AWARD NUMBER: W81XWH-16-1-0768

TITLE: Predictors and Neuropsychiatric Profile of Nucleus Basalis of Meynert Degeneration in Parkinson Disease

PRINCIPAL INVESTIGATOR: Matthew J. Barrett, MD, MSc

CONTRACTING ORGANIZATION: Rector and Visitors of the University of Virginia
Charlottesville VA 22903-4833

REPORT DATE: October 2018

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Predictors and Neuropsychiatric Profile of Nucleus Basalis of Meynert Degeneration in Parkinson Disease

Matthew J. Barrett (PI)

E-Mail: mjbarrett@virginia.edu

The long-term goal of this research proposal is to contribute to the development of improved therapies for non-motor symptoms in sporadic Parkinson disease (PD), specifically the neuropsychiatric symptoms of dementia, psychosis, and apathy. This proposal aims to identify predictors of nucleus basalis of Meynert degeneration and will specifically assess whether MAPT H1 haplotype and alpha-synclein levels in the cerebrospinal fluid are associated with nucleus basalis of Meynert volume. This proposal also aims to show that the nucleus basalis of Meynert is associated with psychosis and apathy in PD. To complete these aims we have collected genetic samples and clinical data for 113 advanced PD subjects with MRIs. We have downloaded and processed 228 baseline MRIs and 97 4-year MRIs in an early stage PD cohort. Cholinergic nucleus 4 density (Ch4), our proxy measure for NBM volume, has been generated for these MRI scans. In the early-stage PD cohort, we found that reduced baseline Ch4 density, our proxy measure for NBM volume, was associated with increased risk of future psychotic symptoms. This finding supports targeting this region with deep brain stimulation as a potential symptomatic and neuroprotective therapy for psychosis in PD.
Table of Contents

1. Introduction ... 4
2. Keywords ... 4
3. Accomplishments ... 4
4. Impact .. 7
5. Changes/Problems ... 8
6. Products ... 8
7. Participants & Other Collaborating Organizations ... 9
8. Special Reporting Requirements ... 11
9. Appendices .. 11
1. **INTRODUCTION:**
Degeneration of nigrostriatal dopaminergic neurons is the primary cause of motor symptoms in Parkinson disease (PD), and the diagnosis of PD is based on the presence of these symptoms. However, extra-nigral pathology is a significant contributor to PD non-motor symptoms and much of the morbidity of the disease. Degeneration of the nucleus basalis of Meynert (NBM), which provides cholinergic innervation to the entire neocortex, is a feature of PD and PD dementia.1-5 The resulting cortical cholinergic deficit is a major contributor to dementia in PD.1,6-10 Low frequency deep brain stimulation (DBS) of the NBM is currently being considered as a treatment strategy to improve the cholinergic deficit resulting from NBM degeneration. Low frequency DBS may stimulate remaining cholinergic neurons to release cortical acetylcholine and offer neuroprotection via release of growth factors. The **objectives** of this research are 1) to identify molecular markers that predict greater NBM degeneration in sporadic PD and 2) to expand the neuropsychiatric symptom profile associated with NBM degeneration in sporadic PD. This report represents the research completed in the first 2 years of this 3-year award.

2. **KEYWORDS:**
Parkinson disease; Parkinson disease dementia; Dementia; Psychosis; Apathy; Nucleus basalis of Meynert; Basal forebrain; Acetylcholine; Alpha-synuclein; Microtubule associated protein tau (MAPT); Deep brain stimulation.

