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ABSTRACT

The instantaneous local circumstances of an eclipse answer the question:

Given a specific time and a location on or near the surface of the Earth, is a

lunar or solar eclipse in progress, and if so, what are the eclipse conditions (i.e.,

magnitude or obscuration) at that time and location? The answer to this question

is especially important for planning activities or operations in which illumination

is critical. Eclipses can have a profound impact on the level of natural light, yet

are often overlooked when predicting the illuminance. This technical note de-

scribes how to compute the instantaneous local circumstances of solar and lunar

eclipses.

1. Introduction

The primary goal of eclipse computations is to determine the circumstances of individual

eclipses; e.g., the type of eclipse, the date and time at which each phase of the eclipse begins

and ends, and the region of the Earth from which the eclipse is visible. In the case of solar

eclipses, circumstances can be general or local, the former providing information on global

aspects of the eclipse, and the latter providing information for specific locations on the

Earth. Local circumstances are especially important for central solar eclipses, in which the

visibility of the annular or total phases is confined to narrow paths on or near the Earth’s

surface. In contrast, the circumstances of lunar eclipses are general in that they are the

same for all locations on the Earth, provided that the Moon is visible from the location.

General circumstances of eclipses are published in various sources such as canons (e.g.,

Espenak and Meeus 2006, 2009) and almanacs (e.g., The Astronomical Almanac 2011). Local
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circumstances are available in special publications (e.g., Espenak and Anderson 2008), online

canons (e.g., Eclipses Online 2013), and software (e.g., The Multiyear Interactive Computer

Almanac 2012). The methods for computing eclipse circumstances are well documented (see

e.g., Explanatory Supplement to the Ephemeris and the American Ephemeris and Nautical

Almanac 1961; Urban and Seidelmann 2012).

Typical local-circumstance tabulations answer the question: Given a specific eclipse

and a location on the Earth, at what times do the various eclipse phases begin and end, and

what are the eclipse conditions (e.g., obscuration, magnitude) at maximum eclipse? This

technical note is concerned with another type of local circumstances, hereafter referred to

as instantaneous local circumstances. They answer a different question: Given a specific

time and a location on the Earth, is an eclipse in progress, and if so, what are the eclipse

conditions at that time and location? Knowledge of the instantaneous local circumstances

is especially important for planning activities or operations in which illumination is critical.

For example, an activity may need to take advantage of the light of a Full Moon. Such an

activity may be negatively affected, or even fail, if a total eclipse of the Moon is in progress

at the time for which the activity is planned. Alternatively, an operation that must take

place under the cover of darkness may be possible around the time of Full Moon if a total

lunar eclipse is in progress. Knowing the instantaneous local circumstances of an eclipse is

an important but often neglected part of predicting the illuminance.

The remainder of this note describes how to compute the instantaneous local circum-

stances of solar and lunar eclipses.

2. Solar Eclipses

The geometry of a solar eclipse is illustrated in, e.g., Urban and Seidelmann (2012)

(section 11.2.4). A partial solar eclipse takes place when the Earth is within the outer part

(penumbra) of the Moon’s shadow, but not the inner part (umbra). A solar eclipse is central

when the Earth is within the Moon’s umbra or antumbra. If the eclipse is central at a

particular time and location, and the height of the apex of the Moon’s umbral shadow cone

above the Earth’s surface is less than or equal to the height of the location, the central eclipse

is total. Alternatively, if the height of the apex of the Moon’s umbral shadow cone above

the Earth’s surface is greater than the height of the location, the central eclipse is annular.

The most dramatic change in surface illumination occurs during the period of total eclipse,

when the sky becomes dark and the bright planets and stars become visible.

Computation of the instantaneous local circumstances of a solar eclipse requires topocen-
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tric places of the Sun and Moon at the time and location of interest. A rigorous procedure for

computing topocentric places of solar-system bodies can be found in chapter 7 of Urban and

Seidelmann (2012). This procedure has been implemented in software (see Naval Observa-

tory Vector Astrometry Software 2011). An approximate method for computing topocentric

places is described in section D of The Astronomical Almanac (2011); this method can be

used, for example, with the Sun and Moon ephemerides described by Bretagnon and Simon

(1986) and Chapront-Touzé and Chapront (1991) respectively.

2.1. Phase of the Solar Eclipse

Figure 1 illustrates the positions of the Sun and Moon at the time of first (and last)

contact. Thus, a solar eclipse—at least partial—is occurring if:

E < ss + sm (1)

where E is the topocentric elongation of the Moon from the Sun (e.g., Urban and Seidelmann

2012, eq. 12.1), and ss and sm are the topocentric semidiameters of the Sun and Moon,

respectively (e.g., Urban and Seidelmann 2012, eq. 10.34). Topocentric places of the Sun

and Moon at the time and location of interest are used in computing these quantities.

