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1 SUMMARY 

In the design of real configurations, such as aerospace vehicles, geometry should play a central 
role. For a given shape, the number of unique geometry models is almost as great as the number 
of disciplinary simulation models. Each simulation model will usually read certain geometry and 
mesh formats or have other requirements peculiar to it. However, no matter the geometry/mesh 
format or requirements, it must be based on realizable and consistent geometric object(s). This 
fact allows for all geometry and mesh requirements to originate from a single common 
parametric description. 

Beyond the differences caused by disciplinary analyses, there are also the differences created 
between analysis and manufacturing. When analyzing (or designing/optimizing) some physical 
object that will ultimately be manufactured, it is common practice to create an additional model 
beyond those generated for the simulation design tools. This is a fully realizable 3D 
representation in a CAD or CAD-like system. Generally great care must be taken to ensure that 
the design and manufacturing representations are close enough to each other so that what is built 
is the same as what was designed. This care requires a large amount of time (and human 
intervention), making automation of the process extremely difficult, if not impossible, especially 
within a Multi-Disciplinary Analysis and Optimization (MDAO) environment. 

The most common method for transferring geometry amongst the various analyses is via file 
standards. The first commonly used standard was the IGES file format which contains data that 
is defined as disjoint and unconnected surfaces and curves; that is, it only contains geometry with 
no notion of topology. Topology, in this context, is the hierarchy and connectivity of the various 
geometric elements. Since 3D meshing software ultimately requires a closed watertight model, 
much effort is therefore needed to take the geometric data, trim the curves and surfaces, and then 
deduce the topology. STEP, a more complete file standard, supports the transmittal of topology 
as well as geometry so that a Boundary Representation (BRep) can be built. This is the 
preferable file type to hold geometric data. Surprisingly, this format is seldom used, probably 
due to the fact that constructing a STEP reader is complex and it requires a complete solid-
modeling geometry kernel to deal with the data. 

A larger problem with both IGES and STEP formats is the fact that they are static (non-
parametric) geometry models. The implication of this is that one can only perform physics-based 
analyses on that particular geometry, with no ability to modify it or perform trade studies. Also, 
without being driven by Design Parameters, it is impossible to determine the sensitivities of the 
results of a physics-based simulation with respect to the Design Parameters; the latter is key to 
generating optimal designs. 

This final report for the Computational Aircraft Prototype Syntheses (CAPS) project discusses 
the tasks performed and in some cases the status (if not completed). But unlike many research 
projects, this report and the associated papers (see the Bibliography) are not the output of this 
entire effort. The most tangible and significant result of this work is open source software that 
robustly performs the overall underpinning for a holistic and integrated system that can perform 
Design through Analysis. CAPS along with the rest of the ESP software can be found and 
downloaded at: http://acdl.mit.edu/ESP. 
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2 INTRODUCTION 

2.1 The Engineering SketchPad (ESP) – OpenCSM and EGADS 
Currently, most organizations have found it difficult to bridge the gap between conceptual 
design, where the geometry may be of low fidelity, and fully realizable 3D representations. To 
alleviate this problem and those associated with transmitting geometry via file standards, 
geometry kernel APIs that couple directly with the source of the geometry can be utilized. One 
clear advantage to this approach is that the geometry never needs to be translated and hence 
remains simpler and closed to within the modeler’s tolerance. Also, a geometry system that can 
be used both at the conceptual level and throughout preliminary/detailed design has obvious 
advantages. 

File standards and kernel APIs are for dealing with a static configuration once it has been 
defined; such a view is sufficient for analysis. But for design, the ability to deal with the process 
by which the configuration is defined and built is paramount. In parametric CAD systems, the 
configuration definition is done through a master-model that consists of both a build recipe 
(called the feature tree) and a set of Design Parameters. This recipe (where the design intent is 
realized) must be made available to the MDAO process since it defines the design space and 
informs how to build and optimize the configuration. Most CAD systems hold this information 
in proprietary file formats that cannot easily be read or modified by outside programs. 

Foundational work has been accomplished in developing an integrated software suite that solves 
the issues discussed above. The resulting capability provides the tools to generate various 
representations of a design (either multi-fidelity or multi-disciplinary, or both) from a single 
master model. A user accesses this software through a web browser, and this complete suite is 
referred to as the Engineering Sketch Pad (ESP), which is a fully parametric, attributed, feature-
based solid-modeling system [1]. The output of ESP is geometry in the form of one or more 
BReps (see Appendix A). 

ESP is built both upon the WebViewer (which is a WebGL-based visualizer for three-
dimensional configurations and data) and upon OpenCSM [2], which is a constructive solid 
modeler that is itself built upon EGADS [3] and OpenCASCADE. There is no absolute 
requirement for ESP’s dependency on OpenCASCADE; rather this CAD kernel is chosen 
because it is open-source and can be distributed freely with ESP. In fact, all of this software is 
open-source and available without any licensing restrictions. 

2.2 CAPS 
It is not an easy task to build a tightly-integrated software system that contains many access 
points, needs to be able to be user-driven, and fundamentally improves upon the multi-fidelity 
and multi-disciplinary design process. This is accomplished in CAPS (which is ESP’s formal 
connection to various Computational Engineering Analysis suites) by attacking the process-
related bottlenecks head-on [4]. For example, when performing a vortex lattice aerodynamic 
analysis of a wing with the geometric description of an Outer Mold Line (OML), the wing needs 
to be deflated to a single surface. Typically, this requires difficult, possibly error-prone, user-
intensive reverse engineering and may provide situations that are, at best, ambiguous. The 
strategy taken here is to forward engineer the process, where, in this case, the mid-surface 
aerodynamic shape is generated directly. 
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Component or sub-component models can be generated as either compiled-language plug-ins or 
as scripts that build geometry. CAPS allows user and programmatic access (through a high-level 
API or Python interface) to: 

• change a Design Parameter value (or values) and regenerate the geometry; 
• annotate the geometry through attribution; 
• get geometric sensitivities with respect to the Design Parameters; 
• generate geometry at a fidelity commensurate with the analysis to be used; 
• mesh (or setup the input for meshing) the geometry, specifically for the analysis at-hand; and 
• setup for the execution of the specific analysis code. 
 
A software block diagram for CAPS in the ESP environment can be seen in Figure 1. An 
important part of CAPS’ flexibility in dealing with various analysis codes are the AIMs 
(Analysis Interface Modules). This plug-in technology leaves the overall framework alone and 
allows for run-time connections. The geometry passed to the plug-in is specified on the BRep (of 
appropriate fidelity) by the use of attribution at build. Any inputs (not associated with the BRep) 
as well as other BRep attributes may also be required depending of the analysis at-hand. The 
following functions are a part of any AIM plug-in: 

• Attribute/Input Checking: this AIM function is invoked before any mesh/input file generation 
to ensure that all of the required data can be found. 

• Meshing: the input BRep and/or tessellation are used to either perform the meshing directly 
(if possible or the mesh system has an API) or to provide input to a grid generator. Note that 
the mesh vertices that sit on geometry (as described in the input BRep) need to be associated 
back to the geometry. This is important for generating parametric sensitivities [5] and 
performing data fitting [6] (straight forward interpolation or conservative data transfer). Most 
stand-alone grid generation systems maintain this data internally but do not make it available 
as output. Any attempt to re-associate this data by inverse evaluations is slow and not robust. 

• Analysis Input Generation (Pre-Execution): the input values and attributes found on the 
geometry are used to construct and output the input file(s) required to run the analysis. If the 
analysis suite has its own API, then the API can be used directly to avoid the writing and 
subsequent reading of files. This means that the pre-execution portion of the AIM also 
performs the analysis execution function, otherwise the CAPS user/programmer/MDO 
framework is responsible for running the solver. 

• Post Execution: CAPS is informed that the analysis code has successfully run. 
• Output Parsing: this is required to get performance data, displacements, pressures or other 

information required to be used as input to another analysis module or to inform the 
optimizer of the objective functional value(s). Again, this would involve file reading unless 
the analysis system has an API that can be used to retrieve the output data directly. 

• Data Transfer Functions [6]: a function that computes interpolation within a surface element 
is required in order to perform the interdisciplinary coupling in an interpolation setting. If the 
option for conservation is chosen then the interpolation function must be augmented with one 
that performs integration of quantities over an element (also their backward or dual variants 
are required for efficient computation of the transfer). 
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Figure 1. CAPS (in the ESP environment) block diagram. 

The block diagram seen in Figure 1 has not changed since the inception of CAPS except for 
these 2 items: 

• EGADSlite – This is a subset of the EGADS API and entirely free of the OpenCASCADE 
dependency. The portion of the API supported are those functions useful for grid generation 
and mesh adaptation and this subset is designed specifically to be placed in High 
Performance Compute (HPC) environments [7]. EGADSlite contains the functions that allow 
for parsing the Topology of a geometric model, performing geometric evaluations and 
inverse evaluations and the in/out predicates – basically everything in EGADS except for 
geometry construction. This work has been funded by NASA. 

• pyCAPS – The original CAPS proposal assumed that the software would be accessed via 
compiled applications or would be plugged into an MDO framework (where someone would 
use the CAPS API in C/C++ to make the programming connections). It quickly became 
apparent that this would limit CAPS’ access and usefulness. An easier access approach was 
needed. The decision was made by AFRL personnel that there needed to be a Python 
connection. pyCAPS [8] was initially written by Ryan Durscher AFRL/RQVC to mirror the 
C/C++ API but also be appropriate for Python (CAPS was Pythonized). This has become an 
integral part of the ESP/CAPS software suite and has allowed for improved and simplified 



 

5 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

testing; plus, it gives us the ability to train people in the use of CAPS without requiring 
programming or being dependent on an MDO framework. 

2.3 AIMs 
The open source suite of CAPS AIMs is fairly complete reflecting various fidelities of both 
Computational Fluid Dynamics (CFD) and Structural Analysis. Also, because of the non-viral 
open source license and the plug-in nature of the AIMs, AFRL personnel has developed a 
number of internal AIMs not distributed outside of AFRL and which are not included in the 
external software releases. 
 
The following is a list of AIMs currently in the ESP/CAPS distribution: 

AFLR2 – A 2D triangle mesher for 2D CFD applications written by Prof. Dave Marcum of 
Mississippi State University. Used for running SU2 in 2D mode.  

AFLR3 – This is the 3D tetrahedral volume mesher written by Prof. Dave Marcum of 
Mississippi State University. AFLR3 is an unstructured grid generator that is used by many in 
the CFD community and by many in the DoD and can generate meshes suitable for Reynolds-
Averaged Navier-Stokes (RANS) simulations. 

AFLR4 – This 3D surface triangulator (also from Prof. Marcum) can be used instead of the 
EGADS tessellator to prepare surfaces for volume meshing (AFLR3 or TetGen). Its output is an 
EGADS Tessellation Object, which is a container for the triangulation (elements and vertices). 
The geometric ownership of each vertex is also maintained with the associated geometric 
parameters. 

ASTROS – The Automated STRructural Optimization System (ASTROS) is a comprehensive 
software suite for the multidisciplinary design and analysis of aerospace structures. ASTROS 
combines optimization algorithms with structural finite element analysis (FEA) disciplines such 
as statics, dynamics, and aeroelasticity to perform automated design of structures. ASTROS 
supports both the preliminary design stages of new aircraft/spacecraft structures and design 
modifications that occur later in the product life cycle. ASTROS, based on the standard 
NASTRAN data formats, combines finite element modeling and analysis techniques with 
efficient optimization solutions to deliver significant reductions in the time required to develop 
superior designs of aerospace structures. ASTROS integrates all of the engineering disciplines 
that impact the preliminary structural design phase and can simultaneously design to strength, 
flutter, displacement, and other requirements. It considers a wide scope of conditions in a design 
task and treats multiple boundary conditions, each permitting a range of analysis such as statics, 
modes, and flutter. The current AIM supports a subset of the current ASTROS functionality. 
More can be added when needed. 

AVL – Describing geometry appropriate for AVL (the Athena Vortex Lattice) code [9] is 
different than higher fidelity codes that require a single Body representing the OML. AVL 
requires multiple Bodies each referring to an airfoil section. The geometric model needs to be 
consistent with a build description that is hierarchical and multi-fidelity. That is, the build 
description that generates the geometric data at this level can be further enhanced to produce the 
complete OML of the aircraft design under consideration. 
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As for the geometric description, AVL requires airfoil section data specified at the appropriate 
locations that describe the skeleton of the aircraft. These sections, when lofted as groups and 
finally unioned together, build the OML. Intercepting the state of the geometry before these 
higher-level operations are applied provides the data appropriate for AVL. This naturally 
constructs a hierarchal geometric view where a design can progress into higher fidelities and 
feedback can be achieved where we can go back to this level of description when need be. 

