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INTRODUCTION 
The long-term objective of this project is to advance the understanding of the biology, therapeutic 

potential and availability of small molecule drugs for cancer-implicated histone lysine 

methyltransferases (HKMTs) EZH2 (lymphoma and melanoma target) and SETDB1 (melanoma 
target). The immediate objective of this project is to present to the scientific community a number of 

novel small molecule binding modes and pockets in those protein targets, as well as novel small 

molecule chemical probe scaffolds to hit them. We postulate that knowledge of the conformational 

landscapes of these targets will: a) expose novel small molecule binding modes within known binding 

sites; b) expose novel allosteric binding sites, where binding will affect either the activity of the 

protein, disrupt protein-protein interactions within their active complexes, or result in conformational 

trapping and disruption of the formation of such complexes; c) allow for faster and cheaper 

development of more selective inhibitors.  

KEYWORDS 

protein methyltransferase; histone methyltransferase; EZH2; EED; PRC2; SETD8; conformational 

dynamics; protein dynamics; Folding@home; distributed computing; Markov state models; ensemble 

docking 
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ACCOMPLISHMENTS 
 
What were the major goals of the project? 
Major Task 1: Prepare homology models of EZH2 and SETDB1 from all-transferase templates using 

Ensembler and prepare them for molecular dynamics simulations. Prepare simulations of the PRC2 

complex and the complex SETDB1 participates in.  

a) Software engineering of Ensembler to add support for zinc ion clusters and ligand modeling.  

b) Run Ensembler using all-transferase templates.  

c) Prepare simulations of the multi-protein complexes.  

Major Task 2: Run the molecular dynamics simulations on Folding@home to multiple-millisecond 

aggregate timescale.  

a) Perform internal and beta testing of the simulations.  

b) Run the simulations on Folding@home. Curate while running.  

Major Task 3: Build Markov State Models of the molecular dynamics simulation data. 

a) Manually build preliminary Markov state models.  

b) Perform Osprey runs to find the best models.  

Major Task 4: Characterize the amount of conformational flexibility seen in known binding sites.  

a) Coarse-grain the Markov State Models to result in metastable states appropriate for drug design. 

Choose the distinct conformational states to proceed.  

b) Perform bioinformatics structural analyses of the known binding pockets in the context of all distinct 

conformational states seen. Identify opportunities for novel modes of small molecule binding.  

Major Task 5: Identify novel cryptic allosteric sites. Identify allosteric hotspots to disrupt the protein-
protein interactions in the complexes.  

a) Analyze the Markov State Models with the LIGSITE algorithm and rolling-probe algorithms.  

b) Perform Mutual Information analyses of rotameric state coupling between the proposed allosteric 
sites and the active sites.  
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What was accomplished under these goals? 
Major Task 1:  

a) Completed. 

b) Partially completed, so far with a smaller (not all-transferase yet) dataset. 

c) Completed, except for SETDB1 (see PROBLEMS).  

Major Task 2: 

a) Completed. 

b) Completed, continue to collect more data. 

Major Task 3: 

a) Completed. 

b) In progress. 

Major Task 4: 

a) Partially completed with a preliminary model. 

b) In progress with a preliminary model. 

Major Task 5: 

a) Preparing software, testing with a preliminary model. 

b) Preparing software, testing with a preliminary model. 

 
Development and testing of the molecular modeling pipeline on the model system SETD8 
(Figures 1 and 2) 
Previously and partially in this project as a model system, we studied the conformational landscape of 

another protein lysine methytransferase – SETD8 (The Dynamic Conformational Landscapes of the 

Protein Methyltransferase SETD8: https://www.biorxiv.org/content/10.1101/438994v1 – now 

accepted, in revision at eLife). SETD8 is evolutionarily closest to the common ancestor of all PKMTs, 

hence providing the perfect model system. For that study, our collaborators collected crystal 

structures of multiple novel conformations of the protein trapped with or without various ligands, 

providing diverse molecular dynamics simulation seeds. This has provided me with a well sampled, 

prototypical Markov state model, from which to seed conformations for this project and extract 

reaction coordinates for adaptive and enhanced sampling simulation runs. I present here two figures 

from the SETD8 paper as an example of the expected output of this project. Figure 1 shows 24-state 

and 10-state Markov state models constructed for apo and cofactor-bound SETD8 respectively, 

highlighting the different populations of known conformations, new ‘hidden’ conformations, and 

pathways of connectivity. Figure 2 shows a functional annotation of the models, highlighting the 
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connection between the pre-existing conformations in the apo conformational landscape and their 

reweighing as the protein progresses in its catalytic cycle.  

 
Large scale homology modeling of EZH2 from all available lysine methyltransferase structures 
(Figure 3) 
In order to classify and use in simulation all available structural information in the PDB database 

about protein lysine methytransferases (PKMTs), all crystal structures available were downloaded 

with Ensembler. The sequence of the methyltransferase (SET) domain of EZH2 was homology 

modeled using all PKMT structures, resulting in over 300 models. Those were sorted by RMSD to the 

real EZH2 crystal structure and a cutoff was chosen to discard models of low quality due to low 

sequence homology to the target, resulting in 186 final models. Figure 3 shows the resulting 

ensemble of EZH2 conformations. These will be used as seeds in parallel Folding@home 

simulations. It is expected that this conformationally wide seeding will act to boost sampling in a 

similar way as starting from crystal structures of SETD8 collected for this purpose did (those are also 

used as templates for EZH2). 

 
Markov state model analysis of apo-EZH2 5 millisecond simulation dataset (Figure 4) 
Initial simulations of the EZH2 SET domain starting from the PRC2 conformation and an inactive apo 

conformation resulted in ~ 5 milliseconds (10 million conformations, >200 GPU-years) of molecular 

dynamics data. Following the previously established protocol, protein was featurized with backbone 

and sidechain dihedral angles, and after kinetic mapping the data were clustered into 100 

microstates. For intepretability, a 10 macrostate Hidden Markov Model (HMM) was built, and a 

millisecond long trajectory was simulated from it, highlighting the power of short parallel simulations to 

reconstruct a long-timescale landscape. Figure 4 shows conformations of EZH2 from the simulated 

trajectory, separated by 200 microseconds. The three slowest relaxation modes of the model are also 

shown, highlighting the dynamics of the SET-I loop and the post-SET. I am currently analyzing the 

model for the presence of changed and new binding pockets, and preparing a large scale docking 

experiment to the Enamine REAL library.  

 
Comparative modeling of EZH2 and EED in apo, and in the PRC2 complex (Figure 5) 
Analogically to the construction of the apo-EZH2 Hidden Markov Model, a model of the EED reader 

protein from over 2 ms of simulation data was constructed. Over 50 microseconds of simulation were 

run for the whole PRC2 complex (composed of EZH2, EED, and SUZ12) on the local cluster, as the 

necessary developments to Folding@home to enable the simulation of systems this large are still in 
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progress (see ‘Maintenance and development of Folding@home’). Dynamics of EZH2 and EED 

within the PRC2 complex were described using the same state space as for the apo proteins, 

highlighting the conformational restrictions within the complex, which can be used to design probes 

stabilizing conformations incompatible with complex formation (Figure 5). 

 
Development and testing of a small molecule ensemble docking pipeline (Figure 6) 
After construction of an apo Markov state model for a protein of interest, we would like to predict the 

changes to the conformational landscape due to ligand binding, and hence discover chemical probe 

candidates. We have developed a pipeline to achieve this in two complimentary ways: a) ‘brute force’: 

if the binding site and pose of the ligand in some protein conformation are known, the ligand is copied 

into all other conformations into the exact same position, and relaxed alchemically (the interactions of 

the ligand with the protein are gradually turned on) into a putative binding pose; b) ‘standard’ docking 

into the vicinity of the active site or a newly identified pocket, no previous knowledge about the 

binding mode is used (Figure 6). This pipeline has been tested on the states of the SETD8 model, for 

binding to the SAM cofactor. I will next expand the pipeline with alchemical free energy calculations to 

calculate the free energy of binding of a ligand to each state and validate against experimental data 

with known ligands. Further, I will begin adapting code for pocket and allosteric coupling detection 

published by another research group, and we are exploring a collaboration to use deep learning to 

achieve the small molecule screening goals. 

