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Executive Summary 

The U.S. Army, Navy, and Air Force all make extensive use of geometric models for computer 
analysis of the vulnerability/lethality characteristics of vehicles.  Although modern production 
methods generally result in the availability of pre-existing data from commercial computer-aided 
design systems, such data must be translated from commercial formats to the formats used by 
U.S. Department of Defense analysis tools.  In the course of such translation, geometric errors 
are typically introduced when approximating original commercial data with triangle meshes. 

This report documents efforts to improve conversion methodologies to address a specific, 
common source of error: the creation of overlaps (regions of space which two or more objects 
both claim to occupy) introduced by replacing smooth, continuous surfaces in the original 
commercial data with planar approximations (typically in the form of triangles). 

The implementation of two improved conversion methods is documented, including details on 
the approaches used, the problems encountered, and the results achieved to date. 

The first methodology attempts to improve the process of triangle mesh generation to either 
reduce or eliminate completely the introduction of spurious overlaps.  Success was achieved, but 
robustness and performance improvements will be needed to scale-up this methodology to large-
target geometries. 

The second methodology improvement implements a methodology allowing thin surfaces such 
as aircraft skins, sheet-metal vehicle exteriors, and component enclosures to be modeled by 
nonsolid shapes.  Historically this methodology was supported only for triangle meshes.  Such 
surfaces can now be represented in BRL-CAD using directly imported commercial information, 
without requiring translation to a triangle mesh. 
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1. INTRODUCTION 

Vulnerability/lethality (V/L) analysis strives to predict how vehicles and other military targets 
will behave when exposed to a variety of threats.  A key input to such an analysis is a geometric 
description of the shape of the vehicle that is to be subject to an attack.  In recent decades the 
broad adoption of commercial computer-aided design (CAD) software tools has resulted in the 
availability of a large body of pre-existing vehicle models produced during the design and 
manufacturing process. 

In theory, the availability of these pre-existing data speeds up the V/L analysis cycle 
tremendously, but in practice it is still necessary to perform a great deal of manual preparatory 
work before a geometric description is ready for V/L analysis.  Some of this work is inherent in 
the nature of the differing needs of V/L and commercial production (many commercial models 
will have detail not relevant to an analysis, for example), but a significant additional cleanup 
burden is introduced by the geometry conversion process when smooth, nonplanar surfaces are 
approximated by triangles.  This approximation can introduce interference errors in the form of 
multiple independent objects producing incompatible triangle sets that both claim the same 
volumetric space.  These errors (referred to as overlaps) can, in turn, propagate up through an 
analysis by complicating the reporting of ray/shape intersections that form the geometric bedrock 
of those analyses.  In such cases an interrogating ray will not know what “correct” volume to 
report for that particular volume since there is no unambiguously correct answer (Figure 1).  
Resolving these problems using constructive solid geometry (CSG) subtractions (i.e., using 
BRL-CAD’s modeling support to define a subtraction volume using one of the solids that 
removes overlapping material from the volume of the other solid) is a manual, time-intensive 
process that can have significant negative implications for analysis turnaround times, volumetric 
fidelity, and for raytracing performance during analysis. 
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Figure 1. Example overlap introduced by triangulation of smooth solids (overlaps are 
yellow).  The images on the right represent cross sections of the cylinders showing 

details of the relationships between the original and interfering cylinder faces. 

Most commercial CAD geometry describing targets is described using a geometry representation 
know as Non-Uniform Rational B-Splines (NURBS) Boundary Representations (BReps) (Robert 
McNeel and Associates, 2018).  NURBS are general mathematical surfaces capable of 
representing a wide variety of shapes, but they are also quite complex. Although a detailed 
description of the mathematics of NURBS BReps is beyond the scope of this report, for 
discussion purposes the reader must be familiar with the basics of how they define closed 
volumes in space.  Typically a group of individual NURBS surface patches (referred to as faces) 
are combined together to form a closed volume (Figure 2). 
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Figure 2. Individual NURBS surfaces combining to form a closed boundary representation 

The 3-D curves at which those faces join are referred to as edge curves (Figure 3.) 

 
Figure 3. Edge curves (green lines) defining the meeting of BRep faces 

Edge curves are typically stored independent of surfaces as NURBS curves.  Because those 
curves are independent of the surfaces, they can be used to define “correct” 3-D edge point face 
edges even when the two joined surfaces do not align perfectly.  These 3-D curves, in turn, 
correspond to 2-D trimming curves defined in the parametric surface domain of individual 
NURBS BRep faces, which are used to define the portion of the NURBS surface that contributes 
to that particular face area. 

Imperfect face alignment is frequently encountered in real-world NURBS-based BRep models 
(in fact, alignment imperfections are both numerically and mathematically inevitable in the 
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general NURBS surface intersection case) (Sederberg, Anderson, & Goldman, 1984), which 
means processing techniques (both meshing and raytracing) have to be prepared to accommodate 
such imperfections.  Floating-point-based computational imprecision and modeling tolerances 
also limit the degree of perfection obtainable in practice. 

Historically, none of the geometry systems used by U.S. Department of Defense analysis tools 
were capable of interrogating NURBS directly with solid ray tracing.  BRL-CAD has recently 
introduced the ability to perform such interrogations, avoiding the overlap triangles by simply 
not introducing any triangles at all.  However, other V/L analysis technology stacks such as the 
FASTGEN/COVART analysis suite (Defense Systems Information Analysis Center, 2020) still 
rely on triangle conversion. 

Even when NURBS geometry can be used directly, there are modeling techniques for thin 
surfaces (such as sheet metal parts on vehicles) that use only a single surface to represent the 
shape.  Historically, FASTGEN has supported such shapes by allowing triangle meshes 
approximating such surfaces to define an implicit thickness.  Such solids are referred to as “plate 
mode” solids.  Thus far that interrogation mode has only been supported for triangle meshes.  If a 
modeler wishes to convert thin surface parts for V/L purposes, the two options that have been 
available historically are 1) define a closed solid and 2) convert the NURBS surface to a  
plate-mode triangle mesh.  Defining a closed solid for such a thin shape is possible but 
problematic (it is not hard for the surfaces to self-intersect and create holes), and converting the 
surface to a mesh to use plate mode again runs the risk of introducing spurious overlaps. 

Ideally, BRL-CAD should be able to both take advantage of keeping NURBS shapes and 
interrogating them directly as well as to automatically convert NURBS solids to triangle meshes 
when such an operation is desirable without requiring manual effort. 

In 2019, BRL-CAD developers undertook the implementation of an automatic triangle-meshing 
algorithm to improve BRL-CAD’s NURBS to triangle conversion (Figure 4), plus an expansion 
of the plate-mode raytracing methodology to directly support NURBS-based shapes.  These 
capabilities minimize conversion times while also improving the quality of imported target data. 

For development purposes, small test cases with representative interference or surface behaviors 
were used to allow for rapid iterative development and clarity of visualization.  For solid 
meshing, the National Institute of Standards and Technology (NIST) Model-Based 
EnterpriseProduct and Manufacturing Information (PMI) test models (NIST, 2014) were used, 
and for overlap resolution, specially designed inputs were generated by U.S. Army Combat 
Capabilities Development Command Data & Analysis Center target modeling team to represent 
typical interference generating cases. 
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Figure 4. Example part (Elg, 2020) showing improvements in NURBS mesh generation.  Top 

image is using original BRL-CAD logic to generate meshes; red areas highlight solidity 
problems.  Bottom image renders the same part using the new watertight meshing 
logic, which eliminates the flaws. 

 

 



 

 
6 

2. METHODS, ASSUMPTIONS, AND PROCEDURES – MESHING 

When attempting to generate triangle mesh output from BRL-CAD NURBS objects, it is 
important to define specific quality criteria that must be satisfied for analysis purposes.  
Avoiding overlaps is the goal, but it is also important that the mesh be solid: it should define a 
closed volume in space without “cracks” between triangles that would allow interrogating rays to 
slip through and report a miss.  For refinement purposes, a mesh should be valid:  it should not 
self-intersect (even when such a self-intersection has negligible impact on the overall mesh 
volume) or exhibit topological problems such as holes, unmated edges, or flipped faces.  Beyond 
those necessities, it is desirable that a mesh have no more triangles than necessary to satisfy the 
user’s demands of model accuracy and (where possible) avoid long thin triangles. 