AWAVE – AWAVE provides an estimation for wave drag at supersonic Mach numbers at 
various angles of attack. Inside AWAVE all configurations are assumed to be symmetric with 
respect to the X-Z plane. Only the +Y axis portion of a given model is used to generate the 
AWAVE input. This AIM automatically finds the proper portions of the model to create the 
input. However, it assumes that the model is oriented with the X-axis as the flow direction and 
the Y-axis out the right-side wing from the pilot’s perspective. 

Cart3D – Cart3D (written by Michael Aftosmis and team at NASA Ames Research Center) is the 
best-in-class CFD Euler (inviscid) solver. The geometric input to Cart3D is a surface tessellation 
of the Body of interest (in the form of an EGADS tessellation Object). Cart3D constructs an 
AMR (hierarchical Automatic Mesh Refinement) mesh, where the input body triangulation cuts 
through the Cartesian elements. 

Another module in this suite is not a connection to CAPS, but is an ESP interface into the 
Cart3D Design Framework. This interface code (“ESPxddm”) uses the XML Cart3D design 
description language XDDM to adjust OpenCSM design parameters, rebuild the geometry, 
tessellate and compute sensitivities for the Design Framework. 

Chimera Grid Tools – Chimera Grid Tools (CGT) is a software package containing a variety of 
tools for the Chimera overset grid approach for solving complex configuration problems. The 
typical starting point is a description of the surface geometry in the form of triangulations or 
regular surface patches. This data is converted from the ESP description and is the prototype for 
the current ESP integration into the CGT tool “OverGrid”. 

EGADS Tessellation – The EGADS surface meshing AIM provides CAPS with the native 
EGADS triangulation (or quadrilaterals) in the form of a Tessellation Object. 

FRICTION – FRICTION is a skin friction and form drag estimation program written by W. 
Mason (Virginia Tech), which provides an estimate of laminar and turbulent skin friction and 
form drag suitable for use for aircraft preliminary design.  

Fun3D – Fun3D is an unstructured 3D RANS CFD solver from NASA Langley Research Center. 

HSM – The Hypergeometric Shell Model (HSM) is formulated in the global 3D cartesian 
coordinate system, parameterized using local (element) coordinates, which also define a local 
basis for forming tangential derivatives and material strains. This closely follows the analysis of 
Simo et al [10,11,12], except that here the equations are obtained directly from stress equilibrium 
rather than an energy functional. As in Simo’s formulation, the present method also defines a 
material quasi-normal vector (or director) as a primary unknown, whose deviation from the 
surface normal defines the transverse shear strains. The transverse shear stresses, however, are 
represented separately by their scalar potential, so that the normal-force equilibrium relation 
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becomes a well-conditioned Poisson equation, and also precludes any shear-locking problems 
[13]. 

MASSTRAN – MassTran is a simple solver that approximates the mass properties and is used 
primarily for training in the use of CAPS. It computes the total mass, center of gravity, and 
moments of inertia of a geometric configuration using structural shell meshes attributed for finite 
element structural solvers such as ASTROS and NASTRAN.  

MYSTRAN – MYSTRAN is an open-source general purpose finite element analysis computer 
program for structures that can be modeled as linear (i.e. displacements, forces and stresses 
proportional to applied load). MYSTRAN is an acronym for “My Structural Analysis”, to 
indicate its usefulness in solving a wide variety of finite element analysis problems on a personal 
computer (although there is no reason that it could not be used on larger computers as well). For 
anyone familiar with the popular NASTRAN computer program developed by NASA in the 
1970’s and popularized in several commercial versions since, the input to MYSTRAN will look 
quite familiar. Indeed, many structural analyses modeled for execution in NASTRAN will 
execute in MYSTRAN with little, or no, modification. MYSTRAN, however, is not NASTRAN. 
All of the finite element processing to obtain the global stiffness matrix (including the finite 
element matrix generation routines themselves), the reduction of the stiffness matrix to the 
solution set, as well as all of the input/output routines are written in independent, modern, 
Fortran 90/95 code. The major solution algorithms (e.g., triangular decomposition of matrices 
and forward/backward substitution to obtain solutions of linear equations and Lanczos 
eigenvalues extraction code), however, were obtained from the popular LAPACK and ARPACK 
codes. 

NASTRAN – NASTRAN is a finite element analysis (FEA) program that was originally 
developed for NASA in the late 1960s by Stephen Burns of the University of Rochester under 
United States government funding for the Aerospace industry. The MacNeal-Schwendler 
Corporation (MSC) was one of the principal and original developers of the public domain 
NASTRAN code. NASTRAN source code is integrated in a number of different software 
packages, which are distributed by a range of companies. This AIM is specifically targeted for 
the MSC NASTRAN variant. 

Pointwise – Pointwise is the premier commercial CFD Mesher. Pointwise has its own internal 
Geometry Kernel which is referred to as Geometry Engine (GE). A prerequisite for AIM 
construction is that EGADS data be translated into GE, which includes geometry, topology and 
attribution. This has been done in a separate stand-alone application (“egads2nmb”). This code 
(“egads2nmb”) has been taken over and incorporated into Pointwise Ver 18.2R2 (and higher) so 
that Pointwise can now fully import EGADS models. The AIM drives Pointwise Glyph scripts to 
provide full automation after import. 

Skeleton – This AIM is a coding example that individuals interested in writing AIMs can use as 
a pattern. It is being constructed for the CAPS trainings, where (at times) the last session is on 
AIM writing. 

SU2 – SU2 is an open-source unstructured 3D RANS CFD solver from a team of researchers, 
students and others) from Stanford University overseen by Prof. Juan Alonso. 
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TetGen – TetGen is an open-source tetrahedral mesh generator written by Hang Si [14], which 
can be used with Fun3D or SU2 for Euler simulations. 

TSFOIL – This code solves the two-dimensional, transonic, small-disturbance equations for flow 
past lifting airfoils in both free air and various wind-tunnel environments by using a variant of 
the finite-difference method. 

XFOIL – XFOIL [15] is an interactive program for the design and analysis of subsonic isolated 
airfoils from Mark Drela at MIT. 

2.4 Software Engineering and Testing 
In that the tangible output for this contract is the open source software, the approach to software 
generation, testing, release and training is critical in order that the result be robust and usable. To 
ensure that all of the ESP software components function a great deal of testing is required. This 
has been automated by the use of Jenkins which watches the MIT hosted ESP repositories for 
commits. 

This testing and the use of Jenkins as the test harness was initiated during this contract (though 
there was no specific associated task). We have found this invaluable in that it allows for the 
generation of software that is of an exceptionally high quality (rivaling the best commercial 
engineering software available). Most of the time the testing suite finds the problems so that the 
users do not. It allows for us to freely change foundational portions of the software without the 
fear of inserting bugs or not maintaining backward compatibility. The success of this software is 
partially attributable to the vast amount of testing and the use of Jenkins for organizing the tests. 

The ESP tab on the ACDL/MIT Jenkins page can be seen in Figure 2. Currently all testing is 
done against 2 Releases of OpenCASCADE, 6.8.1 and 7.3.1 (both of which have been hardened 
and corrected for known bugs). A more complete description of each of these Jenkins Projects 
follow: 
 
BasicOcsm – EGADS and OpenCSM are built for the use of the Jenkins project and the basic 
regression tests are run from the OpenCSM data/basic directory. 
 
Beta – This project is run after a new ESP Beta release has been put on the ESP website. It 
compiles and builds all of the ESP (including CAPS) applications to test out the distribution 
layout. Minimal testing on both ESP and CAPS is performed. 
 
Bob –Similar to BasicOcsm but is initiated manually to test low-level changes. This allows for 
finding problems before the regular testing 
 
Commit – This gets run after an svn commit from either the CAPS, OpenCSM or EGADS 
repositories. It compiles, and generally builds all libraries and applications. It also executes a 
small suite of test examples to ensure that the base-level functionality is intact. 
Coverage – The gcc suite of compilers supports the ability to map the level of coverage the suite 
of tests actually touch in the source code-base. This is useful information and provides a “water 
mark” where testing coverage should only improve over time. This is available only under 
Linux. Note that this is currently not being monitored. 
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MemcheckCaps – Both clang and gcc have the ability to check some memory usage (for out of 
bounds memory usage) by compiling the source with certain flags. This is done for CAPS and a 
fairly exhaustive suite of tests are run in order to check for memory problems. This provides 
some of the same data as has been available through Valgrind but runs faster (note that this does 
not check for the use of uninitialized values, so Valgrind is still an important tool in the arsenal).  
 
MemcheckOcsm – Same as MemcheckCaps but for EGADS and OpenCSM. 
 
MemcheckOcsm_7.4 – Same as MemcheckOcsm but testing against OpenCASCADE 7.4.1 (our 
hardened version of the 7.4 release). This is being done as we deprecate support of 
OpenCASCADE 6.8 and consider including OpenCASCADE 7.4. 
 
RegCaps – A complete CAPS test suite of unit and higher-level tests are built and run for all 
supported architectures and compilers. Because of the standardization, all sections should 
provide the same results. If not, this highlights cases to examine closely. This was what was 
done, by hand, just before a full release was made official. The use of Jenkins in this project 
significantly reduces the time required to cut a new release. 
 
RegOcsm – EGADS and OpenCSM are built. The complete OpenCSM test suite of unit and 
higher-level tests are run for all supported architectures and compilers. Because of the 
standardization, all sections should provide the same results. If not, this highlights cases to 
examine closely. 
 
UndefinedCaps – Both clang and gcc have the ability to catch the use of undefined variables. 
This project builds and executes the CAPS applications with this flag and reports any findings. 
 
UndefinedOcsm – Both clang and gcc have the ability to catch the use of undefined variables. 
This project builds and executes EGADS and OpenCSM applications with this flag and reports 
any findings. 
 
UndefinedOcsm_7.4 – Same as UndefinedOcsm but testing against OpenCASCADE 7.4.1 
 
ValgrindCaps – This project runs the same cases as in the RegCaps Project, but does so using the 
dynamic analyzer Valgrind. This is run only once a month because it can take about a day, due to 
the size of the test suite and the speed penalty (as much as 10 times slower) encountered using 
this tool. 
 
ValgrindOcsm – This project runs the same cases as in the RegOcsm Project, but does so using 
the dynamic analyzer Valgrind. This is run only once a month because it can take more than two 
days, due to the size of the test suite and the speed penalty (as much as 10 times slower) 
encountered using this tool.  
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Figure 2. The ESP tab displaying all of the Jenkins testing projects. 
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3 TASK STATUS 

There is no intention of generating a detailed report of each of these tasks. For that information 
please refer to the associated papers (see the References) or the appropriate monthly technical 
reports (where there have been 61). The monthly reports are complete and detailed. This final 
report discusses and summarizes the status of each task/subtask.  

3.1 CAPS 
This first set of 10 tasks were the ones outlined in the original CAPS proposal. This ran from 
August 2014 to May 2017. 

3.1.1 CAPS Infrastructure 

These subtasks are associated with the design and initial development of the CAPS software 
system. 

3.1.1.1 Overall Architecture 
A detailed design for the CAPS infrastructure, including identification of the form and function 
of all major components and the associated application programming interfaces (APIs) was 
performed. A design review with customer was had early on in the contract (See Section 
3.1.10.1) to ensure that most all of the needs are met. The result can be seen in the current ESP 
distribution in the file $ESP_ROOT/doc/CAPSapi.pdf (also see Appendix B), which has only 
changed in minor ways since the original design. 

3.1.1.2 AIM Plugin Design 
The API for the Analysis Interface & Meshing (AIM) subsystem was defined taking the API for 
the User-defined Primitives/Functions (within the Geometry subsystem) as an example and 
template. The current AIM development and API document can be found in the ESP distribution 
in the file $ESP_ROOT/doc/AIMdevel.pdf (also see Appendix C). 

This design has changed over the course of this effort, in particular for the support of pyCAPS 
and providing a hierarchal view for the AIMs. For the most part these changes were 
accomplished by adding AIM access points while avoiding changing the signatures of the 
functions (so that the functionality of existing AIMs could be maintained – backward 
compatibility). 

The current design appears quite flexible and adequate as can be seen by the number and breadth 
of AIMs distributed with ESP/CAPS (see Section 2.3) and the proprietary AIMs found at AFRL 
and other sites. 

3.1.2 Engineering SketchPad  

The subtasks listed below have to do with the Graphical User Interface (GUI) of the geometry 
subsystem found in ESP. These are maintenance, improvement and demonstration efforts. 

3.1.2.1 ESP Parameter Manager 
A browser-based parameter manager was designed and implemented that allows users to inspect 
and change all the parameters associated with a model. These parameters include geometric 
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parameters (such as aspect ratio), material property parameters, and control parameters. The 
parameters will be organized hierarchically such that conceptual, preliminary, and detailed 
design parameters are grouped together. 

