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1 SUMMARY

In the design of real configurations, such as aerospace vehicles, geometry should play a central
role. For a given shape, the number of unique geometry models is almost as great as the number
of disciplinary simulation models. Each simulation model will usually read certain geometry and
mesh formats or have other requirements peculiar to it. However, no matter the geometry/mesh
format or requirements, it must be based on realizable and consistent geometric object(s). This
fact allows for all geometry and mesh requirements to originate from a single common
parametric description.

Beyond the differences caused by disciplinary analyses, there are also the differences created
between analysis and manufacturing. When analyzing (or designing/optimizing) some physical
object that will ultimately be manufactured, it is common practice to create an additional model
beyond those generated for the simulation design tools. This is a fully realizable 3D
representation in a CAD or CAD-like system. Generally great care must be taken to ensure that
the design and manufacturing representations are close enough to each other so that what is built
is the same as what was designed. This care requires a large amount of time (and human
intervention), making automation of the process extremely difficult, if not impossible, especially
within a Multi-Disciplinary Analysis and Optimization (MDAQ) environment.

The most common method for transferring geometry amongst the various analyses is via file
standards. The first commonly used standard was the IGES file format which contains data that
is defined as disjoint and unconnected surfaces and curves; that is, it only contains geometry with
no notion of topology. Topology, in this context, is the hierarchy and connectivity of the various
geometric elements. Since 3D meshing software ultimately requires a closed watertight model,
much effort is therefore needed to take the geometric data, trim the curves and surfaces, and then
deduce the topology. STEP, a more complete file standard, supports the transmittal of topology
as well as geometry so that a Boundary Representation (BRep) can be built. This is the
preferable file type to hold geometric data. Surprisingly, this format is seldom used, probably
due to the fact that constructing a STEP reader is complex and it requires a complete solid-
modeling geometry kernel to deal with the data.

A larger problem with both IGES and STEP formats is the fact that they are static (non-
parametric) geometry models. The implication of this is that one can only perform physics-based
analyses on that particular geometry, with no ability to modify it or perform trade studies. Also,
without being driven by Design Parameters, it is impossible to determine the sensitivities of the
results of a physics-based simulation with respect to the Design Parameters; the latter is key to
generating optimal designs.

This final report for the Computational Aircraft Prototype Syntheses (CAPS) project discusses
the tasks performed and in some cases the status (if not completed). But unlike many research
projects, this report and the associated papers (see the Bibliography) are not the output of this
entire effort. The most tangible and significant result of this work is open source software that
robustly performs the overall underpinning for a holistic and integrated system that can perform
Design through Analysis. CAPS along with the rest of the ESP software can be found and
downloaded at: http://acdl.mit.edu/ESP.
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2 INTRODUCTION
2.1 The Engineering SketchPad (ESP) — OpenCSM and EGADS

Currently, most organizations have found it difficult to bridge the gap between conceptual
design, where the geometry may be of low fidelity, and fully realizable 3D representations. To
alleviate this problem and those associated with transmitting geometry via file standards,
geometry kernel APIs that couple directly with the source of the geometry can be utilized. One
clear advantage to this approach is that the geometry never needs to be translated and hence
remains simpler and closed to within the modeler’s tolerance. Also, a geometry system that can
be used both at the conceptual level and throughout preliminary/detailed design has obvious
advantages.

File standards and kernel APIs are for dealing with a static configuration once it has been
defined; such a view is sufficient for analysis. But for design, the ability to deal with the process
by which the configuration is defined and built is paramount. In parametric CAD systems, the
configuration definition is done through a master-model that consists of both a build recipe
(called the feature tree) and a set of Design Parameters. This recipe (where the design intent is
realized) must be made available to the MDAO process since it defines the design space and
informs how to build and optimize the configuration. Most CAD systems hold this information
in proprietary file formats that cannot easily be read or modified by outside programs.

Foundational work has been accomplished in developing an integrated software suite that solves
the issues discussed above. The resulting capability provides the tools to generate various
representations of a design (either multi-fidelity or multi-disciplinary, or both) from a single
master model. A user accesses this software through a web browser, and this complete suite is
referred to as the Engineering Sketch Pad (ESP), which is a fully parametric, attributed, feature-
based solid-modeling system [1]. The output of ESP is geometry in the form of one or more
BReps (see Appendix A).

ESP is built both upon the WebViewer (which is a WebGL-based visualizer for three-
dimensional configurations and data) and upon OpenCSM [2], which is a constructive solid
modeler that is itself built upon EGADS [3] and OpenCASCADE. There is no absolute
requirement for ESP’s dependency on OpenCASCADE; rather this CAD kernel is chosen
because it is open-source and can be distributed freely with ESP. In fact, all of this software is
open-source and available without any licensing restrictions.

2.2 CAPS

It is not an easy task to build a tightly-integrated software system that contains many access
points, needs to be able to be user-driven, and fundamentally improves upon the multi-fidelity
and multi-disciplinary design process. This is accomplished in CAPS (which is ESP’s formal
connection to various Computational Engineering Analysis suites) by attacking the process-
related bottlenecks head-on [4]. For example, when performing a vortex lattice aerodynamic
analysis of a wing with the geometric description of an Outer Mold Line (OML), the wing needs
to be deflated to a single surface. Typically, this requires difficult, possibly error-prone, user-
intensive reverse engineering and may provide situations that are, at best, ambiguous. The
strategy taken here is to forward engineer the process, where, in this case, the mid-surface
aerodynamic shape is generated directly.

2
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Component or sub-component models can be generated as either compiled-language plug-ins or
as scripts that build geometry. CAPS allows user and programmatic access (through a high-level
API or Python interface) to:

e change a Design Parameter value (or values) and regenerate the geometry;

e annotate the geometry through attribution;

e get geometric sensitivities with respect to the Design Parameters;

e generate geometry at a fidelity commensurate with the analysis to be used;

e mesh (or setup the input for meshing) the geometry, specifically for the analysis at-hand; and
e setup for the execution of the specific analysis code.

A software block diagram for CAPS in the ESP environment can be seen in Figure 1. An
important part of CAPS’ flexibility in dealing with various analysis codes are the AIMs
(Analysis Interface Modules). This plug-in technology leaves the overall framework alone and
allows for run-time connections. The geometry passed to the plug-in is specified on the BRep (of
appropriate fidelity) by the use of attribution at build. Any inputs (not associated with the BRep)
as well as other BRep attributes may also be required depending of the analysis at-hand. The
following functions are a part of any AIM plug-in:

e Attribute/Input Checking: this AIM function is invoked before any mesh/input file generation
to ensure that all of the required data can be found.

e Meshing: the input BRep and/or tessellation are used to either perform the meshing directly
(if possible or the mesh system has an API) or to provide input to a grid generator. Note that
the mesh vertices that sit on geometry (as described in the input BRep) need to be associated
back to the geometry. This is important for generating parametric sensitivities [5] and
performing data fitting [6] (straight forward interpolation or conservative data transfer). Most
stand-alone grid generation systems maintain this data internally but do not make it available
as output. Any attempt to re-associate this data by inverse evaluations is slow and not robust.

e Analysis Input Generation (Pre-Execution): the input values and attributes found on the
geometry are used to construct and output the input file(s) required to run the analysis. If the
analysis suite has its own API, then the API can be used directly to avoid the writing and
subsequent reading of files. This means that the pre-execution portion of the AIM also
performs the analysis execution function, otherwise the CAPS user/programmer/MDO
framework is responsible for running the solver.

e Post Execution: CAPS is informed that the analysis code has successfully run.

e Output Parsing: this is required to get performance data, displacements, pressures or other
information required to be used as input to another analysis module or to inform the
optimizer of the objective functional value(s). Again, this would involve file reading unless
the analysis system has an API that can be used to retrieve the output data directly.

e Data Transfer Functions [6]: a function that computes interpolation within a surface element
is required in order to perform the interdisciplinary coupling in an interpolation setting. If the
option for conservation is chosen then the interpolation function must be augmented with one
that performs integration of quantities over an element (also their backward or dual variants
are required for efficient computation of the transfer).

3
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Figure 1. CAPS (in the ESP environment) block diagram.

The block diagram seen in Figure 1 has not changed since the inception of CAPS except for
these 2 items:

EGADSIite — This is a subset of the EGADS API and entirely free of the OpenCASCADE
dependency. The portion of the API supported are those functions useful for grid generation
and mesh adaptation and this subset is designed specifically to be placed in High
Performance Compute (HPC) environments [7]. EGADSlIite contains the functions that allow
for parsing the Topology of a geometric model, performing geometric evaluations and
inverse evaluations and the in/out predicates — basically everything in EGADS except for
geometry construction. This work has been funded by NASA.

pyCAPS — The original CAPS proposal assumed that the software would be accessed via
compiled applications or would be plugged into an MDO framework (where someone would
use the CAPS API in C/C++ to make the programming connections). It quickly became
apparent that this would limit CAPS’ access and usefulness. An easier access approach was
needed. The decision was made by AFRL personnel that there needed to be a Python
connection. pyCAPS [8] was initially written by Ryan Durscher AFRL/RQVC to mirror the
C/C++ API but also be appropriate for Python (CAPS was Pythonized). This has become an
integral part of the ESP/CAPS software suite and has allowed for improved and simplified
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testing; plus, it gives us the ability to train people in the use of CAPS without requiring
programming or being dependent on an MDO framework.

