AWARD NUMBER: W81XWH-16-1-0190

TITLE: Untapped Therapeutic Targets in the Tumor Microenvironment

PRINCIPAL INVESTIGATOR:		Sandra Orsulic, PhD
CONTRACTING ORGANI	ZATION:	Cedars-Sinai Medical Center Los Angeles, CA 90048
REPORT DATE:	Nov 2019	
TYPE OF REPORT:	Final	
PREPARED FOR:	U.S. Army M Fort D	ledical Research and Materiel Command Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPOR	T DOCUMENTATION PAGE	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of in	formation is estimated to average 1 hour per response, including the time for review	ing instructions, searching existing data sources, gathering and maintaining the
this burden to Department of Defense, Washi 4302. Respondents should be aware that not valid OMB control number. PLEASE DO NOT	Inscriber of the other services, Directorate for Information Operations and Reports (0) with standing any other provision of law, no person shall be subject to any penalty for TRETURN YOUR FORM TO THE ABOVE ADDRESS .	704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- r failing to comply with a collection of information if it does not display a currently
1. REPORT DATE	Final	3. DATES COVERED
Nov 2019	Filia	08/01/2016 - 07/31/2019
4. IIILE AND SUBTILE	argets in the Tumor Microenvironment	3a. CONTRACT NUMBER
	argets in the runtor microenvironment	5b. GRANT NUMBER
		JC. PROGRAW ELEWENT NOMBER
6. AUTHOR(S) Sandra Orsulic		5d. PROJECT NUMBER
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
E-Mail: orsulics@csns.ord 7. PERFORMING ORGANIZATIO Cedars-Sinai Medical Ce	D N NAME(S) AND ADDRESS(ES) Inter	8. PERFORMING ORGANIZATION REPORT NUMBER
8700 Beverly Boulevard Los Angeles, CA 90048		
9. SPONSORING / MONITORING	AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
LLC Army Madical Daga	areh and Material Command	
Fort Detrick, Maryland 2	1702-5012	11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION / AVAILABIL	TY STATEMENT	
Approved for Public Rele	ase; Distribution Unlimited	
13. SUPPLEMENTARY NOTES		
14. ABSTRACT Most therapeutic approa clear that the microenvir chemotherapy for ovaria cells is simultaneously t most aspects of tumor p prevents chemotherapy progression and/or incre negative results. One co existing ovarian cancer n rapid onset of ovarian ca in ovarian cancer initiation properties of COL11A1, fibroblasts. 3. We largely cancer growth.	ches have focused on the tumor cell and its ronment plays an important role in tumor ev n cancer will be more effective if the microer argeted. Since activated cancer-associated for orogression, including responses to anticance access and promotes resistance, we predic ase chemotherapeutic efficacy. 1. Our attemp onfounding factor in these pre-clinical tests models. Therefore, we generated two new mou pricinomatosis. These models will be a valuable on and progression. 2. We made advances i which we previously identified as a molecular of disproved our hypothesis that induction of te	genetic alterations. However, it is becomin rolution. We hypothesized that conventional invironment that harbors the resistant cance fibroblasts (CAFs) have a prominent role in er agents by forming a physical barrier that ted that targeting CAFs would inhibit tumo ots to test anti-fibrotic agents showed largel was the modest presence of fibrosis in the use models that exhibit extensive fibrosis and e resource for studying the role of fibroblast n targeting and characterizing the functional ar target that distinguishes CAFs from othe erminal differentiation in CAFs may minimiz
15. SUBJECT TERMS		

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON USAMRMC	
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include area
Unclassified	Unclassified	Unclassified	Unclassified	19	code)

Table of Contents

<u>Page</u>

1.	Introduction	1
2.	Keywords	1
3.	Accomplishments	1
	Major goals of the project	1
	Major accomplishments	4
	Major activities	4
	Specific objectives	4
	Significant findings or key outcomes	4
	Other achievements	14
4.	Impact	15
5.	Changes/problems	15
6.	Products	16
7.	Participants	17
8.	Special reporting requirements	18
9.	Appendix	19

1. **INTRODUCTION:**

High grade serous ovarian carcinoma is among the most lethal cancers affecting women in the U.S. While most therapeutic approaches have focused on malignant epithelial tumor cells and their genetic alterations, it is becoming increasingly clear that the tumor microenvironment plays an equally important role in tumor evolution. The presence of cancer cells induces a reaction in the surrounding stromal cells similar to fibrosis after an injury. These reactions can also reduce therapeutic efficacy of chemotherapy by creating a physical barrier for drug transport while providing a protective environment for cancer cells to repopulate after completion of treatment. Thus, it is thought that anti-cancer therapies should target not only malignant cancer cells but also the microenvironment that fosters tumor growth and survival. Our goal is to demonstrate that targeting processes responsible for the formation of cancer-associated fibroblasts (also known as CAFs) in the tumor microenvironment will effectively attenuate tumor growth, improve intratumoral drug delivery and restore anti-tumor immune responses. We are using three different approaches to targeting CAFs. The first approach is to test anti-fibrotic agents for their efficacy in preventing CAF activation and increasing sensitivity to chemotherapy in a mouse model of ovarian cancer that was developed in our laboratory. The second approach is to increase the precision of targeting activated CAFs, by targeting a protein that we previously identified to be present in activated CAFs but absent from fibroblasts associated with noncancerous conditions such as fibrosis, inflammation, and wound healing. The third approach is to test several agents for their efficacy in inducing CAF-to-cartilage differentiation with the idea that a terminally-differentiated microenvironment cannot protect malignant cells from chemotherapy or foster their dormancy for future recurrence.

2. **KEYWORDS:**

Ovarian cancer, tumor microenvironment, cancer-associated fibroblasts, fibrosis, targeted therapy, clinical outcome

3. ACCOMPLISHMENTS:

• What were the major goals of the project?

Specific Aim 1 (specified in proposal)	Timeline	Percent Completed
Major Task 1 Test the therapeutic efficacy of CTGF, CTSK, FN1, and LOXL2 inhibitors	Months	Cedars-Sinai Medical Center
Subtask 1 Amend approved IACUC protocol 5318 (Mouse Models of Tumor Microenvironment, PI: Orsulic) for local approval and send related material for DoD's approval.	Upon award notice	100%
Subtask 2 Purchase FVB mice, drugs, and reagents; plan experiments.	1-2	100%
Subtask 3 Implant FVB mice with mouse ovarian cancer cells.	2-25	100%

Subtask 4				
Treat mice with CTGF, CTSK, FN1, and LOXL2 inhibitors				
Assess therapeutic efficacy:				
1. Tumor growth: tumor weight/volume, luciferase whole-animal				
imaging.				
2. Tumor invasion and metastasis: dissection and immunohistochemistry.				
 Stromal differentiation: Masson's trichrome stain, qPCR and immunostaining for myofibroblast markers (α-SMA, fibronectin, COL11A1). 				
4. Chemotherapy diffusion: quantification of fluorescently-labeled dextran beads.	3-30	80%		
5. Tumor-infiltrating immune cells: flow cytometric analyses with antibody cocktail (CD3, CD4, CD8a, CD44, CD62L, CD25, Nkp46, F4/80, CD11b, Gr1, Ly6G, CD11c, and FoxP3).				
6. Cancer stem cell content: flow cytometric analyses with CD133, CD44, CD24, and CD117.				
7. Angiogenesis: CD31 and CD34.				
8. Apoptosis, DNA damage: ApopTag, CC3 positivity, PARP cleavage, or histone H2AX phosphorylation.				
9. Toxicity: histological analysis of liver, lung, and kidney injury				
10. TGF β signaling: immunodetection of phosphorylated Smad2/3.				
Subtask 5 Analyze data using statistical methods; replicate experiments if necessary, prepare and submit manuscripts.	3-36	80%		
Milestone Achieved				
Verified therapeutic efficacy of CTGF, CTSK, FN1, and LOXL2 inhibitors.	32	80%		
Specific Aim 2 (specified in proposal)	Timeline	Site 1		
Major Task 1				
Determine the effect of COL11A1 knockdown in human cancer- associated fibroblasts	Months	Cedars-Sinai Medical Center		
Determine the effect of COL11A1 knockdown in human cancer- associated fibroblasts Subtask 1	Months	Cedars-Sinai Medical Center		
Determine the effect of COL11A1 knockdown in human cancer- associated fibroblastsSubtask 1Amend approved IACUC protocol 5318 (Mouse Models of Tumor	Months Upon award	Cedars-Sinai Medical Center		
Determine the effect of COL11A1 knockdown in human cancer- associated fibroblastsSubtask 1Amend approved IACUC protocol 5318 (Mouse Models of Tumor Microenvironment, PI: Orsulic) for local approval and send related	Months Upon award notice	Cedars-Sinai Medical Center 100%		
Determine the effect of COL11A1 knockdown in human cancer- associated fibroblastsSubtask 1Amend approved IACUC protocol 5318 (Mouse Models of Tumor Microenvironment, PI: Orsulic) for local approval and send related material for DoD's approval.	Months Upon award notice	Cedars-Sinai Medical Center 100%		
Determine the effect of COL11A1 knockdown in human cancer- associated fibroblastsSubtask 1Amend approved IACUC protocol 5318 (Mouse Models of Tumor Microenvironment, PI: Orsulic) for local approval and send related material for DoD's approval.Subtask 2Knock out COL11A1 in human cancer-associated fibroblasts using CRISPR.	Months Upon award notice 1-3	Cedars-Sinai Medical Center 100%		

ovarian cancer cells under kidney capsule of nude mice; measure cell proliferation, cell death and other parameters.		
Subtask 4 Analyze data using statistical methods; replicate experiments if necessary.	12-18	80%
Milestone Achieved Verified whether COL11A1 in cancer-associated fibroblasts is essential for the tumor promoting effects in a paracrine manner.	18	80%
Major Task 2 Determine the potential of COL11A1 as a therapeutic target	Months	Cedars-Sinai Medical Center
Subtask 1 Amend approved IACUC protocol 5318 (Mouse Models of Tumor Microenvironment, PI: Orsulic) for local approval and send related material for DoD's approval.	Upon award notice	100%
Subtask 2 Purchase FVB mice, drugs and reagents; plan experiments.	1-2	50%
Subtask 3 Implant FVB mice with mouse ovarian cancer cells.	2-25	50%
Subtask 4 Treat mice with COL11A1 neutralizing antibody. Assess therapeutic efficacy as in Aim 1, Task 4.	3-30	50%
Subtask 5 Analyze data using statistical methods; replicate experiments if necessary; prepare and submit manuscripts.	3-36	50%
Milestone Achieved Verified whether COL11A1 is promising as a therapeutic target with high specificity for activated cancer-associated fibroblasts.	36	50%
Specific Aim 3 (specified in proposal)	Timeline	Site 1
Major Task 1 Assess the effect of differentiating cancer-associated fibroblasts into cartilage on tumor progression and chemosensitivity	Months	Cedars-Sinai Medical Center
Subtask 1 Amend approved IACUC protocol 5318 (Mouse Models of Tumor Microenvironment, PI: Orsulic) for local approval and send related material for DoD's approval.	Upon award notice	100%
Subtask 2 Purchase FVB mice, drugs and reagents; plan experiments.	1-2	100%
Subtask 3 Implant FVB mice with mouse ovarian cancer cells.	2-25	100%

Subtask 4 Treat mice with recombinant collagen II, rAAV-FLAG-Sox9, and dexamethasone. Assess therapeutic efficacy as in Aim 1, Task 4.	3-30	100%
Subtask 5 Analyze data using statistical methods; replicate experiments if necessary; prepare and submit manuscripts.	4-36	70%
Milestone Achieved Verified whether agents that induce terminal differentiation of activated cancer-associated fibroblasts are effective in attenuating tumor growth and increasing chemosensitivity.	36	70%

What was accomplished under these goals?

1) major activities

Aim 1. Using multiple approaches to targeting CAFs in an immunocompetent mouse model of ovarian cancer that was developed in our laboratory, we failed to show any significant benefits of targeting CAFs. Meanwhile, other groups showed the efficacy of some of the CAF-targeting agents in mouse models of induced fibrosis. We realized that we needed to develop a more fibrotic model of ovarian cancer to demonstrate the efficacy of anti-fibrotic agents. We generated two new mouse models, both of which exhibit extensive fibrosis and rapid onset of ovarian carcinomatosis. Aim 2. We made further advances in characterizing the functional properties of COL11A1, which we previously identified as a molecular target that distinguishes CAFs from other fibroblasts. Aim 3. Contrary to our hypothesis that induction of terminal differentiation in CAFs may minimize cancer growth, we observed increased subcutaneous and intraperitoneal cancer growth in the presence of factors that induce bone/fat differentiation in CAFs, possibly because the same factors serve as growth factors for cancer cells.

2) specific objectives

Our objectives were to: 1) generate suitable mouse ovarian cancer models for testing the efficacy of anti-fibrotic agents in improving ovarian cancer chemosensitivity to cisplatin; 2) increase the specificity of targeting activated CAFs by targeting the CAF-specific protein COL11A1; and 3) identify a method to induce bone/cartilage differentiation of CAFs.

3) significant results or key outcomes, including major findings, developments, or conclusions

AIM 1. Improve therapeutic efficacy by targeting processes involved in CAF activation

CAFs are the most prominent component of the tumor stroma in advanced ovarian cancer. However, it is still not completely understood how the presence of CAFs specifically contribute to tumor progression and therapeutic resistance in ovarian cancer (1). Studies in other solid tumors have shown that CAFs can promote tumor growth, angiogenesis, invasion, and metastasis while at the same time suppressing antitumor immunity and conferring drug resistance and/or limiting access of chemotherapeutics, anti-angiogenic therapies, and immunotherapies. Experimental mouse models that exhibit extensive cancer fibrosis, such as the K-ras^{G12D} mutation-driven autochthonous pancreatic cancer model and the xenograft 4T1 breast cancer model, have been crucial in proving that CAF-targeting therapeutic approaches can improve tumoral immune response, intratumoral drug delivery, and therapeutic efficacy (2-12). These studies confirmed the key role of CAFs in cancer progression and demonstrated their effectiveness as a therapeutic target. However, our attempts to diminish ovarian cancer growth with anti-fibrotic agents have not been successful (reported in annual progress reports), possibly due to the lack of extensive fibrosis and/or inflammatory reaction in our current ovarian cancer models. Thus, much of our effort during the past year focused on developing syngeneic mouse models of ovarian cancer that accurately model fibroblast activation observed in our previous analyses of human primary and metastatic ovarian cancers (Jia et al. *Scientific Reports* 2016; Jia et al., *Cancer Letters* 2016; Haro and Orsulic, *Frontiers in Cell and Developmental Biology* 2018).

In the first model, we used tight skin (TSK) mice in which fibroblasts are continuously activated due to the overexpression of fibrillin 1 (FBN1) (13, 14). The TSK mouse model has been used extensively to study fibrosis and ECM remodeling (15-18) but has not been used to study cancer progression. In our pilot experiment, compared to wild type (WT) littermates, TSK mice exhibited faster and more invasive ovarian cancer progression after subcutaneous (**Fig. 1A-B**) and intraperitoneal (**Fig. 1C**) injection of ovarian cancer cells, indicating that fibroblast activation may contribute to ovarian cancer progression in this model.

Fig. 1. A mouse model of ovarian cancer in the setting of endogenous CAF activation in the TSK mouse. A) Wild-type (WT) and TSK mice heterozygous for a gain-of-function FBN1 mutation (Fbn tsk het) were subcutaneously injected with syngeneic mouse ovarian cancer cells containing genetic alterations in p53, myc and H-ras ($2x10^6$ cells in each flank). The subcutaneous tumors were harvested after 18 days when tumors in the TSK mice started to ulcerate. B) Tumor weight and volume. C) Representative Masson's trichrome-stained sections of ovarian cancer nodules in the diaphragm of WT and TSK mice (n=5/group) 14 days after intraperitoneal injection of 10^6 p53, myc and H-ras cells.

In the second model, we induced an inflammatory reaction and peritoneal fibrosis by intraperitoneal injection of immunocompetent FVB mice with 1 ml PBS (PBS mice) or 1 ml 0.05% NaOCl diluted in PBS (NaOCl mice) (**Fig. 2**). Mice were intraperitoneally injected with 10⁶ syngeneic BR-luc mouse ovarian cancer cells 1 day, 3 days, and 5 days after treatment with PBS or NaOCl. Five PBS and 5 NaOCl mice were used for each timepoint. Longitudinal intravital luciferase imaging at 1, 2, 3, and 4 weeks after cancer cell injection showed a marked difference in luciferase signal intensity between PBS and NaOCl mice. In PBS mice, cancer cells were present at the injection site and the omentum, which is the preferred metastatic site for mouse and human ovarian cancer (**Fig. 2A** and data not shown). In contrast, NaOCl mice showed a widespread dissemination of cancer cells throughout the peritoneal cavity (**Fig. 2A** and data not shown), suggesting that the microenvironment in the NaOCl mice allows for better engraftment of cancer

cells than in the PBS mice. Four to six weeks after cancer cell injection, mice were euthanized for pathologic analysis. PBS mice usually exhibited tumor nodules confined to the omentum (asterisk in **Fig. 2B**) and diaphragm (arrows in Fig. 2C) while all peritoneal surfaces in NaOCl mice were studded with cancer growths (Fig. 2B and C). It appears that the NaOCl-induced mesothelial injury created favorable conditions for cancer cell attachment and growth on all surfaces, including peritoneal organs rarely colonized by human and mouse ovarian cancer cells, such as the liver and the spleen (Fig. 2B and C).

Fig. 2. A mouse model of enhanced ovarian cancer metastasis after induction of peritoneal inflammatory reaction and fibrosis with NaOCI. (A) Representative *in vivo* luciferase imaging of PBS mice and NaOCI mice 2 weeks after intraperitoneal injection of 10⁶ BR-luc cells one day after treatment with PBS or NaOCI. In PBS mice, surviving cancer cells are present at the injection site (mechanical injury) and the omentum (preferred metastatic site for mouse and human ovarian cancer). In contrast, NaOCI mice show widespread dissemination of cancer cells throughout the peritoneal cavity. (**B-C**) Representative images of intraperitoneal tumor spread 6 weeks (PBS mice) or 4 weeks (NaOCI mice) after injection of ovarian cancer cells. In PBS mice, most of the cancer is localized to the omentum (asterisk) and ocassional nodules on the diaphragm (arrows). In contrast, NaOCI mice exhibit tumor spread to the omentum, liver, spleen, intestines, peritoneal wall and diaphragm. n=5 mice/group in the pilot experiment and 10 mice/group in the repeated experiment.

To identify cell types involved in mesothelial wound repair on days 1 (expected influx of neutrophils), 3 (expected influx of macrophages) and 7 (expected recruitment of fibroblasts) after injury, we isolated the peritoneal walls from 5 PBS and 5 NaOCl mice for each of the 3 timepoints and conducted RNA sequencing. To date, we have thoroughly analyzed RNA sequencing results for day 3 after injury. Principle Component Analysis (PCA) demonstrated a clear separation of the PBS and NaOCl samples (Fig. 3A). Differential gene expression analysis identified 285 upregulated and 78 downregulated genes in the NaOCl mice (+/-1.5 log₂ fold change; p<0.001) (data not shown). The most downregulated genes in the peritoneal walls of NaOCl mice were uroplakin 3B (Upk3b) and leucine rich repeat neuronal 4 (Lrrn4) (data not shown), both markers of mesothelial cells (19), which is consistent with injury-induced ablation and/or mesothelial-myofibroblast transition. Gene Ontology analysis of differentially expressed genes showed Immune Responses as the top canonical pathways. Ingenuity Pathway Analysis showed Fcy Receptor-mediated Phagocytosis in Macrophages and Monocytes as the top canonical pathway. Overlay of the CIBERSORT leukocyte gene signature matrix LM22 (20, 21) identified 24 immune-related genes significantly upregulated in NaOCl mice (Fig. 3B). An overlay of these 24 immune-related genes with the ImmGen transcriptome (22, 23) revealed that the peritoneal wall cell infiltrates in NaOCl mice represent subsets of macrophages, monocytes, and neutrophils (Fig. 3C). Neutrophils are typically the first immune cells to be recruited to the

Fig. 3. Differential transcriptomes in peritoneal wall samples from PBS and NaOCI mice on day 3 after treatment. (A) Principle Component Analysis demonstrates a clear separation of the PBS and NaOCI samples. (B) Identification of 24 immune cell markers overrepresented in NaOCI mice that overlap with the CIBERSORT leukocyte gene signature matrix LM22. (C) Expression levels of the 24 genes in different immune and stromal cell subtypes in the ImmGen dataset reveal that these genes are primarily enriched in the transcriptomes of macrophages, monocytes, and neutrophils.

site of injury (24). Importantly, neutrophils were recently identified as the key facilitators of premetastatic niche formation in ovarian cancer (25). We confirmed the presence of neutrophils (and/or gMDSCs, which are phenotypically indistinguishable from neutrophils (26, 27)) by flow cytometry of peritoneal lavages and dissociated peritoneal walls at 4h and 24h after treatment with PBS or NaOCI. Increased frequencies of live neutrophils/gMDSCs in peritoneal lavages and walls were observed at both time points (**Fig. 4A-B**). Immunohistochemical staining of peritoneal wall sections with the neutrophil marker NGAL (neutrophil gelatinase-associated lipocalin) confirmed that neutrophils infiltrated blood vessels and submesothelial connective tissue as early as 4h after NaOCl treatment (**Fig. 4C**) and remained in these tissues 24h and 72h after treatment (data not shown).

Fig. 4. Early influx of neutrophils in the peritoneum of NaOCl mice. (A-B) Peritoneal lavage (A) and dissociated body wall (B) neutrophils or granulocytic MDSC (frequency of live cells) 4 hours and 24 hours after intraperitoneal injection of 1 ml PBS or 1 ml 0.05% NaOCl diluted in PBS (n=3 mice per group). *Immune cell marker panel: CD3, CD4, CD8, CD11b, CD11c, CD19, CD45, F4/80, Ly6G, live/dead cells.* *p<0.05. (C) Representative images of peritoneal walls (n=5 mice per group) fixed 4 hours after intraperitoneal injection of PBS or NaOCl. Neutrophil gelatinase-associated lipocalin (NGAL) staining shows the influx of neutrophils in the blood vessels (arrows) and submesothelial connective tissue (asterisks) in the peritoneal walls of NaOCl mice. Bar size: 50 µm.

Upregulation of general macrophage markers F4/80 and CD68 (**Fig. 3B**) suggested that the peritoneal walls of NaOCl mice were infiltrated with macrophages on day 3 after treatment with PBS or NaOCl. Since macrophages comprise multiple subtypes that can be pro- and antiinflammatory and pro- or anti-tumorigenic (28-31), we screened genes upregulated in NaOCl mice for markers that have been previously associated with specific subsets of macrophages. Among the top upregulated genes were CCL8 and SIGLEC1 (CD169) (**Fig. 3B**). SIGLEC1⁺ macrophages were recently identified in a mouse model of dextran sodium sulfate (DSS)-induced colitis as a specific subpopulation of resident colonic macrophages that secrete the CCL8 chemokine to recruit inflammatory monocytes to the DSS-induced wound (32). Importantly, SIGLEC1⁺ macrophages were the only subpopulation of macrophages capable of secreting CCL8 and specific depletion of SIGLEC1⁺ macrophages or neutralization of CCL8 ameliorated the DSS-induced colitis (32). Relevant to human cancer, SIGLEC1⁺ macrophages and CCL8 were recently associated with aggressive subtypes of breast cancers and CCL8 was shown to recruit monocytes and increase breast cancer cell motility (33). Thus, in our NaOCl model of peritoneal wound repair, we may have identified a specific subset of macrophages (SIGLEC1⁺ CCL8-secreting) that regulate mesothelial wound repair and the induction of carcinomatosis.

Among the top 20 genes upregulated in the NaOCl peritoneal walls on day 3 after treatment were 4 genes (CCL8, S100A8, SAA3, and LGALS3) that have been previously implicated in fibrosis and pre-metastatic niche formation. CCL8 was shown to trigger the recruitment of pro-inflammatory monocytes (32), fibroblasts (34), and cancer cells (35). S100A8 and SAA3 were identified as components of a lung pre-metastatic niche that potentiate inflammation-like state and facilitate migration of primary tumor cells to the lung (36). LGALS3 was shown to activate fibroblasts to a profibrotic phenotype in rodent models of ischemia-induced renal fibrosis (37), bleomycin-induced lung fibrosis (38), and carbon tetrachloride (CCL4)-induced liver fibrosis (39). Thus, our model of mesothelial injury is useful for the identification of known (and unknown) genes associated with pre-metastatic niche formation.

We used the 24 immune cell-related genes that were upregulated in the peritoneal walls of NaOCl mice on day 3 after treatment (**Fig. 3B**) to identify other normal or diseased conditions in which this gene set is upregulated (mouse and human SEEK platforms). We have shown that the 24 immune cell-related gene set is upregulated in various types of acute injuries (superficial cut, UV exposure, DSS treatment, bleomycin treatment) in various human and mouse tissues (skin, intestinal mucosa, lung) (**Fig. 5**), suggesting that our mouse model of NaOCl-induced mesothelial injury exhibits a prototypical early wound healing immune response. Because of the largely universal response of epithelial and mesothelial tissues to different types of injury (40), we conclude that our mouse model of chemical injury to the mesothelium is representative of mesothelial injury induced by surgery and cytotoxic chemotherapy in patients undergoing cytoreductive surgery and/or HIPEC.

Fig. 5. The set of 24 immune cell-related genes found to be upregulated in peritoneal walls on day 3 after NaOCl treatment is also upregulated in various types of acute injury in diverse human and mouse tissues (A) GSE28914: human skin superficial cut injury. (B) GSE41078: human skin narrowband UVB-induced injury. (C) GSE31906: mouse 5% DSS-induced intestinal mucosa injury. (D) GSE2640: mouse bleomycin-induced lung injury.

In summary, our attempts to test anti-fibrotic agents showed largely negative results (described in annual reports). One confounding factor in these pre-clinical tests was the modest presence of fibrosis in the existing ovarian cancer models. Therefore, we generated two models with endogenous or induced fibrosis. These models will be a valuable resource for studying the role of fibroblasts in ovarian cancer initiation and progression.

AIM 2. Increase specificity of targeting activated CAFs

Our analyses identified COL11A1 as the most specific target for activated CAFs. We hypothesized that targeting COL11A1 function will disable activated CAFs with a minimal effect on normal fibroblasts. The results of *in vitro* and *in vivo* experiments as well as correlative analyses of human samples to test our hypothesis have been provided in our publications (Jia et al., *Cancer Letters* 2016; Haro and Orsulic, *Frontiers in Cell and Developmental Biology* 2018; Ye at al., submitted). We will briefly summarize the main conclusions from the unpublished experiments described in the Annual Progress Reports and focus on experiments conducted in the last year.

Our *in vitro* experiments with cancer-associated fibroblasts (CAFs) and normal fibroblasts (NAFs) showed that only CAFs express COL11A1. However, expression of COL11A1 could be induced and maintained in both CAFS and NAFs by direct co-culture with various ovarian cancer cell lines. In vivo subcutaneous co-injection of ovarian cancer cells with either CAFs or NAFs showed that both CAFs and NAFs were able to support the growth of ovarian cancer cells to the same extent, possibly because both types of fibroblasts were activated by the co-injected cancer cells. The effects of neutralizing endogenous COL11A1 with a COL11A1-specific antibody were tested *in vitro* and *in vivo*. The ability of the COL11A1 antibody to suppress CAF function was tested in a collagen contraction assay, where we showed that CAFs contract collagen more effectively than NAFs and that this contraction ability is abrogated in the presence of the COL11A1 antibody (as well as siCOL11A1). However, treatment of tumor-bearing mice with the COL11A1 antibody did not have an effect on tumor growth.

The therapeutic use of antibodies is primarily restricted to extracellular or membrane-bound proteins due to inefficient intracellular delivery of antibodies by endocytosis. To overcome this obstacle, we used biocompatible hyaluronic acid (HA) or polysialic acid (PSA) nanocapsules (NC), capable of releasing small cytostatic drugs into cancer cells (3,4), as vehicles for intracellular delivery of COL11A1 antibodies into CAFs. To test the NCs potential therapeutic utility, we first evaluated their cytotoxicity and intracellular internalization in 781T CAFs. HA-NCs and PSA-NCs showed similar low cytotoxicity levels after 24 hours of treatment (**Fig. 6A**). Next, to assess the intracellular delivery of the COL11A1 antibody, 781T CAFs were treated at different time points with 1.0 mg/mL PSA- or HA-NCs loaded with FITC-labeled antibodies. With a single dose of 1mg/mL of FITC-COL11A1 antibody-NCs, HA-NCs were clearly internalized into the cytoplasm while PSA-NCs were mostly attached to the membrane (**Fig. 6B**). Thus, HA-NCs are effective in delivering COL11A1 antibody into CAFs and are good candidates for *in vivo* testing.

Fig 6. Treatment of CAFs with NC. A) 781T CAFs were cultured with α MEM+10% FCS for 96 hours followed by treatment with 0.12-1 mg/mL of HA-NCs/PSA-NCs for 24 hours. Cell viability was measured using the CCK-8 kit. Error bars represent standard deviation of biological repeats (2-4 replicate wells per repeat). HA, Hyaluronic acid. PSA, Polysialic acid. NC, Nanocapsules. B) Confocal microscopy images of 781T CAFs treated for 2 hours with 1 mg/mL of NC. Representative images show intracellular localization of labeled HA-NCs (left panel) and the largely extracellular location of labeled PSA-NCs (right panel). For each field, a cross-section is presented below. Red-NC, Blue-nuclei, Green-Actin.

AIM 3. Induce activated CAF-to-cartilage differentiation.

Since CAF activation is considered a key driver of cancer progression, we hypothesized that terminal differentiation of activated CAFs into cartilage would suppress cancer progression. We have analyzed our data from the mouse tissues that were injected with differentiation agents. Contrary to our hypothesis, Masson's trichrome staining analyses did not show any difference in cartilage/bone formation in the control or experimental groups. A major drawback of our experiments was the low level of fibroblast recruitment to the tumor site. It may be worth re-

visiting this hypothesis using our improved mouse models of cancer progression accompanied by fibrosis.

