AWARD NUMBER: W81XWH-17-1-0070

TITLE: Mutator Phenotypes that Better Predict PARP Inhibitor Response in Ovarian Carcinomas

PRINCIPAL INVESTIGATOR: Elizabeth Swisher

CONTRACTING ORGANIZATION:	University of Washington
	Seattle, WA 98195

REPORT DATE: August 2018

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release:

Distribution unlimited

This views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

Characterization Control Decommendation Control Proceeding and the second and the se	REPORT DOCUMENTATION PAGE				Form Approved		
den credit, all company and many the definition. The answer provide an induced entropy and includence and the second in a calcing and the company and answer provide and and an answer provide and and and an answer provide and						OMB No. 0704-0188	
Care - Decoder a lease to the wheel the second of a lease to any orbit for bindle carety, while called of a lease to any other of datages a carety in a called of a lease to any other of datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a datages a carety in a called of a lease to a lease to a datages a carety in a called of a lease to lease to a lease to	data needed, and completing a	and reviewing this collection of in	nformation. Send comments rega	arding this burden estimate or an	y other aspect of this co	ellection of information, including suggestions for reducing	
each of a constraint row to the approximate the sensitive to a new class of drugs called PARP inhibitors are particularly effective against cancers that have alterations in the BRCA1 or BRCA2 genes. BRCA1 or BRC							
August 2018 1 Aug 2017 - 31 Jul 2018 4. TTLE AND SUBTILE 5a. CONTRACT NUMBER Mutator Phenotypes that Better Predict PARP Inhibitor Response in Ovarian 5b. CRANT NUMBER Carcinomas 5c. DRANT NUMBER W31XWH-174-10070 5c. PROJECT NUMBER Biologic Strategy	valid OMB control number. PL	EASE DO NOT RETURN YOU	R FORM TO THE ABOVE ADD	RESS.			
4. TITLE AND SUBTITLE Site CONTRACT NUMBER Mutator Phenotypes that Better Predict PARP Inhibitor Response in Ovarian Site CONTRACT NUMBER Carcinomas Sote CONTRACT NUMBER 6. AUTHOR(S) Sote RANT NUMBER Elizabeth Swisher Sote CONTRACT NUMBER E-Mail: swishere @uw.edu St. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) St. WORK UNIT NUMBER 20133 Brooking New NE Sote Status 20133 Brooking New NE Sote Status 201433 Brooking New NE Sote Status 2015 Status Its SPONSORIKO MONITORING AGENCY NAME(S) AND ADDRESS(ES) Its SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Material Command Fort Detrick, Maryland 21702-5012 Its SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES Its RPCA1 or BRCA2 for BRCA2 for BRCA2 genes. BRCA11 or BRCA2 for BRCA2 genes. BRCA11 or BRCA2 genes. BRCA11 o	-						
Authors Products Conversion Sector Number Curvinomas Sector Number Curvinomas Sector Number Curvinomas Sector Number Sector Number Sector Number E-Mail: swishere@uw.edu Sector Number E-Mail: Swishere@uw.edu Sector Number Inversity of Washington Sector Number A333 Brooklyn Ave NE Sector Number Box 359472 Seattle, WA 38195 Seattle, WA 38195 In SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 In SPONSOR/MONITOR'S REPORT NUMBER'S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES In ABSCA2 mutations of drugs called PARP Inhibitors. PARP Inhibitors are particularly fettore against cancers that was alterations in the B/CA1 or B/CA2 genes. BRCA1 and BRCA2 function in DNA repair. Mane homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic of homologous recombination does not work right, cancer cells rely on oth			Annual				
Carcinomas W81XWH-17-0070 5c. PROGRAM ELEMENT NUMBER 5. AUTHOR(S) Elizabeth Swisher Elizabeth Swisher E-Mail: swishere@uw.edu 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Washington 4333 Brookofyn Ave NE Box 359472 Seattle, WA 98195 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 10. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release: Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many Ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BROA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> or atterations. Whole genome sequencing of detect pather explicition in DNA repair, that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BROA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> or atterations. Whole genome sequencing on detect pDNA repair, Math tare characteristic of homologous recombination deficiency. We will genome who participated in ARIEL2, a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination differing of PARP1 inhibitors. 14. ABSTRACT 15. SEURICY CLASSIFICATION OF: 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 76. ABSTRACT 18. AUMEER 19. ALLEPHONE NUMBERE (include area ord) 19. ALLEPHONE NUMBER (include area ord)	4. TITLE AND SUBTIT	LE			5a.	CONTRACT NUMBER	
Carcinomas W81XWH-17-0070 5c. PROGRAM ELEMENT NUMBER 5. AUTHOR(S) Elizabeth Swisher Elizabeth Swisher E-Mail: swishere@uw.edu 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Washington 4333 Brookofyn Ave NE Box 359472 Seattle, WA 98195 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 10. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release: Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many Ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BROA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> or atterations. Whole genome sequencing of detect pather explicition in DNA repair, that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BROA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> or atterations. Whole genome sequencing on detect pDNA repair, Math tare characteristic of homologous recombination deficiency. We will genome who participated in ARIEL2, a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination differing of PARP1 inhibitors. 14. ABSTRACT 15. SEURICY CLASSIFICATION OF: 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 76. ABSTRACT 18. AUMEER 19. ALLEPHONE NUMBERE (include area ord) 19. ALLEPHONE NUMBER (include area ord)	Mutator Phenotynes	that Better Predict P	ARP Inhibitor Respon	se in Ovarian	51		