23 AlMs

The open source suite of CAPS AIMs is fairly complete reflecting various fidelities of both
Computational Fluid Dynamics (CFD) and Structural Analysis. Also, because of the non-viral
open source license and the plug-in nature of the AIMs, AFRL personnel has developed a
number of internal AIMs not distributed outside of AFRL and which are not included in the
external software releases.

The following is a list of AIMs currently in the ESP/CAPS distribution:

AFLR2 — A 2D triangle mesher for 2D CFD applications written by Prof. Dave Marcum of
Mississippi State University. Used for running SU? in 2D mode.

AFLR3 — This is the 3D tetrahedral volume mesher written by Prof. Dave Marcum of
Mississippi State University. AFLR3 is an unstructured grid generator that is used by many in
the CFD community and by many in the DoD and can generate meshes suitable for Reynolds-
Averaged Navier-Stokes (RANS) simulations.

AFLR4 — This 3D surface triangulator (also from Prof. Marcum) can be used instead of the
EGADS tessellator to prepare surfaces for volume meshing (AFLR3 or TetGen). Its output is an
EGADS Tessellation Object, which is a container for the triangulation (elements and vertices).
The geometric ownership of each vertex is also maintained with the associated geometric
parameters.

ASTROS — The Automated STRructural Optimization System (ASTROS) is a comprehensive
software suite for the multidisciplinary design and analysis of aerospace structures. ASTROS
combines optimization algorithms with structural finite element analysis (FEA) disciplines such
as statics, dynamics, and aeroelasticity to perform automated design of structures. ASTROS
supports both the preliminary design stages of new aircraft/spacecraft structures and design
modifications that occur later in the product life cycle. ASTROS, based on the standard
NASTRAN data formats, combines finite element modeling and analysis techniques with
efficient optimization solutions to deliver significant reductions in the time required to develop
superior designs of aerospace structures. ASTROS integrates all of the engineering disciplines
that impact the preliminary structural design phase and can simultaneously design to strength,
flutter, displacement, and other requirements. It considers a wide scope of conditions in a design
task and treats multiple boundary conditions, each permitting a range of analysis such as statics,
modes, and flutter. The current AIM supports a subset of the current ASTROS functionality.
More can be added when needed.

AVL — Describing geometry appropriate for AVL (the Athena Vortex Lattice) code [9] is
different than higher fidelity codes that require a single Body representing the OML. AVL
requires multiple Bodies each referring to an airfoil section. The geometric model needs to be
consistent with a build description that is hierarchical and multi-fidelity. That is, the build
description that generates the geometric data at this level can be further enhanced to produce the
complete OML of the aircraft design under consideration.
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As for the geometric description, AVL requires airfoil section data specified at the appropriate
locations that describe the skeleton of the aircraft. These sections, when /offed as groups and
finally unioned together, build the OML. Intercepting the state of the geometry before these
higher-level operations are applied provides the data appropriate for AVL. This naturally
constructs a hierarchal geometric view where a design can progress into higher fidelities and
feedback can be achieved where we can go back to this level of description when need be.

AWAVE — AWAVE provides an estimation for wave drag at supersonic Mach numbers at
various angles of attack. Inside AWAVE all configurations are assumed to be symmetric with
respect to the X-Z plane. Only the +Y axis portion of a given model is used to generate the
AWAVE input. This AIM automatically finds the proper portions of the model to create the
input. However, it assumes that the model is oriented with the X-axis as the flow direction and
the Y-axis out the right-side wing from the pilot’s perspective.

Cart3D — Cart3D (written by Michael Aftosmis and team at NASA Ames Research Center) is the
best-in-class CFD Euler (inviscid) solver. The geometric input to Cart3D is a surface tessellation
of the Body of interest (in the form of an EGADS tessellation Object). Cart3D constructs an
AMR (hierarchical Automatic Mesh Refinement) mesh, where the input body triangulation cuts
through the Cartesian elements.

Another module in this suite is not a connection to CAPS, but is an ESP interface into the
Cart3D Design Framework. This interface code (“ESPxddm”) uses the XML Cart3D design
description language XDDM to adjust OpenCSM design parameters, rebuild the geometry,
tessellate and compute sensitivities for the Design Framework.

Chimera Grid Tools — Chimera Grid Tools (CGT) is a software package containing a variety of
tools for the Chimera overset grid approach for solving complex configuration problems. The
typical starting point is a description of the surface geometry in the form of triangulations or
regular surface patches. This data is converted from the ESP description and is the prototype for
the current ESP integration into the CGT tool “OverGrid”.

EGADS Tessellation — The EGADS surface meshing AIM provides CAPS with the native
EGADS triangulation (or quadrilaterals) in the form of a Tessellation Object.

FRICTION — FRICTION is a skin friction and form drag estimation program written by W.
Mason (Virginia Tech), which provides an estimate of laminar and turbulent skin friction and
form drag suitable for use for aircraft preliminary design.

Fun3D — Fun3D is an unstructured 3D RANS CFD solver from NASA Langley Research Center.

HSM — The Hypergeometric Shell Model (HSM) is formulated in the global 3D cartesian
coordinate system, parameterized using local (element) coordinates, which also define a local
basis for forming tangential derivatives and material strains. This closely follows the analysis of
Simo et al [10,11,12], except that here the equations are obtained directly from stress equilibrium
rather than an energy functional. As in Simo’s formulation, the present method also defines a
material quasi-normal vector (or director) as a primary unknown, whose deviation from the
surface normal defines the transverse shear strains. The transverse shear stresses, however, are
represented separately by their scalar potential, so that the normal-force equilibrium relation
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becomes a well-conditioned Poisson equation, and also precludes any shear-locking problems
[13].

MASSTRAN — MassTran is a simple solver that approximates the mass properties and is used
primarily for training in the use of CAPS. It computes the total mass, center of gravity, and
moments of inertia of a geometric configuration using structural shell meshes attributed for finite
element structural solvers such as ASTROS and NASTRAN.

MYSTRAN — MYSTRAN is an open-source general purpose finite element analysis computer
program for structures that can be modeled as linear (i.e. displacements, forces and stresses
proportional to applied load). MYSTRAN is an acronym for “My Structural Analysis”, to
indicate its usefulness in solving a wide variety of finite element analysis problems on a personal
computer (although there is no reason that it could not be used on larger computers as well). For
anyone familiar with the popular NASTRAN computer program developed by NASA in the
1970’s and popularized in several commercial versions since, the input to MYSTRAN will look
quite familiar. Indeed, many structural analyses modeled for execution in NASTRAN will
execute in MYSTRAN with little, or no, modification. MYSTRAN, however, is not NASTRAN.
All of the finite element processing to obtain the global stiffness matrix (including the finite
element matrix generation routines themselves), the reduction of the stiffness matrix to the
solution set, as well as all of the input/output routines are written in independent, modern,
Fortran 90/95 code. The major solution algorithms (e.g., triangular decomposition of matrices
and forward/backward substitution to obtain solutions of linear equations and Lanczos
eigenvalues extraction code), however, were obtained from the popular LAPACK and ARPACK
codes.

NASTRAN — NASTRAN is a finite element analysis (FEA) program that was originally
developed for NASA in the late 1960s by Stephen Burns of the University of Rochester under
United States government funding for the Aerospace industry. The MacNeal-Schwendler
Corporation (MSC) was one of the principal and original developers of the public domain
NASTRAN code. NASTRAN source code is integrated in a number of different software
packages, which are distributed by a range of companies. This AIM is specifically targeted for
the MSC NASTRAN variant.

Pointwise — Pointwise is the premier commercial CFD Mesher. Pointwise has its own internal
Geometry Kernel which is referred to as Geometry Engine (GE). A prerequisite for AIM
construction is that EGADS data be translated into GE, which includes geometry, topology and
attribution. This has been done in a separate stand-alone application (“egads2nmb’’). This code
(“egads2nmb”) has been taken over and incorporated into Pointwise Ver 18.2R2 (and higher) so
that Pointwise can now fully import EGADS models. The AIM drives Pointwise Glyph scripts to
provide full automation after import.

Skeleton — This AIM is a coding example that individuals interested in writing AIMs can use as
a pattern. It is being constructed for the CAPS trainings, where (at times) the last session is on
AIM writing.

