
AD_________________ 

Award Number: W81XWH-15-1-0582 

TITLE: High-Fidelity Design of Multimodal Restorative Interventions in 
Gulf War Illness 

PRINCIPAL INVESTIGATOR: Travis Craddock PhD

CONTRACTING ORGANIZATION:  

Nova Southeastern University 
Fort Lauderdale, Florida, 33314-7796 

REPORT DATE: Jan 2020

TYPE OF REPORT: Final

PREPARED FOR:  U.S. Army Medical Research and Materiel Command 

Fort Detrick, Maryland 21702-5012 

DISTRIBUTION STATEMENT: 

     X  Approved for public release; distribution  

     

The views, opinions and/or findings contained in this report are those of 
the author(s) and should not be construed as an official Department of the 
Army position, policy or decision unless so designated by other 
documentation. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
Jan 2020

2. REPORT TYPE 
Final

3. DATES COVERED (From - To)
09/30/2015 - 09/29/2019

4. TITLE AND SUBTITLE
High-Fidelity Design of Multimodal Restorative Interventions
 

5a. CONTRACT NUMBER 

in Gulf War Illness 
5b. GRANT NUMBER 
W81XWH-15-1-0582 
5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S)
Craddock, TJA, Broderick, G, Klimas, NG, Fletcher, MA
 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AND ADDRESS(ES) 

8. PERFORMING ORGANIZATION REPORT
NUMBER

NOVA SOUTHEASTERN UNIVERSITY, 
INC. 
3301 COLLEGE AVE,  
FORT LAUDERDALE FL 33314-7721 

 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Medical Research
Fort Detrick, Maryland 21702-
5012
and Materiel Command 
Fort Detrick, MD 21702-5012 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Our objective is to further refine models of immune and endocrine regulatory dysfunction
developed under W81XWH-10-1-0774 (Broderick PI) by improving fidelity of the timescale and
drug action thereby translating previously idealized treatments into optimally beneficial
low-risk drug re-purposing strategies that are immediately deployable as short exposure
courses in phase-I clinical trials.

With collaborating PI Dr. Whitley (CSU), we continue to make substantive progress towards 
project goals during this reporting period. We have now implemented tools for the i) direct 
integration of data with the contextual logic, ii) the efficient identification of treatment 
target sets destabilizing illness and ensuring remission “reachability”. We have completed 
broader more detailed models of male and female regulatory physiology and are currently 
updating treatment predictions as well as incorporating the use of drug-target pairs.  
15. SUBJECT TERMS
GWI; Hypothalamic-pituitary-adrenal (HPA) axis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON 

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area 
code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18



 
 
 
 

Table of Contents 
 

 
                                                                                                                                Page 
 
Introduction…………………………………………………………….…………….. 4 
 
Keywords………………………………………………………………………………. 4 
 
Accomplishments…………………………………………………..………….……..   4 
 
Impact………………………………………………………………………………….     9 
 
Changes/Problems ………………………………………………………………….     10 
 
Products………………………………………………………………………….……  10 
 
Participants and Other Collaborating Organizations…………………………. 11 
 
Special Reporting Requirements…………………………………………………… 12 
 
Abbreviations…………………………………………………………………………… 13 
 
References ….…………………………………………………………………………. 14 
 
Tables ….……………………………………………………………………………….. 16 
 
Figures ……………………….………………………………………………………… 17 
 
 
 
 
 
       



 4 

I. Introduction 
Gulf War Illness (GWI) is a complex illness with symptoms presenting across several principal regulatory 
systems including immunologic and endocrine components. Accordingly, we proposed that GWI might 
involve a chronic imbalance in co-regulation between the nervous, endocrine and immune systems. We 
tested this hypothesis under our previous CDMRP award W81XWH-10-1-0774 by using a discrete logic 
formalism to construct a first set of computer models describing the interactions between regulation of 
stress hormones (hypothalamic-pituitary-adrenal; HPA axis), sex hormones (hypothalamic-pituitary-gonadal; 
HPG axis) and immune function in the periphery and the brain. Results of our first analysis (Craddock et 
al., 2014] suggested that normal homeostatic drive across the immune, sex and stress hormone regulatory 
systems may contribute to the persistence of GWI by naturally supporting an alternate steady state 
characterized by chronically high cortisol, low testosterone and a shift towards Th1 immune activation. 
Further work has shown that subtle changes to the circuitry itself can produce exact overlap of alternate 
homeostatic signature with GWI in a set of readily observable immune and endocrine markers (Rice et al., 
2014). This involvement of a modified homeostatic drive implies that once activated, this regulatory program 
will actively resist therapeutic attempts to restore normal hormone and cytokine levels. This regulatory 
dynamic must be overcome and ideally exploited to therapeutically escape what is essentially a stable 
disease state in GWI.  
 