6. AUTHOR(S) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Elizabeth Swisher 5e. TASK NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONTONING AGENCY NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONTONING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORMONITOR'S ACRONYM(S) 12. SATT MUMBER 10. SPONSORMONITOR'S ACRONYM(S) 13. SUPPLEMENTARY NOTES 10. SPONSORMONITOR'S REPORT NUMBER(S) 14. ASSTRACT AMERICAL CONDUCTION (AGENCY NAME(S) AND ADDRESS(ES) 13. SUPPLEMENTARY NOTES 11. SPONSORMONITOR'S ACRONYM(S) 14. ASSTRACT AMERICAL CONDUCTION (A GENCY NAME (S) AND ADDRESS(ES) 13. SUPPLEMENTARY NOTES 11. SPONSORMONITOR'S REPORT NUMBER(S) 14. ASSTRACT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES 14. ASSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the BACA1 or BRCA2 genes. BRCA1 and BRCA2 function in DNA repair, and cancer associated with BRCA1 or BRCA2 or Materations. Whole genome sequencing can detect patterms of alterations in the DNA that are characerististic of honolo	• •	that Detter Treater T	ind minoriol respon				
AUTHOR(5) Elizabeth Swisher Elizabeth Swisher Elizabeth Swisher Elizabeth Swisher Elizabeth Swisher E-Mail: swisher@@uw.edu T.PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Washington 4333 BrodNin Ave NE Box 359472 Seattle, WA 98195 S.SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) US.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 ISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited IS.SUPPLEMENTARY NOTES IA ABSTRACT Approved for Public Release; Distribution Unlimited IA ABSTRACT Approved for Public Release; Distribution Unlimited IA ABSTRACT Approved for Public Release; Distribution Unlimited IA ABSTRACT Approved for DNA repair, and cancers associated with BRCA1 or BRCA2 genes, BRCA1 and BRCA2 function in DNA repair, and cancers associated with BRCA1 or BRCA2 genes, BRCA1 and BRCA2 function in DNA repair, and cancers recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing and detect patterns of alterations in the BRCA2 to rBRCA2 genes, BRCA1 and BRCA2 function in DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing and detect patterns of alterations in the BRCA2 to rBRCA2 mutations, but who also have a good chance of responding to PARP inhibitor. 15.SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, and cancer should be treated with a PARP inhibitor. In this manner, we can disently work and cancer who do not have BRCA1 or BRCA2 is PARP inhibitor. 15.SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, bornologous recombination deficiency. 16.SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing,	Carcinomas						
Elizabeth Swisher Elizabeth Sw					5c.	PROGRAM ELEMENT NUMBER	
Elizabeth Swisher Elizabeth Sw							
E-Mail: swishere@uw.edu St. WORK UNT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Is. PERFORMING ORGANIZATION REPORT University of Washington 4333 Brooklyn Ave NE Box 359472 Seattle, WA 98195 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S ACRONYM(S) Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP Inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair, whon homologous recombination des not work right, cancer cells rely on other types of DNA repair daterations. Who participated in ARIEL2, a PARP Inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURI	6. AUTHOR(S)				5d.	PROJECT NUMBER	
E-Mail: swishere@uw.edu St. WORK UNT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Is. PERFORMING ORGANIZATION REPORT University of Washington 4333 Brooklyn Ave NE Box 359472 Seattle, WA 98195 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S ACRONYM(S) Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP Inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair, whon homologous recombination des not work right, cancer cells rely on other types of DNA repair daterations. Who participated in ARIEL2, a PARP Inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURI					5.		
E-Mail: swishere@uw.edu 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT University of Washington 4333 Brooklyn Ave NE 8. PERFORMING ORGANIZATION REPORT Box 359472 Seattle, WA 98195 10. SPONSOR/MONITOR'S ACRONYM(S) J. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S ACRONYM(S) Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> or other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial test based on patterns of DNA alterations. Whole genome sequencing on cancers from 20 women who participated in	Elizabeth Swisher				56.	IASK NUMBER	
