time averaging was an effective method to remove some of the confounding
data perturbations and achieve superior diagnostic performance (9).

The third and final step of real-time analysis involved the Wald sequential
probability ratio test (SPRT) for determining whether to issue a Bhemorrhage
notification[ on the basis of accumulated evidence from the ensemble classi-
fier outputs (Fig. 1). The SPRT (29) is a useful statistical technique for
determining whether repeated measurement samples are consistent with one
statistical distribution (e.g., a normal population) versus a second statistical
distribution (e.g., an abnormal population). Thresholds for the SPRT were set
as per Chen et al. (10), where the SPRT was shown to reduce false alarms at
the expense of some alarm latency.

Clinical outcomes
For the BMF data set, a research nurse collected patient attributes and

outcome data via retrospective chart review of the receiving hospitals’ medical
records (i.e., Beth Israel Deaconess Medical Center, the Brigham and
Women’s Hospital, and the Massachusetts General Hospital). The data were
archived electronically using REDCap (30). We obtained injury severity scores
from each hospital’s trauma registry. For the MHLF data set, a chart review
was conducted by the original study authors (21).

Statistical analysis
Data were summarized using mean with standard deviation or median with

interquartiles for continuous variables, and frequency with percentage for
categorical variables. We computed the proportion of patients who received a
hemorrhage notification as a function of the number of units of PRBCs that
each patient received during the initial 24 h in the hospital (B24-h PRBC
volume[). For comparison, we also computed the proportion of patients with
other hemodynamic abnormalities: initial SBP less than 110 mmHg, any
prehospital SBP less than 90 mmHg, or any prehospital Shock Index (SI) of 1.4
or higher (where SI = HR/SBP). The threshold for SI was chosen based on the
findings in Mutschler et al. (31). We tested for significant differences between
those proportions using McNemar’s test.

For BMF patients, MHLF patients, and the pooled data set, we developed
logistical regression models to quantify the likelihood of a patient receiving a

hemorrhage notification as a function of 24-h PRBC volume. We also tested
whether the likelihood of a patient receiving a hemorrhage notification differed
between the two populations (BMF and MHLF) controlling for the 24-h PRBC
volume. Finally, to investigate other factors that may have influenced whether
a patient received a hemorrhage notification or not, we applied multivariate
logistical regression to a set of parameters quantifying potential sources of
variability: age, mechanism of trauma, prehospital factors (elapsed time since
injury, volume of resuscitation, endotracheal intubation, duration of transport),
and anatomy of the injuries based on the trauma registry Abbreviated Injury
Scale scores. Two-sided values of P G 0.05 were considered as statistically
significant.

RESULTS

Of the 999 patients with electronic data available (MHLF, 757;

BMF, 242), we excluded 22 who lacked a non-zero blood pressure

measurement (MHLF, 20; BMF, 2) and 33 who did not survive to

admission (MHLF, 27; BMF, 6). Also, there were 89 patients who

received 24-h PRBC transfusion while lacking explicitly hemor-

rhagic injuries (MHLF, 64; BMF, 25); these patients were

examined in the sensitivity analysis (see Appendix, Supplemental

Digital Content 1, at http://links.lww.com/SHK/A267). Table 1

describes the primary study population.

Correlation of basic vital signs and 24-h PRBC volume

In the MHLF data set, SBP, PP, HR, and RR were signifi-

cantly (P G 0.001) correlated with 24-h PRBC transfusion

volume: > = j0.32, > = j0.36, > = +0.24, and > = +0.24,

respectively.

In the BMF data set, SBP (P G 0.001) and PP (P G 0.01)

were significantly correlated with 24-h PRBC transfusion

volume: > = j0.30 and > = j0.23, respectively. Heart rate

showed a nonsignificant trend (P = 0.051), with > = +0.14,

whereas RR was not significantly correlated.

Diagnostic test characteristics

Table 2 shows the relationship between the incidence of

APPRAISE hemorrhage notification and 24-h PRBC transfu-

sion volume. With increasing 24-h PRBC transfusion volume,

TABLE 1. Study population characteristics

Memorial Hermann
Life Flight

Boston
MedFlight

Population, n 646 209

Sex, male, n (%) 479 (74) 155 (74)

Age, mean (SD), years 38 (15) 45 (20)

Blunt, n (%) 577 (89) 188 (90)

Penetrating, n (%) 61 (9) 21 (10)

ISS, median (IQR) 16 (9 Y 34) 16 (9 Y 26)

Interhospital transfer, n (%) 0 (0) 103 (49)

Prehospital airway intubation, n (%) 111 (17) 80 (38)

Prehospital GCS, median (IQR) 15 (13 Y 15) 15 (8 Y 15)

Prehospital blood transfusion, n (%) 0 (0) 15 (7)

24-h PRBC volume 90 unit, n (%) 75 (12) 31 (15)

24-h PRBC volume Q3 units, n (%) 57 (9) 18 (9)

24-h PRBC volume Q10 units, n (%) 22 (3) 8 (4)

Survival to discharge, n (%) 608 (94) 191 (91)

GCSVGlasgow Coma Scale; IQRVinterquartile range; ISSVInjury
Severity Score; SDVstandard deviation.
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the proportion of APPRAISE-positive subjects exhibited an

increasing trend in both the MHLF and BMF studies. In the

pooled data set (MHLF and BMF), sensitivities for 24-h PRBC

transfusion volume of 9 or more units for APPRAISE notifi-

cation, SI of 1.4 or higher, initial SBP less than 110 mmHg,

and any hypotension (SBP G90 mmHg) were 76% (59% Y 89%),

59% (41% Y 75%), 50% (32% Y 68%), and 50% (32% Y 68%),

respectively, and we found that the sensitivity of APPRAISE

notification was significantly higher than SI of 1.4 or higher (P =

0.014), initial SBP less than 110 mmHg (P = 0.007), and any

hypotension, that is, SBP less than 90 mmHg (P = 0.007). The

sensitivities of APPRAISE notification for 24-h PRBC trans-

fusion volume of 9 or more units were similar for the MHLF

versus BMF data sets: 76% (55% Y 91%) and 78% (40% Y
97%), respectively.

In the pooled data set (MHLF and BMF), specificities for

24-h PRBC transfusion volume of 0 units (i.e., no blood trans-

fusion at all) for APPRAISE notification, SI of 1.4 or higher,

initial SBP less than 110 mmHg, and any hypotension (SBP

G90 mmHg) were 87% (85% Y 89%), 88% (85% Y 90%), 88%

(86% Y 91%), and 90% (88% Y 92%), respectively, and we

found that the specificity of APPRAISE was not significantly

different from initial SBP less than 110 mmHg or any prehospital

SI of 1.4 or higher. Compared with any prehospital SBP less than

90 mmHg, APPRAISE notification showed a significantly lower

specificity (P G 0.05), although the absolute magnitude of the

difference was 3%. The specificities of APPRAISE notification

for 24-h PRBC transfusion volume of 0 units were 86% (83% Y
89%) for the MHLF data set and 90% (85% Y 94%) for the BMF

data set. In the pooled data set, negative predictive values (24-h

PRBC transfusion volume = 0 units vs. Q1 unit) for APPRAISE

notification, SI of 1.4 or higher, initial SBP less than 110 mmHg,

and any hypotension (SBP G90 mmHg) were similar: 94% (92% Y
96%), 92% (90% Y 94%), 92% (90% Y 94%), and 92% (90% Y
94%), respectively.

Incidentally, there were three subjects who received pre-

hospital needle decompression, and all received hemorrhage

notifications during transport (24-h PRBC volumes for these

subjects were 0, 4, and 920, respectively).

Timelines

Figure 2 illustrates prehospital timelines for all subjects with

24-h PRBC volume of 9 or more units, showing the timing of

blood pressure measurements, of APPRAISE hemorrhage no-

tifications, and episodes of hypotension (SBP G90 mmHg).

The median notification time after the start time of transport

was 6 min (interquartiles 4 Y 16) for MHLF and 10 min for

BMF (interquartiles 8 Y 40). The median notification time

before arrival at the hospital was 17 min for MHLF and 52 min

for BMF, and the difference was largely caused by shorter

transport times for MHLF (the median transport time for

subjects with 24-h PRBC volume Q9 units was 28 min

[interquartiles 24 Y 36] for MHLF and 65 min [interquartiles

35 Y 78] for BMF). Combining the two populations, APPRAISE

notification occurred in the first half of the transportation in 73%

of the cases.

Nine subjects returned to APPRAISE-negative status after a

hemorrhage notification: six MHLF subjects who were actu-

ally false positive (i.e., 24-hr PRBC = 0) and three BMF sub-

jects who were true positive (i.e., 24-hr PRBC Q 1) and

received prehospital PRBC transfusion.

Multivariate logistic regression

Using logistic regression to model the likelihood of

APPRAISE hemorrhage notification as a function of 24-h PRBC

transfusion volume further demonstrated that the results were

similar in both data sets (Fig. 3). Each PRBC unit transfused

was associated with a 43% (95% CI, 30 Y 57%) increase in the

odds of APPRAISE hemorrhage notification for MHLF and a

44% (95% CI, 24 Y 67%) increase for BMF. The odds ratio of

APPRAISE notification per unit of PRBC transfused was not

significantly different between the two data sets (i.e., BMF

versus MHLF) when fitting a regression model to the pooled

data set (P = 0.635). However, there was a nonsignificant trend

toward a lower overall likelihood of hemorrhage notification

in the BMF data set when compared with the MHLF data set

(P = 0.053), including a lower likelihood of hemorrhage no-

tifications in patients without bleeding (24-h PRBC = 0) and

with substantial bleeding (24-h PRBC Q9), which is apparent

in the offset between the two regression curves (Fig. 3). Note

that the specificities and sensitivities extracted from Figure 3

are slightly different from those reported in Table 2 because of

the nature of the regression fit.

We investigated the factors associated with whether subjects

received an APPRAISE hemorrhage notification; see univari-

ate and multivariate logistic regression analyses in Table 3. In

multivariate analysis, four independent factors were significant

predictors of whether the patient received an APPRAISE no-

tification: increasing 24-h PRBC volume, increasing severity

TABLE 2. Relationship between prehospital APPRAISE hemorrhage
notification versus 24-h PRBC transfusion volume

24-h PRBC volume (units)

0 1 Y 2 3 Y 8 Q9 Total

Total patients, n 749 31 41 34 855

MHLF patients, n 571 18 32 25 646

BMF patients, n 178 13 9 9 209

Hemorrhage notification,
n (%)

96 (13) 12 (39) 26 (63) 26 (76)

MHLF, n (%) 79 (14) 9 (50) 22 (69) 19 (76)

BMF, n (%) 17 (10) 3 (23) 4 (44) 7 (78)

Any SI Q1.4, n (%) 92 (12) 8 (26) 21 (51) 20 (59)

MHLF, n (%) 70 (12) 6 (33) 18 (56) 14 (56)

BMF, n (%) 22 (12) 2 (15) 3 (33) 6 (67)

Initial SBP G110 mmHg,
n (%)

87 (12) 9 (29) 22 (54) 17 (50)

MHLF, n (%) 67 (12) 5 (28) 18 (56) 11 (44)

BMF, n (%) 20 (11) 4 (31) 4 (44) 6 (67)

Any SBP G90 mmHg,
n (%)

73 (10) 9 (29) 24 (59) 17 (50)

MHLF, n (%) 51 (9) 6 (33) 18 (56) 11 (44)

BMF, n (%) 22 (12) 3 (23) 6 (67) 6 (67)
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of chest injury, longer flight duration, and younger age. Nei-

ther abdominal, nor head, nor extremity injury severity had a

significant association with false-negative alarms. Prehospital

PRBC transfusion was only found in the BMF cohort, and

those patients had a significantly increased risk of APPRAISE

hemorrhage notification.

DISCUSSION

This investigation demonstrated that there was a strong as-

sociation between 24-h PRBC transfusion volume and abnor-

mal prehospital vital signs, and that the majority of patients

with large transfusion requirements could be distinguished

from other trauma patients using techniques for time series and

multivariate analysis. The automated APPRAISE system re-

quired neither oversight nor input by the flight crew; it oper-

ated wholly autonomously, only requiring that the flight crew

use their Propaq transport monitor as per standard procedure.

The performance of the APPRAISE algorithms for early

identification of patients with 24-h PRBC of 9 or more units

was quite similar in actual prospective real-time use (the BMF

data set) versus simulated real-time use (the MHLF data set).

Potential benefits of prehospital identification of substantial
bleeding

Automated functionality that reliably provides a notification

whenever important patterns develop would permit the care-

giver to focus much more on the patient (e.g., better pain

control, better management of retching patients who could

aspirate, etc.) and not constantly split attention between the

patient and the travel monitor. Consistent fully automated de-

tection of hypovolemic vital signs may be most clinically

valuable if the EMS caregiver is inexperienced, fatigued, or

distracted.