2.1 Existing Capabilities 

The starting point for NURBS surface meshing is the sampling of a set of points along trim 
curves and in the surface interiors in the 2-D parametric space of each BRep face, and then 
integrate a Constrained Delaney Triangulation (CDT) algorithm to connect those points with a 
series of triangles.  Those 2-D triangles are then combined with the 3-D evaluations of the 2-D 
parametric vertex points to define the corresponding triangles in 3-D. 

BRL-CAD uses the openNURBS (McNeel, Inc., 2020) libraries for NURBS data structures and a 
variety of support routines used during implementation, but openNURBS itself only includes a 
very basic meshing capability that is not suitable for production applications.  However, there 
has also been prior work in BRL-CAD on this topic.  BRL-CAD developers implemented a 
meshing algorithm in BRL-CAD in 2014 using the Poly2Tri (Green, 2020) implementation of 
Domiter and Zalik’s CDT algorithm (2008) that successfully represents BRep faces with meshes. 

This work enables BRL-CAD to produce interactive shaded displays of NURBS solids and 
constitutes an essential piece of the NURBS BRep to triangle mesh conversion puzzle, but is not 
sufficient by itself to produce analysis-ready meshes.  Because it treated each surface as an 
independent meshing problem, there was no guarantee that individual surface meshes would join 
up at the boundaries.  Consequently, the generated triangles were suitable only for visualization, 
and even there the lack of watertight edges sometimes introduced visual artifacts that could be 
disconcerting to users.  Without detailed knowledge of the implementation, such artifacts tend to 
be interpreted as indicating solidity errors in the underlying geometry.  An example of this 
problem can be seen in Figure 5. 
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Figure 5. Triangulation of a NURBS cylinder using pre-existing BRL-CAD NURBS meshing 

capabilities.  The left image is the original shape; the middle image is a rendering of the full 
mesh; and the right image highlights an area where separate BRep face meshes do not align. 

Toward the end of the 2014 effort, the possibility of generating watertight meshes to correct this 
problem using the edge curves as common sources of points with which to terminate each 
surface mesh was explored.  Early feasibility studies were promising, but work priorities shifted 
before the capability could be fully realized. 

Meanwhile, subsequent work produced a “bot check” command in BRL-CAD capable of 
verifying the topological validity of individual Bag of Triangles (bot) primitive shapes via 
triangle connectivity data.  This command is important because it provides an independent 
validity check that can be applied to any outputs generated from NURBS meshing. 

Because overlap resolution of meshes requires an ability to determine what is inside and outside 
the mesh, the obvious first step for new work was to complete the unfinished support for 
generating watertight meshes started in 2014.  This would allow for a well-defined inside/outside 
determination in subsequent processing.  Once that known limitation was addressed and the 
generated bot meshes could pass the “bot check” validity check, BRL-CAD would be able to 
generate output meshes that would be a suitable platform from which to identify overlapping 
triangles and devise strategies to resolve them. 

2.2 Creating Watertight Meshes – Sampling BRep Face-Edge Curves 

The basic strategy used in this work to implement watertight meshing was the one explored by 
Bowman (2014):  sample common points on the edge curves, identify the corresponding 2-D 
points in each NURBS surface, and use those points as the boundary polygon points when 
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performing the individual face CDTs.  Most of the original exploratory work on watertight 
meshing had not been integrated into the BRL-CAD codebase, so it proved necessary to execute 
a new implementation of this methodology in BRL-CAD’s libbrep library.  The stages of this 
process are the following: 

1. Apply the openNURBS (McNeel, Inc., 2020) ShrinkSurfaces routine to the BRep faces to 
tighten surface 2-D extents to closely align with the maximal extents of the face trimming 
curves.  Unshrunk surfaces were sometimes found to generate problematic meshing 
solutions where sampling and triangulation in the parametric domain aligned poorly with 
the 3-D evaluation that defines the final mesh (Figure 6).  Shrinking the surface size also 
better aligns the surface parametric domain extents to the active face size (Figure 7). 

 
Figure 6. The initial (pre-shrunk) state of a NURBS face.  The yellow line in the left image 

denotes the subset of the spherical surface active in the face.  The right image 
shows a subset of the triangles produced, with the problematic area circled in red 
(NIST2 Face 237) (NIST, 2014). 
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Figure 7. The same face after application of the ShrinkSurfaces routine.  Note the triangle 

mesh no longer exhibits the problematic topology (NIST2 Face 237) (NIST, 2014). 

2. Identify suitable normal vectors for vertex points.  Naïve evaluation of normal vectors 
can produce incorrect results when working near singularities—NURBS regions where a 
line in the surface’s parametric domain maps to a single point in 3-D space.  At such a 
point, the surface normal is not well defined (Figure 8).  It is necessary to define a locally 
reasonable triangle normal to avoid visual artifacts when rendering the generated mesh. 

 
Figure 8. NIST2 exhibiting an incorrect triangle normal at a singular vertex (NIST, 2014) 

3. Split edge curves into polyline segments based on tolerance and interference criteria (the 
latter will be covered in more detail in a later section.)  While splitting, it is necessary to 
identify and track the corresponding trim curve points that most closely evaluate to each 
3-D splitting point used to refine the edge curve approximation.  It was found that simply 
aligning the points using the normalized curve parameters was not sufficient to produce 
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meshes without severe distortions near edge curves (Figure 9).  Correcting this 
necessitated the implementation of a searching routine to locate the nearest 2-D edge 
curve points. 

 
Figure 9. This triangulation an example of the distortion that can be introduced without 
performing the work to identify the closest 2-D point associated with a 3-D edge point.  

Distorted edges are highlighted in red (NIST2 Face 246) (NIST, 2014). 

Once the splitting of the edge curves is complete, with corresponding 2-D points identified in the 
various faces, the necessary information is in place to define outer bounding polygons for the 
CDT algorithm in such a way that those boundaries are forced to line up in 3-D. 

The original logic for generating edge polylines in BRL-CAD walked the edge curves rather than 
splitting them.  However, the need to coordinate 3-D and 2-D curve splitting for watertight 
meshing ended up requiring detailed understanding of the splitting behavior of the curve routines 
at each point of the process.  It proved advantageous for debugging purposes to adopt a splitting 
approach that kept all curve relationships valid at all steps of the process.  Unfortunately, this 
change introduced a complication when it came to splitting edges that caused quite a bit of 
difficulty during implementation; edge curves, whether in 2-D or 3-D, have a directionality 
associated with them (i.e., each curve has a start and an end point).  For the 2-D curves, this 
directionality is used to define inside or outside status for the portions of the NURBS surface 
they enclose.  However, that means that 2-D curve directions may not agree with the direction of 
the 3-D edge curve they are associated with.  Thus, when splitting 3-D curve segments, it is 
necessary to check on the corresponding 2-D curves whether their directions are reversed relative 
to the 3-D curve being split and identify the correct splitting points accordingly. 

2.3 Creating Valid Meshes – Sampling BRep NURBS Surfaces 

While watertight meshing was addressed via processing the edge curves and defining polygons, 
application of the “bot check” command revealed that there were still topology flaws in the 
meshes being produced.  Simply resolving the edge gap problems of the existing meshing logic 
was not enough to reliably produce valid output meshes.  This was an unanticipated obstacle.  
Real-world examples were demonstrating that a Poly2Tri CDT mesh in the 2-D parametric space 
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of the NURBS surface did not always manifest as a topologically valid mesh when mapped into 
3-D space. 

After some initial experimentation and alterations to the meshing code, it became clear that it 
would be necessary to incorporate validity testing directly into the meshing workflow to 
determine which logic was responsible for introducing errors.  After completing this work, 
attention focused on the surface point sampling code. 

The original 2014 surface sampling implementation used a quad tree overlaid on the surface’s 
parametric plane to identify sampling points.  Those boxes were subdivided recursively until 
they reached a small enough size according to current surface tolerance settings.  Points from 
these boxes that proved to be directly on a 2-D edge curve need to be rejected for further 
processing.  To find such points, an RTree (Guttman, 1984) spatial acceleration is used 
(Figure 10) to quickly find any 2-D curve segments close to the sampled point.  Those segments 
are then checked using a point-on-line-segment test to determine if the point in question is in fact 
directly on a segment. 