References:

- 1. Naora H. Heterotypic cellular interactions in the ovarian tumor microenvironment: biological significance and therapeutic implications. *Front Oncol.* 2014;4:18.
- 2. Loeffler M, Kruger JA, Niethammer AG, and Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. *J Clin Invest.* 2006;116(7):1955-62.
- 3. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, and Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. *Cancer cell*. 2012;21(3):418-29.
- 4. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, et al. TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. *Proc Natl Acad Sci U S A*. 2012;109(41):16618-23.
- 5. Liao D, Luo Y, Markowitz D, Xiang R, and Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. *PloS one.* 2009;4(11):e7965.
- 6. LeBeau AM, Brennen WN, Aggarwal S, and Denmeade SR. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. *Mol Cancer Ther*. 2009;8(5):1378-86.
- 7. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP-expressing cancer-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. *Proc Natl Acad Sci U S A*. 2013;110(50):20212-7.
- 8. Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N, Frese KK, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. *Gut*. 2013;62(1):112-20.
- 9. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. *Science*. 2010;330(6005):827-30.
- 10. Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. *Cancer Immunol Res.* 2014;2(2):154-66.
- Lo A, Wang LC, Scholler J, Monslow J, Avery D, Newick K, et al. Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells. *Cancer research*. 2015;75(14):2800-10.
- 12. Arnold JN, Magiera L, Kraman M, and Fearon DT. Tumoral immune suppression by macrophages expressing fibroblast activation protein-alpha and heme oxygenase-1. *Cancer Immunol Res.* 2014;2(2):121-6.
- 13. Kasturi KN, Shibata S, Muryoi T, and Bona CA. Tight-skin mouse an experimental model for scleroderma. *International reviews of immunology*. 1994;11(3):253-71.
- 14. Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA, et al. The Tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. *The Journal of cell biology*. 1998;140(5):1159-66.

- 15. Gayraud B, Keene DR, Sakai LY, and Ramirez F. New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. *The Journal of cell biology*. 2000;150(3):667-80.
- 16. Ito S, Bartolak-Suki E, Shipley JM, Parameswaran H, Majumdar A, and Suki B. Early emphysema in the tight skin and pallid mice: roles of microfibril-associated glycoproteins, collagen, and mechanical forces. *American journal of respiratory cell and molecular biology*. 2006;34(6):688-94.
- 17. Lemaire R, Farina G, Kissin E, Shipley JM, Bona C, Korn JH, et al. Mutant fibrillin 1 from tight skin mice increases extracellular matrix incorporation of microfibril-associated glycoprotein 2 and type I collagen. *Arthritis and rheumatism.* 2004;50(3):915-26.
- 18. Pablos JL, Everett ET, Harley R, LeRoy EC, and Norris JS. Transforming growth factorbeta 1 and collagen gene expression during postnatal skin development and fibrosis in the tight-skin mouse. *Laboratory investigation; a journal of technical methods and pathology*. 1995;72(6):670-8.
- Kanamori-Katayama M, Kaiho A, Ishizu Y, Okamura-Oho Y, Hino O, Abe M, et al. LRRN4 and UPK3B are markers of primary mesothelial cells. *PloS one*. 2011;6(10):e25391.
- 20. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. *Nature medicine*. 2015;21(8):938-45.
- 21. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. *Nature methods*. 2015;12(5):453-7.
- 22. Heng TS, and Painter MW. The Immunological Genome Project: networks of gene expression in immune cells. *Nature immunology*. 2008;9(10):1091-4.
- 23. Shay T, and Kang J. Immunological Genome Project and systems immunology. *Trends Immunol.* 2013;34(12):602-9.
- 24. Ng LG, Ostuni R, and Hidalgo A. Heterogeneity of neutrophils. *Nature reviews Immunology*. 2019;19(4):255-65.
- 25. Lee W, Ko SY, Mohamed MS, Kenny HA, Lengyel E, and Naora H. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. *The Journal of experimental medicine*. 2019;216(1):176-94.
- 26. Brandau S, Moses K, and Lang S. The kinship of neutrophils and granulocytic myeloidderived suppressor cells in cancer: cousins, siblings or twins? *Seminars in cancer biology*. 2013;23(3):171-82.
- 27. Moses K, and Brandau S. Human neutrophils: Their role in cancer and relation to myeloid-derived suppressor cells. *Seminars in immunology*. 2016;28(2):187-96.
- 28. Doak GR, Schwertfeger KL, and Wood DK. Distant Relations: Macrophage Functions in the Metastatic Niche. *Trends in cancer*. 2018;4(6):445-59.
- 29. Nielsen SR, and Schmid MC. Macrophages as Key Drivers of Cancer Progression and Metastasis. *Mediators of inflammation*. 2017;2017:9624760.
- 30. Kim J, and Bae JS. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. *Mediators of inflammation*. 2016;2016:6058147.
- 31. Fukuda K, Kobayashi A, and Watabe K. The role of tumor-associated macrophage in tumor progression. *Front Biosci (Schol Ed).* 2012;4:787-98.

- 32. Asano K, Takahashi N, Ushiki M, Monya M, Aihara F, Kuboki E, et al. Intestinal CD169(+) macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. *Nature communications*. 2015;6:7802.
- 33. Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. *Cancer cell*. 2019;35(4):588-602.e10.
- 34. Lee JU, Cheong HS, Shim EY, Bae DJ, Chang HS, Uh ST, et al. Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis. *Respiratory research.* 2017;18(1):3.
- 35. Farmaki E, Chatzistamou I, Kaza V, and Kiaris H. A CCL8 gradient drives breast cancer cell dissemination. *Oncogene*. 2016;35(49):6309-18.
- 36. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. *Nature cell biology*. 2008;10(11):1349-55.
- 37. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. *The American journal of pathology*. 2008;172(2):288-98.
- 38. Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, et al. Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. *American journal of respiratory and critical care medicine*. 2012;185(5):537-46.
- 39. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. *Proc Natl Acad Sci U S A*. 2006;103(13):5060-5.
- 40. Chen L, Arbieva ZH, Guo S, Marucha PT, Mustoe TA, and DiPietro LA. Positional differences in the wound transcriptome of skin and oral mucosa. *BMC genomics*. 2010;11:471.

4) other achievements

Nothing to report.

a. What opportunities for training and professional development has the project

provided?

Nothing to report.

b. How were the results disseminated to communities of interest?

We have published our results as open access articles in journals Cancer Letters, Scientific

Reports and Frontiers in Cell and Developmental Biology.

c. What do you plan to do during the next reporting period to accomplish the goals? Nothing to report.

3. IMPACT:

a. What was the impact on the development of the principal discipline(s) of the project?

Nothing to report.

b. What was the impact on other disciplines?

Nothing to report.

c. What was the impact on technology transfer?

Nothing to report.

d. What was the impact on society beyond science and technology?

Nothing to report.

4. CHANGES/PROBLEMS:

a. Changes in approach and reasons for change.

Using three different approaches to targeting CAFs in an immunocompetent mouse model of ovarian cancer that was developed in our laboratory, we failed to show any significant benefits of targeting CAFs. We realized that we needed to develop a more fibrotic model of ovarian cancer to demonstrate the efficacy of anti-fibrotic agents. Thus, we generated two new mouse models, both of which exhibit extensive fibrosis and rapid onset of ovarian carcinomatosis. We believe that these new mouse models will transform future studies of the roles of fibrosis in ovarian cancer initiation and progression.

b. Actual or anticipated problems or delays and actions or plans to resolve them.

Nothing to report.

c. Changes that had a significant impact on expenditures. No

d. Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents. No

- e. Significant changes in use or care of human subjects. No
- f. Significant changes in use or care of vertebrate animals. No
- g. Significant changes in use of biohazards and/or select agents. No

5. **PRODUCTS:**

Nothing to report.

a. Publications, conference papers, and presentations

i. Journal publications.

Jia D, Liu Z, Deng N, Tan TZ, Huang R Y-J, Taylor-Harding B, Cheon DJ, Lawrenson K, Wiedemeyer WR, Walts AE, Karlan BY, **Orsulic S**. A COL11A1-correlated pancancer gene signature of activated fibroblasts for the prioritization of therapeutic targets. *Cancer Letters* 2016; 382:203-214. (Published, acknowledged grant funding)

Jia D, Kamata Y, Katsumata M, **Orsulic S.** Inflammation is a key contributor to ovarian cancer cell seeding. *Scientific Reports*, 2018, 8:12394. (Published, acknowledged grant funding)

Haro M and **Orsulic S.** A Paradoxical Correlation of Cancer-Associated Fibroblasts with Survival Outcomes in B-Cell Lymphomas and Carcinomas. *Frontiers in Cell and Developmental Biology*, 2018. (Published, acknowledged grant funding)

Hu Y, Taylor-Harding B, Haro, M, Raz Y, Recouvreux M, Taylan E, Walts AE, Karlan BY, **Orsulic S.** Are epithelial ovarian cancers of the mesenchymal subtype actually intraperitoneal metastases to the ovary? (submitted, acknowledged grant funding)

ii. Books or other non-periodical, one-time publications. N/A

iii. Other publications, conference papers, and presentations.

Oral presentation (acknowledged grant funding):

Sandra Orsulic: Tumor Microenvironment. Molecular and Cellular Biology Wednesday Seminar Series, Baylor College of Medicine. Houston, TX. January 6, 2016.

Sandra Orsulic: Signatures of Stromal Activation in Cancer. Molecular Pathology Seminar Series. Johns Hopkins University School of Medicine. Baltimore, MD. November 16, 2016.

Sandra Orsulic. Tumor Microenvironment. Cancer Biology Seminar, Mayo Clinic, Jacksonville, FL. February 23, 2018.

- **b.** Website(s) or other Internet site(s). N/A
- c. Technologies or techniques. N/A
- d. Inventions, patent applications, and/or licenses. N/A
- e. Other Products. N/A

6. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

a. What individuals have worked on the project?

Name:	Sandra Orsulic
Project Role:	PI
Nearest person month worked:	2.00
Contribution to Project:	Dr. Orsulic oversaw projects for all three specific aims, including experimental design, execution, and data analysis and interpretation. She wrote the manuscripts (Jia et al, Scientific Reports, 2018; Haro and Orsulic, Frontiers in Cell and Developmental Biology, 2018) and prepared presentations as well as the progress report.

Name:	Beth Karlan
Project Role:	Collaborator
Nearest person month worked:	0.12
Contribution to Project:	Dr. Karlan advised on the translational aspects of the proposal and participated in experimental design.

Name:	Dongyu Jia, PhD
Project Role:	Postdoctoral Fellow
Nearest person month worked:	0.60
Contribution to Project:	Dr. Jia conducted all experiments that involved testing different combinations of treatments in the immunocompetent mouse model of ovarian cancer and assisted in data acquisition, analysis, and interpretation as well as in the writing of the published manuscripts (Jia et al., Cancer Letters 2016; Jia et al., Scientific Reports 2018).

Name:	Marcela Haro, PhD
Project Role:	Postdoctoral Fellow
Nearest person month worked:	4.50
Contribution to Project:	Dr. Haro conducted all experiments that involved testing different combinations of treatments in the immunocompetent mouse model of ovarian cancer and assisted in data acquisition and analysis. She assisted in the writing of the manuscript (Haro and Orsulic, Frontiers in Cell and Developmental Biology 2018).

Name:	Sandra Billet, PhD
Project Role:	Postdoctoral Fellow
Nearest person month worked:	3.00
Contribution to Project:	Dr. Billet conducted all experiments that involved testing different combinations of treatments in the immunocompetent mouse model of ovarian cancer and assisted in data acquisition and analysis.

Name:	Barbie Taylor-Harding, PhD
Project Role:	Research Associate
Nearest person month worked:	3.00
Contribution to Project:	Dr. Taylor-Harding conducted all experiments that involved testing different combinations of treatments in the immunocompetent mouse model of ovarian cancer and assisted in data acquisition and analysis.

b. Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period? No

- c. What other organizations were involved as partners? None
- 7. SPECIAL REPORTING REQUIREMENTS
- a. COLLABORATIVE AWARDS: N/A
- **b. QUAD CHARTS:** N/A

8. **APPENDICES:**

Reprints and preprints of publications associated with the grant funding:

Jia D, Liu Z, Deng N, Tan TZ, Huang R Y-J, Taylor-Harding B, Cheon DJ, Lawrenson K, Wiedemeyer WR, Walts AE, Karlan BY, **Orsulic S**. A COL11A1-correlated pancancer gene signature of activated fibroblasts for the prioritization of therapeutic targets. *Cancer Letters* 2016; 382:203-214.

Jia D, Kamata Y, Katsumata M, **Orsulic S.** Inflammation is a key contributor to ovarian cancer cell seeding. *Scientific Reports*, 2018, 8:12394.

Haro M and **Orsulic S.** A Paradoxical Correlation of Cancer-Associated Fibroblasts with Survival Outcomes in B-Cell Lymphomas and Carcinomas. *Frontiers in Cell and Developmental Biology*, 2018.

Hu Y, Taylor-Harding B, Haro, M, Raz Y, Recouvreux M, Taylan E, Walts AE, Karlan BY, **Orsulic S.** Are epithelial ovarian cancers of the mesenchymal subtype actually intraperitoneal metastases to the ovary? submitted

Contents lists available at ScienceDirect

Cancer Letters

journal homepage: www.elsevier.com/locate/canlet

Original Articles

A COL11A1-correlated pan-cancer gene signature of activated fibroblasts for the prioritization of therapeutic targets

Dongyu Jia ^a, Zhenqiu Liu ^b, Nan Deng ^b, Tuan Zea Tan ^c, Ruby Yun-Ju Huang ^c, Barbie Taylor-Harding ^a, Dong-Joo Cheon ^d, Kate Lawrenson ^a, Wolf R. Wiedemeyer ^a, Ann E. Walts ^e, Beth Y. Karlan ^{a,f}, Sandra Orsulic ^{a,f,*}

^a Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA

^b Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA

^c Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore

^d Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA

^e Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA

^f Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA

ARTICLE INFO

Article history: Received 10 July 2016 Received in revised form 30 August 2016 Accepted 1 September 2016

Keywords: Cancer-associated fibroblasts Myofibroblasts Pan-cancer Therapeutic targets Tumor microenvironment

ABSTRACT

Although cancer-associated fibroblasts (CAFs) are viewed as a promising therapeutic target, the design of rational therapy has been hampered by two key obstacles. First, attempts to ablate CAFs have resulted in significant toxicity because currently used biomarkers cannot effectively distinguish activated CAFs from non-cancer associated fibroblasts and mesenchymal progenitor cells. Second, it is unclear whether CAFs in different organs have different molecular and functional properties that necessitate organ-specific therapeutic designs. Our analyses uncovered COL11A1 as a highly specific biomarker of activated CAFs. Using COL11A1 as a 'seed', we identified co-expressed genes in 13 types of primary carcinoma in The Cancer Genome Atlas. We demonstrated that a molecular signature of activated CAFs is conserved in epithelial cancers regardless of organ site and transforming events within cancer cells, suggesting that targeting fibroblast activation should be effective in multiple cancers. We prioritized several potential pan-cancer therapeutic targets that are likely to have high specificity for activated CAFs and minimal toxicity in normal tissues.

© 2016 The Author(s). Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Under normal physiological conditions, collagen-rich fibroblasts maintain tissue architecture and serve as a barrier to epithelial cell migration. However, cancer cells have the ability to convert the surrounding fibroblasts into activated CAFs, which secrete specific collagens, growth factors, and enzymes that promote cancer growth, angiogenesis, invasion, and metastasis [1–3]. At the same time, these CAFs suppress anticancer immunity, confer drug resistance and/or limit the access of chemotherapies, anti-angiogenic therapies, and immunotherapies [1–3]. Although the exact mecha-

* Corresponding author. Fax: +1 310 423 9537.

E-mail address: Sandra.Orsulic@cshs.org (S. Orsulic).

nisms by which activated CAFs contribute to such diverse aspects of cancer progression are unclear, it is thought that fibroblasts together with increased collagen deposition and altered extracellular matrix (ECM) remodeling serve as a rich depot of cancerpromoting growth factors, cytokines, and chemokines [1,2]. Additionally, altered levels of enzymes responsible for collagen cross-link formation, such as lysyl oxidase (LOX) [4], increase tissue stiffness and modify mechanotransduction resulting in the reorganization of loose connective tissue into tense linear tracks of fibers that serve as highways to promote chemotaxis of cancer cells [5,6].

Recognizing the crucial role of CAFs in most aspects of cancer progression, it has been proposed that rational anticancer therapy design should not only target the cancer cells but also the CAFs [7,8]. Unlike cancer cells, CAFs are genetically stable [9], which reduce the risk of therapy-induced clonal selection, resistance, and cancer recurrence. Furthermore, targeting CAFs could potentially affect multiple biochemical pathways to prevent cancer progression and recurrence. CAF-targeting therapeutic approaches in different experimental mouse cancer models have been shown to improve

http://dx.doi.org/10.1016/j.canlet.2016.09.001

Abbreviations: αSMA, α-smooth muscle actin; CAFs, cancer-associated fibroblasts; CSPG4, chondroitin sulfate proteoglycan 4; ECM, extracellular matrix; LOX, lysyl oxidase; EMT, epithelial-mesenchymal transition; FAP, fibroblast activation protein; PALLD, palladin; PDGFRα, platelet-derived growth factor receptor α; PDPN, podoplanin; TGFβ, transforming growth factor β; TNC, tenascin-C; PRECOG, PREdiction of Clinical Outcomes from Genomic Profiles.

^{0304-3835/© 2016} The Author(s). Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ by-nc-nd/4.0/).

tumoral immune response, intratumoral drug delivery, and therapeutic efficacy [10–15]. These studies confirm the key role of CAFs in cancer progression and demonstrate their effectiveness as a therapeutic target. However, targeting CAFs in some cancer models actually promoted cancer progression. For example, depletion of α SMA+ stroma in a mouse pancreatic cancer model resulted in increased cancer aggressiveness, enhanced hypoxia and epithelial– mesenchymal transition (EMT), suppressed anticancer immunity, and reduced survival [16].

The contradictory results in different cancer models could be explained by different roles of CAFs in different cancer types, i.e. CAFs could be promoting breast cancer and inhibiting pancreatic cancer. Alternatively, in all cancer types CAFs prevent cancer progression until they receive activating signals from cancer cells and convert into 'activated CAFs', which in turn confer invasive and metastatic abilities upon cancer cells [7]. Therapies that target all CAFs are counterproductive and likely to result in the death of normal fibroblasts and significant toxicity. Preferential targeting of activated CAFs has been challenging because activated CAFs are poorly understood at the molecular level. During activation, CAFs exhibit phenotypic changes that partially overlap with myofibroblastic changes during wound healing, inflammation, and fibrosis, including secretion of specific ECM components, cytokines and growth factors [1,17]. Several markers have been used to distinguish activated from nonactivated CAFs: α -smooth muscle actin (α SMA, encoded by gene ACTA2) [3], fibroblast activation protein (FAP) [12], podoplanin (PDPN) [18], palladin (PALLD) [19,20], tenascin-C (TNC) [21], plateletderived growth factor receptor α (PDGFR α) [22,23], and chondroitin sulfate proteoglycan 4 (CSPG4) [24]. However, these markers are frequently expressed in other cells within the cancer stroma, such as vascular smooth muscle cells, pericytes, and mesenchymal stem cells. This lack of specificity could pose problems in therapeutic targeting and underscores the need to better understand the molecular characteristics of activated CAFs in order to develop more precise and less toxic targeted therapies.

COL11A1 encodes the α 1 chain of collagen XI, a minor fibrillar collagen expressed by chondrocytes and osteoblasts but not quiescent fibroblasts [25,26]. The absence of functional collagen XI leads to abnormally thickened cartilage and tendon fibrils, suggesting the role of collagen XI in maintaining proper fibril diameter [27,28]. Studies have demonstrated that COL11A1 mRNA is markedly elevated in cancers of the oral cavity/pharynx, head and neck, breast, lung, esophagus, stomach, pancreas, colon, and ovary, but not in matched normal tissues (reviewed in [25,26]). COL11A1 has been identified as part of gene signatures associated with adverse clinical outcomes including resistance to neoadjuvant therapy in breast cancer [29], time to recurrence in glioblastoma [30], poor survival in kidney cancer [31], and time to recurrence and overall survival in ovarian cancer [32,33]. In situ hybridization in ovarian cancer and immunohistochemistry in pancreatic cancer revealed that COL11A1 mRNA and pro-protein are primarily expressed in CAFs [25,32]. The restricted expression of COL11A1 in normal tissues and its enrichment in CAFs during cancer progression combined with its association with adverse clinical outcomes in multiple types of cancer support its candidacy as a specific marker of fibroblast activation in diverse cancers. Here, we explore the suitability of COL11A1 as a pan-cancer marker of activated CAFs and use it as a 'seed' to identify the transcription signature of activated CAFs in 13 epithelial cancer types. We show that the COL11A1-coexpressed gene set is highly conserved in these 13 cancer types, indicating that the fibroblast reaction to cancer cells is independent of the organ siteof-origin and of the transforming events within cancer cells. Finally, by combining drug target databases with cancer vs. normal tissue expression databases, we identify several potential therapeutic targets that should have high specificity for activated CAFs and minimal toxicity in normal tissues.

Materials and methods

Human tissues

Studies involving human tissue samples were approved by the Cedars-Sinai Institutional Review Board (IRB 15425). The samples included a tissue microarray from 42 patients with matched primary, metastatic, and recurrent ovarian cancer.

In situ hybridization

The RNA hybridization kit (RNAscope 2.0 FFPE Assay) and probes for *COL11A1*, the bacterial gene *dapB* (negative control), and the housekeeping gene *HPRT* (positive control), were from Advanced Cell Diagnostics, Inc. Formalin-fixed, paraffin-embedded tissue section slides were processed by the Cedars-Sinai Biobank and Translational Research Core following the protocol provided with the RNAscope In Situ Hybridization kit from Advanced Cell Diagnostics, Inc. The slides were counterstained with Mayer's hematoxylin.

Immunohistochemistry

Immunohistochemical detection of α SMA was performed on formalin-fixed, paraffin-embedded tissue sections using the protocol provided with the prediluted asm-1 clone antibody from Leica Microsystems. Staining was done by the Cedars-Sinai Pathology Service on the Ventana Benchmark Ultra automated slide stainer. The staining was visualized using the Ventana OptiView DAB Detection System. The slides were counterstained with Mayer's hematoxylin.

In vitro co-culture experiments

The ovarian cancer cell lines OVCAR3-GFP, KURAMOCHI-GFP and OVSAHO-GFP were maintained in RPMI-1640 (Corning) supplemented with 10% fetal bovine serum (FBS) and 1x penicillin/streptomycin (Corning). Cell line authenticity was confirmed by Laragen using the short tandem repeat (STR) method. The immortalized normal ovarian fibroblasts INOF-tdTomato cell lines [34] were maintained in a 1:1 ratio of MCDB 105 (Sigma-Aldrich) and Medium 199 (GIBCO) with 10% FBS, 50 U/ ml penicillin and 50 $\mu g/ml$ streptomycin. Immortalized normal ovarian fibroblasts and ovarian cancer cells were co-cultured in 1% FBS supplemented media (1:1:2 ratio of MCDB 105, Medium 199 and RPMI-1640) using 6-well plates, either by directly plating ovarian cancer cells (10⁵ cells/well) onto a 70% confluent layer of normal ovarian fibroblasts or onto a 0.4 µm Transwell membrane. Media were replaced every 2 days. After 4 days of co-culture, GFP-labeled ovarian cancer cells and tdTomatolabeled fibroblasts were separated by FACS in PBS with 0.5% FBS. RNA extraction from fibroblasts and ovarian cancer cell lines was performed using the RNeasy Mini Kit (Qiagen) and reverse transcribed to cDNA using the Quantitect Reverse Transcription Kit (Qiagen). For qRT-PCR, 50 ng of cDNA was mixed with COL11A1 primers (Forward: 5'-GACTATCCCCTCTTCAGAACTGTTAAC-3'; Reverse: 5'- CTTCTATCAAGTGG TTTCGTGGTTT-3') and the iQ SYBR-Green Supermix (BioRad) and run on the CFX96 Real-Time System (BioRad). Data were analyzed using the $2^{\text{-}\Delta\text{CT}}$ method and normalized to INOF-tdTomato control to present the fold change ratios. All mRNA data were normalized to RPL32 expression (Forward: 5'-ACAAAGCACATGCTGCCCAGTG-3'; Reverse: 5'-TTCCACGATGGCTTTGCGGTTC-3'). The statistical analyses were performed using GraphPad Prism (version 6.0; GraphPad Software). The unpaired t test was used for data analyses.

Public database portals and dataset analyses

Data from public portals were used as provided by individual portals without additional processing or normalization, unless otherwise indicated. Box plots of COL11A1 expression in normal tissues and cancers were generated using the Gene Expression across Normal and Tumor tissue (GENT) portal (medicalgenome.kribb.re.kr/GENT) in which data from multiple datasets were processed and normalized as previously described [35]. COL11A1 expression level diagrams for inflammatory bowel disease, lung fibrosis, and cancers of the colon and lung were generated using the R2 MegaSampler public portal (hgserver1.amc.nl/cgi-bin/r2/ main.cgi). A description of the methods used for data processing and normalization is available through the portal. Survival z-scores for individual genes and cancer types were obtained from the PREdiction of Clinical Outcomes from Genomic Profiles (PRECOG) portal (precog.stanford.edu). Methods for calculating PRECOG z-scores have been published [36]. Ranking of the COL11A1-correlated genes in 13 TCGA carcinoma types was determined using data from individual cancer datasets that were processed by cBio Portal (cbioportal.org) as previously described [37]. Kaplan-Meier survival plots and plots of COL11A1 expression in individual molecular subtypes of ovarian carcinoma were generated using the ovarian cancer microarray gene expression database CSIOVDB (csibio.nus.edu.sg/CSIOVDB/CSIOVDB.html), which has been previously described [38]. The dataset for fibroblast and ovarian epithelial cell co-culture was imported from the Gene Expression Omnibus (ncbi.nlm.nih.gov/ geo). The Euclidean distance clustering analysis heatmap for the e-mtab-991 [39] and GSE40595 [40] datasets was generated using the public R2 GeneSet Clustering Analysis portal (hgserver1.amc.nl/cgi-bin/r2/main.cgi), which also describes methods that were used to process and normalize data from datasets included in the portal.

Results

COL11A1 is expressed in a subset of α SMA-positive CAFs and can be induced in normal fibroblasts by the presence of cancer cells

To determine if *COL11A1* expression is associated with fibroblast activation, we used α SMA as a marker of activated CAFs [3]. Comparison of α SMA immunohistochemistry and *COL11A1* in situ hybridization in a tissue microarray consisting of primary, metastatic and recurrent ovarian cancers from 42 patients showed that *COL11A1* is expressed in a subset of α SMA+ CAFs (Fig. 1A). Unlike α SMA, *COL11A1* was not expressed in blood vessels (red arrows) or in fibroblasts surrounding the cancer (blue arrows) (Fig. 1A). In sections of metastatic ovarian cancer, we observed that *COL11A1*-positive cells are confined to the intratumoral and immediate peritumoral CAFs (Fig. 1B), suggesting that *COL11A1* expression may be induced by cues received from epithelial cancer cells. To test if cancer cells can induce *COL11A1* expression in fibroblasts, we co-cultured immortalized normal ovarian fibroblasts (INOFs) with three different ovarian cancer cell lines (OVSAHO, OVCAR3, and KURAMOCHI). *COL11A1* expression in INOFs was most strongly induced by direct co-culture with ovarian cancer cell lines although weak induction occurred by indirect co-culture on a Transwell membrane (Fig. 1C). The induction of *COL11A1* in fibroblasts in the presence of cancer cells was confirmed by analysis of the public expression dataset GSE52104 in which two types of

Fig. 1. *COL11A1* is expressed in CAFs. (A) Comparison of α SMA immunohistochemistry and *COL11A1* in situ hybridization in a metastatic ovarian cancer sample. Red arrows indicate blood vessels. Blue arrows indicate fibroblasts surrounding the tumor nodule. A high magnification of peritumoral and intratumoral regions in the black rectangles is shown in panels on the left. IHC, immunohistochemistry; ISH, *in situ* hybridization; BV, blood vessel; NC, necrosis. (B) Distribution of *in situ* hybridization *COL11A1*-positive CAFs in relation to cancer cells. The estimated percent of *COL11A1*-positive CAFs is shown on the right. The image is representative of metastatic and recurrent ovarian cancer samples, which typically express higher levels of *COL11A1* than primary ovarian cancers. (C) Quantitative RT-PCR levels of *COL11A1* in sorted (FACS) immortalized normal ovarian fibroblasts (INOFs) grown alone or co-cultured with ovarian cancer cell lines (OVSAHO, OVCAR3, KURAMOCHI) that were either separated from INOFs by a Transwell membrane or directly mixed with INOFs. Statistical analyses were performed between INOFs grown alone and INOFs co-cultured with ovarian cancer cells (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant). Error bars indicate standard deviation. (D) Levels of *COL11A1* in the GSE52104 expression dataset in which mesenchymal stem cells (MSCs) or immortalized normal ovarian fibroblasts (INOFs) were either cultured alone or co-cultured with IOSE4 normal epithelial cells (IOSE) or HEVA8 epithelial ovarian cancer cells (EOC) using a Transwell membrane. Inverse-log2 values of the Robust Multi-array Average (RMA) scores from different *COL11A1* probes were averaged, then log2-transformed. The data were extracted for statistical analyses using GraphPad Prism 6. Data are represented as the mean ± SEM. Intergroup differences were assessed by the Student's t-test. *p < 0.05; ****p < 0.0001. (For interpretation of the references to color in this figure legend, the reader is referred to the web

presumptive cancer-associated fibroblast precursor cells, mesenchymal stem cells (MSCs) and immortalized normal ovarian fibroblasts (INOFs), were either cultured alone or co-cultured with normal ovarian surface epithelial cells (IOSE) or epithelial ovarian cancer cells (EOC) using a Transwell membrane [41]. *COL11A1* mRNA was statistically significantly upregulated when MSCs and INOFs were co-cultured with EOC but not IOSE (Fig. 1D), indicating that cancer cells have a greater capacity than normal cells to induce *COL11A1* expression in fibroblasts.

COL11A1 is associated with cancer progression and poor survival

COL11A1 mRNA expression has been associated with poor survival in ovarian cancer [32,33] and kidney cancer [31]. To elucidate the underlying biology that could result in poor survival, we investigated its expression in ovarian and colon cancers. Using a comprehensively annotated microarray database for 3431 human ovarian cancers [38], we show that increased expression of *COL11A1* mRNA is associated with overall survival and disease-free survival (Fig. 2A) as well as with clinical and molecular parameters such as increased cancer stage and grade and mesenchymal molecular subtype (Fig. 2B). The association of *COL11A1* expression with poor survival is unlikely to be a manifestation of the total amount of stromal fibroblasts because a general marker of fibroblasts, vimentin (*VIM*), is not associated with poor survival in the same cohort of ovarian cancer patients (Table S1). The association of *COL11A1* with

adverse outcomes is also not restricted to ovarian cancer. We show that in 1820 colon cancers [42], increased expression of *COL11A1* mRNA is associated with poor disease-specific and disease-free survival as well as with clinical and molecular parameters, such as increased cancer stage and microsatellite instability and CMS4 (mesenchymal) molecular subtype (Fig. S1A, B).

To systematically investigate an association between *COL11A1* mRNA expression and survival in various solid and liquid cancers, we plotted *COL11A1* z-score values as determined by the pancancer <u>PRE</u>diction of <u>Clinical Outcomes</u> from <u>Genomic Profiles</u> (PRECOG) analysis of ~18000 cases in 166 cancer datasets [36]. In most epithelial cancers, *COL11A1* expression was associated with poor survival (Fig. 3A). Associations between expression of 43 collagen genes and survival z-scores in 12 common epithelial cancer types revealed that for the majority of collagens, increased expressions of mRNA were associated with poor survival, with *COL11A1* having the strongest association (Fig. 3B).