With reliable notification that a bleeding patient is about to

arrive, the receiving facility could prepare for hemorrhage-

specific management. Today’s typical practice involves a trau-

ma team evaluationVpostarrivalVbefore deciding whether to

activate protocols for substantial bleeding (2). At best, this

adds a small delay to care and, in some cases, resultant delays

can be substantial. In one report describing the benefits of an

institutional protocol for substantial bleeding, interventions

such as transfusion of fresh-frozen plasma were not initiated

for several hours in many cases (6). By analogy, the com-

mon practice of activating the cardiac catheterization team

when the prehospital ECG shows ST-elevation myocardial

infarction in a patient with chest pain illustrates the potential

value of readying the hospital for an exsanguinating patient

based on a simple objective prehospital indicator: by initi-

ating in-hospital preparations based on prehospital notifi-

cation, the time delay to percutaneous coronary intervention

can be reduced (32). Of note, cardiologists still conduct

expert evaluations before undertaking catheterization, and

prehospital notification does not remove clinical authority

from hospital caregivers.

FIG. 2. Timelines for patients with substantial bleeding (i.e., 24-h PRBC volume Q9 units) indicating time of hypotensive episodes (SBP G90 mmHg)
and hemorrhage notification during prehospital transport. (A) Bleeding patients who received an APPRAISE hemorrhage notification (i.e., true positives)
and (B) bleeding patients who did not receive a notification (i.e., false negatives).
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It may be most clinically valuable if, rather than a simple

alert or notification, the automated system were to display an

on-screen list of bulleted action items to remind the EMS

caregiver of each and every expected action item for trauma

patients with abnormal circulation, for example, check for

compressible hemorrhage, check for tension pneumothorax

(as noted, the APPRAISE system generated a hemorrhage

notification for all three subjects with documented prehospital

needle decompression), hold fluids unless SBP was less than

90 mmHg, keep patient warm, and so on. Note that protocol

compliance is an underlying challenge throughout health care

(33), and checklists are a valuable tool to improve protocol

compliance (34Y36).

The clinical benefits of this system are speculative because

we did not assess clinical impact in the current investigation

(an institutional review boardYrelated matter; see Methods).

Yet, it seems reasonable to move toward bedside computing

for certain tasks, such as statistical analyses that can quantify

whether a sequence of vital signs is abnormal, and thereby

permit caregivers to focus on quality bedside care.

Physiological interpretation of the findings

At a rudimentary level, this study suggests that patients with

massive 24-h blood transfusion requirements demonstrate

hypovolemic physiology before hospital arrival. This intuitive

finding is consistent with other prediction rules for massive

transfusion where hypotension and tachycardia are established

predictive factors for massive transfusion (5).

Unlike the other massive transfusion prediction rules, the

APPRAISE system only involves vital sign data analyzed

during prehospital transport. The APPRAISE system uses

well-known statistical techniques, such as time averaging and

the SPRT, for analyzing data that fluctuate through time, and it

detects hemorrhage by considering the temporal accumulation

of evidence. The system does not seek to identify trends

through time (e.g., downward drifts in SBP), which may seem

counterintuitive, but it has been clearly demonstrated that

prehospital vital signs fluctuate substantially frequently with-

out obvious overt directional trends (10, 12Y14).

In addition to time series techniques, another common sense

principle incorporated in the APPRAISE system was multi-

variate analysis. Like several prediction rules for massive

transfusion (5), the APPRAISE system’s algorithms used

the independent diagnostic information from more than one

vital sign. This is consistent with recent reports that the SI (the

ratio of HR to SBP) is a valuable diagnostic tool for identifi-

cation of hemorrhage (7, 8). The APPRAISE system identifies

hypovolemia by a combination of low SBP, low PP, high HR,

and high RR. A minority of the massive transfusion patients

were not detected by the APPRAISE system; those generally

lacked hypotension (Fig. 2B), suggesting that they were not

substantially hypovolemic during transport.

There were also APPRAISE hemorrhage notifications in pa-

tients who did not require massive transfusion. These patients

were likely hypovolemic during transport yet without the ongo-

ing blood losses that necessitate massive transfusion (of note,

among patients who never needed any PRBCs, those who

TABLE 3. Factors associated with APPRAISE hemorrhage notification

Factor

Univariate Multivariate

Odds
ratio 95% CI

Odds
ratio 95% CI

24-h PRBC transfusion
volume (per 1 unit)

1.43‡ (1.32 Y 1.55) 1.4‡ (1.29 Y 1.52)

Demographics

Age (per 10 years) 0.91 (0.82 Y 1.02) 0.87* (0.77 Y 0.99)

Prehospital course

Endotracheal
intubation (y/n)

2.22‡ (1.53 Y 3.20)

IVF (per 500 mL) 1.51‡ (1.27 Y 1.79)

Time to begin transport
(per 10 min)

1.05 (0.99 Y 1.12)

Duration of transport
(per 10 min)

1.18† (1.05 Y 1.32) 1.17* (1.02 Y 1.35)

Injury mechanism

Blunt trauma (y/n) 1.28 (0.70 Y 2.33)

Penetrating trauma (y/n) 0.88 (0.48 Y 1.62)

Injury description

Head AIS Q3 (y/n) 1.03 (0.67 Y 1.58)

Abdomen or pelvis AIS
Q 3 (y/n)

4.41‡ (2.73 Y 7.12)

Extremity, not pelvis
AIS Q3 (y/n)

1.26 (0.80 Y 1.98)

Thorax AIS Q3 (y/n) 3.73‡ (2.51 Y 5.53) 2.58‡ (1.64 Y 4.04)

AISVAbbreviated Injury Scale; CIVconfidence interval; IVFVintravenous
fluids; (y/n)Vbinary variables.
Odds ratio significantly different from 1.0: *P G 0.05, †P G 0.01, ‡P G 0.001.

FIG. 3. Modeling the rate of APPRAISE hemorrhage notification using
logistic regression. The slopes of the BMF and MHLF curves were the
same: each PRBC unit transfused was associated with a 43% (95% CI, 30%
Y 57%) increase in the odds of MHLF hemorrhage notification and also a 44%
(95% CI, 24% Y 67%) increase for BMF hemorrhage notification. The offset
between MHLF and BMF was not statistically significant: further inclusion of a
population parameter (1 for MHLF and 0 for BMF) into the regression model
for the combined (BMF and MHLF) data set did not yield a statistically sig-
nificant coefficient for the population parameter. Shaded areas are the 95%
confidence intervals for the combined population regression model. The
confidence interval becomes wider as a result of a smaller patient population
with larger 24-h PRBC volumes. Patients who received 10 or more units of
PRBCs were combined into a single category.
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received an APPRAISE hemorrhage notification had signifi-

cantly higher average injury severity scores). Whether the alert

would offer clinical value in this population without massive

transfusion requirements is an open question. As discussed

above, the APPRAISE system would not obviate the need for

clinical assessments by prehospital and receiving facility per-

sonnel. Rather, the system is a tool for optimizing vital sign

information, offering automated consistent notification when

the patterns suggest hypovolemia, and these patterns are strongly

associated with subsequent blood transfusion requirements.

Limitations

The study outcome, hemorrhage severity, was quantified by

each patient’s 24-h PRBC volume. However, the quantity of

PRBCs that a patient actually receives is a function of multiple

factors, including the speed and effectiveness of surgical

hemorrhage control, and some subjective clinical decision

making. The generalizability of the findings, that is, the noti-

fication incidence versus 24-h PRBC volume, and their ap-

plicability to guiding initial resuscitation may have limitations.

Yet, the notable consistency (Fig. 3) between the MHLF and

BMF results during aeromedical transport to one and three dis-

tinct trauma centers, respectively, suggests that such confounding

factors can average out across different trauma systems, yielding

consistent relationships between prehospital notification inci-

dence and hemorrhage severity.

The prospective BMF arm of this study was sufficient to

demonstrate that the real-time system can perform encourag-

ingly well (seven of nine massive transfusion BMF subjects re-

ceived a real-time prehospital notification). However, the BMF

data set was too small to directly compare test characteristics of

the APPRAISE notification versus hypotension or SI.

CONCLUSIONS

We conclude that real-time multivariate time series analysis

of vital signs is a feasible means of identifying prehospital

trauma patients with substantial bleeding, and that prospective

investigation of the clinical value of this automated method-

ology is justified.
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ABSTRACT 
Uncontrolled bleeding is the leading cause of preventable death on the battlefield. For the recent conflicts in 
Iraq and Afghanistan, it has been reported that as many as 22% of such casualties could potentially survive. 
Protocols for substantial bleeding, typically activated after the patient’s arrival in a hospital, are known to 
improve trauma outcomes. Early identification of patients with substantial bleeding could facilitate faster 
implementation of these protocols, thereby improving patient outcomes. Over the last decade, our 
interdisciplinary research team has been developing technologies to automatically diagnose hemorrhage in 
trauma casualties, culminating with the first and only deployment of an automated emergency care decision 
system on board active air ambulances: the APPRAISE system, a hardware/software platform for automated, 
real-time analysis of vital-sign data. After developing the APPRAISE system using data from trauma patients 
transported by Memorial Hermann Life Flight (MHLF), we field-tested it on two active Boston MedFlight 
(BMF) helicopters during emergency transport of adult trauma patients to three Level 1 trauma centers between 
February 2010 and December 2012. Between the MHLF and BMF populations, we observed that there were 
significant differences in terms of vital signs as a function of 24-hr blood transfusion requirements. Despite these 
differences, the APPRAISE system provided consistent determination of whether or not patients were bleeding. 
We found that the automated APPRAISE system using a multivariate classifier could automatically diagnose 
casualties in need of massive blood transfusion with 78% sensitivity and 90% specificity within 6-10 min 
(median time) after the start of transport to a trauma center. In addition to casualty triage and evacuation 
decision-making, this capability could be useful to expedite preparedness at medical treatment facilities for 
receiving patients with substantial blood loss. 

1.0 INTRODUCTION 

In military casualties, early identification of life-threatening bleeding is of singular importance because it is a 
primary cause of fatality, and yet life-threatening bleeding may be effectively treated when surgery and blood 
resuscitation are provided sufficiently quickly after injury [1, 2]. Standard field assessment of casualties includes 
measuring vital signs, which has been criticized as being inadequately sensitive to life-threatening hemorrhage.  

Over the past decade, our group has investigated methods for improving the usefulness of routine vital signs 
using novel pattern-recognition algorithms that could be deployed in field settings with relative minimum 
expense and new training. In a prior NATO report [3], we summarized our work involving the development of 
algorithms that automatically identify unreliable vital-sign measurements and perform multivariate pattern-
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recognition, while tolerating missing data and data variability through time. In addition, we described the 
development of a specialized platform for field-testing the algorithms during prehospital operations and 
performed initial prospective evaluation. 

Here, we report our subsequent progress. We compare the performance of the algorithms in a new dataset versus 
the original dataset used to develop the algorithms (both datasets collected during air transport of civilian trauma 
casualties) and examine three key investigational questions:  1) To what degree were there consistent vital-sign 
patterns associated with life-threatening hemorrhage? 2) Could an automated algorithm consistently identify life-
threatening hemorrhage using only vital-sign data? and 3) How sensitive would the algorithm’s performance be 
to different methods of temporal analysis? 

2.0 VITAL-SIGN PATTERNS ASSOCIATED WITH LIFE-THREATENING 
HEMORRHAGE 

Here, we compare two datasets of vital signs collected during air transport of civilian trauma casualties. The goal 
is to understand whether there are consistent prehospital patterns that can provide indication of life-threatening 
hemorrhage. 

2.1 Methods: Vital-sign Patterns and Life-threatening Hemorrhage 

2.1.1 Setting and Study Population 

We examined a convenience sample of adult (≥ 18 years) trauma patients transported by air emergency medical 
service to several participating Level 1 trauma centers. With Institutional Review Board approval, we collected a 
prospective dataset from Boston MedFlight (BMF; Bedford, MA) and compared the findings with an archival 
dataset originally collected from Memorial Hermann Life Flight (MHLF; Houston, TX) by Cooke et al. [4] and 
Holcomb et al. [5]. In both datasets, we analyzed all subjects with at least one recorded non-zero systolic blood 
pressure (SBP). Patients who died prior to hospital admission (e.g., in the emergency department) were excluded 
from analysis, because resuscitation was often terminated before large-volume packed red blood cell (PRBC) 
transfusion could be completed, regardless of whether or not the patient had significant hypovolemia.  

Our primary study outcome was 24-hr PRBC transfusion volume in patients with hemorrhagic injury, defined as 
a documented hemorrhagic injury that unequivocally caused some loss of blood volume (i.e., laceration or 
fracture of a solid organ, thoracic or intraperitoneal hematoma, vascular injury that required operative repair, or 
limb amputation). We excluded patients who received PRBCs, but lacked a documented hemorrhagic injury 
from the primary analysis. In a secondary analysis, we studied all patients who received PRBC transfusion 
regardless of injury. 

2.1.2 Vital-sign Data Processing 

For the prospective cohort, we deployed the APPRAISE system (Automated Processing of the Physiological 
Registry for Assessment of Injury Severity [6]; see Figure 1) onto two active BMF helicopters between February 
5, 2010, and December 31, 2012. The APPRAISE system consists of a Propaq 206 patient monitor (Welch-
Allyn, Beaverton, OR) networked to a GoBook ultra-compact ruggedized personal computer (General Dynamics 
Itronix, Sunrise, FL) running analytic algorithms developed for this research project [6]. The APPRAISE 
software 1) created an electronic record of the Propaq data, 2) analyzed the vital-sign data in real time using 
algorithms described below, and 3) archived the results. The results of the automated analysis were not visible to 
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the flight crew so that the investigational system would not affect clinical decision-making (this was a matter of 
human subject protection for a diagnostic system that had not yet been validated during clinical operation). 