 
Figure 10. RTree leaves (green) drawn with the 2-D trimming curves (yellow) and surface 

bounds (red).  This structure defines local regions in the 2-D parametric space of the surface 
used to guide point sampling (NIST2 Face 246) (NIST, 2014). 

This check avoided points directly on the boundary polygon during CDT (avoiding such points is 
a necessary precondition for the algorithm to succeed), but a number of additional specific 
problems were identified as more-sophisticated analysis and debugging routines were 
incorporated into the processing logic, as follows: 
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1. In the neighborhood of singularities, the surface was being heavily oversampled in 2-D, 
resulting in highly distorted 3-D meshes near those points (Figure 11). 

 
Figure 11. Example of oversampling in the vicinity of a singular NURBS surface point 

2. The use of a rectangular grid for surface point sampling was causing occasional problems 
for the CDT algorithm (Figure 12).  (Collinear points are not considered valid CDT 
inputs.) 

 
Figure 12. Example of incorrect triangulation due to linearity of sampled points
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3. Differences between surface and edge-curve sampling tolerances sometimes resulted in 
very large triangles next to very small triangles, which often produced flipped triangles 
when comparing BRep surface normals with triangle normals. 

4. Valid triangulations in 2-D could still produce flipped normal triangles in 3-D, 
occasionally even in surface areas that appeared otherwise unremarkable (to visual 
inspection, those surface regions were not near singularities or other known problem 
areas). 

The first three difficulties were addressed with a change to how surface points internal to the 
mesh were sampled.  A new strategy was introduced that tested all quad-tree boxes at each stage 
of the refinement process for their 3-D length and width, and did not split them in any direction 
where their 3-D length was less than thresholds established based on tolerances. 

Once those boxes are sufficiently split according to triangulation tolerances and surface 
dimensions, they are then compared with the RTree holding the trimming-curve segments to see 
if any particular box is close to the edge of the BRep face.  If the box is close, the refinement 
process for the surface box continues but uses a new set of termination criteria driven by the 
closest edge segment.  When the surface box is split in this mode, each of the new boxes is also 
checked to see which ones are close to the edges.  For any that are no longer overlapping the 
RTree of the edge segments, their refinement ceases.  For boxes that are still close to the edge, if 
the surface bounding box dimensions are comparable to the edge segment length, the refinement 
is halted.  Otherwise, refinement continues.  Then, using those boxes, a pseudorandom sample 
point is selected near the center of each box to provide inputs for CDT (Figure 13). 

 
Figure 13. 2-D triangulation outputs with (left) original grid sampling and (right) the new 

pseudorandom adaptive sampling (NIST2 Face 246) (NIST, 2014)

  



 

 
14 

In addition to these concerns, surface sampling near edges holds another peril in the form of 
selecting a surface point too close to the 3-D BRep face edge for the local tolerance used to 
linearly approximate the closest edge (Figure 14).  In such a case the only valid triangle that can 
be formed in 3-D will have a normal direction opposite that of the NURBS surface normal.  In 
effect, the triangle will be incorrectly representing the surface in that vicinity. 
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Figure 14. Example illustrates the problem of flipping triangle direction relative to the 
surface if points are sampled too close to an edge curve with a coarse 
approximation.  Top image is an overall view of the original surface (gray), the 
edge sampling polyline (blue), and two candidate sampling points (green and 
red).  Surface normals are pointing up (toward the top of the image).  The bottom 
image draws two triangles connecting each point to the nearest edge curve 
segment, and shows the two normals (green and red lines).  For the green sample 
point, the normal of the triangle is relatively close to the original surface’s normal 
at that point.  For the red sample close to the edge curve, the triangle normal is 
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becoming very different from the original surface normal, making it a poor 
approximation of the original surface. 

To avoid introducing such surface points (which cannot be readily detected in 2-D), 3-D 
bounding boxes are defined that enclose the 3-D edge segments and additional boxes bounding 
the neighborhood of vertex points.  These boxes derive their dimensions from either the source 
edge-curve segment or (for vertex boxes) the two attached curve segments.  They collectively 
form a bounding volume enclosing all edge curves, defining a region of space in which no 
surface points should be added by random surface sampling (Figure 15).  

 
Figure 15. 3-D trim curve RTree box leaves, used to avoid sampling surface points too close 

to edge curves in 3-D (NIST2 Face 246) (NIST, 2014) 

This new approach improved results, but it still did not resolve all validity issues.  Attempting to 
micromanage the 2-D CDT algorithm to select “appropriate” triangles based on 3-D criteria 
would have required a deep study of the details of the Domiter–Zalik triangulation algorithm, 
with no way of knowing in advance if such guided selection would prove practical.  Before 
attempting such an introspection, it was decided to first implement and test a more 
straightforward approach:  locally removing connected patches of problematic triangles from the 
mesh; reprojecting the points from those triangles into a new plane fit the points in question; and 
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retriangulating those points to generate new mesh patches in a parametric domain more 
appropriate to the local neighborhood of the 3-D mesh.  The proposed repair method also needed 
to be automatic; otherwise much of the labor saving advantages of the proposed conversion 
workflow improvements would be nullified.  This task proved to be one of the most significant 
challenges of the project. 

Mesh validity information identified various categories of triangles associated with one or more 
problematic aspects of the mesh (for example, Figure 16 identifies triangles in the neighborhood 
of a singularity in NIST2 Face 4 based on connectivity and face angles), but that information by 
itself is not enough to be able to effect a local mesh repair.  To generate new triangles locally, a 
new bounding polygon on the mesh must be found that contains the area in need of repair and 
does not itself incorporate edges from problematic mesh triangles.  This polygon must be closed, 
projectable to a plane and not self-intersecting.  By definition, the topological information from 
“bad” triangles is suspect and thus not a reliable basis for creating such a polygon.   

 
Figure 16. Identification of triangles near a singular vertex (the rightmost vertex in this 

image) (NIST2 Face 4) (NIST, 2014) 

After attempting and discarding a number of approaches, a practical approach was found that 
starts with a known “good” triangle near the region of the problem, using its edges to define a 
valid polygon, and then grows that polygon out along the mesh surface (walking over any bad 
triangles and continuing until they were interior to the polygon).  Angle- and validity-based 
termination criteria, as well as a series of specific criteria for which triangle should be 
incorporated into the patch area next to avoid infinite loop conditions, eventually resulted in an 
ability to generate bounding polygons and interior point sets.  (For more details, refer to the  
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BRL-CAD source code in src/libbrep/cdt.  The loop building logic is rather involved and needs 
to handle a number of different problem cases.) 

Once the bounding polygon and interior points are successfully identified, the next step is to find 
a best-fit plane and project the points in question onto it (Figure 17).  Once in the 2-D parametric 
space of the planar projection, CDT can be applied again to just the points and boundary of the 
patch in question.  Once CDT is complete, the original mesh triangles are removed and the new 
ones evaluated into 3-D and substituted (Figure 18).  Because the polygon was formed using 
edges and vertices shared with other triangles in the mesh and the CDT incorporated all polygon 
edges into the new triangle set, the new patch matches up with the older portions of the mesh and 
produces a valid result. 

 
Figure 17. Projected bounding polygon with interior points.  This is a 2-D data set suitable 

input for triangulation that can be mapped back to the original 3-D points (NIST2 Face 4) 
(NIST, 2014). 
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Figure 18. Polygon triangulation reassembled into the original mesh (NIST2 Face 4)  

(NIST, 2014) 

A comparison of the original and new mesh triangles makes the topology changes clear  
(Figure 19).  Because this parameterization is a local planar projection of the 3-D data of the 
mesh (as opposed to the original NURBS parameterization), the triangulation answer tends to be 
more optimal for the 3-D mesh once the new triangles are translated back into 3-D.  In particular, 
for this example, triangles that were narrow and crowded toward the singularity have been 
removed. 
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Figure 19. New mesh triangles (orange) and original triangles (yellow) (NIST2 Face 4)  

(NIST, 2014) 

2.4 Point Sampling – Ensuring Sufficient Density 

In V/L applications it is common to want relatively sparse meshes to represent objects, but 
vehicles often contain many thousands of highly detailed parts, and working with high-density 
meshes can quickly exhaust computational resources.  The countervailing concern is that 
successfully sampling NURBS BReps sparsely while producing valid meshes is something of a 
challenge.  A sampling that is too sparse can produce a mesh that will be degenerate or invalid 
regardless of any mesh repair routines.  Specific examples include the following: 

1. A half-cylinder sampled using only edge points.  Without any surface sampling at all, the 
linear edges triangulate to a plane and the end caps incorrectly form triangles with other 
points on the same end cap. 