Computer simulations using these initial models predicted very low success rates for single-target treatment 
strategies. Only when endocrine and immune components were targeted together and in a specific 
sequence did predictions of sustained remission reach favorable levels.  One such two-step strategy 
involves inhibition of Th1 pro-inflammatory signaling (e.g. short course Enbrel), followed by blockade of 
glucocorticoid receptors (e.g. Mifepristone) once the system has equilibrated (Craddock et al., 2015). 
However, this initial proof-of-concept work assumed that intervention agents were bound to target 
instantaneously with ideal affinity and specificity. While these idealized treatments helped identify targets for 
which novel high affinity drugs could be developed, the current award supports the continued refinement of 
this computational platform to (i) directly incorporate the pharmacologic properties of drugs available for 
repurposing and (ii) better represent the time course dynamics of regulatory signaling and drug action 
kinetics. These enhancements will support the translation from idealized treatment strategies into predicted 
real-world treatment courses that make optimal use of currently available drugs. 
 

II.Keywords:  dynamical systems, discrete logic models, immune endocrine regulation, system models, 
constraint satisfaction, stable attractors, limit cycles 
 

III. Accomplishments. 
What were the major goals of the project? 
In this first year of the project efforts were focused on elements that were supportive of the following goals:  
 
o Specific Aim 1: Implement relative dynamics. 

Milestone #1: Completion and release of validated model incorporating updated state transition 
dynamics, deployed using a novel time and structure-based decomposition scheme. 
Estimated % complete: 90% 
 

o Specific Aim 2: Incorporate available drug action data. 
Milestone #2: Completion and release of validated model incorporating estimates of drug-action 
dynamics. 
Estimated % complete: 85% 
 

o Specific Aim 3: Increase efficiency of search for optimal intervention course. 
Milestone #3: Completion and release of validated model decomposition scheme and hybrid treatment 
optimization algorithm for rapid deployment and efficient use of large-scale distributed platform. 
Estimated % complete: 95% 
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What was accomplished under these goals? 
 
Recall that early in the course of Year 1, we re-engineered the basic structure of the logic model developed 
under previous award W81XWH-10-1-0774 in favor of a generalized discrete framework introduced by 
Thomas and colleagues (1991, 1995, 2001). In brief, this new framework has significantly improved model 
fidelity by i) seamlessly extending the previous 3-state logic to any number of discrete states, ii) 
representing differences in receptor affinity by introducing signal activation thresholds, and iii) capturing the 
effects of competitive signaling from agonists and antagonists of various strengths using a weighted 
transition logic. Introduced briefly in the Year 2 Annual Report, a more thorough description of these 
features and how their inclusion serves to improve model fidelity has now been published by our group 
(Sedghamiz et al., 2018) (Subtask 1.a, 1.b).  Also introduced in our Year 2 annual report were 
computationally efficient strategies for model tuning (Subtask 1.c, 1.d) and treatment designs directed at 
making illness dynamically untenable (Subtask 3.b). In Year 3 the main focus was on expanding the 
features and applicability of these proof of concept prototypes and translating them into more robust and 
much more computationally efficient implementations. In particular we had  i) designed an initial set of 
criteria for ranking the multiple competing models that explain experimental or clinical observations equally 
well (Sedghamiz et al., 2017), ii) further refined the constraint-based identification of model parameter sets, 
integrating this into a comprehensive toolbox for model identification, analysis and comparison, as well as 
iii) refined criteria for the identification and ranking of minimal intervention target sets leading to remission at 
various levels of biological noise.   
 
In this Extension Year, we finalized the release of the software toolbox and publication of the formal 
protocols and tools for the identification of discrete regulatory logic parameters from sparse and incomplete 
experimental data (Sedghamiz et al., 2019a) as well as the identification and ranking of minimal 
intervention target sets (Sedghamiz et al., 2019b).  We also completed migration of the prototype tools and 
solvers supporting the constraint-based optimization of model parameter sets onto large distributed 
computing platforms and conducted benchmark studies of scale-up performance (Subtask 1.c, 1.d).  
Moreover, a detailed analysis of the departure of model predictions from experimental data as well as the 
breakdown and assignment of such departures to individual observations and individual model components 
has been designed and implemented. Most importantly, a significant part of the Extension Year served to 
design and complete a first release of a software module directed at integrating multiple drug databases 
and performing large-scale assignment of drugs to the component targets making up the minimal 
intervention sets.  These candidate target sets are then re-assessed based on how well they may be 
translated into an actionable pharmacological treatment (Major Task 2).  This module was then successfully 
validated against the recently published failure of an IL-1 antagonist in a veteran population with COPD.   
Finally, the migration of a first-generation priority update scheme that more closely approximates response 
kinetics (Major Task 1) is being pursued such that it may benefit from a more direct and transparent access 
to the constraint-based solvers afforded with Python.  Continuity of this work is now also being supported in 
part under a new collaborative research agreement with Elsevier Life Sciences (Broderick – PI).   
 