 
Figure 3. ESP Parameter Management. 

The hierarchical ESP Parameter Manager can be seen in the left-hand frame of Figure 3. The 
transport model shown here is from the most recent training and can be found in the current ESP 
distribution at $ESP_ROOT/training/ESP/transport.csm. What is seen is the “Conceptual” view 
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(i.e., the one appropriate to examine the model, and not for any specific analysis). The other 
views can be simply activated by setting the appropriate parameters to 1.  

The components in play can be selected in a similar manner. In Figure 3 we see that the wing, 
fuselage, horizontal and vertical tails are expressed, where the pylon, pod and control surfaces 
have been suppressed. Also, the fuselage parameters have been opened up displaying the 
fuselage controls. Similar access exists for all of the other components. 

3.1.2.2 WebViewer Updates 
The browser-based geometry viewer (WebViewer) was extended to allow for visualization of 
surface parameters, such as design sensitivities, aerodynamic loads, structural displacements, and 
temperatures. This was accomplished in the ESP GUI and a pyCAPS initiated variant. Much 
effort as expended to ensure that the WebViewer performs well on supported browsers. Note that 
Microsoft’s Internet Explorer and Edge could not be included due to long standing WebSocket 
bugs. 

 
Figure 4. Sensitivity of the fuselage width at a section mid-wing. 

Figure 4 shows the design sensitivity colored on the geometry. Because the fuselage was 
generated by the blend operation (which produces a fit cubic BSpline surface), one notes that as 
you increase the width at the mid-section the sensitivity towards the tail indicates shrinkage. 
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3.1.2.3 Multidiscipline multi-fidelity fighter 
A number of fluid/structure fighter models have been generated, which are driven from a 
consistent suite of parameters. Most models, at a minimum, include a built-up element model 
(BEM) and an outer-mode line (OML). Example CSM files can be seen in the distribution 
$ESP_ROOT/data/fighter*.csm. 

 
Figure 5. A10-like fighter – Outer mold-line and the scribed structural supports. 

Figure 5 shows a fairly complete and rather detailed ESP model of a fighter inspired by the A10. 
This was put together by Kip Risch-Andrews, a Syracuse University undergraduate. It contains 
the OML, structural components (ribs, spars, bulkheads, and etc.) as well as subsystems like the 
engines, weapons and cutouts for the cockpit. Figure 6 displays the same model but with some of 
the OML skins not rendered, which gives a more complete view of the internal layout of the 
structures and components. 
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Figure 6. A10-like fighter – Showing the internal structures and components. 

3.1.3 Geometry Subsystem 

The following subtasks involve the continued improvement to EGADS and OpenCSM and 
required changes to fully support CAPS. 

3.1.3.1 EGADS Updates 
This was a continuing subtask throughout the original contract and the supplement. Its intention 
is to enhance and upgrade EGADS as required. EGADS is the geometry engine used by all of 
ESP (including the CAPS layer). The UDP/UDF as well as the AIM plugins are all EGADS 
applets and have full access to the model (geometry, topology, attribution and can modify and/or 
construct new models). EGADS was originally a thin veneer over OpenCASCADE. This 
situation has been changing over time and EGADS’ dependency on OpenCASCADE has been 
diminished by its enhancement. This is due to three factors: 
1. most of the robustness issues experienced in the ESP suite are due to SegFaults and 

unexpected aborts deep within OpenCASCADE,  
2. some of OpenCASCADE’s operators don’t work as one would expect, and  
3. OpenCASCADE does not provide the parametric sensitivities required by ESP without 

resorting to perturbing the geometry. 

This subtask included: 

• General EGADS maintenance. This included bug fixes and the effort in supporting new 
releases of OpenCASCADE. Much of this subtask is made easier by the vast testing, in 
particular, of the OpenCSM scripts. 
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• Work continues to improve the speed and robustness of the Solid Boolean Operators (SBOs). 
There has been much success in this endeavor. Between the EGADS internal changes and 
the improvements in OpenCASCADE, we have seen as much as a factor of 10 speedup for 
some SBOs. Also, the success rate of completing all of the tests in the suite continues to 
improve indicating better robustness. 

• Replaced the evaluations, inverse evaluations and in/out predicates for better speed and to be 
consistent with the EGADS parallel variant (EGADSlite – funded under a NASA NRA 
cooperative agreement). This has allowed for scalability to be realized when multithreading 
EGADS applications. 

• Many of the low-level geometry functions now provide parametric sensitivities to operators 
in EGADS. This minimizes what currently requires finite-differencing. 

3.1.3.2 OpenCSM Updates 
Again, this was a continuing subtask throughout the original contract and the supplement to 
enhance and upgrade the OpenCSM as required. OpenCSM is the parametric build portion of 
ESP. This foundational software parses the build scripts (feature tree) in order to instruct 
EGADS as to how the geometry should be built, based on the Design Parameters. OpenCSM 
also provides parametric sensitivities (when queried) on the resultant geometry by traversing the 
script and applying the chain-rule. 

This maintenance task covers the entire period and is a “catch all” for bug fixes, CSM scripting 
enhancements, continued development and testing. 

3.1.3.3 CSM Components 
A library of sub-system components that can be included within any model has been developed. 
Most of these are in the form of UDCs (User Defined Components), which appear to be CSM 
subroutines or macros. A complete collection of these scripts can be found in the ESP 
distribution in $ESP_ROOT/udc. 

3.1.3.4 UDP Plugins 
A large number of User Defined Primitive (UDP) and User Defined Function (UDF) plugins 
have been generated that can be included within any model. The UDP/UDFs include: bezier, 
biconvex, box, createPoly, csm, editAttr, ellipse, fitcurve, freeform, hex, import, kulfan, 
naca, naca456, nurbbody, parsec, pod, radwaf, sew, stiffener, supell, and waffle (see the 
OpenCSM help for more details). 

3.1.4 Legacy Geometry Tools 

Even though ESP is designed to generate clean geometry and models commensurate (in fidelity) 
with the analysis at-hand, there are situations where the import of legacy models is important. 
These subtasks deal with both static and parametric legacy geometry. 

3.1.4.1 Import Legacy Geometry 
There are 3 different file formats that can be used to import legacy geometry: IGES, STEP, and 
STL. EGADS through EG_loadModel (and the import command in OpenCSM) can load either 
IGES and/or STEP. In the case of STEP, the import is usually fairly good and may require no 
intervention. This may not be the case for IGES where the import can be good if the geometry is 
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properly trimmed and written with topology, but this is not the default. More often unconnected 
individual surfaces are written – these are import to EGADS as a series of Face-Bodies. The 
Face-Bodies can be put back together by using the EGADS function EG_sewFaces or in 
OpenCSM by the ‘udprim sew’ command. If this fails the imported geometry can be tessellated 
and the triangles that make up the tessellation can be treated like STL input. 

For CAPS to properly function (or the geometry to be used during the build of more complex 
configurations), the imported geometry cannot be discrete but must be in the form of a BRep. 
This is a problem for the import of triangulations (e.g., from STL files). The CAPS application 
SLUGS (the Static Legacy Geometry System) requires interaction with the user to accomplish 
the conversion to BRep. The user is presented with a graphical view of the input tessellation in a 
browser (using the WebViewer) with a very similar layout to ESP. Figure 7 shows an example 
configuration that consists of a transport-type configuration with two under-wing engines. 

 
Figure 7. Initial view of a tessellation that is given to SLUGS. 

The first step in the use of SLUGS is to repair the tessellation to fill-in gaps and join nearly-
identical points. An example of this is shown in Figure 8 where the three holes were filled in 
with very few mouse clicks. 
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Figure 8. Example of initial and “fixed” tessellation in SLUGS. 

The second step in the use of SLUGS is to separate the triangles in the configuration into 
“colors”, each of which will ultimately become a Face in the static geometry. This is done by 
marking triangle sides that enclose a group of triangles and then telling SLUGS to color them. 
The marking of the triangle sides is greatly facilitated by the use of a SLUGS tool that 
automatically marks the sides that lie on the shortest path between two specified points. 

 
Figure 9. Example of configuration colored by a user in less than 30 minutes. 

For the configuration shown in Figure 9 the entire coloring process was performed in less than a 
half hour. See $ESP_ROOT/SLUGS/Slugs-help.html for a description of the interactive 
commands. 
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The third step, which converts the colored triangulation into the BRep Edges and Faces requires 
colored patches that are either 3 or 4 sided. Each colored patch becomes a Face when fit with a 
BSpline control net of 7 x 7 points using the Levenberg-Marquardt algorithm. 
 
This non-parametric geometry is usable in a static manner (i.e., the geometry cannot be 
parametrically rebuilt) throughout CAPS.  

3.1.4.2 Legacy Parameterization 
The goal of PLUGS (the Parametric Legacy Unstructured Geometry System) is to find the design 
parameter values (associated with a given CSM model) that most closely match a cloud of 
unassigned with regards to geometry (and unconnected) points. This is done through the use of a 
least-squares (Levenberg-Marquardt) optimizer that simultaneously changes the values of the 
design parameters as well as the [u,v] parametric coordinate associated with each point in the 
cloud. The initial work on PLUGS was done in 2016 by a graduate student (Pengcheng Jia) at 
Syracuse University [16].  

The basic strategy is a nested process. In the outer layer of the process, each cloud point is 
associated with the most likely face in the configuration. Once these correspondences are made, 
the inner layer uses the Levenberg-Marquardt optimizer to modify the design parameters and 
geometric [u,v] parametric coordinates. At the end of this process, the “guessed” 
correspondences might not be very good, so the outer layer is again processed to re-establish the 
correspondences. 

Though Jia showed very promising results, his research code was not integrated into the ESP 
software suite at the time. See Section 3.2.4.3 for the current status and CAPS integration. 

3.1.5 Structural Design – LSM/HSM 

A “Lumped” Structural Model (LSM) that extends traditional beam models into a plate-based 
model that is fully compatible with the simple aeroelastic analyses, such a vortex lattice method 
has been developed. Classical shell elasticity theory with complex geometry has traditionally 
been formulated in curvilinear coordinate systems on the shell. The resulting elasticity equations 
then involve coordinate Christoffel symbols which account for the curvatures of the coordinate 
lines. This formalism is not only complex, but creates unwarranted demands on geometry 
smoothness in computational implementations. 

Discretizations which treat the shell elements as degenerate 3D solids circumvent the problems 
with curvilinear coordinates by formulating the problem in 3D Cartesian space, with the node 
position vector and transverse material vector (or director) as the primary unknowns. However, 
they have their own complications in their need for C1 or even C2 continuity of assumed element 
solution modes, and also have other problems such as shear locking. They also do not capture 
rigid-body rotations exactly without special treatment. Exact representation of rigid-body 
element rotation is highly desirable for applications such as high aspect ratio High Altitude Long 
Endurance (HALE) aircraft which can feature large deformations. 

The Hypergeometric Shell Model (HSM) [13] is formulated in the global 3D Cartesian 
coordinate system and parameterized using local (element) coordinates, which also define a local 
basis for forming tangential and normal derivatives as well as material strains. HSM extends 
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basic bilinear shell models by constructing a conformal higher-order surface (C1 continuous in 
the fine-mesh limit) using the director field which is already present, so that no additional 
unknowns are introduced. The MITC method [17] is used for transverse shear strain 
interpolations. Overall, for a given numerical problem size, a large improvement in accuracy is 
obtained for highly-curved elements and bending-dominated problems, and particularly in 
problems with strong membrane/bending coupling, e.g., buckling. Both quadrilateral and triangle 
elements are treated. 

The present method also defines a complete local basis for the undeformed geometry, in the form 
of a normal vector and two in-surface vectors in which general anisotropic materials can be 
specified independently of the discretization.  

Figure 10 demonstrates a tube beam with incipient shell buckling computed using the HSM 
formulation. The tube is anchored at one end with a simple pinned support boundary condition, 
and a vertical force is applied at the free end. The tube exhibits local buckling for a sufficiently 
large tip load. At incipient buckling, a tube-ovalization buckling mode is evident, and features an 
inward “dent” on the upper surface roughly 1.5 diameters out from the anchored end. Also 
visible is another conventional column-type buckling mode characterized by an outward bend 
immediately adjacent to the anchor end. 

 
Figure 10. Tube beam is subjected to a vertical load on its free end. 

3.1.6 Analysis Subsystem 

3.1.6.1 Data Manager 
It was originally envisioned that there be a CAPS data manager. The object-based data design 
changed the notion of where (meta)data for an object resides. In the current CAPS design 
information associated with an object is stored as part of the object itself. This includes functions 
like those associated with a software control system such as versioning, metadata (attribute) 
properties, and who made the changes. This could be thought of as be beginning of a design 
system with Digital Thread. There are also data objects in CAPS that are the receptacle for data 
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associated with analysis input and output as well as those that reflect data distributed on the 
discrete form of the geometry targeted for a particular analysis (Vertex Sets). The Vertex Sets 
can have scalar, vector (and state vector) fields attached (Data Sets) to provide flexible methods 
to store information for the user to view or for multi-physics (multidisciplinary) CAPS problems. 
See in the ESP distribution the file $ESP_ROOT/doc/CAPSapi.pdf which describes in detail the 
construction of Vertex and Data Set objects and their use. 