E-Mail: swishere@uw.edu 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT University of Washington 4333 Brooklyn Ave NE 8. PERFORMING ORGANIZATION REPORT Box 359472 Seattle, WA 98195 10. SPONSOR/MONITOR'S ACRONYM(S) J. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S ACRONYM(S) Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> or other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial test based on patterns of DNA alterations. Whole genome sequencing on cancers from 20 women who participated in					56.1		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION REPORT University of Washington NUMBER 333 Brooklyn Ave NE Box 359472 Seattle, WA 98195 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S REPORT 11. SPONSOR/MONITOR'S REPORT You Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 11. SPONSOR/MONITOR'S Called PARP 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP Inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in AREL2, a PARP inhibitor clinical trial for recurrent ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitor. Initiam cancer should be treated with a PARP inhibitor clinical trial for recurrent ovarian cancer. We will uset he information that we acquire to develop a new clin					51.	WORK UNIT NUMBER	
University of Washington 4333 Brooklyn Ave NE Box 359472 NUMBER Seattle, WA 98195 10. SPONSORING / MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSOR/MONITOR'S ACRONYM(\$) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(\$) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair, when homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations, but who oarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS OVarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency							
University of Washington 4333 Brooklyn Ave NE Box 359472 Seattle, WA 98195 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alteretations in the DNA that are characteristic patterns of DNA alterations. Whole genome sequencing to PARP inhibitor. In this manner, we can identify women with ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutati	7. PERFORMING ORC	SANIZATION NAME(S)	AND ADDRESS(ES)		-		
4333 Brocklyn Ave NE Box 359472 Seattle, WA 98195 10. SPONSORMONTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORMONTOR'S ACCONYM(S) 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORMONITOR'S ACCONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S ACCONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S acalled PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1 or BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 16. SUBJECT TERMS OVarian Cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 19. NUMBER (include area OF ABSTRACT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER (include area Oref	Liniversity of Wash	nington			•		
Box 359472 Seattle, WA 98195 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORMONITOR'S ACRONYM(S) J. S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1 or BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1 or BRCA2</i> mutations are deficient in homologous recombination directed DNA repair, When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination difficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial tor recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination							
Seattle, WA 98195 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S ACRONYM(S) 11. DISTRIBUTION / AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor. In this manner, we can alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS 0YARPA inhibitors. 19a. NAME OF RESPONS							
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic patterns of DNA alterations. Whole genome sequencing can detect matter with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency<		-					
U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT Unclassified 18. NUMBER ordpi	Seallie, WA 96190)					
U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT Unclassified 18. NUMBER ordpi				C/EC)	10		
Fort Detrick, Maryland 21702-5012 11. SPONSORMONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS 17. LIMITATION of <i>BRSTRACT</i> 18. NUMBER (include area code) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of <i>BRSTRACT</i> 19a. NAME OF RESPONSIBLE PERSON USAMIRC 18. REPORT b. ABSTRACT	9. SPONSORING / WIC		AME(S) AND ADDRES	5(23)	10.	SPONSOR/MONITOR S ACRONTM(S)	
Fort Detrick, Maryland 21702-5012 11. SPONSORMONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS 17. LIMITATION of <i>BRSTRACT</i> 18. NUMBER (include area code) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of <i>BRSTRACT</i> 19a. NAME OF RESPONSIBLE PERSON USAMIRC 18. REPORT b. ABSTRACT	LLS Army Medica	Pesearch and Ma	torial Command				
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination dees not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic patterns of DNA alterations. Whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER 19. NUMBER (include area cond) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER 19. NUMBER (include area cond) 16. SECURITY CLASSIFI	-				14		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic patterns of DNA alterations deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER (include area code) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT	Fort Detrick, Mary	and 21702-5012					
Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 17. LIMITATION of ABSTRACT 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT b. ABSTRACT c. THIS PAGE <td colspan="3"></td> <td></td> <td></td> <td>NUMBER(3)</td>						NUMBER(3)	
Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 17. LIMITATION of ABSTRACT 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT b. ABSTRACT c. THIS PAGE <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC 18. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8 19a. NUMBER (include area	12. DISTRIBUTION / A		IENI				
13. SUPPLEMENTARY NOTES 14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC 18. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8 19a. NUMBER (include area		ic Rolosso: Distribu	tion I Inlimited				