 

Figure 1:  The hardware components of the APPRAISE system in a disassembled state.  
The GoBook personal computer (General Dynamics Itronix, Sunrise, FL) on the right is  
connected to the Propaq 206 patient monitor (Welch-Allyn, Beaverton, OR) on the left  

through an RS-232 serial cable. During field operations, the personal computer  
was affixed to the top surface of the Propaq monitor using nylon  

strapping and velcro (not pictured). 

The retrospective data originally had been collected on board MHLF helicopters between August 2001 and April 
2004 using a personal digital assistant networked to a Propaq 206 patient monitor to archive the vital-sign data 
[4, 5]. Subsequently, those data were uploaded to our data warehousing system [7] and analyzed offline. 

We analyzed the prospective and the retrospective Propaq 206 data using the exact same computational 
methodology, applied to the following independent vital-sign variables: heart rate (HR), respiratory rate (RR), 
SBP, and pulse pressure (PP; the difference between SBP and diastolic BP). HR and RR were measured 
continuously by the Propaq 206 monitor via electrocardiography (ECG) and impedance pneumography (IP), 
respectively. SBP and PP were measured by oscillometry at multi-minute intervals. We used automated 
algorithms to identify and exclude unreliable vital-sign measurements. The HR and RR reliability algorithms 
involved analysis of ECG and IP waveforms; this allowed us to discriminate between a clean source signal 
versus an unreliable segment due to signal artifacts [8, 9]. The SBP and PP reliability algorithms assessed signal 
quality by 1) analyzing the relationship between systolic, diastolic, and mean arterial pressures, and 2) 
comparing HR as measured by ECG versus HR as measured by oscillometry [10]. These automated algorithms, 
which have been shown to agree with human experts’ opinions [8, 9], can significantly increase the diagnostic 
value of vital signs by removing spurious measurements [10, 11]. 



Automated Analysis of Vital Signs Identified 
Patients with Substantial Bleeding Prior to Hospital Arrival 

17 - 4 STO-MP-HFM-254 

 

 

2.1.3 Clinical Outcomes 

For the BMF dataset, a research nurse collected patient attributes and outcome data via retrospective chart 
review of the receiving hospitals’ medical records (i.e., Beth Israel Deaconess Medical Center, the Brigham and 
Women’s Hospital, and the Massachusetts General Hospital). We obtained injury severity scores from each 
hospital’s trauma registry. For the MHLF dataset, a chart review was conducted by the original study authors [4, 
5]. 

2.1.4 Statistical Analysis  

We computed the median and interquartile ranges of HR, RR, SBP, and PP as a function of 24-hr PRBC volume 
and, using the Wilcoxon rank-sum test, we tested for differences between BMF and MHLF, and between those 
with different PRBC transfusion volumes. 

2.2 Results: Vital-sign Patterns and Life-threatening Hemorrhage 
Of the 999 patients with electronic data available (MHLF: 757, BMF: 242) we excluded 22 who lacked a non-
zero blood pressure measurement (MHLF: 20, BMF: 2) and 33 who did not survive to admission (MHLF: 27, 
BMF 6). Also, there were 89 patients who received 24-hr PRBC transfusion without documented hemorrhagic 
injuries (MHLF: 64, BMF 25). Table 1 describes the primary study population (MHLF: 646, BMF 209). 

Table 1: Study population characteristics. 

  Memorial Hermann 
Life Flight 

Boston 
MedFlight 

Population, n 646 209 
Sex, male, n (%) 479 (74)    155 (74) 
Age, yr, mean (SD)   38 (15) 45 (20) 
Blunt, n (%) 577 (89)    188 (90) 
Penetrating, n (%) 61 (9)      21 (10) 
ISS, median (IQR)      16 (9-34)    16 (9-26) 
Interhospital transfer, n (%)  0 (0)    103 (49) 
Prehospital airway intubation, n (%)        111 (17)      80 (38) 
Prehospital GCS, median (IQR)      15 (13-15)    15 (8-15) 
24-hr PRBC vol ≥ 1 unit, n (%)          75 (12)      31 (15) 
24-hr PRBC vol ≥ 3 units, n (%)          57 (9)      18 (9) 
24-hr PRBC vol ≥ 9 units, n (%)          25 (4)        9 (4) 
Survival to discharge, n (%)        608 (94)    191 (91) 
GCS: Glasgow coma scale; IQR: interquartile range; ISS: injury severity 
score; PRBC: packed red blood cell; SD: standard deviation. 
 

Table 2 reports time-averaged prehospital vital signs as a function of 24-hr PRBC transfusion volume. For 
pooled patients in the two studies with large 24-hr PRBC volumes (≥ 3 units), each of the time-averaged vital 
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signs—HR, RR, SBP, and PP—were significantly different than for patients with zero 24-hr PRBC volume. 
Between the two study populations, there were subtle differences in vital signs. In patients with hemorrhage, 
MHLF patients had higher HR and RR, and also had a trend towards higher SBP, as compared with BMF.  

Table 2: Time-averaged prehospital vital signs as a function of  
subsequent 24-hr PRBC transfusion volume. 

  
24-hr PRBC volume, units 

         0          1 – 2         3 – 8          ≥ 9 

Total  
patients, n 

All         749            31            41           34 
MHLF         571            18            32           25 
BMF         178            13              9             9 

HR,bpm 
All   90 (78‒104)  105 (85‒116)†    97 (87‒128)††  120 (92‒136)††† 
MHLF   92 (80‒105)***  113 (103‒117)*  101 (89‒133)  122 (94‒138) 
BMF   84 (73‒99)***    89 (75‒105)*    92 (82‒101)    93 (89‒120) 

RR, bpm 
All   25 (22‒28)    27 (23‒31)    28 (24‒35)††    28 (24‒35)††  
MHLF   25 (22‒29)    29 (25‒33)    29 (24‒36)    33 (26‒38)* 
BMF   24 (22‒28)    24 (21‒27)    27 (22‒29)    26 (24‒27)* 

SBP, mmHg 
All 134 (122‒149)  118 (112‒134)††  106 (94‒117)†††  112 (87‒125)††† 
MHLF 134 (122‒148)  117 (104‒131)  107 (93‒118) 118 (91‒125) 
BMF 132 (119‒152)  122 (115‒141)  102 (97‒115)    93 (79‒115) 

PP, mmHg 
All   57 (49‒66)    51 (42‒57)††   44 (34‒48)†††   34 (28‒49)††† 
MHLF   57 (50‒66)    46 (41‒53)*    42 (35‒47)    35 (28‒50) 
BMF   58 (48‒70)    57 (50‒68)*    44 (33‒62)    31 (28‒41) 

Each entry represents median (interquartile range). 
Significantly different versus 24-hr PRBC volume = 0: †p < 0.05, ††p < 0.01, †††p < 0.001 by Wilcoxon 
rank-sum test. 
Significantly different MHLF versus BMF: *p < 0.05, ***p < 0.001 by Wilcoxon rank-sum test. 
BMF: Boston MedFlight; HR: heart rate; MHLF: Memorial Hermann Life Flight; PP: pulse pressure 
(SBP-diastolic blood pressure); PRBC: packed red blood cell; RR: respiratory rate; SBP: systolic blood 
pressure. 
 

2.3 Discussion: Vital-sign Patterns and Life-threatening Hemorrhage 
In both datasets of prehospital trauma casualties, MHLF and BMF, there were significant differences associated 
with blood transfusion requirement, for every one of the routine vital signs. However, there were also significant 
differences between the two datasets, which represent different physiological responses to blood loss. 
Specifically, the patients in the BMF dataset appeared to exhibit less sympathetic compensation: less 
tachycardia, less tachypnea, and increased pulse pressure, but overall, a trend toward more hypotension. By 
contrast, the patients in the MHLF dataset appeared to exhibit greater sympathetic compensation: more 
tachycardia, more tachypnea, and a trend toward less overall hypotension. 
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The major implication of these findings is that individual vital signs have an inconsistent relationship with 
transfusion requirement, which supports the conventional wisdom that individual vital signs may not be reliable 
indicators of which trauma patients are at high-risk for bleeding to death. However, in principle, a multivariate 
classifier could provide a more consistent classification of vital signs for purposes of identifying patients with 
major hemorrhage. 

3.0 CAN AN AUTOMATED ALGORITHM CONSISTENTLY IDENTIFY VITAL-
SIGN PATTERNS ASSOCIATED WITH LIFE-THREATENING 
HEMORRHAGE? 

In principle, if there are different types of compensation to blood loss (e.g., more sympathetic compensation with 
tachycardia versus less sympathetic compensation with greater hypotension), then a multivariate classifier could 
provide a more consistent classification of vital signs.  

3.1 Methods: Automated Algorithms and Life-threatening Hemorrhage  

3.1.1 Multivariate Classification  

Figure 2 describes the methodology for automated identification of life-threatening hemorrhage using 
multivariate classification. First, we processed the vital signs to exclude unreliable measurements using 
automated algorithms as described in Section 2.1.2. 

 

Figure 2: Analytic methodology for hemorrhage identification. In the first step (left panel), algorithms 
were used to identify, and exclude, unreliable vital signs. In the second step (middle panel), 

ensemble classification was applied, which consisted of a set of different linear regression models, 
that were subsequently averaged together. Ensemble classification is useful when missing data are 
commonplace: different regression models contain different combinations of the vital signs and it is 
possible to omit any of those models that contain a missing input parameter. In the third step (right 
panel), the mean ensemble classifier output was evaluated by the SPRT, a statistical test of whether 

or not measurements repeated over time are consistent with a control distribution (e.g., non-
hemorrhagic patient) or with a different (e.g., hemorrhagic patient) distribution. bpm: beats per 

minute; ECG: electrocardiography; HR: heart rate; PP: pulse pressure; RR: respiratory rate; SBP: 
systolic blood pressure; SPRT: sequential probability ratio test; V: volt. 
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Second, we applied an ensemble classifier, which is a set of multivariate regression models whose numerical 
outputs were averaged to yield the final output. Compared with routine multivariate regression, an ensemble 
classifier can provide two advantages. First, the ensemble can still classify patients even if there are missing vital 
signs. Second, it can offer more consistent performance from one dataset to the next [12, 13].  

Originally, we trained the ensemble’s multivariate regression models (i.e., set the weights for the input variables) 
for a binary outcome as per Chen et al. [12], using the initial 15 min of vital-sign data from each MHLF subject. 
The binary outcome was whether patients received ≥ 1 PRBCs for an unambiguous hemorrhagic injury, or not. 
This model training yielded a classifier that, on the basis of the input vital signs, quantified whether the pattern 
was similar to the population with hemorrhage (output closer to 1) or to the non-hemorrhagic control population 
(output closer to 0). 

This ensemble classifier was re-applied to each patient’s data every 2 minutes.  

• For the BMF dataset, this was done in real time during actual patient transport onboard medical 
helicopters, using a specialized computing platform [6].  

• For the MHLF dataset, we performed the analysis retrospectively, applying the algorithms at every 2-
min mark of the patient’s electronic record, simulating real-time application.  

In both studies, every time the ensemble classifier was applied (i.e., every 2 min), we analyzed the time-averaged 
value of all reliable HR, RR, SBP, and PP measured since the beginning of the record, and up to the time of 
analysis1. The rationale for analyzing data reaching back to the start of the mission arose from prior analysis 
suggesting that prehospital vital signs contained enormous variability—likely due to pain, medications, or other 
transient stimuli—and that time-averaging was an effective method to remove some of the confounding data 
perturbations [14]. 

Finally, we used the Wald’s Sequential Probability Ratio Test (SPRT) [15] to determine whether to issue an 
automated “hemorrhage high-risk” notification on the basis of the accumulated evidence from the ensemble 
classifier outputs. The SPRT classifies data through time and determines whether repeated measurement 
samples are consistent with one statistical distribution (e.g., a normal population) versus a second statistical 
distribution (e.g., an abnormal population) [15]. Thresholds for the SPRT were set as per [16], where the 
SPRT was shown to reduce false alarms at the expense of some alarm latency. 

3.1.2 Statistical Analysis  

We computed the proportion of patients who received a hemorrhage notification as a function of 24-hr PRBC 
volume. For comparison, we also computed the proportion of patients with other hemodynamic abnormalities: 
initial SBP < 110 mmHg, any prehospital SBP < 90 mmHg, or any prehospital Shock Index (SI = HR/SBP) ≥ 
1.4. We tested for significant differences between those proportions using McNemar’s test. 