3.1.6.2 Conservative Fitting 
The CAPS software design performs lazy computations, that is there is a concept of dirty 
associated with an object. This is handled by having a serial number associated with an object 
and if the prerequisite objects have a later serial number than the object itself, it is dirty. If an 
object is dirty and then requested, CAPS initiates the calculation required to update the object 
and make clean by resetting the serial number to the current value. 

A CAPS Bound object can contain multiple Vertex Sets, each can have Data Sets with the same 
name, but only one can be the source of the Data Set (see Appendix B for a more complete 
descriptions of these terms). The source is basically the owning Analysis Object (attached to an 
AIM), where the other Data Sets (with the same name) are derived from this source Object. For a 
standard Fluid/Structure interaction the owning Data Set for pressure would be the CFD 
analysis, where the displacement (a vector of 3) source is the structural analysis.  

The dependent Data Sets are computed via one of two methods: interpolation or conservative 
data transfer. If conservative, in a sense the interpolation weights are adjusted so that the area-
weighted integrated values of the source and the derived information match [6]. Conservative 
data transfers are important for weakly coupled inner iterations so that the process can be 
convergent. See the end of the file $ESP_ROOT/doc/CAPSapi.pdf (Appendix B), which 
describes setting up these coupled multidisciplinary simulations. 

Note that this has been demonstrated and used at AFRL in a number of situations and has 
become part of the CAPS training. See $ESP_ROOT/training/session5.3.pdf entitled “Data 
Transfer: Loosely-Coupled Aeroelasticity” for a complete description of the current state of 
CAPS coupling using pyCAPS. 

3.1.7 Meshing 

Meshing tends to be the bottleneck in many simulations. These subtasks are associated with the 
ability to automatically generate meshes for some of the analysis suites.  

3.1.7.1 OverSet Meshing 
The original use (and intent) for OpenCSM was as an overset mesh generation application. The 
notion was that you could build up the mesh topology as the geometry was constructed. The 
prototype for this kind of overset meshing was a tool called OvrCad. For a number of reasons, 
the priority of this task was always shadowed by more pressing needs. At the same time William 
Chan (NASA Ames Research Center), the author of the premier overset meshing tool OverGrid 
began using EGADS as the base-level geometry kernel. His intension was the same as OvrCad – 
automation of the overset mesh generation process. William’s effort (funded internally by 
NASA) based the connection to geometry on EGADS and the additional information it can 
provide. 
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Figure 11. The use of EGADS in automating NASA’s OverGrid. 

The automated meshing results of using EGADS/OverGrid on a simple quadcopter can be seen 
in Figure 11. The left-hand image shows a graded [u,v] structured surface mesh iblanked where 
the surface is trimmed. Mesh clustering is seen where Nodes appear in the BRep Topology. The 
middle image of Figure 11 shows the automatic construction of collar grids from the BRep 
Loops, where the right-hand image shows the final mesh. The entire procedure is documented in 
[18]. 

 

  
Figure 12. Manual (left) and automated (right) overset meshing of GMGW2 Case 3. 

Figure 12 shows the comparison of manual vs. automated overset meshing of the geometry used 
for the second AIAA Geometry and Mesh Generation Workshop, where Table 1 shows a mesh 
count and timing comparison. 

Table 1. Overset mesh generation timings. 

 No. Grids No. Points Wall Time 
Manual 50 490000 50 hours 

Automatic 248 954000 6 minutes 
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The Chimera Grid Tool (CGT) AIM was the starting point for the EGADS/OverGrid connection, 
but OverGrid itself is not distributed with ESP/CAPS – OverGrid being part of NASA’s 
Chimera Grid Tools is Export Controlled. Users need to make a formal request to NASA in order 
to get next release of CGT that will have this level of automaton. There currently is no CAPS 
AIM for CGT directly (but the prototype is part of the distribution). 

3.1.7.2 BRep-based Meshing 
The EGADS tessellation AIM has been developed to generate either triangle-based, or under 
some circumstances, quadrilateral-based meshes. The output is an EGADS Tessellation Object, 
which gets used by CAPS to easily generate Vertex Sets that are suitable for holding on to 
sensitivities or other Data Sets suitable for viewing or to be used for mesh->geometry->mesh 
transfers of information (see Section 3.1.6.2). The Tessellation Object can also be used as input 
to 3D meshers, in particular TetGen and AFLR3 where the Object is used to specify the bounds 
of the domain in order to generate tetrahedral grids. 

3.1.8 Analysis Interface and Meshing (AIM) Plugins 

These tasks were originally envisioned to ensure that the AIM design was sufficient to support 
the following analysis tools. As can be seen in Section 2.3, the suite of supported tools (in the 
open source ESP distribution) is far more complete that the subtasks listed below. Also, since the 
complete ESP distribution (including CAPS) continues to be upgraded and made available to 
AFRL personnel the original demonstration tasks became redundant because the real users were 
testing the code out on their actual problems. 

3.1.8.1 Cart3D 
An AIM plugin was built Cart3D analysis. This included both the preparation of the inputs files 
needed by Cart3D as well as transfer of information that is contained in Cart3D’s output files 
back into the CAPS system. The geometry is represented as a triangulation and can be generated 
by the EGADS Tessellation or the AFLR4 AIMs. 

3.1.8.2 ASTROS 
A CAPS AIM plugin for many modes of ASTROS analysis has been implemented. This AIM 
can support both the full featured version or mASTROS that is shipped with the ESP 
distribution. The AIM includes both the preparation of the inputs files needed by ASTROS as 
well as transfer of information that is contained in ASTROS’s output files back into the CAPS 
system. 

3.1.8.3 SU2 
An AIM plugin for SU2 analysis codes was designed and built. It supports versions 4.1.1 
(Cardinal), 5.0.0 (Raven), 6.1.0, and 6.2.0 (Falcon). The AIM includes both the preparation of 
the inputs files needed by SU2 as well as transfer of information that is contained in SU2’s output 
files back into the CAPS system. 

3.1.8.4 OverFlow 
Of the listed subtasks this is the only one not completed. Because OverCad was never resurrected 
(see Section 3.1.7.1) and the EGADS connection to OverGrid has just been completed there 
were no automated meshing tools to generate grids for OverFlow. In the near future (but not as 
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part of this contract) an AIM plugin for an OVERFLOW analysis could easily be generated (it 
would not be too different from Cart3D, SU2 or Fun3D). 

3.1.8.5 LSM/HSM 
Drela’s FORTRAN API of the HSM software is directly linked into an AIM. The AIM is 
equipped with a reverse Cuthill-Mckee algorithm to improve the perform of the linear solves. At 
this point only a limited set of boundary and loading conditions are currently exposed via the 
AIM, and additional effort is required to fully expose the complete functionality of the HSM 
software. However, the HSM AIM has been exercised with simple cantilever shapes (including 
shapes with multiple faces), and the results exhibit significantly lower errors compared to 
traditional shell model discretizations. For a full description of HSM see Section 3.1.5 and [13]. 

3.1.9 Demonstrations 

This demonstration task was placed in the original proposal as capstone examples of the use of 
the software. Because of the close interaction between the CAPS team and AFRL personnel as 
well as the fairly continuous delivery of software (see Section 3.1.10.3) these demonstration 
subtasks became less critical. Restated, real demonstrations were on-going during the contract by 
individuals (at AFRL and elsewhere) using the CAPS software in their workflow and to solve 
their problems of interest. 

3.1.9.1 Fighter (Cart3D only) 
Though this subtask calls for a fighter configuration, we used a simpler model where the 
geometry is known and published along with complete wind tunnel results. This is one of the test 
configurations for the Full Potential Code (see Section 3.2.4.4). The data can be found in the 
AGARD report AR-138 and the case is known as “Wing A Body B2”. The chapter is from D.A. 
Treadgold, A.F. Jones, and K.H. Wilson entitled “Pressure Distribution Measured in the RA 8ft x 
6ft Transonic Wind Tunnel on RAE Wing ‘A’ in Combination with an Axi-Symmetric Body at 
Mach Numbers of 0.4, 0.8 and 0.9”. 

The “Wing A Body B2” geometry was constructed via ESP and the case run through pyCAPS 
exercising both CAPS and the Cart3D AIM. Figure 13 shows Mach number from a converged 
(and mesh adapted) Cart3D run against a finely discretized resultant geometry (performed in the 
AIM), where surface pressure for the same case can be seen in Figure 14. 
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Figure 13. Mach number results from Cart3D shown on 2 planar cuts. 

 

 
Figure 14. Surface pressures from the same case as seen in Figure 13. 
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3.1.9.2 Transport 
A transport example has become part of the CAPS training. The model shown in Figure 3 can be 
found in the ESP distribution at $ESP_ROOT/training/ESP/transport.csm. It can be configured 
to generate geometry for various forms of analysis (views) and run through the appropriate 
solvers. 

3.1.10 Support 

This task includes general support for ESP/CAPS within RQVC (and other AFRL branches). 
The task includes subtasks for a software design review, training, software delivery and 
reporting. But it was found that another form of support was required during the original CAPS 
contract: maintenance. As the software was being deployed and used, individual would stumble 
through its learning curve. This would be found out by meeting with users to see how the 
software was being utilized. The end result was, at times, changes to the trainings to properly 
reflect best practices, but would also, at times, require additional functionality. This was 
particularly true when trying to determine the best way to attribute the geometry in preparation 
for analysis. And, of course, fixing bugs found by the user-base also required much effort 
unattributable to a specific subtask. 

3.1.10.1 Design Review 
Early in the contract (at the kick-off meeting) a CAPS software design review was executed. 
This presentation fully described the CAPS software layout, API and plugin functionality to the 
entire team and to selected AFRL personnel. Feedback was critical to ensure that the design 
provided a proper foundation and satisfies AFRL’s perceived needs. This Design Review was a 
prerequisite for the Section 3.1.1 subtasks. 

3.1.10.2 Training 
All of the trainings given were either at AFRL or at a location off-base but in the local vicinity of 
Wright-Patterson Air Force Base. A list of the trainings given can be found in Table 2. 

Table 2. Training Dates 

Training Days Participants 
ESP July 2015 – 3 ½ 41 
ESP August 2016 – 3 28 
ESP June 2018 – 2 ½ 46 
CAPS August 2018 – 3 23 (limited to invitees) 
ESP/CAPS June 2019 – 5 31 

 

The trainings have developed into a successful mix of informational material and hands-on 
exercises. Participants show up with their own laptops. They have previously downloaded the 
most recent ESP distribution (or show up early to do so before the training officially begins). 
This means that all exercises are performed on their equipment and the students walk away with 
the software functional, and the knowledge of how to use it in a familiar operating environment. 

In general, there are sessions that discuss a topic (or suite of topics) lasting for an hour or two 
and then roughly an hour of hands on assignments. These assignments are carefully crafted not 
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only to augment the class/session’s material, but also are challenging enough to keep the better 
students from getting bored. At the end of each session there is the request for the students to fill 
in “muddy cards”. These allow the students to ask questions anonymously (what was not clear), 
which can inform us when we are not getting the points across. Also, this mechanism is useful in 
correcting the class material and reporting bugs and making feature requests. At times, we 
reissue another release of the software “shortly” after a training where the problems that were 
discovered are fixed. 

3.1.10.3 Code Delivery 
A process for software delivery has been developed during the course of this contract. The 
delivered files include a directory structure to place all components and modules, source and 
installation directions / makefiles for all software written for a variety of platforms (Windows 7 
& 10, LINUX and MAC OSX). The source is written in a variety of languages, such as ANSI C, 
C++, JavaScript (and some testing and example code is in Python). API bindings have been 
made available for C/C++ and, in some cases, FORTRAN. 

There are 3 modes for code capture and updates: 

1. For a select few individuals at AFRL access has been granted to the MIT software 
repositories. These individuals always have access to the most current state of the software 
and in some cases act as developers (that is, they can commit code to the MIT repositories). 

2. Beta source releases are made available when the code-base is functional and stable (mostly 
“green balls” reported by Jenkins – see Section 2.4). This packaged tar image can be found 
on the MIT ESP website, so it can be easily downloaded by anyone who has access to the 
web. Note that compilation and building is required to use this form of software distribution. 