14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT			don oninnited				
14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT							
14. ABSTRACT Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT		VNOTES					
Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF BABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8	13. SUFFLEWIENTAR	INDIES					
Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF BABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8							
Many ovarian cancers have specific defects in DNA repair that make them sensitive to a new class of drugs called PARP inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the <i>BRCA1</i> or <i>BRCA2</i> genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with <i>BRCA1</i> or <i>BRCA2</i> mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF BABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8							
inhibitors. PARP inhibitors are particularly effective against cancers that have alterations in the BRCA1 or BRCA2 genes. BRCA1 and BRCA2 function in DNA repair, and cancers associated with BRCA1 or BRCA2 mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have BRCA1 or BRCA2 mutations, but who also have a good chance of responding to PARP inhibitors.15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency17. LIMITATION OF ABSTRACT18. NUMBER OF PAGES19a. NAME OF RESPONSIBLE PERSON USAMRMCa. REPORTb. ABSTRACTc. THIS PAGEUnclassified819a. NAME OF RESPONSIBLE PERSON USAMRMC		aara haya anaaifia	defects in DNA rea	oair that make then	a aanaitiya ta	a new close of drugs colled DADD	
and BRCA2 function in DNA repair, and cancers associated with BRCA1 or BRCA2 mutations are deficient in homologous recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have BRCA1 or BRCA2 mutations, but who also have a good chance of responding to PARP inhibitors.15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency18. NUMBER of ABSTRACT19a. NAME OF RESPONSIBLE PERSON USAMRMCa. REPORTb. ABSTRACTc. THIS PAGE17. LIMITATION OF ABSTRACT18. NUMBER OF PAGES19a. NAME OF RESPONSIBLE PERSON USAMRMC							
recombination directed DNA repair. When homologous recombination does not work right, cancer cells rely on other types of DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE Unclassified B C. THIS PAGE Unclassified B C. THIS PAGE C. THIS PAGE Unclassified B C. THIS PAGE C. THIS							
DNA repair that result in more errors in replicating DNA, leading to characteristic patterns of DNA alterations. Whole genome sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have BRCA1 or BRCA2 mutations, but who also have a good chance of responding to PARP inhibitors.15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency16. SECURITY CLASSIFICATION OF:17. LIMITATION OF ABSTRACT18. NUMBER OF PAGES19a. NAME OF RESPONSIBLE PERSON USAMRMCa. REPORTb. ABSTRACTc. THIS PAGEUnclassified8							
sequencing can detect patterns of alterations in the DNA that are characteristic of homologous recombination deficiency. We will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have BRCA1 or BRCA2 mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8							
will perform whole genome sequencing on cancers from 120 women who participated in ARIEL2, a PARP inhibitor clinical trial for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors.15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency16. SECURITY CLASSIFICATION OF:17. LIMITATION OF ABSTRACT18. NUMBER OF ABSTRACTa. REPORTb. ABSTRACTc. THIS PAGE17. LIMITATION Unclassified18. NUMBER ordej							
for recurrent ovarian cancer. We will use the information that we acquire to develop a new clinical test based on patterns of DNA alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have BRCA1 or BRCA2 mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8							
alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have BRCA1 or BRCA2 mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8							
alterations to better predict which women with ovarian cancer should be treated with a PARP inhibitor. In this manner, we can identify women with ovarian cancer who do not have BRCA1 or BRCA2 mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8							
identify women with ovarian cancer who do not have <i>BRCA1</i> or <i>BRCA2</i> mutations, but who also have a good chance of responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8							
responding to PARP inhibitors. 15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8							
15. SUBJECT TERMS Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON USAMRMC 18. NUMBER OF ABSTRACT 19a. NAME OF RESPONSIBLE PERSON USAMRMC 19b. TELEPHONE NUMBER (include area code) 19b. TELEPHONE NUMBER (include area code)	-				,	· ····· · ···· · · · · · · · · · · · ·	
Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8 19a. NAME OF RESPONSIBLE PERSON USAMRMC							
Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8 19a. NAME OF RESPONSIBLE PERSON USAMRMC	15 SUB IECT TEPMS						
deficiency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC 19b. TELEPHONE NUMBER (include area code)			hole genome segu	encina mutator D	NA renair air	insture homologous recombination	
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER (include area code)							
a. REPORT b. ABSTRACT c. THIS PAGE USAMRMC Unclassified 8				4	40 100000000		
a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 8 Unclassified 8	16. SECURITY CLASS	SIFICATION OF:					
Unclassified 8 ^{code)}							
Unclassified o	a. REPURI	D. ADOTKAUT	C. THIS PAGE	linelaas"(')	•		
	Unclassified	Unclassified	Unclassified	Unclassified	o		