3.2 Results: Automated Algorithms and Life-threatening Hemorrhage 
Table 3 shows the relationship between incidence of APPRAISE hemorrhage notification and 24-hr PRBC 
transfusion volume. With increasing 24-hr PRBC transfusion volume, the proportion of APPRAISE notification 
of positive subjects exhibited an increasing trend in both the MHLF and BMF studies. In the pooled dataset 
(MHLF and BMF), we found that the sensitivity of APPRAISE notification for 24-hr PRBC transfusion volume 
                                                      

1 For example, at t = 6 min, all vital-sign data from t = 0 to t = 6 min were analyzed. At t = 8 min, all vital sign data from t = 0 to t = 
8 min were analyzed. 
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≥ 9 units was significantly higher than SI ≥ 1.4 (p = 0.014; 76% vs. 59%), initial SBP < 110 mmHg (p = 0.007; 
76% vs. 50%), and any hypotension, i.e., SBP < 90 mmHg (p = 0.007; 76% vs. 50%). Also, the sensitivities of 
APPRAISE notification for 24-hr PRBC transfusion volume ≥ 9 units was similar for the MHLF versus BMF 
datasets. 

In the pooled dataset (MHLF and BMF), we found that the specificity of the APPRAISE system for 24-hr PRBC 
transfusion volume = 0 units (i.e., no blood transfusion at all) was not significantly different from initial SBP < 
110 mmHg (87% vs. 88%) or any prehospital SI ≥ 1.4 (87% vs. 88%). Compared to any prehospital SBP < 90 
mmHg, APPRAISE notification showed a significantly lower specificity (p < 0.05; 87% vs. 90%), though the 
absolute magnitude of the difference was 3%. 

Table 3: Prehospital APPRAISE hemorrhage notification incidence  
as a function of 24-hr PRBC transfusion volume. 

 
24-hr PRBC volume, units 

Total 
0 1 to 2 3 to 8  ≥ 9 

Total patients, n 749 31 41 34 855 
MHLF patients, n 571 18 32 25 646 
BMF patients, n 178 13 9 9 209 

Hemorrhage notification, n (%) 96 (13) 12 (39) 26 (63) 26 (76)  
MHLF, n (%) 79 (14) 9 (50) 22 (69) 19 (76)  
BMF, n (%) 17 (10) 3 (23) 4 (44) 7 (78)  

Initial SBP < 110 mmHg, n (%) 87 (12) 9 (29) 22 (54) 17 (50)  
MHLF, n (%) 67 (12) 5 (28) 18 (56) 11 (44)  
BMF, n (%) 20 (11) 4 (31) 4 (44) 6 (67)  

Any SBP < 90 mmHg, n (%) 73 (10) 9 (29) 24 (59) 17 (50)  
MHLF, n (%) 51 (9) 6 (33) 18 (56) 11 (44)  
BMF, n (%) 22 (12) 3 (23) 6 (67) 6 (67)  

Any SI ≥ 1.4, n (%) 92 (12) 8 (26) 21 (51) 20 (59)  
MHLF, n (%) 70 (12) 6 (33) 18 (56) 14 (56)  
BMF, n (%) 22 (12) 2 (15) 3 (33) 6 (67)  

BMF: Boston MedFlight; HR: heart rate; MHLF: Memorial Hermann Life Flight; PRBC: 
packed red blood cell; SBP: systolic blood pressure; SI: shock index. 

 

3.3 Discussion: Automated Algorithms and Life-threatening Hemorrhage 
At a rudimentary level, this study suggests that patients with massive 24-hr blood transfusion requirements 
demonstrated identifiable hypovolemic physiology before hospital arrival.  

In Section 2, it was shown that patient populations may have varied responses to hemorrhage, with some patients 
demonstrating greater sympathetic compensation (i.e., greater tachycardia and less hypotension) and others with 



Automated Analysis of Vital Signs Identified 
Patients with Substantial Bleeding Prior to Hospital Arrival 

STO-MP-HFM-254 17 - 9 

 

 

less compensation. Despite the differences between the vital signs in the BMF versus MHLF datasets, the 
multivariate classifier provided very consistent performance across both. [17-19] 

The finding that, during the preliminary evaluation of a trauma patient, their vital signs are useful for predicting 
life-threatening hemorrhage is consistent with other prediction rules for massive transfusion where hypotension 
and tachycardia are recognized as predictive factors for massive transfusion (i.e., Refs. 17-19). Unlike the other 
prediction rules, the APPRAISE system only involves vital-sign data analyzed during prehospital transport. 
Essential to its performance is a focus on analyzing multiple vital-sign measurements, rather than a single set. 

The median notification time after the start time of transport was 6 min for MHLF and 10 min for BMF. The 
median notification time before arrival at the hospital was 17 min for MHLF and 52 min for BMF, and the 
difference was largely due to shorter transport times for MHLF (the median transport time for subjects with 24-
hr PRBC volume ≥ 9 units was 25 min for MHLF and 66 min for BMF). Combining the two populations, 
APPRAISE notification occurred in the first half of the transportation in 73% of the cases. 

Overall, here are the key implications:   

• The automated analysis of vital signs allowed for significantly improved sensitivity for life-threatening 
hemorrhage without any clinically significant increase in false alarms. This supports the conclusion that 
any trauma management protocol that uses vital signs for decision-making (e.g., for activating the 
trauma team or activating an operating room or initiating resuscitation) could be enhanced by using 
automated analysis, rather than a single vital-sign criterion (e.g., SBP < 90 mmHg).  

• A second potential advantage of the automated system is that it requires less cognitive effort by the 
clinicians. We speculate that use of an automated system could allow caregivers to focus on other 
aspects of bedside care and situational awareness, rather than focus on the vital-sign monitor patterns. 

• A third potential advantage of the automated system is that it could be valuable, providing consistency 
and vigilance, even when caregivers are inexperienced, tired or distracted. 

An expanded treatment of these findings was reported in Ref. 20. [20] 

4.0 HOW SENSITIVE IS THE ALGORITHM’S PERFORMANCE TO DIFFERENT 
METHODS OF ANALYZING VITAL-SIGN DATA THROUGH TIME? 

In the aforementioned analysis, we used SPRT as a statistical test to determine whether the vital-sign patterns 
through time were abnormal or not. As noted above, this method successfully identified casualties with 
hemorrhage after a median of 6 – 10 min. Yet, this also meant that there was a substantial subset who required 
greater than 10 min of vital-sign monitoring for hemorrhage identification.  

When decision-making must be done in less than 10 min, then this latency is sub-optimal. In the field of 
manufacturing, the SPRT [15] is one of several well-established analytic strategies for statistical process control, 
whereby aberrancies in a manufacturing process are detected by monitoring and analyzing the process output 
[21]. These include simple thresholding, the risk-adjusted SPRT (RASPRT) [22], and the cumulative sum 
(CUSUM) method [21]. 

In this section, we compare these classification strategies, to elucidate the achievable performance of the 
different methods. 



Automated Analysis of Vital Signs Identified 
Patients with Substantial Bleeding Prior to Hospital Arrival 

17 - 10 STO-MP-HFM-254 

 

 

4.1 Methods: Analyzing Vital-sign Data through Time 
Statistical process control has been widely used in manufacturing processes where quick detection of “out-of-
control” process variation is essential for quality control [21]. We compared four commonly used notification 
strategies based on the output of the ensemble classifier over time.  

The simple thresholding used in our analysis consisted of a single upper limit , where an alert was raised when 
 for the first time, with  denoting the output of the ensemble classifier at time .  

SPRT consisted of an upper limit  and a lower limit , where the system issued an alert when the accumulated 
log likelihood ratio  exceeded the upper limit . We calculated  as follows: 

 

but if , then  was reset to zero, where  and  denoted the probability 
density functions governing the null hypothesis (e.g., control) and alternative hypothesis (e.g., hypovolemia), 
respectively.  and  represent the mean and variance of the probability density 
functions governing the null and alternative hypotheses, respectively, which were estimated from the MHLF 
dataset. 

RASPRT was exactly the same as SPRT, except that the probability density functions  and 
 were time varying depending on the availability of the vital signs at each time instant  (15 pairs 

of  and  were estimated from the MHLF dataset for 15 possible scenarios of vital-sign availability). 

CUSUM consisted of an upper limit  and an offset , where the system issued an alert when the accumulated 
 exceeded .  was computed as follows: 

 

We investigated the performance of each notification strategy by systematically varying the values of 
configurable parameters. Table 4 lists the configurable parameters for each notification strategy and the range of 
values we explored for each parameter. We chose the range of values to cover the full range of sensitivity and 
specificity from 0 to 100%. For each configuration, we applied the notification strategy to each patient using the 
ensemble classifier output over the course of the entire transport. We recorded the decision and then computed 
the sensitivity, specificity, and mean/median time to notification. We repeated the same analysis for different 
sizes of moving windows (2 min, 15 min, and 60 min). 
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Table 4: Notification strategies. 

Parameters Range explored 
Simple thresholding 1. Upper limit

2. Window size
0  <  < 1 

 = 2, 15, 60 min 
Sequential probability 
ratio testing (SPRT) 

1. Upper limit
2. Lower limit
3. Window size

-2.2  <  < 6.9 
-6.9  <   < 2.2 

 = 2, 15, 60 min 
Risk-adjusted SPRT 
(RASPRT) 

1. Upper limit
2. Lower limit
3. Window size

-2.2  <   < 6.9 
-6.9  <   < 2.2 

 = 2, 15, 60 min 
Cumulative sum 
(CUSUM) 

1. Upper limit
2. Offset
3. Window size

0  <  < 1 
0  <  < 1 

 = 2, 15, 60 min 
We explored four investigational strategies to account for the substantial 
minute-to-minute fluctuations in the likelihood that a patient is bleeding. 
Each statistical strategy had several parameters to set, which determined 
their performance and resultant diagnostic test characteristics, in terms of 
sensitivity, specificity, and time to alert. Those parameters, and the range of 
values explored, are listed in the table. 

4.2 Results: Analyzing Vital-sign Data through Time 
We computed a total of 56,000 data points, where for each data point we calculated the 1) sensitivity, 2) 
specificity, and 3) time to notification for one configuration of each of the four investigational strategies. These 
data points spanned the full range of sensitivities and specificities, from 0% to 100%. Because of space 
limitations, it is not possible to report all of these results, but it is possible to show representative findings. Figure 
3 illustrates some of the trade-offs that we observed, exploring the four investigational methods for two levels of 
sensitivity (~75% and ~85%).   
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Figure 3: The trade-off between mean time to alert and specificity at fixed sensitivity levels of 76.5% 
and 85.3%. The four investigational strategies yielded a spectrum of results varying in sensitivity, 
specificity, and time to alert (depending on the setting of parameter values; see Table 4). Above,  

we illustrate results for two arbitrary levels of sensitivity (sensitivity of 76.5% and 85.3%).  
For each level of sensitivity and investigational strategy, we plot two results representing  

the minimum and maximum specificity (and corresponding times to alert) that were observed  
as we methodically explored the constellation of different parameter values for each investigational 
strategy. This figure illustrates the inevitable trade-offs between sensitivity, specificity, and time to 
alert, and that no one strategy was consistently superior to the others. CUSUM: cumulative sum; 

RASPRT: risk-adjusted SPRT; SPRT: sequential probability ratio test. 

The key findings are as follows: 

• None of the four classification strategies demonstrated any consistent, observable advantage. 
Classification strategies that were more accurate overall tended to be not as responsive (i.e., had a 
greater time to alert) and vice versa. We observed well-known trade-offs between sensitivity and 
specificity. In addition, we observed that increasing specificity was associated with increasing mean 
time to notification.  

• At the ~75% sensitivity, the optimal classifier was arguably the simple threshold:  it offered a similar 
specificity as the other methods, but with minimal time latency (see Figure 3). 

• For higher sensitivity, ~85%, the simple threshold required a reduced value of upper limit , which 
meant more false alarms (i.e., a reduced specificity). At this higher level of sensitivity, it was possible to 
reduce false alarms by relying on SPRT or RASPRT, but these methods came at the cost of ~5 min in 
additional notification latency. 
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4.3 Discussion: Analyzing Vital-sign Data through Time 
Different methods of classification through time yielded different diagnostic test characteristics. No method was 
clearly superior. Instead, the methods offered different trade-offs. 

Our initial algorithm was intended to analyze patients during prehospital transport. In the majority of the cases, 
the algorithms were able to identify hemorrhage long before hospital arrival. The use of SPRT was therefore 
appropriate for this application:  it greatly reduced “false alarms,” and the latency of ~5 min was acceptable 
considering that the transport times were significantly longer. 

Conversely, for some other applications (e.g., assessment of casualties immediately upon arrival) this latency 
might be suboptimal. Our findings suggest that it would be possible to detect hemorrhage patients earlier, but the 
trade-off would either be reduced sensitivity and/or specificity. 

These findings were presented at the 2014 IEEE Engineering in Medicine and Biology Society annual meeting 
[23]. 

5.0 CONCLUSION  

Our work to date has demonstrated that, using well-known statistical techniques, it is possible to automate the 
analysis of vital signs in trauma patients and significantly improve the identification of life-threatening 
hemorrhage, compared to the use of simple thresholds for individual vital signs, e.g., SBP < 90 mmHg. 
Moreover, this approach does not lead to clinically significant increases in false alarms, it is fully automatable, 
and it would require a minimum of new sensors and training. The method is based on linear classification, and so 
its performance is “transparent” (i.e., the basis for its classification is readily apparent by examining the 
underlying vital signs, unlike a neural network black box). 