 
Maintenance and development of Folding@home 
The extensive simulation sampling required for this project, particularly for very large systems, such 

as the PRC2 complex, made it necessary to maximize the power of Folding@home. The simulation 

engine we use, OpenMM, has steadily increased its utilization of the newest GPUs in every new 

version. Folding@home requires compilation of new ‘cores’ for every new version of OpenMM, a 

time-intensive task, first from the programmatic standpoint, second due to the need to test the stability 

of every new core on the thousands of distributed GPUs. I have been working on building an 

OpenMM 7.2 core – which will give us to 50% speedup in computation speed (equivalent of ~$3M in 

new hardware), when combined with hydrogen mass repartitioning. This is necessary to achieve 

reasonable sampling for the PRC2 complex, as well as all the systems containing zinc clusters (e.g. 

full length EZH2) require features of the newest OpenMM to model those clusters. This work has 

been taking much longer than expected due to instability of the new core seen in testing so far and 

necessity of further debugging. Further, I have also spent considerable amount of time refining the 

system of processing data (tens of TBs) from the Folding@home servers. 
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Testing of new simulation methods 
In the previous work with model system SETD8, it became apparent that even though we are able to 

collect unprecedented amount of molecular dynamics simulation data on Folding@home, the 

sampling problem is still significant for the task at hand. We would like to maximize the insight into, in 

particular, alternative binding pockets whose openings might be very rare. Three advancements to 

the simulation pipeline are being tested: a) better seeding – how to pre-generate more useful starting 

conformations as simulation seeds, using e.g. accelerated / steered molecular dynamics; b) adaptive 

sampling – how to automatically analyze existing data continuously, and propose to stop and restart 

trajectories from optimal new seeds - I collected ~10 ms of data for a short peptide (trp-zip) to validate 

different strategies against; c) enhanced sampling – once we have learnt the slow relaxation modes 

of a system from unbiased simulation, we can perform biased (enhanced) sampling along those 

coordinates, e.g. metadynamics, to rapidly calculate the free energies, and refine existing models and 

obtain free energy profiles for other PKMTs, mutants or ligand-bound states. I am testing different 

metadynamics strategies on a library of designed mini-proteins with experimental hydrogen exchange 

data available.  

 
Others  
I have collected multiple milliseconds of simulation data for the Tudor domain of SETDB1, which is 

awaiting analysis. 

 

Another point of interest in this project is the influence of cancer mutations on the conformational 

landscapes of the proteins and hence chemical probe binding. I am developing a pipeline using 

Rosetta to reweigh Markov state model states by mutational free energy changes. Mutations could 

also lead to the emergence of new conformations – in order to assess the balance of the two effects 

on a model system, I collected nearly 30 ms of simulation on 26 mutants of SETD8, which is awaiting 

analysis. 

 

The pipeline of this project depends on the ability to automate the construction and cross-validation / 

scoring of Markov state models. The most efficient approach to exploring the model space is still an 

unresolved question in the field. I am exploring these strategies on long protein folding simulation 

data from DE Shaw Research as model systems.  
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Figure 1. Successful demonstration of the modeling pipeline used for this work, on a model 
system - protein lysine methyltransferase SETD8.  Markov state models and conformational 

landscapes of apo- and SAM-bound SETD8 constructed through diversely seeded, massively parallel 

molecular dynamics simulations. a, Combinatorial construction of structural domain chimeras using 

crystallographically-derived post-SET and SET-I conformations. Each conformer is boxed and color-

coded with black for five X-ray-derived structures, blue for four putative structural chimeras included 
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as seed structures for MD simulations, and grey for three structural chimeras excluded from MD 

simulations because of obvious steric clashes. b, Schematic workflow to construct dynamic 

conformational landscapes via MSM. The five X-ray structures and the four structural chimeras were 

used to seed massively parallel MD simulations on Folding@home (see Method). Markov state 

models were constructed from these MD simulation results to reveal the conformational landscape. 

c−e, Kinetically metastable conformations (macrostates) obtained from kinetically coupled 

microstates via Hidden Markov Model (HMM) analysis. The revealed dynamic conformational 

landscapes consist of 24 macrostates for apo-SETD8 (left panel) and 10 macrostates for SAM-bound 

SETD8 (right panel). c, Kinetic and structural separation of macrostates in a 3D scatterplot. The X, Y 

axes represent kinetic separation of macrostates with a log-inverse flux kinetic embedding method 

(see Methods). The Z axis reports RMSDs of each macrostate to APO (left) or BC-SAM (right). The 

relative population of each macrostate of apo- or SAM-bound SETD8 ensembles is proportional to the 

volume of each representative sphere. d, Cartoon depiction of macrostates in a 2D scatterplot. The 

relative positions of metastable conformations were derived via the log-inverse flux kinetic embedding 

(see Methods). The diameter of the corresponding circle in the 2D scatterplot is proportional to the 

diameter of the respective sphere in the 3D scatterplot above. Equilibrium kinetic fluxes larger than 

7.14×102 s-1 for apo- and 1.39×103 s-1 for SAM-bound SETD8 are shown for interconversion kinetics 

with thickness of the connections proportional to fluxes between two macrostates. e, Chord diagrams 

and representative conformers of macrostates. The colors are encoded for the free energy of each 

macrostate relative to the lowest free energy of the macrostates. The equilibrium flux between two 

macrostates is proportional to thickness of respective arcs.  
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Figure 2. Functional annotation of the dynamic conformational landscapes of the model 
system SETD8. a, 3D scatterplots of the 24 macrostates of apo-SETD8 landscape and 10 

macrostates of SAM-bound SETD8 landscape in the coordinates of RMSDs relative to APO, BC-

SAM, and TC. Volume of each sphere is proportional to the relative population of the corresponding 

macrostate in the context of the 24 macrostates for apo-SETD8 or the 10 macrostates for SAM-bound 

SETD8. The RMSD of each macrostate is the average of its microstates weighted with their intra-

macrostate population. The RMSD of each microstate is the average of the top 10 frames most 

closely related to the clustering center of the microstate. The feature of each macrostate is annotated 

in color. b, c Cartoons of representative conformations of key macrostates in the apo-SETD8 

landscape and the SAM-bound SETD8 landscape, respectively. Structural annotations are shown in 

bottom right of each conformation. d, Radar chart of representative macrostates of apo (left) and 

SAM-bound (right) landscapes in reference to the five crystal structures. Distances between dots and 

cycle centers are proportional to the reciprocal values of RMSDs of macrostates relative to the crystal 

structures. e, 3D scattering plot of 100 microstates of the apo landscape in the coordinates of RMSDs 

to APO, BC-SAM, and TC. Volume of each cube is proportional to the relative population of the 
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corresponding microstate in the context of the 100 microstates. Microstates clustered in intermediate-

like macrostates are highlighted in colors. Structural diversity of microstates within individual 

macrostates indicates that each intermediate-like state contains multiple structurally distinct but 

readily interconvertible microstates. 
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a.

b. c.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Ensembler homology modeling of the EZH2 SET domain sequence onto the 
structures of all SET domains deposited in the PDB database. The sequence of the 

methyltransferase (SET) domain of EZH2 was homology modeled using all PKMT structures, 

resulting in over 300 models. Those were sorted by RMSD to the real EZH2 crystal structure and a 

cutoff was chosen to discard models of low quality due to low sequence homology to the target, 

resulting in 186 final models. a. All-heavy-atom RMSD of over 300 initial models to the real EZH2 

crystal structure, red line marks the RMSD cutoff used to discard bad models, b., c. two views of all 

186 final homology models of the EZH2 SET domain, highlighting the diversity of conformations for 

seeding simulations.  
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Figure 4. Hidden Markov Model of the EZH2 SET domain from 5 ms of molecular dynamics 
simulation. Initial simulations of the EZH2 SET domain starting from the PRC2 conformation and an 

inactive apo conformation resulted in ~ 5 milliseconds (10 million conformations, >200 GPU-years) of 
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molecular dynamics data. a., b. Conformations of EZH2 from a millisecond-long simulated trajectory, 

separated by 200 microseconds. The two conformations reside in macrostates placed in two different 

lobes of the 10-state Hidden Markov Model, shown in the middle. c., d., e. The three slowest 

relaxation modes of the model, highlighting the dynamics of the SET-I loop and the post-SET. 
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a. b.

c. d.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5. Comparison of the apo and in-complex slowest relaxation modes of the EZH2 and 
EED components of the PRC2 complex from µs-to-ms timescale molecular dynamics 
simulations.  Dynamics of EZH2 and EED within the PRC2 complex were described using the same 

state space as for the apo proteins, highlighting the conformational restrictions within the complex, 

which can be used to design probes stabilizing conformations incompatible with complex formation. a, 
b. Apo data projected onto the two slowest relaxation modes of the apo EZH2 (a.) and EED (b.), c,d. 

In-complex data projected onto the same apo relaxation modes. e. Diversity of conformations along 

the slowest relaxation mode of the whole PRC2 complex (composed of EZH2, EED, and SUZ12). 

f.,h., (next page) Diversity of conformations along the slowest relaxation mode of the apo proteins 

(EZH2 and EED respectively). g,i. Diversity of conformations along the slowest relaxation mode of 

the in-complex proteins (EZH2 and EED respectively).   
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Figure 6. Development and testing of a pipeline to model ligands into states of an apo Markov 
state model. After construction of an apo Markov state model for a protein of interest, we would like 

to predict the changes to the conformational landscape due to ligand binding, and hence discover 

chemical probe candidates. We have developed a pipeline to achieve this in two complimentary 

ways: a) ‘brute force’: the ligand is copied into all other conformations into the exact same position, 

and relaxed alchemically (the interactions of the ligand with the protein are gradually turned on) into a 

putative binding pose; b) ‘standard’ docking into the vicinity of the active site or a newly identified 

pocket, no previous knowledge about the binding mode is used. 
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What opportunities for training and professional development has the project provided? 