3. **ACCOMPLISHMENTS:**
A. **What were the major goals of the project?**
 - **Aim 1a** – In an advanced PD cohort of 120 subjects at UVA, determine if PD subjects with MAPT H1/H1 diplotype have reduced NBM volume compared to PD subjects without this genotype.
 - **Goal/Major Task 1:** Recruit advanced PD subjects for DNA sample collection, use of clinical data
 - Milestone Achieved: 50% enrollment for Major Task 1 achieved with 66/120 subjects recruited through end of Q2FY2017.
 - Milestone: Completion of study enrollment and DNA sample collection for 120 subjects total. At end of Q42018, 113 subjects recruited accounting for 94% completion of recruitment goal. Projected completion: 28 months.
 - **Goal/Major Task 2:** Generate genotypic data for analysis
 - Milestone: MAPT haplotype generated for 120 subjects. At end of Q42018, genotyping performed for 101 subjects accounting for 84% of goal. Projected Completion 30 months.
 - **Goal/Major Task 3:** Data Analysis
 - Milestone: Submission of abstract to conference – projected 30 months
 - Milestone: Submission of manuscript to journal – projected 33 months
 - **Aim 1b** – In an early-stage PD cohort, determine if PD subjects with the MAPT H1/H1 diplotype have greater reduction in NBM volume over 4 years compared to PD subjects without this genotype.
 - **Aim 2** – In an early-stage PD cohort, determine if elevated CSF alpha-synuclein at baseline is associated with greater reduction in NBM volume over 4 years.
 - **Goal/Major Task 4:** Data Analysis
 - Milestone Achieved: Submission of abstract to conference
 - Milestone: Submission of manuscript to journal – projected 30 months
 - **Aim 3** – In an advanced PD cohort of 70 subjects at UVA, to calculate NBM volumes and compare volumes between those with and without psychosis and apathy.
 - **Goal/Major Task 5:** Enrollment and Clinical Assessments
Milestone: 50% of enrollment reached, 35 subjects total. 28 subjects have been enrolled. This Milestone is 80% complete.
Milestone: Completion of Study Enrollment and DNA sample collection for 70 subjects total. This milestone is 40% complete.

- **Goal/Major Task 6:** Data Analysis
 - Milestone: Submission of manuscript to journal – projected 33 months using Alternative Approach #1 detailed below.

B. What was accomplished under these goals?

- For Major Task 1, we have recruited and enrolled 113 subjects through the end of Q4FY2018. Clinical data for these enrolled subjects is being entered into a research database. 99 MRIs for this cohort have been downloaded and processed.
 - Target enrollment of 120 in this aim has not yet been met. The pace of enrollment slowed as we recruited much of the available candidate population. There has also been a lower number of PD patients undergoing pre-surgical evaluations compared to the past. Researchers applied for and received a one-year, no-cost extension, and expect to complete enrollment in this aim within 4 months.
- For Major Task 2, 101 samples have been genotyped. Major Task 3 will be completed when results of genotyping are obtained.
- For Major Task 4, baseline MRI scans for 228 PD subjects and 4-year MRI scans for 94 of these PD subjects are available and have been downloaded for analysis. These scans have been processed through imaging quality and voxel-based morphometry pipelines. Values for the cholinergic 4 (Ch4) nucleus, our proxy measure for the NBM, have been generated. The following paragraph describes these methods and was published.
 - Baseline brain magnetic resonance imaging (MRI) sequences were obtained from the PPMI database. Using the MP-RAGE T1 sequence, we applied voxel-based morphometry methodology.11, 12 Briefly, images were spatially normalized to standard stereotactic space through both an affine and high dimensional non-linear registration. MRI scans were segmented into gray and white matter and high-dimensionally fit to the Montreal Neurological Institute (MNI) standard space using the CAT12 toolbox (http://dbm.neuro.uni-jena.de/cat/) in conjunction with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in MATLAB (Mathworks, Natwick, MA). To improve fidelity of segmentation for low contrast subcortical regions, we utilized Lorio et al.’s enhanced tissue probability map over SPM12’s standard tissue priors.13 Warping of subject images utilized the Diffeomorphic Anatomic Registration Through Exponentiated Lie Algebra (DARTEL) algorithm, which is embedded in SPM12. To preserve absolute volume of grey matter, segmented images were multiplied by the relative voxel volumes contained within the Jacobian determinant matrix of the deformation field.12 Basal forebrain grey matter density was measured according to a probabilistic map of cholinergic nuclei 1, 2, and 3 (Ch123) and Ch4 for the reference MNI single subject brain that was derived from 3D reconstruction of histological sections.14 Relative Ch4 density was calculated with a custom MATLAB script which multiplied the gray matter density value for each voxel by the weighting contained within the probabilistic map. Weighted gray matter density values were summed bilaterally according to cholinergic cell group (Ch4 or Ch123).15 See Figure 1.
For Major Task 5, we have collected data for 28 PD subjects. These subjects have brain MRIs and have completed psychosis and apathy assessments. A protocol amendment allowing prospective collection of additional cohort of PD subjects with brain MRI and psychosis and apathy assessments was approved. Clinical data for these subjects are being systematically collected for entry into research database.