2. Long, thin curved surfaces with insufficiently fine sampling will produce triangles whose 
distance and normal vectors are far enough from the original NURBS surface to 
introduce visual artifacts. 

Clearly there exists (at least for some surfaces) a minimally sufficient sampling density below 
which unacceptable triangulation results are assured as well as specific sampling locations 
(dependent on tolerance settings) that need to be either included or avoided.  To practically 
address these limitations without requiring user input, a heuristic was devised using wide 
bounding boxes to the curve edge segments in 2-D.  These boxes are assigned to each segment, 
but unlike the tighter boxes used for checking if points are on bounding polygons in 2-D, these 
boxes have their width set at half the segment length.  As in the surface point sampling 
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application, these trim curve boxes are then stored in an RTree to support fast nearest-neighbor 
lookup.  

During the initial curve breakdown that precedes surface interior point sampling, each curve 
segment 2-D box is checked to see if it overlaps with any boxes other than its immediate 
neighbors.  If it does, and if a maximal depth limit has not been reached, that segment is flagged 
for splitting.  This process repeats either until all boxes are clear of overlaps or until a depth limit 
is reached (Figure 20).  In this fashion, an initial set of curve segments can be identified that are 
much more likely to produce a reasonable visualization of the mesh. 

 
Figure 20. Visualization of the 2-D parametric-space edge-curve bounding-box refinement 

process for NIST2 Face 229.  Left to right: the initial breakdown begins with 
coarse bounding boxes, with overlap testing being used to identify necessary 
refinements.  Starting at refinement Step 6, boxes toward the top and bottom of 
the face stabilize as they clear their neighbors.  Refinement toward the center 
continues to deeper levels, where the face edges are closest together. 

These 2-D boxes also allow for the selection of interior points near edge curves that do not have 
the problem of a poor relationship with the edge.  The local neighborhood of the box in the 
direction interior to the segment’s box can be sampled at increasing distances from the segment 
until a suitable interior point is found (or it is determined that the edge is too close to another 
segment to be able to define an interior point).  This point (and only this point) then becomes the 
representative point for that portion of the surface and other surface points sampled inside the 
box are rejected.  This ensures that there will always be some interior points to force the mesh to 
represent the interior surface in from the edge curve while avoiding points that could produce 
flipped triangles.  
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2.5 Solid Meshing of NURBS BReps 

In combination, these techniques were able to produce valid meshes for all of the solid NIST 
sample geometries (NIST, 2014).  To illustrate the difference in meshing outputs, Figure 21 
compares the original triangle mesh generated by the original NURBS meshing logic in  
BRL-CAD with the results generated by the new routines.  Note in particular that even the coarse 
triangulation performed using the new techniques (2) is fully watertight. 

 
Figure 21. Example triangle meshing outputs for the original example cylinder: 1) the original 

nonwatertight output; 2) demonstrates the coarsest possible triangulation using 
the new logic.  In particular, note that the top and bottom faces of the cylinder 
now align with the center mesh and respect the coarse tolerance used for that 
face;  and 3) represents the output from the new routines using a tighter 
tolerance on the triangle normals.  This uses more triangles, but results in a 
smoother mesh that is still watertight and valid. 

With valid meshes available, work then shifted to overlap detection and processing. 

2.6 Detecting Overlapping Triangles 

By definition, any solid overlapping mesh will have triangles that intersect with some of the 
triangles in the mesh with which it is overlapping.  The basic input for overlap resolution is thus 
an array of valid mesh objects generated from their corresponding NURBS BRep solids.  
Because these meshes are generated in isolation, their meshes do not take cognizance of their 
local neighborhood and overlaps may exist between them.  The work of the overlap resolution 
routine is thus to either 1) prove no such overlaps exist or 2) identify those overlaps and apply 
selective refinement of the meshes to clear them.  Because the meshes generated for these 
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purposes have carefully retained information that associates them with their specific source 
NURBS BRep data, refinements using that allow for a degree of improvement not possible using 
generated meshes in isolation.  The NURBS BRep objects do not overlap (a precondition of this 
process) and thus constitute a ground truth that may be relied upon when local mesh alterations 
are necessary. 

The concern here is with volumetric overlapping between meshes; that is, nonzero volumes in 
space claimed by one mesh inside the volume of another mesh.  Triangles aligned along surfaces 
but not intruding into their neighboring mesh are not considered overlapping for these purposes 
even though such triangles may report overlaps to interrogating rays intersecting both triangles in 
the shared plane of such configurations.  Such tangent ray overlaps could also occur when 
interrogating the original NURBS BRep models.  Interrogating applications must either develop 
multi-ray based testing to identify and handle such issues or develop conventions for how to 
process such rays.  The goal for this work is to achieve meshes where only such tangential rays 
will produce overlap results.  Any query testing for volumetric interference should find nothing 
introduced due to meshing effects. 

The basic triangle/triangle overlap test implemented in BRL-CAD uses the well-known 
implementation by Möller (1997) and tests using meshes confirmed by BRL-CAD’s rtcheck tool 
to have overlaps demonstrate successful identification of interfering triangles (Figure 22). 

 
Figure 22. Overlap detection test case: (left) BRL-CAD’s rtcheck report on what volumes are 
overlapping, and (right) triangles colored green are detected as overlapping.  The results are 

consistent, indicating a successful integration of basic triangle level overlap detection.
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For testing purposes, we use the meshes from the BRep object pair in Figure 23 as the primary 
input data set.  These meshes are representative cases of classic triangle-induced overlapping but 
also constitute a simple enough input to make rapid iterative testing possible. 

 
Figure 23. Example illustrating a typical triangulation induced overlap: (left) a rendering of 

the original NURBS based model, which does not have geometric overlapping, 
and (right) a basic triangle mesh generated from this example, without any 
refinement due to overlaps.  Red represents volumetric overlap between the 
meshes. 

With Möller (1997) overlapping triangle detection working, the next question became its 
efficient application to input mesh sets.  

The highest-level operation when processing a set of mesh objects is to identify pairs of 
overlapping BRep face bounding boxes.  If the bounding boxes of the faces are disjointed, there 
is no information to be had from their triangles from a refinement standpoint and no further 
testing is necessary.  It is only when the bounding boxes overlap that we need do any further 
work.  This allows for the elimination of a great many face/face tests and is the first optimization 
step applied in overlap processing. 

Once potentially interfering face pairs are identified, it is necessary to determine if overlaps exist 
at the triangle level.  However, for large meshes, testing every triangle against every other 
triangle [the naïve O(n2) algorithm] quickly becomes prohibitively slow; a more refined 
approach is needed.  The RTree data structure already in use for surface point selection was a 
logical starting point for a more-optimized workflow since it is designed specifically for such 
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operations.  However, for overlap detection of triangles, the 3-D edge trees already created were 
not enough.  Trees containing all active mesh triangles that might potentially interfere with 
another mesh were needed. 

After some development and testing iterations, it was decided to refactor the mesh data structures 
to use the RTree container as the primary container defining which triangles are active in a given 
mesh, maintaining the RTree’s state during triangle insertion and remove operations on the mesh 
itself.  This avoids any need to worry whether a given mesh’s RTree correctly reflects the state of 
the mesh at any particular point in the process.  Any change to the mesh will automatically 
update the RTree. 

Given current RTrees for the meshes, those trees can be compared to find pairs of overlapping 
leaf bounding boxes (or rule out such overlaps, if the meshes do not in fact interfere).  Those 
pairs are in turn tested with the Möller intersection routine to make a final determination of 
whether they do or do not overlap (Figure 24). 