Conference attendance                                                                                                                               

1) Wiewiora, R.P., Chen, S., Luo, M., Chodera, J.D. Conformational dynamics of histone 

methyltransferase SET8 probed by millisecond-timescale molecular dynamics, Markov state modeling 

and biochemical experiments. Platform talk in Protein Dynamics & Allostery, Biophysical Society 

Meeting, San Francisco, February 2018. (Biophysical Journal 116 (3), 183a) 

Mentorship by the PI 

I mentored an undergraduate summer student and a PhD rotation student, who helped with this 

project (see PARTICIPANTS). 

 
How were the results disseminated to communities of interest? 

Via Twitter by John Chodera and Folding@home with a powerful visualization, where it received quite 

a significant attention – see e.g. https://twitter.com/jchodera/status/1051128881036632064 

 

What do you plan to do during the next reporting period to accomplish the goals? 
I will refine the Markov state models of the target proteins with newly collected data and advanced 

sampling schemes, and finalize the ensemble pocket detection – docking – free energy calculations 

pipeline. After the protein models are finalized, I will apply the pipeline to generate top candidate 

picks to purchase, and protein constructs to express, to finally test the predictions experimentally. 

 
IMPACT 
What was the impact on the development of the principal discipline(s) of the project? 
In my work, I try to illustrate the potential that computer modeling, when done at the appropriate, 

expensive, scale holds for future molecular design when computational power of this magnitude 

becomes routinely available. We have illustrated the potential of the approach taken in this project on 

a model system, and continue to collect unprecedented amounts of simulation data for analysis. 

 
What was the impact on other disciplines? 
Nothing to report.  

 
What was the impact on technology transfer? 
Nothing to report. 
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What was the impact on society beyond science and technology? 
Folding@home, as a citizen science project, puts significant visibility on enormous advances anyone 

can help achieve as part of a community. Many users join the project to make a contribution to 

progress in studying the diseases that affected their families. All of our science is open, we provide 

descriptions of our projects for a lay audience in the Folding@home client, and are lucky to have a 

dedicated community of ‘donors’ focused at the Folding@home forum. 

 
CHANGES/PROBLEMS 
Changes in approach and reasons for change 
Additional work: While simulations were collecting data, and before attempting its analysis, additional 

time was available to extend our previous work on a model system methyltransferase SETD8 to pilot 

the exact approach used in this project. I determined that the complexity of the automated Markov 

state modeling pipeline proposed here necessitated tests on a better understood system first. SETD8 

is evolutionarily closest to the common ancestor of all PKMTs, hence providing the perfect model 

system. For that study, our collaborators collected crystal structures of multiple novel conformations 

of the protein trapped with or without various ligands, providing diverse molecular dynamics 

simulation seeds. This has provided me with a well sampled, prototypical Markov state model, from 

which to seed conformations for this project and extract reaction coordinates for adaptive and 

enhanced sampling simulation runs. This will speed up and expand the possible scope of the work in 

this project. 

 
Actual or anticipated problems or delays and actions or plans to resolve them 
I have not been successful in creating homology models of the SET domain of SETDB1 in acceptable 

quality. This is due to the fact that it is the only protein lysine methyltransferase to contain an insert of 

unknown function in the SET domain. I was interested in studying the influence of that insert on the 

dynamics of the domain, however there is not enough structural data available from similar structures 

to model it. The Tudor domain of SETDB1 is also of interest for allosteric inhibition, simulations of it 

have been collecting data, but it is yet unclear how much potential there is in that type of domain to 

follow the experimental plan of this project. I would ask to consider a change of the second system of 

interest. 

 

Folding@home maintenance and development (became necessary, but was not anticipated in the 

SOW): I have been working on updating the simulation ‘core’ of Folding@home to a new version of 

the OpenMM engine – which will give us to 50% speedup in computation speed (equivalent of ~$3M 
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in new hardware), when combined with hydrogen mass repartitioning. This is necessary to achieve 

reasonable sampling for the PRC2 complex, as well as all the systems containing zinc clusters (e.g. 

full length EZH2) require features of the new OpenMM to model those clusters. This work has been 

taking much longer than expected due to instability of the new core seen in testing so far and 

necessity of further debugging. Further, I have also spent considerable amount of time refining the 

system of processing data (tens of TBs) from the Folding@home servers. These became necessary 

due to the limitations of the existing system that were not anticipated in the SOW, and are causing 

delays to the computational modeling and hence the ability to make decisions on wet laboratory 

experiments to perform and small molecules to purchase. I would ask to consider a no-cost extension 

to the project to utilize these advancements fully.  

 
Changes that had a significant impact on expenditures 

Nothing to report. (note all wet lab funds will be used in year 2 of the project after completion of the 

computational analysis of year 1, as per the SOW). 

 
Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 
select agents 
N/A 

 
Significant changes in use or care of human subjects 
N/A 

 
Significant changes in use or care of vertebrate animals 
N/A 

 
Significant changes in use of biohazards and/or select agents 
N/A 

 
PRODUCTS 
Publications, conference papers, and presentations 
Conference talks                                                                                                                               

1) Wiewiora, R.P., Chen, S., Luo, M., Chodera, J.D. Conformational dynamics of histone 

methyltransferase SET8 probed by millisecond-timescale molecular dynamics, Markov state modeling 
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and biochemical experiments. Platform talk in Protein Dynamics & Allostery, Biophysical Society 

Meeting, San Francisco, February 2018. (Biophysical Journal 116 (3), 183a) 

Publications 

1) Rafal P. Wiewiora*, Shi Chen*, Fanwang Meng, Nicolas Babault, Anqi Ma, Wenyu Yu, Kun Qian, 

Hao Hu, Hua Zou, Junyi Wang, Shijie Fan, Gil Blum, Fabio Pittella-Silva, Kyle A. Beauchamp, 

Wolfman Tempel, Hualiang Jiang, Kaixian Chen, Robert Skene, Y. George Zheng, Peter J. Brown, 

Jian Jin, Cheng Luo, John D. Chodera, Minkui Luo (*co-first).  

The Dynamic Conformational Landscapes of the Protein Methyltransferase SETD8. bioRxiv 438994; 

doi: https://doi.org/10.1101/438994 (accepted, in revision at eLife; federal funding acknowledged). 

Website(s) or other Internet site(s) 
Code for the SETD8 modeling, Github: https://github.com/choderalab/SETD8-materials 
 

SETD8 simulation data (6 ms), Open Science Framework: https://osf.io/2h6p4/ 
 
Technologies or techniques 

I have shown an efficient automatic way to construct Markov state models and illustrated a rigorous 

analysis  – these techniques will be immediately useful to the field. 

 

Inventions, patent applications, and/or licenses 
Nothing to report. 

 
Other Products 
SETD8 simulation data (6 ms), Open Science Framework: https://osf.io/2h6p4/ 
 
PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS 

What individuals have worked on the project? 

 
1.  
Name: Rafal Wiewiora 

Project role: PI 

ORCID: 0000-0002-8961-7183 

Nearest person month worked: 12 

Contribution to project: Performed all work, except work done by persons 2 and 3, which I supervised. 
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2.  

Name: Hersh Gupta 

Project role: undergraduate summer student 

ORCID: - 

Nearest person month worked: 2 

Contribution to project: Wrote software for the small molecule hybrid docking pipeline. 

Funding support: Memorial Sloan Kettering Cancer Center 

 

3. 

Name: Chloe Burnside 

Project role: PhD rotation student 

ORCID: - 

Nearest person month worked: 1 

Contribution to project: Tested the small molecule docking pipeline. 

Funding support: Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine 

 
Has there been a change in the active other support of the PD/PI(s) or senior/key personnel 
since the last reporting period? 
Nothing to report. 

 
What other organizations were involved as partners? 
Nothing to report. 

 
SPECIAL REPORTING REQUIREMENTS 
N/A 
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The Dynamic Conformational Landscapes of the Protein Methyltransferase SETD8 

Shi Chen1,2,#, Rafal P. Wiewiora1,3,#, Fanwang Meng4,¶, Nicolas Babault5, Anqi Ma5, Wenyu 

Yu6, Kun Qian7, Hao Hu7, Hua Zou8, Junyi Wang2, Shijie Fan4,9, Gil Blum2, Fabio Pittella-

Silva2, Kyle A. Beauchamp3, Wolfram Tempel6, Hualiang Jiang4,9, Kaixian Chen4,9, Robert 

Skene8, Y. George Zheng7, Peter J. Brown6, Jian Jin5, Cheng Luo4,9,*, John D. Chodera3,*, and 

Minkui Luo2,10,* 

1. Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New 
York 10065, USA 

2. Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA 
3. Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 

10065, USA 
4. Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug 

Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China 
5. Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological 

Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 
6. Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada 
7. Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, 30602, USA 
8. Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA 
9. University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China 
10. Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York 10021, 

USA 
¶ Current address: Department of Chemistry and Chemical Biology, McMaster University, Ontario, L8S 4L8, 

Canada 
 
# These authors made equal contribution 
* Corresponding authors: luom@mskcc.org; john.chodera@choderalab.org; cluo@simm.ac.cn. 
 