S M
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Fig. 1.—Solar-eclipse geometry at first and last contact (the orientation is arbitrary). S and

M are the centers of the Sun and Moon, respectively. E is the elongation of the Moon from the

Sun, and ss and sm are the semidiameters of the Sun and Moon, respectively. All quantities

are topocentric.

Figure 2 illustrates the positions of the Sun and Moon at the time of second (and third)
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contact. The solar eclipse is central (annular or total) at the time and location of interest if:

E ≤ |sm − ss|. (2)

If this condition is satisfied, the central eclipse is total if:

sm ≥ ss. (3)

If the condition specified in equation 2 is satisfied, but the condition specified in equation 3

is not, the central solar eclipse is annular. The above conditions (equations 1–3) should be

checked in sequence at each instant of time, stopping once a condition is not satisfied. The

last satisfied condition indicates the phase of the eclipse.

S M

ss 

sm E 

Fig. 2.—Solar-eclipse geometry at second and third contact. S and M are the centers of the

Sun and Moon, respectively. E is the elongation of the Moon from the Sun, and ss and sm are

the semidiameters of the Sun and Moon, respectively. All quantities are topocentric.

2.2. Obscuration of the Sun

If the first condition above (equation 1) indicates that a solar eclipse is happening at

the time and location of interest, the obscuration of the Sun by the Moon, expressed as a

fraction of the area of the Sun, can be computed by applying the geometry of circle-circle

intersection (Weisstein 2005). First, compute the discriminant x:

x = (−E + sm + ss)(E + sm − ss)(E − sm + ss)(E + sm + ss) (4)
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If x is negative, the Moon either entirely covers the Sun (total eclipse) at that instant or is

totally within the disk of the Sun (annular eclipse) depending on the semidiameters of the

bodies. Compute the obscuration (Os) accordingly: If sm ≥ ss, then Os = 1.0 (total eclipse),

otherwise compute the ratio of the areas of the two bodies (annular eclipse):

Os = sm
2/ss

2 (5)

If x is positive (partial eclipse) or zero, compute the overlap area (A), which has the shape

of a lens:

A = a+ b− c (6)

where:

a = sm
2 arccos ((E2 + sm

2 − ss2) / (2E sm))

b = ss
2 arccos ((E2 + ss

2 − sm2) / (2E ss))

c = 0.5
√
x

and then Os:

Os = A/πss
2. (7)

3. Lunar Eclipses

The geometry of a lunar eclipse is illustrated in, e.g., Urban and Seidelmann (2012)

(section 11.2.3). A penumbral lunar eclipse takes place when the Moon is within the outer

part (penumbra) of the Earth’s shadow, but not the inner part (umbra). A partial lunar

eclipse occurs when a portion of the Moon is within the Earth’s umbra. The eclipse is

total when the Moon is completely within the umbra. The appearance of lunar eclipses is

described in, e.g., Liu and Fiala (1992). Penumbral lunar eclipses are imperceptible to the

human eye until at least 50-70% of the Moon’s diameter is within the penumbra. Total

lunar eclipses vary greatly in brightness depending on the Earth’s atmospheric conditions—

especially along the terminator—and the depth to which the Moon penetrates the umbra.

The Danjon scale (see, e.g., Ottewell 1991; Espenak 2009) illustrates this broad range in

brightness.

Computation of the instantaneous local circumstances of a lunar eclipse requires appar-

ent (geocentric) places of the Sun and Moon at the time of interest. A rigorous procedure

for computing apparent places of solar-system bodies can be found in chapter 7 of Ur-

ban and Seidelmann (2012). This procedure has been implemented in software (see Naval

Observatory Vector Astrometry Software 2011). Ephemerides and methods for computing

the apparent places of the Sun and Moon are also given by Bretagnon and Simon (1986)

and Chapront-Touzé and Chapront (1991) respectively.
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3.1. Phase of the Lunar Eclipse

Figure 3 illustrates the geometry at the various phases of a lunar eclipse. Let r̂as be

a unit vector pointing from the geocenter to the antisolar point (S ′). This unit vector lies

along the axis of the Earth’s shadow cone, and is computed from:

r̂as = −(rs / |rs|) (8)

where rs is the apparent equatorial position vector of the Sun. If necessary, rs can be

computed from the apparent equatorial spherical coordinates (right ascension, declination,

and distance) of the Sun (see, e.g., Urban and Seidelmann 2012, eq. 7.20). Let r̂m be a unit

vector pointing from the geocenter to the center of the Moon (M or M ′). This unit vector

is computed from:

r̂m = rm / |rm| (9)

where rm is the apparent equatorial position vector of the Moon. If necessary, rm can be

computed from the apparent equatorial spherical coordinates (right ascension, declination,

and distance) of the Moon using the same method as used for obtaining rs.