SU? — SU? is an open-source unstructured 3D RANS CFD solver from a team of researchers,
students and others) from Stanford University overseen by Prof. Juan Alonso.
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TetGen — TetGen is an open-source tetrahedral mesh generator written by Hang Si [14], which
can be used with Fun3D or SU? for Euler simulations.

TSFOIL — This code solves the two-dimensional, transonic, small-disturbance equations for flow
past lifting airfoils in both free air and various wind-tunnel environments by using a variant of
the finite-difference method.

XFOIL — XFOIL [15] is an interactive program for the design and analysis of subsonic isolated
airfoils from Mark Drela at MIT.

2.4 Software Engineering and Testing

In that the tangible output for this contract is the open source software, the approach to software
generation, testing, release and training is critical in order that the result be robust and usable. To
ensure that all of the ESP software components function a great deal of testing is required. This
has been automated by the use of Jenkins which watches the MIT hosted ESP repositories for
commits.

This testing and the use of Jenkins as the test harness was initiated during this contract (though
there was no specific associated task). We have found this invaluable in that it allows for the
generation of software that is of an exceptionally high quality (rivaling the best commercial
engineering software available). Most of the time the testing suite finds the problems so that the
users do not. It allows for us to freely change foundational portions of the software without the
fear of inserting bugs or not maintaining backward compatibility. The success of this software is
partially attributable to the vast amount of testing and the use of Jenkins for organizing the tests.

The ESP tab on the ACDL/MIT Jenkins page can be seen in Figure 2. Currently all testing is
done against 2 Releases of OpenCASCADE, 6.8.1 and 7.3.1 (both of which have been hardened
and corrected for known bugs). A more complete description of each of these Jenkins Projects
follow:

BasicOcsm — EGADS and OpenCSM are built for the use of the Jenkins project and the basic
regression tests are run from the OpenCSM data/basic directory.

Beta — This project is run after a new ESP Beta release has been put on the ESP website. It
compiles and builds all of the ESP (including CAPS) applications to test out the distribution
layout. Minimal testing on both ESP and CAPS is performed.

Bob —Similar to BasicOcsm but is initiated manually to test low-level changes. This allows for
finding problems before the regular testing

Commit — This gets run after an svn commit from either the CAPS, OpenCSM or EGADS
repositories. It compiles, and generally builds all libraries and applications. It also executes a
small suite of test examples to ensure that the base-level functionality is intact.

Coverage — The gcc suite of compilers supports the ability to map the level of coverage the suite
of tests actually touch in the source code-base. This is useful information and provides a “water
mark” where testing coverage should only improve over time. This is available only under
Linux. Note that this is currently not being monitored.
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MemcheckCaps — Both clang and gcc have the ability to check some memory usage (for out of
bounds memory usage) by compiling the source with certain flags. This is done for CAPS and a
fairly exhaustive suite of tests are run in order to check for memory problems. This provides
some of the same data as has been available through Valgrind but runs faster (note that this does
not check for the use of uninitialized values, so Valgrind is still an important tool in the arsenal).

MemcheckOcsm — Same as MemcheckCaps but for EGADS and OpenCSM.

MemcheckOcsm_7.4 — Same as MemcheckOcsm but testing against OpenCASCADE 7.4.1 (our
hardened version of the 7.4 release). This is being done as we deprecate support of
OpenCASCADE 6.8 and consider including OpenCASCADE 7.4.

RegCaps — A complete CAPS test suite of unit and higher-level tests are built and run for all
supported architectures and compilers. Because of the standardization, all sections should
provide the same results. If not, this highlights cases to examine closely. This was what was
done, by hand, just before a full release was made official. The use of Jenkins in this project
significantly reduces the time required to cut a new release.

RegOcsm — EGADS and OpenCSM are built. The complete OpenCSM test suite of unit and
higher-level tests are run for all supported architectures and compilers. Because of the
standardization, all sections should provide the same results. If not, this highlights cases to
examine closely.

UndefinedCaps — Both clang and gcc have the ability to catch the use of undefined variables.
This project builds and executes the CAPS applications with this flag and reports any findings.

UndefinedOcsm — Both clang and gcc have the ability to catch the use of undefined variables.
This project builds and executes EGADS and OpenCSM applications with this flag and reports
any findings.

UndefinedOcsm_7.4 — Same as UndefinedOcsm but testing against OpenCASCADE 7.4.1

ValgrindCaps — This project runs the same cases as in the RegCaps Project, but does so using the
dynamic analyzer Valgrind. This is run only once a month because it can take about a day, due to
the size of the test suite and the speed penalty (as much as 10 times slower) encountered using
this tool.

ValgrindOcsm — This project runs the same cases as in the RegOcsm Project, but does so using
the dynamic analyzer Valgrind. This is run only once a month because it can take more than two
days, due to the size of the test suite and the speed penalty (as much as 10 times slower)
encountered using this tool.
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Figure 2. The ESP tab displaying all of the Jenkins testing projects.
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3 TASKSTATUS

There is no intention of generating a detailed report of each of these tasks. For that information
please refer to the associated papers (see the References) or the appropriate monthly technical
reports (where there have been 61). The monthly reports are complete and detailed. This final
report discusses and summarizes the status of each task/subtask.

3.1 CAPS

This first set of 10 tasks were the ones outlined in the original CAPS proposal. This ran from
August 2014 to May 2017.

3.1.1 CAPS Infrastructure

These subtasks are associated with the design and initial development of the CAPS software
system.

3.1.1.1  Overall Architecture

A detailed design for the CAPS infrastructure, including identification of the form and function
of all major components and the associated application programming interfaces (APIs) was
performed. A design review with customer was had early on in the contract (See Section
3.1.10.1) to ensure that most all of the needs are met. The result can be seen in the current ESP
distribution in the file SESP_ROOT/doc/CAPSapi.pdf (also see Appendix B), which has only
changed in minor ways since the original design.

3.1.1.2 AIM Plugin Design
The API for the Analysis Interface & Meshing (AIM) subsystem was defined taking the API for
the User-defined Primitives/Functions (within the Geometry subsystem) as an example and

template. The current AIM development and API document can be found in the ESP distribution
in the file $ESP_ROOQOT/doc/AlMdevel.pdf (also see Appendix C).

This design has changed over the course of this effort, in particular for the support of pyCAPS
and providing a hierarchal view for the AIMs. For the most part these changes were
accomplished by adding AIM access points while avoiding changing the signatures of the
functions (so that the functionality of existing AIMs could be maintained — backward
compatibility).

The current design appears quite flexible and adequate as can be seen by the number and breadth
of AIMs distributed with ESP/CAPS (see Section 2.3) and the proprietary AIMs found at AFRL
and other sites.

3.1.2 Engineering SketchPad

The subtasks listed below have to do with the Graphical User Interface (GUI) of the geometry
subsystem found in ESP. These are maintenance, improvement and demonstration efforts.

3.1.21 ESP Parameter Manager

A browser-based parameter manager was designed and implemented that allows users to inspect
and change all the parameters associated with a model. These parameters include geometric
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parameters (such as aspect ratio), material property parameters, and control parameters. The
parameters will be organized hierarchically such that conceptual, preliminary, and detailed
design parameters are grouped together.
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Figure 3. ESP Parameter Management.

The hierarchical ESP Parameter Manager can be seen in the left-hand frame of Figure 3. The
transport model shown here is from the most recent training and can be found in the current ESP
distribution at SESP_ROOQOT/training/ESP/transport.csm. What is seen is the “Conceptual” view
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(i.e., the one appropriate to examine the model, and not for any specific analysis). The other
views can be simply activated by setting the appropriate parameters to 1.

The components in play can be selected in a similar manner. In Figure 3 we see that the wing,
fuselage, horizontal and vertical tails are expressed, where the pylon, pod and control surfaces
have been suppressed. Also, the fuselage parameters have been opened up displaying the
fuselage controls. Similar access exists for all of the other components.

3.1.2.2 WebViewer Updates

The browser-based geometry viewer (WebViewer) was extended to allow for visualization of
surface parameters, such as design sensitivities, aerodynamic loads, structural displacements, and
temperatures. This was accomplished in the ESP GUI and a pyCAPS initiated variant. Much
effort as expended to ensure that the WebViewer performs well on supported browsers. Note that
Microsoft’s Internet Explorer and Edge could not be included due to long standing WebSocket
bugs.
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Figure 4. Sensitivity of the fuselage width at a section mid-wing.

Figure 4 shows the design sensitivity colored on the geometry. Because the fuselage was
generated by the blend operation (which produces a fit cubic BSpline surface), one notes that as
you increase the width at the mid-section the sensitivity towards the tail indicates shrinkage.
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3.1.2.3 Multidiscipline multi-fidelity fighter

A number of fluid/structure fighter models have been generated, which are driven from a
consistent suite of parameters. Most models, at a minimum, include a built-up element model
(BEM) and an outer-mode line (OML). Example CSM files can be seen in the distribution
$ESP_ROOT/data/fighter*.csm.
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ESP has been initialized and is attached to 'serveCsM'
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Turning flying mode ON

Figure 5. A10-like fighter — Outer mold-line and the scribed structural supports.