Abstract: Elucidating conformational heterogeneity of proteins is essential for understanding 

protein functions and developing exogenous ligands for chemical perturbation. While structural 

biology methods can provide atomic details of static protein structures, these approaches cannot 

in general resolve less populated, functionally relevant conformations and uncover 

conformational kinetics. Here we demonstrate a new paradigm for illuminating dynamic 

conformational landscapes of target proteins. SETD8 (Pr-SET7/SET8/KMT5A) is a biologically 

relevant protein lysine methyltransferase for in vivo monomethylation of histone H4 lysine 20 

and nonhistone targets. Utilizing covalent chemical inhibitors and depleting native ligands to trap 

hidden high-energy conformational states, we obtained diverse novel X-ray structures of SETD8. 

These structures were used to seed massively distributed molecular simulations that generated 
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six milliseconds of trajectory data of SETD8 in the presence or absence of its cofactor. We used 

an automated machine learning approach to reveal slow conformational motions and thus distinct 

conformational states of SETD8, and validated the resulting dynamic conformational landscapes 

with multiple biophysical methods. The resulting models provide unprecedented mechanistic 

insight into how protein dynamics plays a role in SAM binding and thus catalysis, and how this 

function can be modulated by diverse cancer-associated mutants. These findings set up the 

foundation for revealing enzymatic mechanisms and developing inhibitors in the context of 

conformational landscapes of target proteins.      

 

Introduction 

Proteins are not static, but exist as an ensemble of conformations in dynamic equilibrium1. 

Characterization of conformational heterogeneity can be an essential step towards interpreting 

function, understanding pathogenicity, and exploiting pharmacological perturbation of target 

proteins2-4. Conventional efforts to map functionally relevant conformations rely on biophysical 

techniques such as X-ray crystallography5, nuclear magnetic resonance (NMR)6, and cryo-

electron microscopy7, which provide static snapshots of highly-populated conformational states. 

While complementary techniques such as relaxation-dispersion NMR can resolve a limited 

number of low-population states, they are incapable of providing detailed structural information8. 

By contrast, molecular simulations provide atomistic detail---a prerequisite to structure-guided 

rational ligand design---and insight into relevant conformational transitions1. The emergence of 

Markov state models (MSMs) has shown the power of massively distributed molecular 

simulations in resolving complex kinetic landscapes of proteins9,10. By integrating simulation 

datasets with MSMs, functionally relevant conformational dynamics as well as atomistic details 

can be extracted10. Recently, MSMs have been used to identify key intermediates for enzyme 

activation11,12 and allosteric modulation13. However, these approaches are limited by the number 

of seed structures and timescales accessible by molecular simulations (generally microseconds 

for one structure) relative to the reality of complicated conformational transitions (up to 

milliseconds for multiple structures)14. To overcome the limitations of individual techniques, we 

envisioned an integrated approach that combines simulation with experiment to characterize 
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conformational landscapes of enzymes and elucidate their functions with the consideration of 

dynamic conformations.  

Protein lysine methyltransferases (PKMTs) comprise a subfamily of posttranslational 

modifying enzymes that transfer a methyl group from the cofactor S-adenosyl-L-methionine 

(SAM)15. PKMTs play epigenetic roles in gene transcription, cellular pluripotency, and organ 

development16,17. Their dysregulation has been implicated in neurological disorders and 

cancers18,19. SETD8 (SET8/Pr-SET7/KMT5A) is the sole PKMT annotated for monomethylation 

of histone H4 lysine 20 (H4K20me)20,21 and many non-histone targets such as the tumor 

suppressor p53 and the p53-stabilizing factor Numb22,23. Disruption of endogenous SETD8 leads 

to cell cycle arrest and chromatin decondensation, consistent with essential roles for SETD8 in 

transcriptional regulation and DNA damage response24-26. SETD8 has also been implicated in 

cancer invasiveness and metastasis27. High expression of SETD8 is associated with pediatric 

leukemia and its overall low survival rate28. As a result, there is enormous interest in elucidating 

functional roles of SETD8 in disease and developing pharmacological agents to perturb this 

target29-31. 

Given the essential roles of conformational dynamics in enzymatic catalysis1,32 and our 

current limited knowledge of conformational landscapes of PKMTs, we envisioned leveraging an 

integrated experimental-computational approach to characterize dynamic conformational 

landscapes of SETD8 and its cancer-associated mutants with atomic resolution. To access 

previously-unseen, less-populated conformational states of SETD8 to seed massively parallel 

distributed molecular dynamics (MD) simulations, we envisioned trapping these conformations 

with small-molecule ligands. Here we solved four distinct crystal structures of SETD8 in 

alternative ligand-binding states with covalent SETD8 inhibitors and native ligands. With the aid 

of these new structures, we generated an aggregate of six milliseconds of explicit solvent MD 

simulation data for apo- and SAM-bound SETD8. Using a machine learning approach to select 

features and hyperparameters for MSMs via extensive cross-validation, we identified 24 

kinetically distinct metastable conformational states of apo-SETD8 and determined how the 

conformational landscape is remodeled upon SAM binding. We then validated these 

conformational landscapes with stopped-flow kinetics and isothermal titration calorimetry by 

examining SAM binding, characterizing rationally-designed SETD8 variants with increased 
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catalytic efficiency, and resolving multiple timescales associated with transitions among these 

conformers. The resulting model furnishes unprecedented key insights on how these dynamic 

conformations play a role in catalysis and how cancer-associated SETD8 mutants alter this 

process.           

Results 

 Crystal structures of SETD8 associated with hidden conformations. To identify hidden 

high-energy conformational states of SETD8, we envisioned a strategy of trapping the associated 

conformers with small-molecule ligands. The development of high-affinity SETD8 inhibitors 

with canonical target-engagement modes is challenging29, and led us to exploit covalent 

inhibitors31,33. These compounds can overcome the high energy penalties associated with hidden 

high-energy conformers through the irreversible formation of energetically-favored inhibitor-

SETD8 adducts. Our prior efforts led to the development of covalent inhibitors containing 2,4-

diaminoquinazoline arylamide and multi-substituted quinone scaffolds by targeting Cys31131,33. 

Upon further optimization of these scaffolds, we identified MS4138 (Inh1) and SGSS05NS 

(Inh2)34, two structurally distinct covalent inhibitors with the desired potency against SETD8 

(Figures 1a, S9). X-ray crystal structures of SETD8 were then solved in complex with Inh1 and 

Inh2, respectively (Figures 1b,c, S10, S11). Notably, despite the overall structural similarity of 

the pre-SET, SET, and SET-I motifs, the Inh1- and Inh2-SETD8 binary complexes (BC-Inh1 

and BC-Inh2) differ from the SETD8-SAH-H4 ternary complex (TC)35-37 by the distinct 

conformations of their post-SET motifs. The post-SET motif of TC was characterized by its U-

shaped topology with a double-kinked loop-helix-helix architecture, which appears to be 

optimally oriented for binding both SAM and a peptide substrate (Figure 1c,d)35-37. In 

comparison, BC-Inh1 and BC-Inh2 rotate their post-SET motifs by 140 ° and 60 °, respectively 

(Figure 1d). Moreover, the post-SET motifs of BC-Inh1 and BC-Inh2 adapt more extended 

configurations with a less structured loop and a singly-kinked helix, respectively (Figure 1c,d). 

Whereas multiple factors may influence the overall conformations, the formation of Cys311 

adducts likely made the key contribution to the discovery of these hidden post-SET motif 

conformers. 
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 5 

 

Figure 1. Diverse SETD8 conformations captured in altered ligand-binding states. a, Structures of 

SETD8 ligands involved in this work. Two covalent inhibitors targeting Cys311 (MS4138 as Inh1 and 

SGSS05NS as Inh2) and the cofactor SAM were used as ligands to trap neo-conformations of SETD8. b, 

Domain topology of SETD8. Four functional motifs at SETD8’s catalytic domain are colored: pre-SET 

(light green), SET (dark yellow), SET-I (purple), and post-SET (orange). c, Cartoon representations of 
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four neo-structures of SETD8 (BC-Inh1, BC-Inh2, BC-SAM, and APO) and a structure of a SETD8-

SAH-H4 ternary complex (TC). These structures are shown in two orthogonal views with ligands, pre-

SET, SET, SET-I, and post-SET colored in cyan, light green, dark yellow, purple, and orange, 

respectively. d, Superposition of five crystal structures highlighted with detailed views of post-SET, SET-

I, and pre-SET motifs. The five X-ray structures reveal four distinct conformational states of the post-SET 

motif (P1-4) and three distinct conformational states of the SET-I motif (I1-3). 