COL11A1 is among the most differentially expressed genes between cancers and corresponding benign tissues

In the Genotype-Tissue Expression (GTEx) project database [43], *COL11A1* mRNA is expressed at appreciable levels in transformed skin fibroblasts but not in non-transformed skin fibroblasts or other normal tissues (Fig. S2). Additional analyses of various expression datasets containing normal adult mouse and human tissues

Fig. 2. *COL11A1* expression is associated with adverse clinical parameters. (A) Kaplan–Meier analyses of overall survival (left two panels) and disease-free survival (right two panels) based on *COL11A1* expression in ovarian carcinoma. Disease-free survival includes progression- and recurrence-free survival. Patients were stratified to COL11A1-high (red) or COL11A1-low (blue) based on the median expression of *COL11A1*, and to COL11A1-Q4 (highest 25% expression; red) or COL11A1-Q1 (lowest 25% expression; blue). (B) *COL11A1* expression profiles were stratified by FIGO stage (left), FIGO grade (middle), and molecular subtype (right). Data were obtained from the ovarian microarray gene expression database CSIOVDB (csibio.nus.edu.sg/CSIOVDB/CSIOVDB.html). HR, hazard ratio. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Pancreatic

Ovarian

Prostate

Α

Fig. 3. COL11A1 expression in cancer is associated with poor survival in multiple cancer types. (A) Survival z-scores in different cancer types associated with expression of COL11A1 mRNA. (B) Survival z-scores associated with mRNA expression of different collagen genes. The data were obtained from the PREdiction of Clinical Outcomes from Genomic Profiles (PRECOG) database (precog, stanford, edu).

revealed that *COL11A1* is expressed in cartilage and collagenproducing cells in the eye and brain, with negligible levels in most other tissues that have been profiled including mesenchymal stem cells in the bone marrow, muscle, and fat (data not shown).

Comparison of *COL11A1* expression in 17931 cancers and 3503 normal tissues (U133Plus2 platform) and 9258 cancers and 4087 normal tissues (U133A platform) using the Gene Expression across Normal and Tumor tissue (GENT) portal [35] revealed that *COL11A1* mRNA is elevated in most cancers in comparison to their corresponding normal tissues (Fig. 4A). In some cancers, *COL11A1* was ranked among the most statistically significant differentially expressed genes when cancer and its corresponding normal tissue were compared. For example, comparison of cancer and normal tissues in The Cancer Genome Atlas (TCGA) datasets for colon cancer and invasive breast cancer ranked *COL11A1* as the first and third most differentially expressed gene, respectively (Fig. S3).

As many collagens and collagen-remodeling genes are frequently upregulated in fibroblast activation associated with inflammation and fibrosis in the absence of cancer, use of these genes as therapeutic targets in cancer could be problematic. Analysis of expression profile datasets show that levels of *COL11A1* mRNA in inflamed colonic tissue from inflammatory bowel disease and fibrotic lung tissues are not significantly different from those in corresponding unaffected colon and lung and that *COL11A1* levels associated with colon inflammation and lung fibrosis are minimal and markedly different from those associated with colon and lung cancers (Fig. 4B). In contrast, levels of *ACTA2*, the gene encoding the prototypical marker of myofibroblast differentiation, α SMA, is expressed at similar levels in cancers and inflamed or fibrotic tissues (Fig. 4B).

A consistent set of genes is co-expressed with COL11A1 across different cancers

To better understand the biology of cancers with high levels of COL11A1, we identified genes that most closely correlate with COL11A1 mRNA expression in 13 TCGA datasets representing different cancer types. Spearman's rank correlations between COL11A1 and its co-expressed genes for each cancer type were calculated. The genes were then ranked based on the average correlation of each gene across the 13 cancer types. The top 195 correlated genes were selected based on an average correlation of >0.4 COL11A1-correlated genes were then ranked based on the average of the absolute correlation values (Table 1 and Table S2). The top 10% most highly correlated genes in each cancer type are highlighted in pink (Table 1). Notably, COL11A1-correlated genes with high average correlation scores also tended to be among the top 10% highest scored genes in each cancer type (indicated in pink in Table 1). In contrast, the top 10% COL11A1-anticorrelated genes were not conserved across these cancer types (Table S3). Some of the top ranked COL11A1anticorrelated genes in individual cancer types were associated with normal functions of these organs suggesting that they may represent normal tissue or a noninvasive tumor component. For example, the ovarian cancer top 100 COL11A1-anticorrelated genes (Table S3) present in the GSE12172 ovarian cancer dataset were primarily expressed in ovarian tumors of low malignant potential (Fig. S4).

Pan-cancer COL11A1-correlated genes are induced in CAFs

Consistent with the induced expression of *COL11A1* in the *in vitro* co-culture model (Fig. 1D), the average expression of the pancancer *COL11A1*-correlated gene set was significantly induced in mesenchymal stem cells and normal ovarian fibroblasts co-cultured with ovarian cancer cells but not with normal ovarian epithelial cells (Fig. S5). Since epithelial cells were not profiled in this experiment, it is unknown if fibroblasts also induce expression of the pancancer COL11A1-correlated genes in epithelial cells. This is relevant because several of the 195 pan-cancer COL11A1-correlated genes have been shown to play a role in EMT [42] and malignant cells undergoing EMT have been proposed as one possible source of CAFs [44]. To determine if the pan-cancer COL11A1-correlated gene set is preferentially expressed in cancer cells undergoing EMT or in hostderived fibroblasts, we used the e-mtab-991 public transcription profile dataset of primary patient-derived colon cancers and their patient-derived xenografts (PDX) in nude mice [39]. Presumably, in PDX samples, fast-proliferating human cancer cells continued to grow in mice while slow-proliferating human CAFs were lost and eventually replaced by mouse fibroblasts, which can be distinguished from human cells by species-specific gene probes [39]. GeneSet clustering analysis showed that most of the pan-cancer COL11A1correlated genes had diminished levels in PDX samples in comparison to primary cancers (Fig. 5A), suggesting that the genes are enriched in the CAFs rather than in the cancer cells. However, it is also possible that the pan-cancer COL11A1-correlated genes are expressed in epithelial cells in primary colon tumors but become silenced upon adaptation of human cancer cells to the mouse microenvironment. Thus, we conducted GeneSet clustering analysis of the primary ovarian cancer dataset GSE40595 in which ovarian CAFs and epithelial cancer cells were isolated by laser-capture microdissection [40]. The pan-cancer COL11A1-correlated genes were preferentially expressed in CAFs in this dataset (Fig. 5B).

In addition to CAFs, immune cells are a major component of the tissue microenvironment. To exclude the possibility that the pancancer *COL11A1*-correlated gene set represents immune cells in the tumor microenvironment, we used the expression profile of 230 mouse hematopoietic cell types generated by the Immunological Genome Project (ImmGen) compendium [45]. In addition to hematopoietic cell lineages, the dataset contains expression profiles of skin fibroblasts and fibroblasts residing in the thymus, lymph nodes, and spleen. The pan-cancer *COL11A1*-correlated gene set was highly represented in fibroblasts but not in hematopoietic cell lineages (Fig. 5C).

CAFs have a different expression profile than normal fibroblasts. Moffitt and colleagues defined a 23-gene signature of 'normal stroma' and a 25-gene signature of 'activated stroma' [46] using nonnegative matrix factorization for virtual microdissection of primary and metastatic pancreatic ductal cancer samples into cell subsets with prognostic and biologic relevance. None of the 23 (0%) 'normal stroma' genes in contrast to 18 of 25 (72%) 'activated stroma' genes were present in the *COL11A1*-correlated gene set, respectively (Fig. 5D), suggesting that the *COL11A1*-correlated gene set represents CAFs.

Biological processes associated with fibroblast activation in cancer

The remarkable uniformity of COL11A1-correlated genes across 13 different cancer types suggests involvement of these genes in common biological processes that are independent of the organ site and of the phenotypic and genetic diversity observed in individual cancer types. To gain insight into the biology of this conserved gene set, we conducted several analyses that identified overlap between the 195 pan-cancer COL11A1-correlated genes and genes in various datasets with characterized biological features. The Gene Ontology (GO) Biological Process (BP) analysis revealed that the pancancer COL11A1-correlated genes are primarily involved in extracellular matrix modification and collagen remodeling (Table S4). Additionally, we used SABiosciences array gene tables, which consist of literature-based curated molecular pathways where each pathway was represented by 84 genes. Analysis of gene overlap between the pan-cancer COL11A1-correlated gene set and genes representative of 67 different pathways in SABiosciences arrays showed the largest overlap for pathways associated with extracellular matrix,

Fig. 4. Increased expression of *COL11A1* in cancer and low expression in normal tissues, inflammation and fibrosis. (A) Comparison of *COL11A1* mRNA expression in normal tissues and corresponding cancers. Box plots for two different platforms (U133Plus2 and U133A) were generated using datasets and software available through the Gene Expression across Normal and Tumor tissue (GENT) portal (medical-genome.kribb.re.kr/GENT). The y axis shows log2 mRNA levels. Average expression levels in normal tissues and cancer tissues are indicated by vertical dotted green and red lines, respectively. (B) *COL11A1* and ACTA2 mRNA expression in normal, inflammatory and fibrotic conditions in comparison to cancer. The graphs were generated using the public R2 MegaSampler software (hgserver1.amc.nl/cgi-bin/r2/main.cgi) for the processing and normalization of individual datasets imported from the Gene Expression Omnibus (u133p2, MAS5.0 platform). The number of samples in each GSE dataset is indicated in parentheses. (For interpretation of this article.)

Table 1

COL11A1-correlated genes (Spearman's rank correlation) across 13 different TCGA carcinoma types, each represented by >100 primary tumors from therapy-naive patients. Pink denotes the top 10% *COL11A1*-correlated genes in each individual carcinoma type. Rectangles denote genes frequently used as markers of activated CAFs.

	Pan-cancer COL11A1-correlated genes		Continued					
	weat a century mars	no'	wet at cillary should					
Symbo	we st section is and the rest of the section as a set of the section of the secti	W 18 Synt	we at recalled and rear of a particular and a particular and a particular					
Raun Cene	dies, dies, corp, cer, tes, trep, trep, trup, trup, are ore dio, etc, tur, bre, cour	Rau. Cen	Blas Bles, Colo Cele Hes Right Right " This " This On's blos Bloy Link Bres Col.					
1 COL11A1	0.9 0.7 0.8 0.7 0.9 0.7 0.7 0.8 0.9 0.8 0.6 0.7 0.9 0.8	101 PODN	0.6 0.4 0.4 0.4 0.6 0.6 0.5 0.4 0.7 0.7 0.2 0 0.7 0.5					
2 COL1A1		102 CD248	0.7 0.3 0.6 0.5 0.6 0.4 0.5 0.5 0.7 0.7 0 0.4 0.2 0.5					
3 COL1A2	0.9 0.7 0.9 0.7 0.9 0.7 0.6 0.8 0.9 0.8 0.5 0.7 0.8 0.8	103 PLXDC1	0.5 0.4 0.5 0.4 0.6 0.4 0.4 0.3 0.7 0.7 0.5 0.3 0.4 0.5					
4 <u>COL3A1</u>	0.9 0.7 0.9 0.6 0.9 0.7 0.6 0.8 0.9 0.9 0.5 0.7 0.8 0.8	104 MMP13	0.2 0.7 0.6 0.2 0.4 0.5 0.3 0.5 0.5 0.7 0.1 0.6 0.8 0.5					
6 COL5A1	0.8 0.7 0.8 0.6 0.7 0.8 0.6 0.8 0.8 0.9 0.6 0.7 0.8 0.7	105 COL16A1	0.7 0.3 0.6 0.2 0.4 0.6 0.5 0.5 0.6 0.6 0.2 0.3 0.6 0.5					
	0.8 0.8 0.8 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.5 0.7 0.8 0.7	106 CPZ	0.4 0.3 0.6 0.4 0.6 0.5 <u>0.5</u> 0.6 0.7 0.3 0.4 0.4 0.4 0.5					
7 CTHRC1	0.8 0.7 0.9 0.4 0.8 0.6 0.5 0.8 0.7 0.7 0.6 0.8 0.8 0.7	107 VGLL3	0.1 0.5 0.8 0.4 0.6 0.5 0.6 0.4 0.7 0.7 -0 0.4 0.5 0.5					
8 SULF1	0.9 0.8 0.9 0.6 0.8 0.6 0.5 0.8 0.8 0.6 0.5 0.8 0.6 0.7	108 COL15A1	0.6 0.3 0.7 0.5 0.4 0.4 0.5 0.7 0.7 0.5 0.4 0.2 0.1 0.5					
9 VCAN	0.8 0.7 0.9 0.7 0.8 0.4 0.2 0.8 0.8 0.8 0.5 0.6 0.8 0.7	109 SGIP1	0.6 0.7 0.7 0.4 0.7 0.2 0.4 0.5 0.7 0.6 0.4 0.3 -0 0.5					
10 FN1	0.7 0.8 0.7 0.7 0.8 0.6 0.4 0.7 0.8 0.8 0.4 0.6 0.7 0.7	110 CMTM3	0.4 0.5 0.8 0.4 0.6 0.5 0.1 0.5 0.4 0.5 0.2 0.5 0.5 0.5					
11 SFRP2	0.8 0.5 0.7 0.6 0.8 0.7 0.5 0.8 0.8 0.3 0.5 0.8 0.7 0.8 0.7 0.7 0.6 0.8 0.6 0.7 0.7 0.8 0.5 0.6 0.7 0.7	111 LOXL1	0.3 0.5 0.6 0.3 0.6 0.6 0.2 0.5 0.6 0.6 0.3 0.3 0.6 0.5					
12 OLFML2B		112 NALCN	0.4 0.4 0.5 0.3 0.6 0.5 0.5 0.4 0.5 0.4 <mark>0.6</mark> 0.3 0.5 0.5					
13 COL6A3	0.8 0.7 0.8 0.6 0.8 0.7 0.6 0.7 0.8 0.2 0.5 0.7 0.7 0.6 0.8 0.5 0.4 0.6 0.5 0.8 0.7 0.9 0.5 0.8 0.7 0.7	113 COL24A1	0.4 0.5 0.7 0.3 0.7 0.4 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.5					
14 INHBA		114 PLAU	0.5 0.8 0.5 0.2 0.3 0.5 0.1 0.6 0.4 0.8 0.1 0.6 0.6 0.5					
15 ASPN	0.8 0.7 0.8 0.4 0.8 0.5 0.7 0.8 0.8 0.6 0.5 0.7 0.7 0.8 0.7 0.8 0.6 0.7 0.5 0.7 0.9 0.8 0.3 0.7 0.5 0.7	115 MFAP2	0.4 0.5 0.6 0.4 0.5 0.7 0.4 0.6 0.4 0.4 0.2 0.6 0.4 0.5					
16 ADAMTS12		116 LTBP2	0.6 0.3 0.5 0.4 0.5 0.5 0.6 0.2 0.6 0.5 <u>0.4</u> 0.3 0.6 0.5					
17 LUM	0.7 0.8 0.8 0.5 0.7 0.7 0.5 0.7 0.7 0.9 0.3 0.5 0.8 0.6	117 MATN3	0.4 0.4 0.5 0.4 0.6 0.5 0.2 0.4 0.5 0.6 0.6 0.5 0.6 0.5					
18 NTM	0.8 0.7 0.9 0.7 0.8 0.5 0.5 0.6 0.7 0.8 0.4 0.7 0.3 0.6	118 THBS1	0.6 0.5 0.4 0.5 0.3 0.2 0.3 0.5 0.6 0.7 0.2 0.4 0.7 0.5					
19 SPARC	0.8 0.7 0.8 0.7 0.8 0.4 0.3 0.7 0.8 0.5 0.7 0.3 0.6 0.8 0.7 0.8 0.5 0.4 0.7 0.9 0.8 0.4 0.5 0.7 0.6 0.8 0.7 0.8 0.5 0.4 0.7 0.9 0.8 0.4 0.5 0.7 0.6	119 CTGF	0.6 0.4 0.5 0.4 0.7 0.5 0.5 0.4 0.6 0.5 0.2 0.4 0.1 0.5					
20 AEBP1		120 DPYSL3	0.6 0.7 0.7 0.4 0.4 0.5 0.6 0.5 0.4 0.5 0 0.2 0.4 0.5					
21 CDH11	0.7 0.7 0.8 0.5 0.7 0.5 0.6 0.5 0.8 0.7 0.5 0.6 0.8 0.6	121 ARSI	0.7 0.6 0.7 0.2 0.2 0.5 0.1 0.6 0.5 0.2 0.2 0.6 0.7 0.4					
22 GREM1	0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.5 0.8 0.8 0.8 0.5 0.3 0.7 0.6	122 ADAMTS16	0.7 0.6 0.7 0.6 0.7 -0 -0 0.6 0.5 0.5 0.4 0.5 0.3 0.4					
23 ITGBL1	0.7 0.6 0.7 0.6 0.7 0.6 0.6 0.6 0.5 0.7 0.8 0.7 0.4 0.8 0.6	123 GRP	0.5 0.5 0.6 0.5 0.7 0.3 0.3 0.4 0.5 0.5 -0 0.3 0.7 0.4					
24 FNDC1	0.9 0.7 0.8 0.6 0.7 0.6 0.5 0.7 0.9 0.6 0.6 0.6 0.6 0.6	124 RAB31	0.6 0.6 0.8 0.2 0.2 0.5 0 0.4 0.5 0.6 0.3 0.4 0.6 0.4					
25 PRRX1	0.8 0.7 0.8 0.5 0.7 0.6 0.6 0.8 0.7 0.8 0.2 0.6 0.6 0.6 0.7 0.7 0.6 0.5 0.8 0.5 0.1 0.7 0.8 0.5 0.8 0.6 0.6	125 HTRA1	0.6 0.6 0.7 0.5 0.5 0.5 0.2 0.6 0.7 0.4 0.2 0.3 0.1 0.4					
26 MMP11		126 CLMP	0.6 0.5 0.7 0.4 0.4 0.6 0.1 0.6 0.7 0.7 0.1 0.1 0.4 0.4					
27 FBN1	0.7 0.8 0.9 0.6 0.7 0.6 0.4 0.7 0.9 0.8 0.4 0.5 0.3 0.6	127 IGFL2	0.5 0.5 0.3 0.4 0.3 0.5 0.3 0.4 0.5 0.7 0.2 0.6 0.6 0.4					
28 CTSK	0.8 0.7 0.8 0.5 0.8 0.6 0.1 0.8 0.8 0.8 0.4 0.5 0.7 0.6	128 BICC1	0.5 0.5 0.7 0.4 0.6 -0 0 0.5 0.8 0.7 0.2 0.4 0.5 0.4					
29 COL8A1	0.7 0.6 0.8 0.7 0.7 0.4 0.4 0.5 0.8 0.8 0.8 0.5 0.5 0.5 0.6	129 PDGFRL	0.6 0.5 0.6 0.3 0.8 0.5 0.4 0.4 0.7 0.4 0.3 0.3 0.1 0.4					
30 MMP2	0.7 0.6 0.8 0.5 0.7 0.6 0.4 0.7 0.8 0.8 0.2 0.4 0.6 0.6	130 FAM101A	0.7 0.4 -0 0.4 0.7 0.7 0.7 0.7 0.7 0.7 -0 -0 0.7 0.4					
31 WISP1	0.8 0.7 0.7 0.5 0.6 0.4 0.5 0.7 0.7 0.7 0.2 0.6 0.8 0.6	131 SGCD	0.7 0.6 0.8 0.5 0.7 0.4 0 0.6 0.8 0.3 0.1 0.2 0 0.4					
32 COMP	0.7 0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.7 0.6	132 CSMD2	0.7 0.7 0.5 0.4 0.6 0.1 0.4 0.7 0.7 0.4 0.2 0.5 -0 0.4					
33 SFRP4	0.8 0.4 0.8 0.2 0.7 0.4 0.4 0.7 0.7 0.8 0.7 0.5 0.8 0.6	133 LAMP5	0.6 0.3 0.5 0.2 0.7 0.6 0.4 0.3 0.6 0.1 0.5 0.3 0.7 0.4					
34 HTRA3	0.8 0.6 0.6 0.6 0.7 0.4 0.5 0.8 0.8 0.6 0.2 0.5 0.4 0.6	134 SERPINH1	0.5 0.4 0.4 0.4 0.5 0.5 0.2 0.6 0.4 0.5 0.3 0.7 0.4 0.4					
36 PCOLCE	0.8 0.7 0.7 0.4 0.6 0.2 0.2 0.8 0.7 0.8 0.2 0.7 0.7 0.6	135 PDGFRA	0.5 0.4 0.4 0.3 0.5 0.6 0.5 0.6 0.6 0.5 0.2 0 0.6 0.4					
	0.8 0.5 0.7 0.5 0.8 0.6 0.3 0.6 0.8 0.7 0.2 0.5 0.6 0.6	136 BNC2	0.7 0.6 0.7 0.4 0.7 0.3 -0 0.6 0.8 0.3 0.1 0.2 0.3 0.4					
37 PODNL1	0.8 0.5 0.5 0.4 0.5 0.7 0.6 0.6 0.7 0.5 0.3 0.7 0.8 0.6	137 COL4A1	0.4 0.4 0.6 0.6 0.5 0.4 0.5 0.4 0.6 0.6 0.4 0.3 -0 0.4					
38 ANTXR1	0.7 0.8 0.9 0.5 0.7 0.5 0.3 0.7 0.8 0.7 0.3 0.6 0.2 0.6	138 IBSP	0.5 0.4 0.5 0.4 0.6 0.4 0.4 0.5 0.3 0.3 0.2 0.6 0.6 0.4					
40 CORIN	0.8 0.5 0.7 0.6 0.8 0.5 0.4 0.5 0.8 0.7 0.1 0.6 0.7 0.6	139 ITGA5	0.6 0.5 0.7 0.4 0.3 0.5 0.4 0.6 0.5 0.7 -0 0.3 0.1 0.4					
	0.6 0.8 0.6 0.7 0.5 0.2 0.7 0.8 0.7 0.1 0.5 0.6 0.6	140 MMP16	0.5 0.4 0.6 0.5 0.7 0.5 0.4 0.4 0.6 0.3 0.2 0.3 0.4 0.4					
41 MFAP5	0.7 0.6 0.7 0.6 0.8 0.4 0.4 0.8 0.0 0.4 0.5 0.8 0.1 0.6	141 ST6GALNAC5	0.7 0.1 0.8 0.5 0.5 0.5 -0 0.6 0.6 0.2 0.3 0.4 0.6 0.4					
	0.8 0.8 0.7 0.6 0.5 0.5 0.3 0.8 0.7 0.5 0.3 0.2 0.8 0.6	142 ADAM19	0.6 0.5 0.4 0.3 0.4 0.6 0.4 0.4 0.5 0.6 0.1 0.3 0.6 0.4					
43 GL 18D2	0.7 0.6 0.8 0.5 0.7 0.6 0.3 0.8 0.8 0.7 0.3 0.3 0.1 0.6	143 MEIS3	0.5 0.2 0.6 0.5 0.6 0.5 0.2 0.8 0.6 0.4 -0 0.4 0.5 0.4					
44 ISLR	0.8 0.5 0.7 0.5 0.8 0.6 0.5 0.8 0.8 0.5 0.2 0.5 0.2 0.6	144 APCDD1L	0.6 0.3 0.5 0.4 0.3 0.7 0.5 0.7 0.6 0.3 0 0.2 0.8 0.4					
46 PDGFRB	0.8 0.5 0.6 0.6 0.6 0.6 0.5 0.6 0.5 0.6 0.7 0.1 0.3 0.6 0.6 0.7 0.5 0.7 0.5 0.7 0.4 0.6 0.5 0.8 0.8 0.4 0.5 0.2 0.5 0.6 0.7 0.6 0.5 0.6 0.6 0.3 0.6 0.7 0.7 0.3 0.6 0.3 0.5	145 XIRP1 146 ADAMTS4	0.7 0.3 0.5 0.5 0.4 0.4 0.4 0.6 0.5 0.1 0.3 0.7 0.4 0.4 0.5 0.3 0.5 0.4 0.6 0.3 0.4 0.6 0.6 0.6 0.1 0.4 0.3 0.4					
48 OMD	0.8 0.6 0.7 0.6 0.3 0.7 0.4 0.4 0.7 0.7 0.7 0.2 0.2 0.7 0.5	147 PDPN	0.6 0.6 0.8 0.3 0.2 0.4 0.1 0.6 0.5 0.7 -0 0.5 0.5 0.4					
	0.8 0.6 0.7 0.5 0.8 0.5 0.4 0.6 0.6 0.7 0.2 0.6 0.2 0.5	148 COLEC12	0.7 0.4 0.7 0.4 0.7 0.5 0.1 0.2 0.6 0.7 -0 0.1 0.7 0.4					
50 LOX	0.7 0.7 0.8 0.2 0.5 0.3 0.4 0.7 0.6 0.7 0.1 0.7 0.7 0.7	149 MAGEL2	0.5 0.5 0.5 0.4 0.6 0.6 0.4 0.6 0.7 0.3 -0 0.4 -0 0.4					
	0.7 0.6 0.7 0.4 0.7 0.6 0.5 0.6 0.7 0.1 0.7 0.7 0.5	150 C1S	0.7 0.3 0.8 0.2 0.3 0.4 0.4 0.4 0.5 0.4 0.2 0.2 0.2 0.7 0.4					
52 TIMP2	0.7 0.7 0.8 0.5 0.8 0.5 0.1 0.6 0.8 0.5 0.3 0.3 0.6 0.5	151 DDR2	0.7 0.4 0.7 0.4 0.6 0.3 0.4 0.4 0.8 0.4 0.1 0.1 0.2 0.4					
	0.7 0.7 0.6 0.4 0.8 0.5 0.2 0.7 0.8 0.5 0.3 0.3 0.6 0.5	152 BMP1	0.6 0.6 0.5 0.3 0.4 0.5 0.2 0.4 0.5 0.5 0.5 0.1 0.6 0.4 0.4					
54 NOX4	0.6 0.8 0.8 0.5 0.8 -0 -0 0.8 0.7 0.4 0.6 0.7 0.6 0.5	153 TENM3	0.7 0.6 0.7 0.4 0.4 0.3 -0 0.6 0.7 0.6 -0 0.5 0.3 0.4					
	0.7 0.7 0.8 0.5 0.8 -0 -0 0.8 0.7 0.4 0.6 0.7 0.6 0.5	154 DACT3	0.5 0.4 0.6 0.5 0.7 0.4 0.5 0.5 0.7 0.5 0.1 -0 0.2 0.4					
56 EMILIN1	0.7 0.4 0.6 0.6 0.8 0.6 0.4 0.6 0.7 0.6 0 0.1 0.7 0.5	155 DIO2	0.6 0.5 0.7 0.2 0.5 0.5 0.5 0.7 0.7 0.6 0.3 0.2 -0 0.4					
57 NID2	0.7 0.7 0.6 0.6 0.8 0.4 0.4 0.7 0.8 0.6 0.2 0.5 -0 0.5	156 SPOCK1	0.5 0.7 0.8 0.5 0.5 0.4 0.1 0.8 0.3 0.6 -0 0.5 0.1 0.4					
58 COL6A1	0.7 0.5 0.6 0.5 0.8 0.6 0.3 0.6 0.7 0.6 0.1 0.3 0.5 0.5 0.7 0.7 0.8 0.3 0.6 0.4 0.3 0.7 0.7 0.5 0.3 0.3 0.6 0.5	157 GG15 158 PALLD	$\begin{bmatrix} 0.6 & 0.1 & 0.6 & 0.5 & 0.7 & 0.5 & 0.4 & 0.3 & 0.7 & 0.5 & 0.2 & 0.3 & 0.3 & 0.4 \\ \end{bmatrix} 0.7 & 0.6 & 0.7 & 0.3 & 0.4 & 0.5 & 0.1 & 0.6 & 0.3 & 0.6 & 0.1 & 0.1 & 0.5 & 0.4 \\ 0.7 & 0.6 & 0.5 & 0.6 & 0.6 & 0.6 & 0.6 & 0.6 & 0.6 & 0.6 & 0.6 \\ 0.7 & 0.6 & 0.5 & 0.6 & $					
60 TNFAIP6	0.8 0.6 0.7 0.5 0.7 -0 0 0.8 0.6 0.7 0.3 0.7 0.7 0.5	160 LGALS1	0.7 0.6 0.5 0.3 0.6 0.4 0.3 0.6 0.6 0.6 0.4 -0 0.4 0.3 0.4					
61 BCN3	0.7 0.4 0.5 0.4 0.7 0.4 0.3 0.6 0.6 0.6 0.4 0.6 0.6 0.5		0.6 0.4 0.5 0.4 0.4 0.4 0.2 0.6 0.5 0.6 0.1 0.3 0.5 0.4					
62 FAM26E	0.7 0.7 0.7 0.6 0.6 0.3 0.5 0.6 0.6 0.6 0.4 0.4 0.1 0.5	161 CPAMT	0.6 0.6 0.3 0.7 0.4 0.6 0.7 0.4 0.6 0.7 -0 -0 0.5 0.2 0.4					
63 COL5A3	0.6 0.6 0.6 0.4 0.7 0.4 0.4 0.6 0.8 0.8 0.2 0.6 0.1 0.5	162 ADAMTS6	0.6 0.6 0.6 0.3 0.5 0.3 0.4 0.3 0.5 0.1 0.4 0.3 0.5 0.4					
64 DACT1 65 GEPT2	0.7 0.7 0.5 0.6 0.8 0.5 0.3 0.7 0.8 0.6 0.2 0.3 -0 0.5 0.7 0.5 0.7 0.4 0.5 0.5 0.3 0.6 0.6 0.7 0.1 0.5 0.6 0.5	164 NNMT	0.7 0.3 0.7 0.3 0.6 0.2 0.2 0.2 0.2 0.5 0.6 0.2 0.3 0.8 0.4 0.4 0.4 0.6 0.2 0.2 0.2 0.2 0.5 0.6 0.2 0.3 0.8 0.4					
66 MXRA8 67 CCDC80	0.7 0.5 0.7 0.5 0.8 0.4 0.1 0.4 0.8 0.5 0.3 0.4 0.5 0.5 0.7 0.4 0.7 0.2 0.6 0.6 0.5 0.7 0.6 0.7 0.2 0.2 0.4 0.5	165 FMF22 166 TGFBI 167 CLEC11A	0.4 0.4 0.6 0.4 0.7 0.4 0.2 0.4 0.7 0.7 0.2 0.1 0.5 0.4 0.5 0.6 0.1 0.3 0.3 0.6 0.2 0.5 0.5 0.6 0.4 0.4 0.5 0.4 0.7 0.4 0.5 0.2 0.5 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.5 0.4					
68 ANGPTL2 69 MMP14	0.7 0.6 0.8 0.5 0.7 0.2 0.2 0.7 0.8 0.7 0.2 0.3 0.5 0.5 0.6 0.6 0.6 0.3 0.6 0.4 -0 0.6 0.6 0.7 0.2 0.7 0.6 0.5	167 CLECTIA 168 CCL11 169 ZEDM2	0.7 0.4 0.5 0.4 0.6 0.5 0.2 0.0 0.5 0.2 0.2 0.3 0.2 0.4 0.7 0.3 0.2 0.4 0.4 0.5 0.3 0.7 0.6 0.7 0.2 -0 0.6 0.4 0.7 0.6 0.7 0.2 0.5 0.4 0.4 0.5 0.6 0.3 0.3 0.3 0.1 0.1 0.4					
70 KIF26B	0.6 0.7 0.6 0.4 0.6 0.4 0.1 0.6 0.7 0.7 0.3 0.5 0.3 0.5	170 GUCA1A	0.8 0.4 0.5 0.5 0.6 0.2 0.6 0.2 0.1 0.7 0.6 0 0.1 0.7 0.2 0.4					
71 FIBIN	0.9 0.7 0.8 0.5 0.8 -0 0 0.6 0.8 0.5 0.5 0.3 0.3 0.5		0.4 0.5 0.4 0.5 0.6 0.2 0.6 0.3 0.5 0.5 0.4 0.2 0.5 0.6 0.4					
72 MRC2	0.6 0.5 0.7 0.5 0.6 0.6 0.4 0.4 0.7 0.5 0.2 0.4 0.4 0.5	172 TGFB1I1	0.6 0.4 0.5 0.4 0.6 0.4 0.3 0.5 0.7 0.6 -0 0.1 0.3 0.4					
73 KCND2	0.2 0.5 0.7 0.5 0.8 0.4 0.1 0.7 0.7 0.4 0.3 0.6 0.7 0.5		0.6 0.4 0.5 0.2 0.6 0.4 0.3 0.5 0.7 0.6 -0 0.1 0.3 0.4					
74 ALPK2	0.6 0.7 0.7 0.6 0.6 -0 0.1 0.7 0.7 0.8 0.2 0.3 0.7 0.5	174 NUAK1	0.4 0.6 0.6 0.2 0.4 0.4 0.4 0.6 0.5 0.7 0.2 0.5 0.1 0.4					
75 ADAMTS14	0.7 0.6 0.4 0.4 0.7 0.5 0.1 0.4 0.6 0.4 0.3 0.4 0.7 0.5	175 AL DH1L 2	0.7 0.6 0.4 0.3 0.4 0.5 0.4 0.6 0.4 0.4 0.1 0.3 0.3 0.4					
76 TWIST1 77 ACTA2	0.6 0.2 0.7 0.3 0.6 0.5 0.5 0.7 0.5 0.6 0.1 0.5 0.6 0.5 0.6 0.4 0.6 0.6 0.8 0.4 0.5 0.7 0.7 0.7 -0 0.1 0.3 0.5	176 RUNX2	0.7 0.6 0.7 0.3 0.4 0.5 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7					
78 LAMA4	0.6 0.6 0.7 0.5 0.7 0.4 0.3 0.5 0.8 0.7 0.3 0.2 0.1 0.5	178 CCIN	0.6 0.5 0.4 0.4 0.6 0.5 0.2 0.5 0.6 0.1 0.1 0.3 0.5 0.4					
79 TAGLN	0.7 0.4 0.7 0.6 0.8 0.5 0.5 0.7 0.7 0.6 -0 0 0.4 0.5	179 MSC	0.7 0.4 0.6 0.4 0.5 0.1 0.1 0.6 0.3 0.6 0.3 0.5 0.4					
80 CERCAM	0.6 0.4 0.7 0.4 0.6 0.5 0.4 0.6 0.6 0.5 0.1 0.5 0.3 0.5	180 PRR16	0.6 0.4 0.6 0.3 0.4 0.5 0.4 0.6 0.5 0.4 0.2 0.4 0.2 0.4					
81 FBLN2	0.6 0.4 <u>0.7</u> 0.3 0.7 0.4 0.4 0.6 0.7 0.4 0.3 0.3 0.6 0.5	181 LZTS1	0.4 0.3 0.6 0.4 0.5 0.3 0.3 0.5 0.5 0.5 0.3 0.3 0.4 0.4					
82 CALD1	0.7 0.5 0.8 0.5 0.7 0.3 0.1 0.6 0.8 0.6 0.1 0.2 0.5 0.5	182 FILIP1L	0.5 0.6 0.7 0.4 0.5 0.3 0.2 0.4 0.6 0.6 0.2 0 0.2 0.4					
83 ECM2	0.7 0.6 0.7 0.4 0.7 0.3 0.2 0.5 0.8 0.6 0.3 0.3 0.3 0.5	183 ZNE521	0.6 0.2 0.7 0.5 0.7 0.2 0.4 0.4 0.8 0.4 0.3 0.1 -0 04					
84 MEDAG	0.5 0.3 0.7 0.3 0.5 0.4 0.5 0.5 0.5 0.6 0.4 0.4 0.6 0.5	184 PMEPA1	0.5 0.5 0.3 0.4 0.4 0.4 0.4 0.5 0.6 0.6 -0 0.4 0.6 0.4					
85 TMEM119	0.6 0.2 0.7 0.3 0.7 0.6 0.5 0.4 0.6 0.4 0.4 0.3 0.6 0.5	185 TMEM158	0.6 0.4 0.2 0.4 0.3 0.6 0.4 0.7 0.2 0.7 -0 0.4 0.7 0.4					
86 TGFB3	0.7 0.3 0.7 0.3 0.7 0.6 0.4 0.6 0.7 0.6 -0 0.4 0.6 0.5	186 CHN1	0.5 0.3 0.7 0.4 0.6 0.4 0.2 0.5 0.6 0.5 0.2 0.2 0.4 0.4					
87 EDNRA	0.6 0.6 0.6 0.4 0.5 0.3 0.5 0.4 0.7 0.7 0.1 0.3 0.5 0.5	187 TSHZ3	0.5 0.6 0.7 0.2 0.4 0.6 0.5 0.6 0.6 0.5 -0 0.2 0 0.4 0.4					
88 FSTL1	0.6 0.6 0.8 0.4 0.7 0.3 0.1 0.6 0.6 0.6 0.1 0.4 0.6 0.5	188 MICAL2	0.4 0.6 0.2 0.3 0.5 0.5 0.3 0.3 0.6 0.5 0.2 0.3 0.7 0.4					
89 C1QTNF6	0.4 0.5 0.4 0.3 0.5 0.4 0.1 0.6 0.6 0.7 0.2 0.7 0.6 0.5	189 LMCD1	0.6 0.4 0.5 0.2 0.7 0.4 0.3 0.4 0.5 0.2 0.1 0.4 0.6 0.4					
90 SCARF2	0.7 0.5 0.6 0.5 0.8 0.5 0.3 0.5 0.7 0.3 0.2 0.5 0.1 0.5	190 SNAI2	0.3 0.4 0.7 0.2 0.3 0.5 0.5 0.7 0.3 0.8 -0 0.5 0.5 0.4					
91 RGS4	0.7 0.4 0.6 0.4 0.6 0.5 0.5 0.6 0.5 0.6 0.2 0.2 0.6 0.5	191 GALNT15	0.6 0.5 0.6 0.6 0.7 -0 0.2 0.6 0.7 0.5 0.2 0.2 0.2 0.4					
92 FAM180A	0.7 0.5 0.7 0.4 0.4 0.5 0.4 0.4 0.6 0.3 0.4 0.2 0.7 0.5	192 CSGALNACT2	2 0.5 0.4 0.6 0.2 0.4 0.2 0.3 0.4 0.5 0.4 0.4 0.4 0.3 0.6 0.4					
93 OLFML1	0.7 0.5 0.7 0.4 0.7 0.4 0.4 0.4 0.4 0.8 0.6 0.1 0.2 0.4 0.5	193 BCAT1	0.5 0.6 0.8 0.3 0.4 0.5 0.2 0.1 0.3 0.1 0.2 0.6 0.6 0.4					
94 MSRB3	0.6 0.5 0.8 0.5 0.7 0.5 0.4 0.5 0.7 0.7 0.1 0.1 0.2 0.5	194 AXL	0.6 0.6 0.7 0.2 0.4 0.4 0.1 0.4 0.5 0.4 0.2 0.2 0.6 0.4					
95 CRISPLD2	0.6 0.5 0.7 0.4 0.7 0.4 0.2 0.6 0.7 0.8 -0 0.2 0.6 0.5	195 CILP2	0.3 0.5 0.3 0.4 0.5 0.6 0.3 0.7 0.5 0.4 0.2 0.4 0.3 0.4					
96 GPC6 97 SOX11	0.7 0.7 0.8 0.6 0.7 0.1 -0 0.6 0.7 0.4 0.3 0.3 0.2 0.5 0.5 0.3 0.7 0.6 0.7 0.4 0.4 0.4 0.4 0.3 0.3 0.6 0.5 0.5							
98 GPR1 99 GAS1	0.7 0.8 0.5 0.3 0.1 0.3 0.3 0.7 0.5 0.5 0.3 0.5 0.6 0.5 0.7 0.5 0.7 0.2 0.6 0.5 0.3 0.7 0.7 0.5 -0 0.3 0.5 0.5							
100 SERPINF1	0.6 0.6 0.7 0.3 0.6 0.6 0.1 0.6 0.4 0.7 -0 0.3 0.7 0.5							