Perhaps most significantly, the method has now been successfully validated prospectively during actual trauma 
patient care, which suggests that the technology is indeed viable for clinical operations. Future investigation will 
be focused on evaluating where this new capability provides clinical or operational benefit. 
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Utility of shock index calculation in 
hemorrhagic trauma CrossMark

We read with great interest the article by Edla et al [1 ] comparing 
heart rate variability (HRV) metrics vs routine vital signs as diagnostic 
tests to improve trauma patient management focusing on the identifica­
tion of trauma patients with major hemorrhage. They conducted a mul­
tivariate analysis using routine vital signs (heart rate, respiratory rate, 
systolic blood pressure, and pulse pressure) as the comparator to test 
the hypothesis that HRV metrics can improve the identification of pa­
tients with major hemorrhage. However, when combined with 
routine vital signs, HRV added negligible additional discriminatory 
value. The authors addressed a very important question as far as the 
most substantial clinical problem facing physicians being the identifica­
tion of hemorrhagic trauma. In prehospital setting, current trauma 
triage relies on abnormal physiological criteria to determine the 
patient’s mode of transport, priority of treatment, destination for treat­
ment, and need for possible life-saving interventions.

We would like to go further into the debate and speculate that 
calculation of the shock index (SI) may be more useful for caregivers 
than isolated measurements of systolic blood pressure (SBP) and 
heart rate (HR) in the compensatory phase of shock. The SI is defined 
as the ratio of HR to SBP. This easily calculable score in the field has 
been demonstrated to be a pragmatic and useful guide for diagnosing 
acute hypovolemia in the presence of normal HR and blood pressure. 
Shock index has been shown to correlate with other indices of end- 
organ perfusion such as central venous oxygen saturation and arteri­
al lactic acid concentration [2], Compared with HR or SBP alone, SI 
has been suggested to be a better measure of hemodynamic stability 
[3]. Rady et al [4] evaluated a SI cutoff point of 0.9 in a cohort of 275 
adult patients presenting to an emergency department with stable 
vital signs. The authors found that a SI greater than 0.9 was associat­
ed with an illness that was treated immediately, admission to the 
hospital, and intensive therapy on admission. A given set of vital 
signs may on initial interpretation appear unalarming, but calcula­
tion of SI added additional perspective that could influence clinical 
decisions [5].

To conclude, we would like to know if the authors, maybe based on a 
retrospective analysis of the data set of 402 subjects, could test the use­
fulness of SI (with a cutoff value of 0.9) in initial assessment of patients 
with ongoing exsanguinations?
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In reply to “Utility of shock index calculation in 
hemorrhagic trauma”* CrossMark

To the  Editor,

We wish to thank the correspondents for their interest and com­
ments regarding our report [1 ]. We agree that multivariate vital-sign 
analysis is a powerful tool. The Shock Index (SI), which scales the 
heart rate (HR) to the systolic blood pressure (SBP), is attractive because 
it can be computed mentally at the bedside. At least in theory, by exam­
ining multiple vital signs, one may better distinguish abnormal vital 
signs due to psychological distress (typically tachycardia with hyper­
tension) vs blood loss and shock (relative tachycardia with normal or 
reduced blood pressure). In addition to the reports cited by the corre­
spondents, SI has been studied in trauma registries of more than 
16000 [2] and 21 000 [3] patients, demonstrating that blood transfusion 
requirement and mortality are associated with increasing SI.

To address the question posed by the correspondents, we computed 
the areas under receiver operating characteristic curves (ROC AUCs) for 
SI using the same data set of 402 subjects from Edla et al [1]. We used 
that report’s methodology for excluding unreliable vital signs and ana­
lyzed the average vital-sign values from each subject’s initial 15 minutes 
of physiological data. The ROC AUCs for SI were 0.76, 0.80, and 0.81 for 
predicting 24-hour red blood cell transfusion greater than or equal to 
1,5, and 9 units, respectively. These ROC AUCs for SI trend higher than 
the ROC AUCs for HR and SBP (available in Table 2 from Edla et al [1 ]), 
although the differences were not statistically significant. The sensitivity 
and specificity of SI greater than 0.9 as a predictor of massive transfusion 
(defined as 24-hour red blood cell transfusion > 9 units) were 63% and 
83%, respectively, using the 15-minute average of SBP and HR.

One challenge of SI is that its value changed minute by minute be­
cause the patient’s HR fluctuated. Many patients developed SI greater 
than 0.9 at least at some time point during early trauma care. In a sepa­
rate analysis of 855* 1 subjects during prehospital transport [4], we found 
that 57% of the patients with no  significant bleeding nonetheless dem­
onstrated SI greater than 0.9, at least transiently. We found that SI great­
er than 1.4 was a more practical cutoff, with a false-positive rate of only 
12% in patients without bleeding; and it was sensitive to 59% of massive 
transfusion patients. (For comparison, note that SBP < 90 mmHg had a 
false-positive rate of 10% in patients without bleeding; and it was sensi­
tive to 50% of massive transfusion patients.)

At the bedside, clinicians should consider computing SI using a time- 
averaged value of HR and SBP from a multiminute observation interval 
to reduce false alarms [5], There are also statistical techniques that can

☆  Conflicts of interest: None of the authors have any conflicts of interest to disclose.
1 The 402 subjects from Edla et al [1 ] comprise the subset of this larger data set of 855 

subjects [4] with a full set of reliable vital signs and at least 5 minutes of reliable electrocar­
diogram waveform data for heart rate variability analysis.
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objectively distinguish transient vs clinically meaningful vital-sign ab­
normalities in trauma patients and that have been shown to be signifi­
cantly superior to SI alone, but these techniques require specialized 
bedside computing capabilities [4],
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The article by Roseman et al [1] is indeed interesting, as the authors 
had brought peritoneal dialysis (PD) back to frontline and as an option 
for patients w ith severe hyperkalemia in resource-limited emergency 
department. However, few aspects of this article need contemplation 
based on our experiences with regard to potassium clearance [2], It is 
well known that potassium clearance achieved by PD is markedly 
lower than hemodialysis.

Clearance of potassium averages approximately 17 mmol/min for in­
term ittent PD and approximately 7 mmol/min for continuous ambulato­
ry peritoneal dialysis (CAPD). Interestingly, higher potassium clearance 
(24 mmol/min) is obtained during the first hour than that of the remain­
ing period due increased release of potassium from the cells that line the 
peritoneal cavity. Peritoneal dialysis patients have normal or low plasma 
potassium probably because of greater shift of this ion into intracellular 
compartm ent, which is facilitated by initial low pH and/or by the 
hyperosmolality of the instilled dialysate, which does not contain potas­
sium [3],

Thus, patients on PD in general have high intracellular potassium 
content, more so those on CAPD. This process is also further enhanced 
due to the continuous glucose absorption from the dialysis solutions 
and the subsequent stimulation of intracellular uptake of potassium, 
mediated by insulin. However, potassium entry into peritoneal epithe­
lium declines as patients on PD started developing peritoneal sclero­
sis. This intracellular overload is not only difficult to correct but also 
makes them susceptible for hyperkalemia easily [4], After removal of 
potassium from extracellular compartm ent by dialysis, there will be 
a rebound as the intracellular potassium moves to extracellular com­
partm ent. This continues till the total body potassium is depleted. 
Hence, to solve these problems, there is a need for a long and 
sustained dialysis using a 2-L CAPD exchange 4 times per day with 
potassium-free dialysate [5], We have also noticed normalization of 
plasma potassium levels and steady state of plasma potassium of 5 
mmol/L in our cases [2], One can estim ate the potassium removal 
close to 33 to 35 mmol/d to avoid hyperkalemic rebound in the 
postdialytic period.

Peritoneal dialysis offers a unique and timely opportunity for the 
emergency physician to rescue; however, the limitations of potassium 
exchange and noninfectious complications of PD have to be kept in the 
mind, and the alternatives have to be discussed with patients and care­
givers before preparing them for PD.
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Muscle Oxygen Saturation Improves
Diagnostic Association Between Initial Vital
Signs and Major Hemorrhage: A Prospective
Observational Study
Andrew T. Reisner, MD, Shwetha Edla, PhD, Jianbo Liu, PhD, John T. Rubin, Jill E. Thorsen,
Erin Kittell, MSN, Jason B. Smith, Daniel D. Yeh, MD, and Jaques Reifman, PhD

Abstract

Objectives: During initial assessment of trauma patients, vital signs do not identify all patients with life-

threatening hemorrhage. We hypothesized that a novel vital sign, muscle oxygen saturation (SmO2),

could provide independent diagnostic information beyond routine vital signs for identification of

hemorrhaging patients who require packed red blood cell (RBC) transfusion.

Methods: This was an observational study of adult trauma patients treated at a Level I trauma center.

Study staff placed the CareGuide 1100 tissue oximeter (Reflectance Medical Inc., Westborough, MA), and

we analyzed average values of SmO2, systolic blood pressure (sBP), pulse pressure (PP), and heart rate

(HR) during 10 minutes of early emergency department evaluation. We excluded subjects without a full

set of vital signs during the observation interval. The study outcome was hemorrhagic injury and RBC

transfusion ≥ 3 units in 24 hours (24-hr RBC ≥ 3). To test the hypothesis that SmO2 added independent

information beyond routine vital signs, we developed one logistic regression model with HR, sBP, and PP

and one with SmO2 in addition to HR, sBP, and PP and compared their areas under receiver operating

characteristic curves (ROC AUCs) using DeLong’s test.

Results: We enrolled 487 subjects; 23 received 24-hr RBC ≥ 3. Compared to the model without SmO2, the

regression model with SmO2 had a significantly increased ROC AUC for the prediction of ≥ 3 units of 24-hr

RBC volume, 0.85 (95% confidence interval [CI], 0.75–0.91) versus 0.77 (95% CI, 0.66–0.86; p < 0.05 per

DeLong’s test). Results were similar for ROC AUCs predicting patients (n = 11) receiving 24-hr RBC ≥ 9.

Conclusions: SmO2 significantly improved the diagnostic association between initial vital signs and

hemorrhagic injury with blood transfusion. This parameter may enhance the early identification of

patients who require blood products for life-threatening hemorrhage.
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T
o help clinicians determine which trauma patients

have life-threatening hemorrhage, several clinical

scores have been developed for predicting the

need for massive blood transfusion.1 However, these

scores cannot be computed immediately upon emer-

gency department (ED) arrival because they require

either blood testing or imaging results. An alternative

methodology that could be used upon initial evaluation

(or even during prehospital transport) for detecting

significant risk of exsanguination could be useful. Near-

infrared spectrometry (NIRS), which has shown to cor-

relate with high acuity and poor outcomes in trauma

patients,2–4 has been studied specifically as a triage tool

in one study, where it was found to predict the need for

blood transfusion in combat casualties who lacked early

hypotension.5 To further investigate whether NIRS offers

potential value as a triage tool in the preliminary assess-

ment of trauma patients upon ED arrival (i.e., prior to

the availability of any diagnostic testing except for rou-

tine vital signs), we undertook an investigation, testing

the hypothesis that NIRS tissue oxygen monitoring

improves the early identification of patients with major

hemorrhage compared with initial vital signs alone.

MATERIALS AND METHODS

Study Setting and Population

We received protocol approval from the institutional

review board (IRB), including a waiver of informed

consent as per 45 CFR § 46.116(d). We studied a conve-

nience sample of trauma patients ≥ 18 years of age

evaluated in the ED of a Level I trauma center. A priori

exclusion criteria were: 1) transfer from another hospi-

tal if prior workup already ruled out hemorrhagic

injury; 2) no suitable NIRS sensor placement site over-

lying the deltoid or thigh due to either tattoos, visible

skin injury, gross blood, visible rash, clothing, request

of treating clinician, or evident hirsutism (when

patients had visible body hair, we did not attempt to

place the oximeter because subsequent removal of the

adhesive from hairy skin was expected to be painful,

and the subjects had not provided consent for any

painful procedure); 3) per manufacturer’s recommenda-

tion, estimated body mass index < 19 or > 40 kg/m2; 4)

minor trauma, e.g., fall from standing to flat ground;

and 5) failure to record muscle oxygen saturation

(SmO2), heart rate (HR), and blood pressure (BP) within

a matching 10-minute interval during the patient’s

initial evaluation.

Measurements

SmO2 was measured using the CareGuide 1100 tissue

oximeter (Reflectance Medical, Inc., Westborough, MA)

placed by dedicated study staff on skin overlying the

deltoid or thigh. The sensor remained in place for a

minimum of 3 minutes. The CareGuide sensor measures

SmO2 using principles that are similar to other NIRS

oximeters, while incorporating proprietary technology

that is designed to eliminate spectral inference from

skin pigmentation and fat.6

Vital signs were measured as per clinical routine

using Solar patient monitors (General Electric,

Milwaukee, WI). In most ED bays, data were electroni-

cally archived using BedMasterEx software (Excel Medi-

cal, Jupiter, FL). Unreliable vital sign data were

identified and excluded using validated software algo-

rithms.7 For ED bays that lacked the BedMasterEx sys-

tem, we relied on the vital signs documented by ED

nurses and corroborated by vital signs simultaneously

documented by dedicated study staff.