 

To reveal additional hidden conformers that are structurally distinct from TC, we also solved 

crystal structures of SETD8 upon depleting native ligands and obtained structures of the SAM-

SETD8 binary complex (BC-SAM) and apo-SETD8 (APO) (Figures 1c, S12, S13). Strikingly, 

BC-SAM and APO differ from TC by their distinct SET-I motifs in the context of the otherwise 

similar SET-domain (Figure 1d). Furthermore, the post-SET motif of APO structurally 

resembles an intermediate state between BC-Inh1 and BC-Inh2 but is distinct from those of BC-

SAM and TC (Figure 1d). In contrast to the structurally diverse SET-I (I1-3) and post-SET 

motifs (P1-4) in these structures, their pre-SET motifs show only slightly altered configuration 

(Figure 1d). The differences between these structures highlight the conformational plasticity of 

the SET-I and post-SET motifs. Collectively, these observations provide strong structural 

rationale for the existence of a highly dynamic conformational landscape of SETD8.  

Hidden conformations of apo-SETD8 revealed by structural chimeras. The BC-SAM, 

BC-Inh1, BC-Inh2, APO, and TC structures can be readily classified into three distinct SET-I 

configurations (I1-3) and four distinct post-SET configurations (P1-4) (Figure 1d). Given the 

relative independence between the SET-I and post-SET motifs, we expected that additional 

combinations of discrete motifs can represent yet-unobserved functionally relevant 

conformations of SETD8. We thus constructed putative “structural chimeras” of apo-SETD8 

containing orthogonal I1-3 and P1-4 in a combinatorial (3×4) manner (Figures 2a, S14). Among 

the twelve structural chimeras as potential seeds for MD simulations, five were 

crystallographically-determined conformers (BC-Inh1, BC-Inh2, BC-SAM, TC with ligands 

removed, and APO), four were new structurally-chimeric conformers, and three were excluded 

because of obvious steric clashes (Figures 2a, S15).  
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Figure 2. Markov state models and conformational landscapes of apo- and SAM-bound SETD8 

constructed through diversely seeded, massively parallel molecular dynamics simulations. a, 

Combinatorial construction of structural domain chimeras using crystallographically-derived post-SET 

and SET-I conformations. Each conformer is boxed and color-coded with black for five X-ray-derived 

structures, blue for four putative structural chimeras included as seed structures for MD simulations, and 

grey for three structural chimeras excluded from MD simulations because of obvious steric clashes. b, 
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Schematic workflow to construct dynamic conformational landscapes via MSM. The five X-ray structures 

and the four structural chimeras were used to seed massively parallel MD simulations on Folding@home 

(see Method). Markov state models were constructed from these MD simulation results to reveal the 

conformational landscape. c-e, Kinetically metastable conformations (macrostates) obtained from 

kinetically coupled microstates via Hidden Markov Model (HMM) analysis. The revealed dynamic 

conformational landscapes consist of 24 macrostates for apo-SETD8 (left panel) and 10 macrostates for 

SAM-bound SETD8 (right panel). c, Kinetic and structural separation of macrostates in a 3D scatterplot. 

The X, Y axes represent kinetic separation of macrostates with a log-inverse flux kinetic embedding 

method (see Methods). The Z axis reports RMSDs of each macrostate to APO (left) or BC-SAM (right). 

The relative population of each macrostate of apo- or SAM-bound SETD8 ensembles is proportional to 

the volume of each representative sphere. d, Cartoon depiction of macrostates in a 2D scatterplot. The 

relative positions of metastable conformations were derived via the log-inverse flux kinetic embedding 

(see Methods). The diameter of the corresponding circle in the 2D scatterplot is proportional to the 

diameter of the respective sphere in the 3D scatterplot above. Equilibrium kinetic fluxes larger than 

7.14×102 s-1 for apo- and 1.39×103 s-1 for SAM-bound SETD8 are shown for interconversion kinetics with 

thickness of the connections proportional to fluxes between two macrostates. e, Chord diagrams and 

representative conformers of macrostates. The colors are encoded for the free energy of each macrostate 

relative to the lowest free energy of the macrostates. The equilibrium flux between two macrostates is 

proportional to thickness of respective arcs.  

 

Dynamic conformational landscape of apo-SETD8 via Markov state modeling from 5-

ms MD simulation dataset. With seed conformations prepared as above, we envisioned 

illuminating the conformational landscape with massively distributed long-time MD simulations 

and resolving its kinetic features with Markov state models (MSMs) (Figures 2b, S14). We 

conducted approximately 500×1 µs explicit-solvent MD simulations from each seed and 

accumulated 5 milliseconds of aggregate data in 10 million conformational snapshots for apo-

SETD8 (Figures S16, Table S3). To identify functionally relevant conformational states and 

their transitions, we built MSMs using a pipeline that employs machine learning and extensive 

hyperparameter optimization to identify slow degrees of freedom and structural and kinetic 

criteria to cluster conformational snapshots into discrete conformational states (Figures S17-24, 

Tables S4, S5)38. This approach identified 24 kinetically metastable conformations (macrostates) 

from an optimized, cross-validated set of 100 microstates (Figures 2c, S25-30, Tables S6, S7). 
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These macrostates are remarkably diverse, spanning up to 10.5 Å Cα RMSD from APO. To 

visualize the kinetic relationships between functionally important conformations, dimensionality 

reduction was used to project the landscape into 2D while preserving log inverse fluxes between 

states (Figure 2d). The relative populations of these macrostates and their interconversion 

kinetics were calculated on the basis of their transition fluxes, resolving rare conformational 

states up to 6 kT in free energy (Figure 2d,e). 

The dynamic conformational landscape of SAM-bound SETD8. Given the success in 

constructing the dynamic conformational landscape of apo-SETD8, we applied the same strategy 

to SAM-bound SETD8. With the two crystal structures of SETD8 in complex with SAM (BC-

SAM and TC) as the seed conformations, we conducted ~ 500×1 µs explicit-solvent MD 

simulations from each structure and accumulated 1 millisecond of aggregate data (2M snapshots) 

(Figure S25). The resulting MSM for SAM-bound SETD8 contained 10 kinetically metastable 

macrostates arising from 67 microstates (Figure S31, Tables S8, S9). Similar to those of apo-

SETD8, the relative macrostate populations of SAM-bound SETD8 and their flux kinetics were 

computed and embedded into 3D/2D scatter plots and chord diagram (Figure 2c,d,e). The 

smaller number of metastable states identified for SAM-bound SETD8 is expected given that 

SAM binding restricts conformational accessibility. 
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Figure 3. Biochemical characterization of gain-of-function mutations revealed by conformational 

landscapes of SETD8. a, Comparison of binding environments of Trp390 between apo and SAM-bound 

SETD8 in the context of their dynamic conformational landscapes. b, Illustration of rapid-quenching 

stopped-flow experiments. These experiments were conducted to trace fluorescence changes of Trp390 

upon SAM binding. c, Comparison of the conformations of post-SET kink and SET-I helix between apo 

and SAM-bound SETD8 in the context of their dynamic conformational landscapes. Analysis of key 

structural motifs indicated K282P, I293G and E292G as potential gain-of-function variants. d, 
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Fluorescence changes of wild-type and K382P SETD8 traced with a rapid-quenching stopped-flow 

instrument within 1 s upon SAM binding. e, SAM-binding ITC enthalpogram of wild-type and K382P 

SETD8. f, Stepwise SAM-binding of SETD8 in the integrative context of biochemical, biophysical, 

structural, and simulation data. ITC determines the thermodynamic constant of SAM binding by SETD8. 

MD simulations and MSM uncover metastable conformations and interconversion rates of apo- and 

SAM-bound SETD8 (Kapo and KSAM). Stopped-flow experiments revealed that SETD8 binds SAM via 

biphasic kinetics. Rate constants uncovered by stopped-flow experiments (k1, k-1, k2, k-2) represent 

macroscopic rates of SAM binding by SETD8 with multiple metastable conformations. The microscopic 

behavior of individual metastable states and corresponding rates (k1, k-1, k2, k-2) have not been resolved. 

Transition probability matrices (red) and microscopic rate constant matrices (blue) are shown as colored 

grids. A rigorous mathematical model for these processes is shown in Figure S36. g, Kinetic and 

thermodynamic constants of wild-type SETD8 and its mutants. For k1, k-1, k2, k-2, data are best fitting 

values ± standard error (s.e.) from KinTek. For Kd-ITC, data are mean ± s.e. of at least 3 replicates. Kd1, Keq, 

and Kd are calculated based on equations in online method. Uncertainties of Kd1, Keq, Kd, and DG are s.e. 

calculated by the propagation of uncertainties from individual rate constants and dissociation constants, 

respectively. h, Relative energy landscapes of apo- and SAM-bound SETD8 and its gain-of-function 

mutants.  