fibrosis, osteogenesis, wound healing, EMT, cardiovascular disease, and transforming growth factor β (TGF β) signaling (Table S5). *COL11A1*-correlated gene set enrichment analysis of chemical and genetic perturbations (CGP) showed the most significant overlap with genes up-regulated in association with cancer invasiveness, advanced stage, stromal cell stemness, and epithelial-mesenchymal transition (EMT) (Table S6). The uniformity of the *COL11A1*-correlated genes across different cancers might also indicate that these genes are regulated by a common mechanism. Ingenuity Pathway Analysis showed that transforming growth factor beta 1 (TGFB1) is the most strongly associated upstream regulator of the pan-cancer *COL11A1*-correlated genes (Table S7).

COL11A1-correlated genes are associated with poor patient survival and represent potential therapeutic targets

To determine whether the pan-cancer *COL11A1*-correlated gene set is associated with patient survival in the ~18,000 cases of liquid and solid malignancies in the PRECOG dataset [36], we compared survival z-scores for the 195 pan-cancer *COL11A1*-correlated genes with the survival z-scores for all genes in the dataset. This analysis showed that expression of the pan-cancer *COL11A1*-correlated gene set is significantly associated with poor survival (Fig. 5E).

Expression profile analyses have identified a mesenchymal molecular subtype of cancer associated with poor survival in multiple cancers including ovarian [47], pancreatic [46], gastric [48] and colon [49]. In colon cancer, it has been shown that the mesenchymal molecular subtype, which constitutes approximately 23% of colon cancers, has no significant enrichment for targetable mutations or copy number changes in candidate driver genes [49]. Even if future research identifies targetable events in cancer cells of the mesenchymal subtype, it is predicted that enrichment in CAFs and excessive ECM deposition will reduce therapeutic efficacy by creating a physical barrier for drug transport. Thus, simultaneous targeting of CAFs and cancer cells may be necessary for chemotherapeutic accessibility.

To identify therapies that preferentially target activated CAFs and spare normal tissues, we combined drug target searches with expression profile datasets in cancers and normal tissues. Ingenuity Pathway Analysis and searches of the Clinicaltrials.gov (clinicaltrials.gov) and ChEMBL [50] (ebi.ac.uk/chembl) databases revealed that, of the 195 pan-cancer *COL11A1*-correlated genes, 16 are targets of drugs used in clinical trials (Table S8) and 30 are targets of bioactive compounds (Table S9).

To test whether any of the drug/bioactive compound target genes in Tables S8 and S9 are exclusively expressed in activated CAFs, we determined the expression levels of each gene in normal tissues in the GTEx database [43] and in normal vs. cancer tissues in the GENT database [35]. Additionally, to test whether selected genes were exclusively overexpressed in cancer tissues and not in non-cancer associated pathologies such as inflammation and fibrosis, we compared expression of these genes in normal tissues, inflamed/ fibrotic tissues and cancer tissues of the colon and lung. Unlike COL11A1, which has restricted expression in normal tissues (Fig. S2) and is highly elevated in cancer vs. normal tissues (Fig. 4A) and in cancer vs. inflamed/fibrotic tissues (Fig. 4B) most of the target genes were expressed at high levels in at least one normal tissue and/or exhibited equivalent expression levels in cancers vs. normal tissues, and cancers vs. inflamed/fibrotic tissues. One example of this pattern of expression is CTGF (Figs. S6 and S7). However, FN1, MMP13, MMP14, FAP, LOX and COL1A2 exhibited restricted expression in normal tissues and elevated expression in cancer vs. normal tissues. One example of this pattern of expression is FAP (Figs. S8 and S9). Among FN1, MMP13, MMP14, FAP, LOX and COL1A2, FAP was also differentially expressed between inflamed/fibrotic tissues and cancer tissues although this difference in expression was not as prominent as for COL11A1 (compare Fig. S9B and Fig. 4B).

Discussion

Whereas in the past most therapeutic approaches have focused on the cancer cell and its genetic alterations, it is becoming apparent that the microenvironment plays an equally important role in cancer evolution. We now recognize that the cancer stroma not only serves as a scaffold for tissue organization and integrity but also provides key biomechanical and molecular signals that can affect various aspects of cancer growth and biology, including proliferation, survival, metabolism, stem cell fate, and response to chemotherapy [51,52]. As the genetically stable subpopulations of the cancer microenvironment are increasingly recognized as potentially effective therapeutic targets, a comprehensive definition of their molecular characteristics will be a prerequisite for the development of more precise and less toxic therapies. Currently, there are no reliable methods to distinguish activated CAFs from non-activated CAFs, which although frequently abundant within cancers do not necessarily contribute to adverse outcome. We identified COL11A1 among the top differentially expressed genes in multiple cancer types when cancer tissues and their corresponding normal tissues were compared. We showed that an increase in COL11A1 expression is associated with progression and poor survival in most cancer types. *COL11A1* is a particularly attractive therapeutic target because of its restricted expression in normal tissues and non-cancer conditions, such as inflammation and fibrosis.

The identification of a highly conserved set of genes associated with COL11A1 expression in breast, lung, pancreas, stomach, urinary bladder, colon, thyroid, cervix, head and neck, thyroid, ovary, and prostate cancers was somewhat surprising in light of the genetic and phenotypic diversity among these cancer types. The conserved expression signature indicates that the reaction of stromal tissues to invading epithelial cancer cells may be similar regardless of the organ of origin or genetic alterations. This has significant implications for the development of pan-cancer therapeutic strategies. Our analysis of potential upstream regulators of the pancancer COL11A1-correlated genes revealed TGFB1 as the most likely candidate. Dysregulation of TGF β signaling is recognized as the main driver of fibroblast activation and represents the most logical therapeutic target [53]. In immortalized normal ovary fibroblast cell culture, recombinant TGFB1 has been shown to upregulate expression of COL11A1 and several other COL11A1-correlated genes; this effect was abrogated by the TGF β receptor inhibitor A83-01 [32]. However, the pleiotropic nature of TGF β signaling carries the risk of adverse effects in patients [54]. In order to abrogate fibroblast activation without the negative effects of pan-TGF β therapy, it will be necessary to design therapies for more specific targets.

Sixteen of the 195 pan-cancer COL11A1-correlated genes are targets of drugs in clinical trials. These targets include CTGF, a matricellular protein involved in myofibroblast formation in cancer as a binding factor of fibronectin and a downstream mediator of TGFβ. A clinical trial (clinicaltrials.gov; NCT02210559) is currently enrolling patients with unresectable pancreatic cancer to test a combination of conventional chemotherapy and FG-3019, the human monoclonal antibody that interferes with the action of CTGF. Our expression analyses, consistent with the published literature (reviewed in Ref. [55]), show that CTGF is expressed at similar levels in normal tissues and cancers and therefore unlikely to be a safe therapeutic target for cancer treatment. In contrast, targets such as FN1, FAP, MMP13, LOX and COL2A1 are markedly increased in cancer/ inflammation/fibrosis compared to normal tissues and are thus predicted to have a better safety profile than agents targeting CTGF. Our assessment is consistent with the published moderate and reversible toxicity of the FN1-targeting monoclonal antibody-cytokine fusion protein L19-IL2, which is in a phase I/II study for patients with solid cancers (clinicaltrials.gov; NCT01058538) [56,57]. Our expression analyses show that one of the targets of bioactive

compounds. FAP. has low expression in normal tissues and also lower expression in inflamed/fibrotic tissues than in cancer. Yet, this difference in expression may not be sufficient for specific targeting of activated CAFs as studies in mouse models have shown that depletion of the FAP+ stroma can induce toxicity due to expression of FAP in the mesenchymal cells of bone marrow, muscle and adipose tissue [58,59]. Future efforts to specifically target activated CAFs can be improved by designing novel therapies to target genes that exhibit restricted expression in nonmalignant tissues. When considering COL11A1 as a cancer-specific biomarker and therapeutic target, it is important to note that several normal tissues express COL11A1. The potential side effects of COL11A1 targeting can be predicted based on the phenotypes of mice and humans expressing mutant nonfunctional forms of COL11A1. A homozygous truncating mutation of COL11A1 in mice results in poorly formed cartilage [60], while human COL11A1 mutations are associated with articular hypermobility, dermal hyperelasticity and widespread tissue fragility [61]. Of note, these collagenopathies are associated with the absence of COL11A1 function throughout development and are unlikely to manifest upon transient targeting of COL11A1 in adults. Additionally, since COL11A1 and many of the pan-cancer COL11A1coexpressed genes have multiple tissue-specific mRNA splicing isoforms, it will be valuable for future targeting purposes to determine if any mRNA isoforms are specifically expressed in activated CAFs [62].

Acknowledgments

We thank S. Swartwood (Biobank and Translational Research Core) for in situ hybridization; F. Chung (Pathology Service) for immunohistochemistry; G. Martins (Flow Cytometry Core) for assistance with FACS analysis; and K. Daniels for assistance with manuscript preparation. SO is supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Ovarian Cancer Research Program Award No. W81XWH-14-1-0107 and W81XWH-16-1-0190, the National Cancer Institute grants R21CA194626-01 and 1R01CA208753-01, and the Cantor-UCLA Women's Health Center Executive Advisory Board & NCATS UCLA Clinical and Translational Science Institute grant UL1TR000124. BYK is supported by the American Cancer Society Early Detection Professorship Grant (SIOP-06-258-01-COUN). BYK, SO, KL and WRW are supported by the Ovarian Cancer Research Fund Program Project Development Award and DJC is supported by the Ovarian Cancer Research Fund Ann Shreiber Mentored Investigator Award. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the funding agencies.

Conflict of interest

The authors declare no conflict of interest.

Appendix:: Supplementary material

Supplementary data to this article can be found online at doi:10.1016/j.canlet.2016.09.001.

References

- [1] R. Kalluri, M. Zeisberg, Fibroblasts in cancer, Nat. Rev. Cancer 6 (2006) 392-401.
- [2] B. Hinz, S.H. Phan, V.J. Thannickal, M. Prunotto, A. Desmouliere, J. Varga, et al., Recent developments in myofibroblast biology: paradigms for connective tissue remodeling, Am. J. Pathol. 180 (2012) 1340–1355.
- [3] A. Desmouliere, C. Guyot, G. Gabbiani, The stroma reaction myofibroblast: a key player in the control of tumor cell behavior, Int. J. Dev. Biol. 48 (2004) 509–517.
- [4] H.E. Barker, T.R. Cox, J.T. Erler, The rationale for targeting the LOX family in cancer, Nat. Rev. Cancer 12 (2012) 540–552.

- [5] M.J. Paszek, N. Zahir, K.R. Johnson, J.N. Lakins, G.I. Rozenberg, A. Gefen, et al., Tensional homeostasis and the malignant phenotype, Cancer Cell 8 (2005) 241–254.
- [6] P.P. Provenzano, D.R. Inman, K.W. Eliceiri, J.G. Knittel, L. Yan, C.T. Rueden, et al., Collagen density promotes mammary tumor initiation and progression, BMC Med. 6 (2008) 11.
- [7] D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nat. Med. 19 (2013) 1423–1437.
- [8] R.K. Jain, Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers, J. Clin. Oncol. 31 (2013) 2205–2218.
- [9] W. Qiu, M. Hu, A. Sridhar, K. Opeskin, S. Fox, M. Shipitsin, et al., No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas, Nat. Genet. 40 (2008) 650–655.
- [10] J.N. Arnold, L. Magiera, M. Kraman, D.T. Fearon, Tumoral immune suppression by macrophages expressing fibroblast activation protein-alpha and heme oxygenase-1, Cancer Immunol. Res. 2 (2014) 121–126.
- [11] C. Feig, J.O. Jones, M. Kraman, R.J. Wells, A. Deonarine, D.S. Chan, et al., Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 20212–20217.
- [12] M. Kraman, P.J. Bambrough, J.N. Arnold, E.W. Roberts, L. Magiera, J.O. Jones, et al., Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha, Science 330 (2010) 827–830.
- [13] A. Lo, L.C. Wang, J. Scholler, J. Monslow, D. Avery, K. Newick, et al., Tumorpromoting desmoplasia is disrupted by depleting FAP-expressing stromal cells, Cancer Res. 75 (2015) 2800–2810.
- [14] M. Loeffler, J.A. Kruger, A.G. Niethammer, R.A. Reisfeld, Targeting tumorassociated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake, J. Clin. Invest. 116 (2006) 1955–1962.
- [15] P.P. Provenzano, C. Cuevas, A.E. Chang, V.K. Goel, D.D. Von Hoff, S.R. Hingorani, Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma, Cancer Cell 21 (2012) 418–429.
- [16] B.C. Ozdemir, T. Pentcheva-Hoang, J.L. Carstens, X. Zheng, C.C. Wu, T.R. Simpson, et al., Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival, Cancer Cell 25 (2014) 719–734.
- [17] M.R. Junttila, F.J. de Sauvage, Influence of tumour micro-environment heterogeneity on therapeutic response, Nature 501 (2013) 346–354.
- [18] A. Kawase, G. Ishii, K. Nagai, T. Ito, T. Nagano, Y. Murata, et al., Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma, Int. J. Cancer 123 (2008) 1053–1059.
- [19] M.J. Ronty, S.K. Leivonen, B. Hinz, A. Rachlin, C.A. Otey, V.M. Kahari, et al., Isoform-specific regulation of the actin-organizing protein palladin during TGF-beta1-induced myofibroblast differentiation, J. Invest. Dermatol. 126 (2006) 2387–2396.
- [20] T.A. Brentnall, L.A. Lai, J. Coleman, M.P. Bronner, S. Pan, R. Chen, Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion, PLoS ONE 7 (2012) e30219.
- [21] O. De Wever, Q.D. Nguyen, L. Van Hoorde, M. Bracke, E. Bruyneel, C. Gespach, et al., Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac, FASEB J. 18 (2004) 1016–1018.
- [22] K. Pietras, J. Pahler, G. Bergers, D. Hanahan, Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting, PLoS Med. 5 (2008) e19.
- [23] N. Erez, M. Truitt, P. Olson, S.T. Arron, D. Hanahan, Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner, Cancer Cell 17 (2010) 135–147.
- [24] H. Sugimoto, T.M. Mundel, M.W. Kieran, R. Kalluri, Identification of fibroblast heterogeneity in the tumor microenvironment, Cancer Biol. Ther. 5 (2006) 1640–1646.
- [25] F. Vazquez-Villa, M. Garcia-Ocana, J.A. Galvan, J. Garcia-Martinez, C. Garcia-Pravia, P. Menendez-Rodriguez, et al., COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human invasive carcinoma-associated stromal cells and carcinoma progression, Tumor Biol. 36 (2015) 2213–2222.
- [26] Z. Raglow, S.M. Thomas, Tumor matrix protein collagen XIalpha1 in cancer, Cancer Lett. 357 (2015) 448–453.
- [27] R.J. Wenstrup, S.M. Smith, J.B. Florer, G. Zhang, D.P. Beason, R.E. Seegmiller, et al., Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon, J. Biol. Chem. 286 (2011) 20455–20465.
- [28] S.M. Smith, D.E. Birk, Focus on molecules: collagens V and XI, Exp. Eye Res. 98 (2012) 105–106.
- [29] P. Farmer, H. Bonnefoi, P. Anderle, D. Cameron, P. Wirapati, V. Becette, et al., A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer, Nat. Med. 15 (2009) 68–74.
- [30] W.Y. Cheng, J.J. Kandel, D.J. Yamashiro, P. Canoll, D. Anastassiou, A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma, PLoS ONE 7 (2012) e34705.
- [31] J. Boguslawska, H. Kedzierska, P. Poplawski, B. Rybicka, Z. Tanski, A. Piekielko-Witkowska, Expression of genes involved in cellular adhesion and ECM-remodelling correlates with poor survival of renal cancer patients, J. Urol. 195 (2016) 1892–1902.
- [32] D.J. Cheon, Y. Tong, M.S. Sim, J. Dering, D. Berel, X. Cui, et al., A collagenremodeling gene signature regulated by TGF-beta signaling is associated with

metastasis and poor survival in serous ovarian cancer, Clin. Cancer Res. 20 (2014) 711–723.

- [33] Y.H. Wu, T.H. Chang, Y.F. Huang, H.D. Huang, C.Y. Chou, COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer, Oncogene 33 (2014) 3432–3440.
- [34] J.A. Beach, P.J. Aspuria, D.J. Cheon, K. Lawrenson, H. Agadjanian, C.S. Walsh, et al., Sphingosine kinase 1 is required for TGF-beta mediated fibroblast-tomyofibroblast differentiation in ovarian cancer, Oncotarget 7 (2016) 4167–4182.
- [35] G. Shin, T.W. Kang, S. Yang, S.J. Baek, Y.S. Jeong, S.Y. Kim, GENT: gene expression database of normal and tumor tissues, Cancer Inform. 10 (2011) 149–157.
- [36] A.J. Gentles, S.V. Bratman, L.J. Lee, J.P. Harris, W. Feng, R.V. Nair, et al., Integrating tumor and stromal gene expression signatures with clinical indices for survival stratification of early-stage non-small cell lung cancer, J. Natl. Cancer Inst. 107 (2015).
- [37] E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, et al., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov. 2 (2012) 401–404.
- [38] T.Z. Tan, H. Yang, J.R. Ye, J. Low, M. Choolani, D.S.P. Tan, et al., CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype, Oncotarget 6 (2015) 43843–43852.
- [39] S. Julien, A. Merino-Trigo, L. Lacroix, M. Pocard, D. Goere, P. Mariani, et al., Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer, Clin. Cancer Res. 18 (2012) 5314–5328.
- [40] T.L. Yeung, C.S. Leung, K.K. Wong, G. Samimi, M.S. Thompson, J. Liu, et al., TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment, Cancer Res. 73 (2013) 5016–5028.
- [41] K. Lawrenson, B. Grun, N. Lee, P. Mhawech-Fauceglia, J. Kan, S. Swenson, et al., NPPB is a novel candidate biomarker expressed by cancer-associated fibroblasts in epithelial ovarian cancer, Int. J. Cancer 136 (2015) 1390–1401.
- [42] T.Z. Tan, Q.H. Miow, Y. Miki, T. Noda, S. Mori, R.Y. Huang, et al., Epithelialmesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients, EMBO Mol. Med. 6 (2014) 1279–1293.
- [43] G. Consortium, The Genotype-Tissue Expression (GTEx) project, Nat. Genet. 45 (2013) 580–585.
- [44] R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition, J. Clin. Invest. 119 (2009) 1420–1428.
- [45] T. Shay, J. Kang, Immunological Genome Project and systems immunology, Trends Immunol. 34 (2013) 602–609.
- [46] R.A. Moffitt, R. Marayati, E.L. Flate, K.E. Volmar, S.G. Loeza, K.A. Hoadley, et al., Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma, Nat. Genet. 47 (2015) 1168–1178.
- [47] R.G. Verhaak, P. Tamayo, J.Y. Yang, D. Hubbard, H. Zhang, C.J. Creighton, et al., Prognostically relevant gene signatures of high-grade serous ovarian carcinoma, J. Clin. Invest. 123 (2013) 517–525.

- [48] R. Cristescu, J. Lee, M. Nebozhyn, K.M. Kim, J.C. Ting, S.S. Wong, et al., Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes, Nat. Med. 21 (2015) 449–456.
- [49] J. Guinney, R. Dienstmann, X. Wang, A. de Reynies, A. Schlicker, C. Soneson, et al., The consensus molecular subtypes of colorectal cancer, Nat. Med. 21 (2015) 1350–1356.
- [50] A.P. Bento, A. Gaulton, A. Hersey, L.J. Bellis, J. Chambers, M. Davies, et al., The ChEMBL bioactivity database: an update, Nucleic Acids Res. 42 (2014) D1083– D1090.
- [51] M. Egeblad, M.G. Rasch, V.M. Weaver, Dynamic interplay between the collagen scaffold and tumor evolution, Curr. Opin. Cell Biol. 22 (2010) 697–706.
- [52] I. Malanchi, A. Santamaria-Martinez, E. Susanto, H. Peng, H.A. Lehr, J.F. Delaloye, et al., Interactions between cancer stem cells and their niche govern metastatic colonization, Nature 481 (2012) 85–89.
- [53] J. Massague, TGFbeta signalling in context, Nat. Rev. Mol. Cell Biol. 13 (2012) 616-630.
- [54] E.C. Connolly, J. Freimuth, R.J. Akhurst, Complexities of TGF-beta targeted cancer therapy, Int. J. Biol. Sci. 8 (2012) 964–978.
- [55] S. Kubota, M. Takigawa, Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions, Clin. Sci. 128 (2015) 181–196.
- [56] M. Johannsen, G. Spitaleri, G. Curigliano, J. Roigas, S. Weikert, C. Kempkensteffen, et al., The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma, Eur. J. Cancer 46 (2010) 2926– 2935.
- [57] T.K. Eigentler, B. Weide, F. de Braud, G. Spitaleri, A. Romanini, A. Pflugfelder, et al., A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma, Clin. Cancer Res. 17 (2011) 7732–7742.
- [58] E. Tran, D. Chinnasamy, Z. Yu, R.A. Morgan, C.C. Lee, N.P. Restifo, et al., Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia, J. Exp. Med. 210 (2013) 1125–1135.
- [59] E.W. Roberts, A. Deonarine, J.O. Jones, A.E. Denton, C. Feig, S.K. Lyons, et al., Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia, J. Exp. Med. 210 (2013) 1137–1151.
- [60] Y. Li, D.A. Lacerda, M.L. Warman, D.R. Beier, H. Yoshioka, Y. Ninomiya, et al., A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis, Cell 80 (1995) 423–430.
- [61] J. Spranger, The type XI collagenopathies, Pediatr. Radiol. 28 (1998) 745–750.
- [62] U.H. Weidle, D. Maisel, S. Klostermann, E.H. Weiss, M. Schmitt, Differential splicing generates new transmembrane receptor and extracellular matrix-related targets for antibody-based therapy of cancer, Cancer Genomics Proteomics 8 (2011) 211–226.