 
Figure 24. Illustration of the initial overlap detection process.  1) Two mesh faces have their 

2) RTrees compared to identify 3) nearby triangles.  4) Those nearby triangles are 
then compared to identify which triangles genuinely have overlapping 
relationships per Möller (1997).  5) The rightmost illustration highlights 
differences between the initial triangle test set and those with genuine overlaps.  
Triangles rejected by Möller are colored red. 
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Having identified the sets overlapping triangles, the next question is what to do with the 
information to improve the meshes.  It was immediately clear that triangles associated with BRep 
edge curves would pose a problem for any sort of refinement operation, as changes to the shared 
edge would necessitate changes not simply to the face associated with the triangle in question but 
also to triangles in the adjoining face.  This nonlocality is necessary to maintain the watertight 
property of the mesh during refinement, just as the original meshing of individual faces needed 
to be aware of shared edge points to establish that property in the first place. 

At an implementation level it proved necessary at this stage to add mappings connecting triangle 
edges with their associated face-edge segments and, vice versa, to allow local mesh operations to 
identify the local triangles and vertices they would have to manipulate for any given operation. 

With those preliminaries established, the stage was set for the most challenging aspect of the 
overlap problem: devising and implementing strategies for minimizing or (ideally) clearing 
overlaps.  There are a number of possible strategies, most of which have different tradeoffs in 
terms of complexity of implementation, quality of output, and robustness.  Full exploration of 
these issues was not possible in the time available.  This report details explorations made to date 
and the current working capabilities in BRL-CAD, with some thoughts on what future 
improvements might be made. 

2.6.1 Edge-Length-Based Overlap Refinement 

The simplest approach available for this purpose is to directly use the overlapping triangle sets 
identified by the RTree comparisons to create smaller triangles from the larger triangles until the 
longest edge length of an overlapping triangle is smaller than the user-specified tolerance.  Since 
the input NURBS surfaces are assumed not to overlap, the deepest possible triangle penetration 
into an opposite mesh after refinement to that dimension would have to be less than the user’s 
specified tolerance. 

When performing mesh alterations, it is always good practice to start with any BRep face edge 
segments that require modification.  Because changes to those edges impact two faces rather than 
one, they must be dealt with first in order for subsequent processing steps to assume safely that 
no other operations in the refinement cycle will change a given face’s mesh.  (This property, 
although useful simply for the sake of clarity when debugging, becomes very important in 
potential future work to parallelize the processing of individual mesh faces.) 

Because a simple splitting of all edges longer than the specified tolerance at their midpoints 
would not converge the mesh toward the original NURBS surface if the midpoint of the edge line 
segment is used, the refinement operation instead uses an implementation of the closest-point-
on-NURBS-surface routine (originally created for use in the BRL-CAD step-g converter work in 
2014) (Figure 25).  The edge midpoint on a long triangle edge is calculated from the line 
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segment, and that point is used as the query point for the closest-point-on-surface routine to 
identify a suitable point that is actually on the original NURBS surface.  Once that point is 
identified, the two triangles associated with the original edge are replaced with four triangles 
using the original vertices and the new vertex at the new surface point.  It is crucial that all edges 
interacting with the original mesh neighboring triangles be in their original directions to ensure 
the mesh remains topologically valid.  Unordered edge-based triangle look-ups must work 
correctly after a splitting operation for refinement to continue, and also to ensure the final output 
mesh will be valid. 

 
Figure 25. Snapshot of mesh refinement process after several detection and splitting cycles.  

Both meshes are being refined only in the area of mesh overlap.  Non-interfering areas 
remain in their original configuration. 

A naïve splitting of all edges longer than the user specified tolerance proved less than ideal in 
terms of the mesh quality produced.  To converge more toward equilateral triangles, the 
overlapping triangle sets were processed to build up two sets of triangle edges:  1) all those 
longer than the specified tolerance, and 2) those containing any edges that were the shortest edge 
on one or more triangles.  Once the initial sets were built, the set of shortest edges was removed 
from the long edge set to identify the final set of edges to be split.  This procedure produced 
better triangle shapes as the mesh converged.  Figure 26 shows the results of several overlap 
detection and processing cycles on the Figure 23 example. 
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Figure 26. Edge refinement on one of the example BRep face meshes.  Gray edges are to be 

split.  Red edges were initially flagged as edges to split, but were filtered out due 
to being the shortest edge on a triangle.  As the cycles progress, triangles become 
smaller and are filtered out of the processing set due to their edge lengths falling 
below the user-specified threshold length. 

A byproduct of this approach to mesh refinement is that it also tends to reduce gaps between 
meshes.  As triangles are refined toward the surfaces, they tend to pull in additional triangles 
from the opposite mesh in overlap testing, which has an overall effect of reshaping the local 
mesh to more closely match the surface (Figure 27).  Gap removal is not currently a specific goal 
of this logic, but such a result is definitely a desirable property when preparing V/L meshes. 
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Figure 27. The final meshes output by the conversion process.  Due to a tight tolerance 

specification, the mesh has been extensively refined in the mesh overlap area.  
(top) An overall view showing the contrast between refined and unrefined mesh 
areas, and (bottom) a close-up of the refined area. 

 

 

 



 

 
30 

In the event that an input has a genuine overlap in the original BRep input set, this method of 
refinement will simply continue splitting triangles on the boundaries where the faces overlap 
until the user specified limits are reached.  It will not reduce overlap volumes.  A closer 
inspection of the overlapping cylinder from Figure 28 illustrates that the refinement can still 
provide a visual indicator of where the BRep faces are interfering (Figure 29). 

 
Figure 28. Example refinement with a more-complex multi-object test case.  All BRep 

cylinders except the large one in the lower left fit precisely into holes within the larger matrix 
and have been refined in those interference areas. 
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Figure 29. Example refinement on an overlapping set of BRep objects where the overlap is in 

the original NURBS objects and not due to the mesh.  The refinement clusters 
around the face edges and does not extend to the interior of the interference 
volume.  This is because within the overlapping volume, the faces are not close 
enough for their triangles to interfere, even though they are inside the overall 
mesh. 

2.6.2 Intruding Vertex-based Overlap Refinement 

While the edge-splitting refinement has the advantage of strongly converging the mesh toward 
the original NURBS surfaces, it also has some drawbacks.  In particular, tight tolerance 
specifications generate very large numbers of triangles.  It is quite easy to inadvertently specify 
tolerances that will attempt the creation of meshes too large to successfully generate or process.  
Another drawback appears when rays are fired nearly tangent to overlapping mesh.  Faces may 
still find long overlap shot lines very close to the interfering mesh faces, since edge refinement 
reduces the volume of overlaps rather than fully eliminating them.  A more ideal solution would 
be to more selectively introduce mesh triangles only where needed to clear specific overlaps.  An 
attempt was made to implement such a refinement structure, but as of this writing those efforts 
have not yet achieved results generally applicable to all input meshes.  Efforts to date are 
outlined in the following, and subsequent sections will discuss measures that can potentially be 
undertaken to improve conversion yields. 

To identify when and where we need to refine a mesh, the obvious starting point is to 
characterize which vertices from one mesh are intruding into or otherwise interfering with 
another mesh.  However, early experiments proved this information was not sufficient by itself.  
More than just the intruding vertices would be needed to achieve a properly aligned  
non-overlapping mesh, and care would be needed to avoid introducing vertices in such a way 
that pathologically small triangles were created.  Forcing a mesh to incorporate multiple points 
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extremely close together is a source of problems for mesh quality and subsequent processing, 
and a number of measures are needed to prevent this. 

Once the problem of close vertices was clear, the first and simplest way to avoid the need for 
such vertices was to attempt to adjust existing vertices’ positions on the NURBS surfaces so they 
aligned with each other rather than interfering.  This could not only alleviate the need for close 
vertex insertion in many cases, but also would clear a number of overlap cases by simply shifting 
existing triangles into a non-overlapping configuration.  The questions were 1) how to identify 
close vertices and 2) how to know how much distance was “safe” when it came to moving a 
vertex; any vertex move that might result in invalid triangles in the mesh is a nonstarter. 