3. Official releases (see Table 3) are made periodically. These are numbered and fully 
supported. They come in two forms: a source release (which is the same as the Beta, except 
that it reflects the official release) and fully built software. The PreBuilt distributions (one 
file for each supported OS) requires no software building, can be installed (under most 
circumstances) without any system privileges, and sets up a desktop icon that can be double-
clicked (for all OSs) that can initiate the appropriate environment and allow full access to the 
ESP modules and components. This is clearly well suited to either novice users or those that 
are not software savvy. 

 
There is a tension between the desire to continue to improve a large and complex software suite 
and the ability to get the results of these efforts into the user’s hands. Development must stop at 
some point and the code frozen except for bug fixes. The state of the code base needs rigorous 
testing (beyond the testing done during continuous software integration), which is rather time 
consuming. This is the nature of the ESP test matrix, where the tests are executed on LINUX, 
MAC and Windows, against various versions of OpenCASCADE and differing compilers. 

Building the distribution also requires care and time. It must be tested against all target 
combinations and needs to work without intervention. And there are now two variants: (1) build 
from source and (2) pre-built distributions (which are especially useful for Windows without 
Visual Studio – the compiler). 

To ensure that this is done periodically, ESP releases have been cut before any formal training, 
so that users are trained on the most recent software available. The trainings are also useful in 
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finding issues in the most up-to-date release and has initiated another release soon after the 
training (if significant problems were found). 

The software release schedule during the course of this contract can be seen in Table 3. 

Table 3. Software Releases 

ESP Revision DATE 
1.07 July 2015 
1.08 October 2015 
1.09 August 2016 
1.10 September 2016 
1.11 June 2017 
1.12 December 2017 
1.13 May 2018 
1.14 December 2018 
1.15 May 2019 
1.16 August 2019 
1.17 January 2020 

 

3.1.10.4 Reporting 
Monthly technical and financial reports were delivered on-time throughout the duration of the 
contract. The technical reports were detailed and contained the information on the on-going 
research as well as the implementation delivered as functioning source code (see Section 
3.1.10.3). 

3.2 CAPS Supplement 
The tasks listed below reflect the CAPS supplement (referred to as In-Scope Work Modification 
numbered P00011) where the technical portion of the contract ran from May 2017 (the end of the 
original CAPS work) to November 2019. This included 4 major thrusts: continued work on 
geometry and geometry construction for aircraft design, meshing to facilitate an automated 
workflow, an effort to incorporate packaging into ESP/CAPS and tasks to continue on with the 
efforts started during the initial phase (Section 3.1). 

3.2.1 Geometry 

Inside the CAPS environment, parametric geometry is generated based on combining a selected 
number of solids through Boolean operations. This process makes the generation of fully blended 
aircraft configurations, such as the D-8 or YF-23 very difficult. The objective of this task is to 
generate parametric methods to construct fully blended aircraft bodies that can maintain a user-
defined continuity level. Additionally, methods should be capable of representing aircraft 
defined previously in a parametric way.  

3.2.1.1 BSpline Morphing 
Often it is easy to build a parametric model that is close to the desired shape, but which must be 
adjusted locally to satisfy local shape requirements. The objective of this task is to create tools 
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that allow one to morph a given boundary representation by changing the BSpline control points 
associated with either a Face, an Edge (and its supporting Faces), or a Node (and its supporting 
Edges and Faces). This was accomplished at the EGADS level by allowing any general surface 
to be replaced by a BSpline surface and then giving the programmer that ability to move 
individual BSpline Control Points. This was never elevated to the OpenCSM level because it is 
not clear the best way to have the user control the movement of one or more ganged Control 
Points. 

There are 2 phases that are required for performing this “free form” modification of individual 
Faces. The first of which is to prepare an EGADS Body for the operations, the second is to 
actually do the shape changes. The assumption is that we will be moving/adjusting control points 
of a BSpline/NURBS surface and that the surface is used at full extent (or at least trimmed by 4 
Edges where the underlying curves are isoclines). This will ensure that we do not open up 
models that are closed, as long as we don’t move the control points at the bounds of the surface. 
Obviously, there may need to be some scribing done to the Body to prepare for this. 

The following documented functions already existed in EGADS that let you preform much of 
the first phase: 

  stat = EG_convertToBSpline(face, &newSurface); 

which takes an existing Face and generates the BSpline/NURBS equivalent surface trying to 
preserve the [u,v] parameterization. The new surface can be enhanced (see EG_addKnots below) 
and then made into a new Face by EG_makeTopology. Note that the Loops from the source Face 
will need to be remade (EG_makeTopology) specifying the new surface, but the Edges 
themselves do not need to be modified. 

  stat = EG_replaceFaces(body, n, replacements, &newBody); 

which takes a list of n Face pairs (the original and the replacement), does the Face swapping and 
generates a new Body with the updated Faces. 

The following undocumented function can be used to add “degrees of freedom” to the operation 
by adding to the knot sequence and therefore providing more control points to adjust: 

  stat = EG_addKnots(surface, nU, Us, nV, Vs, &newSurface); 

which takes as input the BSpline/NURBS surface, the number of additional knots in the U 
direction and a vector of new U knot values, the number of additional knots in the V direction 
and a vector of new V knot values and outputs a new surface that has the same shape of the 
original but with additional knots/control points. 

The following EGADS function can be used during the second phase (in the design setting): 

  stat = EG_adjustCPs(body, face, CPs, &newBody, &newFace); 

where: body   the input Body ego 
    face   the Face ego to adjust (ref surface must be BSPLINE)  
         and must have a single Loop with 4 Edges at IsoClines 
    CPs    the control points (the same setup as the data for  
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         BSPLINEs without the knot information) 
    newBody  the returned new Body ego 
    newFace  the returned Face in newBody that corresponds to face 
 
Note that this function could be used to simplify some of the first phase setup. Also, it should be 
noted that to fully control shapes (allow for changes across Edges) the scheme outlined above 
would need to be modified to include the Face’s bounding Edges. 

3.2.1.2 Sculpting 
The purpose of sculpting is to produce smooth transitions between various parts of a 
configuration. The current implementation combines two bodies. This smooth transition is 
produced with a Flend (fillet-like blend) [19], which generates B-spline surfaces that are at least 
slope-continuous (C1) at their Edges, and generally almost curvature-continuous (C2). From an 
aerodynamics perspective, this “almost C2” condition is advantageous. Figure 15 through Figure 
17 shows examples of Flends, where in each figure the Flend surfaces are depicted in red. Figure 
15 shows a Flend between two adjacent bodies, Figure 16 shows a Flend at the junction of two 
bodies, and Figure 17 shows a Flend the root of a turbomachinery blade. In each case, all that 
was required of the user is a set of scribing curves. 

 
Figure 15. Flend as a continuation between 2 Bodies. 
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Figure 16. Flend attaching 2 cylindrical Bodies.  

 
Figure 17. Flend as a fillet replacement. 

3.2.1.3 EGADS 
See Section 3.1.3.1. 

3.2.2 Meshing 

The initial CAPS capability can generate meshes for structural finite-element and RANS 
analyses, but with lesser quality than is desired. The first objective of this task is to generate 
unstructured fully-quadrilateral meshes for structural analysis. The second is to do research into 
the mesh mechanics required to perform solver-based adaptation. And, the third objective is to 
create links to industry-standard RANS meshing software so that these packages can be accessed 
seamlessly through the CAPS environment.  
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3.2.2.1 Surface Quadrilaterals 
Most structural solvers provide much more accurate results when given a pure quadrilateral (as 
opposed to triangle or mixed) mesh as input. At the start of this contract the EGADS tessellation 
subsystem could provide quadrilateral meshes if it can determine the four sides of the Face being 
handled. The goal of this subtask is to provide a general unstructured quadrilateral meshing 
scheme that will be watertight and will be consistent with the rest of EGADS. This has required 
the following steps: 

• perform a coarse initial triangulation of the Body of interest; 
• subdivide all Edge discretizations, which provides an extra vertex along each Edge segment; 
• for each Face, subdivide the internal triangle sides and insert a vertex at each triangle 

centroid, generating 3 quadrilaterals per triangle; 
• regularize the mesh by local operations in order to achieve as many valence (the number of 

quad sides touching a vertex) 4 vertices as possible; 
• adjust and/or smooth the resulting vertices supporting the quads (per Face) (in [u,v]) in order 

to drive the angles in each quadrilateral toward 90o; 
• place the final resulting quadrilateral body tessellation into an EGADS tessellation object; 

and 
• attribute the tessellation object so that functions that use the object can determine that the 

Faces have been discretized with unstructured quadrilaterals. 
 

     
Figure 18. Cylinder at initial quadding and after regularization. 

The complete algorithm used is fully described in [20, 21]. Examples on simple shapes can be 
seen in Figure 18 and Figure 19. 
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Figure 19. Multi-sphere case at initial quadding and after regularization. 

3.2.2.2 Adaptation 
RANS meshing is more prone to discretization error when the mesh does not conform to the 
features found in the solution. This has been shown repeatedly in the Drag Prediction 
Workshops, and is a chicken-and-egg problem – how do you generate a good mesh when you 
don’t know the solution, and why would you run the simulation if you knew the answer! This is 
obviously a problem when you wish to accurately predict a result (such as in a design setting). 
And because each new mesh (from a new design iteration) may have differing and unknown 
errors, it is questionable whether a convergent design process exists. In some settings this 
problem is ignored by morphing an existing mesh and assuming that the errors are related. 

In any case, the current situation does not provide a robust ability to do design. To mitigate this 
problem research into methods for 3D mesh adaptation have been undertaken (in fact the work is 
in a 4D setting). The mesh can either be driven from the features found in a resultant solution or, 
more importantly, from an Adjoint solver in which error estimation can be used to deal with the 
solution-based error directly. The latter case is a more robust way to actually provide error 
bounds on the solution, which can then be used in a process that can guarantee convergence. 
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Figure 20. Illustration of a 4D case and expected refinement. 

A 4D metric field is modeled after an expanding spherical wave in 3D (see Figure 20a). Consider 
a spherical wave of radius R0 = 0.4 centered about the origin in 3-space at time t = 0. If the wave 
expands at a constant velocity Vp to a radius Rf = 0.8 at time t = 1, then the expanding sphere 
traces the geometry of a hyper-cone in 4D. 

Figure 20b exhibits the behavior of the expanding (d − 1)-sphere in a spherical-temporal 
coordinate system. Note that a slice of the (d + 1)-dimensional cone with a hyperplane with non-
constant temporal component yields a d-cone. Here, this appears as a line but rotational 
symmetry implies the hyper-cone sliced by a hyperplane with non-constant temporal component 
yields a three- dimensional cone. Hence, when extracting the eight cubes bounding the unit 
tesseract (4D cube), we expect to see three-dimensional cones along hyperplanes with a varying 
temporal component. 

For clarity, all eight 3D meshes bounding the tesseract for this wave case are shown in Figure 21. 
Note that the expected refinement of the cones are observed along hyperplanes with non-constant 
temporal component. At t = 0 and t = 1, the sphere at the initial and final radii are respectively 
observed. See [22, 23] for a more complete explanation of the algorithms used. 

 



 

35 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 21. Meshes of the eight bounding cubes for the 4D adaptation case. 
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3.2.2.3 Robust Integration of AFLR4 
The objective for this subtask was to modify the Advancing-Front/Local-Reconnection (AFLR) 
surface meshing software, AFLR4, to meet the needs of the CAPS system. AFLR meshing 
software (AFLR3-volume, AFLR4-surface and AFLR2-planar) is widely used, readily available 
to DoD users, and has been very successful with relevant problems. Furthermore, AFLR4 
generated surface meshes are optimal for AFLR3 (volume meshing). This subtask, however, 
involved only modifications to AFLR4 surface meshing and its integration within an AIM. The 
intent was to provide a capability within CAPS to automatically generate a high-quality surface 
mesh that is optimal for generation of a mesh using AFLR3 volume meshing, both with and 
without specified boundary layers. 

AFLR4 surface meshing uses the overall AFLR strategy of advancing-front-type point 
placement, combined with local-reconnection-based connectivity optimization. For surface 
meshing, a valid mesh (i.e., no folds in the triangulation) is maintained in both the [u, v] mapped 
space and in the physical space. A novel physical space approximation (PSA) is used to 
eliminate the need for expensive underlying geometry evaluations during mesh generation. The 
process is as follows:  

1. generate a 2D mesh in mapped space;  
2. evaluate physical space coordinates using the true geometry at the generated [u,v] mapped 

space coordinates;  
3. use the mesh in physical space as a linear approximation (PSA) of the true geometry and 

regenerate a new mesh in both mapped space and the PSA. All projections and geometric 
operations in physical space are done with the PSA. Point placement and connectivity 
optimization is done in PSA;  

4. evaluate physical space coordinates using the true geometry at the regenerated [u,v] mapped 
space coordinates. Due to the linear approximation of the PSA, there is a slight perturbation 
in the coordinate locations. For a reasonable mapping this is never an issue; and  

5. for highly distorted mappings, generate a revised [u, v] mapping layer. Then return to step 3. 
One or two iterations of steps 3 through 4 eliminates the impact of distorted mappings. 