Figure 5 shows a fairly complete and rather detailed ESP model of a fighter inspired by the A10.
This was put together by Kip Risch-Andrews, a Syracuse University undergraduate. It contains
the OML, structural components (ribs, spars, bulkheads, and etc.) as well as subsystems like the
engines, weapons and cutouts for the cockpit. Figure 6 displays the same model but with some of
the OML skins not rendered, which gives a more complete view of the internal layout of the
structures and components.
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Figure 6. A10-like fighter — Showing the internal structures and components.
3.1.3 Geometry Subsystem

The following subtasks involve the continued improvement to EGADS and OpenCSM and
required changes to fully support CAPS.

3.1.3.1 EGADS Updates

This was a continuing subtask throughout the original contract and the supplement. Its intention

is to enhance and upgrade EGADS as required. EGADS is the geometry engine used by all of

ESP (including the CAPS layer). The UDP/UDF as well as the AIM plugins are all EGADS

applets and have full access to the model (geometry, topology, attribution and can modify and/or

construct new models). EGADS was originally a thin veneer over OpenCASCADE. This

situation has been changing over time and EGADS’ dependency on OpenCASCADE has been

diminished by its enhancement. This is due to three factors:

1. most of the robustness issues experienced in the ESP suite are due to SegFaults and
unexpected aborts deep within OpenCASCADE,

2. some of OpenCASCADE’s operators don’t work as one would expect, and

3. OpenCASCADE does not provide the parametric sensitivities required by ESP without
resorting to perturbing the geometry.

This subtask included:

e General EGADS maintenance. This included bug fixes and the effort in supporting new
releases of OpenCASCADE. Much of this subtask is made easier by the vast testing, in
particular, of the OpenCSM scripts.
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e Work continues to improve the speed and robustness of the Solid Boolean Operators (SBOs).
There has been much success in this endeavor. Between the EGADS internal changes and
the improvements in OpenCASCADE, we have seen as much as a factor of 10 speedup for
some SBOs. Also, the success rate of completing all of the tests in the suite continues to
improve indicating better robustness.

e Replaced the evaluations, inverse evaluations and in/out predicates for better speed and to be
consistent with the EGADS parallel variant (EGADSlIite — funded under a NASA NRA
cooperative agreement). This has allowed for scalability to be realized when multithreading
EGADS applications.

e Many of the low-level geometry functions now provide parametric sensitivities to operators
in EGADS. This minimizes what currently requires finite-differencing.

3.1.3.2 OpenCSM Updates

Again, this was a continuing subtask throughout the original contract and the supplement to
enhance and upgrade the OpenCSM as required. OpenCSM is the parametric build portion of
ESP. This foundational software parses the build scripts (feature tree) in order to instruct
EGADS as to how the geometry should be built, based on the Design Parameters. OpenCSM
also provides parametric sensitivities (when queried) on the resultant geometry by traversing the
script and applying the chain-rule.

This maintenance task covers the entire period and is a “catch all” for bug fixes, CSM scripting
enhancements, continued development and testing.

3.1.3.3 CSM Components

A library of sub-system components that can be included within any model has been developed.
Most of these are in the form of UDCs (User Defined Components), which appear to be CSM
subroutines or macros. A complete collection of these scripts can be found in the ESP
distribution in $ESP_ROOT/udc.

3.1.3.4 UDP Plugins

A large number of User Defined Primitive (UDP) and User Defined Function (UDF) plugins
have been generated that can be included within any model. The UDP/UDFs include: bezier,
biconvex, box, createPoly, csm, editAttr, ellipse, fitcurve, freeform, hex, import, kulfan,
naca, naca456, nurbbody, parsec, pod, radwaf, sew, stiffener, supell, and waffle (see the
OpenCSM help for more details).

3.1.4 Legacy Geometry Tools

Even though ESP is designed to generate clean geometry and models commensurate (in fidelity)
with the analysis at-hand, there are situations where the import of legacy models is important.
These subtasks deal with both static and parametric legacy geometry.

3.1.4.1 Import Legacy Geometry

There are 3 different file formats that can be used to import legacy geometry: IGES, STEP, and
STL. EGADS through EG_loadModel (and the import command in OpenCSM) can load either
IGES and/or STEP. In the case of STEP, the import is usually fairly good and may require no
intervention. This may not be the case for IGES where the import can be good if the geometry is
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properly trimmed and written with topology, but this is not the default. More often unconnected
individual surfaces are written — these are import to EGADS as a series of Face-Bodies. The
Face-Bodies can be put back together by using the EGADS function EG_sewFaces or in
OpenCSM by the ‘udprim sew’ command. If this fails the imported geometry can be tessellated
and the triangles that make up the tessellation can be treated like STL input.

For CAPS to properly function (or the geometry to be used during the build of more complex
configurations), the imported geometry cannot be discrete but must be in the form of a BRep.
This is a problem for the import of triangulations (e.g., from STL files). The CAPS application
SLUGS (the Static Legacy Geometry System) requires interaction with the user to accomplish
the conversion to BRep. The user is presented with a graphical view of the input tessellation in a
browser (using the WebViewer) with a very similar layout to ESP. Figure 7 shows an example
configuration that consists of a transport-type configuration with two under-wing engines.

Slugs (Static Legacy Unstructure. . -

file:/ilUsers/idannen/Projects/Slugs/client/Slugs. html ¢ | (B~ Google Q

Undo Help

= Commands
+  Cleanup
= Coloring

Pick Point o)
Link to Point W
Color Triangles  (c)
Automatic Links

+  BRep creation

- Miscellaneous
Write stl file

= Display

- Triangles Viz Grd Trn
Color 0 Viz Grd Trn

Lo

Slugs has been initialized and is attached to server "Slugs’

Figure 7. Initial view of a tessellation that is given to SLUGS.

The first step in the use of SLUGS is to repair the tessellation to fill-in gaps and join nearly-
identical points. An example of this is shown in Figure 8 where the three holes were filled in
with very few mouse clicks.
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Figure 8. Example of initial and “fixed” tessellation in SLUGS.

The second step in the use of SLUGS is to separate the triangles in the configuration into
“colors”, each of which will ultimately become a Face in the static geometry. This is done by
marking triangle sides that enclose a group of triangles and then telling SLUGS to color them.
The marking of the triangle sides is greatly facilitated by the use of a SLUGS tool that
automatically marks the sides that lie on the shortest path between two specified points.

| Slugs (Static Legacy Unstructure... % | 4
| fiem html e | (B- coogle Q) e &A=
Undo | Help
- Commands
+  Cleanup
- Coloring
Pick Point ®

LinktoPoint ()
Color Triangles (¢}
Automatic Links

+  BRepecreation

- Miscellaneous
Write st file

- Display

- Triangles Viz Grd Trn
Color | Viz Grd Trn
Calor2 Viz Grd T
Calor 3 Viz Grd Trn
Calor 4 Viz Grd Trn
Color 5 Viz Grd T
Calor § Viz Grd Trn
Calor 7 Viz Grd Trn
Color Viz Grd Tn
Calor 9 Viz Grd Trn
Calor 10 Viz Grd T
Calor 11 Viz Grd Trn
Calor 12 Viz Grd Trn
Color 13 Viz Grd Tm
Color 14 Viz Grd Tn N
Color 15 Viz Grd Trn

Slugs has been initialized and is attached to server 'Slugs’

Figure 9. Example of configuration colored by a user in less than 30 minutes.

For the configuration shown in Figure 9 the entire coloring process was performed in less than a
half hour. See $ESP_ROOT/SLUGS/Slugs-help.html for a description of the interactive
commands.
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The third step, which converts the colored triangulation into the BRep Edges and Faces requires
colored patches that are either 3 or 4 sided. Each colored patch becomes a Face when fit with a
BSpline control net of 7 x 7 points using the Levenberg-Marquardt algorithm.

This non-parametric geometry is usable in a static manner (i.e., the geometry cannot be
parametrically rebuilt) throughout CAPS.

3.1.4.2 Legacy Parameterization

The goal of PLUGS (the Parametric Legacy Unstructured Geometry System) is to find the design
parameter values (associated with a given CSM model) that most closely match a cloud of
unassigned with regards to geometry (and unconnected) points. This is done through the use of a
least-squares (Levenberg-Marquardt) optimizer that simultaneously changes the values of the
design parameters as well as the /u,v] parametric coordinate associated with each point in the
cloud. The initial work on PLUGS was done in 2016 by a graduate student (Pengcheng Jia) at
Syracuse University [16].

The basic strategy is a nested process. In the outer layer of the process, each cloud point is
associated with the most likely face in the configuration. Once these correspondences are made,
the inner layer uses the Levenberg-Marquardt optimizer to modify the design parameters and
geometric [u,v] parametric coordinates. At the end of this process, the “guessed”
correspondences might not be very good, so the outer layer is again processed to re-establish the
correspondences.