Table of Contents

1.	Introduction	Page 4
2.	Key Words	Page 4
3.	Key Research Accomplishment	Page 4
4.	Impact	.Page 5
5.	Changes/Problems	.Page 6
6.	Products	.Page 6
7.	Participants & Other Collaborating Organizations	Page 7
8.	Appendices	Page 8

1. INTRODUCTION

PARP inhibitors (PARPi) have clear therapeutic utility for cancer treatment in individuals with germline mutations in *BRCA1* or *BRCA2* (*BRCA*). These drugs also have activity in a subset of ovarian, peritoneal or fallopian tube carcinoma (OC) without germline mutations. However, the best way to predict which patients with *BRCA*-wildtype OC will respond to PARPi therapy is not defined. Loss of heterozygosity (LOH) as a maker for homologous recombination deficiency (HRD) does not optimally separate responders from non-responders amongst *BRCA*-wildtype OC. ARIEL2 is a monotherapy PARPi trial in platinum-sensitive OC and was powered to identify predictive biomarkers for PARPi response in women without germline *BRCA* mutations. We hypothesize that specific mutator signatures can be identified by whole genomic sequencing that identify HRD and are more predictive of response to PARPis than current diagnostic tests using LOH profiling. Our objective is to develop an HRD test that that will predict benefit from PARPi therapy and provide insight into which genetic alterations lead to HRD and PARPi response.

2. KEY WORDS

Ovarian cancer, BRCA1, BRCA2, whole genome sequencing, mutator, DNA repair, signature, homologous recombination deficiency

3. ACCOMPLISHMENTS

Our first major task was to submit IRB exemption request to our IRB and then submit to the DoD HRPO. This task was successfully accomplished with receipt of human subjects expemption based on non-identifiability of the samples to be studied.

Our second major task is to develop and optimize the bioinformatics pipeline. We have done that successfully collaborating with Serena Nik-Zainal PhD, a well-known expert and developer of mutational signatures at the University of Cambridge.