 

Experimental validation of the conformational landscapes of SETD8. Upon uncovering 

the dynamic conformational landscapes of apo- and SAM-bound SETD8, we were able to extract 

new structural information and designed experiments to further validate this model (Figure 3). 

Comparison of the conformational ensembles between apo- and SAM-bound SETD8 revealed 

that SAM binding dramatically alters the environment of Trp390 (Figure 3a, blue sticks), the 

sole tryptophan residue in the catalytic domain of SETD8. This residue is flexible and mainly 

solvent-exposed in apo-SETD8 conformational ensembles but restricted in a hydrophobic 

environment through SAM-mediated pi-pi stacking in SAM-bound SETD8 conformational 

ensembles (Figure 3a). Such environmental changes upon SAM binding are expected to quench 

fluorescence of Trp39039. To verify this prediction, we designed rapid-mixing stopped-flow 

kinetic experiments with 5 ms dead time and 0.1 ms resolution to track the fluorescence change 

of Trp390 upon SAM binding (Figure 3b). We observed SAM-dependent biphasic kinetics of 

the fluorescence decrease within 1 s with > 80% of the change occurring in the fast phase (0 - 

0.1 s) (Figure 3d). In the context of the conformational landscape of apo-SETD8, we interpreted 
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the major decrease in fluorescence intensity (fast-phase kinetics) as a consequence of the 

collective changes of Trp390 from the solvent-exposed hydrophilic environment in apo 

conformations to the hydrophobic environment in SAM-bound conformations (Figure 3a,c). In 

contrast, the minor decrease in fluorescence intensity (slow-phase kinetics) reflects the slow 

conformational changes of Trp390 in the SAM-bound SETD8 conformational ensembles 

(Figure 3d). With unsupervised global fitting to this two-step model, we obtained forward and 

reverse rate constants for the fast- and slow-phase kinetics, which are in agreement with 

conventional fitting to double exponential kinetics40 (Figures 3d,f,g, S32, Table S10). The k-1 

value was also confirmed independently by rapid-mixing stopped-flow dilution of SAM-bound 

SETD841 (“ES+E'S”, Figure S33, Table S10). Here the k-1/k1 ratio of 309±6 µM corresponds to 

the average SAM dissociation constant Kd1 of apo-SETD8 conformers, which is consistent with 

independently determined ITC Kd of 251±16 µM (Figures 3e,f, S34). In contrast, the large k-2/k2 

ratio of 30±11 suggests that the second phase corresponds to a slow equilibrium between ES and 

E'S with minimal contribution of E'S to the overall SAM dissociation constant Kd (Figure 3e). 

The conformational ensembles we identified for apo- and SAM-bound SETD8 demonstrate the 

statistical nature of its SAM-binding process. Therefore, the observed fluorescence changes and 

herein determined macroscopic kinetic constants represent an ensemble-weighted average of 

microscopic behaviors of all species that exist in the solution. A rigorous mathematical 

description of microscopic kinetics of SAM binding was thus obtained under the consideration of 

interconversion of the metastable conformational states of apo- and SAM-bound SETD8 (Figure 

S36).   

We then proposed to confirm our understanding of functionally-relevant conformations and 

their thermodynamics by identifying SETD8 variants with increased affinity for SAM. We 

uncovered a collection of characteristic kink motifs around Lys382 in the post-SET motif of 

SAM-bound SETD8 conformational ensembles (Figure 3c), while this region is less structured 

in apo-SETD8 conformational ensembles. We hypothesized that a proline mutation (K382P) 

could better stabilize the conformational ensembles of SAM-bound SETD8 than apo-SETD8 

(Figure 3c,h). We also identified a characteristic a-helix in the SET-I motif, which adapts 

flexible and diverse configurations in apo ensembles but constrained and structurally distorted 

configurations in SAM-bound ensembles (Figure 3c).  We proposed that the replacement of I293 

or E292 adjacent to the a-helix with a flexible glycine should relax this distortion to better 
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stabilize SAM-bound ensembles (Figure 3c,h). We therefore characterized the SAM-binding 

kinetics and affinities of K382P, I293G, and E292G variants of SETD8 with stopped-flow 

kinetics and ITC (Figures 3c,d,e,f, S32-34). While exhibiting biphasic kinetics similar to that of 

wild-type SETD8, the stopped-flow mixing experiment revealed the three variants showed a 

significant two-fold decrease of Kd,SAM (Figure 3d,e). The stopped-flow data further revealed 

that the two-fold change of Kd,SAM mainly arises from increased SAM-binding rates k1 with 

relatively unchanged k-1 (Figure 3g). These results are consistent with independently-determined 

Kd and k-1 from ITC and stopped-flow dilution, respectively (Figures 3e,f, S33, S34, Table S10). 

Collectively, these observations confirm the robustness of our conformational landscape model 

for apo- and SAM-bound SETD8. 

Effects of key simulation parameters on construction of conformational landscapes. We 

systematically investigated how the choices of seed structures and simulation time---key 

computational parameters---influence microstate discovery and quality of conformational 

landscapes of SETD8 (Figure 4). The simulations of apo-SETD8 initiated from any single X-ray 

structure (BC-Inh1, BC-Inh2, BC-SAM, APO, or TC in Figure 1c) only reveal a partial 

conformational landscape (28-61% microstate coverage, Figure 4a). To achieve >90% 

microstate coverage, at least two crystal structures---BC-SAM in combination with either BC-

Inh1 or BC-Inh2---must be included (Figure 4a). If three crystal structures are included, BC-

SAM in combination with TC and APO can provide >90% coverage (Figure 4a). In terms of 

the structural motifs (I1-3 or P1-4, Figures 1d, 2a), simulations originating from the SET-I 

motif I1, I2, or I3 alone led to the discovery of 69, 58, or 39 of the 100 microstates, respectively 

(Figure 4b, Table S15). The combination of I1 and I2 is sufficient to cover all 100 microstates, 

arguing for the redundant character of I3. For the post-SET motif, any combination of two post-

SET configurations except P2-P3 leads to >90 microstate coverage (Figure 4b, Table S15). 

These findings are in agreement with the key requirement of structural motif conformations I1 

(equivalent to BC-Inh1, BC-Inh2, or TC), I2 (equivalent to BC-SAM), and any two of P1-4 

except P2-P3 (e.g. P1-P3 is equivalent to the combination of APO with BC-SAM or TC) to 

achieve >90% microstate coverage. For SAM-bound SETD8, the seed conformations derived 

from BC-SAM and TC structures contribute 31 and 38 of 67 microstates (Figure 4c,d, Table 

S14). These findings argue for the importance of using multiple structures to construct the 
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landscape within achievable computer time. The seed conformations prepared from ligand-

trapped SETD8 structures are essential to discovering the complete conformational landscapes of 

SETD8. 

 For simulation time, we observed that the fewer seed conformations of apo-SETD8 were 

employed, the more computing power (the product between the number of simulation trajectories 

and the time length per trajectory) was required to reach a comparable level of microstate 

coverage (Figure 4e, Tables S16, S17). When computing power is fixed, comparable microstate 

coverages of apo- and SAM-bound SETD8 can be obtained by running either multiple short 

trajectories or few long trajectories (Figures 4f, S38). The current simulation time (5 ms for apo-

SETD8 and 1 ms for SAM-bound SETD8) provides 2-10-fold redundant computing power to 

map the conformational landscapes of SETD8. 
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Figure 4. Evaluation of key simulation parameters of massively distributed molecular simulations. 

a-b, Robustness of simulations of apo-SETD8: a, Heat map for the coverage of the 100 microstates with 

all combinations of the crystal structures (BC-Inh1, BC-Inh2, BC-SAM, APO, and TC) as seed 

conformations; b, Venn diagrams of the coverage of the 100 microstates with all conformational 

combinations of SET-I and post-SET motifs (I1-3 and P1-4) as seed structures for MD simulations. c-d, 

Robustness of simulations of SAM-bound SETD8: c, Venn diagram of the coverage of the 67 microstates 

with TC, BC-SAM or both as seed structures for MD simulation; d, Minimal time required by MD 

simulations to reach certain coverage of the 67 microstates with representative combinations of seed 

structures. e, Minimal time required by MD simulations to reach certain coverage of the 100 microstates 
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of apo-SETD8 with representative combinations of seed structures. f, Contour map of microstate 

coverage at various combinations of trajectory lengths and numbers as percentage of the maximal 

trajectory length and number of MD simulations. The seed structures of each panel are listed as the 

simulation entries e1, e5-8 for apo-SETD8, and d1-3 for SAM-bound SETD8. Each curve corresponds to 

the aggregation of specific simulation time.  