Though Jia showed very promising results, his research code was not integrated into the ESP
software suite at the time. See Section 3.2.4.3 for the current status and CAPS integration.

3.1.5 Structural Desigh — LSM/HSM

A “Lumped” Structural Model (LSM) that extends traditional beam models into a plate-based
model that is fully compatible with the simple aeroelastic analyses, such a vortex lattice method
has been developed. Classical shell elasticity theory with complex geometry has traditionally
been formulated in curvilinear coordinate systems on the shell. The resulting elasticity equations
then involve coordinate Christoffel symbols which account for the curvatures of the coordinate
lines. This formalism is not only complex, but creates unwarranted demands on geometry
smoothness in computational implementations.

Discretizations which treat the shell elements as degenerate 3D solids circumvent the problems
with curvilinear coordinates by formulating the problem in 3D Cartesian space, with the node
position vector and transverse material vector (or director) as the primary unknowns. However,
they have their own complications in their need for C’ or even C’ continuity of assumed element
solution modes, and also have other problems such as shear locking. They also do not capture
rigid-body rotations exactly without special treatment. Exact representation of rigid-body
element rotation is highly desirable for applications such as high aspect ratio High Altitude Long
Endurance (HALE) aircraft which can feature large deformations.

The Hypergeometric Shell Model (HSM) [13] is formulated in the global 3D Cartesian
coordinate system and parameterized using local (element) coordinates, which also define a local
basis for forming tangential and normal derivatives as well as material strains. HSM extends
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basic bilinear shell models by constructing a conformal higher-order surface (C! continuous in
the fine-mesh limit) using the director field which is already present, so that no additional
unknowns are introduced. The MITC method [17] is used for transverse shear strain
interpolations. Overall, for a given numerical problem size, a large improvement in accuracy is
obtained for highly-curved elements and bending-dominated problems, and particularly in
problems with strong membrane/bending coupling, e.g., buckling. Both quadrilateral and triangle
elements are treated.

The present method also defines a complete local basis for the undeformed geometry, in the form
of a normal vector and two in-surface vectors in which general anisotropic materials can be
specified independently of the discretization.

Figure 10 demonstrates a tube beam with incipient shell buckling computed using the HSM
formulation. The tube is anchored at one end with a simple pinned support boundary condition,
and a vertical force is applied at the free end. The tube exhibits local buckling for a sufficiently
large tip load. At incipient buckling, a tube-ovalization buckling mode is evident, and features an
inward “dent” on the upper surface roughly 1.5 diameters out from the anchored end. Also
visible is another conventional column-type buckling mode characterized by an outward bend
immediately adjacent to the anchor end.

80 x 80 mesh
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0%

05
0 4
05 10 0

1905

Figure 10. Tube beam is subjected to a vertical load on its free end.
3.1.6 Analysis Subsystem

3.1.6.1 Data Manager

It was originally envisioned that there be a CAPS data manager. The object-based data design
changed the notion of where (meta)data for an object resides. In the current CAPS design
information associated with an object is stored as part of the object itself. This includes functions
like those associated with a software control system such as versioning, metadata (attribute)
properties, and who made the changes. This could be thought of as be beginning of a design
system with Digital Thread. There are also data objects in CAPS that are the receptacle for data
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associated with analysis input and output as well as those that reflect data distributed on the
discrete form of the geometry targeted for a particular analysis (Vertex Sets). The Vertex Sets
can have scalar, vector (and state vector) fields attached (Data Sets) to provide flexible methods
to store information for the user to view or for multi-physics (multidisciplinary) CAPS problems.
See in the ESP distribution the file $ESP_ROQOT/doc/CAPSapi.pdf which describes in detail the
construction of Vertex and Data Set objects and their use.

3.1.6.2 Conservative Fitting

The CAPS software design performs lazy computations, that is there is a concept of dirty
associated with an object. This is handled by having a serial number associated with an object
and if the prerequisite objects have a later serial number than the object itself, it is dirty. If an
object is dirty and then requested, CAPS initiates the calculation required to update the object
and make clean by resetting the serial number to the current value.

A CAPS Bound object can contain multiple Vertex Sets, each can have Data Sets with the same
name, but only one can be the source of the Data Set (see Appendix B for a more complete
descriptions of these terms). The source is basically the owning Analysis Object (attached to an
AIM), where the other Data Sets (with the same name) are derived from this source Object. For a
standard Fluid/Structure interaction the owning Data Set for pressure would be the CFD
analysis, where the displacement (a vector of 3) source is the structural analysis.

The dependent Data Sets are computed via one of two methods: interpolation or conservative
data transfer. If conservative, in a sense the interpolation weights are adjusted so that the area-
weighted integrated values of the source and the derived information match [6]. Conservative
data transfers are important for weakly coupled inner iterations so that the process can be
convergent. See the end of the file SESP_ROOT/doc/CAPSapi.pdf (Appendix B), which
describes setting up these coupled multidisciplinary simulations.

Note that this has been demonstrated and used at AFRL in a number of situations and has
become part of the CAPS training. See $ESP_ROOT/training/session5.3.pdf entitled “Data
Transfer: Loosely-Coupled Aeroelasticity” for a complete description of the current state of
CAPS coupling using pyCAPS.

3.1.7 Meshing

Meshing tends to be the bottleneck in many simulations. These subtasks are associated with the
ability to automatically generate meshes for some of the analysis suites.

3.1.7.1 OverSet Meshing

The original use (and intent) for OpenCSM was as an overset mesh generation application. The
notion was that you could build up the mesh topology as the geometry was constructed. The
prototype for this kind of overset meshing was a tool called OvrCad. For a number of reasons,
the priority of this task was always shadowed by more pressing needs. At the same time William
Chan (NASA Ames Research Center), the author of the premier overset meshing tool OverGrid
began using EGADS as the base-level geometry kernel. His intension was the same as OvrCad —
automation of the overset mesh generation process. William’s effort (funded internally by
NASA) based the connection to geometry on EGADS and the additional information it can
provide.

21
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



Figure 11. The use of EGADS in automating NASA’s OverGrid.

The automated meshing results of using EGADS/OverGrid on a simple quadcopter can be seen
in Figure 11. The left-hand image shows a graded /u,v/ structured surface mesh iblanked where
the surface is trimmed. Mesh clustering is seen where Nodes appear in the BRep Topology. The
middle image of Figure 11 shows the automatic construction of collar grids from the BRep
Loops, where the right-hand image shows the final mesh. The entire procedure is documented in
[18].

Figure 12. Manual (left) and automated (right) overset meshing of GMGW2 Case 3.

Figure 12 shows the comparison of manual vs. automated overset meshing of the geometry used
for the second AIAA Geometry and Mesh Generation Workshop, where Table 1 shows a mesh
count and timing comparison.

Table 1. Overset mesh generation timings.

No. Grids No. Points Wall Time
Manual 50 490000 50 hours
Automatic 248 954000 6 minutes

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
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The Chimera Grid Tool (CGT) AIM was the starting point for the EGADS/OverGrid connection,
but OverGrid itself is not distributed with ESP/CAPS — OverGrid being part of NASA’s
Chimera Grid Tools is Export Controlled. Users need to make a formal request to NASA in order
to get next release of CGT that will have this level of automaton. There currently is no CAPS
AIM for CGT directly (but the prototype is part of the distribution).

3.1.7.2 BRep-based Meshing

The EGADS tessellation AIM has been developed to generate either triangle-based, or under
some circumstances, quadrilateral-based meshes. The output is an EGADS Tessellation Object,
which gets used by CAPS to easily generate Vertex Sets that are suitable for holding on to
sensitivities or other Data Sets suitable for viewing or to be used for mesh->geometry->mesh
transfers of information (see Section 3.1.6.2). The Tessellation Object can also be used as input
to 3D meshers, in particular TetGen and AFLR3 where the Object is used to specify the bounds
of the domain in order to generate tetrahedral grids.

3.1.8 Analysis Interface and Meshing (AIM) Plugins

These tasks were originally envisioned to ensure that the AIM design was sufficient to support
the following analysis tools. As can be seen in Section 2.3, the suite of supported tools (in the
open source ESP distribution) is far more complete that the subtasks listed below. Also, since the
complete ESP distribution (including CAPS) continues to be upgraded and made available to
AFRL personnel the original demonstration tasks became redundant because the real users were
testing the code out on their actual problems.

3.1.8.1 Cart3D

An AIM plugin was built Cart3D analysis. This included both the preparation of the inputs files
needed by Cart3D as well as transfer of information that is contained in Cart3D’s output files
back into the CAPS system. The geometry is represented as a triangulation and can be generated
by the EGADS Tessellation or the AFLR4 AIMs.