A Paradoxical Correlation of Cancer-Associated Fibroblasts With Survival Outcomes in B-Cell Lymphomas and Carcinomas

Marcela Haro¹ and Sandra Orsulic^{1,2,3*}

¹ Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States, ² Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States, ³ Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States

The tumor microenvironment is increasingly recognized as an active participant in

tumor progression. A recent pan-cancer genomic profile analysis has revealed that gene signatures representing components of the tumor microenvironment are robust predictors of survival. A stromal gene signature representing fibroblasts and extracellular matrix components has been associated with good survival in diffuse large B-cell lymphoma (DLBCL). Paradoxically, a closely related gene signature has been shown to correlate with poor survival in carcinomas, including breast, ovarian, pancreatic, and colorectal cancer. To date, there has been no explanation for this paradoxical inverse correlation with survival outcomes in DLBCL and carcinomas. Using public gene data sets, we confirm that the DLBCL stromal gene signature is associated with good survival in ovarian cancer and several other solid tumors. We show that the DLBCL stromal gene signature is enriched in lymphoid fibroblasts in normal lymph nodes and in cancer-associated fibroblasts (CAFs) in ovarian cancer. Based on these findings, we propose several possible mechanisms by which CAFs may contribute to opposite survival outcomes in B-cell lymphomas and carcinomas.

Keywords: B cells, B-cell lymphoma, CAFs, cancer-associated fibroblasts, DLBCL, gene signature, ovarian cancer, tumor microenvironment

INTRODUCTION

During the past decade, gene expression profile analyses of frozen tumor pieces have been widely used to quantify various biological characteristics of malignant tumor cells and the microenvironment in which they reside. Individual biological characteristics and dominant molecular pathways in tumors are frequently associated with expression of a defined set of genes,

OPEN ACCESS

Edited by:

Lucio Miele, LSU Health Sciences Center New Orleans, United States

Reviewed by:

Deyin Xing, Johns Hopkins University, United States Lasse Dahl Ejby Jensen, Linköping University, Sweden

> *Correspondence: Sandra Orsulic Sandra.Orsulic@cshs.org

Specialty section:

This article was submitted to Molecular Medicine, a section of the journal Frontiers in Cell and Developmental Biology

> Received: 28 May 2018 Accepted: 09 August 2018 Published: 28 August 2018

Citation:

Haro M and Orsulic S (2018) A Paradoxical Correlation of Cancer-Associated Fibroblasts With Survival Outcomes in B-Cell Lymphomas and Carcinomas. Front. Cell Dev. Biol. 6:98. doi: 10.3389/fcell.2018.00098

Abbreviations: CAF, cancer-associated fibroblast; CD, cluster of differentiation; CXCL, C-X-C motif chemokine ligand; DC, dendritic cells; DLBCL, diffuse large B-cell lymphoma; ECM, extracellular matrix; FDC, follicular dendritic cells; FRC, fibroblastic reticular cells; GC, germinal center; Ig, immunoglobulin; ImmGen, immunological genome project; IPA. ingenuity pathway analysis; MRC, marginal reticular cells; NK, natural killer; PDGFR α , platelet-derived growth factor receptor α ; PDPN, podoplanin; PRECOG, <u>PRE</u>diction of clinical outcomes from genomic profiles; TCGA, the Cancer genome atlas project; TGF β , transforming growth factor β ; TIL, tumor infiltrating lymphocyte; TLS, tertiary lymphoid structure.

known as a gene expression signature. Since phenotypic features represented by gene expression signatures are sometimes associated with clinical features, such as the length of survival of cancer patients or their response to therapy, gene expression signatures can be used as quantitative predictors of clinical outcomes. A recent pan-cancer PREdiction of Clinical Outcomes from Genomic Profiles (PRECOG) analysis revealed that genes in the tumor microenvironment are better predictors of survival than genes expressed in malignant tumor cells (Gentles et al., 2015). The two most prominent components in the microenvironment of solid tumors are fibroblasts and immune cells (Aran et al., 2017). Generally, in carcinomas, genes expressed in fibroblasts are associated with poor survival while genes expressed in immune cells, particularly leukocytes, are associated with good survival (Gentles et al., 2015). Tumor infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLS) are generally associated with improved clinical outcomes as evidenced by the improved overall survival and disease-free survival in various types of tumors (Fridman et al., 2012; Dieu-Nosjean et al., 2014; Barnes and Amir, 2017). However, depending on the type of tumor, tumor stage, and location of TILs within the tumor (tumor bed, invasive margin and stroma), different types of TILs have been associated with both positive and negative prognosis. For example, cytotoxic CD8+ T cells, memory T cells, and CD4+ T helper cells are generally associated with a better prognosis, whereas T regulatory cells, tumor associated macrophages, and myeloid-derived suppressor cells are associated with poor prognosis and can promote tumor progression (Fridman et al., 2012; Kitamura et al., 2015; Barnes and Amir, 2017). Furthermore, fibroblasts in the tumor microenvironment are phenotypically heterogeneous and may exhibit both a proand anti-tumorigenic phenotype (Augsten, 2014). Thus, the tumor microenvironment is a complex network of interaction between tumor cells and components of the stroma, including the extracellular matrix (ECM), and it is currently unclear which factors in the tumor microenvironment control the quantity and distribution of different immune cell subtypes. Specifically, it is unknown if fibroblasts and immune cells affect prognosis independently or through an interdependent interaction.

The functional interaction between fibroblasts and immune cells has been most thoroughly studied in normal lymph nodes and the spleen, where specialized fibroblasts produce ECM to form a network that allows for lymphocyte movement along the matrix in response to chemokine signaling. The presence of lymphoid fibroblasts is necessary for functional attraction, retention, compartmentalization, and survival of immune cells (Koning and Mebius, 2012). Lymphoid fibroblasts are crucial for lymphocyte homeostasis as well as controlling and expanding the lymphocyte pool (Mueller and Germain, 2009). Lymphoid fibroblasts are also key players in mediating functional immune cell interactions in the lymph nodes through direct contact or via secreted molecules (Chang and Turley, 2015). Follicular dendritic cells (FDC) attract B cells to the germinal center (GC) by secreting C-X-C motif chemokine

ligand 13 (CXCL13), while marginal reticular cells (MRC) use a network of follicular conduits to deliver antigens to cognate B cells (Chang and Turley, 2015). By secreting C-C motif chemokine ligands 19 and 21 (CCL19 and CCL21), fibroblastic reticular cells (FRC) recruit mature dendritic cells (DC) and naïve B and T cells to promote cell-cell interactions within the T cell zone (Mueller and Germain, 2009; Brown and Turley, 2015; Fletcher et al., 2015). Recent studies have shown that FRC are important for B-cell homeostasis (Cremasco et al., 2014). This function has been previously ascribed to FDC, however, cell-specific depletion experiments demonstrated that only FRC are crucial for B-cell survival. The mechanism by which FRC support B-cell survival is not entirely clear, but it is thought to involve crosstalk with B cells to control the boundaries of primary B-cell follicles (Cyster, 2010; Mionnet et al., 2013; Cremasco et al., 2014).

Similar to lymphoid fibroblasts in normal lymph nodes, cancer-associated fibroblasts (CAFs) are stromal cells that produce ECM, provide scaffolding, and exert regulatory functions through growth factors, cytokines, and chemokines that can promote tumor growth, angiogenesis, invasion, and metastasis (Kalluri and Zeisberg, 2006; Levental et al., 2009; Lu et al., 2012; Spano and Zollo, 2012; Harper and Sainson, 2014). Recent studies provide evidence that CAFs can also directly or indirectly contribute to immune cell fate and survival (Harper and Sainson, 2014; Costa et al., 2018; Mariathasan et al., 2018; Tauriello et al., 2018). It has recently been shown that a gene signature representing activated CAFs is present in most epithelial tumors (Jia et al., 2016) despite the diversity of resident fibroblasts in different organs and the presence of multiple fibroblast populations within a single tumor type (Costa et al., 2018). Activated CAFs in breast cancer, and possibly in other carcinomas, are associated with immunosuppressive populations of T lymphocytes (Costa et al., 2018). It is unclear if activated CAFs in carcinomas are also associated with immunosuppressive populations of B cells due to poorly defined markers for such cells (Sarvaria et al., 2017). Moreover, studies investigating the associations of B cell subsets with tumor progression using defined B-cell markers have produced conflicting results even within the same tumor type (Guy et al., 2016). An insufficient understanding of the roles of B cells in carcinomas has hindered the development of rational clinical trials targeting B-cells in carcinomas. The remarkable success of B-cell depletion with the cluster of differentiation 20 (CD20) monoclonal antibody, rituximab, in lymphomas and rheumatoid arthritis has sparked interest in rituximab and other B-cell targeted antibodies as possible therapies in carcinomas (Gunderson and Coussens, 2013). Although many carcinomas have significant B cell infiltration (Germain et al., 2014), clinical trials have shown limited benefits of B-cell depletion in carcinomas (Barbera-Guillem et al., 2000; Aklilu et al., 2004), possibly because B cells can have pro-tumorigenic or anti-tumorigenic properties depending on their maturation stage and other conditions that have not yet been defined (Sarvaria et al., 2017).

		B-cell lymphoma					Solid tumor					
Gene	BL	CLL	DLBCL	FL	MCL	ММ	Bladder	Astro cytoma	Glioma	Colon	Head and neck	Ovarian
ACTN1	-0.928	-3.216	-6.211	-1.901	-0.94	0.658	3.312	3.22	4.557	2.36	1.988	1.552
ADAM12	0.746	-0.084	-7.809	-1.749	-0.866	-0.395	0.537	1.653	4.405	1.675	2.051	2.99
BGN	0.842	1.309	-4.115	-1.775	0	-2.627	1.438	2.341	3.643	2.33	3.559	3.09
CEBPA	-1.516	-3.127	-5.644	-1.639	0	-0.977	1.001	-0.041	2.652	-2.664	-1.578	-1.442
COL13A1	-0.313	-1.513	-2.402	0.332	0	-0.001	2.23	2.006	1.613	2.164	1.74	0.893
COL16A1	-0.481	0.252	-3.89	-0.6	0.333	-0.477	2.214	2.49	5.005	-0.546	1.263	4.542
COL1A1	0.349	-1.476	-4.621	-1.581	0	-1.951	3.592	3.326	3.77	1.544	3.354	3.929
COL1A2	-0.097	-0.879	-6.264	-1.605	0	-0.573	2.745	4.432	4.391	2.42	2.634	3.771
COL5A1	0.715	-0.675	-3.366	0.127	0	-0.467	1.957	3.528	4.438	2.328	3.686	3.65
COL5A2	0.969	1.124	-3.962	-1.597	0	-0.777	3.47	3.588	7.322	2.437	3.26	5.256
COL6A2	0.677	-1.368	-3.719	-0.749	-1.415	0.14	2.369	4.591	5.693	1.301	3.12	2.11
COL6A3	1.194	-0.129	-4.502	-1.442	1.37	2.684	1.282	3.005	3.071	2.403	3.141	3.178
COL8A2	-0.212	-0.894	-3.046	0.069	0	-0.905	-0.085	2.942	3.077	-0.007	1.779	2.908
CSF2RA	-1.84	0	-2.861	0	0	-2.39	-0.046	0.193	0	0	0	-1.959
CTGF	-0.5	0.796	-5.525	-0.73	-1.387	-0.775	1.651	1.676	-1.132	2.024	2.381	2.974
CYR61	1.159	0.092	-1.865	0.074	1.837	-0.123	3.342	1.159	3.807	1.678	1.757	3.607
DCN	0.819	0.185	-3.731	-0.026	0	-0.794	0.472	1.113	2.414	1.303	0.917	4.604
EFEMP2	1.823	1.113	-2.797	0.307	0	-5.014	2.112	4.044	7.62	1.684	3.53	2.576
EMP2	-0.057	0.044	-4.122	0.147	0	-0.579	-1.125	4.55	2.985	-0.368	0.452	-1.446
FAP	-1.551	0.374	-7.496	-0.76	-1.266	-0.536	3.522	2.321	3.736	2.366	2.874	4.814
FBN1	1.125	1.079	-4.907	-1.854	0	-0.044	2.151	1.518	2.239	2.311	1.906	4.676
FN1	-1.025	-0.496	-5.638	-1.852	-1.352	2.973	3.251	2.852	5.499	2.628	2.46	4.439
GPNMB	-1.638	-0.153	-6.899	0.513	0	1.112	1.281	3.946	5.214	1.74	-2.745	1.476
HSPG2	-0.267	2.244	-2.792	-1.63	0	0.845	-0.02	4.261	2.989	1.313	2.108	2.396
IL1R1	-1.566	-2.791	-4.858	-0.432	0.804	-1.789	-0.186	1.194	1.217	1.275	0.897	-0.137
ITGAV	0.897	-2.698	-6.933	0.614	-2.033	-0.212	0.402	0.945	0.226	2.253	1.503	1.792
ITGB2	-1.522	-2.053	-5.68	0.558	0.343	-1.803	0.886	0.4	4.299	-0.086	-2.064	-2.339
KITLG	0.896	-0.172	-1.923	1.04	-1.197	0.454	1.113	-0.331	1.091	1.164	-0.721	-0.504
LAMA4	0.445	2.207	-3.683	0.453	0	-3.155	2.474	0.028	3.397	2.415	2.021	2.168
LAMB2	-0.635	0.504	-1.974	-1.052	0	-0.728	0.926	1.686	5.906	0.913	1.836	2.326
LAMB3	1.291	-1.315	-2.703	0.256	0	0.265	-0.927	1.977	3.542	1.516	2.039	-1.966
LOXL1	-1.453	-1.007	-4.202	-1.287	0	-1.92	0.711	3.9	6.299	1.697	0.751	3.664
LTBP2	0.219	-1.562	-7.565	-0.187	0	-1.848	2.849	1.197	3.314	0.542	2.718	1.541
LUM	-0.357	-1.043	-5.663	-0.089	0	-1.859	1.442	3.796	3.723	1.447	1.428	4.841
MFAP2	0.862	0.01	-2.835	0.608	0	-0.68	3.151	3.543	3.011	0.874	1.666	5.462
MMP14	-1.105	2.746	-3.319	0.69	0.681	-1.647	2.046	1.787	4.691	1.786	1.168	2.297
MMP2	-1.227	-0.269	-5.709	-1.128	0.014	-0.545	0.66	1.792	3.631	1.567	3.12	3.084
MMP9	-0.819	-1.238	-7.734	-0.401	-0.12	-0.892	1.8	2.739	5.06	-0.723	0.039	-3.208
PDGFC	0.62	-3.08	-4.268	0.632	0	-0.486	2.788	-3.419	3.639	1.987	2.096	-0.167
PLAU	-1.723	-1.701	-7.712	0.205	0.528	-0.749	2.515	2.302	4.592	0.627	1.521	2.334
POSTN	1,565	0.675	-5.031	-1.266	-0.77	-1.157	3,246	2.76	5.46	2.632	2.092	4.696
SDC2	-0.209	-1.963	-3.763	-0.47	-0.383	-0.664	-1.091	1.405	5.736	2.239	1.659	1.424
SERPINH1	-1.173	2,067	-2.912	-1.224	0	1.565	1.422	3,846	5,397	3.044	2,065	2.07
SPARC	0.487	-3 125	-7.236	-1.599	1.012	-2.767	2.24	-1.998	-0.074	2 4 1 2	2 933	4 188
TGFB1I1	-0.842	-1.479	-2.367	0.662	0	-1.787	1.518	2,783	4.58	1.523	3.557	4 265
THBS1	1.462	-3.212	-2.038	-1.38	0.238	-1.674	1.673	2.947	3.122	0.799	2,328	3 565
TIMP2	-0.677	-2.448	-1.399	1.006	0.343	0.83	2,608	1.584	1.251	2.73	2.271	2 495
VCAN	1,459	-3.803	-3.177	-0.588	0	-2.078	3,133	-3.546	-3.171	2.264	2.238	4.277

TABLE 1 | DLBCL "stromal-1" signature genes are inversely correlated with survival outcomes in B-cell lymphomas and other malignancies.

Analysis of the DLBCL "stromal-1" geneset in the <u>PRE</u>diction of <u>Clinical Outcomes from Genomic Profiles</u> (PRECOG) public dataset (https://precog.stanford.edu). Each gene is assigned z scores associated with survival in different cancer types. Scores less than or equal to zero (red) are associated with good survival while positive scores (blue) are associated with poor survival. BL, Burkitt lymphoma; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MM, multiple myeloma.

FIGURE 1 | DLBCL stromal-1 and stromal-2 signature genes are enriched in different stromal cell types. Expression of the DLBCL stromal-1 and stromal-2 signature genes in the Immunological Genome Project (ImmGen) data set. (A) Gene expression values normalized across 249 mouse immunological cell types. (B) Detailed view of gene expression values normalized to the stromal cell types shown in the legend. The graphs were generated using data from ImmGen (http://www.immgen.org).

THE DLBCL STROMAL-1 GENE SIGNATURE IS INVERSELY CORRELATED WITH SURVIVAL OUTCOMES IN B-CELL LYMPHOMAS AND OTHER SOLID TUMORS

Using expression profile analysis of DLBCL biopsy samples from treatment-naïve newly diagnosed patients, Lenz et al. identified two stromal gene signatures, stromal-1 and stromal-2, of which the stromal-1 gene signature was found to be associated with good survival in DLBCL patients (Lenz et al., 2008). However, gene signatures similar to the DLBCL stromal-1 gene signatures have been associated with poor survival in carcinomas, including ovarian cancer (Cheon et al., 2014), breast cancer (Farmer et al., 2009), colorectal cancer (Calon et al., 2015; Isella et al., 2015), and pancreatic cancer (Moffitt et al., 2015). To systematically explore the association of the DLBCL stromal-1 gene signature with survival in cancer patients, we used PRECOG, a pan-cancer database of expression signatures in which each tumor type is represented by multiple independent expression profile data sets and associated survival data. This extensive database is ideal for multi-data set validation of prognostic signatures that have been identified in individual data sets. Using the DLBCL stromal-1 gene signature represented by 50 genes (Lenz et al., 2008), we confirmed that the signature is associated with poor survival in carcinomas and brain tumors and good survival in DLBCL and several other B-cell lymphomas (Table 1). This pattern of inverse association with survival between B-cell lymphomas and carcinomas/brain tumors was specific to the DLBCL stromal-1 gene signature, and was not associated with the DLBCL stromal-2 gene signature represented by 34 genes (Lenz et al., 2008) (data not shown).

FIGURE 2 | DLBCL stromal-1 signature genes are enriched in cancer-associated fibroblasts (CA-s). (A) Non-centered gene set clustering analysis of the stromal and epithelial cell types in ovarian cancer and the normal ovary in the GSE40595 dataset using the DLBCL stromal-1 and stromal-2 gene sets. The number of samples in each group is indicated in parentheses. The gene set clustering analysis and image acquisition was performed using the R2 Genomics Analysis and Visualization Platform (https://hgserver1.amc.nl). (B) The same data are shown as box dot plots with *P*-values for differential expression of the DLBCL stromal-1 and stromal-2 gene signatures in different cell types.

IN NORMAL LYMPH NODES, DLBCL STROMAL-1 AND STROMAL-2 GENE SIGNATURES ARE ENRICHED IN STROMAL FIBROBLASTS AND ENDOTHELIAL CELLS, RESPECTIVELY

To identify immune cell types that express the DLBCL stromal-1 and stromal-2 signature genes, we looked for enrichment of these genes in the transcriptomes of 249 normal immunological cell types that had been isolated from mice and characterized by the Immunological Genome Project (ImmGen) (Heng and Painter, 2008; Shay and Kang, 2013). This analysis identified stromal cells as the most likely source of both gene signatures, although some of the genes were also expressed in macrophages, monocytes, granulocytes, and stem cells (**Figure 1A**). Closer examination of the stromal cell subtypes revealed that the DLBCL stromal-1 and stromal-2 signature genes were preferentially expressed in different types of stromal cells. DLBCL stromal-1 signature genes were particularly enriched in cells characterized by expression of podoplanin (PDPN) and platelet-derived growth factor receptor α (PDGFR α), including FRC from mesenteric and subcutaneous lymph nodes and the socalled double-negative stromal cells, while stromal-2 signature genes were enriched in blood and lymphatic endothelial cells (**Figure 1B**).

THE DLBCL STROMAL-1 GENE SIGNATURE IS ENRICHED IN OVARIAN CAFs

To identify cells that express the DLBCL stromal-1 and stromal-2 signature genes in an epithelial tumor, we selected

ovarian cancer because of the existing microarray data set (GSE40595) in which a large number of ovarian cancers have been laser capture microdissected into epithelial and stromal components (Yeung et al., 2013). For comparison with normal tissue, a small number of samples in this data set were microdissected from the normal ovary epithelium and stroma (Yeung et al., 2013). Our gene signature enrichment analysis revealed strong enrichment of the DLBCL stromal-1 gene signature in CAFs in comparison to cancer cells, normal ovary fibroblasts, and normal ovary epithelial cells (**Figure 2**). The DLBCL stromal-2 gene signature was enriched in CAFs but also in the normal ovary stroma (**Figure 2**).

POSSIBLE MECHANISMS BY WHICH CAFs CONTRIBUTE TO INVERSE SURVIVAL OUTCOMES IN B-CELL LYMPHOMAS AND CARCINOMAS

It is unusual for a gene signature to be associated with inverse survival outcomes in B-cell lymphomas and carcinomas. This is unlikely to be a technical error related to microarray technology as several individual genes from the DLBCL stromal-1 signature have been validated as predictors of good survival in DLBCL by independent technologies, such as immunohistochemistry and qPCR in formalin-fixed paraffinembedded tissues (Lossos et al., 2004; Meyer et al., 2011; Tekin et al., 2016). Similarly, various technologies have been used to validate many of the signature genes as predictors of poor survival in carcinomas (Farmer et al., 2009; Cheon et al., 2014; Calon et al., 2015; Isella et al., 2015; **TABLE 2** | Upstream regulators of genes in the DLBCL stromal gene signature-1 and stromal gene signature-2.

Upstream regulator	Molecule type	p-value	
		of overlap	
DLBCL stromal-1 gene signature)		
TGFB1	Growth factor	4.78E-31	
COLQ	Other	2.70E-20	
Bleomycin	Chemical drug	1.97E-18	
SPDEF	Transcription regulator	2.73E-18	
Tgf beta	Group	3.95E-18	
TGFB3	Growth factor	8.04E-18	
TNF	Cytokine	1.53E-17	
DLBCL stromal-2 gene signature	•		
KLF2	Transcription regulator	1.89E-09	
Rosiglitazone	Chemical drug	5.82E-09	
VEGFA	Growth factor	5.90E-09	
PPARG	Ligand-dependent nuclear receptor	1.36E-08	
10E,12Z-octadecadienoic acid	Chemical – endogenous Mammalian	4.98E-08	
WNT3A	Cytokine	6.02E-08	
MGEA5	Enzyme	1.08E-07	
MGLAJ	LIIZyITIE	1.00L-07	

The identification of upstream regulators was done using Ingenuity Pathway Analysis (www.giagenbioinformatics.com/products/ingenuity-pathway-analysis/).

Moffitt et al., 2015; Jia et al., 2016). While the mechanism by which the DLBCL stromal-1 signature genes could contribute to good survival in DLBCL is still unclear, multiple mechanisms by which CAFs contribute to poor outcomes in carcinomas have been proposed, including the promotion of tumor growth, angiogenesis, invasion and metastasis, the provision of protective niches for cancer stem cells, and the obstruction of access of chemotherapies and immunotherapies (Jain, 2013; Kalluri, 2016). Here, we will specifically focus on the possible direct or indirect roles of CAFs that could contribute to inverse survival outcomes in DLBCL and carcinomas.

Cancer-associated fibroblasts share structural and molecular features with the reticular fiber networks of secondary lymphoid organs, which are known to guide and compartmentalize specific immune cell types and play key roles in mediating functional immune cell interactions (Acton et al., 2012; Astarita et al., 2012; Cremasco et al., 2014; Chang and Turley, 2015; Fletcher et al., 2015; Turley et al., 2015). However, in addition to being sites in which immune responses are initiated, secondary lymphoid organs are also sites that foster immune privilege that prevents autoimmunity by inducing tolerance and deleting autoreactive T cells, suppressing effector T cell proliferation, and supporting regulatory T cells (Fletcher et al., 2011, 2014, 2015; Brown and Turley, 2015). Currently, lymph node fibroblasts are being explored for their therapeutic potential to circumvent unwanted inflammation in autoimmune diseases, sepsis, and graft rejection after organ transplantation (Fletcher et al., 2011, 2014, 2015). Based on the molecular similarity between CAFs and lymph node fibroblasts, we propose that CAFs primarily play an immunosuppressive role in tumors using similar molecular mechanisms to those used by lymph node fibroblasts in regulating immune cell tolerance and homeostasis. In support of this hypothesis, CAF-derived factors have been shown to contribute to immune editing in vivo to avoid tumor detection and rejection by the host immune system (Stover et al., 2007; Kraman et al., 2010). Specific to B cells, several in vitro models have shown the ability of different types of fibroblasts to modulate B cell differentiation, activation, and function. Adipose tissue-derived fibroblasts have been shown to suppress plasmablast formation and induce formation of regulatory B cells (Franquesa et al., 2015) while rheumatoid synovial fibroblasts have been shown to induce immunoglobulin (Ig) class-switch recombination and IgG/IgA production in IgD+ B cells (Bombardieri et al., 2011). We envision that the immunoregulatory functions of CAFs may lead to improved survival in DLBCL and other B-cell lymphomas where malignant cells themselves are subject to functional alteration. In contrast, immunosuppression by CAFs in carcinomas may lead to an ineffective immune defense against malignant cells, which is associated with poor survival.

Cancer-associated fibroblasts are also capable of modifying the immune landscape by selective attraction, recruitment, retention, activation, and suppression of different immune cell types (Karin, 2010; Raz and Erez, 2013; Harper and Sainson, 2014). Recent studies provide evidence that CAFs can directly contribute to immune cell fate and survival (Harper and Sainson, 2014). In mouse models, CAFs have been shown to attract macrophages, neutrophils, and subsets of T cells that promote tumor progression (Silzle et al., 2003; Grum-Schwensen et al., 2010; Elkabets et al., 2011). One possible underlying mechanism for the association of the DLBCL stromal-1 gene signature with good survival in patients with DLBCL is that fibroblasts and the associated ECM attract and trap malignant B cells thereby impeding their spread to new anatomical locations. We show a small but consistent inverse association of the DLBCL stromal-1 gene signature expression with DLBCL tumor stage (a measure of lymph node groups and extranodal sites to which malignant cells have metastasized) (Figure 3A). The decrease in stromal gene signature expression in the later stages of DLBCL may indicate that the stroma plays a role in localizing the lymphoma cells to the lymph nodes during the earlier stages of the disease. In contrast, DLBCL stromal-1 gene signature expression is typically increased with increased tumor stage in epithelial carcinomas, such as ovarian cancer (Figure 3B). The increase in CAFs in the later stages of carcinomas may prevent immune cells from reaching the tumor parenchyma by trapping the immune cells in the stroma thereby preventing an anti-tumor response. A recent study of immune cell infiltration in metastatic urothelial carcinomas showed that patients whose tumors were classified as immuneexcluded (immune cells localized in the CAF-rich stroma) had increased disease progression and decreased response to immunotherapy (Mariathasan et al., 2018). Therefore, we hypothesize that CAFs aid in retaining DLBCL in the lymph node, which is associated with better prognosis, whereas in carcinomas CAFs trap immune cells, which is associated with decreased anti-tumor immune activity and a worse prognosis.

One of the key modulators of the cancer microenvironment is the multifunctional cytokine, transforming growth factor β (TGFβ). TGFβ induces CAF activation and fibroblastto-myofibroblast transition with consequent linearization of collagen fibers and stiffening of the ECM. In turn, activated CAFs induce TGFβ signaling to perpetually maintain the activated state (Calon et al., 2014; Beach et al., 2016; Erdogan and Webb, 2017). Consistent with the DLBCL stromal-1 signature representing CAFs, our Ingenuity Pathway Analysis (IPA) of the DLBCL gene signatures implicates TGF β signaling as the main upstream regulator of the DLBCL stromal-1 gene signature (Table 2). In carcinomas, TGF β has been shown to promote tumor progression by inhibiting immunosurveillance through multiple mechanisms (Flavell et al., 2010; Sheng et al., 2015), including the recruitment of macrophages (Byrne et al., 2008) and limited efficacy of immunotherapy by excluding CD8⁺ T cells from the tumor parenchyma (Mariathasan et al., 2018; Tauriello et al., 2018). It is likely that TGF β also plays an immunosuppressive role in lymphomas. However, TGF β is also a potent negative regulator of B-cell survival, proliferation, activation, and differentiation (Sanjabi et al., 2017). Stroma-derived TGF^β has been shown to induce senescence and apoptosis in mouse models of B-cell lymphoma (Reimann et al., 2010; Stelling et al., 2018). Thus, the DLBCL stromal-1 gene signature may be primarily associated with tumor-promoting immunosuppression in carcinomas, while the same immunosuppression may lead to the eradication of B cells, which represent the malignant component of B-cell lymphoma.

CONCLUSION

Past clinical trials have taught us that successful targeted therapies in one disease do not always yield the desired results in another disease despite the presence of the same target. One example is the poor response of B-cell-infiltrated carcinomas to rituximab, which has shown remarkable success in lymphomas and rheumatoid arthritis. The opposite survival outcomes associated with the presence of stromal cells in B-cell lymphomas and carcinomas should serve as a warning that targeting the tumor microenvironment may produce opposite effects in B-cell lymphomas and carcinomas.