1. Direct integration of experimental data into regulatory logic tuning and model validation. This effort 
directly supports the completion of Major Task 1, creating an architecture that not only integrates 
observations at stable resting states seamlessly but also formally exploits the exact temporal sequence of 
transition states. In this past year we have:      

• Our constraint-based strategy for model parameter set identification has now been made available 
as a toolbox named BioMC (BioModel Checker; https://github.com/hooman650/BioModelChecker) 
and has been reported in Frontiers in Bioengineering and Biotechnology (Sedghamiz et al., 2019a). 
In this work model ranking criteria such as structural parsimony, regulatory selectivity, dynamic 
responsiveness, and response reliability are embedded into the search decisional logic weights (K-
vales) distinguishing strong from weak inputs and regulatory activation thresholds for each mediator 
node as a multiple objective optimization. Early in the year we completed validation against a larger 
set of established benchmark problems (Table 1a, b) that now include the sex hormone axis 
(Bennett et al., 2013) and naïve T helper cell polarization to Th1 or Th2 phenotypes (Garg et al., 
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2008) and published our serial performance results obtained using a single processor Intel core i7 
machine.  

• Subsequently, we expanded our set of validation benchmark problems to include artificial networks 
of increasing size and complexity as summarized in Table 2.  These networks include artificial 
biological networks generated by NetSim (Di Camillo et al., 2009) containing 50-100 nodes (n), with 
an average connection density of 5-10 interactions per node (k) and where each node is regulated 
by 10-15 upstream mediators (Max Regulatory r). The latter was varied systematically as prior 
anecdotal evidence had suggested (correctly) that under the current model design the number of 
upstream regulators would be the limiting factor in scale-up. The dependency of average connection 
density and the maximum number of upstream regulators was such that not all combinations of 
these design parameters were achievable (Table 2 entries in red font). Also included were models of 
mucosal immune signaling in COPD in human and mouse lung developed under a sister DoD-
funded project W81XWH1910804 (Broderick - PI; Sethi - Partnering PI). These were added to offer 
real-world benchmark problems of lower complexity than the previously reported GWI network (35 
mediators linked by close to 270 regulatory interactions). 

• Parallel versions of the Chuffed (Ohrimenko et al. 2009) and OR-Tools solvers were implemented 
on a distributed computing platform using multiple processing cores running up to 32 threads. 
Specifically, processors assigned under this shared resource included the 8-core Intel Sandy Bridge 
(2.2 GHz), 12-core Intel Haswell (2.3 GHz) and 14-core Intel Broadwell (2.4 GHz). For all model 
networks except the two largest simulated networks, 32 GB of RAM was used. The two largest 
simulated networks were run for 72 hours using 128 GB (k=10, r=15, n=50) and 256 GB of RAM 
(k=10, r=15, n=100) respectively.  

• Interestingly though Chuffed performed well in a serial application on small to moderate networks, 
this solver found no solutions for larger artificial networks within 48 hours using multiple cores 
suggesting an issue with scale and a high communication overhead.  Conversely the OR-Tools 
solver which trailed Chuffed in smaller scaled serial applications found solutions for all of the models 
in Table 2 using < 32 GB of RAM within 48 hours. The only exceptions were both models with 
indegree r =15.  For the smaller of these solutions were obtained by increasing memory to 128 GB of 
RAM.  In the case of the largest model (r=15, n=100 nodes) solutions would require > 256 GB of 
RAM and > 72 hours. Finally, the number of high-quality solutions (error < 5%) did not increase 
significantly when more than 10 threads were used (Fig. 1). 

• We concluded that mid-range computing resources could adequately solve networks linking ~100 
nodes with an average connection density of 10 edges/node and a maximum indegree r of 10 
regulatory actions (over ~900 regulatory actions total).  Using cloud resources this would be 
equivalent to an Amazon Web Services (AWS) instance type: c5.4xlarge, using 16 vCPUs, each with 
32 GB of RAM. 

2. Tuning high-fidelity model to human GWI data.  In direct support of Subtask 1.d, we had completed 
separate more detailed models describing co-regulation immune mediators with stress, sex and 
metabolic hormones in both men and women. In June, 2018 we presented to the EAB a model of male 
endocrine-immune physiology consisting of 35 mediators linked by close to 270 regulatory interactions.  
The logic parameters for this model were constrained to experimental data from samples collected 
under previous CDMRP award W81XWH-09-2-0071 (Klimas PI) and that had been processed be the 
laboratory at the time, namely n=12 healthy and GWI male veteran. In this initial analysis we found 
model components that were especially uncertain and poorly explained in this first partial data set.  For 
example, a comparison of variability in the complexity of decisional logic statements governing the 
contextual response of IL-15, IL-23, TRH and activin showed these to be especially uncertain and poorly 
constrained.  Regulatory actions around IL-6, IL-10 IL-15, IL-23, TRH and activin showed high variability 
across competing models indicating that these may be subject to additional co-regulators absent in the 
initial reference circuit. These initial findings support a continued refinement of model structure. New 
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more complete data was released in September 2019 including a broader set of markers in n=25 GWI 
and n=25 healthy control veterans.    

We are now extending the scope and granularity of the previous regulatory model and will re-align this 
larger more complex network model with the more complete data set by taking full advantage of the 
newly implemented parallel version of the parameter estimation benchmarked under section 1 above.    