3.1.8.2 ASTROS

A CAPS AIM plugin for many modes of ASTROS analysis has been implemented. This AIM
can support both the full featured version or mASTROS that is shipped with the ESP
distribution. The AIM includes both the preparation of the inputs files needed by ASTROS as
well as transfer of information that is contained in ASTROS’s output files back into the CAPS
system.

3.1.8.3 SU?

An AIM plugin for SU? analysis codes was designed and built. It supports versions 4.1.1
(Cardinal), 5.0.0 (Raven), 6.1.0, and 6.2.0 (Falcon). The AIM includes both the preparation of
the inputs files needed by SU? as well as transfer of information that is contained in SU%’s output
files back into the CAPS system.

3.1.8.4 OverFlow

Of the listed subtasks this is the only one not completed. Because OverCad was never resurrected
(see Section 3.1.7.1) and the EGADS connection to OverGrid has just been completed there
were no automated meshing tools to generate grids for OverFlow. In the near future (but not as
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part of this contract) an AIM plugin for an OVERFLOW analysis could easily be generated (it
would not be too different from Cart3D, SU? or Fun3D).

3.1.8.5 LSM/HSM

Drela’s FORTRAN API of the HSM software is directly linked into an AIM. The AIM is
equipped with a reverse Cuthill-Mckee algorithm to improve the perform of the linear solves. At
this point only a limited set of boundary and loading conditions are currently exposed via the
AIM, and additional effort is required to fully expose the complete functionality of the HSM
software. However, the HSM AIM has been exercised with simple cantilever shapes (including
shapes with multiple faces), and the results exhibit significantly lower errors compared to
traditional shell model discretizations. For a full description of HSM see Section 3.1.5 and [13].

3.1.9 Demonstrations

This demonstration task was placed in the original proposal as capstone examples of the use of
the software. Because of the close interaction between the CAPS team and AFRL personnel as
well as the fairly continuous delivery of software (see Section 3.1.10.3) these demonstration
subtasks became less critical. Restated, real demonstrations were on-going during the contract by
individuals (at AFRL and elsewhere) using the CAPS software in their workflow and to solve
their problems of interest.

3.1.9.1 Fighter (Cart3D only)

Though this subtask calls for a fighter configuration, we used a simpler model where the
geometry is known and published along with complete wind tunnel results. This is one of the test
configurations for the Full Potential Code (see Section 3.2.4.4). The data can be found in the
AGARD report AR-138 and the case is known as “Wing A Body B2”. The chapter is from D.A.
Treadgold, A.F. Jones, and K.H. Wilson entitled “Pressure Distribution Measured in the RA 8ft x
6ft Transonic Wind Tunnel on RAE Wing ‘A’ in Combination with an Axi-Symmetric Body at
Mach Numbers of 0.4, 0.8 and 0.9”.

The “Wing A Body B2” geometry was constructed via ESP and the case run through pyCAPS
exercising both CAPS and the Cart3D AIM. Figure 13 shows Mach number from a converged
(and mesh adapted) Cart3D run against a finely discretized resultant geometry (performed in the
AIM), where surface pressure for the same case can be seen in Figure 14.
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Figure 13. Mach number results from Cart3D shown on 2 planar cuts.
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Figure 14. Surface pressures from the same case as seen in Figure 13.
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3.1.9.2 Transport

A transport example has become part of the CAPS training. The model shown in Figure 3 can be
found in the ESP distribution at ESP_ROOT/training/ESP/transport.csm. It can be configured
to generate geometry for various forms of analysis (views) and run through the appropriate
solvers.

3.1.10 Support

This task includes general support for ESP/CAPS within RQVC (and other AFRL branches).
The task includes subtasks for a software design review, training, software delivery and
reporting. But it was found that another form of support was required during the original CAPS
contract: maintenance. As the software was being deployed and used, individual would stumble
through its learning curve. This would be found out by meeting with users to see how the
software was being utilized. The end result was, at times, changes to the trainings to properly
reflect best practices, but would also, at times, require additional functionality. This was
particularly true when trying to determine the best way to attribute the geometry in preparation
for analysis. And, of course, fixing bugs found by the user-base also required much effort
unattributable to a specific subtask.

3.1.10.1 Design Review

Early in the contract (at the kick-off meeting) a CAPS software design review was executed.
This presentation fully described the CAPS software layout, API and plugin functionality to the
entire team and to selected AFRL personnel. Feedback was critical to ensure that the design
provided a proper foundation and satisfies AFRL’s perceived needs. This Design Review was a
prerequisite for the Section 3.1.1 subtasks.

3.1.10.2 Training

All of the trainings given were either at AFRL or at a location off-base but in the local vicinity of
Wright-Patterson Air Force Base. A list of the trainings given can be found in Table 2.

Table 2. Training Dates

Training Days Participants
ESP July 2015 -3 ' 41

ESP August 2016 — 3 28

ESP June 2018 -2 46

CAPS August 2018 — 3 23 (limited to invitees)
ESP/CAPS June 2019 -5 31

The trainings have developed into a successful mix of informational material and hands-on
exercises. Participants show up with their own laptops. They have previously downloaded the
most recent ESP distribution (or show up early to do so before the training officially begins).
This means that all exercises are performed on their equipment and the students walk away with
the software functional, and the knowledge of how to use it in a familiar operating environment.

In general, there are sessions that discuss a topic (or suite of topics) lasting for an hour or two

and then roughly an hour of hands on assignments. These assignments are carefully crafted not
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only to augment the class/session’s material, but also are challenging enough to keep the better
students from getting bored. At the end of each session there is the request for the students to fill
in “muddy cards”. These allow the students to ask questions anonymously (what was not clear),
which can inform us when we are not getting the points across. Also, this mechanism is useful in
correcting the class material and reporting bugs and making feature requests. At times, we
reissue another release of the software “shortly” after a training where the problems that were
discovered are fixed.

3.1.10.3 Code Delivery

A process for software delivery has been developed during the course of this contract. The
delivered files include a directory structure to place all components and modules, source and
installation directions / makefiles for all software written for a variety of platforms (Windows 7
& 10, LINUX and MAC OSX). The source is written in a variety of languages, such as ANSI C,
C++, JavaScript (and some testing and example code is in Python). API bindings have been
made available for C/C++ and, in some cases, FORTRAN.

There are 3 modes for code capture and updates:

1. For a select few individuals at AFRL access has been granted to the MIT software
repositories. These individuals always have access to the most current state of the software
and in some cases act as developers (that is, they can commit code to the MIT repositories).

2. Beta source releases are made available when the code-base is functional and stable (mostly
“green balls” reported by Jenkins — see Section 2.4). This packaged far image can be found
on the MIT ESP website, so it can be easily downloaded by anyone who has access to the
web. Note that compilation and building is required to use this form of software distribution.

3. Official releases (see Table 3) are made periodically. These are numbered and fully
supported. They come in two forms: a source release (which is the same as the Beta, except
that it reflects the official release) and fully built software. The PreBuilt distributions (one
file for each supported OS) requires no software building, can be installed (under most
circumstances) without any system privileges, and sets up a desktop icon that can be double-
clicked (for all OSs) that can initiate the appropriate environment and allow full access to the
ESP modules and components. This is clearly well suited to either novice users or those that
are not software savvy.

There is a tension between the desire to continue to improve a large and complex software suite
and the ability to get the results of these efforts into the user’s hands. Development must stop at
some point and the code frozen except for bug fixes. The state of the code base needs rigorous
testing (beyond the testing done during continuous software integration), which is rather time
consuming. This is the nature of the ESP test matrix, where the tests are executed on LINUX,
MAC and Windows, against various versions of OpenCASCADE and differing compilers.

Building the distribution also requires care and time. It must be tested against all target
combinations and needs to work without intervention. And there are now two variants: (1) build
from source and (2) pre-built distributions (which are especially useful for Windows without
Visual Studio — the compiler).

To ensure that this is done periodically, ESP releases have been cut before any formal training,
so that users are trained on the most recent software available. The trainings are also useful in
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finding issues in the most up-to-date release and has initiated another release soon after the
training (if significant problems were found).

The software release schedule during the course of this contract can be seen in Table 3.

Table 3. Software Releases

ESP Revision DATE
1.07 July 2015
1.08 October 2015
1.09 August 2016
1.10 September 2016
1.11 June 2017
1.12 December 2017
1.13 May 2018
1.14 December 2018
1.15 May 2019
1.16 August 2019
1.17 January 2020

3.1.10.4 Reporting

Monthly technical and financial reports were delivered on-time throughout the duration of the
contract. The technical reports were detailed and contained the information on the on-going
research as well as the implementation delivered as functioning source code (see Section
3.1.10.3).

3.2 CAPS Supplement

The tasks listed below reflect the CAPS supplement (referred to as In-Scope Work Modification
numbered P00011) where the technical portion of the contract ran from May 2017 (the end of the
original CAPS work) to November 2019. This included 4 major thrusts: continued work on
geometry and geometry construction for aircraft design, meshing to facilitate an automated
workflow, an effort to incorporate packaging into ESP/CAPS and tasks to continue on with the
efforts started during the initial phase (Section 3.1).