- Alternative Approach #1: We have collected data for a retrospective cohort of PD patients who had brain MRI and apathy assessment with the Frontal Systems Behaviour Scale (FrSBe). This measure has been collected in 82 advanced PD patients, surpassing our original recruitment goal of 70.
- Alternative Approach #2: We used alternative cohort of 228 PD participants from Parkinson’s Progression Markers Initiative to address the question whether NBM volume, as measured by Ch4 density was associated with psychotic symptoms in PD.

Major Task 6 is partially completed using Alternative Approaches.

- Alternative Approach #1: Data for 82 advanced PD patients with MRI and apathy assessment with the Frontal Systems Behaviour Scale (FrSBe) is ready for analysis.
- Alternative Approach #2: Results of this analysis were published. (Neurology 2018; 90(18): e1618-e1626.)

C. What opportunities for training and professional development has the project provided?

- Through his work on this project and under the mentorship of Dr. Jason Druzgal, Jamie Blair, a neuroscience graduate student, has gained training and greater proficiency in the processing and analysis of structural MRI imaging.

D. How were the results disseminated to communities of interest?

- 5 abstracts resulting from research supported by this grant were presented in the first 2 years of the grant.

1 manuscript resulting from research supported by this grant has been submitted for publication.

E. **What do you plan to do during the next reporting period to accomplish the goals?**

- For Major Task 1, we will enroll the final 7 subjects to meet target enrollment of 120. Clinical data for already enrolled subjects and prospectively enrolled subjects will continue to be entered into a clinical research database.
- Following completion of recruitment under Major Task 1, we will complete genotyping and analysis in Major Task 2 and 3.
- For Major Task 4, any additional 4-year MRI scans will be added to those already downloaded as they become available. These additional scans will be processed using the imaging quality and voxel-based morphometry pipelines that have already been developed. We will proceed with analysis of available data for abstract presentation and manuscript to be submitted to journal.
- For Major Task 5, we will continue to prospectively identify and enroll subjects who complete psychosis and apathy assessments as part of neuropsychological testing.
- For Major Task 6, we will complete Alternative Approach #1 by performing analysis of data for 82 advanced PD patients with MRI and apathy assessment with the Frontal Systems Behaviour Scale (FrSBe).

4. **IMPACT:**

A. **What was the impact on the development of the principal discipline(s) of the project?**

- In our published manuscript (*Neurology* 2018; 90(18): e1618-e1626.), we found that reduced cholinergic nucleus 4 (Ch4) density at baseline, a proxy for nucleus basalis of Meynert volume, was associated with risk for future psychotic symptoms. This finding supports other work to target this region with deep brain stimulation as a potential symptomatic and neuroprotective therapy. This finding also supports the potential utility of Ch4 density as a neuroimaging biomarker to identify a diffuse malignant subtype of PD and to predict more rapid disease progression. This work could also influence the field of biomarker research in PD. Our data suggest that Ch4 density has the potential to be a valuable neuroimaging biomarker, that is, Ch4 density may be a neuroimaging measure of disease severity that could be followed over time, thus serving as a surrogate biomarker in PD.