3. An efficient exhaustive search of minimally invasive interventions. In direct support of Major Task 3, we 
completed benchmarking an efficient approach for identifying compact intervention targets which uses a 
combination of reduced search space (Samaga et al., 2010), compact simulation (Mishchenko and 
Brayton 2002), and an efficient optimization stated as a constraint satisfaction problem (Corblin et al., 
2012). Details of this approach are described in a manuscript that has now been published in Frontiers 
in Physiology (Sedghamiz et al., 2019b).  

4. A first deployment of drug-target matching.  In direct support of Major Task 2, we have developed and 
implemented additional criteria for ranking the suitability of intervention sets based on how readily they 
may be translated into therapeutic interventions, or how pharmaceutically actionable they might be. This 
post-processing of the MIS solutions is outlined in Fig. 2.   

a. First, multiple drug-target interaction databases were first queried to identify combinations of 
drugs that act appropriately on any and all candidate targets present in the model. The bioDBnet 
suite, a series of tools developed by the Advanced Biomedical Computing Center at the National 
Cancer Institute (NCI), was used for cross-linking of biological accession numbers across 
various online databases (Mudunuri et al., 2009). This made it possible to retrieve drug-target 
interaction data from web resources such as KEGG, the Therapeutic Target Database, 
DrugBank, PharmGKB, and PubChem (Kanehisa and Goto, 2000; Li et al., 2018; Wishart et 
al., 2018; Whirl-Carillo et al., 2012; Kim et al., 2016). These were used in conjunction with 
Elsevier’s BKGB Reaxsys Medical Chemistry (RCM) database available under a new 
collaborative research agreement with the Broderick group at RGH. Drugs identified by these 
queries were scored by the number of known on and off-target interactions. Minimization of off-
target interactions is considered especially important because downstream effects of these 
interactions may ultimately destabilize a solution’s trajectory. Combinations of high-scoring drugs 
were assembled so as to modulate all necessary targets in the manner specified by a given MIS. 
These combinations were further minimized to avoid redundant drugging of targets. The result is 
a list of candidate drug combinations predicted to be viable for any and all possible MIS target 
subsets that might be derived from a given model. 

b. The drug superset assembled in (a) was then used to rank interventions from multiple competing 
models according to their pharmaceutical actionability. This is in addition to the previously 
applied criteria by which desirable intervention sets contained few targets (low cardinality), were 
predicted to support rapid response kinetics (efficiency), affected a minimal number of 
downstream mediators, and were maximally robust to biological noise (robustness) (Sedghamiz 
et al., 2019b).  Specifically, each intervention set s is now also ranked based on the following 
criteria (Fig. 3): 

i. Parsimony or low cardinality of actionable targets (C(s)).  Intervention sets that are 
comprised of fewer concurrent targets or less invasive, are ranked higher.  

ii. Availability of a drug or compound for all targets (R(s)).  Intervention sets where even one 
target cannot be matched to an approved drug or compound either directly or indirectly 
receive a zero score. 

iii. Abundance of targets requiring antagonistic modulation (A(s)).  As small molecules are 
more often used to antagonize rather than agonize a target, target sets with a greater 
number of antagonist actions are t ranked higher.  
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iv. Number of off-target drug effects (T(s)).  For each drug identified for an intervention set, 
the number of other targets also affected by this drug are counted as a penalty. In other 
words, highly specific drugs are favored.  

v. Broad support across multiple models (M(s)). An intervention set that is consistently 
predicted across multiple competing models and is therefore robust to model uncertainty 
would be favored and assigned a high score.  

Though other criteria will undoubtedly be considered this first set of conditions has performed 
well in reducing large sets of candidate intervention sets produced by groups of 100-200 
competing models. Importantly while this strategy is directed towards repurposing the availability 
condition can be relaxed to allow for more expensive designer compounds. 

c. This new module, called “DrugAble”, has been implemented as Python custom code for querying 
Elsevier and pre-formatting data and an R component for the analysis and visualization of the 
results. These components are now also being combined into a single Python script utilizing calls 
to the R environment. 
  

What opportunities for training and professional development has the project provided? 
 
Leveraging the alliance between RGH and the Rochester Institute of Technology (RIT) the Broderick lab 
has trained 2 M.Sc. students (one in Bioinformatics, one in Biotechnology) with 3 new M.Sc. students in 
bioinformatics and 1 Ph.D. in mathematical modeling having joined in September.  Through our new 
collaborative research agreement with Elsevier these new students have the opportunity to learn from 
Elsevier data scientists in the UK, Netherlands and US as well as its pharma industry partners, both US and 
UK-based. 
 
How were the results disseminated to communities of interest? 
 
Drs. Broderick and Craddock continue to deliver podium talks and participated in discussion panels.  
Specifically, Dr. Broderick’s work was presented to the ConTech meeting in London, UK, in November, 
2018 and again in October 2019. Dr. Broderick also presented recent progress to the Elsevier Annual 
company-wide meeting in Mainz Germany in June and will be delivering a keynote address on the topic at 
Duke University (early November).  Rajeev Jaundoo (formerly employed under W81XWH-15-1-0582) made 
the following two presentations: 
 

• Jaundoo, R. & Craddock, T.J.A. (2019, October). DRUGPATH: A New Database for Mapping 
Polypharmacology. Poster session presented at the Campus Alberta Student Conference on Health 
(CASCH), Edmonton, Alberta, CA.  