Our third major task is to complete whole genome sequencing (WGS) on ARIEL2 samples. We are currently in the middle of that process. During this reporting period we identified the company providing the best price and quality sequencing (MedGenome). We wanted to test the quality of our WGS from formalin fixed paraffin embedded (FFPE) tumor sections from ARIEL2 samples using a small set of cases before we run the entire batch. We chose 8 cases and sent matched germline and tumor DNA to Macrogen. We got back very high quality data from 7 of 8 samples. Using Dr. Nik-Zainal's pipeline, we analyzed the samples according to the following algorithm:

- Caveman for substitutions plus additional post-hoc filtering to deal with FFPErelated artefacts and any new sequencing artefacts
- Pindel for insertions/deletions under 100bp
- Brass for structural variation
- ASCAT for copy number, ploidy and aberrant cell fraction

Per Dr .Nik-Zainal, these were the highest quality FFPE samples she has seen using her bioinformatics pipeline and were essentially indistinguishable from fresh frozen samples. Furthermore, the fail rate is usually been about 1/3 with FFPE samples, so we are very encouraged by our first test set. Whilw, this test set is too small to make any definitive conclusions about the relationship between signatures and response, it is encouraging that 2 of 3 cases with high HRDetect scores had measurable response to the PARP inhibitor rucaparib.

Figure 1. Preliminary mutational signature analysis of first 7 ARIEL2 FFPE cases. Of the first three cases with high HRDetect scores two had a partial response to rucaparib (AR2.021 and AR2.149. In contrast, of the next 4 cases with low HRDetect scores, only one had a partial response (AR2.060) and that tumor had too low neoplastic purity to provide a reliable score. Furthermore, that case has a high microhomology-mediated deletion score, which is one of our signatures of interest in detecting HRD. With a larger sample set, we will compare performance of HRDetect with the microhomology mediated deletions scores as well as with the other mutational signatures to identify the best predictor of PARPi response.

Opportunities for training and professional development has the project provided? Nothing to report

Dissemination of Results

Nothing to report

Plans during the next reporting period.

Now that we have confidence in the quality of the WGS data from ARIEL2 FFPE specimens, we will extract DNA and send to Macrogen for the remaining 110 cases. We already know mutational and methylation status. We will then correlate mutational signatures with PARPi response in collaboration with statisticians at Clovis Oncologycore known HR genes.

4. IMPACT

Impact on the principal discipline

Nothing to report

Impact on other disciplines Nothing to report

Impact on technology transfer Nothing to report

Impact on society Nothing to report

5. CHANGES/PROBLEMS Changes in approach Nothing to report

Problems or delays and plans to resolve them: Nothing to report

Changes that had a significant impact on expenditures Nothing to report

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents Nothing to report

6. PRODUCTS

Publications, conference papers, and presentations Nothing to report

Website(s) or other Internet site(s) Nothing to report

Technologies or techniques Nothing to report

Inventions, patent applications, and/or licenses Nothing to report

Other Products Nothing to report

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

• What individuals have worked on the project?

Name:	Elizabeth Swisher MD
Project Role:	PI
Researcher Identifier (e.g. ORCID ID):	0000-0003-2331-0434
Nearest person month worked:	1
Contribution to Project:	Dr. Swisher is directing all aspects of the project including IRB oversight, recruitment, sequencing analyses, and data interpretation
Name:	Maria Harrell, PhD
Project Role:	Staff scientist
Researcher Identifier (e.g. ORCID ID):	
Nearest person month worked:	2
Contribution to Project:	Dr. Harrell was overseeing all sequencing including quality control. She left the Swisher laboratory in March 2017 and has been replaced by Christopher Pennil MSc
Name:	Marc Radke
Project Role:	Staff scientist
Researcher Identifier (e.g. ORCID ID):	
Nearest person month worked:	1
Contribution to Project:	Mr. Radke performs all DNA preparations and quality control prior to whole genome sequencing and monitors data transfer with Macrogen
Funding Support:	
Name:	Chris Pennil., MSc.
Project Role:	He now oversee all sequencing including quality control and took over Dr. Harrell's role on the project
Researcher Identifier (e.g. ORCID ID):	
Nearest person month worked:	2

Name:	Nithisha Khasnavis MSc
Project Role:	Ms. Khasnavis is leading the bioinformatics on the project including developing and refining the WGS pipeline.
Researcher Identifier (e.g. ORCID ID):	
Nearest person month worked:	6

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel

since the last reporting period? No, Nothing to report

What other organizations were involved as partners?

Nothing to report

Appendices

None