The answer to both of these concerns was to generate a triangle vertex bounding-box hierarchy 
stored in an RTree, with the bounding-box dimensions based on a fraction of the smallest edge 
length connected to that particular vertex (Figure 30).  This meant that two vertex RTrees could 
be intersected, just as the triangle RTrees were intersected earlier, and nearby vertex pairs 
identified by their overlapping bounding boxes.  If a vertex had very short edges associated with 
it, its bounding box would be small and only a very close point on the other mesh (or a point 
with very long edges and a lot of freedom to move) would register as being “nearby” in such a 
comparison.  Since multiple vertices might be found that satisfied these criteria for any given 
vertex, in these cases the actual vertex distances were checked and the closest vertex used for the 
pairing. 
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Figure 30. Example leaf bounding boxes from two mesh vertex RTrees, with dimensions of 

each vertex’s bounding box based on connected edge lengths 

After pairs of vertices were identified, a weighted average point was calculated between them, 
with the weighting factor being a function of how large a bounding box was associated with each 
vertex.  In the case of one large and one small box, the weighted average point would be much 
closer to the vertex with the smaller bounding box since it has less ability to shift without mesh 
damage.  Once that average point is found, the closest surface point on each NURBS face is 
calculated and the two vertices in question are shifted to these new positions (Figure 31).  (This 
also necessitates a lot of updating to the triangle and vertex RTree data structures to keep them 
current.) 
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Figure 31. Example mesh change pre- and post-vertex alignment.  Original edges are shown 

in blue and new edges in red.  Often these adjustments are enough to clear previously 
overlapping triangles. 

Ideally, this adjustment should be done for edge curve points as well, but the constraint in that 
case is that the points must remain on the curve and between the segment neighboring points.  
The BRL-CAD data structures are currently not set up to handle edge point location adjustments, 
as those points are treated as fixed in space.  This limitation is thought to be a likely source of 
problematic points in subsequent stages of processing, but to date that has not been confirmed. 

Vertex adjustments are a useful first step, but of course they are not sufficient if intruding mesh 
vertices are not close to a vertex in the opposite mesh.  For these vertices, it is necessary to 
introduce new vertices in the opposite mesh to accommodate the intruders. 

The question of when to introduce a new mesh vertex is actually more subtle than it might first 
appear.  There are vertices that are not themselves intruding into the opposite mesh that may still 
need to be accommodated to avoid triangle overlaps.  The following heuristics were eventually 
devised for the first refinement stage (red points in the example appear in Figure 32): 

1. If a triangle overlaps with another triangle only at a single point, it is not considered to be 
an overlap for these purposes.  A single point interference cannot be volumetric. 

2. If a vertex is associated with two or more triangles that intrude into the opposite mesh, it 
is flagged for processing. 
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3. If a vertex is close to one of the edges of an intersecting triangle, flag it for processing.  
In particular, this is needed to deal with what would otherwise be nearly parallel edges in 
overlapping triangles. 

 
Figure 32. View of face meshes showing points of interest from other meshes (red) and 

overlapping triangles (yellow).  Blue triangles are those not reporting overlaps. 

For all vertices identified as being refinement vertices, RTree lookup is used to find the closest 
point on the mesh into which the vertex in question intrudes.  In the first pass, reject any vertex 
that is too close to an already existing vertex in the opposite mesh per the bounding-box 
comparisons to avoid introducing two vertices close together on the mesh.  If the vertex is not 
rejected, find the closest point on the opposite NURBS surface and add that point to the opposite 
mesh (using the bounding box of the originating vertex in the intruding mesh as an initial 
bounding box for the new vertex.)  Once all new points have been added, for each new point find 
the closest edge in the mesh that will be accepting the new vertex.  (This is currently done by 
doing an RTree lookup of the triangle tree, finding the close triangles, and then for each of those 
triangles characterizing the distance between the triangle edges and the vertex.) 

If the closest edge to a vertex is also a BRep edge, that edge is split at the point on the curve 
closest to the vertex in question if that closest point is not already an edge segment start/end 
point.  (This necessitated implementing a closest-point-on-curve routine for NURBS curves, 
translating the algorithm from the verbnurbs library [Boyer, 2020].)  This step is performed to 
ensure the outer mesh boundary can properly enclose the new mesh points.  After this step the 
closest edge to the new vertex point is updated to refer to the new interior edge added by the 
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triangles introduced into the mesh to accomplish the BRep edge-splitting operation.  At this point 
all new vertices now have an interior edge as their closest edge (Figure 33) and triangle 
replacement can begin. 

 
Figure 33. Triangle overlap state after edge refinement.  Note the increase of face-edge 

points around the upper and lower edge curves of the cylinder. 

For interior-edge-associated vertex points, the two triangles associated with the closest edge to a 
set of new vertex points are used to define a bounding polygon.  That polygon and the new 
vertex points are projected to a local best-fit plane, and the mesh is locally re-triangulated to 
incorporate the new points into the mesh topology (Figure 34).  Conceptually, this replacement 
procedure is identical to the repair operation used during the initial mesh creation, although in 
this case the interior points are new rather than being reused from the original mesh.  Once new 
triangles are introduced, closest edge assignments for any remaining new vertices are 
reconfirmed to make sure those assignments have not been changed by the introduction of new 
edges. 
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Figure 34. Triangle refinement driven by local re-triangulation incorporating nearest points 

to intruding vertices: (left) yellow triangles are overlapping triangles, and red 
points are vertices of interest; (middle) updated mesh and the points that drove 
the updates; and (right) visualization of mesh changes; blue are original edges, 
and red are updated/added edges 

Once all new vertices are incorporated, the mesh is locally re-triangulated to optimize the new 
triangle edges locally around the adjusted mesh areas.  Since only the two triangles associated 
with the original edge were replaced, the insertion can sometimes leave the mesh with locally 
sub-optimal triangles. 

The previous process is run iteratively until no new triangles are being introduced.  At that point 
overlaps are again checked for.  If any triangles remain that are still involved in overlaps, 
subsequent refinement operations will need to ensure the closest points on the opposite meshes 
are present as vertices.  To accomplish this, remaining vertices associated with overlaps are 
incorporated into the opposite meshes even if this means adding vertices close to existing 
vertices in the mesh; there are triangle interaction combinations that can require such insertions. 

After vertex insertion is complete and we have aligned nearby vertices, triangle overlap detection 
is faced with a new challenge, or rather it must now address a situation that was previously 
overshadowed by other mesh problems.  When overlapping triangles overlap only at their edge 
(which is now a probable interaction after working to align vertices), the overlap itself is not 
useful in characterizing the interaction.  Some pairings can be eliminated based on the projection 
of the triangles into the average plane of the two triangle normals.  If the triangles do not overlap 
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there, they are pointing in “opposite” directions and cannot define a volume.  If the pairings do 
overlap in projection, they may (but are not guaranteed to) be part of volumetric overlaps.  
Figure 35 shows a case where two edge-only intersection triangles are part of an overlap, while 
Figure 36 shows two similar triangles that are not part of an overlap. 

 
Figure 35. Edge-only triangle intersection pair (top view left and side view right) that is part 

of a volumetric overlap 

 
Figure 36. Edge-only triangle intersection pair (top view left and side view right) that is not 

part of a volumetric overlap 

This situation is the most difficult of the triangle intersection cases to characterize.  Currently a 
full-fledged point inside/outside polyhedron test based on Dickinson’s (2020) implementation is 
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used for robustness.  The test characterizes the triangle edge midpoints on the triangles’ edges 
that are not the aligned edges from the triangle/triangle intersection test to determine if the 
triangle is or is not intruding into the other mesh.  Moreover, because we do not want to report 
overlapping if the midpoints are on the surface of the mesh (to within tolerance), not only do we 
need the inside/outside test but we also need to find the closest point on the mesh (not the local 
face but the overall object mesh) and determine how close the midpoints are to being on the 
surface.  This again uses the triangle RTree lookup, as well as the closest point on triangle 
routine from Geometric Tools (Eberly, 2020).  In combination, these routines can be used (with 
considerable cost in time) to decide if a given triangle is inside or outside the opposite mesh. 

If these routines determine that overlaps are still present in the meshes, the next step to attempt is 
to see if selecting different triangles can clear the overlaps.  Even if vertices are all aligned, the 
choice of mesh edges alone can result in interfering triangles on nonplanar faces (Figure 34).  As 
a preliminary step, the remaining intersections are analyzed and grouped into common sets: 
overlapping pairs are used as seeds to form the groups, and then grown until they cease 
increasing their triangle counts based on the following criteria: 

1. All triangles in the group (starting with the seed pair) that intersect with at least one 
triangle in the group in the other mesh are added to the group. 