DATABASE LINKS

GEO Data Sets (https://www.ncbi.nlm.nih.gov/gds) Immunological Genome Project (https://www.immgen.org) PRECOG – PREdiction of Clinical Outcomes from Genomic Profiles (https://precog.stanford.edu) R2: Genomics Analysis

REFERENCES

- Acton, S. E., Astarita, J. L., Malhotra, D., Lukacs-Kornek, V., Franz, B., Hess, P. R., et al. (2012). Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. *Immunity* 37, 276–289. doi: 10.1016/j.immuni.2012.05.022
- Aklilu, M., Stadler, W. M., Markiewicz, M., Vogelzang, N. J., Mahowald, M., Johnson, M., et al. (2004). Depletion of normal B cells with rituximab as an adjunct to IL-2 therapy for renal cell carcinoma and melanoma. *Ann. Oncol.* 15, 1109–1114. doi: 10.1093/annonc/mdh280
- Aran, D., Hu, Z., and Butte, A. J. (2017). xCell: digitally portraying the tissue cellular heterogeneity landscape. *Genome Biol.* 18:220. doi: 10.1186/s13059-017-1349-1
- Astarita, J. L., Acton, S. E., and Turley, S. J. (2012). Podoplanin: emerging functions in development, the immune system, and cancer. *Front. Immunol.* 3:283. doi: 10.3389/fimmu.2012.00283
- Augsten, M. (2014). Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol. 4:62. doi: 10.3389/fonc.2014.00062
- Barbera-Guillem, E., Nelson, M. B., Barr, B., Nyhus, J. K., May, K. F. Jr., Feng, L., et al. (2000). B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. *Cancer Immunol. Immunother.* 48, 541–549. doi: 10.1007/PL000 06672
- Barnes, T. A., and Amir, E. (2017). HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br. J. Cancer 117, 451–460. doi: 10.1038/ bjc.2017.220
- Beach, J. A., Aspuria, P. J., Cheon, D. J., Lawrenson, K., Agadjanian, H., Walsh, C. S., et al. (2016). Sphingosine kinase 1 is required for TGF-beta mediated fibroblastto- myofibroblast differentiation in ovarian cancer. *Oncotarget* 7, 4167–4182. doi: 10.18632/oncotarget.6703
- Bombardieri, M., Kam, N. W., Brentano, F., Choi, K., Filer, A., Kyburz, D., et al. (2011). A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. *Ann. Rheum. Dis.* 70, 1857–1865. doi: 10.1136/ard. 2011.150219
- Brown, F. D., and Turley, S. J. (2015). Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. *J. Immunol.* 194, 1389–1394. doi: 10.4049/jimmunol.1402520

and Visualization Platform (http://hgserver1.amc.nl) The Cancer Genome Atlas Project (https://cancergenome.nih.gov).

AUTHOR CONTRIBUTIONS

SO analyzed the public data sets. SO and MH wrote the manuscript.

FUNDING

This research was supported by the National Cancer Institute grant R01CA208753 and the Office of the Assistant Secretary of Defense for Health Affairs through the Ovarian Cancer Research Program Awards Nos. W81XWH-17-1-0144 and W81XWH-16-1-0190.

ACKNOWLEDGMENTS

We thank Kristy J. Daniels for assistance in manuscript preparation and members of the Women's Cancer Program for their support.

- Byrne, S. N., Knox, M. C., and Halliday, G. M. (2008). TGFbeta is responsible for skin tumour infiltration by macrophages enabling the tumours to escape immune destruction. *Immunol. Cell Biol.* 86, 92–97. doi: 10.1038/sj.icb.71 00116
- Calon, A., Lonardo, E., Berenguer-Llergo, A., Espinet, E., Hernando-Momblona, X., Iglesias, M., et al. (2015). Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. *Nat. Genet.* 47, 320–329. doi: 10.1038/ng.3225
- Calon, A., Tauriello, D. V., and Batlle, E. (2014). TGF-beta in CAF-mediated tumor growth and metastasis. *Semin. Cancer Biol.* 25, 15–22. doi: 10.1016/j.semcancer. 2013.12.008
- Chang, J. E., and Turley, S. J. (2015). Stromal infrastructure of the lymph node and coordination of immunity. *Trends Immunol.* 36, 30–39. doi: 10.1016/j.it.2014. 11.003
- Cheon, D. J., Tong, Y., Sim, M. S., Dering, J., Berel, D., Cui, X., et al. (2014). A collagen-remodeling gene signature regulated by TGF-beta signaling is associated with metastasis and poor survival in serous ovarian cancer. *Clin. Cancer Res.* 20, 711–723. doi: 10.1158/1078-0432.CCR-13-1256
- Costa, A., Kieffer, Y., Scholer-Dahirel, A., Pelon, F., Bourachot, B., Cardon, M., et al. (2018). Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. *Cancer Cell* 33, 463.e10–479.e10. doi: 10.1016/j.ccell.2018. 01.011
- Cremasco, V., Woodruff, M. C., Onder, L., Cupovic, J., Nieves-Bonilla, J. M., Schildberg, F. A., et al. (2014). B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. *Nat. Immunol.* 15, 973–981. doi: 10. 1038/ni.2965
- Cyster, J. G. (2010). B cell follicles and antigen encounters of the third kind. Nat. Immunol. 11, 989–996. doi: 10.1038/ni.1946
- Dieu-Nosjean, M. C., Goc, J., Giraldo, N. A., Sautes-Fridman, C., and Fridman, W. H. (2014). Tertiary lymphoid structures in cancer and beyond. *Trends Immunol.* 35, 571–580. doi: 10.1016/j.it.2014.09.006
- Elkabets, M., Gifford, A. M., Scheel, C., Nilsson, B., Reinhardt, F., Bray, M. A., et al. (2011). Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. *J. Clin. Invest.* 121, 784–799. doi: 10.1172/JCI43757
- Erdogan, B., and Webb, D. J. (2017). Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. *Biochem. Soc. Trans.* 45, 229–236. doi: 10.1042/bst20160387

- Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., et al. (2009). A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. *Nat. Med.* 15, 68–74. doi: 10.1038/nm. 1908
- Flavell, R. A., Sanjabi, S., Wrzesinski, S. H., and Licona-Limon, P. (2010). The polarization of immune cells in the tumour environment by TGFbeta. *Nat. Rev. Immunol.* 10, 554–567. doi: 10.1038/nri2808
- Fletcher, A. L., Acton, S. E., and Knoblich, K. (2015). Lymph node fibroblastic reticular cells in health and disease. *Nat. Rev. Immunol.* 15, 350–361. doi: 10.1038/nri3846
- Fletcher, A. L., Elman, J. S., Astarita, J., Murray, R., Saeidi, N., D'Rozario, J., et al. (2014). Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis. *Sci. Transl. Med.* 6:249ra109. doi: 10.1126/scitranslmed.3009377
- Fletcher, A. L., Malhotra, D., and Turley, S. J. (2011). Lymph node stroma broaden the peripheral tolerance paradigm. *Trends Immunol.* 32, 12–18. doi: 10.1016/j. it.2010.11.002
- Franquesa, M., Mensah, F. K., Huizinga, R., Strini, T., Boon, L., Lombardo, E., et al. (2015). Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. *Stem Cells* 33, 880–891. doi: 10.1002/stem.1881
- Fridman, W. H., Pages, F., Sautes-Fridman, C., and Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. *Nat. Rev. Cancer* 12, 298–306. doi: 10.1038/nrc3245
- Gentles, A. J., Newman, A. M., Liu, C. L., Bratman, S. V., Feng, W., Kim, D., et al. (2015). The prognostic landscape of genes and infiltrating immune cells across human cancers. *Nat. Med.* 21, 938–945. doi: 10.1038/nm.3909
- Germain, C., Gnjatic, S., Tamzalit, F., Knockaert, S., Remark, R., Goc, J., et al. (2014). Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. *Am. J. Respir. Crit. Care Med.* 189, 832–844. doi: 10.1164/rccm.201309-16110C
- Grum-Schwensen, B., Klingelhofer, J., Grigorian, M., Almholt, K., Nielsen, B. S., Lukanidin, E., et al. (2010). Lung metastasis fails in MMTV-PyMT oncomice lacking \$100A4 due to a T-cell deficiency in primary tumors. *Cancer Res.* 70, 936–947. doi: 10.1158/0008-5472.CAN-09-3220
- Gunderson, A. J., and Coussens, L. M. (2013). B cells and their mediators as targets for therapy in solid tumors. *Exp. Cell Res.* 319, 1644–1649. doi: 10.1016/j.yexcr. 2013.03.005
- Guy, T. V., Terry, A. M., Bolton, H. A., Hancock, D. G., Shklovskaya, E., and Fazekas de St. Groth, B. (2016). Pro- and anti-tumour effects of B cells and antibodies in cancer: a comparison of clinical studies and preclinical models. *Cancer Immunol. Immunother.* 65, 885–896. doi: 10.1007/s00262-016-1848-z
- Harper, J., and Sainson, R. C. (2014). Regulation of the anti-tumour immune response by cancer-associated fibroblasts. *Semin. Cancer Biol.* 25, 69–77. doi: 10.1016/j.semcancer.2013.12.005
- Heng, T. S., and Painter, M. W. (2008). The immunological genome project: networks of gene expression in immune cells. *Nat. Immunol.* 9, 1091–1094. doi: 10.1038/ni1008-1091
- Isella, C., Terrasi, A., Bellomo, S. E., Petti, C., Galatola, G., Muratore, A., et al. (2015). Stromal contribution to the colorectal cancer transcriptome. *Nat. Genet.* 47, 312–319. doi: 10.1038/ng.3224
- Jain, R. K. (2013). Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218. doi: 10.1200/JCO.2012.46. 3653
- Jia, D., Liu, Z., Deng, N., Tan, T. Z., Huang, R. Y., Taylor-Harding, B., et al. (2016). A COL11A1-correlated pan-cancer gene signature of activated fibroblasts for the prioritization of therapeutic targets. *Cancer Lett.* 382, 203–214. doi: 10.1016/ j.canlet.2016.09.001
- Kalluri, R. (2016). The biology and function of fibroblasts in cancer. *Nat. Rev. Cancer* 16, 582–598. doi: 10.1038/nrc.2016.73
- Kalluri, R., and Zeisberg, M. (2006). Fibroblasts in cancer. Nat. Rev. Cancer 6, 392-401. doi: 10.1038/nrc1877
- Karin, N. (2010). The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J. Leukoc. Biol. 88, 463–473. doi: 10.1189/ jlb.0909602
- Kitamura, T., Qian, B. Z., and Pollard, J. W. (2015). Immune cell promotion of metastasis. Nat. Rev. Immunol. 15, 73–86. doi: 10.1038/nri3789

- Koning, J. J., and Mebius, R. E. (2012). Interdependence of stromal and immune cells for lymph node function. *Trends Immunol.* 33, 264–270. doi: 10.1016/j.it. 2011.10.006
- Kraman, M., Bambrough, P. J., Arnold, J. N., Roberts, E. W., Magiera, L., Jones, J. O., et al. (2010). Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. *Science* 330, 827–830. doi: 10. 1126/science.1195300
- Lenz, G., Wright, G., Dave, S. S., Xiao, W., Powell, J., Zhao, H., et al. (2008). Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313–2323. doi: 10.1056/NEJMoa0802885
- Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. *Cell* 139, 891–906. doi: 10.1016/j.cell.2009.10.027
- Lossos, I. S., Czerwinski, D. K., Alizadeh, A. A., Wechser, M. A., Tibshirani, R., Botstein, D., et al. (2004). Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. *N. Engl. J. Med.* 350, 1828–1837. doi: 10.1056/NEJMoa032520
- Lu, P., Weaver, V. M., and Werb, Z. (2012). The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406. doi: 10.1083/jcb. 201102147
- Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al. (2018). TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. *Nature* 554, 544–548. doi: 10.1038/ nature25501
- Meyer, P. N., Fu, K., Greiner, T., Smith, L., Delabie, J., Gascoyne, R., et al. (2011). The stromal cell marker SPARC predicts for survival in patients with diffuse large B-cell lymphoma treated with rituximab. *Am. J. Clin. Pathol.* 135, 54–61. doi: 10.1309/ajcpjx4bjv9nlqhy
- Mionnet, C., Mondor, I., Jorquera, A., Loosveld, M., Maurizio, J., Arcangeli, M. L., et al. (2013). Identification of a new stromal cell type involved in the regulation of inflamed B cell follicles. *PLoS Biol.* 11:e1001672. doi: 10.1371/journal.pbio. 1001672
- Moffitt, R. A., Marayati, R., Flate, E. L., Volmar, K. E., Loeza, S. G., Hoadley, K. A., et al. (2015). Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. *Nat. Genet.* 47, 1168–1178. doi: 10.1038/ng.3398
- Mueller, S. N., and Germain, R. N. (2009). Stromal cell contributions to the homeostasis and functionality of the immune system. *Nat. Rev. Immunol.* 9, 618–629. doi: 10.1038/nri2588
- Raz, Y., and Erez, N. (2013). An inflammatory vicious cycle: fibroblasts and immune cell recruitment in cancer. *Exp. Cell Res.* 319, 1596–1603. doi: 10.1016/ j.yexcr.2013.03.022
- Reimann, M., Lee, S., Loddenkemper, C., Dorr, J. R., Tabor, V., Aichele, P., et al. (2010). Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. *Cancer Cell* 17, 262–272. doi: 10.1016/j.ccr. 2009.12.043
- Sanjabi, S., Oh, S. A., and Li, M. O. (2017). Regulation of the immune response by TGF-beta: from conception to autoimmunity and infection. *Cold Spring Harb. Perspect. Biol.* 9:a022236. doi: 10.1101/cshperspect.a022236
- Sarvaria, A., Madrigal, J. A., and Saudemont, A. (2017). B cell regulation in cancer and anti-tumor immunity. *Cell Mol. Immunol.* 14, 662–674. doi: 10.1038/cmi. 2017.35
- Shay, T., and Kang, J. (2013). Immunological genome project and systems immunology. *Trends Immunol.* 34, 602–609. doi: 10.1016/j.it.2013.03.004
- Sheng, J., Chen, W., and Zhu, H. J. (2015). The immune suppressive function of transforming growth factor-beta (TGF-beta) in human diseases. *Growth Factors* 33, 92–101. doi: 10.3109/08977194.2015.1010645
- Silzle, T., Kreutz, M., Dobler, M. A., Brockhoff, G., Knuechel, R., and Kunz-Schughart, L. A. (2003). Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. *Eur. J. Immunol.* 33, 1311–1320. doi: 10.1002/eji.20032 3057
- Spano, D., and Zollo, M. (2012). Tumor microenvironment: a main actor in the metastasis process. *Clin. Exp. Metastasis* 29, 381–395. doi: 10.1007/s10585-012-9457-5
- Stelling, A., Hashwah, H., Bertram, K., Manz, M. G., Tzankov, A., and Muller, A. (2018). The tumor suppressive TGF-beta/SMAD1/S1PR2 signaling axis is recurrently inactivated in diffuse large B-cell lymphoma. *Blood* 131, 2235–2246. doi: 10.1182/blood-2017-10-810630

- Stover, D. G., Bierie, B., and Moses, H. L. (2007). A delicate balance: TGF-beta and the tumor microenvironment. J. Cell. Biochem. 101, 851–861. doi: 10.1002/jcb. 21149
- Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., et al. (2018). TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. *Nature* 554, 538–543. doi: 10.1038/nature25492
- Tekin, N., Omidvar, N., Morris, T. P., Conget, P., Bruna, F., Timar, B., et al. (2016). Protocol for qRT-PCR analysis from formalin fixed paraffin embedded tissue sections from diffuse large b-cell lymphoma: validation of the sixgene predictor score. *Oncotarget* 7, 83319–83329. doi: 10.18632/oncotarget. 13066
- Turley, S. J., Cremasco, V., and Astarita, J. L. (2015). Immunological hallmarks of stromal cells in the tumour microenvironment. *Nat. Rev. Immunol.* 15, 669–682. doi: 10.1038/nri3902
- Yeung, T. L., Leung, C. S., Wong, K. K., Samimi, G., Thompson, M. S., Liu, J., et al. (2013). TGF-beta modulates ovarian cancer invasion by upregulating CAFderived versican in the tumor microenvironment. *Cancer Res.* 73, 5016–5028. doi: 10.1158/0008-5472.can-13-0023

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Haro and Orsulic. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

SCIENTIFIC REPORTS

OPEN

Received: 20 February 2018 Accepted: 26 July 2018 Published online: 17 August 2018

Inflammation is a key contributor to ovarian cancer cell seeding

Dongyu Jia^{1,4}, Yoshiko Nagaoka², Makoto Katsumata² & Sandra Orsulic^{1,2,3}

The incidence of ovarian cancer dramatically increases in early menopause but the factors contributing to cancer onset are unclear. Most ovarian cancers originate in the fallopian tube with subsequent implantation of malignant cells into the ovary. However, the events and conditions that lead to cancer cell implantation are unknown. To quantify which conditions are conducive to the seeding of cancer cells in an immunocompetent mouse model, we surgically implanted mouse ovarian cancer cells into the oviducts of syngeneic mice and simulated conditions associated with ovulatory wound repair, incessant ovulation, ovarian surface scarring, and aging. We found that the dominant site of cancer cell seeding was not the ovary but the nearby surgical wound site, which was associated with a strong and persistent inflammatory reaction. Conditions in the ovary associated with inflammation, such as acute ovulatory wound repair, active healing of the scarred ovarian surface, and mouse aging, contributed to increased seeding of the cancer cells to the surgical wound site and tissues surrounding the ovary. Changes in the ovary not accompanied by inflammation, such as completed ovulatory cycles and fully-healed scars on the ovarian surface, did not contribute to increased cancer cell seeding. We conclude that inflammation is the most likely mechanism by which ovulation and postmenopausal events contribute to the increased risk of ovarian cancer.

Despite modern day cytoreductive surgical techniques and combination chemotherapies for high-grade ovarian cancer, five-year survival rates remain below 40%¹. However, when found early, the survival rate dramatically rises to 90%^{1,2}. Thus, the ability to detect ovarian cancer in its earliest stages is critical to a cure. It is increasingly accepted that high-grade ovarian cancers actually originate in the fallopian tube with malignant cells shedding to the adjacent ovary^{3–7}. Since the bulk of the tumor typically forms in the ovary, rather than the fallopian tube, ovaries must play a significant role in the early stages of cancer development. Discovering which cellular and molecular processes promote and inhibit the seeding of malignant cells to the ovary could facilitate the development of markers for early detection as well as the identification of rate-limiting events in the early stages of ovarian cancer development. If contextual molecular cues provided by the ovary are required for the clinical development of ovarian cancer, such molecules could serve as novel therapeutic targets to prevent cancer progression in the early stages, when cures are more viable.

Epithelial ovarian cancer is predominantly a disease of postmenopausal women⁸. Many theories of postmenopausal onset of ovarian cancer have been proposed, including incessant ovulation and inflammation, hormonal changes, reduced immunity, increased cell senescence, and uncontrolled production of reactive oxygen species^{9–13}. Epidemiologic data consistently show that the risk of ovarian cancer increases with the number of ovulatory cycles^{14–16}, indicating that ovulation plays a significant role in ovarian cancer etiology. However, the peak incidence of menopause occurs at age 51, while the peak incidence of invasive epithelial ovarian cancer occurs at age 63¹. Thus, most women develop ovarian cancer years after their last ovulatory cycle. Currently, it is unknown which conditions in the ovary promote tumor growth but the fact that more than 80% of ovarian cancer cases occur after menopause suggests that the events associated with menopause and aging are major contributing factors⁸.

During the postmenopausal years, ovarian follicles are largely depleted and much of the remaining ovary is reduced to a collagenous scar tissue¹⁷. If the microenvironment of postmenopausal ovaries is conducive to the implantation of cancer cells, simulating postmenopausal conditions should result in more cancer cell deposits in the ovary. A better understanding of ovarian cancer pathogenesis, specifically the role of the early postmenopausal

¹Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. ²Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA. ³Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. ⁴Present address: Department of Biology, Georgia Southern University, Statesboro, GA, USA. Correspondence and requests for materials should be addressed to S.O. (email: orsulics@cshs.org) ovarian microenvironment in supporting the seeding and survival of malignant cells in the ovary, is necessary to develop strategies for ovarian cancer prevention and detection. Experiments in mice provide a convenient system in which both the effect and the outcome of specific conditions can be examined and quantified. Previously, we used a mouse model to study events associated with ovulation and ovulatory wound repair, including epithelial cell entrapment and the formation of epithelial inclusion cysts¹⁸. Here, we extended those studies by simulating various postmenopausal conditions in mice and quantifying cancer cell deposits for each condition. The goal of the study was to determine whether conditions associated with ovulation and aging increase the spread of cancer cells from the oviduct to the ovary. To account for a possible role of the immune system in ovarian cancer cell seeding, we used an immunocompetent FVB mouse model with syngeneic ovarian cancer cell aggregates implanted into the fallopian tube. Our data show that premenopausal and postmenopausal conditions contribute to increased cancer cell seeding only in the presence of an inflammatory reaction.

Materials and Methods

Cancer cell line. The FVB-syngeneic mouse ovarian cancer cell line, BR, was engineered with combinations of genetic alterations (p53-/-, Brca1-/-, myc, and Akt) as described¹⁹. We have shown that this ovarian cancer model recapitulates human serous histology, pattern of metastatic spread, and response to standard and targeted therapies¹⁹⁻²³. The BR cells were subsequently transduced with luciferase lentiviral plasmid pLenti-CMVPuro-LUC (Addgene, w168-1) to generate BR-luc cells.

Preparation of cell aggregates. BR-luc cells were seeded at a density of 1×10^6 cells per well in Costar ultra-low attachment 6-well plates (Corning). The cells were incubated with 3 ml DMEM media in 5% CO₂ at 37 °C. After 2 days, culture media were collected in 15 ml conical tubes and cells were precipitated at 1000 rpm for 0.5 minutes. After two rounds of washing with phosphate buffered saline (PBS), large cell aggregates were separated into small aggregates by multiple pipetting through a 1 ml pipette tip.

Injection of cell aggregates into oviducts. All procedures in mice were performed in accordance with the approved Cedars-Sinai IACUC protocol (IACUC5318). The procedures were performed in an AAALAC-accredited facility at Cedars-Sinai Medical Center. The surgical procedures were performed according to the method described for embryo transfer into the oviduct (Manipulating the Mouse Embryo: A Laboratory Manual, 3rd Edition, ISBN-978-087969591-0). Under the dissecting microscope, a small incision between the infundibulum and the ampulla of the oviduct (equivalent to human fallopian tube) was created using Vannas scissors (Supplementary Video 1). The transfer pipette loaded with cell aggregates in PBS was inserted into the incision with the tip pointing toward the ovary and approximately 200 cell aggregates in 2µl volume were injected into each oviduct (Supplementary Video 1).

Simulation of ovulatory and menopausal conditions. Mice were superovulated by intraperitoneal injection of pregnant mare serum (PMS) and human chorionic gonadotropin (hCG) as previously described¹⁸. In the control mice, PBS was injected instead of PMS and hCG. To generate scar tissue, bursa (a thin membrane covering the ovary in mice) was removed (Supplementary Video 2) and the ovarian surface was burned with a hand-held battery-powered cauterizer (Gemini Cautery System) (Supplementary Video 3).

Quantification of cancer cell deposits. Mice were euthanized by CO_2 asphyxiation followed by cervical dislocation prior to harvesting the ovaries and surrounding tissues. To quantify macroscopic tumors, dimensions (length, width, height) were measured by calipers. Tumor volume (mm³) was calculated using the equation $V = (L \times W \times H)/2$, where V is tumor volume, L is tumor length, W is tumor width, and H is tumor height. For the flat, superficial tumors that typically formed on the surgical wounds/scars, tumor area (mm²) was measured using the equation $A = L \times W$, where A is tumor area size, L is tumor length, and W is tumor width. To quantify microscopic cancer cell deposits, the ovaries, oviducts, and surrounding fat tissues were fixed in formalin and embedded in paraffin. One 4µm-thick section per sample was stained with hematoxylin and eosin (H&E) and evaluated under the light microscope for visible cancer cell deposits.

Statistical analyses. The statistical analyses were performed using GraphPad Prism (version 6.0; GraphPad Software). Intergroup differences were assessed by the Student's *t*-test.

Data availability. No datasets were generated or analyzed during the current study.

Results

Our ability to screen for early stage ovarian cancer is hampered by deficiencies in the understanding of the molecular and morphological steps involved in ovarian carcinogenesis. It is currently unknown why cancer cells in the fallopian tube have the propensity to migrate to the ovary where they tend to form a large tumor mass. To determine which ovarian conditions are most conducive to implantation of detached tubal cells, we simulated in mice conditions associated with ovulatory wound healing, incessant ovulation, atrophy/scarring, and aging.

Inflammatory events associated with ovulatory wound repair contribute to increased cancer cell seeding to tissues surrounding the ovary but are not directly associated with the implantation of cancer cells to the ovary. To simulate cancer cell seeding and entrapment during ovulatory wound healing, superovulation was induced in 4 week-old female FVB mice by intraperitoneal injection of PMS and hCG hormones (superovulated group, N=6) or PBS (control group, N=6). This combination of hormones induces ovulation of a large number of follicles to form 10–30 acute ovulatory wounds within one ovulatory cycle¹⁸. Two days after hCG (or control PBS) injection, when ovulatory wound repair is at its peak¹⁸, cancer cell

Figure 1. Assessing the effect of ovulatory wound repair on cancer cell seeding from the oviduct to the ovary and adjacent tissues. (**A**) Representative H&E-stained section of cancer cell deposits on the oviduct and ovary. Arrows indicate immune cell infiltrates. Size bars: 50 µm. Cd, cancer cell deposit; Ov, ovary; Ovd, oviduct. (**B**) Graph indicates the number of superovulated and control ovary/oviduct samples containing cancer cell deposits larger than 50 µm in diameter (out of 12 ovaries in each group). (**C**) H&E-stained section representing 'carpeting' of cancer cells along the surgical wound/scar site in the peritoneal wall. Arrow indicates an immune cell infiltrate. Size bars: 50 µm. Cd, cancer cell deposit. (**D**) Comparison of cancer cell deposit size at the surgical wound/scar site in superovulated and control mice.

aggregates were bilaterally implanted into the mouse oviduct. Three weeks later, intraperitoneal tumor dissemination was evaluated by recording the presence of ascites and measurable tumor deposits inside of the peritoneal cavity. Macroscopically visible swelling was observed in 4/12 ovaries from the superovulated mice and in 0/12 ovaries from the control mice. Microscopic cancer cell deposits in the oviducts, ovaries, and surrounding fat were quantified by pathologic examination of H&E-stained sections under the 4x objective, and the presence of cancer cells was further verified under higher magnification (Fig. 1A). The deposits in tissues surrounding the ovary were frequently associated with immune cell infiltrates (Fig. 1A). Cancer cell deposits larger than 50 µm were present in tissues surrounding the ovary (oviduct, bursa, and space between the fat and ovarian surface) in 12/12 samples from the superovulated mice and in 7/12 samples from the control mice (Fig. 1B). However, neither group of mice exhibited cell deposits directly on the ovarian surface or as intraovarian inclusions. These results suggest that ovulatory wound healing is not directly associated with the implantation of cancer cells to the ovary. In both groups of mice, the largest cancer cell deposits presented as carpeting of the abdominal wall at the sites of surgical wounds/scars (Fig. 1C). The surgical wound/scar cancer cell deposits were frequently associated with immune cell infiltrates (Fig. 1C) and were significantly larger in superovulated mice than in control mice (Fig. 1D). Taken together, our results indicate that events associated with ovulatory wound healing contributed to increased seeding of cancer cells to the surgical site and tissues surrounding the ovary. The lack of cancer cell deposits attached to the ovarian surface indicates that re-epithelialization of the ovarian surface does not significantly contribute to cancer cell seeding. It is more likely that ovulatory events contributed to increased inflammatory infiltrates, which attracted cancer cells and/or supported their survival and expansion.

Ovarian atrophy resulting from previous incessant ovulation is not associated with increased cancer cell seeding. To simulate cancer cell seeding in ovaries that endured repeated damage and repair due to multiple cycles of ovulation, six week-old female FVB mice were subjected to nine weeks of weekly intraperitoneal PMS and hCG hormone injections (repeatedly superovulated group, N = 7) or PBS injections (control group, N = 7). To mimic conditions in postmenopausal women whose ovaries have not been actively cycling for years, we waited 12 weeks after the last superovulation to implant BR-luc cell aggregates into the oviducts of the repeatedly superovulated and control mice. Eight weeks after cancer cell implantation, the tumor burden was evaluated in both groups. The majority of tumor deposits were found at the surgical wound/scar tissue, which was frequently fused with the adjacent fat and infiltrated with immune cells (data not shown). There were no macroscopically or microscopically visible cancer cell deposits on the ovaries and oviducts in either group of mice (data not shown). Thus, in the absence of acute inflammation, ovaries that have undergone repetitive superovulations do not appear to attract cancer cells any more than age-matched ovaries with a normal number of ovulatory cycles. One caveat to this experiment is that we did not achieve complete depletion of the oocytes pool despite nine cycles of superovulation, possibly because mice become unresponsive to hormone induction after reaching reproductive maturity²⁴.

Figure 2. Assessing the effect of burn-induced ovary scarring on the seeding of intraperitoneally injected cancer cells. (A) Representative images of ovarian surface immediately after manipulation. Control ovaries were surgically released from the bursa while burned ovaries were first surgically released from the bursa, then superficially burned with a cauterizer. (B) Comparison of seeding efficiency of intraperitoneally injected cancer cells one or two months after surgical ovary manipulation. (C) Representative H&E-stained sections of cancer cell deposits on the ovaries and oviducts of mice that were injected one or two months after surgical ovary manipulation and euthanized four weeks later. Arrow indicates an immune cell infiltrate. Size bars: 100 µm. Cd, cancer cell deposit; Ov, ovary; Ovd, oviduct.

1/8

0/7

Control ovaries with > 50 µm cancer cell deposits

Burn-induced scarring of the ovarian surface is associated with increased cancer cell seeding to the ovaries and surrounding tissues only in the presence of active scar wound healing. To simulate events associated with postmenopausal ovary atrophy and connective tissue scarring, burn-induced scars were generated on the ovarian surface of the six week-old female FVB mice. In each mouse, one ovary was surgically released from the ovarian bursa (Supplementary Video 2) and superficially burned with a cauterizer (Fig. 2A and Supplementary Video 3). The contralateral ovary was surgically released from the bursa but not burned (control ovary) (Fig. 2A). Mice were intraperitoneally injected with a single-cell suspension of BR-luc cells ($\sim 1 \times 10^6$ cells) after one month recovery (N=8) or two months recovery (N=7). Four weeks after intraperitoneal cell injection, mice were euthanized for tumor burden quantification. Regardless of whether mice were intraperitoneally injected with cancer cells one month or two months after surgery, BR-luc cells formed multiple small tumor nodules on the mesothelial surfaces of the omentum, pancreas, diaphragm, spleen and abdominal lining; however, there were no visible tumor cell deposits on the surface of the burned or control ovaries. Therefore, we assessed microscopic cancer cell deposits in H&E-stained sections of ovaries/oviducts and adjacent fat. For the one month recovery group (N=8), cancer cell deposits larger than 50 µm were present in the tissues surrounding the ovary (fat, oviduct, and bursa) in 4/8 burned ovaries and in 1/8 control ovaries (Fig. 2B). All ovaries that contained tumor deposits also had abundant immune cell infiltrates (Fig. 2C). For the two months recovery group (N = 7), none of the ovary sections contained cancer cell deposits (Fig. 2B). Although burn-induced scars on the ovarian surface were detectable two months later, the scars were no longer associated with abundant immune cell infiltrates (Fig. 2C). These results suggest that burn-induced scars attract cancer cells but only in the presence of inflammation.