• Jaundoo, R. & Craddock, T.J.A. (2019, August). Using Drugpath: A New Database For Mapping 
Polypharmacology To Assess Multi-drug Treatments For Gulf War Illness. Poster session presented 
at the 2019 Military Health System Research Symposium (MHSRS), Kissimmee, FL, USA.  

 
Drs. Broderick, Craddock and Whitley have also been publishing these results in peer reviewed journal as 
expediently as possible with the following 4 works published in this past year  
 

• Jaundoo R, Bohmann J, Gutierez G, Klimas NG, Broderick G, Craddock TJA. Using a Consensus 
Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies in Gulf War 
Illness. Int J Mol Sci. 2018 Oct 26;19(11). pii: E3355. 

• Sedghamiz H, Morris M, Craddock TJA, Whitley D, Broderick G. Bio-ModelChecker: Using Bounded 
Constraint Satisfaction to Seamlessly Integrate Observed Behavior with Prior Knowledge of 
Biological Networks.  Front Bioeng Biotechnol. 2019 Mar 26;7:48. 
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• Sedghamiz H, Morris M, Whitley D, Craddock TJA, Pichichero M, Broderick G. Computation of 
Robust Minimal Intervention Sets in Multi-valued Biological Regulatory Networks. Front Physiol. 
2019 Mar 19;10:241. 

• Jaundoo R. and Craddock TJA. 2019. DRUGPATH: A new database for mapping 
polypharmacology. Alberta Academic Review, Vol 2 (3) 4, CASCH Special Issue (not peer- 
reviewed), DOI: 10.29173/aar92.  

 
 
What do you plan to do during the next reporting period to accomplish the goals? 
 
Though the period of performance is now completed, work continues and will focus increasingly on the 
following: 
 
• Identification of parameter sets for female GWI.  We have assembled a higher resolution model of 

endocrine-immune regulation in female physiology. The full model consists of 53 entities (nodes) 
connected initially by 674 control actions (edges).  We plan to identify parameter sets that will align 
regulatory model dynamics with exercise data collected from female veterans under CDMRP award 
GW150199 (Craddock PI) as this data becomes available.  

• Implement searches for stable partial remissions. Results from this first more comprehensive analysis of 
the treatment space suggest that in some cases some degree of “molecular scarring” may have 
occurred and that a single model of regulatory signaling may not be sufficient to seamlessly 
accommodate both the illness state and the healthy control resting state.  In such cases we propose to 
modify the objective such that intervention is focused on establishing a stable condition that is most 
similar to full recovery. Mathematically this would be a stable attractor with the same features as the 
healthy control attractor and that would support immune and endocrine expression profiles similar to 
those exhibited by healthy veterans. The same strategy of “parking orbit” would be applied to the design 
of multi-step interventions. 

• Fully implement drug-target pairing. Complete the prototype work discussed above by fully implementing 
this module into the software environment.  

• Discovery of novel regulatory actions.  The current work supports a “what-if” evaluation of candidate 
regulatory interactions where these candidates are currently proposed by the user.  We are 
collaborating with the University of Minnesota to adapt and integrate statistical inference of causal 
associations from data.  We have currently implemented a discovery strategy based on the statistical 
characteristics of network structure (Guimerà and Sales-Pardo, 2009) and hope to expand this to 
include work by Pearl (2010).  

• Iterative inclusion of off-target biology. Currently the intervention target sets are proposed on the basis 
of idealized drug action and then re-assessed and scored with respect to actionability into a drug trial in 
a post-processing step.  In this assessment, interventions that involve drugs that have broad off-target 
effects are simply penalized and downgraded.  As work continues we would like iteratively include off-
target elements that are outside the immediate scope of the original model and verify the repercussions 
of modulating these elements.     

 
IV. Impact. 
 
What was the impact on the development of the principal discipline(s) of the project? 
In keeping with the milestones described in the project submission initial accomplishments that have 
impacted the core disciplines of the project continue to revolve around major increases in fidelity, scale and 
computational efficiency for this type of computational modeling.  As stated previously, these may be 
summarized as follows: 
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• We have implemented and deployed a software tool now being used by non-programmers to 
develop high-fidelity models of biological signaling. The Bio Model Checker (BioMC) environment is 
now being used in our labs by life science researchers to allows quickly assemble casual models of 
regulatory signaling, align these with experimental data very efficiently i.e. on a laptop, evaluate 
model structure and make predictions. 

• This same environment has significantly extended previous fault analysis techniques developed in 
the microelectronics industry to now handle higher-resolution multi-valued logic required to 
adequately describe biological signaling at levels of biology other than the genome. Importantly, the 
group has developed formalisms and metrics for working with multiple competing models.   
Measures such as efficiency of response and robustness are being used to study known biological 
networks and will be instrumental in defining optimality of treatment. 