3.21 Geometry

Inside the CAPS environment, parametric geometry is generated based on combining a selected
number of solids through Boolean operations. This process makes the generation of fully blended
aircraft configurations, such as the D-8 or YF-23 very difficult. The objective of this task is to
generate parametric methods to construct fully blended aircraft bodies that can maintain a user-
defined continuity level. Additionally, methods should be capable of representing aircraft
defined previously in a parametric way.

3.21.1 BSpline Morphing

Often it is easy to build a parametric model that is close to the desired shape, but which must be
adjusted locally to satisfy local shape requirements. The objective of this task is to create tools
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that allow one to morph a given boundary representation by changing the BSpline control points
associated with either a Face, an Edge (and its supporting Faces), or a Node (and its supporting
Edges and Faces). This was accomplished at the EGADS level by allowing any general surface
to be replaced by a BSpline surface and then giving the programmer that ability to move
individual BSpline Control Points. This was never elevated to the OpenCSM level because it is
not clear the best way to have the user control the movement of one or more ganged Control
Points.

There are 2 phases that are required for performing this “free form” modification of individual
Faces. The first of which is to prepare an EGADS Body for the operations, the second is to
actually do the shape changes. The assumption is that we will be moving/adjusting control points
of a BSpline/NURBS surface and that the surface is used at full extent (or at least trimmed by 4
Edges where the underlying curves are isoclines). This will ensure that we do not open up
models that are closed, as long as we don’t move the control points at the bounds of the surface.
Obviously, there may need to be some scribing done to the Body to prepare for this.

The following documented functions already existed in EGADS that let you preform much of
the first phase:

stat = EG_convertToBSpline(face, &newSurface);

which takes an existing Face and generates the BSpline/NURBS equivalent surface trying to
preserve the /u,v] parameterization. The new surface can be enhanced (see EG_addKnots below)
and then made into a new Face by EG_makeTopology. Note that the Loops from the source Face
will need to be remade (EG_makeTopology) specifying the new surface, but the Edges
themselves do not need to be modified.

stat = EG_replaceFaces(body, n, replacements, &newBody);

which takes a list of n Face pairs (the original and the replacement), does the Face swapping and
generates a new Body with the updated Faces.

The following undocumented function can be used to add “degrees of freedom” to the operation
by adding to the knot sequence and therefore providing more control points to adjust:

stat = EG_addKnots(surface, nU, Us, nV, Vs, &newSurface);

which takes as input the BSpline/NURBS surface, the number of additional knots in the U
direction and a vector of new U knot values, the number of additional knots in the V direction
and a vector of new V knot values and outputs a new surface that has the same shape of the
original but with additional knots/control points.

The following EGADS function can be used during the second phase (in the design setting):
stat = EG_adjustCPs(body, face, CPs, &newBody, &newFace);

where: body the input Body ego
face the Face ego to adjust (ref surface must be BSPLINE)
and must have a single Loop with 4 Edges at IsoClines
CPs the control points (the same setup as the data for
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BSPLINEs without the knot information)
newBody the returned new Body ego
newFace the returned Face in newBody that corresponds to face

Note that this function could be used to simplify some of the first phase setup. Also, it should be
noted that to fully control shapes (allow for changes across Edges) the scheme outlined above
would need to be modified to include the Face’s bounding Edges.

3.21.2 Sculpting

The purpose of sculpting is to produce smooth transitions between various parts of a
configuration. The current implementation combines two bodies. This smooth transition is
produced with a Flend (fillet-like blend) [19], which generates B-spline surfaces that are at least
slope-continuous (C') at their Edges, and generally almost curvature-continuous (C?). From an
aerodynamics perspective, this “almost C*” condition is advantageous. Figure 15 through Figure
17 shows examples of Flends, where in each figure the Flend surfaces are depicted in red. Figure
15 shows a Flend between two adjacent bodies, Figure 16 shows a Flend at the junction of two
bodies, and Figure 17 shows a Flend the root of a turbomachinery blade. In each case, all that
was required of the user is a set of scribing curves.

Figure 15. Flend as a continuation between 2 Bodies.
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Figure 17. Flend as a fillet replacement.

3.21.3 EGADS
See Section 3.1.3.1.

3.2.2 Meshing

The initial CAPS capability can generate meshes for structural finite-element and RANS
analyses, but with lesser quality than is desired. The first objective of this task is to generate
unstructured fully-quadrilateral meshes for structural analysis. The second is to do research into
the mesh mechanics required to perform solver-based adaptation. And, the third objective is to
create links to industry-standard RANS meshing software so that these packages can be accessed
seamlessly through the CAPS environment.
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3.2.2.1 Surface Quadrilaterals

Most structural solvers provide much more accurate results when given a pure quadrilateral (as
opposed to triangle or mixed) mesh as input. At the start of this contract the EGADS tessellation
subsystem could provide quadrilateral meshes if it can determine the four sides of the Face being
handled. The goal of this subtask is to provide a general unstructured quadrilateral meshing
scheme that will be watertight and will be consistent with the rest of EGADS. This has required
the following steps:

e perform a coarse initial triangulation of the Body of interest;

e subdivide all Edge discretizations, which provides an extra vertex along each Edge segment;

e for each Face, subdivide the internal triangle sides and insert a vertex at each triangle
centroid, generating 3 quadrilaterals per triangle;

e regularize the mesh by local operations in order to achieve as many valence (the number of
quad sides touching a vertex) 4 vertices as possible;

¢ adjust and/or smooth the resulting vertices supporting the quads (per Face) (in /u,v/) in order
to drive the angles in each quadrilateral toward 90°;

e place the final resulting quadrilateral body tessellation into an EGADS tessellation object;
and

e attribute the tessellation object so that functions that use the object can determine that the
Faces have been discretized with unstructured quadrilaterals.

Figure 18. Cylinder at initial quadding and after regularization.

The complete algorithm used is fully described in [20, 21]. Examples on simple shapes can be
seen in Figure 18 and Figure 19.
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Figure 19. Multi-sphere case at initial quadding and after regularization.

3.2.2.2 Adaptation

RANS meshing is more prone to discretization error when the mesh does not conform to the
features found in the solution. This has been shown repeatedly in the Drag Prediction
Workshops, and is a chicken-and-egg problem — how do you generate a good mesh when you
don’t know the solution, and why would you run the simulation if you knew the answer! This is
obviously a problem when you wish to accurately predict a result (such as in a design setting).
And because each new mesh (from a new design iteration) may have differing and unknown
errors, it is questionable whether a convergent design process exists. In some settings this
problem is ignored by morphing an existing mesh and assuming that the errors are related.

In any case, the current situation does not provide a robust ability to do design. To mitigate this
problem research into methods for 3D mesh adaptation have been undertaken (in fact the work is
in a 4D setting). The mesh can either be driven from the features found in a resultant solution or,
more importantly, from an Adjoint solver in which error estimation can be used to deal with the
solution-based error directly. The latter case is a more robust way to actually provide error
bounds on the solution, which can then be used in a process that can guarantee convergence.
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Figure 20. lllustration of a 4D case and expected refinement.

A 4D metric field is modeled after an expanding spherical wave in 3D (see Figure 20a). Consider
a spherical wave of radius Ro = 0.4 centered about the origin in 3-space at time ¢ = 0. If the wave
expands at a constant velocity Vp to a radius R¢= 0.8 at time # = 1, then the expanding sphere
traces the geometry of a hyper-cone in 4D.

Figure 20b exhibits the behavior of the expanding (d — 1)-sphere in a spherical-temporal
coordinate system. Note that a slice of the (d + 1)-dimensional cone with a hyperplane with non-
constant temporal component yields a d-cone. Here, this appears as a line but rotational
symmetry implies the hyper-cone sliced by a hyperplane with non-constant temporal component
yields a three- dimensional cone. Hence, when extracting the eight cubes bounding the unit
tesseract (4D cube), we expect to see three-dimensional cones along hyperplanes with a varying
temporal component.

For clarity, all eight 3D meshes bounding the tesseract for this wave case are shown in Figure 21.
Note that the expected refinement of the cones are observed along hyperplanes with non-constant
temporal component. At =0 and ¢ = 1, the sphere at the initial and final radii are respectively
observed. See [22, 23] for a more complete explanation of the algorithms used.
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Figure 21. Meshes of the eight bounding cubes for the 4D adaptation case.
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3.2.2.3 Robust Integration of AFLR4

The objective for this subtask was to modify the Advancing-Front/Local-Reconnection (AFLR)
surface meshing software, AFLR4, to meet the needs of the CAPS system. AFLR meshing
software (AFLR3-volume, AFLR4-surface and AFLR2-planar) is widely used, readily available
to DoD users, and has been very successful with relevant problems. Furthermore, AFLR4
generated surface meshes are optimal for AFLR3 (volume meshing). This subtask, however,
involved only modifications to AFLR4 surface meshing and its integration within an AIM. The
intent was to provide a capability within CAPS to automatically generate a high-quality surface
mesh that is optimal for generation of a mesh using AFLR3 volume meshing, both with and
without specified boundary layers.