 
While the overall framework for AFLR4 is ideal for system integration, substantial additions 
were needed to develop a robust, fully-integrated and fully-automated version that can produce 
optimal meshes with no user intervention within the CAPS system. Several phases were 
proposed and implemented to achieve this result.  

• Develop and implement a means for automatically specifying the point spacing/length-scale 
from the given geometry definition of each surface patch. AFLR4 allows for three different 
methods to specify length scale variation; a boundary driven approach (defined by point 
spacing on surface patch edges), a background mesh, or a call-back function defining point 
spacing throughout physical space. The automated process developed herein accounts for 
surface curvature and proximity of components and is implemented with a multi-pass 
procedure outlined below: 

1. Generate an initial surface mesh that uses point spacing derived from curvature on 
edges. 
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2. Generate a curvature driven surface mesh that uses a background mesh with length-
scales derived from surface curvature. The surface mesh from pass 1 is used to create 
the background mesh and specify length-scale variation. The resulting mesh 
appropriately captures the geometric curvature and features of the given surface 
definitions. For a single body and single component this mesh is the final mesh. 

3. If there are multiple bodies or components, then proximity between them is 
considered. In this discussion a body is a closed set of surfaces and a component is a 
set of surfaces, e.g. an aircraft with multiple stores may be a single body with 
multiple components – fuselage, tail, wing, store, struts, etc. An overall volume 
background mesh is generated from all of the discretized surface meshes (generated 
on the previous pass). Distance between surfaces is then evaluated by the volume 
background mesh edges. Length scale is locally reduced if the distance is not 
sufficient to produce a set number of volume layers and/or support generation of a 
boundary-layer (BL) region. The surface mesh is then regenerated with the modified 
background mesh. Multiple sub-passes of this pass are then taken to provide a smooth 
length scale transition. At completion, the resulting surface mesh is considered the 
final mesh. 

Note that if an existing background mesh derived from a previous solution is available 
then only steps 2 and 3 are needed. Also, surfaces that are considered far-field surfaces 
(see next point) are simply discretized with a single bounding-box derived length-scale. 
The multi-pass procedure described above for other surfaces is driven primarily by a 
single length scale that should be based on physical information available for the 
intended application, e.g. wing chord. In addition, BL thickness, if applicable, can be 
estimated from the physical information. Further control of this procedure is available to 
the user via ESP attribution parameters. However, in general additional meshing control 
parameters are not required for a suitable mesh. 

• Develop an appropriate ESP attribution scheme for parameters that control AFLR surface 
and volume meshing within the CAPS system. For surface and volume meshing various user 
parameters can be set to control the overall meshing process. The following describes the 
case dependent parameters available: 

1. Mesh generation boundary conditions (BC) by Face. Each Face should have an 
appropriate BC specified via attribute (similar to what is required for the solution 
process). BC’s available include far-field surface, BL generating surface, symmetry 
plane, curved surface that intersects the BL region (similar to symmetry), 
embedded/transparent surface, etc. 

2. Specification of “components” by Face if desired for proximity-based refinement. 
3. Global surface mesh generation parameters include configuration reference length, 

BL thickness (if applicable), along with numerous optional parameters that are 
available to adjust the surface meshing. However, these optional parameters are not 
required or expected to be used by most users and are available primarily for expert 
power-users that want very specific and unique mesh characteristics. The description 
of these optional inputs can be found in the AFLR4 documentation. 

4. Local surface mesh generation parameters that can be applied by Face include various 
control parameters for unique mesh characteristics. These include, a local Face 
scaling parameter to increase/decrease length-scale, Edge mesh refinement for 
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resolution of sharp edges, along with other parameters that are available to adjust the 
surface meshing locally. Again, these optional parameters are not required or 
expected to be used by most users and are available primarily for expert power-users 
that want very specific and unique mesh characteristics. 

5. For volume meshing the BCs are passed directly and additional AFLR3 volume 
meshing parameters can be specified globally or locally. 

• Develop documentation and tutorials on AFLR4 usage. Complete web-based documentation 
on all available parameters along with a tutorial with multiple cases is provided with all 
AFLR software. 

• Develop a process to automatically derive, from the geometry definition, a directional 
anisotropic metric that specifies the point spacing directionally along with curvature 
orientation. The automated curvature driven process previously described generates both 
isotropic and anisotropic metric parameters. However, modification of AFLR4 surface 
meshing to enable this capability was determined to be outside the scope of the present effort 
and is saved for future work. 

 
Figure 22. Fighter body configuration for AFLR example. 

Some example cases are presented in the following discussion to illustrate the current capability. 
All cases are automatically generated by AFLR4 with length scale and BL thickness specified. 
The first case is that of a fighter aircraft. In this case the impact of Edge discontinuity refinement 
is compared. The overall configuration is shown in Figure 22. One view of the resulting surface 
mesh with and without Edge discontinuity refinement is shown in Figure 23. All of the sharp 
edges are fully refined in the case of Edge refinement. An additional close-up view is shown in 
Figure 24, and note the refinement along the flap (green surface). Typical CFD simulations of 
such configurations require refinement of sharp geometric features in addition to curvature. 
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Figure 23. Fighter surface mesh without (left) and with (right) discontinuous Edge refinement. 

  
Figure 24. Close-up of fighter surface mesh without (left) and with (right) discontinuous Edge 

refinement. 

The second case is that of a launch vehicle with strap-on boosters shown in Figure 25. Two 
views of the resulting surface mesh are shown in Figure 26. As shown both surface curvature and 
proximity regions are refined. An AFLR3 volume mesh with BL region was generated using this 
surface mesh. Figure 27 shows two views of the volume mesh field cut. Refinement in the region 
between the main and strap-on boosters allows full resolution of the BL region. 

 
 

Figure 25. AFLR launch vehicle test configuration. 
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Figure 26. Launch vehicle surface mesh views showing proximity refinement between 

main and strap-on boosters. 

  
Figure 27. Launch vehicle volume mesh cut views showing refinement and BL region 

between main and strap-on boosters. 

The third case is that of a jet engine nacelle. This case has multiple bodies/components that have 
several regions in close proximity. Two views of the overall configuration are shown in Figure 
28. 
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Figure 28. AFLR jet engine nacelle test configuration. 

The resulting surface mesh with both curvature and proximity refinement is shown for two views 
in Figure 29. 

  
Figure 29. Nacelle surface mesh views showing proximity refinement between 

components. 

An AFLR3 volume mesh with BL region was generated using this surface mesh.  Figure 30 
shows the volume mesh field cut. Refinement in the region between the components allows full 
resolution of the BL region. Two additional views of the volume mesh cut are shown in Figure 
31. 
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 Figure 30. Nacelle mesh cut showing refinement and BL region between components. 

 

  
Figure 31. Closeup of nacelle volume mesh cut showing refinement and BL region 

between components. 

3.2.2.4 Pointwise Automation 

The mesh generation software Pointwise and its scripting language Glyph were used to create a 
system for automatically generating unstructured meshes given a closed, watertight geometry. 
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The system, called GeomToMesh, was developed to work with attributed geometry created in 
ESP. Three subtasks were identified to enable this automated capability. 

The first subtask required modification of the Pointwise software to allow import of ESP 
geometry. This was initially performed with an external program that converted ESP geometry 
file in EGADS format into the native Pointwise NMB file format. The newly created NMB file 
was then read by Pointwise for processing. Eventually this external program was incorporated 
into the Pointwise software enabling import of EGADS files directly. Additional modifications 
to Pointwise were made to store the attributed information for each geometry entity internally. 
New Glyph script function calls were also created permitting the scripts to access this attributed 
data on the geometry surfaces, curves and points. 

The second subtask developed the language or schema that communicated the meshing 
instructions from the attributed geometry to the Glyph scripts. The attributed data on the 
geometry contained key-value pairs that were recognized by the Glyph scripts. Figure 32 shows 
a sample of many of the key-value pairs read by the GeomToMesh script during the meshing 
process. Many of these key names mirror the meshing parameters exposed in the GUI to an 
interactive user of Pointwise. If no attribution information is provided the scripts will attempt to 
generate an isotropic unstructured tetrahedral mesh given a closed geometry input file. With 
attribution the system will produce a mesh more closely aligned with the user’s intent. The more 
commonly used attributes are the naming functions and specifying normal wall spacing values 
on surfaces associated with viscous boundary conditions.  

The third subtask was to develop and evolve the system of Glyph scripts, known as 
GeomToMesh, to import the attributed ESP geometry and generate a completed unstructured 
volume mesh ready for flowfield analysis. These scripts are completely general in the sense that 
no assumptions are made with respect to the configuration shape or purpose. An additional 
Glyph file containing other meshing parameters can be provided by the user to further control the 
meshing process. These parameters have default values that are loaded at startup. Any 
parameters provided by this user file override the default values.  

Using the GeomToMesh system simply involves providing the ESP geometry file and the 
optional user parameter file to the scripts run in Pointwise. The system can be executed through 
the GUI or can be run in batch mode on the command line. A detailed description of the 
processing and capabilities can be found in [24]. 
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Figure 32. Sample key-value pairs recognized by the GeomToMesh scripts. 

Additional capabilities were incorporated into the scripts since the paper was presented. These 
include exporting geometry-to-mesh associativity data used by ESP, enabling the use of Point 
Cloud Datasets for performing mesh adaptation and enhanced geometry feature detection 
techniques that can recognize high curvature regions and convex/concave Edges. The scripts are 
used routinely to generate meshes for many different configurations. The automation afforded by 
the scripts allows a user to create a complete mesh sequences for a grid convergence study, such 
as the two meshes shown in Figure 33 and Figure 34 for an upcoming AIAA workshop on high-
order CFD methods. 
 

Key Value Geometry Location Description

Preceding $ means it is a character string

PW:Name Face Boundary name for domain or collection of domains.

PW:QuiltName Face
Name to give one or more quilts that are assembled 

into a single quilt. No angle test is performed.

PW:Baffle $Baffle or $Intersect Face
Either a true baffle surface or a surface intersected by 

a baffle.

PW:DomainAlgorithm
$Delaunay, $AdvancingFront, 

$AdvancingFrontOrtho
Face Surface meshing algorithm.

PW:DomainIsoType $Triangle, $TriangleQuad Face Surface cell type. Global default is Triangle.

PW:DomainMinEdge $Boundary or > 0.0 Face Cell Minimum Equilateral Edge Length in domain.
PW:DomainMaxEdge $Boundary or > 0.0 Face Cell Maximum Equilateral Edge Length in domain.

PW:DomainMaxAngle [ 0, 180 ) Face Cell Maximum Angle in domain (0.0 = NOT APPLIED)

PW:DomainMaxDeviation [ 0, infinity ) Face
Cell Maximum Deviation in domain (0.0 = NOT 

APPLIED)
PW:DomainSwapCells true or false Face Swap cells with no interior points.

PW:DomainQuadMaxAngle ( 90, 180 ) Face Quad Maximum Included Angle in domain.
PW:DomainQuadMaxWarp ( 0, 90 ) Face Cell Maximum Warp Angle in domain.

PW:DomainDecay [ 0, 1 ] Face Boundary decay applied on domain.
PW:DomainMaxLayers [ 0, infinity ) Face Maximum T‐Rex layers in domain.

PW:DomainFullLayers [ 0, infinity ) Face
Number of full T‐Rex layers in domain. (0 allows 
multi‐normals)

PW:DomainTRexGrowthRate [ 1, infinity ) Face T‐Rex growth rate in domain.
PW:DomainTRexType $Triangle, $TriangleQuad Face Cell types in T‐Rex layers in domain.

PW:DomainTRexIsoHeight > 0.0 Face
Isotropic height for T‐Rex cells in domain. Default is 
1.0.

PW:WallSpacing > 0.0 Face Viscous normal spacing for T‐Rex extrusion.

PW:TRexIsoHeight > 0.0 Model Isotropic height for volume T‐Rex cells. Default is 1.0.

PW:TRexCollisionBuffer > 0.0 Model T‐Rex collision buffer. Default is 0.5.

PW:TRexMaxSkewAngle [ 0, 180 ] Model T‐Rex maximum skew angle. Default 180 (Off)
PW:TRexGrowthRate [ 1, infinity ) Model T‐Rex growth rate.

PW:TRexType
$TetPyramid, $TetPyramidPrismHex, or 

$AllAndConvertWallDoms
Model T‐Rex cell type

PW:BoundaryDecay [ 0, 1 ] Model Volumetric boundary decay. Default is 0.5.

PW:EdgeMaxGrowthRate [ 1, infinity ) Model
Volumetric edge maximum growth rate. Default is 

1.8.