• The breadth of potential applications has now greatly expanded with the execution this past May by 
Rochester General Hospital of a 3-year renewable collaborative research agreement with Elsevier 
Life Sciences directed at the continued development of this prototype platform into a commercially 
robust software. In addition to supporting 2 senior staff, Elsevier has provided as in-kind support 
privileged access to their data analysts, advanced prototype text-mining engines and other software 
tools as well as access to databases such as the ReaxSys Medicinal Chemistry database.   
 
This access to added resources will greatly accelerate the development of the platform and the 
generation of a next iteration of clinical trial designs for GWI. 

What was the impact on other disciplines? 
The development of this computational framework has broad reaching applications beyond the model-
based design of treatments for Gulf War Illness. This integrated approach for model assembly, tuning, 
prediction and validation has been applied to intracellular signaling in a now CDMRP-funded application 
(GW170081; Boyd/ O’Callaghan – PI) as well as a submission currently under review by the PRMRP to 
study Chronic Obstructive Pulmonary Disease (COPD) in a veteran population (PR181430;  Broderick – 
PI/ Seth Partnering PI).  
We have applied this paradigm to the study of depression and plan to extend that model to capture the 
effects of PTSD in GWI, though continuing work with CDMRP () as well as study PTSD in its own right.  
We have also started assembly of intracellular models describing metatstatic transformation in cancers 
with the hope of partnering with the Roswell Park Cancer Institute and the VA of Western NY in 
applications to veteran’s health. 
Finally, the Broderick Group at RGH has been approved as a new clinical psychology internship site by 
the American Psychological Association (APA).  The Group has an intern applying this modeling 
approach to the study of chronic pain and opioid addiction.  This intern will continue with the Group as a 
fellow and will be joined by a new intern in June of next year.   
 
What was the impact on technology transfer? 
This work attracted the attention of Elsevier research in 2017.  Over the past 2 years we refined a scope 
of work and articulated a collaborative research agreement that was signed by both parties in May, 
2019.  It is our hope that this partnership will support the continued development of this platform into a 
commercially robust tool for deployment to a broad range of other illnesses.  
 
What was the impact on society beyond science and technology? 
Nothing to report. 
 

V. Changes/Problems:  
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Changes in approach and reasons for change 
Our technology approach remains consistent. We have now extended our efforts to include a more 
formal consideration of multiple competing models that arise as a result of the limited experimental data.  
Rather than focus on the single “best” model, we now view the concurrent analysis of multiple models as 
an opportunity to i) identify intervention strategies that are robust to model uncertainty, and ii) identify 
subtle changes to the signaling circuitry that might delineate responders from non-responders thereby 
informing on inclusion criteria for clinical trials.     

Actual or anticipated problems or delays and actions or plans to resolve them 
Mr. Sedghamiz left his position as senior research programmer with the Broderick group October 30, 
2018.  We recruited Mr Cole Lyman into this position in May, 2019. Mr. Lyman is completing his MSc 
degree in computer science at Bringham Young University (BYU) and comes to us with a rich 
background in graph theory which he is also applying to our work with Dr. McGowan under W81XWH-
14-1-0550 directed at isolating changes in DNA methylation in GWI. With the increased availability of 
RIT students, we expect no further changes in project logistics. 

Changes that had a significant impact on expenditures 
 
Nothing to report. 
 
Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents 
 
Nothing to report 
 
Significant changes in use or care of human subjects  Nothing to report 
 
Significant changes in use or care of vertebrate animals.  Nothing to report 
 
Significant changes in use of biohazards and/or select agents Nothing to report 
 

 
VI. Products. 
The Broderick and Craddock groups have successfully published the following peer-reviewed papers: 

• Jaundoo R, Bohmann J, Gutierez G, Klimas NG, Broderick G, Craddock TJA. Using a Consensus 
Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies in Gulf War 
Illness. Int J Mol Sci. 2018 Oct 26;19(11). pii: E3355. 

• Sedghamiz H, Morris M, Craddock TJA, Whitley D, Broderick G. Bio-ModelChecker: Using Bounded 
Constraint Satisfaction to Seamlessly Integrate Observed Behavior with Prior Knowledge of 
Biological Networks.  Front Bioeng Biotechnol. 2019 Mar 26;7:48. 

• Sedghamiz H, Morris M, Whitley D, Craddock TJA, Pichichero M, Broderick G. Computation of 
Robust Minimal Intervention Sets in Multi-valued Biological Regulatory Networks. Front Physiol. 
2019 Mar 19;10:241. 

and a conference proceeding abstract 
 

• Jaundoo R. and Craddock TJA. 2019. DRUGPATH: A new database for mapping 
polypharmacology. Alberta Academic Review, Vol 2 (3) 4, CASCH Special Issue (not peer- 
reviewed), DOI: 10.29173/aar92.  