 

Functionally relevant conformations in the dynamic landscapes of apo- and SAM-

bound SETD8. After validating the conformational landscapes of apo- and SAM-bound SETD8, 

we explored the dynamic details of these landscapes with the focus on the connectivity and 

equilibrium fluxes between kinetically metastable macrostates (henceforth referred to as the 

“network”). When projected into two dimensions, the conformational landscape of apo-SETD8 

takes the form of a dumbbell-like shape containing two lobes, each composed of about 12 

macrostates primarily connected via a single hub-like central macrostate A11 (Figures 2d, 5, 

Table S7). The conformational landscape also consists of other multiply-connected macrostates, 

including A1-A4, A9, and A14, as characterized by their rapid kinetic interconversion with 

multiple other macrostates (Figure 2d,e). Most low-populated macrostates (A17-A24) appear as 

satellite macrostates in the periphery of the network with few high-flux channels of 

interconversion to other macrostates (Figure 2d,e). The remaining states were classified as 

basin-like macrostates including (A5, A10), A7, A8, (A12, A13, A16) and A15, because these 

macrostates are highly populated and either relatively isolated or appear in tightly interconnected 

but globally isolated groups.  
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Figure 5. Functional annotation of the dynamic conformational landscapes of SETD8. a, 3D 

scatterplots of the 24 macrostates of apo-SETD8 landscape and 10 macrostates of SAM-bound SETD8 

landscape in the coordinates of RMSDs relative to APO, BC-SAM, and TC. Volume of each sphere is 

proportional to the relative population of the corresponding macrostate in the context of the 24 

macrostates for apo-SETD8 or the 10 macrostates for SAM-bound SETD8. The RMSD of each 

macrostate is the average of its microstates weighted with their intra-macrostate population. The RMSD 

of each microstate is the average of the top 10 frames most closely related to the clustering center of the 

microstate. The feature of each macrostate is annotated in color. b, c Cartoons of representative 

conformations of key macrostates in the apo-SETD8 landscape and the SAM-bound SETD8 landscape, 

respectively. Structural annotations are shown in bottom right of each conformation. d, Radar chart of 

representative macrostates of apo (left) and SAM-bound (right) landscapes in reference to the five crystal 

structures. Distances between dots and cycle centers are proportional to the reciprocal values of RMSDs 

of macrostates relative to the crystal structures. e, 3D scattering plot of 100 microstates of the apo 

landscape in the coordinates of RMSDs to APO, BC-SAM, and TC. Volume of each cube is proportional 

to the relative population of the corresponding microstate in the context of the 100 microstates. 

Microstates clustered in intermediate-like macrostates are highlighted in colors. Structural diversity of 

microstates within individual macrostates indicates that each intermediate-like state contains multiple 

structurally distinct but readily interconvertible microstates.  
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 The hub-like macrostate A11 consists of two structurally-distinct microstates with 

comparable populations (Figures 2d, 5a). One microstate structurally resembles the 

conformation of APO (I3P3), while the other microstate represents a conformer with the I1P23 

feature for its SET-I and post-SET motifs (Figure 5b, Table S6). Rapid conformational 

interconversions within A11 is consistent with its hub-like character, centered between the two 

lobes of the dumbbell-like network. Interestingly, macrostates kinetically adjacent to A11 have 

structurally similar SET-I motifs within each lobe but distinct SET-I motifs between the two 

lobes (I2~3 for the left and I1~2 for the right) (Figures 2d, 5b). Therefore, A11 is a transition-

type state essential for the conformational fluxes of the macrostates between the two lobes, 

involved in a key step of conformational changes of the SET-I motif between I1~2 and I2~3.   

 The intermediate-like macrostates A1-A4, A9, and A14 each contains multiple structurally 

distinct but kinetically associated microstates (Figures 2d, 5a,b). The satellite macrostates 

A17-A24 are less populated and more structurally homogeneous (Figures 2d, 5a,b). 

Conformers in the macrostates A22, A24 and A20 are structurally similar to TC and BC-SAM 

with slightly different but well-defined SAM-binding pockets, suggesting minimal 

conformational reorganization of A22, A24, and A20 is required to accommodate the cofactor 

(Figure 5a,b,e). Interestingly, A22 and A24, whose overall structures are similar to each other 

(TC-like), rarely interconvert in the apo landscape (Figure 2d). In contrast, the basin-like 

macrostates (A5, A10), A7, A8, (A12, A13, A16) and A15 do not contain a well-defined SAM-

binding pocket (Figure 5a,b,e). Here the conformers in macrostate A12 are similar to APO, the 

conformers in the macrostate A6 are similar to BC-Inh1, and the conformers in the macrostates 

A10 are similar to BC-Inh2 (Figure 5d). The structural similarity between the simulated 

conformers and BC-Inh1/2 strongly argue that the two covalent inhibitors successfully trapped 

key hidden conformers of apo-SETD8. 

 Similar to that of apo-SETD8, the interconversion network of the macrostates of SAM-bound 

SETD8 also displays a dumbbell-like shape with S9 as the hub-like state connecting the two 

lobes of the network (Figures 2d, 5a). The macrostates S1 and S3-S5 are multi-connected 

states; S6, S8, and S10 are satellite-like states; S2 and S7 are basin-like states (Figure 5a,b). 
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Notably, the complexity of the overall conformational landscape of SAM-bound SETD8 is 

dramatically reduced in comparison with those of apo-SETD8 (Figures 2d, 5a). The conformers 

in S1, S2, and S10 are structurally similar to those of A20, as well as BC-SAM; the conformers 

in S4, S6, and S8 are structurally similar to those in A22 and A24, as well as TC (Figure 5c,d). 

The structural similarities between these apo and SAM-bound macrostates suggest possible 

pathways for connecting the two conformational landscapes upon SAM binding.  
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Figure 6. Computational and experimental characterization of cancer-associated SETD8 mutants. a, 

Cancer-associated mutations in the catalytic domain of SETD8 examined in this work. b, Cartoon 

representations of TC with cancer-associated SETD8 mutations highlighted. c, Differential residue-

contact maps of cancer-associated SETD8 mutants in reference to wild type apo-SETD8 (grey). d, 
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Representative contacts in the differential residue-contact maps of cancer-associated SETD8 mutants. The 

contacts of SETD8 mutants with >3-fold gain of contact fraction relative to wild-type SETD8 are listed 

and color-coded according to the increased magnitude of the contact fraction. e, Cartoon representations 

of neo-conformations revealed by simulations of SETD8 mutants. f, Differential residue-contact maps of 

the structurally relaxed  a-helix at the SET-I motif of SETD8 A296T mutant. Decrease of contact fraction 

of SETD8 mutants relative to wild-type SETD8 is colored in blue. g, Enzymatic activities of wild-type 

and mutated SETD8 determined by an in vitro radiometric assay with H4K20 peptide substrate. Here 

SETD8 mutants are categorized as the following: red, uncovered neo-conformations (Neo-conf.) with > 

90% loss of methyltransferase activity; green, populated inactive conformations (Pop. shift) with partially 

abolished methyltransferase activity; blue, no dramatic change of differential contact maps with 

comparable methyltransferase activity with wild-type SETD8; brown, unknown relationship between 

differential contact maps and methyltransferase activities. Data are mean ± standard deviation (s.d.) of 3 

replicates.  

 

Characterization of cancer-associated SETD8 mutants. Sequences from tumor samples 

retrieved from cBioPortal42-44 contain two dozen point mutations in the catalytic domain of 

SETD8 (Figure 6a,b, Table S11). We expect that some of these mutations perturb SETD8 

function. Because of conformational heterogeneity, it has historically been challenging for in 

silico approaches to annotate how mutations---in particular those structurally remote from 

functional sites---affect a target protein on the basis of its static structure(s)45-47. Here, we 

envisioned addressing this challenge with the aid of the dynamic conformational landscapes of 

SETD8. To characterize mutations remote from catalytic sites (around 80% of known mutations), 

40 independent microsecond-long MD simulations for each of the cancer-associated apo-SETD8 

mutants were conducted with seed structures prepared from one ternary complex (TC) 

conformer. We then constructed a differential residue-contact map for each variant (Figure 6c,d) 

and extracted snapshots representing most dramatic conformational deviations from the wild 

type conformational ensembles (Figure 6e). Remarkably, even with modest simulation time, 

several cancer-associated mutants displayed neo-conformations that were not observed in the 5 

ms wild-type dataset and cannot be predicted from static X-ray crystal structures. Strikingly, all 

of the neo-conformations display distinct reorganizations at the SET-I motif (Figure 6e). For 

instance, a single point mutation A296T, ~16 Å remote from the active site, yields five distinct 

neo-conformations (Figure 6e). In addition, relative to wild-type apo-SETD8, this mutant 
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populates several conformations with a structurally relaxed a-helix at the SET-I motif (Figure 

6e). C324del, ~20 Å from the SET-I motif, is associated with three neo-conformations and 

displays the most dramatic changes in the differential contact map (Figure 6d, panel 13). The 

remote H340D mutation is associated with one neo-conformation as well as more populated 

conformations containing spatially compressed active sites (Figure 6d, panel 7; 6e). Using in 

vitro radiometric assays, the A296T and H340D mutants were characterized by loss of the 

methyltransferase activity on H4K20 peptide substrate (Figure 6g). The failure to purify 

recombinant C324del also supports the impact of this deletion on SETD8 function. H388Q, 

which mutates a histidine involved in substrate binding, is also associated with neo-

conformations as well as loss of the methyltransferase activity (Figure 6e,g). These observations 

provide potential molecular rationale for how remote mutations can alter the active sites and the 

SET-I motif---and hence catalysis---via modulating the conformational landscape. Exceptions 

are T274I, R279W, R279Q, and A368V, which yielded neo-conformations but showed activity 

comparable to wild-type SETD8 (Figure 6e,g). 