Outcome

We studied the prediction of patients with hemor-

rhagic injuries and the receipt of ≥3 units of packed

red blood cells (RBCs) in the first 24 hours. (Hemor-

rhagic injury was defined as any of the following: lac-

eration or fracture of a solid organ; documented

hematoma within the thorax, peritoneum, retroperi-

toneum, or pelvis; vascular injury that required opera-

tive repair or angioembolization; or limb amputation.)

The secondary outcome was receipt of ≥9 units of

RBCs in patients with hemorrhagic injury. Injuries,

injury severity score, Glasgow coma scale, and opera-

tive interventions were obtained from the medical

record (clinical documentation, radiology reports, and

operative reports) and the trauma registry. Data were

archived electronically using REDCap.8 We determined

whether or not the patient had documented hemor-

rhagic injury by automated text search, searching for

injuries that met the aforementioned criteria (all

records were also jointly reviewed by two investigators

to confirm that the automated text search had not

omitted any applicable hemorrhagic injuries, nor

included nonhemorrhagic injuries).

Patients who received RBCs but lacked a documented

hemorrhagic injury were excluded from analysis,

because of unresolvable uncertainty about whether the

RBC transfusion was clinically indicated in the absence

of explicitly hemorrhagic injuries.

Data Analysis

We computed the mean values of SmO2, HR, systolic BP

(sBP), pulse pressure (PP = sBP – diastolic BP), and the

shock index (SI = HR/sBP) measurements from a 10-

minute window starting upon the first simultaneous

occurrence of a full set of HR, BP, and SmO2 values.

We applied DeLong’s test to the areas under receiver

operating characteristic curves (ROC AUCs) from two

logistic regression models, the first using only routine

vital signs (HR, sBP, PP) and the second adding the

investigational metric (HR, sBP, PP, SmO2). The null

hypothesis was that SmO2 did not provide additional

diagnostic information compared with using routine

vital signs alone.

RESULTS

Between June 2012 and October 2014, we enrolled 487

subjects. Figure 1 shows the enrollment flowchart. Sub-

jects were predominantly male (68%), mechanism of

injury was predominantly blunt (90%), and median age

was 47 years (interquartile range [IQR] = 31–64). Med-

ian injury severity score was 16 (IQR = 9–25) and mor-

tality was 3%. There were 23 patients who received ≥3

units of RBCs within 24 hours and 11 who received ≥9

units.
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SmO2, BP, and HR were collected early in the sub-

jects’ clinical courses: the median time elapsed between

the ED admission time and the onset of the initial evalu-

ation time window (i.e., the 10-minute window used for

analysis) was 3.65 minutes (IQR = 1.85–6.22 minutes).

Median values for vital signs and SmO2 are presented

in Table 1.

In terms of diagnostic association between hemor-

rhagic injury with 24-hour RBC transfusion volume ≥ 3

units:

• The multivariate regression model using HR, sBP,

and PP alone yielded a ROC AUC of 0.77 (95% confi-

dence interval [CI], 0.66–0.86), which was similar to

the ROC AUC for SI (Table 1).

• The multivariate regression model using HR, sBP,

and PP plus SmO2 yielded a ROC AUC of 0.85 (95%

CI, 0.75–0.91).

Per DeLong’s test, these ROC AUCs were significantly

different (p < 0.05).

Repeating the same analysis for the alternative RBC

cutoff, i.e., ≥9 units of RBCs within 24 hours, we found

similar results: the regression model that included

SmO2 in addition to HR, sBP, and PP yielded an

increased ROC AUC (0.89; 95% CI, 0.76–0.95) that was

Figure 1. Flowchart of subject enrollment. *Data archiving failures involved the archiving system (ruggedized GoBook personal

computer connected to the CareGuide SmO2 sensor) that we assembled for this investigation. For the final 16 months of the inves-

tigation, we reinforced the electronic and mechanical connectivity, and had only one additional subject with data archiving failure

in that time interval. BMI = body mass index; BP = blood pressure; HR = heart rate; IRB = institutional review board; NIRS = near-

infrared spectrometry.
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significantly greater (p < 0.05) than the ROC AUC (0.77;

95% CI, 0.61–0.87) of the regression model with HR,

sBP, and PP alone.

DISCUSSION

In this investigation, we found that SmO2 added signifi-

cant discriminatory information beyond the initial val-

ues of HR and BP. The significantly higher ROC AUC

implies that using SmO2 offered a higher combination

of sensitivity and specificity than could be achieved

using only routine vital signs.

Why would low SmO2 indicate a patient with life-

threatening hemorrhage, if routine vital signs are not

patently abnormal? Presumably, such a patient would

be physiologically compensating for blood loss with

marked peripheral vasoconstriction, maintaining BP

during blood loss, but at the expense of peripheral tis-

sue hypoperfusion (and a resultant low SmO2). We note

that some hemorrhagic patients with low SmO2 also

had simultaneous hypotension, while others did not.

Our findings suggest that SmO2 can enhance initial

vital signs, but cannot replace them: some hemorrhagic

patients had hypotension but without low SmO2. We

speculate that this reflects individual variability in vaso-

constriction during blood loss:9 Patients with maximum

vasoconstriction can maintain BP at the expense of

peripheral perfusion/SmO2, while those patients with

minimal vasoconstriction can maintain peripheral perfu-

sion/SmO2 while experiencing earlier hypotension. (As

well, there were hemorrhagic patients with neither

hypotension nor reduced SmO2; possibly these patients

had not yet suffered significant blood loss or had base-

line hypertension and/or bradycardia that masked their

progression into hypovolemic physiology.)

The current investigation provides evidence that

NIRS oximetry can provide additional information for

early detection of hemorrhage than initial routine vital

signs alone. These findings are consistent with a prior

report5 evaluating NIRS oximetry as a triage tool,

which likewise found that it could predict the need for

blood transfusion in patients who lacked early

hypotension. The NIRS sensor is relatively easy to

place, attaching to the patient’s skin via an adhesive

sleeve. A simple measure that can improve the early

identification of patients with major hemorrhage may

be particularly useful when caregivers are novice, dis-

tracted, or fatigued.

LIMITATIONS

A substantial number of subjects were excluded for

lacking a suitable IRB-approved NIRS placement site,

and our outcome, blood transfusion, involved subjective

clinical decision-making; both factors limit the general-

izability of the findings. This investigation only analyzed

the initial ED assessment, and our findings do not

address whether or not better information than initial

vital signs alone translates into better clinical judgments

and patient outcomes. We did not evaluate whether

there is value of NIRS oximetry in later phases of

trauma care when additional sources of diagnostic data

are available, i.e., vital sign trends through time, lab

results, such as lactate and base deficit, and imaging.

Sources of diagnostic error for the CareGuide sensor,

whether it is more reliable than other NIRS oximeters

and how to interpret temporal trends in SmO2, were

not investigated. We note that the State of Minnesota

has added tissue spectroscopy to their official guidelines

for “Tier-One Trauma Team Activation Criteria.”10 Our

findings corroborate the usefulness of this metric for

early identification of major hemorrhage, but also high-

light remaining questions about relying on this technol-

ogy for clinical decision-making.

CONCLUSIONS

We compared muscle oxygen saturation to heart rate,

sBP, and pulse pressure alone in the early ED evaluation

of trauma patients and found that use of muscle oxygen

saturation significantly improved the diagnostic associa-

tion between vital signs and hemorrhagic injury requir-

ing blood transfusion. The results offered prima facie

evidence that near-infrared spectrometry might provide

a tool for the early ED identification of patients with

life-threatening hemorrhage.
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A B S T R A C T

Background: Analyses of large databases have demonstrated that the association between heart rate (HR)
and blood loss is weaker than what is taught by Advanced Trauma Life Support training. However, those
studies had limited ability to generate a more descriptive paradigm, because they only examined a single
HR value per patient.
Methods: In a comparative, retrospective analysis, we studied the temporal characteristics of HR through
time in adult trauma patients with haemorrhage, based on documented injuries and transfusion of �3
units of red blood cells (RBCs). We analysed archived vital-sign data of up to 60 min during either pre-
hospital or emergency department care.
Results: We identified 133 trauma patients who met the inclusion criteria for major haemorrhage and
1640 control patients without haemorrhage. There were 55 haemorrhage patients with a normal median
HR and 78 with tachycardia. Median DHR was �0.8 and +0.7 bpm per 10 min, respectively. Median time
to documented hypotension was 8 and 5 min, respectively. RBCs were not significantly different; median
volumes were 6 (IQR: 4–13) and 10 units (IQR: 5–16), respectively. Time-to-hypotension and mortality
were not significantly different. Tachycardic patients were significantly younger (P < 0.05). Only 10
patients with normal HR developed transient/temporary tachycardia, and only 11 tachycardic patients
developed a transient/temporary normal HR.
Conclusions: The current analysis suggests that some trauma patients with haemorrhage are continuously
tachycardic while others have a normal HR. For both cohorts, hypotension typically develops within
30 min, without any consistent temporal increases or trends in HR.

Published by Elsevier Ltd.
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Introduction

Multiple reports have demonstrated that the current Advanced
Trauma Life Support (ATLS) training course is inaccurate regarding
vital-sign changes in trauma patients with haemorrhage [1–4].
Analyses of large datasets have demonstrated that the association
between heart rate (HR) and blood loss is weaker than what is
taught by ATLS [2,3]. Studying nearly 200,000 trauma patients in a
trauma registry, Guly et al. [2] reported that “[w]ith increasing
estimated blood loss there is a trend to increasing HR and a
* Corresponding author at: Department of Defense Biotechnology High Perfor-
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Technology Research Center, U.S. Army Medical Research and Materiel Command,
ATTN: MCMR�TT, 504 Scott Street, Fort Detrick, MD 21702, USA.
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0020-1383/Published by Elsevier Ltd.
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reduction in systolic blood pressure (SBP), but not to the degree
suggested by the ATLS classification of shock.” Studying over
35,000 trauma patients, Mutschler et al. [3] concluded that “[t]his
study indicates that the ATLS classification of hypovolaemic shock
does not seem to reflect clinical reality accurately.”

If it has been established that ATLS is not accurate in
describing HR changes during haemorrhage, an alternative
paradigm describing HR patterns in trauma patients has not
emerged. In part, this is because the aforementioned large
registry studies only examined a single HR value per patient,
whereas in reality, HR is continuously monitored during trauma
patient management. By studying only single HR values per
patient, it cannot be determined how often tachycardia develops
as haemorrhage progresses. As well, it cannot be determined
whether the weak association between HR and haemorrhage
was i) because HR varied substantially in individual trauma
patients (i.e. large intra-subject variability), and/or ii) because HR
l Hospital from ClinicalKey.com by Elsevier on October 29, 2018.
ion. Copyright ©2018. Elsevier Inc. All rights reserved.
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responses varied substantially between patients (i.e. large inter-
subject variability).

Having a better understanding of the temporal characteristics
of HR through time in trauma patients with haemorrhage could
contribute to a more accurate and useful alternative to ATLS.
Accordingly, we analysed an archived dataset of continual vital
signs in trauma patients, seeking to characterise the HR patterns
recorded through time. We evaluated the extent to which trauma
patients demonstrated tachycardia over time, and whether there
were salient clinical differences between patients who demon-
strated different types of HR responses.

Materials and methods

Study design, setting, population, and outcome

This was a comparative study carried out by a secondary
analysis of three pooled datasets. We studied adult trauma patients
with haemorrhagic injuries during initial care (either during pre-
hospital transport or upon arrival in the emergency department).
Dataset 1 was originally collected aboard air ambulances between
February 2010 and December 2012 [5], Dataset 2 from an
emergency department between June 2012 and December 2014
[6], and Dataset 3 during air transport between August 2001 and
April 2004 [7,8]. All datasets were collected with the approval of
local institutional review boards.

For our outcome, haemorrhagic injury, we used the following
criteria: documented haemorrhagic injuries, and transfusion of
three or more units of red blood cells within 24 h (24-h RBCs).
Explicitly documented haemorrhagic injuries were identified by
chart review, and defined as solid organ injuries, thoracic or
abdominal haematomas noted in imaging or operative reports,
vascular injuries that required a procedure for haemostasis, or limb
amputations.

For Dataset 1, eligible patients were identified by querying the
air ambulance administrative database for adult trauma trans-
ports. Next, we queried the receiving hospital’s electronic medical
records to identify the subset who received at least three units of
24-h RBCs. This review was conducted by either a physician or
nurse practitioner with clinical experience in trauma care, and
who was blinded to subjects’ physiological data. These data were
collected and managed using REDCap electronic data capture
tools [9]. Abstractors were first trained using training cases from
Dataset 3. Next, the abstractors’ adjudications about whether or
not the subject had a haemorrhagic injury were confirmed by
running an automated text-search through the trauma registry
database, to independently corroborate that the subject had at
least one of a list of haemorrhagic injuries. Cohen’s K between the
data abstractor adjudication and automated text search results
was 0.67. All discrepancies were subsequently resolved by two-
investigator adjudication.