 
Additionally, the Broderick and Craddock team have one publication in press  
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• Jaundoo, R., Bohmann, J., Gutierrez, G., Klimas, N., Broderick, G., & Craddock, T.J.A. (in press). 
Towards a Treatment for Gulf War Illness: A Consensus Docking Approach. Military Medicine. 

 
one manuscript under review    
 
 

• Vashishtha, S.,  Broderick  G., Craddock, T.J.A., Barnes, Z.M., Collado, F., Balbin, E.G., Fletcher, 
M.A., & Klimas, N.G. Leveraging Prior Knowledge to Recover Characteristic Immune Regulatory 
Motifs in Gulf War Illness.  Front. Physiol. - Systems Biology (under review) 

 
and one manuscirpt in preparation for an invited submission 
 

• Jaundoo R, Broderick G, Craddock TJA. Harnessing Drug to Target to Pathway Information for Use 
in the Polypharmacological Design of Multi-Drug Repositioning Treatments. International Journal of 
Molecular Sciences (Special Issue on Pharmacogenomics) Invited, in-preparation. 

 
 

 
VII. Participants & Other Collaborating Organizations: 
 
In May of this past year the Broderick group signed a multi-year renewable research agreement with 
Elsevier Life Sciences for the continued development of this modeling paradigm.  The agreement supports 
2 senior RGH staff and provides in-kind contributions in the form of privileged access to Elsevier data 
science staff, database resources including developer access to their medicinal chemistry database, as well 
as advanced prototype tools such as context-directed text mining (ETM), etc…  
 
 
What individuals have worked on the project? 

 
Name Gordon Broderick 
Project Role: Co-PI 
Researcher Identifier (e.g. ORCID ID):  
Nearest person month worked: 12 
Contribution to Project: Works closely with Dr. Craddock in the overall direction of 

project and coordination of efforts. Primary responsibility and 
leadership of model logic, logic tuning and treatment course 
redesign initiatives. 

Funding Support: No change  
 
 
Name Cole Lyman 
Project Role: Research Programmer II/ Grant-funded research staff 

Name Travis Craddock 
Project Role: PI 
Researcher Identifier (e.g. ORCID ID):  
Nearest person month worked: 12 
Contribution to Project: Dr. Craddock has taken over administrative leadership of the 

project as PI with the relocation of Dr. Broderick to RGH. 
Primary responsibility and leadership of drug selection and drug 
property modeling component of the project 

Funding Support: No change  
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Researcher Identifier (e.g. ORCID ID):  
Nearest person month worked: 8 
Contribution to Project: Oversees all programming initiatives as they apply to large-scale 

computation.  Leading the migration of miniZn and Matlab proof 
of concept code under BioMC into a parallel scalable 
implementation under Python. 

Funding Support: Fully supported 
 
Name Spencer Richman 
Project Role: Research Programmer I/ Grant-funded research staff 
Researcher Identifier (e.g. ORCID ID):  
Nearest person month worked: 4 
Contribution to Project: Has spearheaded the theoretical development supporting the 

assignment of drugs to optimal target sets and the re-
assessment of these sets based on actionability. 

Funding Support: Fully supported 
 
Name Mary Ann Fletcher 
Project Role: Co-Inv 
Researcher Identifier (e.g. ORCID ID):  
Nearest person month worked: 0.6 
Contribution to Project: Continues to coordinate the processing samples and delivery of 

endocrine and immune data from exercise challenge that is 
being used in the tuning of the model logic 

Funding Support: No change  
 
Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since 
the last reporting period? 
 
In the past year Dr. Broderick was awarded CDMRP/PRMRP funding (W81XWH1910804) as Principal 
Investigator (0.36 calendar months) with Drs. Sethi (Partnering PI; Buffalo VA) and Qu (Co-investigator; U 
Buffalo) to pursue the study of infectious exacerbation in COPD. Dr. Broderick has also been assigned a 
multi-year collaborative research award by Elsevier Life Sciences that provides full support for 2 senior staff.  
 
What other organizations were involved as partners? 
 
In addition to Colorado State University, RGH and the Broderick group have signed a 3-year renewable 
collaborative research agreement with Elsevier Life Sciences (Elsevier, Amsterdam).  
 
 
VIII. Special Reporting Requirements:  None 
 
Collaborative Awards. This work is being carried out in collaboration with Dr. D. Whitley at Colorado State 
University under the associated grant number W81XWH-15-1-0583. 
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Abbreviaitons. Abbreviations found in the HPA-HPG-HPT-immune model of Fig. 1, 4 
 