PW:MinEdge $Boundary or > 0.0 Model
Tetrahedral Minimum Equilateral Edge Length in 

block.

PW:MaxEdge $Boundary or > 0.0 Model
Tetrahedral Maximum Equilateral Edge Length in 

block.

PW:ConnectorMaxEdge > 0.0 Edge Maximum Edge Length in connector.
PW:ConnectorEndSpacing > 0.0 Edge Specified connector endpoint spacing.

PW:ConnectorDimension > 0 Edge Specify connector dimension.

PW:ConnectorAverageDS > 0.0 Edge
Specified average delta spacing for connector 

dimension.
PW:ConnectorMaxAngle [ 0, 180 ) Edge Connector Maximum Angle. (0.0 = NOT APPLIED)

PW:ConnectorMaxDeviation [ 0, infinity ) Edge Connector Maximum Deviation. (0.0 = NOT APPLIED)

PW:NodeSpacing > 0.0 Node Specified connector endpoint spacing for a node.
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Figure 33. First mesh in the Juncture Flow Model mesh series. 

 
Figure 34. Eleventh mesh in the Juncture Flow Model mesh series. 

The GeomToMesh system has been posted on GitHub for any Pointwise user to download. It is 
also included in the ESP distribution. 

3.2.3 Packaging 

The goal of the packaging application is to determine the location and orientation of a set of 
given components (here called “packages”) so as to use up the least volume in a prescribed outer 
container. Figure 35 shows an example set of 11 packages that are to be placed in a rectangular 
box with the minimum volume. 



 

46 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 
Figure 35. Initial “Packages” to place in a minimal box. 

The packaging application performs this optimization using a genetic algorithm. To do this, a 
voxelated version of each of the packages is created, as shown in Figure 36. This voxelated 
representation forms a “skin” around each package. 

 
Figure 36. Voxelated representation of “Packages” 

The genetic algorithm picks a packing order that the packages should be placed onto a 
background grid, using a greedy (iterative, locally optimal) algorithm for each placement. For 
each placement, up to 24 package orientations are considered. The “fitness” associated with each 
packing order is the necessary outer volume size. 



 

47 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

When complete, the genetic algorithm produces several configurations that could be used as the 
starting points for another optimizer. Figure 37 shows one such packaging for this problem. Note 
that there is a small buffer around each package, due to the granularity in the voxelation process. 
The user must choose this granularity as a balance between packing tightness and computational 
speed. 

 
Figure 37. A minimal packing configuration for the Packages seen in Figure 35. 

The “packages” are then tessellated and an interference computation is performed on the discrete 
geometry via pairs of packages. The distance and derivatives of the translation and Euler angles 
(6 values per pair) are computed. This will be used to do a gradient-based optimization from the 
number of seed points made available via the genetic algorithm. The appropriate gradient-base 
optimization scheme has yet to be found. This requires a global optimizer that can take as input 
the interference data from the pairs (as well as the derivatives for movement) and move the 
packages, constrained by avoiding interference, to satisfy some objective function such as 
minimal volume and/or the center of gravity at some point in space. 

3.2.4 Support and Continuation Tasks 

The final task involves user support to the Air Force in the use of CAPS and those subtasks from 
CAPS Phase #1 that include long-term maintenance, require integration, user testing, and/or 
have been deferred.  

As the number of ESP/CAPS users grows, there is a continual set of requests for expanded 
capabilities (new commands), training, documentation, and general user support to ensure that 
AFRL personnel use the tools in the most productive manner. The objective of this task is to 
provide the continued user support in order to maximize the effectiveness of AFRL personnel in 
the use of the ESP environment and its various tools.  
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3.2.4.1 OpenCSM 
See Section 3.1.3.2. 

3.2.4.2 OverSet Meshing 
See Section 3.1.7.1. 

3.2.4.3 PLUGS 
The process described in section 3.1.4.2 for PLUGS was reprogrammed and included within 
CAPS. The major activity here was sanitizing the code base so as to be easy to maintain and is 
thoroughly tested. The results of this integration are shown in Figure 38 and Figure 39. The 
configuration is a wing, with the initial “guess” parameter values (the yellow expressed 
geometry) and point clouds (black points in space) shown on the left-hand side of the figures and 
the final optimized fits shown on the right-hand side. Note that for this case, PLUGS can start 
from a very poor initial guess and produce good results. 

  
Figure 38. PLUGS start and best fit for a wing case. 

  
Figure 39. PLUGS wing case from another start parameterization. 

3.2.4.4 FPC/HSM/IBL 
Simulation efficiency for design can be improved through the use of medium-fidelity (instead of 
high-fidelity) analysis techniques. A Full-Potential (FP) method formulated on the full outer 
mold line (OML) geometry definition is arguably a medium fidelity aerodynamic model in-
between Vortex-Lattice and Euler/RANS methods. Simulations with the Full-Potential Code 
(FPC) can be orders of magnitude faster than RANS, and will thus allow a corresponding 
increase in the number of design iterations which can be performed on any given project. The FP 
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formulation includes the effects of frame motion and supports stability and control derivatives, 
thus allowing rapid flight-dynamics analyses and control law development for rigid aircraft. The 
overall objective is to obtain a framework for relatively rapid development of air vehicle 
configurations, similar to the existing AVL [9] and ASWING [25] methods, but with full-OML 
geometric fidelity and the ability to handle transonic and supersonic flows. 

A preliminary implementation of the 3D Full-Potential solver with the addition of static and 
dynamic stability derivatives already exists in the MIT Solution Adaptive Numerical Simulator 
(SANS) [26, 27] framework. The solver has been developed in a modern C++ framework 
leveraging templates and template-based automatic differentiation to provide development 
flexibility and while maintaining performance comparable to highly tuned equivalent software 
written in FORTRAN. The solver framework can utilize both shared and distributed memory 
parallelism, although the typical size of FPC cases tends not to warrant distributed parallelism. 

The Full-Potential formulation also allows an opportunity to flexibly expand the simulation 
capabilities to include viscous modeling, structural modeling, and geometric deformations 
associated with design modes and/or control surfaces. Initial implementations for a 3D integral 
boundary layer (IBL) and the HSM structural shell model (see Section 3.1.5) exist within the 
same code base as the current Full-Potential solver. The FPC, IBL and HSM modules could be 
strongly coupled in a Newton-based nonlinear solver formulation. Coupling between the FPC, 
IBL and HSM will use wall transpiration on the fixed baseline geometry to model both the 
surface’s displacement resulting from aeroelastic effects, as well as viscous displacement effects. 
Virtual geometric displacements resulting from control-surface deflections and geometry design 
modes can be modeled by the same transpiration formalism. Simulation results indicate that the 
transpiration method can accurately model surprisingly large geometry deformations, and can 
also be used to capture aeroelastic deformations and viscous-displacement effects. This 
formalism makes FPC even more economical in a design setting compared to RANS, since with 
the latter approach transpiration cannot be used and remeshing is always required to capture any 
geometry changes. 

Full-Potential. Full-Potential solvers have been successfully developed by a number of 
researchers using finite-volume schemes and finite-element methods. Similar to Vortex-Lattice 
methods, FP formulations solve irrotational inviscid flows, but better account for 
compressibility effects and are suitable for capturing transonic flows with relatively weak 
shocks. While more costly than Vortex-Lattice methods, FP solutions can be computed on the 
order of seconds to minutes. The FP formulation also does not rely on small-disturbance 
assumptions, and as a result requires the definition of an OML. However, since numerical 
errors in FP solutions tend to be localized, details such as the rounding of wing tips and wing-
body fairings do not significantly impact the overall solution. Thus, OML designs that lack 
complete geometric detail can still be analyzed with some confidence. Finally, the complete 
Jacobian which is used as part of a Newton method for solving the FP equations also provides 
the means to compute stability and control derivatives directly via only back-substitutions, as 
can be done with Vortex-Lattice methods. Hence, a complete set of derivatives can be 
evaluated for any point solution in the flight envelope without resorting to multiple or unsteady 
simulations, or constructing reduced order models 

Two versions of the potential formulation are currently implemented in the SANS code base: 
an incompressible potential formulation, and a two-field compressible Full-Potential 
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formulation. The incompressible potential and compressible FP formulations are solved using a 
continuous Galerkin finite-element method, following well established methods. New 
formulations (yet to be published – see Appendix D) of the Kutta and wake boundary 
conditions have recently been developed that allow for adjoint consistency and higher order 
methods. In contrast, all potential formulations in the literature fail to produce well defined 
adjoint Kutta and wake boundary conditions. As a result, FP solvers based on these 
conventional formulations are restricted to linear potential approximations within elements; 
they also do not lend themselves easily to output-based adaptation methods. 

Compressible Full-Potential formulations applied to transonic flows must account for the 
presence of shocks. Conventional approaches use some variant of density or mass-flux up-
winding in supersonic regions to eliminate expansion shocks. Finite volume or finite difference 
implementations of up-winding either result in first order discretization in supersonic regions 
or use extended stencils. To provide for density up-winding while preserving a nearest-
neighbor stencil, we adopt a two-field approach. The equivalent FEM formulation solves for 
density and potential separately using two weighted residuals: one for mass conservation and 
another for the density-velocity relation. 

Potential flow formulations require wake sheets to model vortical flow. Consistent with 
classical FP implementations, the current formulation requires airfoil shapes with sharp trailing 
edges where wakes originate. Wake sheets are currently generated as part of the geometric 
build process with limited user input.  

Currently mesh generation is performed internally in the CAPS framework using the attributed 
BRep geometric definition and global meshing parameters as inputs. The BRep surface mesh is 
generated with AFLR4, and volume mesh generation uses either AFLR3 or TetGen. 

While AFLR and TetGen provide means of generating meshes in an automated way, both mesh 
generators only generate isotropic grids. However, a significant portion of the potential 
solution surrounding wakes is anisotropic. That is, there is large variation in the potential field 
in the spanwise direction of the wake which requires fine resolution to capture. However, there 
is little variation in the potential in the streamwise direction. Unfortunately, using isotropic 
grids results in excessive resolution in the streamwise direction, producing unnecessarily long 
runtimes for the analysis. This problem is mitigated by the use of the adaptive meshing work 
described in Section 3.2.2.2 – see Figure 40, which shows a simple wing and wake sheet before 
and after adaptation.  
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Figure 40. Crinkle cut of linearized incompressible potential initial and adapted grids. 

Integral Boundary Layer. This NASA funded project explores the viscous/inviscid zonal 
formulations together with strongly-coupled solution methods that have proven to be extremely 
effective in rapid viscous analyses of 2D aerodynamic flows. 2D example applications are 
MSES [28] and XFOIL [15] both from Prof. Mark Drela of MIT. The relative robustness of the 
strong-coupling method, and also its ability to handle limited flow separation, both stem from 
its simultaneous solution of the viscous and inviscid equations as a fully-coupled system via a 
global Newton method. 

Numerous 3D integral boundary layer formulations have been developed in the past. All these 
methods were formulated in curvilinear coordinates covering the body surface. A practical 
difficulty with such coordinates is their relative intolerance of surface slope discontinuities, 
which appear as singularities in the surface curvatures and in the corresponding metrics of the 
equations. Also, if non-orthogonal curvilinear coordinates are employed, as required for 
complete coverage of a general body shape, the resulting transformed equations become 
extremely complex. These traditional difficulties have been sidestepped in the IBL 3D 
approach [29] again of Mark Drela. 

The major development was to formulate the integral boundary layer equations in finite-
element form using local Cartesian coordinates defined for each residual. This eliminates the 
need to construct curvilinear body surface coordinates, and thus largely sidesteps most of the 
geometry smoothness requirements. It also allows solving the equations on arbitrary triangular 
or quadrilateral surface meshes, and does not require the identification of stagnation points or 
attachment lines for the application of initial conditions. All these features greatly simplify the 
application of the 3D integral boundary layer equations to relatively complex surface shapes. 

Another issue which has received scant attention is the incorporation of a suitable transition 
prediction method into the integral boundary layer methods. The approach has been to either 
specify the transition line explicitly, or to use 2D correlations or eN type methods along strips 
or streamlines to set the transition location in an ad-hoc loosely coupled manner. This approach 
is unreliable if transition is triggered by laminar separation, as frequently occurs in low 
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Reynolds number flows. In the “envelope eN” formulation used in the 2D MSES [28] and 
XFOIL [15] codes, the amplification equation which governs the transition location is solved 
simultaneously with the inviscid and boundary layer equations, giving a robust overall method 
for transitional flows. In IBL this strongly-coupled transition prediction formulation was 
extended and applied to the 3D boundary layer case, so that the transition location is in effect a 
fundamental unknown of the solution. 