Events associated with aging contribute to increased cancer cell seeding to the ovaries and surrounding tissues. BR-luc cancer cell aggregates were bilaterally implanted into the oviducts of eight week-old (N = 10) and greater than one year-old (age range 14–19 months; N = 10) female FVB mice. Mice were euthanized for analysis four weeks after cancer cell implantation. Both groups of mice developed multiple intraperitoneal metastases with the largest tumor masses present on the omentum and abdominal wall. Omental and abdominal wall masses were more frequent in aged mice (Fig. 3A). Three of the aged mice also exhibited unilateral or bilateral uterine horn hyperplasia (data not shown). H&E-stained sections showed that the ovaries from young mice contained multiple follicles in different phases of maturation (data not shown), while the ovaries from old mice were devoid of follicles (Fig. 3B). Microscopic examination of the ovaries and adjacent tissues (oviduct,

Figure 3. Assessing the effect of aging on cancer cell seeding from the oviduct to the ovary and adjacent tissues. **(A)** Comparison of seeding efficiency of cancer cells implanted into the oviducts of young (8 weeks) and aged (>1 year) mice. In H&E-stained sections, several ovaries were excluded from the analysis because they were either missing from the slide section or the tissue was insufficient for evaluation. **(B,C)** Representative H&E-stained section of cancer cell deposits on ovaries and oviducts four weeks after surgical implantation of cancer cells into the oviducts of **(B)** 8-week-old mice and **(C)** >1-year-old mice. Arrow indicates an immune cell infiltrate. Size bars: 100 µm. Cd, cancer cell deposit; Ov, ovary.

bursa, and adjacent fat) revealed that tumor cell deposits were more frequent in aged mice (Fig. 3A), which also contained more abundant immune cell infiltrates (Fig. 3B). These results suggest that ovaries from aged mice are more conducive to cancer cell seeding than ovaries from young mice.

Discussion

A poor understanding of the initiating events in ovarian cancer has significantly hampered our efforts towards early ovarian cancer detection and prevention. Most early stage cancers in the tubal fimbria are associated with a dominant mass in the ovary, indicating that the ovarian microenvironment is essential for tumor growth. However, conditions that promote cancer cell seeding and growth in the ovary are still unknown. Recently, Yang-Hartwich and colleagues used a mouse xenograft model to test the role of ovulatory wound repair in the migration of cancer cells from the injection site in the uterus toward the ovary²⁵. Consistent with epidemiologic data that increased ovulation is strongly associated with ovarian cancer^{15,16}, they showed that superovulation in mice enhances the migration and adhesion of malignant cells to the ovary and that this attraction is mediated through the release of cytokines/chemokines from the surface wound created by oocyte release²⁵. Using a syngeneic immunocompetent mouse model with cancer cells surgically implanted into the oviduct, we confirmed that superovulation contributes to ovarian cancer cell seeding. Tumor cell deposits were accompanied by immune infiltrates, indicating that ovulation-induced inflammation may play an important role in cancer cell seeding. It is possible that the inflammatory reaction is the only factor that contributes to increased cancer cell seeding because the largest cancer cell deposits typically formed in the abdominal wall along surgical wounds, which were associated with extensive immune infiltrates. It appears that the wounded surface of the superovulated ovary did not play a direct role in cancer cell attraction as there were no cancer cells attached to the ovarian surface epithelium or inside the ovarian stroma. The importance of the inflammatory reaction, rather than the damaged ovarian surface in cancer cell seeding, was illustrated by the next two sets of experiments in which we repeatedly wounded the ovarian surface by multiple rounds of superovulation or burned the ovarian surface to induce scarring. The wounded/scarred ovarian surface proved to be attractive to cancer cells only if the wounds were 'fresh'. If ovarian wounds/scars were allowed to recover for two months, cancer cells were no longer attracted to the ovarian surface but were still attracted to other sites in the peritoneal cavity where inflammation persisted. It is well established that aging is characterized by subclinical, chronic inflammation²⁶. Consistent with multiple studies showing that the overall proinflammatory status in older mice is associated with increased tumor burden²⁷, our results show that oviductal implantation of cancer cells in aged mice resulted in increased tumor burden throughout the peritoneal cavity.

Our finding that surgical wounds in mice attract cancer cells is consistent with an observation in clinical practice that wound trauma in patients is associated with cancer recurrence^{28,29}. It has been shown that an early peak of breast cancer recurrence is due to surgery-driven intervention³⁰. The exact reasons for surgery-related cancer attraction are not fully understood but possible factors include surgery-related acute wound healing process, inflammation, and activation of dormant cancer cells by surgery-driven growth factors³¹⁻³³. If inflammation is a key factor in cancer cell seeding, what are the contributions of other factors strongly associated with increased cancer incidence, such as ovulation, oocyte depletion and atrophy, and aging? Our data in a mouse model are consistent with the concept that most of the factors implicated in ovarian cancer incidence converge on inflammation as a common denominator. One successful path to ovarian cancer prevention has been controlling factors that induce inflammation, such as the use of oral contraceptives to suppress ovulation³⁴. Epidemiologic data show that aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) can be beneficial in the prevention of multiple cancers, including ovarian^{35,36}. Although factors associated with the increased risk of ovarian cancer, such as aging and menopause cannot be prevented, the risk can be reduced by suppressing inflammation. The results of our study in a mouse model confirm previous results that inflammation is a key factor in promoting ovarian cancer cell seeding. An understanding of the mechanisms by which inflammation plays a role in the early stages ovarian cancer will be necessary for effective ovarian cancer prevention.

References

- 1. Torre, L. A. et al. Ovarian cancer statistics, 2018. CA Cancer J Clin (2018).
- Smith, R. A. et al. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin (2018).
- Kurman, R. J. & Shih, I. M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer-shifting the paradigm. Hum Pathol 42, 918–931 (2011).
- 4. Medeiros, F. *et al.* The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. *Am J Surg Pathol* **30**, 230–236 (2006).
- 5. Crum, C. P. et al. Lessons from BRCA: the tubal fimbria emerges as an origin for pelvic serous cancer. Clin Med Res 5, 35-44 (2007).
- Kindelberger, D. W. *et al.* Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. *Am J Surg Pathol* 31, 161–169 (2007).
- Przybycin, C. G., Kurman, R. J., Ronnett, B. M., Shih Ie, M. & Vang, R. Are all pelvic (nonuterine) serous carcinomas of tubal origin? *Am J Surg Pathol* 34, 1407–1416 (2010).
- 8. Jayson, G. C., Kohn, E. C., Kitchener, H. C. & Ledermann, J. A. Ovarian cancer. Lancet 384, 1376-1388 (2014).
- Chuffa, L. G., Lupi-Junior, L. A., Costa, A. B., Amorim, J. P. & Seiva, F. R. The role of sex hormones and steroid receptors on female reproductive cancers. *Steroids* 118, 93–108 (2017).
- Fleming, J. S., Beaugie, C. R., Haviv, I., Chenevix-Trench, G. & Tan, O. L. Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. *Mol Cell Endocrinol* 247, 4–21 (2006).
- Laven, J. S. E., Visser, J. A., Uitterlinden, A. G., Vermeij, W. P. & Hoeijmakers, J. H. J. Menopause: Genome stability as new paradigm. *Maturitas* 92, 15–23 (2016).
- 12. Saed, G. M., Diamond, M. P. & Fletcher, N. M. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. *Gynecol Oncol* (2017).
- Yang, H. P. et al. Lifetime Number of Ovulatory Cycles and Risks of Ovarian and Endometrial Cancer Among Postmenopausal Women. Am J Epidemiol 183, 800–814 (2016).
- 14. Fathalla, M. F. Incessant ovulation-a factor in ovarian neoplasia? Lancet 2, 163 (1971).
- 15. Casagrande, J. T. et al. "Incessant ovulation" and ovarian cancer. Lancet 2, 170-173 (1979).
- Purdie, D. M., Bain, C. J., Siskind, V., Webb, P. M. & Green, A. C. Ovulation and risk of epithelial ovarian cancer. Int J Cancer 104, 228–232 (2003).
- Focchi, G. R., Simoes Mde, J., Baracat, E. C., de Lima, G. R. & Evencio Neto, J. Ultrastructural aspects of the remodeling process of the Corpus albicans in the recent postmenopausal period. Sao Paulo Med J 114, 1173–1176 (1996).
- Singavarapu, R., Buchinsky, N., Cheon, D. J. & Orsulic, S. Whole ovary immunohistochemistry for monitoring cell proliferation and ovulatory wound repair in the mouse. *Reprod Biol Endocrinol* 8, 98 (2010).
- 19. Xing, D. & Orsulic, S. A mouse model for the molecular characterization of brca1-associated ovarian carcinoma. *Cancer Res* 66, 8949–8953 (2006).
- Goldberg, M. S. et al. Nanoparticle-mediated delivery of siRNA targeting Parp1 extends survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells. Proc Natl Acad Sci USA 108, 745–750 (2011).
- Huang, J. et al. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer. Biochem Biophys Res Commun 463, 551–556 (2015).
- 22. Mantia-Smaldone, G. *et al.* The immunomodulatory effects of pegylated liposomal doxorubicin are amplified in BRCA1- deficient ovarian tumors and can be exploited to improve treatment response in a mouse model. *Gynecol Oncol* **133**, 584–590 (2014).
- Wang, L. et al. Decitabine Enhances Lymphocyte Migration and Function and Synergizes with CTLA-4 Blockade in a Murine Ovarian Cancer Model. Cancer Immunol Res 3, 1030–1041 (2015).
- 24. Hoogenkamp, H. & Lewing, P. Superovulation in mice in relation to their age. Vet Q 4 (47-48), 44 (1982).
- 25. Yang-Hartwich, Y. et al. Ovulation and extra-ovarian origin of ovarian cancer. Sci Rep 4, 6116 (2014).
- Zhang, X., Meng, X., Chen, Y., Leng, S. X. & Zhang, H. The Biology of Aging and Cancer: Frailty, Inflammation, and Immunity. Cancer J 23, 201–205 (2017).
- Myers, C. E., Mirza, N. N. & Lustgarten, J. Immunity, cancer and aging: lessons from mouse models. *Aging Dis* 2, 512–523 (2011).
 Morihara, K., Takenaka, H., Morihara, T. & Kishimoto, S. Primary cutaneous anaplastic large cell lymphoma associated with
- vascular endothelial growth factor arising from a burn scar. J Am Acad Dermatol 57, S103–105 (2007).
- Oosterling, S. J., van der Bij, G. J., van Egmond, M. & van der Sijp, J. R. Surgical trauma and peritoneal recurrence of colorectal carcinoma. Eur J Surg Oncol 31, 29–37 (2005).
- Demicheli, R., Retsky, M. W., Hrushesky, W. J. & Baum, M. Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4, 699–710 (2007).
- Castano, Z., Tracy, K. & McAllister, S. S. The tumor macroenvironment and systemic regulation of breast cancer progression. Int J Dev Biol 55, 889–897 (2011).
- DeNardo, D., Andreu, P. & Coussens, L. M. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. *Cancer and Metastasis Reviews* 29, 309–316 (2010).
- Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. *Nature Medicine* 19, 1423–1437 (2013).
 Tworoger, S. S., Fairfield, K. M., Colditz, G. A., Rosner, B. A. & Hankinson, S. E. Association of oral contraceptive use, other contraceptive methods, and infertility with ovarian cancer risk. *Am J Epidemiol* 166, 894–901 (2007).
- 35. Trabert, B. *et al.* Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the Ovarian Cancer Association Consortium. *J Natl Cancer Inst* **106**, djt431 (2014).
- 36. Trabert, B. *et al.* Analgesic Use and Ovarian Cancer Risk: An Analysis in the Ovarian Cancer Cohort Consortium. *J Natl Cancer Inst* (2018).

Acknowledgements

We thank Kristy J. Daniels for assistance in manuscript preparation and members of the Women's Cancer Program for their support. This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Ovarian Cancer Research Program Award No. W81XWH-17-1-0144 and W81XWH-16-1-0190; the National Cancer Institute grants R21CA194626 and 1R01CA208753; and the Cantor-UCLA Women's Health Center Executive Advisory Board & NCATS UCLA Clinical and Translational Science Institute grant UL1TR000124.

Author Contributions

D.J. performed all experiments described in this study except mouse surgery, which was performed by Y.N. and MK. D.J. also participated in data collection, analysis, and interpretation. S.O. conceived and designed the study, participated in data analysis and interpretation, and wrote the manuscript. All authors contributed to manuscript revisions and approved the submitted version.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-30261-8.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

Are epithelial ovarian cancers of the mesenchymal subtype actually intraperitoneal metastases
 to the ovary?

- 3
- 4 Ye Hu¹, Barbie Taylor-Harding¹, Yael Raz¹, Marcela Haro¹, Maria Sol Recouvreux¹, Enes Taylan¹,
- 5 Jenny Lester², Joshua Millstein³, Ann E. Walts⁴, Beth Y. Karlan^{2,5} and Sandra Orsulic^{1, 2, *}
- 6
- 7 ¹Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical
- 8 Center, Los Angeles, CA, USA
- 9 ²Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los
- 10 Angeles, Los Angeles, CA, USA
- ³Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of
- 12 Southern California, Los Angeles, CA, USA
- ⁴Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- ⁵Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- 15
- 16 **Running Title:** Mesenchymal subtype indicates advanced intraperitoneal dissemination
- 17 **Keywords:** ovarian cancer, mesenchymal, molecular subtype, metastases, desmoplasia
- 18
- 19 ***Corresponding Author:** Sandra Orsulic, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los
- 20 Angeles, CA, 90048, Tel: 310-423-9546, Email: orsulics@cshs.org
- 21
- **Tables:** 0
- **Figures**: 5
- 24 Supplementary tables: 5
- 25 Supplementary figures: 3
- 26
- 27 Note for reviewers: The GSE135712 and GSE133296 data sets have been deposited into GEO.
- 28
- 29 To review GEO accession GSE135712:
- 30 Go to <u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135712</u>
- 31 Enter token obynqwaujjerdaj into the box
- 32
- **33** To review GEO accession GSE133296:
- Go to <u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133296</u>
- Enter token mpgvewiwjbmbrqd into the box

36 Abstract

37

Primary ovarian high-grade serous carcinoma (HGSC) has been classified into 4 molecular 38 subtypes: Immunoreactive, Proliferative, Differentiated, and Mesenchymal (Mes), of which the 39 40 Mes subtype (Mes-HGSC) is associated with the worst clinical outcomes. We propose that Mes-HGSC comprise clusters of cancer and associated stromal cells that detached from tumors in the 41 upper abdomen/omentum and disseminated in the peritoneal cavity, including to the ovary. Using 42 comparative analyses of multiple transcriptomic data sets, we provide the following evidence that 43 the phenotype of Mes-HGSC matches the phenotype of tumors in the upper abdomen/omentum: 44 1) irrespective of the primary ovarian HGSC molecular subtype, matched upper 45 abdominal/omental metastases were typically of the Mes subtype, 2) the Mes subtype was present 46 in primary ovarian HGSC only in patients with concurrent upper abdominal/omental metastases 47 and not in those with primary HGSC confined to the ovary, and 3) primary ovarian Mes-HGSC 48 had an expression profile characteristic of stromal cells in the upper abdominal/omental 49 50 metastases. We suggest that Mes-HGSC signifies advanced intraperitoneal tumor dissemination to the ovary rather than a subtype of primary ovarian HGSC. This is consistent with the presence of 51 upper abdominal/omental disease, suboptimal debulking, and worst survival previously reported 52 in patients with primary ovarian Mes-HGSC compared to other molecular subtypes. 53

55 Introduction

56

The majority of ovarian cancer patients with HGSC are diagnosed with tumors involving one or both 57 ovaries and various additional intraperitoneal sites including the upper abdomen/omentum (FIGO 58 59 stage III) (1). HGSC can arise from the fallopian tube, the ovarian surface serous epithelium, or extraovarian peritoneal tissues as primary peritoneal carcinoma (PPC) (Fig. 1A). Currently, it is 60 thought that ovarian cancer cells shed from the primary tumor into the peritoneal fluid and disseminate 61 in the peritoneal cavity, typically from the ovary to the upper abdomen/omentum (Fig. 1A). However, 62 the model of primarily unidirectional HGSC metastasis from the pelvis to the upper 63 abdomen/omentum seems simplistic within a cavity that lacks internal physical barriers to cancer 64 65 dissemination. We propose that in stage III HGSC, metastases and PPC in the upper abdomen/omentum shed cancer cell-stroma aggregates into the peritoneal fluid, resulting in 66 67 intraperitoneal dissemination that includes secondary metastases to the primary tumor in the pelvis (Fig. 1B). Patterns of cancer dissemination within the peritoneal cavity have been difficult to discern 68 69 using genomic data because genomic instability is an early event in HGSC and copy number profiles and mutational patterns are typically shared across different anatomic sites (2-6). However, individual 70 71 clones have been tracked using whole-genome and single-nucleus sequencing of patient-matched tumor deposits at different anatomic locations. These studies identified evidence of metastases to the 72 73 ovary or the fallopian tube in 4 of 15 patients, thereby demonstrating that re-seeding of the primary 74 tumor site by clones from peritoneal metastases is not a rare event (2,3). 75 Transcriptomic analyses have clustered primary ovarian HGSC into 4 main molecular subtypes: 76

77 Immunoreactive, Mesenchymal (Mes), Proliferative and Differentiated (7,8). The feature that

distinguishes primary ovarian HGSC of the Mes molecular subtype (hereafter referred to as primary

79 ovarian Mes-HGSC) from the other 3 subtypes (non-Mes subtypes) is the elevated expression of

80 myofibroblast/extracellular matrix (ECM) remodeling genes (9-11). In addition to this distinct

transcriptome, Mes-HGSC is more frequently associated with the presence of upper

82 abdominal/omental metastases (12,13), suboptimal surgical debulking (presence of residual

macroscopic disease after cytoreductive surgery) (13-15), severe postoperative complications (13,16),

and reduced overall survival (12-17) in comparison to the non-Mes subtypes. The current theory

suggests that cancer cells in primary ovarian Mes-HGSC recruit myofibroblasts or convert the local

ovarian stroma into myofibroblasts, which equip cancer cells with greater metastatic ability (11,13,18).
However, this theory does not explain why metastases are predominantly of the Mes phenotype even
when the primary tumor is Immunoreactive, Proliferative, or Differentiated subtype (19). PPC is also
typically of the Mes phenotype (20), suggesting that this phenotype is an inherent feature of peritoneal
lesions.

91

92 In this study, we used transcriptomic analyses of tumor samples with annotated presumed sites of tumor origin and sites of sample collection (Table S1) to show that the Mes gene signature is 93 94 expressed in the stromal component of tumors in the upper abdomen/omentum but not in most primary ovarian HGSC. However, if a tumor in the ovary expresses the Mes signature, we propose that this 95 96 tumor contains the microenvironment from tumors in the upper abdomen/omentum. This can occur by two mechanisms (Fig. 1B). The first mechanism involves a primary tumor in the ovary/pelvis that 97 metastasizes to the omentum/upper abdomen, then the metastases, which have now acquired the Mes 98 phenotype, continue to seed the rest of the peritoneal cavity, including the ovary where the tumor 99 initially originated. The second mechanism involves PPC from the upper abdomen/omentum that 100 metastasizes throughout the peritoneal cavity, including to the ovary. If our hypothesis is correct, we 101 102 predict that stage II primary ovarian HGSC (tumors confined to the pelvis) cannot exhibit the Mes subtype because of the absence of cancer/stroma cell aggregates from the upper abdomen/omentum 103 (Fig. 1C). 104

105

106 **Results**

107

108 The Mes subtype reflects tumor location

109 We examined whether the Mes phenotype varies across patient-matched FFPE samples of primary, metastatic, and recurrent HGSC from 24 patients (Fig. 2A and B). The Mes phenotype was determined 110 111 by threshold expression of 15 mesenchymal genes (Materials and Methods, **Table S2**). The 15 genes were among the top 100 genes used by Verhaak et al. (7) to define the Mes subtype by expression 112 113 profile analysis (Mes 100-gene set) (Table S2). In the TCGA data set, this 15-gene signature was associated with poor overall and progression-free survival (Fig. S1) and was equivalent to the Mes 114 100-gene set in classifying samples of the Mes subtype (Fig. S2). All 15 genes were expressed at 115 higher levels in the metastatic and recurrent tumors compared to the matched primary tumors (Fig. 116

117 **2A**). While only 20% of the primary ovarian HGSC were classified as Mes, 19 79% of the metastatic and 58% of the recurrent HGSC were classified as Mes (Fig. 2B). The higher percentage of the Mes 118 subtype in the metastatic samples than in the recurrent samples may be attributed to different sites of 119 sample collection; the omentum was the most common collection site for metastases while the serosal 120 aspects of the intestine/colon/rectum were the most common collection sites for recurrent tumors (Fig. 121 2B). Notably, 15 of 17 metastatic and recurrent samples collected from the omentum were classified as 122 Mes and none of the 4 metastatic and recurrent samples collected from the lymph nodes was classified 123 124 as Mes (Fig. 2B).

125

Since most metastases located in the upper abdomen/omentum were classified as Mes (Fig. 2B), we 126 hypothesized that primary ovarian HGSC of the Mes subtype are actually metastases from the upper 127 abdomen/omentum to the ovary. If this is correct, HGSC collected from patients with cancer confined 128 to the pelvis (stage I-II) should not exhibit the Mes phenotype because of the absence of upper 129 abdominal/omental disease as a source of metastatic tumor clusters able to seed the ovary (Fig. 1C). 130 We tested this hypothesis in 2 public data sets in which samples had been divided into 4 molecular 131 132 subtypes. In this study, we used the original molecular classifications for the TCGA and GSE9891 data sets (8,23). Of note, subsequent studies may have used different classification algorithms, which 133 134 resulted in different molecular subtype assignments to the same samples; in a recent study, 22% of samples had been reclassified to a different molecular subtype (17). 135 136 In the TCGA data set, samples had been divided into 4 molecular subtypes: Immunoreactive, 137 138 Mesenchymal (Mes), Proliferative, and Differentiated (8). All of the TCGA tumor samples presumably originated in the ovary and were collected from the ovary (ov-ov) (Fig. 2C). Of 26 stage II 139 140 HGSC samples, only 1 was classified as Mes (Fig. 2C). Notably, that sample (TCGA-61-2133) had features of an aggressive malignancy despite its stage II designation: it was annotated as stage IIc, 141 grade 3 with extensive lymphovascular permeation, positive pelvic lymph nodes and the shortest 142 overall survival among patients with stage IIc HGSC who died from the disease (676 days vs 1380 143 days mean survival). In contrast to stage II HGSC, in 325 stage III HGSC and 74 stage IV HGSC, Mes 144 145 tumors contributed to 23% and 27% of samples, respectively (Fig. 2C).

147 In the GSE9891 data set, HGSC samples had been clustered into C1/Mesenchymal,

148 C2/Immunoreactive, C4/Proliferative, and C5/Differentiated molecular subtypes (23) and annotated by

their presumed tissue of origin and the site of specimen collection as ov-ov, per-ov, ov-per, and per-

150 per (**Fig. 2D**). Due to a small number of stage I and stage IV samples, we grouped stage I and II

samples as stage I-II, and stage III and IV samples as stage III-IV. None of the 14 ov-ov stage I-II

152 HGSC was classified as Mes/C1 (Fig. 2D). Of the 104 ov-ov stage III-IV HGSC, 23% were classified

as C1/Mes. Of the 38 ov-per stage III-IV HGSC, 66% were classified as C1/Mes (**Fig. 2D**). Of the 9

154 per-ov HGSC (including 1 stage II and 8 stage III-IV), 67% were classified as C1/Mes (**Fig. 2D**).

155 According to our hypothesis, all metastases that originated in the upper abdomen/omentum as PPC and

then spread to the ovary (per-ov) should be of the C1/Mes subtype. However, it is important to note

that these 9 per-ov tumors were reported by pathologists as PPC based only on the impression of

disease distribution gathered from the surgeon's description of the intraoperative findings in the

159 operative report and the tissue samples that surgeons had elected to excise. Interestingly, and as noted

by pathologists in some of these surgical pathology reports, pathologists were not always certain or in

agreement about the origin of the tumor (primary ovarian vs. PPC). Of the 21 per-per stage III-IV

HGSCs, 86% were classified as C1/Mes. It is unknown if some of these PPC samples were located inthe pelvis.

164

165 Together, we conclude that ov-ov HGSC stage I-II (confined to the pelvis) are almost never of the Mes

subtype while 20%-27% of ov-ov HGSC stage III-IV (presence of concurrent upper

abdominal/omental metastases) are of the Mes subtype. The Mes subtype is predominant among

168 HGSC samples collected from the peritoneal cavity (ov-per and per-per) as well as samples presumed

to be peritoneal metastases to the ovary (per-ov).

170

171 The Mes molecular subtype is defined by the metastatic microenvironment, not the epithelial

172 cancer cells

To determine which cell type expresses the Mes 15-gene signature, we used digital image analysis for

the annotation of fibroblasts, epithelial cancer cells, and immune cells in H&E-stained full sections of

omental metastases collected during primary debulking surgery from 152 HGSC patients

176 (GSE135712) (**Fig. 3A**). The Mes 15-gene signature z-score was determined for each patient (**Fig.**

177 S3A) and correlated with the content of each of the 3 annotated cell types. The two prevalent cell types

in omental metastases were epithelial cancer cells and fibroblasts, while the content of immune cells

179 was variable across 152 samples (data not shown). The Mes 15-gene signature correlated with the

180 fibroblast content (r=0.660; p=2.4e-20), inversely correlated with the epithelial cancer cell content (r=-

181 0.619; p=1.8e-17) and showed no significant correlation with the immune cell content (r=-0.035;

182 p=0.67) (Fig. 3B), suggesting that among these 3 cell types in omental metastases, fibroblasts are the

183 most likely source of the Mes 15-gene signature.

184

185 To study the correlation of the Mes 15-gene signature with fibroblast content in primary and metastatic

tumors, we used concurrent primary ovarian HGSC, omental metastases, and non-omental

187 intraperitoneal metastases collected at the time of primary debulking surgery from 10 HGSC patients

188 (GSE133296). The average fibroblast content did not differ significantly between primary ovarian

189 HGSC, omental metastases, and non-omental metastases (**Fig. 3C**). The Mes 15-gene signature z-

score (Fig. S3B) was significantly correlated with the fibroblast content in omental (r=0.703; p=0.02)

and non-omental intraperitoneal (r=0.893; p=5.0e-4) metastases but not in primary tumors (r=0.170;

192 p=0.64) (**Fig. 3D**), suggesting that primary tumor fibroblasts were not expressing high levels of the 15

193 Mes genes. This result is consistent with our prior *in situ* hybridization findings that only a small

number of patients (~20%) expressed COL11A1 in cancer-associated fibroblasts (CAFs) in primary

ovarian HGSC, while the majority of patient-matched metastases expressed COL11A1 in CAFs (21).

The Mes 15-gene signature was not enriched in metastases if metastatic epithelial cancer cells were
stripped of their microenvironment. EpCAM-positive epithelial cancer cells isolated from matched
primary ovarian HGSC, ascites, and metastasis from 5 patients (3 with replicate samples) (GSE73168)
(24) exhibited equivalent relative levels of the Mes 15-gene signature z-score (Fig. S3C, D). Together,

these results show that the Mes phenotype is determined by the metastatic microenvironment rather

than by the intrinsic molecular subtype of epithelial cancer cells.

203

Primary ovarian HGSC of the Mes subtype are enriched for a gene signature characteristic of stromal cells in metastases located in the upper abdomen/omentum

We were interested to know if the stroma in primary ovarian HGSC differs from the stroma in HGSC metastases located in various tissue sites in the peritoneal cavity. To completely exclude the epithelial cancer cell transcriptome from the analysis, we used published stromal gene signatures derived from 209 proteome data of laser-capture microdissected stromal cells from primary ovarian HGSC and matched omental metastases from 11 HGSC patients (22). We first validated the 2 stromal gene signatures (22) 210 211 in our own data set (GSE133296) of matched primary ovarian HGSC, omental metastases, and non-212 omental metastases from 10 HGSC patients. The primary ovarian HGSC stromal gene signature was overexpressed in a subset of primary ovarian HGSC while the omental metastasis stromal gene 213 signature was overexpressed in a subset of omental and non-omental metastases (Fig. 4A). Thus, 214 application of the published proteome-derived stromal gene signatures to our data set shows that the 2 215 stromal gene signatures are differentially enriched in primary and metastatic tumors in most, but not 216 all, patients (i.e. all 3 tumors cluster together in the asterisk-marked gray-colored patient and the teal-217 colored patient) (Fig. 4A). To assign a quantitative value to the difference in enrichment of the 2 218 stromal gene signatures, we used an unweighted ratio of the stromal gene signature z-scores (positive 219 220 value for the omental metastasis gene signature and negative value for the primary ovarian HGSC gene signature). The average ratio of the stromal gene signatures was significantly lower in primary 221 222 ovarian HGSC compared to patient-matched omental or non-omental metastases in the GSE133296 223 data set (Fig. 4B).

224

Using 2 large transcriptomic data sets in which subsets of samples have been annotated by the site of sample collection (GSE9891 and GSE2109), we showed that the average ratio of the 2 stromal gene signatures was lower in tumors located retroperitoneally or in the pelvis (ovary, uterus, and fallopian tube) than in tumors located outside of the pelvis (omentum, colon/intestine, abdominal wall, peritoneum, and diaphragm) (**Fig. 4C, D**). Together, these data suggest that intraperitoneal tumors located in the pelvis are enriched for a stromal gene signature of primary ovarian HGSC while tumors outside of the pelvis are enriched for a stromal gene signature of omental metastases.

232

To determine whether the 2 stromal gene signatures are associated with molecular subtypes in primary ovarian HGSC, we used the ovarian TCGA data set (8). Overlay of the 2 stromal gene signatures with the ovarian TCGA data set showed strong enrichment of the omental metastasis gene signature in the Mes subtype while the stromal gene signature of primary ovarian HGSC was not significantly enriched in any specific molecular subtype (**Fig. 5A**). The ratio of the 2 stromal gene signatures was significantly enriched in the Mes subtype in comparison to the Immunoreactive, Differentiated, and

239 Proliferative molecular subtypes (Fig. 5B). Since the Immunoreactive and Mesenchymal primary

ovarian HGSC subtypes have been shown to contain more stroma (less epithelial cancer cells) than the
Differentiated and Proliferative subtypes (10,11,25,26), it is possible that the stromal gene signatures
are overexpressed in samples with high stromal content and underexpressed in samples with high
epithelial cancer cell content. However, we show little correlation between the stromal gene signatures
and epithelial cancer cell content in the TCGA data set (Fig. 5C), suggesting that the strong
enrichment of the stromal gene signature ratio in Mes-HGSC (Fig. 5B) reflects a molecularly different
type of stroma rather than an increased presence of the stroma in the Mes subtype.