2. All triangles overlapping with any triangle in the group in the projection plane are added 
to the group. 

3. Steps 1 and 2 are performed repeatedly until no new triangles are added and all pairs are 
assigned to groups. 

Visually this procedure’s output manifests as “clusters” of related overlaps grouped in local 
areas on the mesh (Figure 37).  Once groups are identified, there are a number resolution 
strategies to try: 

1. For simple two-triangle four-vertex cases where all vertices can be mapped to close 
vertices on the opposite mesh, replace one set of triangles with a mapped version of the 
other set. 

2. If the interaction is more complicated, locally re-triangulate the meshes in the area of the 
overlaps using a common projection plane fitted to the vertices from both meshes. 

3. If Steps 1 and 2 cannot clear the mesh, identify mesh edges with nearby edges in the 
other mesh, find the closest point to the two edge segments (where such a point is not a 
segment end point) and introduce new mesh points near those intersections. 

4. Repeat these steps iteratively, tracking improvements to the mesh until a stable state is 
reached. 
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Figure 37. Group characterization of remaining overlapping triangles.  These three sets of 

triangles may be processed locally to resolve overlaps. 

Steps 1 and 2 have been implemented, and in the example case used up to this point, iterative 
application of those measures is sufficient to achieve a completely overlap-free meshing while 
keeping the mesh sparse (Figure 38).  This is visually apparent when inspecting a shaded view of 
the output mesh and an rtcheck run in BRL-CAD along the cylinder’s long axis (tangent to the 
interfering faces, which is the worst direction for overlaps) confirms a clean conversion  
(Figure 39).   
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Figure 38. (left) Visualization of original overlaps, (middle) post-overlap resolution mesh, 

shaded view, and (right) wireframe.  While the overlap volumes are gone, the 
mesh is much closer to its original mesh density.  It was not necessary to 
introduce large numbers of new triangles. 
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Figure 39. Successful clean (overlap-free) rtcheck test of the refined mesh in BRL-CAD’s 

MGED tool, looking down the cylinder axis 

However, while this result is promising, trials with other test cases demonstrate that these steps 
by themselves are not sufficient in all cases (Figure 40), and the implementation of Step 3 is not 
complete as of this writing.  More work remains to achieve generally robust resolution results, 
and it is not yet known if additional measures beyond those already outlined will also prove 
necessary. 
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Figure 40. Overlaps from an example that cannot be fully resolved with currently 

implemented intruding vertex methodology 

This approach to refinement also does not do as much as edge splitting to resolve gaps between 
meshes.  Indeed, it is actually quite minimal in that respect, as coarse triangles that do not 
interfere with the opposite mesh do not tend to get “activated” for processing as smaller triangles 
constrict the meshes toward each other.  It may be that a specific gap test (and refinement stage) 
is also in order to improve overall output quality from this method. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES – PLATE-MODE 
NURBS RAYTRACING 

The basic plate-mode raytracing methodology was defined in FASTGEN (Aitken, Jones, & 
Dean, 1993), and BRL-CAD’s implementation follows that approach.  Plate mode uses an 
implicit thickness to create a solid shot-line segment using a single ray-intersection point.  The 
plate-mode thickness is used to move the hit point along the interrogating ray back toward the 
origin point of the ray and forward past the hit point.  In this fashion a line segment can be 
returned from a single hit, avoiding the need to explicitly define a closed volume to generate a 
solid response.  There are two primary methods for calculating these start and end points: 1) 
shifting the hit point forward and back along the ray by half of the plate thickness, or 2) 
calculating a distance to shift along the ray that uses the cosine of the obliquity angle of the hit—
how steep the incoming angle of the ray is relative to the tangent surface at the hit point—to 
reflect the fact that a shallow angle will result in longer intersection lengths through a given 
solid.  These two methods are referred to as NOCOS and COS, respectively (Figures 41 and 42). 

 
Figure 41. Cross-sectional view of three rays traversing near a NOCOS plate mode surface 

(black line) with an implicit thickness defined by the checkboard pattern.  The 
leftmost ray, intersecting tangent to the surface, returns a thickness that matches 
the implicit shape.  The middle ray, at an angle, reports a thickness, but that 
thickness is less than would be expected if the implicit solidity of the plate-mode 
surface were modeled explicitly.  The right ray, with no surface intersection point 
to use, reports a miss even though it passes through the implicit volume. 
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Figure 42. Cross-sectional view of three rays traversing near a COS plate mode surface (black 

line) with an implicit thickness defined by the checkboard pattern.  The leftmost 
ray (intersecting tangent to the surface) and the middle ray (intersecting at an 
angle) report thicknesses consistent with the implicitly defined solid shape (an 
improvement over the NOCOS result, but requiring increased computation time 
per ray).  The right ray, with no surface intersection point to use, still reports a 
miss even though it passes through the implicit volume. 

Initial work on this problem in 2016 (Wu, 2016) demonstrated the basic feasibility of applying 
plate-mode methodology to NURBS surfaces (Figure 43).   

 
Figure 43. Example image from the Google Summer of Code plate-mode NURBS project, 

demonstrating surface-only renderings of objects in BRL-CAD (Wu, 2016) 

However, an implementation challenge appeared when attempting to integrate this work into the 
primary BRL-CAD NURBS raytracing workflow.  The simplest approach conceptually to adding 
this support is to apply the plate-mode behavior whenever the raytracer encounters unpaired hit 
points.  Unfortunately, when this approach was attempted, it introduced artifacts in the output 
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generated for solid models (Figure 44).  As of this writing, the reason for these artifacts has not 
been fully root caused.  Fortunately, the nature of openNURBS BRep definitions allows for an 
alternative integration approach that more selectively applies the plate-mode logic, allowing 
solid NURBS-based objects to be raytraced using the existing code without modification. 

 
Figure 44. NIST3 problematic results with plate mode enabled.  NIST3 is a solid object and 

thus should not change when raytracing with plate mode enabled.  Red areas indicate 
unexpected hits returned by RT when plate mode is enabled. 

OpenNURBS BRep objects track the type of trimming curves used to define objects, and the 
number of trimming curves associated with particular edges.  For valid objects that are single 
surface definitions, they will exhibit one or more edges associated with a single trimming curve 
of the “boundary” type.  When loading NURBS-based objects, those that are valid according to 
openNURBS and found to match this data signature are tagged as being “plate mode” NURBS 
objects.  In this fashion, plate-mode logic can be applied only in cases where it is needed.  

To validate the behavior of this code, example geometric shapes were defined by the target 
modeling team that expressed known simple primitive surfaces: a partial box, open cylinder, half 
sphere, and open cone (Figure 45).  These shapes can also be expressed using traditional  
BRL-CAD implicit primitives, allowing for behavioral comparisons to ensure sane behavior of 
the plate-mode intersection method. 
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Figure 45. Plate-mode NURBS BRep example objects in BRL-CAD 

By setting the plate-mode thickness to a large value, it is possible to visualize the behavioral 
difference of COS versus NOCOS intersection to confirm the logic is operating as expected 
(Figure 46).  This visual confirms both the addition of implicit solidity at intersection points and 
the length differences between the two methods. 

 
Figure 46. Partial-box plate-mode NURBS object in BRL-CAD showing intersection with a 

single Natalie’s Interactive Ray-Tracer (NIRT) ray.  Yellow and blue are solid 
segments, and purple denotes a gap.  The figure on the right highlights in red the 
difference in reported segments, confirming that the COS segments are longer 
when the incoming rays intersect at a steep angle relative to the surface. 

To confirm that the expected segment lengths are being defined at the expected places, the box, 
half-sphere, and cylinder objects were paired with CSG hierarchies defining what should 
theoretically be exactly the same shapes.  These sets were then drawn simultaneously in MGED, 
and the NIRT command was used to determine if the solid lengths along the shot lines were in 
agreement.  If they were, the expected result would be fully overlapping solids.  Shots from 
multiple directions produced the expected fully overlapping results in this configuration, 
demonstrating that the CSG and plate-mode NURBS intersections agree (Figure 47). 
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Figure 47. Interactions between deliberately overlapped CSG and plate-mode NURBS objects 

as tested with NIRT.  For each of the six ray/object combinations, an imperfect 
match between the plate-mode answer would result in blue or yellow line 
segments near the white overlapping portion of the shot line.  For all cases, the 
results are those expected for a correct plate-mode implementation.  Only 
overlap and gap segments are observed. 