ACTH  Adrenocorticotropin;  
AR   Androgen Receptor 
AVP  Vasopressin;  
CRH  Corticotropin-releasing hormone;  
DTS  Davidson Trauma Score 
ER   Estrogen Receptor 
FSH  Follicle-stimulating hormone;  
FST  Follistatin;  
GCR (R)   Glucocorticoid receptor 
GH1  Growth hormone 1;  
GNRH1  Gonadotropin releasing hormone 1;  
GNRH2  Gonadotropin releasing hormone 2;  
IFNG  Interferon gamma;  
IGF1  Insulin-like growth factor 1;  
IgG,   Immunoglobulin gamma;  
IL-2  Interleukin 2 
IL2-R   IL–2 receptor 
INS  Insulin;  
KISS1  Kisspeptin;  
NO,   Nitric oxide;  
NK cell,   Natural killer cell;  
OXT  Oxytocin;  
PTGS2  Prostaglandin-endoperoxide synthase 2;  
SST  Somatostatin;  
TGFB1  Transforming growth factor beta 1;  
TNF  Tumor necrosis factor;  
TNFSF13B Tumor necrosis factor superfamily member 13B/BAFF;  
TSH  Thyroid stimulating hormone;  
TNFa  Tumour necrosis factor 
TNFaR   TNFa receptor 
Th17,   T-helper 17 cell;  
Th2,   T-helper 2 cell;  
Th1,   T-helper 1 cell;  
Treg,  Regulatory T cell  
TRH  Thyrotropin-releasing hormone;  
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Table 1a. Benchmark assessment of constraint-satisfaction.  Summary of the number of elements V and 
control interactions E in 5 well-documented biological regulatory networks. In each model parameters 
describing activation threshold W, control action polarity U, confidence P and transitional logic weight K are 
adjusted such that the predicted state transition graph adheres to the v entities measured at t time points for 
a total of F data entries.  The search is further restricted to parameters whereby the number of transitions 
occurring between observed states is less than the bound M for synchronous and asynchronous transition 
rules (Sedghamiz et al., 2019a).   
 
 

 
 
 
Table 1b. Search performance metrics.  Summary of the performance obtained using different solvers in 
terms of the normalized objective function values for regulatory selectivity (z1), dynamic responsiveness 
(z2), and response reliability (z3) as well as solution time under synchronous and asynchronous updating 
schemes (Sedghamiz et al., 2019a).  
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Table 2. Benchmark networks in scale-up assessment of distributed platform.  Summary of the benchmark 
networks used to assess the performance the constraint-based identification of optimal model parameter 
sets.  These networks include artificial biological networks generated by NetSim (Di Camillo et al., 2009) 
containing 50-100 nodes, with an average connection density of 5-10 interactions per node (k) and where 
each node is regulated by 10-15 upstream mediators (Max Regulatory). The latter was varied systematically 
as prior anecdotal evidence had suggested (correctly) that under the current model design the number of 
upstream regulators would be the limiting factor in scale-up. The dependency of average connection density 
and the maximum number of upstream regulators was such that not all combinations of these design 
parameters were achievable as shown by the entries in red font below. 
 

  

NetSim Parameters Network Statistics

! 1 Max Regulatory 
2

Number of 
Nodes

Number of 
Edges

Density 3 Max Indegree

Human COPD 11 67 6.09 9

Mouse COPD 21 143 6.81 11
10 10 50 404 8.08 10
10 10 100 807 8.07 10

10 15 50 522 10.44 15
10 15 100 992 9.92 15 

5 10 50 270 5.4 10

5 10 100 479 4.79 10

5 15 50 255 5.1 10 (target 15)

5 15 100 497 4.97 10 (target 15)

1  K (kappa): mean number of edges for each node, i.e. density.
2 Max Regulatory: maximum out degree possible in the network.
3 Proportional to a fully connected directed graph including self loops
Bold row-no solutions within 72 hours using 256 GB of RAM.
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Figure 1. Parallel scaling of OR-Tools in identifying model solutions.  Identification of model parameter sets 
supporting an adherence to experimental data within 5% error, using OR-Tools distributed over an 
increasing number of threads for two small models of lung immune response in COPD as well as artificial 
networks of increasing complexity (see Table 2). Results suggest that even for models with a greater 
number of upstream regulators and higher connection density the number of low-error candidate solutions 
produced in 48 hours does not increase substantially by using more than 10-15 threads.  
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Figure 2. Assessing the actionability of MIS solutions.  The newly implemented pipeline assembles 
intervention sets predicted by multiple competing models then rationalizes these into unique intervention 
instances.  Each intervention instance is scored according to parsimony, consensus across models, and 
other criteria.  The intervention sets are re-prioritized according to actionability and translated from target 
sets into drug combination sets (Richman et al., 2019 dissertation proposal).  
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Figure 3. Computing an actionability score.  Each minimal set of intervention targets (s) are assessed for its 
pharmaceutical actionability (D(s)) or the potential for translating targets into a combination therapy using 
repurposed drugs or known medicinal compounds. Target sets for which there are no approved drugs or 
known compounds are assigned a zero score.  

The Scoring Function

D(s) = Actionability
R(s) = Repurposability
A(s) = Antagonist ratio
C(s) = cardinality
T(s) = target score
Ma(s)  = adjusted inter-model confidence score

Heavy penalty for 
high cardinality

Heavy penalty for 
ratios < 1

Geometric mean 
forces models with 
no repurposability 
on even one entity 
to zero Though rare, a 

solution found in 
multiple models 
will receive a much 
higher score

Want to avoid 
solutions with high 
likelihood of off-
target effects