247

248 **Discussion**

249

Molecular profiling studies have identified 4 distinct molecular subtypes of primary ovarian HGSC of 250 251 which the Mes subtype has the lowest rate of optimal surgical debulking and the worst overall survival (7,10,13,15,23,27-29), and is almost always associated with coexisting upper abdominal/omental 252 253 metastases (13,15). It has been shown that cancer-associated stroma and ECM largely contribute to the Mes gene signature (9-11). Additionally, our analyses showed that the transcriptome of primary 254 255 ovarian Mes-HGSC is strongly correlated with the stromal gene signature of omental metastasis (22). Considering the phenotypic similarity between primary ovarian Mes-HGSC and peritoneal metastases 256 257 and the frequent coexistence of primary ovarian Mes-HGSC with upper abdominal/omental metastases, we propose that primary ovarian Mes-HGSC might actually be cancer-stroma aggregates 258 259 that detached from tumors located in the upper abdomen/omentum. Indeed, whole-genome and singlenucleus sequencing analyses have demonstrated that metastases are not always unidirectional and that 260 261 the re-seeding of peritoneal metastasis to the fallopian tube or ovary can occur (2,3). Unfortunately, the gene expression based molecular subtypes of such samples cannot be determined as these studies 262 263 isolated high purity epithelial tumor cells rather than the stroma, which frequently contributes to gene expression signatures that define molecular subtypes. 264

265

Studies in cell co-cultures and in mouse models demonstrated the existence of heterotypic aggregates of cancer cells and stroma, in which stromal cells support epithelial cancer cell survival and guide peritoneal invasion, and can accompany epithelial cancer cells to a new metastatic site and actively reconstitute the tumor stroma in newly formed metastases (24,30). However, it has been shown that HGSC metastases rarely contain CAFs from primary ovarian HGSC (24), suggesting that stromal cells 271 in primary ovarian tumors are not overly efficient in accompanying cancer cells to a new metastatic site and/or are not proficient in re-building the stroma at a new site. It is likely that implantation of 272 273 cancer cell-stroma aggregates at a new metastatic site requires significant remodeling of the local 274 stroma or recruitment of new stroma. Indeed, stroma in the upper abdominal/omental metastases is frequently enriched for markers of myofibroblasts and ECM remodeling, such as POSTN, COL11A1, 275 LOX, VCAN, TNC, and THBS2 (9,20,22). It is possible that the upper abdominal/omental metastasis 276 stroma is more efficient than primary ovarian cancer stroma in accompanying metastatic cancer cells 277 278 and reconstituting the stroma at secondary metastatic sites. For example, omental adipocytes have been shown to promote ovarian cancer metastasis and provide energy for rapid tumor growth (31,32). 279 280

Our result that the majority of patient-matched metastatic or recurrent HGSC samples were classified 281 282 as Mes-HGSC irrespective of the primary cancer subtype is consistent with the results of a recent study in a different cohort of patients (19) as well as a study showing that the majority of PPC are 283 284 classified as the Mes subtype (20). According to our hypothesis that the Mes signature is a signature of stromal cells in the upper abdominal/omental HGSC, all HGSC in the upper abdomen/omentum 285 286 should be classified as Mes. Yet in our study, only 86% of PPC and 66% of peritoneal metastases were classified as Mes. It is also expected that all PPC metastases to the ovary are Mes but only 67% were 287 288 classified as Mes. Multiple technical reasons could explain why some metastases to the ovary did not classify as Mes including imperfections in algorithms that had been used for the Mes subtype 289 290 classification in the original publications, unknown precise site of sample collection in the peritoneal cavity (pelvis vs upper abdomen/omentum), and/or inclusion of samples that had been annotated as 291 292 PPC based on the tumor distribution but are actually primary ovarian or fallopian tube HGSC. A 293 biological explanation for the existence of non-Mes-HGSC metastases in the upper abdomen/omentum 294 could be that metastases are initially associated with accompanying stroma from the primary ovarian HGSC until cancer cells can recruit and/or remodel the stroma at the metastatic site. 295

296

We cannot completely exclude the possibility that cancer cells in primary ovarian Mes-HGSC are
capable of converting the resident ovarian stromal cells into myofibroblasts or recruiting
myofibroblast-like stroma to the ovary. However, if this were true, it would be expected that some of
the stage I-II primary ovarian HGSC were of the Mes subtype. Of the 37 stage I-II primary ovarian

HGSC samples that satisfied our inclusion criteria in the TCGA and GSE9891 data sets, only 1 was

302 classified as Mes and that tumor exhibited features of a highly aggressive malignancy (stage IIc with

303 lympho-vascular invasion and early death from the disease), suggesting the potential presence of

- 304 malignant ascites containing microscopic cancer cell-stroma aggregates from the upper
- abdomen/omentum.
- 306

307 Although the main purpose of this study was to present a new perspective in the understanding of intraperitoneal HGSC dissemination, our results have clinical relevance. We suggest that the Mes gene 308 signature in primary ovarian HGSC signifies advanced/high-stage intraperitoneal metastatic 309 dissemination that includes metastasis to the ovary by cancer cell-stroma aggregates from the upper 310 abdomen/omentum. From this perspective, stage III Mes-HGSC could be considered "more advanced" 311 than stage III non-Mes-HGSC. Additionally, our results may be relevant to the future clinical use of 312 313 molecular subtype biomarkers to triage patients to primary cytoreductive surgery or neoadjuvant chemotherapy. Genes associated with the Mes subtype have been associated with suboptimal 314 315 debulking and increased postoperative morbidity and mortality (13,15,33,34), suggesting that the Mes subtype could be helpful as a biomarker to triage patients toward neoadjuvant chemotherapy (35). 316 317 Some medical centers are already using preoperative biopsy to assess resectability and triage patients for neoadjuvant chemotherapy (36,37). Our results show that the site of tumor biopsy is important in 318 319 determining the Mes subtype. Although large omental metastases are most easily accessed (37), they are not reliable for patient stratification by tumor molecular subtype classification because they usually 320 321 exhibit the Mes subtype. If classification by molecular subtype is to be used to inform clinical management, our findings underscore that biopsies submitted for molecular analysis should be 322 323 obtained from the ovarian mass, even though it may be more difficult to obtain than an omental biopsy. With the advancement of image-guided core needle biopsy and minimally invasive surgical 324 325 techniques, diagnostic ovarian sampling to precisely identify molecular characteristics of the tumor 326 could become standard clinical practice in individualizing the treatment approach (38,39).

327

328 Materials and Methods

329

Patient samples and gene expression analyses. Formalin-fixed paraffin-embedded (FFPE) blocks
 were retrieved from the pathology archives at Cedars-Sinai Medical Center under an approved IRB
 protocol. FFPE blocks were sectioned onto uncharged glass slides. One 4 µm H&E-stained section

was used by a pathologist to circle the tumor areas and delineate them from the adjacent normal tissue. 333 Depending on the tumor size, 1 to 3 unstained 10 µm sections were macrodissected (removal of non-334 tumor areas based on the H&E template) with a clean razor blade. Total RNA was isolated using the 335 miRNeasy FFPE kit according to the manufacturer's instructions (Qiagen). For the GSE135712 data 336 set, samples of omental metastases collected from 152 HGSC patients at the time of primary debulking 337 surgery were analyzed for RNA expression of 1067 genes by NanoString nCounter technology 338 (NanoString Technologies). Data were normalized using nSolver software (NanoString Technologies). 339 In a separate NanoString data set, matched primary, metastatic, and recurrent HGSC samples from 29 340 patients were analyzed for RNA expression of 15 genes by NanoString nCounter. Five patients were 341 excluded from the analysis due to missing tissue or missing mRNA data for one of the matched 342 tumors. In 4 patients where more than one matched metastatic or recurrent tumor sample was 343 344 available, one sample was randomly selected for the study. For the GSE133296 data set, matched HGSC samples collected from the ovary, omental metastasis, and non-omental intraperitoneal 345 346 metastasis from 10 patients at the time of primary debulking surgery were analyzed for RNA expression by RNA sequencing using the SMARTer Stranded Total RNA-Seq Kit v2 on the Illumina 347 348 HiSeqX platform (MedGenome). Unwanted sequences (non-polyA tailed RNAs from the sample, mitochondrial genome sequences, ribosomal RNAs, transfer RNAs, adapter sequences and others) 349 350 were removed using Bowtie2 (version 2.2.4). The paired-end reads were aligned to the reference human genome downloaded from the UCSC database (GRCh37/hg19). STAR (2.4.1) aligner was used 351 352 for read alignment. Reads mapping to ribosomal and mitochondrial genomes were removed before alignment was performed. The raw read counts were estimated using HTSeq-0.6.1. Read count data 353 354 were normalized using DESeq2.

355

Expression data sets. For the ovarian TCGA data set, level 3 data (gene merged) on the

AgilentG4502A_07_3 platform was used for analyses. The GSE9891, GSE2109, and GSE73168 data

sets were obtained from the Gene Expression Omnibus (GEO) repository. Raw and normalized data

for GSE135712 and GSE133296 were deposited into the GEO archive. Datasets used in this study and their associated publications are listed in **Table S1**.

361

Gene signatures distinguishing Mes-HGSC from non-Mes-HGSC. For the 15-gene Mes signature,
 matched primary, metastatic, and recurrent FFPE tumor samples from 24 patients with HGSC were

profiled with NanoString nCounter for expression of 15 genes (Table S2) that we previously found to 364 be associated with poor survival in HGSC (21) and/or belonged to the pan-cancer gene signature of 365 366 activated cancer-associated fibroblasts (9). A threshold for each of the 15 genes was determined by its median expression level in the primary tumors (Table S3). A score of 1 was given if the expression 367 exceeded the threshold, otherwise a score of 0 was given (Table S3). Once 15 individual scores 368 369 corresponding to 15 mesenchymal genes were obtained, they were used to create a Mes score. The Mes score was normalized to a range between 0 and 1, in which 1 indicated Mes-HGSC while all other 370 values indicated non-Mes-HGSC. Application of this 15-gene score algorithm to the TCGA data set 371 correctly classified 96 of 105 (91%) samples annotated as the Mesenchymal subtype and 317 of 355 372 (89%) samples annotated as the non-Mesenchymal subtype (Immunoreactive, Proliferative or 373 Differentiated) (Table S4). For the 100-gene set mesenchymal HGSC gene signature, we used the top 374 100 genes that distinguished the Mes subtype from other subtypes, according to the study by Verhaak 375 et al. (7) (Table S2). The 21-gene stromal signature of primary ovarian HGSC and the 21-gene 376 stromal signature of omental metastasis have been described (22). 377

378

379 Data analyses. The R2: Genomic Analysis and Visualization Platform (http://hgserver1.amc.nl/cgibin/r2/main.cgi) was used for analyses of RNA expression levels and correlation between gene set 380 381 signatures and sample groups in different data sets. The gene set signature score was defined as the average z-score of a z-score-transformed data set. For digital image data analyses, H&E stained slides 382 383 were scanned at 20x magnification using Aperio AT Turbo. The image analysis was performed using the QuPath software. The image analysis workflow consisted of cell/nucleus detection, annotation of 384 385 regions containing 3 different cell types (fibroblast, epithelial cancer cell, immune cell), creating the cell detection classifier, and applying the classifier to all cells in the circled regions of the slide. 386

- 387
- 388

389

Acknowledgments: We thank Kristy J. Daniels for assistance in manuscript preparation and Elad
Yana for assistance with the illustration. We also thank the Australian Ovarian Cancer Study
(AOCS) group for providing additional information about the GSE9891 data set.

Author Contributions: SO conceived the hypothesis, analyzed data sets and wrote the manuscript. JL
reviewed and categorized clinical information. AEW reviewed the pathology and selected tissue
blocks for mRNA isolation. BT-H isolated RNA from FFPE samples and conducted NanoString
nCounter analyses. YH, YR, MH, MSR, and ET contributed to data analyses. JM analyzed the
NanoString nCounter data for matched primary, metastatic, and recurrent tumor samples. AEW and
BYK provided critical input and contributed to the writing of the manuscript. All authors participated
in manuscript revisions.

402 **Grant Support:** This research was supported by the National Cancer Institute grant R01CA208753

and the Office of the Assistant Secretary of Defense for Health Affairs through the Ovarian Cancer

404 Research Program Awards Nos. W81XWH-17-1-0144 and W81XWH-16-1-0190 and the Ovarian

405 Cancer Research Alliance Program Project Grant to SO, the Foundation for Women's Cancer (FWC)

406 Laura Crandall Brown Foundation Ovarian Cancer Early Detection Research Grant and the Rivkin

407 Center Grant to YR, Tina's Wish Rising Star award to MSR, and the Ovarian Cancer Research

408 Alliance Ann and Sol Schreiber Mentored Investigator Awards to YH and MH.

409

410 **Disclosure of Potential Conflicts of Interest:** Authors declare no conflicts of interest.

412 FIGURE LEGENDS

413

Fig. 1. Diagram of peritoneal dissemination of HGSC. For graphical purposes, only stages II and III 414 are shown and up to 3 different primary tumors (p1, p2, p3) occurring in individual patients are shown 415 416 as if they occurred in a single patient. In stage III HGSC, metastases from the ovary to the upper 417 abdomen/omentum (ov-per) and PPC (per-per) usually exhibit the Mes subtype (red). Primary ovarian HGSC are mostly of the non-Mes subtype (blue) but a subset exhibits the Mes subtype (red). (A) In 418 419 the current model of ovarian cancer dissemination, tumors spread in one direction - from the pelvis to 420 the upper abdomen/omentum (ov-per). Primary ovarian HGSC of the non-Mes and Mes subtype form metastases of the Mes subtype. (B) In the proposed model of peritoneal metastasis, tumors spread in 421 both directions – from the pelvis to the upper abdomen/omentum (ov-per) and from the upper 422 abdomen/omentum (HGSC metastases or PPC) to the pelvis (per-ov). True primary ovarian HGSC 423 424 (ov-ov) are of the non-Mes subtype while metastases from the upper abdomen/omentum to the ovary (per-ov) are of the Mes subtype. (C) In stage II HGSC, masses in the ovary are of the non-Mes 425 426 subtype because upper abdominal/omental tumors are absent.

427

Fig. 2. The Mes subtype is characteristic of upper abdominal/omental metastases and PPC while 428 HGSC confined to the pelvis does not exhibit the Mes subtype. (A) NanoString expression of 15 429 430 mesenchymal genes in FFPE samples from primary, metastatic, and recurrent stage III-IV HGSC from 24 patients. (B) The samples were classified into Mes (red) and non-Mes subtypes using the Mes 15-431 gene signature z-score. The site of sample collection is indicated for each tumor, with the omentum 432 and lymph nodes indicated in red and blue, respectively. (C) Distribution of molecular subtypes by 433 disease stage in the TCGA data set. Excluded from the analysis were 4 samples for which the ovary 434 was not the presumed site of tumor origin or the site of tumor collection (2 fallopian tube and 2 435 omentum samples). Additionally, 81 samples that did not cluster among the 4 molecular subtypes were 436 excluded. (D) Distribution of molecular subtypes by disease stage, site of presumed tumor origin, and 437 site of sample collection. Included in the analysis were only tumors annotated as high grade (2 or 3); 438 439 serous histology; malignant; stage I, II, III or IV; molecular subtype C1/Mesenchymal, C2/Immune, C5/Differentiated or C4/Proliferative; primary site ovary (ov) or peritoneum (per); and collection site 440 441 ovary (ov) or peritoneum/colon/omentum (per). Due to the small number of stage I and stage IV

samples, stage I and II samples were grouped as stage I-II, and stage III and IV samples were grouped
as stage III-IV. One stage II per-per sample was grouped with 8 stage III-IV per-per samples.

444

Fig. 3. The Mes gene signature expression correlates with fibroblast content in HGSC metastases 445 but not primary ovarian HGSC. (A) A representative example of cell type (fibroblast, epithelial 446 447 cancer cell, immune cell) annotation by QuPath analysis of H&E-stained full sections of omental metastases isolated from 152 HGSC patients at the time of primary debulking surgery (GSE135712). 448 (B) Correlation of the Mes 15-gene signature score (Y axis) with the content of fibroblasts, cancer 449 cells, and immune cells in omental metastases isolated from 152 HGSC patients (GSE135712). The 450 content of each cell type was determined as the percent of one cell type in the 3 annotated cell types 451 (fibroblasts, cancer cells, immune cells) in each sample (X axis). (C) Fibroblast content in matched 452 453 primary tumors, omental metastases, and non-omental peritoneal metastases isolated at the time of primary debulking surgery from 10 HGSC patients (GSE133296). Fibroblast content was determined 454 455 as the percent of fibroblasts in the 3 annotated cell types in each sample. (**D**) Correlation of the Mes 15-gene signature score (Y axis) with the content of fibroblasts (X axis) individually in matched 456 457 primary tumors, omental metastases, and non-omental intraperitoneal metastases from 10 HGSC patients (GSE133296). 458

459

Fig. 4. The stroma in HGSC metastases has different molecular features than the stroma in 460 461 primary ovarian HGSC. (A) Euclidean clustering heatmap of expression values of 2 public stromal gene signatures (derived from laser-capture microdissected stromal cells in matched primary ovarian 462 463 HGSC and omental metastases from 11 patients with HGSC) applied to the GSE133296 transcriptome data set of matched primary ovarian HGSC, omental metastases, and non-omental metastases from 10 464 465 HGSC patients. Blue and red bars on the right indicate which genes belong to the primary ovarian HGSC stromal gene signature (blue) and the omental metastasis stromal gene signature (red). 466 467 Transcripts for GSTA2 (from the original primary ovarian HGSC stromal gene signature) and LPREL2 (from the original omental metastasis stromal gene signature) were missing in the 468 469 GSE133296 data set. The signature score was defined as the average z-score of a z-score-transformed 470 GSE133296 data set. The average gene signature scores and average unweighted ratio of the signature scores are shown at the bottom of the heatmap. Asterisks indicate patients for which primary ovarian, 471 472 omental metastasis, and non-omental metastasis samples clustered together. (B-D) Dot plots of the

473 ratio of z-scores from the omental metastasis stromal gene signature (positive unweighted value) and primary ovarian HGSC stromal gene signature (negative unweighted value) in (**B**) primary ovarian 474 475 HGSC, omental metastases, and non-omental metastases in the GSE133296 data set; (C) different sites of sample collection in the GSE9891 data set (excluded from the analysis were tumors of low 476 malignant potential, non-serous tumors, one bone metastasis, and tumors lacking annotation of the 477 collection site); and (**D**) different sites of sample collection in the GSE2109 data set (included in the 478 analysis were ovarian tumors of all types and histologies that have been annotated by the site of 479 sample collection; some sites have been grouped in this graph; for original annotation, please see 480 Table S5). The GSTA2 transcript was missing in the GSE9891 and GSE2109 data sets. The bars 481 indicate average ratio of z-scores in each group. 482

483

484 Fig. 5. TCGA primary ovarian Mes-HGSC are enriched for a stromal gene signature of omental **metastases.** (A) Euclidean clustering heatmap of expression values of 2 public stromal gene signatures 485 (derived from laser-capture microdissected stromal cells in matched primary ovarian HGSC and 486 487 omental metastases from 11 patients with HGSC) applied to the TCGA primary ovarian HGSC 488 samples classified as the Immunoreactive, Mesenchymal, Proliferative and Differentiated molecular subtypes (excluded from the analysis were 4 samples that were not collected from the ovary and 81 489 490 samples that did not cluster among the 4 molecular subtypes). The primary ovarian HGSC stromal signature was represented by 20 of the original 21 genes genes (GSTA2 transcript was missing in the 491 492 TCGA data set). The signature score was defined as the average z-score of a z-score-transformed TCGA data set. Average gene signature scores and the average unweighted ratio of signature scores 493 494 are shown at the bottom of the heatmap. (B) Dot plot of the ratio of z-scores from the omental metastasis stromal gene signature (positive unweighted value) and primary ovarian HGSC stromal 495 496 gene signature (negative unweighted value) in the Immunoreactive, Mesenchymal, Proliferative and Differentiated molecular subtypes in the TCGA data set. (C) Dot plots of Spearman correlation of 497 stromal signature z-scores and percent of epithelial cancer cells present in histological sections of 498 tumor samples in the TCGA data set. 499

500

502

SUPPLEMENTARY FIGURES

503

Fig. S1. Kaplan-Meier plot of overall survival and disease-free survival using the 15-gene
 mesenchymal signature (average expression) in the TCGA data set. Samples include grade 2+3 HGSC.

Fig. S2. Robustness of the Mes 15-gene signature in classifying Mes-HGSC. (A) Euclidean clustering 507 heatmaps of expression values of the 15-gene signature defined by NanoString analysis and the 100-508 gene signature defined by Verhaak et al. (7) in the ovarian TCGA data set in which samples had been 509 previously classified into the Immunoreactive, Mesenchymal, Proliferative and Differentiated 510 molecular subtypes. The signature score was defined as the average z-score of a z-score-transformed 511 TCGA data set. Average gene signature scores are shown at the bottom of each heatmap. (B) 512 513 Spearman correlation of gene signature scores between Mes 15-gene set (NanoString) and Mes 100gene set (Verhaak). (C) Levels of signature scores in the Immunoreactive, Mesenchymal, Proliferative 514 and Differentiated molecular subtypes. The 15-gene Mes subtype gene set is equally effective in 515 identifying Mes-HGSC as the standard 100-gene Mes subtype gene set defined by Verhaak et al. (7). 516 517

Fig. S3. Derivation of the Mes 15-gene signature z-score in different gene expression data sets. 518 519 Expression values for the 15-gene gene sets are shown as heatmaps of Euclidean clustering analysis (A) GSE135712, (B) GSE133296, and (C) GSE73168. Average gene signature scores are shown at the 520 521 bottom of each heatmap. (D) Relative enrichment of the Mes 15-gene signature in EpCam-positive epithelial cells isolated from primary ovarian HGSC, matched metastases, and ascites samples from 5 522 523 patients (3 with duplicate samples). Excluded from the analysis were samples from 3 patients with ovarian tumors of low malignant potential. The bars represent median relative enrichment levels in 524 525 each group of samples.

526

528 SUPPLEMENTARY TABLES

529

530 **Table S1.** Gene expression datasets and associated publications.

- 531
- 532 Table S2. 15-gene and 100-gene signatures of the Mes molecular subtype. Genes overlapping between
- the 15-gene and 100-gene signatures are highlighted in yellow.
- 534

Table S3. 15-gene signature NanoString mRNA values and algorithm for classifying the Mes subtype
in 24 patient-matched primary, metastatic, and recurrent HGSC.

- 537
- **Table S4.** Performance of the 15-gene gene classifier from Table S2 in identifying Mes and non-Mes
- 539 molecular subtypes in the TCGA data set.
- 540
- 541 **Table S5.** Metastasis site groups in the GSE2109 data set.

543	References	
544		
545 546	1.	Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers 2016:2:16061
547	2.	Eckert MA, Pan S, Hernandez KM, Loth RM, Andrade J, Volchenboum SL, et al. Genomics of
548		Ovarian Cancer Progression Reveals Diverse Metastatic Trajectories Including Intraepithelial
549		Metastasis to the Fallopian Tube. Cancer Discov 2016;6(12):1342-51
550	3.	McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, et al. Divergent modes of
551		clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat Genet
552		2016;48(7):758-67
553	4.	Schwarz RF, Ng CK, Cooke SL, Newman S, Temple J, Piskorz AM, et al. Spatial and
554		temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS
555		Med 2015;12(2):e1001789
556	5.	Brodsky AS, Fischer A, Miller DH, Vang S, MacLaughlan S, Wu HT, et al. Expression
557		profiling of primary and metastatic ovarian tumors reveals differences indicative of aggressive
558		disease. PLoS One 2014;9(4):e94476
559	6.	Lee JY, Yoon JK, Kim B, Kim S, Kim MA, Lim H, et al. Tumor evolution and intratumor
560		heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing.
561		BMC Cancer 2015;15:85
562	7.	Verhaak RG, Tamayo P, Yang JY, Hubbard D, Zhang H, Creighton CJ, et al. Prognostically
563		relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest
564	0	2013;123(1):517-25
565	8.	Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature
566	0	2011;4/4(7353):609-15
567	9.	Jia D, Liu Z, Deng N, Tan TZ, Huang RY, Taylor-Harding B, et al. A COLITAT-correlated
568		pan-cancer gene signature of activated fibroblasts for the prioritization of therapeutic targets.
569	10	Cancer Lett 2010;382(2):203-14 Zhang S. Ling V. Zhang M. Zhang Z. Ma D. Dang H. et al. Strong associated most an application
570	10.	Zhang S, Jing T, Zhang M, Zhang Z, Ma P, Pelig H, <i>et al.</i> Stronia-associated master regulators
5/1	11	Thong O. Wong C. Cliby WA. Concer associated strome significantly contributes to the
572	11.	Zhang Q, wang C, Choy wA. Cancer-associated strong significantly contributes to the
575	12	Vargas HA Micco M Hong SI Goldman DA Dao E Weigelt B <i>at al</i> Association between
575	12.	morphologic CT imaging traits and prognostically relevant gene signatures in women with
576		high-grade serous ovarian cancer: a hypothesis-generating study Radiology 2015:274(3):742-
570		51
578	13	Torres D. Kumar A. Wallace SK. Bakkum-Gamez IN. Konecny GF. Weaver AL. at al.
579	15.	Intraperitoneal disease dissemination patterns are associated with residual disease extent of
580		surgery and molecular subtypes in advanced ovarian cancer. Gynecol Oncol 2017:147(3):503-
581		8
582	14	Liu Z. Beach IA. Agadianian H. Jia D. Aspuria PI. Karlan BY. <i>et al.</i> Suboptimal cytoreduction
583	1.11	in ovarian carcinoma is associated with molecular pathways characteristic of increased stromal
584		activation. Gynecol Oncol 2015;139(3):394-400
585	15.	Wang C, Armasu SM, Kalli KR, Maurer MJ, Heinzen EP. Keenev GL. et al. Pooled Clustering
586		of High-Grade Serous Ovarian Cancer Gene Expression Leads to Novel Consensus Subtypes
587		Associated with Survival and Surgical Outcomes. Clin Cancer Res 2017;23(15):4077-85

588 16. Torres D, Kumar A, Bakkum-Gamez JN, Weaver AL, McGree ME, Wang C, et al. 589 Mesenchymal molecular subtype is an independent predictor of severe postoperative complications after primary debulking surgery for advanced ovarian cancer. Gynecol Oncol 590 591 2018 Shilpi A, Kandpal M, Ji Y, Seagle BL, Shahabi S, Davuluri RV. Platform-Independent 592 17. Classification System to Predict Molecular Subtypes of High-Grade Serous Ovarian 593 Carcinoma. JCO Clin Cancer Inform 2019;3:1-9 594 595 18. Torres D, Wang C, Kumar A, Bakkum-Gamez JN, Weaver AL, McGree ME, et al. Factors that influence survival in high-grade serous ovarian cancer: A complex relationship between 596 molecular subtype, disease dissemination, and operability. Gynecol Oncol 2018;150(2):227-32 597 Tan TZ, Heong V, Ye J, Lim D, Low J, Choolani M, et al. Decoding transcriptomic intra-598 19. tumour heterogeneity to guide personalised medicine in ovarian cancer. J Pathol 2018 599 Gao B, Lindemann K, Anderson L, Fereday S, Hung J, Alsop K, et al. Serous ovarian and 600 20. primary peritoneal cancers: A comparative analysis of clinico-pathological features, molecular 601 subtypes and treatment outcome. Gynecol Oncol 2016;142(3):458-64 602 21. Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, et al. A collagen-remodeling gene 603 signature regulated by TGF-beta signaling is associated with metastasis and poor survival in 604 serous ovarian cancer. Clin Cancer Res 2014;20(3):711-23 605 22. Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, et al. Proteomics 606 607 reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 2019;569(7758):723-8 608 23. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes 609 of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 610 2008;14(16):5198-208 611 Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor spheroids promote 24. 612 613 early peritoneal metastatis of ovarian cancer. J Exp Med 2019 Chen GM, Kannan L, Geistlinger L, Kofia V, Safikhani Z, Gendoo DMA, et al. Consensus on 25. 614 Molecular Subtypes of High-Grade Serous Ovarian Carcinoma. Clin Cancer Res 2018 615 Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun 616 26. 617 2015;6:8971 27. Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR, Dering J, et al. Prognostic and 618 therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J Natl Cancer 619 620 Inst 2014;106(10) Zhang Z, Huang K, Gu C, Zhao L, Wang N, Wang X, et al. Molecular Subtyping of Serous 28. 621 Ovarian Cancer Based on Multi-omics Data. Sci Rep 2016;6:26001 622 Tan TZ, Miow OH, Huang RY, Wong MK, Ye J, Lau JA, et al. Functional genomics identifies 623 29. five distinct molecular subtypes with clinical relevance and pathways for growth control in 624 epithelial ovarian cancer. EMBO Mol Med 2013;5(7):1051-66 625 626 30. Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A 627 2010;107(50):21677-82 628 Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. 629 31. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat 630 Med 2011;17(11):1498-503 631 632 32. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 2013;1831(10):1533-41 633

634 635	33.	Riester M, Wei W, Waldron L, Culhane AC, Trippa L, Oliva E, <i>et al.</i> Risk prediction for late- stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst 2014:106(5)
636	34.	Tucker SL, Gharpure K, Herbrich SM, Unruh AK, Nick AM, Crane EK, et al. Molecular
637		biomarkers of residual disease after surgical debulking of high-grade serous ovarian cancer.
638		Clin Cancer Res 2014;20(12):3280-8
639	35.	Orsulic S, Karlan BY. Can molecular subtyping be used to triage women with advanced
640		ovarian cancer to Primary Debulking Surgery or Neoadjuvant Chemotherapy? Gynecol Oncol
641		2019;152(2):221-2
642	36.	Nick AM, Coleman RL, Ramirez PT, Sood AK. A framework for a personalized surgical
643		approach to ovarian cancer. Nat Rev Clin Oncol 2015;12(4):239-45
644	37.	Spencer JA, Weston MJ, Saidi SA, Wilkinson N, Hall GD. Clinical utility of image-guided
645		peritoneal and omental biopsy. Nat Rev Clin Oncol 2010;7(11):623-31
646	38.	Rutten MJ, van Meurs HS, van de Vrie R, Gaarenstroom KN, Naaktgeboren CA, van Gorp T,
647		et al. Laparoscopy to Predict the Result of Primary Cytoreductive Surgery in Patients With
648		Advanced Ovarian Cancer: A Randomized Controlled Trial. J Clin Oncol 2017;35(6):613-21
649	39.	Nagamine K, Kondo J, Kaneshiro R, Tauchi-Nishi P, Terada K. Ovarian needle aspiration in
650		the diagnosis and management of ovarian masses. J Gynecol Oncol 2017;28(4):e40

60%		_			
40%					
20%					
0%					
GSE9891	ov-ov I-II	ov-ov III-IV	per-ov II,III,IV	ov-per III-IV	per-per III-IV
Immunoreactive/C2	5	23	1	7	1
Mesenchymal/C1	0	24	6	25	18
Proliferative/C4	3	27	2	2	1
Differentiated/C5	6	30	0	4	1
Total	14	104	9	38	21
% Mes	0%	23%	67%	66%	86%

Software used for analysis: Kaplan-Meier Plotter. Gyorffy B, Lanczky A, Szallasi Z. Implementing an online tool for genomewide validation of survival-associated biomarkers in ovarian-cancer using microarray data of 1287 patients, Endocrine-Related Cancer 2012,19:197-208

Fig. S2

Fig. S3