An example of a valid NURBS geometry modeled using “plate mode” surfaces encountered in 
the wild is the teapot example included in the openNURBS Sample Models data set (McNeel, 
Inc., 2020).  This model was previously not supported by BRL-CAD’s raytracing 
implementation but can now be rendered successfully as a hierarchy of plate-mode NURBS 
BRep solids (Figure 48). 
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Figure 48. BRL-CAD raytraced rendering of the openNURBS Sample Model v5_teapot.3dm 

plate-mode geometry model 
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4. CONSTRAINTS, LIMITATIONS, AND ASSUMPTIONS 

Both overlap resolving mesh conversion and plate-mode NURBS BRep raytracing have a 
number of limitations on the types of inputs and operations they support. 

4.1 Limitations on Meshing Inputs 

When generating solid, valid meshes from BReps, the following conditions must be met: 

1. The original BRep object must be valid (i.e., define a closed solid volume and pass the 
openNURBS validity checks). 

2. The original BRep object must have no unmated trim curves (curve connectivity is 
needed for defining closed solids). 

3. During processing, repair zones cannot become so large that they fail to project to a plane 
without self-intersecting in that projection.  (Such cases would require a more-
sophisticated projection strategy, and currently no such strategy has been implemented.)   

4. Tolerance settings must not be so fine as to produce triangle counts that are prohibitive in 
terms of memory or runtime. 

There are also a number of restrictions on what this meshing approach can handle when it comes 
to refining overlapping triangles: 

1. The original NURBS geometry is must be non-overlapping (i.e., any mesh overlaps 
present are a consequence of the triangulation process). 

2. There are no Boolean operations other than unions in the geometry tree being processed. 
3. There are no BRL-CAD primitive shape types other than brep and comb/region present in 

the tree being processed. 
4. Tolerances for overlap resolution cannot be too small relative to the size of the objects 

being triangulated.  Otherwise, both memory and runtime requirements will become 
impractical.  Users are advised to specify coarse tolerances and gradually work down to 
finer tolerances based on experience with specific models. 

Currently all processing is implemented serially, without use of multi-threading.  At least some 
stages of this process are amenable to parallelization, which would offer significant speedups. 

There is a tradeoff between mesh quality and processing speed:  water tightness, validity, and 
overlap clearing involve successively more-expensive mesh operations.  The original 2014 
meshing implementation is fast enough for quick shaded visualization of NURBS solids.  
Currently none of the higher-quality options are fast enough to generate visualization meshes on 
the fly.
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4.2 Limitations of Plate-Mode NURBS Inputs 

The NURBS plate-mode methodology inherits the same weaknesses exhibited by mesh-based 
plate-mode raytracing: view dependency.  A thickness setting that is thick compared with the 
surface area or large compared with the overall dimensions of interest to the analysis will 
produce a “volume” with solidity in some directions but not in others.  (Grazing rays near the 
surface will “miss” the plate-mode volume that a tangent ray would see there, because there is no 
hit point to use to assign the implicit thickness.) 

Plate-mode NURBS raytracing is currently limited in BRL-CAD to objects whose definitions 
indicate they are plate-mode objects.  Unlike triangle meshes, there is currently no way to 
“force” a brep primitive to be interpreted as a plate mode object by the raytracer.  A plate-mode 
NURBS object must be created with modeling intent and pass validity checks to be so regarded 
in BRL-CAD.  Invalid solid NURBS models cannot currently be “forced” into plate mode within 
BRL-CAD. 
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5. RESULTS 

The software results from these efforts are a series of new capabilities and command options in 
BRL-CAD exposing those capabilities. 

5.1 Meshing Results 

The basic pieces of the meshing algorithm as outlined are in place in BRL-CAD and producing 
geometry successfully.  These new capabilities are available in BRL-CAD via the “facetize” 
command in MGED (Figure 49).  Specifically, the “-B” option enables the new BRep specific 
processing routines and validates that the specified inputs are suitable.  A “-t #” tolerance value 
also needs to be specified to control how far the meshing algorithms should refine any 
overlapping triangles before halting.  The “--max-time” option to facetize can be used to cap how 
long the overlap resolution step runs.  After each refinement pass, if the overall processing time 
for overlap resolution is greater than the specified maximum time the remaining iterations will be 
skipped.  In that case the mesh will be generated at whatever resolution was reached when the 
last completed refinement step finished. 

 

Figure 49. Set of gears (Elg, 2020) processed with the facetize command in MGED 

Work remains to stress the implementation with larger inputs.  Watertight meshing seems to be 
working well, and the repair logic responsible for clearing local flaws and singularity areas has 
demonstrated successful conversions with all valid NIST input example models. 

The overlap refinement logic has demonstrated it can detect overlaps and locally refine meshes 
successfully to a specified tolerance.  The runtime performance of this approach as currently 
implemented deteriorates with increasingly large triangle counts.  It is not clear yet how much of 
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that increase is due to the inherent difficulty of the problem and how much might be alleviated 
with increased implementation efficiencies and optimization. 

A more advanced approach to overlap refinement and removal that avoids introducing large 
numbers of additional triangles has been demonstrated in principle.  For the moment, only the 
edge-splitting-based resolution technique is exposed in BRL-CAD.  More work is required to 
improve the robustness of the intrusion-vertex-based refinement process; however, it is not 
known with any certainty how much additional work would be needed to define enough 
refinement heuristics to ensure reliable completion.  In addition to the implementation difficulty 
of this approach, it has known performance implications.  The necessity of using an 
inside/outside test [which is currently O(n) in performance where n is the number of triangles in 
the mesh being tested, due to robustness requirements] means that for large models, even 
relatively sparse triangulations may be difficult to resolve without runtimes too long even for 
non-interactive use.  If runtimes on the order of days can be achieved for large models and 
robustness is improved, the process will still be useful for non-interactive conversions. 

5.2 Plate-Mode NURBS BRep Results 

Plate-mode NURBS raytracing has been successfully demonstrated in BRL-CAD, both from a 
visualization/rendering perspective and for generating the “solid shot lines” necessary for V/L 
analysis methodologies. 

Modification of plate-mode brep object settings is accomplished using MGED’s “brep” 
command (Figure 50).  Detection of plate-mode NURBS BReps (as opposed to solid or invalid 
BReps) is currently automatic, but thickness and COS/NOCOS modes may be set by users.  
Thicknesses (which defaults to zero on import) may be specified with a “brep <objname> 
plate_mode #’ command, where “#” is the desired thickness for the object in current database 
units.  Switching between COS and NOCOS evaluation modes is also done with the brep 
command, specifying either “brep <objname> plate_mode cos” or “brep <objname> plate_mode 
nocos” to set the desired mode.  The default if no explicit setting is made is “COS” mode. 
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Figure 50. Using MGED’s “search” and “brep” commands to find and modify a plate-mode 

brep object 

The BRL-CAD “search” command has also been enhanced with the ability to list objects in a  
.g file that use plate-mode evaluation via the “-type plate” filter.  To find all plate-mode NURBS 
BRep objects in a database, the user may run “search -type plate -type brep”.  Similarly, to find 
bot meshes that are plate mode they may run “search -type plate -type bot”.   
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6. CONCLUSION AND RECOMMENDATIONS 

Although the difficulty of implementation considerably exceeded original estimates, BRL-CAD 
now has a working meshing method for NURBS solids that can generate both watertight 
triangulations and locally refined meshing in overlapping BRep face regions.  Continued 
refinement of the initial implementation for performance, code organization/clarity, and 
developer centric documentation is in order.  Plate-mode NURBS methodology was also 
successfully integrated, with appropriate user-level tools for identification and modification of 
such objects. 

The next step for the meshing logic is to rework the data containers and implementation of 
meshing algorithms with an eye toward improved efficiency and flexibility.  Now that the basic 
workflows needed for successful completion of the meshing are clear, a number of structural 
improvements have been identified that will improve both performance and outcomes. 

For plate-mode support, the next steps are to explore the behavior of BRL-CAD’s tools with 
plate-mode solids and correct any limitations found.  Investigation is needed to ensure the view-
dependent nature of the solids does not produce unexpected behaviors.  Work is also needed to 
identify the root cause of the raytracing artifacts observed during the first plate-mode integration 
attempt.  That behavior should at least be understood, and if it represents some flaw in the solid 
raytracing implementation, it should be addressed. 
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