The IBL 3D formulation supports a standard inviscid/viscous interaction model that imposes a 
transpiration boundary condition on the inviscid formulation at the body surface. The specified 
inviscid transpiration mass flux is equal to the surface-divergence of the mass defect of the 
viscous layer, which is equivalent to the physical requirement that the normal mass fluxes in 
the viscous and inviscid zones are equal immediately outside of the boundary layer. This 
normal-flow imposition is the only mechanism by which the viscous layer can influence the 
overall outer inviscid flow, and thus is fully consistent with the physics of high Reynolds 
number flows. 

 
Figure 41. Double-taper wing with 41 by 12 paneling. Wake 9 by 12 mesh not shown. 

The basic feasibility of the IBL 3D formulation for application to non-trivial geometry has 
been demonstrated, where IBL was strongly coupled to a low order panel method using 
constant doublet strengths, together with constant source-panel strengths to impose the wall 
transpiration. The overall coupled formulation was solved using a global Newton method, and 
was used to predict separated flow over a double-taper wing. Figure 41 shows the wing 
paneling, and Figure 42 shows the computed wall streamlines with a zoom-in on the right. The 
attachment and separation lines are captured in the solution by the strongly coupled 
formulation. This is in contrast to the classical 3D boundary layer solvers, which typically 
require the identification of an attachment line where the space-marching procedure is started. 

 
Figure 42. Computed wall streamlines on double-taper wing at 4o angle of attack. 

It should be noted that this subtask is, overall, still work in progress. HSM has yet to be fully 
integrated into the SANS framework (but is available in CAPS from the original FORTRAN 
implementation – see Section 3.1.8.5). And, because the Full Potential Code is grid sensitive it 
requires adaptation and the proper technique to adjust the mesh is through error estimation via 
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the adjoint, which is not yet complete. Only recently has an analytic adjoint been developed, 
which is required for error estimation, see Appendix D. 

The full potential code is currently incorporated directly into an unpublished AIM. The AIM 
automatically generates a mesh using either TetGen or AFLR3, where the surface mesh is 
generated directly by the AIM due to the non-manifold nature of the wake sheet. A number of 
aerodynamic quantities of interest such as lift, drag, and pitching moment are available. The 
ability to deflect control surface is also incorporated into the AIM. In addition, both dynamic and 
static stability derivatives are available. A set of unpublished UDPs have also been created in 
order to simply the geometry generation (including wake sheets off of lifting surfaces) and 
application of attributions for full potential computations. This was used during the first CAPS 
training (see Section 3.1.10.2) but was provided only in the PreBuilt distributions. The UDPs and 
AIM have since been removed waiting for mesh adaptation to ensure better accuracy. 

3.2.4.5 CAPS API and AIMs 
This task is similar to the maintenance subtask described in Section 3.1.3.2, but now that the 
CAPS software infrastructure is maturing (and is in constant use at AFRL and elsewhere) this 
maintenance includes all of the CAPS software. As deficiencies were found, the API has been 
enhanced to provide a better interface to the attached analysis suites. As pyCAPS (the Python 
connection to CAPS) improves, it drives some minor changes to the CAPS API. 

The suite of AIMs developed during the first phase of the CAPS contract included many more 
analysis connections than originally proposed (see Sections 2.3 and 3.1.8). 

3.2.4.6 SLUGS 
SLUGS is the “Static Legacy Unstructured Geometry System” (see Section 3.1.4.1) is the part of 
CAPS that allows a user to generate a watertight BSpline-based BRep from a cloud of points. 

Although SLUGS has been exercised on several test cases, the state of the code is such that new 
cases often reveal minor extensions (and bug fixes) that would improve its utility. 

3.2.4.7 Vehicle Configurator (GLOVES) 
When modeling a new aircraft, one of the first steps is to create the baseline parametric model. 
Fortunately, there is a fair amount of commonality between aircraft of different types (such as 
tube and wing). The Vehicle Sketch Pad from NASA was developed to assemble aircraft 
components (wing and fuselage) quickly to generate a visual representation that is useful in very 
early design phases. Unfortunately, VSP’s output is not a watertight BRep; that is, VSP’s 
resultant geometry is not all that useful for medium to high fidelity analyses, such as aeroelastic 
analysis. Also, VSP’s user interface does not allow one to naturally interact with a design, but 
instead has the use adjusting sliders, etc. 

GLOVES (the Graphical Layout Of VEhicle Systems) is a tool for creating a vehicle model 
using a set of standard primitives, such as a wing-like lifting surface or a fuselage-like blended 
body. Each body type has a set of standard design parameters. For example, the wing-like lifting 
surface is defined in terms of its root (origin), area, aspect ratio, taper ratio, sweep, dihedral, 
twist, thickness (distribution) and camber (distribution). 
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Once the vehicle components are assembled, GLOVES presents the user with a wire-frame 
representation, such as shown in Figure 43. This example is a transport-like configuration, 
consisting of a fuselage, a wing, and a horizontal tail. 

 
Figure 43. GLOVES Graphical User Interface. 

Once this configuration is shown on the screen, the user interacts with it by hovering over one of 
the corner points for the wireframe. When over the point, a pop-up menu is displayed that 
informs the user as to which of the design parameters effect the location of this point. In the 
figure, hovering over the point at the upper-surface trailing-edge wingtip tells the user that the 
location of this point is determined by the wing’s Xroot, Zroot, area, aspect (ratio), taper 
(ratio), sweep, dihedral, and thickness. When the user click on one of these items, motion of 
the mouse will cause the wireframe to track the mouse (as best as possible) by only changing the 
selected item. 

GLOVES is particularly useful in creating a “first guess” for PLUGS. By having a configuration 
closer to the cloud, many less iterations would be required to find the closest parameter fit. 

3.2.4.8 Documentation 
One of the biggest challenges in generating useful software of a complex nature is the writing of 
a clear, concise, and understandable suite of documentation. This is even more difficult when the 
software is under heavy development. Without the documentation, even the best implemented 
software is of dubious value (if no one can figure out how to use it, how useful can it be?). 

A great deal of effort is spent before a software release in order to fill-in the missing parts of the 
documentation and to ensure that the current state of the documentation set is consistent with the 
software to be released. Writing the documentation is a team effort because the software 
generated under the ESP umbrella is a team endeavor. The location of the documents with the 
ESP distribution is listed in Table 4. 
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Table 4. Documentation and location. 

Document Location in the distribution 
EGADS API doc/EGADS/egads.pdf 

OpenCSM API include/OpenCSM.h 
CAPS API doc/CAPSapi.pdf 

AIM Development doc/AIMdevel.pdf 
CAPS Discretization doc/capsDiscr.pdf 

ESP ESP/ESP-help.html 
AIM References doc/CAPSdoc/* 

pyCAPS doc/pyCAPS/* 
Training training/* 

WebViewer API doc/Viewer.pdf 
 

The training material has also become an important part of the documentation suite. Much effort 
is expended before a training in reviewing the contents, updating the material, including new 
features and adding updated “best practices” (also possibly deemphasizing aspects of the 
material when timing associated with overall content becomes an issue). 

3.2.4.9 Software Releases 
See Section 3.1.10.3 

3.2.4.10 Software Installation on Air Force Computational Facilities 
As stated in Section 3.1.10.3 there are 3 basic ways that ESP/CAPS is installed on individual 
workstations at AFRL: direct access to the MIT source code repositories, the use of source Beta 
releases, or the use of official releases (either source or PreBuilt distributions). This has caused 
some problems at AFRL in regards to the dissemination of plugins that are not a part of the 
official release (3 above). These UDP/UDFs and/or AIMs either have not been cleared (to 
Distribution A) or are proprietary and/or sensitive. The problem is that these plugins do not go 
through the same rigorous testing and need to be distributed separately by some other internal 
procedure. A better distribution solution is required. 

3.2.4.11 ESP and CAPS Training 
See Section 3.1.10.2.  
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4 CONCLUSIONS 

A recent overview of the CAPS project [30] concluded with: 

“We believe that a shift in the role and representation of geometry plays a central role in 
enabling an environment capable of rapid, multifidelity, multidisciplinary design. Most 
significantly, we advocate for constructing design models that encode the design intent 
and conceptual elements that comprise a vehicle, rather than a producing a single – albeit 
typically parametric – view of geometry, which is traditionally approached from a 
manufacturing rather than analysis mindset. Such a design model enables the construction 
of multiple, analysis-specific views from a single specification, eliminating the necessity 
and ambiguity of reinterpreting geometry for different purposes. From this representation, 
it naturally extends that geometry serves as a conduit for transferring data between 
coupled analyses. Hence, the geometry should play an active role throughout the analysis 
process extending beyond analysis preprocessing. 

We have also found persistent attribution of geometry to be a critical element of the 
design environment. When coupled with trimmed, watertight geometry, attributes drive 
the automated generation of analysis meshes and inputs, removing a bottle neck that 
precludes using many high-fidelity analyses in the early design process. Ultimately, the 
attributes provide a linkage between geometry and non-geometric information required 
for analysis. However, in our experience, the application of analysis attributes in the 
midst of the design model specification can present more of a conceptual burden than 
advantage, particularly for structural models requiring identification of BRep Edges and 
Nodes. A more practicable approach is to attribute geometry with its conceptual purpose 
as it is built, and to apply analysis-specific attributes to the analysis-specific views after 
their construction. This dichotomy has the advantage of supporting the typical separation 
of the modeler, or configurator, from the analyst. 

Underpinned by the attributed design model, we have produced and demonstrated the 
CAPS infrastructure to manage the flow of information between the geometry subsystem, 
various analysis interface modules (AIMs), and the environment driven by an external 
design process. Beyond producing the design model, the user’s primary interaction with 
CAPS is in the configuration and coordination of AIMs within an executive process. The 
AIMs themselves perform pre- and post-processing, having a one-to-one mapping with a 
particular analysis package. The actual execution of an analysis within the computational 
environment is managed external to the AIM by design, as to permit interoperability 
across a wide range of environments. 

Aside from the shift of cultural mindset required, perhaps the greatest barrier to adoption 
of CAPS technology is learning to script the design model. While the Engineering Sketch 
Pad (ESP) provides a native viewer with built-in script editor, the graphical process 
entails selecting model operations from a menu and auto-generating the corresponding 
script. In our experience, users typically construct the design model within ESP by 
making small script modifications and viewing the results. To users accustomed to 
graphical geometry layout and perhaps uninitiated in computer programming, producing 
a design model script can be a daunting process. One step we have recently taken to 
lower this barrier is the introduction pre-coded analysis view generators. When loaded, 
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these scripts take geometry attributed under a convention and produce the representations 
required by certain analyses. Similarly, a library of typical components with a predefined 
design intent could be envisioned, allowing users to construct vehicle models with a 
building block approach. 

Looking more outwardly, widespread adoption will require the incorporation of these 
modeling philosophies into industry-standard modeling packages and design frameworks. 
Our hope is that by demonstrating continued success, the ideas espoused by CAPS will 
attain broad acceptance to advance the state of design by multifidelity, multidisciplinary 
analysis.” 

By any measure, the CAPS contract is a success. Throughout the course of the contract there has 
been a great deal of communication and this has changed the priority of various tasks, to 
continually accommodate the use of ESP/CAPS within AFRL. In a real sense this contract has 
been handled as a Cooperative Agreement (due to the close collaboration) to the benefit of both 
the CAPS team and AFRL. Since the useful output of the effort has been the software and 
changes are (continuously) available, the feedback we have gotten has improved our knowledge 
of the problems at-hand and has provided a better “product” overall. 

Even though there has been some adjustment of priorities, most all of the tasks listed above have 
been successfully completed. Those that were not, either fit into the category of finding an 
alternative (OverSet Meshing – Section 3.1.7.1) or required a great deal of research, where 
significant progress can be seen. Examples of the latter are Sculpting (Section 3.2.1.2), 
Packaging (Section 3.2.3) and FPC/HSM/IBL (Section 3.2.4.4). 

Much has been learned [30] (as mentioned above). A number of both Masters and PhD students 
at MIT and Syracuse University have been funded through CAPS and have graduated. The 
Bibliography is, yet again, another reflection of the intellectual output of this effort overall. And 
most importantly the software is available (http://acdl.mit.edu/ESP) and is being continuously 
used at AFRL and elsewhere. 
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APPENDIX A – Geometry Concepts 
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APPENDIX B – CAPS API 
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APPENDIX C – AIM DEVELOPMENT 

 

 

 



 

95 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

96 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

97 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

98 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

99 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

100 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

101 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

102 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

103 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

104 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

105 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

106 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

107 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

108 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

109 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

110 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

111 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

112 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

113 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

114 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

115 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

116 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

117 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 



 

118 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

 

 

 
 
 



 

119 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

APPENDIX D – LINEARIZED INCOMPRESSIBLE POTENTIAL: WAKE 
AND KUTTA CONDITION 
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