For Dataset 2, eligible patients were first identified by
electronically querying the source hospital’s trauma registry for
adult trauma patients. The remainder of the subject selection
methodology, in terms of 24-h RBC volume and presence of
haemorrhagic injury, was the same as that used for Dataset 1.

Data collection for Dataset 3 was conducted under a protocol
that yielded an inventory of injuries and 24-h RBCs in a
convenience sample of high-acuity trauma patients [7]. The
methodology for determining presence of haemorrhagic injury
was the same as that used for Dataset 1.

Study measurements

To collect HR and blood pressure (BP) data during real-time
care, data streaming from patients’ vital-sign monitors were
Downloaded for Anonymous User (n/a) at Massachusetts General Hos
For personal use only. No other uses without permission. C
electronically recorded via software solutions [8,10,11]. The
electronic recording system used for Dataset 1 was an ad hoc
software system described by Reisner et al. [10]. The recording
system used for Dataset 2 was the BedMasterEx system (Excel
Medical, Jupiter FL). The recording system used for Dataset 3 was
another ad hoc system described by Cooke et al. [7].

From these recordings, we analysed vital-sign data of up to
60 min in duration, beginning with the first recorded non-zero
vital sign. We studied HR from intervals with high-quality
electrocardiograms (ECGs), as determined by the consensus of
an automated algorithm (which has been shown to be more
conservative than human expert evaluation [12]) and a human
adjudicator. When there was disagreement, a second human
adjudicator evaluated the reliability of the data segment.

For Datasets 1 and 2, study staff performed retrospective chart
review to extract additional clinical data, including demographics,
injury descriptions, clinical interventions, and mortality, using the
methodology detailed above. All of these data were compared with
an electronic report from the hospital’s independent trauma
registry, and discrepancies were resolved by two-investigator
adjudication. Clinical data abstraction for Dataset 3 was conducted
in accord with a previous study [7].

Data analysis

By convention, tachycardia is defined as a HR of 100 bpm or
greater. We examined whether 100 bpm was a clinically valid cut-
off to discriminate between patients with and without haemor-
rhage, and calculated the diagnostic testing characteristics of
tachycardia and the associated receiver operating characteristic
(ROC) curve [13]. To investigate whether patients with haemor-
rhage demonstrated tachycardia at variable time intervals, we
calculated how often those with a normal HR developed transient/
temporary tachycardia (at least 5 min of tachycardia within any 10-
min time window), and how often those with tachycardia
developed a transient/temporary normal HR (at least 5 min of
normal HR within any 10-min time window). We also performed a
sensitivity analysis to investigate whether our findings were
sensitive to the definition of clinical haemorrhage, by computing
ROC curves for predicting a set of secondary outcomes: 24-h RBCs
�1, �3, �5, �7, and �10 units, regardless of documented injuries.
In addition to the aforementioned analyses using median HR, we
developed a logistic regression model using median HR for
estimating the probability of haemorrhage, and tested its
goodness-of-fit using the Hosmer-Lemeshow test.

We compared the haemodynamic and clinical characteristics of
haemorrhage patients with a normal HR to those of haemorrhage
patients with tachycardia. Variability in HR was quantified by the
root mean square (RMS) around the mean of each patient’s HR time
series, while slope of HR as a function of time was computed using
linear regression. We computed the BP characteristics of both
cohorts, including the incidence of measured hypotension and the
time elapsed until hypotension was first measured. Hypotension
was defined as an SBP of less than 90 mmHg or a mean arterial
pressure (MAP) of less than 70 mmHg. We also computed the pulse
pressure (SBP – diastolic BP) and the Shock Index (SI = HR/SBP) for
both cohorts. We compared clinical characteristics, including
demographics, injury descriptions, clinical interventions, and
mortality. We performed analyses in MATLAB version 9.0 (The
MathWorks, Inc., Natick, MA). Data distributions were compared
using the Wilcoxon rank-sum test for continuous variables and
categorical variables using Fisher’s exact test. We used a threshold
for statistical significance of P < 0.05.

Finally, we studied the change in HR in the subset of haemorrhage
patients who developed new onset hypotension. New onset
hypotension was defined as follows: i) at least one non-hypotensive
pital from ClinicalKey.com by Elsevier on October 29, 2018.
opyright ©2018. Elsevier Inc. All rights reserved.



Fig. 1. Receiver operating characteristic (ROC) curves of the median heart rate (HR)
for discriminating between different 24-h red blood cell (RBC) transfusion volumes
(regardless of the patients’ documented injuries), i.e. 24-h RBCs �1, �3, �5, �7, and
�10 units. Legend: area under the ROC curve (AUC) with the 95% confidence interval
in parentheses. Circles indicate a HR of 100 bpm, which is the conventional cut-off
for tachycardia.
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BP measured within the 10 min prior to the first recording of
hypotension; and ii) at least one subsequent hypotensive BP. We
compared the HR and BP characteristics of tachycardic and non-
tachycardic haemorrhage patients before and upon the onset of
hypotension, and we also compared clinical characteristics. For this
subgroup analysis, we only included HR data measured contempo-
raneously with each BP measurement, i.e. within a 2-min window,
to preserve the relationship between HR and BP.

Results

The overall characteristics of the study population are shown in
Table 1. From the three combined datasets we identified 142
patients who met our criteria for haemorrhagic injury (6.5%), nine
of which were subsequently excluded for insufficient ECG
reliability (high acuity patients with very short ECG recordings).
There were 1640 control patients who survived and received no
RBC transfusions, 53 of which were excluded for insufficient ECG
reliability.

We computed each patient’s median (“patient-median”) HR.
For patients with haemorrhagic injury, the population median of
patient-median HR (and interquartile range [IQR]) was 102 (87–
126) bpm. For the control patients, the population median of
patient-median HR was 87 (74–99) bpm. The area under the
receiver operating characteristic curve (ROC AUC) of HR for
distinguishing between patients with haemorrhagic injury and
control patients was 0.71 (95% CI: 0.65–0.76), which is consistent
with a diagnostic test of low-to-moderate accuracy [13]. In our
sensitivity analysis, which investigated whether the diagnostic
performance of HR varied depending on alternative definitions of
haemorrhage, we found similar ROC AUCs for predicting alterna-
tive haemorrhage-related outcomes, i.e. 24-h RBCs of �1, �3, �5,
�7, and �10 units (see Fig. 1). Regarding the suitability of a logistic
regression model for estimating the probability of haemorrhage
based on median HR, we found no evidence of poor calibration
(p > 0.05, Hosmer-Lemeshow test). Using the conventional cut-off
for tachycardia (HR � 100 bpm), HR was 59% sensitive for
haemorrhagic injury and 75% specific for the control patients.

Of the patients with haemorrhagic injury, 78 had tachycardia
(59% of all trauma patients with haemorrhage) based on median
HR. Overall, this cohort had a median vital-sign recording duration
of 22 min (IQR: 12–31). Most subjects in this cohort were
tachycardic throughout their recording: only eleven transiently/
temporarily developed a normal HR (normal HR for at least 5 min
within any 10-min interval). Ten who transiently/temporarily
Table 1
Characteristics of trauma population datasets.

Clinical characteristics Dataset 1 (n = 209) Dataset 

Setting Pre-hospital Emergen
Sex, male, n (%) 155 (74) 813 (70)
Age, mean (SD), years 45 (20) 50 (21) 

Blunt, n (%) 188 (90) 1008 (87
Penetrating, n (%) 21 (10) 144 (12)
ISS, median (IQR) 16 (9–26) 18 (10–2
Inter-hospital transfer, n (%) 103 (49) 392 (34)
Glasgow Coma Scale Score (IQR) 15 (8–15) 15 (14–1
24-h RBC volume �1 unit, n (%) 31 (15) 153 (13)
24-h RBC volume �3 unit, n (%) 18 (9) 75 (6) 

24-h RBC volume �10 unit, n (%) 8 (4) 24 (2) 

Haemorrhage patient* 18 (9) 60 (15) 

Survival to discharge, n (%) 191 (91) 1103 (95

Abbreviations: IQR, interquartile range; ISS, Injury Severity Score; SD, standard deviati
* Haemorrhage patient: Primary outcome was patients with at least one documen

haematomas, and/or vascular injuries requiring operative repair) and 24-h RBC volum
sensitivity analysis; see text for details.
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developed a normal HR had a median HR between 100 and 110
bpm, i.e. minimal degree of tachycardia.

Based on median HR, 55 had a normal HR (41% of all trauma
patients with haemorrhage). Overall, this cohort had a median
vital-sign recording duration of 25 min (IQR: 15–36). Most
subjects in this cohort had a normal HR throughout their
recording: only ten subjects transiently/temporarily developed
tachycardia (tachycardia for at least 5 min within any 10-min
interval). Eight who transiently/temporarily developed tachycar-
dia had a median HR between 90 and 100 bpm, i.e. at the upper
extent of normal HR.

Overall, 25% of the patients without haemorrhage were
tachycardic, based on their median HR. Patients without haemor-
rhage tended to be either persistently tachycardic or persistently
non-tachycardic—only 17% ever changed from one state to the
other even transiently/temporarily (i.e. for at least 5 cumulative
minutes within any 10-min interval).
2 (n = 1161) Dataset 3 (n = 646) Pooled dataset (n = 2016)

cy Dept Pre-hospital
 479 (74) 1447 (72)

38 (15) 46 (19)
) 577 (89) 1773 (88)

 61 (9) 226 (11)
6) 16 (9–34) 17 (9–29)

 0 (0) 495 (25)
5) 15 (13–15) 15 (13–15)

 75 (12) 259 (13)
57 (9) 150 (7)
22 (3) 54 (3)
55 (9) 133 (7)

) 608 (94) 1902 (94)

on.
ted explicitly haemorrhagic injury (solid organ injuries, thoracic or abdominal
e �3 unit. Alternative definitions of haemorrhage were investigated in ancillary

ospital from ClinicalKey.com by Elsevier on October 29, 2018.
. Copyright ©2018. Elsevier Inc. All rights reserved.



Table 2
Comparison of clinical characteristics of tachycardic and non-tachycardic haemorrhage patients.

Tachycardic haemorrhage patients Non-tachycardic haemorrhage patients

All patients (n = 78) Subset with hypotension
onset (n = 12)

All patients (n = 55) Subset with hypotension
onset (n = 14)

Clinical characteristics
24-h RBCs, median (IQR) 10 (5–16) 15 (7–30)* 6 (4–13) 7 (4–11)*

Age in years, median (IQR) 32 (27–49)* 34 (31–49) 50 (36–62)* 53 (36–71)
Intubation, n (%) 42 (54%) 8 (67%) 22 (40%) 8 (57%)
Pre-hospital patients, n (%) 40 (51%) 7 (58%) 33 (60%) 8 (57%)
Mortality, n (%) 25 (32%) 6 (50%) 15 (27%) 2 (14%)
Head AIS, median (IQR) 0 (0–2) 0 (0–4) 0 (0–0) 0 (0–0)
Abdomen AIS, median (IQR) 3 (1–4) 0 (0–4) 2 (0–3) 2 (0–3)
Extremity AIS, median (IQR) 1 (0–3) 3 (0–3) 0 (0–3) 0 (0–2)
Thorax AIS, median (IQR) 3 (0–4) 4 (2–4) 3 (0–4) 3 (0–4)
ISS, median (IQR) 27 (18–43) 26 (17–45) 27 (18–41) 22 (16–45)

Vital-sign characteristics
Duration of recording in min, median (IQR) 22 (12–31) 28 (22–42) 25 (15–36) 30 (26–38)
HRa in bpm, median (IQR) 121 (109–136)b 127 (115–137)b 83 (73–91)b 86 (79–89)b

Slope of HR in bpm/10 min, median (IQR) +0.7 [(�2.9)–(+3.9)]* +3.6 [(+0.7)–(+7.1)]* �0.8 [(�4.4)–(+0.5)]* �2.4 [(�3.7)–(�0.5)]*
RMS about mean HR in bpm, median (IQR) 6 (3–9) 8 (3–13) 7 (5–11) 6 (5–7)
SBPa in mmHg, median (IQR) 110 (89–135) 95 (82–108) 104 (85–123) 98 (93–115)
PPa in mmHg, median (IQR) 44 (34–51) 36 (31–44) 44 (32–55) 45 (34–57)
Time to hypotension in min, median (IQR) 5 (1–16) 13 (7–18) 8 (2–14) 11 (8–14)
Shock index in bpm/mmHg, median (IQR) 1.08 (0.90–1.36)* 1.34 (1.22–1.57)* 0.83 (0.66–1.06)* 0.88 (0.70–0.96)*

Incidence of hypotension, n (%) 52 (67%) 12 (100%) 39 (71%) 14 (100%)

Tachycardic group: median HR � 100 bpm; non-tachycardic group: median HR < 100 bpm.
Subset with hypotension onset: subjects with a systolic blood pressure of less than 90 mmHg or a mean arterial pressure of less than 70 mmHg.
Abbreviations: 24-h RBCs, red blood cell units transfused in 24 h; AIS, abbreviated injury scale; IQR, interquartile range; ISS, injury severity score; bpm, beats per minute; HR,
heart rate; RMS, root mean square; MAP, mean arterial pressure; PP, pulse pressure = systolic blood pressure (SBP) � diastolic blood pressure.

a For vital signs HR, SBP, and PP, we computed the median value from each patient’s record (“patient-median”); above, we report the population median of the patient-
median values.

b Not tested for significant differences (because cohorts were defined by median HR).
* P < 0.05 via Wilcoxon rank-sum test comparing tachycardic group and non-tachycardic group.
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Comparing the vital signs of the two haemorrhage cohorts
(tachycardic and non-tachycardic patients with haemorrhage),
both had similar BP characteristics (see Table 2) without significant
differences in their average SBP, average PP, time of first recorded
hypotension, and incidence of hypotension. The overall variability
in the recorded HR (i.e. RMS around the mean) was not
significantly different between the two cohorts. The differences
in HR slope achieved statistical, but not clinical, significance; the
median changes over 10 min were +0.7 and �0.8 bpm for the
tachycardic and non-tachycardic cohorts, respectively. The SI was
significantly higher in the tachycardic cohort. Fig. 2 illustrates the
vital-sign patterns of several tachycardic and non-tachycardic
patients who developed hypotension.