B. **What was the impact on other disciplines?**

- Nothing to Report.

C. **What was the impact on technology transfer?**

- Nothing to Report.

D. **What was the impact on society beyond science and technology?**
5. **CHANGES/PROBLEMS:**

A. **Changes in approach and reasons for change**
 - We have pursued supplemental recruitment and 2 alternative approaches to accomplish Aim 3. The reason for these changes in approach is that our planned recruitment for this Aim (Major Task 5) has been slower than expected. We will continue to recruit subjects for this aim as originally planned and are supplementing this with other approaches to ensure that we perform the comparisons described for this aim.
 - Supplemental Recruitment: We are supplementing recruitment with prospective enrollment of PD subjects with brain MRI for research only. These subjects are combined with advanced PD subjects undergoing clinical MRI as part of pre-surgical planning.
 - Alternative Approach #1: We will analyze whether NBM volume, as measured by Ch4 density is associated with apathy in advanced PD using the The Frontal Systems Behaviour Scale (FrSBe) Apathy subscale as our outcome measure.
 - Alternative Approach #2: We have addressed the question whether NBM volume, as measured by Ch4 density, is associated with psychotic symptoms using data from the Parkinson’s Progression Markers Initiative and published these results.

B. **Actual or anticipated problems or delays and actions or plans to resolve them**
 - Target enrollment for Major Task 1 will take place during period of no-cost extension.
 - Even without completing target enrollment for Major Task 5, we will complete this Task by completion of Alternative Approach #1 as described above.

C. **Changes that had a significant impact on expenditures**
 - Pursuing the different approaches did not have a significant impact on planned expenditures.

D. **Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents**
 - There have been no significant deviations, unexpected outcomes, or changes in approved protocols for the use or care of human subjects, vertebrate animals, biohazards, and/or select agents during the reporting period.

E. **Significant changes in use or care of human subjects**
 - Nothing to Report.

F. **Significant changes in use or care of vertebrate animals.**
 - Nothing to Report.

G. **Significant changes in use of biohazards and/or select agents**
 - Nothing to Report.

6. **PRODUCTS:**

A. **Publications, conference papers, and presentations**
 - **Journal publications.**
 - **Books or other non-periodical, one-time publications.**
 - Nothing to Report.
• Other publications, conference papers, and presentations.

B. Website(s) or other Internet site(s)
 • Nothing to report.

C. Technologies or techniques
 • Nothing to report.

D. Inventions, patent applications, and/or licenses
 • Nothing to report.

E. Other Products
 • This project has allowed development of a biospecimen bank of blood samples from which DNA will be extracted for 99 PD subjects. Clinical data for these individuals, specifically neuropsychological test scores, neuropsychiatric assessments, and clinical characteristics are now stored in databases. Lastly, MR imaging studies have been organized, undergone quality control procedures, and used to generate Ch4 densities for 178 subjects with advanced PD and 228 PD subjects from PPMI.

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

A. What individuals have worked on the project?

<table>
<thead>
<tr>
<th>Name:</th>
<th>Matthew Barrett</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>PI</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>0000-0003-4480-0221</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>4</td>
</tr>
<tr>
<td>Contribution to Project</td>
<td>Project Organization, Subject Recruitment, Clinical Data Collection, Data analysis</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Funding Support</td>
<td>NIH; (NIH) NeuroNext Network and Azevan Pharmaceuticals, Inc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Jason Druzgal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>0000-0001-7240-9487</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>1</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>MRI Imaging Acquisition, Processing, and Analysis</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>Commonwealth of Virginia's Alzheimer's and Related Diseases Research Award Fund; UVA Health System Research Award</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Joseph Flanigan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Clinical Research Coordinator</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td></td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>6</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Subject Recruitment, Clinical Data Collection</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>American Parkinson Disease Association Center for Advanced Research at the University of Virginia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Jamie C. Blair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Graduate Student</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td></td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>5</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>MRI Imaging Acquisition, Processing, and Analysis</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>Commonwealth of Virginia's Alzheimer's and Related Diseases Research Award Fund; UVA Presidential Graduate Fellowship</td>
</tr>
</tbody>
</table>

B. Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?
 - Matthew Barrett
- Dr. Barret is now receiving 5% salary support from R01AG054435 - NIH
- Thomas J. Druzgal
 - Nothing to Report.
- Scott Sperling
 - He is now receiving 25% salary support from the Virginia Department of Aging for “Enhancing Dementia-Capable Virginia through Novel Service Implementation” from 09/01/2017-08/31/2020.
- Bradford B. Worrall
 - Dr. Worrall is now receiving 2% salary support from U10 NS 086513 – NIH/NINDS and 8% salary support from R21NS106480 – NIH/NINDS.
- William J. Elias:
 - Dr. Elias is no longer receiving support from Insightec Ltd. for “A Pivotal Study to Evaluate the Effectiveness and Safety of ExAblate Transcranial MRgFUS Thalamotomy Treatment of Medication Refractory Essential Tremor Subjects - ET002”. He is no longer receiving support from the Focused Ultrasound Foundation, Commonwealth of Virginia, and Heller Foundation for “A feasibility study investigating the safety and initial effectiveness of transcranial MR-guided focused ultrasound thalamotomy in the treatment of medication-refractory, tremor-dominant Parkinson disease.”
 - He is receiving 5% salary support as PI of the NIH-funded study “Low Intensity Focused Ultrasound Neuromodulation” from September 2016 – August 2018.

What other organizations were involved as partners?
- Nothing to Report.

8. **SPECIAL REPORTING REQUIREMENTS**
 A. **COLLABORATIVE AWARDS:** NA
 B. **QUAD CHARTS:** Please see attached.

9. **APPENDICES:**
 A. Quad Chart through Q4Y1.
Study Aims

- **Aim 1** - Determine if PD subjects with MAPT H1/H1 diplotype have reduced NBM volume compared to PD subjects without this genotype.
- **Aim 2** - Determine if elevated CSF alpha-synuclein at baseline is associated with greater reduction in NBM volume over 4 years in PD patients.
- **Aim 3** - Compare calculate NBM volumes of PD subjects with without psychosis and apathy.

Approach

Aim 1 will be conducted as a cross-sectional cohort study in advanced PD and as a longitudinal cohort study in early-stage PD. Aim 2 will be a longitudinal cohort study in early-stage PD. Statistical methods for Aim 1 and 2 include use of linear regression models to adjust for age, sex, and other significant covariates. Aim 3 is a cross-sectional controlled cohort study in which we will use logistic regression models to adjust for age, sex, and other significant covariates.

Goals/Milestones

FY2017 Goals
- Research subject recruitment and enrollment
 - **COMPLETED**: 50% Enrollment of subjects for Major Task 1

FY2018 Goals
- Enrollment completion, analysis, dissemination
 - **COMPLETED**: Publication of manuscript for Major Task 6

FY2019 Goals
- No-cost Extension
 - Genotyping of DNA samples for Major Task 2
 - Analysis and publication of results for Major Task 4
 - Analysis and publication of results for Major Task 6

Comments/Challenges/Issues/Concerns
- Enrollment for Major Task 1 close to target and proceeding with analysis. Alternative recruitment and approaches pursued to complete Major Task 5 and Aim 3.

Updated: October 28, 2018

Timeline and Cost

<table>
<thead>
<tr>
<th>Activities</th>
<th>FY 2017</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Task 1 → Major Task 2</td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Major Task 4</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Major Task 5</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Major Tasks 3 and 6</td>
<td>❌</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Estimated Budget ($K)</td>
<td>$197.5</td>
<td>$197.5</td>
<td>$0</td>
</tr>
</tbody>
</table>

Updated: October 28, 2018

Budget Expenditure to Date
- Projected Expenditure: $395,000
- Actual Expenditure: $389,966