The differential residue-contact maps further revealed that remote mutations can alter 

conformational landscapes by altering populations of pre-existing conformations (Figure 6c,d). 

For instance, E257K, G280S, A301V, T309M, E330Q, D352Y mutations populate 

conformations containing spatially compressed active sites (Figure S37); E372D populates 

conformations containing a constrained post-SET motif; R333C populates conformations with 

reorganized SET motifs adjacent to the peptide binding pocket. All of these mutations showed 

partial loss of methyltransferase activity (Figure 6g). Notably, these structural alterations are 

often remote from the corresponding mutation sites (Figure 6b). In contrast, R244S, T274I, and 

V356I showed no significant conformational change on the basis of their differential contact 

maps, consistent with their comparable methyltransferase activity to wild type SETD8 (Figure 

6g). Likely due to insufficient simulation time (40×1 µs/mutant), R333L and L334P variants, 

characterized by partial-to-complete loss of the methyltransferase activity (Figure 6g), showed 

similar conformational landscapes to that of wild-type apo-SETD8. Exploring conformational 

landscapes is thus an effective strategy to reveal structural alterations associated with majority of 

remote-site mutations for functional annotation. 
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Discussion 

 Here we have demonstrated that tight integration of structural determination---using covalent 

probes and multiple ligand-binding states to trap hidden conformations (Figure 1)---with 

massively distributed molecular simulations and the powerful framework of Markov state 

models (Figure 2b) can provide unprecedented insights into the detailed conformational 

dynamics of an enzyme. The current work demonstrates the merit of an approach that leverages 

multiple X-ray structures with distinct diverse conformations for MD simulations and machine-

learning-based MSM construction to elucidate complex conformational dynamics, and validates 

the resulting model experimentally with testable biophysical predictions (Figure 3). Previously, 

individual components of our integrative strategy have been employed to study the dynamics of 

transcriptional activators48, kinases11,12, and allosteric regulation13. However, it is the first time 

that these diverse approaches are consolidated explicitly with the goal of illuminating 

conformational dynamics of an enzyme in a comprehensive and feasible manner. Assessment of 

key computational parameters concluded that we have utilized sufficient diverse seed structures 

and simulation time for microstate discovery and thus robust construction of conformational 

landscapes (Figure 4). Notably, we relied on a unique computational resource---Folding@home-

--to collect remarkable six-millisecond simulation data (see Method). Without access to 

Folding@home, contemporaneous progress on developing adaptive Markov state model 

construction algorithms---where iterative model building guides the collection of additional 

simulation data49,50---will still allow research groups to achieve this feat on local GPU clusters or 

cloud resources in the near future. Furthermore, the concept of adaptive model construction can 

be extended to identify which new structural or biophysical data would be valuable in reducing 

uncertainty51-53 and producing refined MSMs. The integrated platform and concept formulated 

via this work can be readily transformed to explore dynamic conformational landscapes of other 

proteins.   

 This work represents the first time that conformational dynamics of a protein 

methyltransferase has been definitively characterized with atomic details. Strikingly, SETD8 

adopts extremely diverse dynamic conformations in apo and SAM-bound states (24 and 10 

kinetically metastable macrostates, respectively, Figure 2). Interconversions between metastable 

conformers cover a broad spatio-temporal scale in particular associated with motions of 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/438994doi: bioRxiv preprint first posted online Oct. 12, 2018; 



	
   49	
  
 

 

 24 

SETD8’s SET-I and post-SET motifs (Figures 1,5). In the apo landscape, the general structural 

features of the X-ray structures of BC-Inh1, BC-Inh2, APO, BC-SAM and TC (Figure 1) are 

recapitulated by a subset of macrostates (e.g. A6 for BC-Inh1; A10 for BC-Inh2; A12 for APO; 

A20 for BC-SAM; A22, A24 for TC, 6 of 24 macrostates, Figure 5). Such observation indicates 

that these X-tray structures trapped in the different ligand-binding states are not ligand-induced 

artifacts but indeed relevant snapshots of hidden conformations of apo-SETD8. Similarly, a few 

macrostates in the SAM-bound landscape also recapitulate major structural features of the two 

cofactor-bound X-ray structures (e.g. S1, S2, S10 for BC-SAM, S4, S6, S8 for TC, 6 of 10 

macrostates, Figure 5). Meanwhile, our results also demonstrate that X-ray crystallography 

alone is insufficient to capture all metastable conformations of SETD8. Remarkably, there is no 

correlation of overall structural similarity and interconversion rates between metastable 

conformers. Though the  anticipated findings of fast transitions between structurally similar 

conformers and slow transitions between structurally distinct conformers (e.g. microstates within 

individual satellite macrostates A17-A24 of apo SETD8; S6, S8, and S10 of SAM-bound 

SETD8, Figure 5), we frequently observed fast kinetics of transitions between structurally 

distinct microstates (e.g. microstates within hub-like macrostates A11 and S8; multi-connected 

states A1-A4, A9, A14, S1 and S3-S5) and vice versa (e.g. macrostates A22 and A24) (Figures 

2,5). It is thus interesting to examine how other factors such as specific residue contacts and 

cooperative long range motions of certain structural motifs play roles on interconversion 

kinetics.  

 Functional annotation of the landscapes revealed that the SET-I motif adopts diverse 

conformations (Figure 2), and its overall configuration is a key feature that differentiates the 

lobes of the dumbbell-like conformational landscape of SETD8. The conformational dynamics 

within the hub-like macrostate A11 mainly involves motions of the SET-I motif. Two gain-of-

function I293G and E292G variants of SETD8 were designed for relaxing distorted 

configurations of the SET-I motif upon SAM binding (Figure 3). These findings argue the 

functional essentiality of the intrinsically dynamic motions of SET-I motif for SETD8 SAM 

binding and catalysis. Importance of dynamic conformational modulation of the SET-I motif has 

also been shown for other SET-domain PKMTs. For instance, the SET domains of MLLs and 

EZH1/2 alone are catalytically inert but active in the presence of binding partners WDR5-

RbBP5-Ash2L-Dpy30 (referred as MLL-WRAD) and EED-Suz12 (referred as PRC2), 
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respectively15. Recent structural evidence implicated that the formation of these complexes 

regulates the conformational dynamics of the SET-I motif, which is essential for catalysis54,55. 

Interestingly, this region has also been exploited by cancer-associated mutants of PKMTs. For 

instance, NSD2’s E1099 is located in its SET-I motif and its E1099K mutant was characterized 

as a hot-spot cancer mutation with the gain-of-activity of H3K36 methylation56. Additionally, 

many mutations of PKMTs have been mapped in their SET-I motifs, implicating their potential 

roles in alternation of function (Figure S39, Table S12). 

 In contrast to static X-ray structures, dynamic conformational landscapes greatly facilitated 

the characterization of cancer-associated SETD8 mutants (Figure 6). A significant portion of 

cancer-associated, loss-of-function SETD8 mutations, though remote from active sites, were 

revealed to act allosterically through perturbing the SET-I motif and thus catalysis (Figure 6). 

We also discovered significant changes in the connective networks and a dramatic decrease in 

conformational heterogeneity upon SAM binding (Figure 2). This finding highlights how 

enzyme-ligand interactions reshape conformation landscapes. The conformational landscapes of 

SETD8 thus provide an unprecedented platform for virtual screening of ligand candidates as 

inhibitors via exploring different modes of interaction (SAM-competitive, substrate-competitive, 

covalent or allosteric). Uncovering hidden conformations can thus be essential for developing 

potent and selective SETD8 inhibitors. The conformations of individual SETD8 microstates can 

be further explored to derive their thermodynamic, kinetic, and even transition-state parameters 

in a catalytic cycle. Similar strategies can be generally applied to native or disease-associated 

PKMTs for functional annotation.       
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