Fig. 3 shows the fraction of patients with haemorrhage who
developed hypotension as a function of time. In both groups, after
30 min, the majority of patients had developed hypotension.

The clinical characteristics of the tachycardic and non-
tachycardic cohorts were similar (Table 2). In terms of resuscita-
tion, the volumes of 24-h RBCs for both cohorts were substantial
but not significantly different; the corresponding median volumes
were 10 units (IQR: 5–16) and 6 units (IQR: 4–13), respectively.
Rates of mortality, endotracheal intubation, and injury severity
coded by the abbreviated injury scale (AIS) were not significantly
different. Only age was significantly different, although there was
substantial overlap; the median ages were 32 (IQR: 27–49) and 50
(IQR: 36–62) years for the tachycardic and non-tachycardic
cohorts, respectively.

We also studied the subset of patients who had documented
onset of hypotension (i.e. hypotension but only after a non-
hypotensive BP). We identified 26 subjects who met the inclusion
criteria, 12 in the tachycardia cohort and 14 in the non-tachycardia
cohort. HR did not change substantially upon the onset of
hypotension (Table 3). Subjects in the tachycardic cohort had a
Downloaded for Anonymous User (n/a) at Massachusetts General Hosp
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median HR of 123 bpm (IQR: 107–132) in the 10 min prior to
hypotension and a median HR of 127 bpm (IQR: 116–141) in the
10 min following the onset of hypotension. Subjects in the non-
tachycardic cohort had a median HR of 87 bpm (IQR: 75–103) prior
to hypotension and a median HR of 86 bpm (IQR: 78–89) in the
10 min upon the onset of hypotension. There was a statistically
significant difference in the 24-h RBCs; tachycardic patients who
developed hypotension received significantly more blood than did
non-tachycardic patients who developed hypotension (Table 2).

Discussion

Similar to prior analyses of large databases, we found that
tachycardia was neither sensitive nor specific to haemorrhagic
injury. The current analysis is novel in that we analysed HR
measured continuously in the early evaluation of trauma patients
(median durations of vital-sign recordings were 22 min and 25 min
for tachycardic and non-tachycardic haemorrhage patients,
respectively). We found that approximately half of trauma patients
with haemorrhagic injury evidenced tachycardia and half did not.
The former cohort demonstrated consistent tachycardia through-
out their recording, with some fluctuation, but the tachycardia did
not consistently increase over time, and there was no consistent
change in HR upon the onset of hypotension. The latter cohort
demonstrated normal HR throughout their recording, with some
fluctuation, but the HR neither consistently increased over time
nor showed any consistent change upon the onset of hypotension.

These findings add to our understanding about why prior
analyses have found that the association between tachycardia and
blood loss is “not to the degree suggested by the ATLS classification of
shock” [1]. In general terms, there is a cohort of patients with
haemorrhage who demonstrate tachycardia, but do not show any
additional increase in HR, even through time, and even upon the
ital from ClinicalKey.com by Elsevier on October 29, 2018.
pyright ©2018. Elsevier Inc. All rights reserved.



Fig. 2. Case examples of tachycardic and non-tachycardic subjects who developed hypotension. The panels above show vital signs of subjects in an analysis window that ranges
from 10 min prior to 10 min after the onset of hypotension. Time t = 0 indicates the time of hypotension onset. Subjects in the tachycardic group had a pre-hypotension HR of at
least 100 bpm, whereas those in the non-tachycardic group had a pre-hypotension HR of less than 100 bpm. Top left: 36-y old female, injuries included femoral fracture and
arterial injury requiring angio-embolization, 24-h RBC volume = 6 units (hypotension onset after 6 min of vital-sign monitoring). Top right: 31-y old male, injuries included
splenic laceration, 24-h RBC volume = 38 units (hypotension onset after 18 min of vital-sign monitoring). Bottom left: 42-y old male, injuries included liver laceration, 24-h RBC
volume = 9 units (hypotension onset after 10 min of vital-sign monitoring). Bottom right: 76-y old female, injuries included splenic laceration, 24-h RBC volume = 13 units
(hypotension onset after 5 min of vital-sign monitoring). Abbreviations: bpm, beats per minute; DBP, diastolic blood pressure; HR, heart rate; MAP, mean arterial pressure; RBC,
red blood cell; SBP, systolic blood pressure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Percentage of haemorrhage subjects (24-h red blood cell transfusion
volume � 3 units with documented haemorrhagic injury) with hypotension. The
solid black line represents the percentage of haemorrhage subjects with at least t
min of recorded data and who developed hypotension in the first t min. The total
number of patients decreased as a function of time, because the durations of pre-
hospital and emergency department care were heterogeneous (of the 133 total
haemorrhage subjects, 45 had at least 30 min of recorded data). For comparison,
subjects were split into two groups: i) the tachycardic group, indicated by the dark
gray dashed line, and ii) the non-tachycardic group, indicated by the light gray
dashed line. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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onset of hypotension. Moreover, there is a separate cohort altogether
that does not manifest tachycardia at all, even after the onset of
hypotension. When we examined whether there were salient
differences between these cohorts, we found few aside from age
Downloaded for Anonymous User (n/a) at Massachusetts General H
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(tachycardicpatientsweresignificantly younger). Tachycardicornot,
both generally developed hypotension within 30 min of vital-sign
monitoring (Fig. 3). The two cohorts were similar in terms of other
metrics of haemorrhage severity. There were no differences in the
median time of the first recorded hypotension, overall rate of
hypotension, 24-h RBCs, or mortality. AIS scores across all anatomic
regions were also similar between the cohorts.

Regarding why non-tachycardic patients were significantly older,
it is possible that this subpopulation has an attenuated cardiovascu-
lar control system that is less likely to mount a tachycardic response,
because of either aging or medication, e.g. beta blockers. Yet, the age
ranges for patients with and without tachycardia showed substantial
overlap (IQRs of 27–49 years and 36–62 years, respectively; see
Table 2). This indicates that age alone is not the sole determinant of a
patient’s haemorrhage response.

The determinants of HR during progressive haemorrhage have
been investigated over decades of in vivo laboratory experimenta-
tion. Animal models demonstrate a basic paradigm in which
progressive blood loss triggers tachycardia and vasoconstriction via
activation of carotid and aortic baroreceptors [14] and also arterial
chemoreceptors that are sensitive to local metabolic changes
associated with hypovolaemia [15]. Afferent signals from these
peripheral receptors are received by the cardiovascular center
within the medulla oblongata, resulting in both sympathetic
nervous signal activation and parasympathetic system inhibition,
and, ultimately, increased pace of the heart’s native pacemaker, the
sino-atrial node. Moreover, a wide range of investigations has
further demonstrated how these basic haemodynamic responses
can be modified by a multitude of factors, including nociception
[16], anaesthetics and analgesics [17,18], anxiety [19], gender [20],
brain injury [21], cardiopulmonary baroreceptors [22], athletic
ospital from ClinicalKey.com by Elsevier on October 29, 2018.
. Copyright ©2018. Elsevier Inc. All rights reserved.



Table 3
Vital signs before and after the onset of hypotension (subset with hypotension
onset).

Vital sign Median (IQR) of subjects

Tachycardic group
(n = 12)

Non-tachycardic group
(n = 14)

Pre-hypotension
HR (bpm) 123 (107–132)a 87 (75–103)a

SBP (mmHg) 115 (101–148) 126 (106–132)
PP (mmHg) 46 (41–58) 44 (35–72)
MAP (mmHg) 88 (79–110) 88 (78–102)

Onset of hypotension
HR (bpm) 127 (116–141)a 86 (78–89)a

SBP (mmHg) 73 (67–81) 86 (78–102)
PP (mmHg) 23 (20–34)* 41 (32–47)*

MAP (mmHg) 57 (52–65) 64 (56–68)

Each patient’s median HR, SBP, PP and MAP (patient-median) were computed for
the 10-min interval before the onset of hypotension (“pre-hypotension”) and the
10-min interval starting upon the onset of hypotension (“onset of hypotension”);
above, we report the population median of the patient-median values. See text for
additional details.
Abbreviations: bpm, beats per minute; HR, heart rate; IQR, interquartile range; MAP,
mean arterial pressure; PP, pulse pressure = systolic blood pressure (SBP) � diastolic
blood pressure.

a Not tested for significant differences (because cohorts were defined by median HR).
* P < 0.05 via Wilcoxon rank-sum test comparing tachycardic group and non-

tachycardic group.
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pre-conditioning [23], as well as chronic diabetes mellitus [24]. In
many cases, there can be excitatory and inhibitory pathways
activated at the same time, and the central nervous system
integrates concordant and discordant afferent signals and generates
the ultimate efferent output that drives HR [25]. We speculate that,
during typical trauma patient management, there is heterogeneity
in the determinants of HR, e.g. differing levels of pain, analgesia,
haemorrhage, etc. This could explain why we observed heteroge-
neous HR responses in trauma patients.

The concept of categorizing patients based on above-average
versus below-average sympathetic responses is consistent with a
series of physiology reports conducted in a laboratory with healthy
subjects, using lower body negative pressure (LBNP) to simulate
progressive blood loss. These studies determined that the group of
subjects with delayed onset of hypotension had relatively elevated
HR and vasoconstriction, and denoted that cohort as “high
tolerant” [26–29]. Our dataset corroborates the notion that both
tachycardic and normal HR responses are common with progres-
sive blood loss. Are patients with above-average sympathetic
responses more tolerant of blood loss? Overall, there were no
significant differences between tachycardic and non-tachycardic
patients in terms of incidence of hypotension, 24-h RBCs, or
mortality (Table 2)]. In contrast, in the smaller subset of
haemorrhage patients whose onset of hypotension was recorded,
tachycardic patients ended up with significantly larger volumes of
24-h RBCs (median, 15 units), suggesting that this subset may have
been compensating for large blood volume losses prior to
hypotension onset. Tachycardic or not, most patients with
haemorrhage developed hypotension within 30 min of vital-sign
monitoring (Fig. 3), with no statistically significant differences
between the cohorts in terms of time of first recorded hypotension.

In terms of limitations of the current report, the vital-sign data
used in this analysis were obtained during routine clinical care, and
not during a carefully controlled laboratory investigation. Conse-
quently, the measurement intervals were heterogeneous and
recording durations were uneven, and the reliability of measure-
ments may have been suboptimal. For HR, we were able to rely on
ECGs to retrospectively identify unreliable measurements. For BP, we
had no practical method of identifying unreliable non-invasive
measurements. Excessive variability due to measurement errors, and
Downloaded for Anonymous User (n/a) at Massachusetts General Hos
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the confounding effect of therapeutic interventions, such as volume
administration or pain medication, might have masked differences
between thecohorts (i.e.Type II statisticalerrors).Therefore, basedon
the current analysis, we cannot rule out subtle differences between
tachycardic and non-tachycardic patients with haemorrhage. How-
ever, we note that the vital-sign data we analysed here are precisely
thosethat a clinician mustevaluate inprovidingtreatment. Therefore,
ourcomparative analysiswouldappeartobevalidinterms ofruling in
and ruling out significant cohort differences based on the actual vital-
sign measurements that are evaluated by and acted upon by bedside
clinicians.

As a second limitation, we did not have a feasible gold standard
measurement of blood loss as a function of time. Therefore, the
onset of hypotension may not always have indicated the
progression of blood loss in some patients. However, we consider
it likely that the development of frank hypotension was usually due
to true hypovolaemia in this subject population with documented
major haemorrhagic injuries, and who subsequently received three
or more units of RBCs.

Conclusions

In conclusion, trauma patients—both haemorrhagic and non-
haemorrhagic—tend to fall into persistently tachycardic or
persistently non-tachycardic groups during the first 30 min of
monitoring. During initial assessment, it is reasonable to have an
elevated concern for haemorrhage when tachycardia is present,
keeping in mind the substantial limitation that tachycardia was
only modestly specific (75%) and poorly sensitive (59%) for
haemorrhage. Through time, there will be HR fluctuations, but
diagnostically meaningful trends were not evident in the typical
haemorrhage patient. Blood pressure should be carefully moni-
tored, since hypotension was likely to manifest within 30 min in
haemorrhage patients, and without any associated change in HR.
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