The angular distance of the center of the Moon from the antisolar point is:

θ = arccos (r̂as · r̂m). (10)

The angular radii of the penumbral and umbral shadows, respectively, at the distance

of the Moon are:

fpen = 1.02 (π′m + ss + πs) (11)

fumb = 1.02 (π′m − ss + πs) (12)

where πs is the equatorial horizontal parallax (see, e.g., Urban and Seidelmann 2012, section

1.3.6.1) of the Sun, and π′m is the “reduced” equatorial horizontal parallax of the Moon

(the lunar horizontal parallax at the mean radius of the Earth, assumed to be at latitude

45◦). The factor of 1.02 accounts for the Earth’s atmosphere (Explanatory Supplement to

the Ephemeris and the American Ephemeris and Nautical Almanac 1961, section 9E). Here,

and throughout section 3, the semidiameters ss and sm are computed using the apparent

places; i.e., they are geocentric, not topocentric.

Then, a lunar eclipse is occurring at the time of interest—it is at least penumbral—if:

θ < (fpen + sm) ≡ L1. (13)

The lunar eclipse is at least partial (the Moon is in the earth’s umbral shadow) if:

θ < (fumb + sm) ≡ L2, (14)
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Fig. 3.—Lunar-eclipse geometry from a geocentric perspective. The axis of the Earth’s

shadow cone is orthogonal to the figure at S′, the antisolar point. r̂as (see section 3.1) lies

along this axis and points from the geocenter to S′; r̂m points from the geocenter to the center

of the Moon (M or M ′). θ is the angular distance between the antisolar point and the center

of the Moon, and sm is the semidiameter of the Moon. The Earth’s shadow at the distance

of the Moon has angular radius f : the radius of the penumbra is fpen and the radius of the

umbra is fumb. The right side of the figure shows the Moon (M ′) at the beginning and end of

penumbral eclipse (where f = fpen), and likewise for umbral eclipse (where f = fumb). The

left side of the figure shows the Moon (M) at the beginning and end of total eclipse (where

f = fumb). All quantities are geocentric. This figure adapted from figure 11.4 of Urban and

Seidelmann (2012).

and the lunar eclipse is total if:

θ ≤ (fumb − sm) ≡ L3 (15)

(Urban and Seidelmann 2012, equation 11.133).

The conditions above (equations 13–15) should be checked in sequence at each instant of

time, stopping once a condition is not satisfied; the last satisfied condition provides the phase

of the eclipse. Finally, the lunar eclipse is visible from the location of interest if the Moon

is above the horizon at the time of interest. The altitude or zenith distance of the Moon

is obtained by transforming the topocentric coordinates of the Moon from the equatorial

system to the horizon system (see, e.g., Urban and Seidelmann 2012, section 7.1.3.4).
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3.2. Magnitude of the Lunar Eclipse

The magnitude of a lunar eclipse is the fraction of the Moon’s diameter that is inside the

Earth’s penumbral or umbral shadow. In the former case, it is the penumbral magnitude; in

the latter case it is the umbral magnitude. The penumbral magnitude is given by:

mpen = (fpen + sm − θ) / 2 sm (16)

The umbral magnitude is set to zero when the lunar eclipse is in the penumbral phase. The

umbral magnitude is:

mumb = (fumb + sm − θ) / 2 sm (17)

The penumbral magnitude is set to zero when the lunar eclipse is in the umbral (partial or

total) phase.

4. Conclusion

Procedures for computing the basic instantaneous local circumstances of solar and lunar

eclipse have been given. It is only necessary to check the solar-eclipse conditions in section 2.1

around the time of New Moon; i.e., in equation (1), the limiting condition E = ss + sm will

not exceed approximately 0.◦6. Similarly, it is only necessary to check the conditions for

lunar eclipse (section 3.1) around time of Full Moon; in equation (13), the limiting condition

θ = fpen + sm will not exceed approximately 1.◦7. Checking the eclipse conditions only when

necessary will save computing resources.

Knowing the instantaneous local circumstances is the first step in assessing the impact

that an eclipse will have on the illuminance.
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