AFLR4 surface meshing uses the overall AFLR strategy of advancing-front-type point
placement, combined with local-reconnection-based connectivity optimization. For surface
meshing, a valid mesh (i.e., no folds in the triangulation) is maintained in both the /u, v/ mapped
space and in the physical space. A novel physical space approximation (PSA) is used to
eliminate the need for expensive underlying geometry evaluations during mesh generation. The
process is as follows:

1. generate a 2D mesh in mapped space;
evaluate physical space coordinates using the true geometry at the generated /u,v/ mapped
space coordinates;

3. use the mesh in physical space as a linear approximation (PSA) of the true geometry and
regenerate a new mesh in both mapped space and the PSA. All projections and geometric
operations in physical space are done with the PSA. Point placement and connectivity
optimization is done in PSA;

4. evaluate physical space coordinates using the true geometry at the regenerated /u,v/ mapped
space coordinates. Due to the linear approximation of the PSA, there is a slight perturbation
in the coordinate locations. For a reasonable mapping this is never an issue; and

5. for highly distorted mappings, generate a revised /u, v/ mapping layer. Then return to step 3.
One or two iterations of steps 3 through 4 eliminates the impact of distorted mappings.

While the overall framework for AFLR4 is ideal for system integration, substantial additions
were needed to develop a robust, fully-integrated and fully-automated version that can produce
optimal meshes with no user intervention within the CAPS system. Several phases were
proposed and implemented to achieve this result.

e Develop and implement a means for automatically specifying the point spacing/length-scale
from the given geometry definition of each surface patch. AFLR4 allows for three different
methods to specify length scale variation; a boundary driven approach (defined by point
spacing on surface patch edges), a background mesh, or a call-back function defining point
spacing throughout physical space. The automated process developed herein accounts for
surface curvature and proximity of components and is implemented with a multi-pass
procedure outlined below:

1. Generate an initial surface mesh that uses point spacing derived from curvature on
edges.

36
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



2. Generate a curvature driven surface mesh that uses a background mesh with length-
scales derived from surface curvature. The surface mesh from pass 1 is used to create
the background mesh and specify length-scale variation. The resulting mesh
appropriately captures the geometric curvature and features of the given surface
definitions. For a single body and single component this mesh is the final mesh.

3. [If there are multiple bodies or components, then proximity between them is
considered. In this discussion a body is a closed set of surfaces and a component is a
set of surfaces, e.g. an aircraft with multiple stores may be a single body with
multiple components — fuselage, tail, wing, store, struts, etc. An overall volume
background mesh is generated from all of the discretized surface meshes (generated
on the previous pass). Distance between surfaces is then evaluated by the volume
background mesh edges. Length scale is locally reduced if the distance is not
sufficient to produce a set number of volume layers and/or support generation of a
boundary-layer (BL) region. The surface mesh is then regenerated with the modified
background mesh. Multiple sub-passes of this pass are then taken to provide a smooth
length scale transition. At completion, the resulting surface mesh is considered the
final mesh.

Note that if an existing background mesh derived from a previous solution is available

then only steps 2 and 3 are needed. Also, surfaces that are considered far-field surfaces

(see next point) are simply discretized with a single bounding-box derived length-scale.

The multi-pass procedure described above for other surfaces is driven primarily by a

single length scale that should be based on physical information available for the

intended application, e.g. wing chord. In addition, BL thickness, if applicable, can be
estimated from the physical information. Further control of this procedure is available to
the user via ESP attribution parameters. However, in general additional meshing control
parameters are not required for a suitable mesh.

Develop an appropriate ESP attribution scheme for parameters that control AFLR surface
and volume meshing within the CAPS system. For surface and volume meshing various user
parameters can be set to control the overall meshing process. The following describes the
case dependent parameters available:

1. Mesh generation boundary conditions (BC) by Face. Each Face should have an
appropriate BC specified via attribute (similar to what is required for the solution
process). BC’s available include far-field surface, BL generating surface, symmetry
plane, curved surface that intersects the BL region (similar to symmetry),
embedded/transparent surface, etc.

2. Specification of “components” by Face if desired for proximity-based refinement.

3. Global surface mesh generation parameters include configuration reference length,
BL thickness (if applicable), along with numerous optional parameters that are
available to adjust the surface meshing. However, these optional parameters are not
required or expected to be used by most users and are available primarily for expert
power-users that want very specific and unique mesh characteristics. The description
of these optional inputs can be found in the AFLR4 documentation.

4. Local surface mesh generation parameters that can be applied by Face include various
control parameters for unique mesh characteristics. These include, a local Face
scaling parameter to increase/decrease length-scale, Edge mesh refinement for
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resolution of sharp edges, along with other parameters that are available to adjust the
surface meshing locally. Again, these optional parameters are not required or
expected to be used by most users and are available primarily for expert power-users
that want very specific and unique mesh characteristics.

5. For volume meshing the BCs are passed directly and additional AFLR3 volume
meshing parameters can be specified globally or locally.

e Develop documentation and tutorials on AFLR4 usage. Complete web-based documentation
on all available parameters along with a tutorial with multiple cases is provided with all
AFLR software.

e Develop a process to automatically derive, from the geometry definition, a directional
anisotropic metric that specifies the point spacing directionally along with curvature
orientation. The automated curvature driven process previously described generates both
isotropic and anisotropic metric parameters. However, modification of AFLR4 surface
meshing to enable this capability was determined to be outside the scope of the present effort

and is saved for future work.

Figure 22. Fighter body configuration for AFLR example.

Some example cases are presented in the following discussion to illustrate the current capability.
All cases are automatically generated by AFLR4 with length scale and BL thickness specified.
The first case is that of a fighter aircraft. In this case the impact of Edge discontinuity refinement
is compared. The overall configuration is shown in Figure 22. One view of the resulting surface
mesh with and without Edge discontinuity refinement is shown in Figure 23. All of the sharp
edges are fully refined in the case of Edge refinement. An additional close-up view is shown in
Figure 24, and note the refinement along the flap (green surface). Typical CFD simulations of
such configurations require refinement of sharp geometric features in addition to curvature.
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Figure 23. Fighter surface mesh without (left) and with (right) discontinuous Edge refinement.

Figure 24. Close-up of fighter surface mesh without (left) and with (right) discontinuous Edge
refinement.

The second case is that of a launch vehicle with strap-on boosters shown in Figure 25. Two
views of the resulting surface mesh are shown in Figure 26. As shown both surface curvature and
proximity regions are refined. An AFLR3 volume mesh with BL region was generated using this
surface mesh. Figure 27 shows two views of the volume mesh field cut. Refinement in the region
between the main and strap-on boosters allows full resolution of the BL region.

Figure 25. AFLR launch vehicle test configuration.
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Figure 27. Launch vehicle volume mesh cut views s

The third case is that of a jet engine nacelle. This case has multiple bodies/components that have
several regions in close proximity. Two views of the overall configuration are shown in Figure

28
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Figure 28. AFLR jet engine nacelle test configuration.

The resulting surface mesh with both curvature and proximity refinement is shown for two views
in Figure 29.
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Figure 29. Nacelle surface mesh views showing proximity refinement between
components.

An AFLR3 volume mesh with BL region was generated using this surface mesh. Figure 30
shows the volume mesh field cut. Refinement in the region between the components allows full

resolution of the BL region. Two additional views of the volume mesh cut are shown in Figure
31.
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Figure 31. Closeup of nacele volume mesh cut showing refinement and BL region
between components.

3.2.2.4 Pointwise Automation
The mesh generation software Pointwise and its scripting language Glyph were used to create a

system for automatically generating unstructured meshes given a closed, watertight geometry.
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The system, called GeomToMesh, was developed to work with attributed geometry created in
ESP. Three subtasks were identified to enable this automated capability.

The first subtask required modification of the Pointwise software to allow import of ESP
geometry. This was initially performed with an external program that converted ESP geometry
file in EGADS format into the native Pointwise NMB file format. The newly created NMB file
was then read by Pointwise for processing. Eventually this external program was incorporated
into the Pointwise software enabling import of EGADS files directly. Additional modifications
to Pointwise were made to store the attributed information for each geometry entity internally.
New Glyph script function calls were also created permitting the scripts to access this attributed
data on the geometry surfaces, curves and points.

The second subtask developed the language or schema that communicated the meshing
instructions from the attributed geometry to the Glyph scripts. The attributed data on the
geometry contained key-value pairs that were recognized by the Glyph scripts. Figure 32 shows
a sample of many of the key-value pairs read by the GeomToMesh script during the meshing
process. Many of these key names mirror the meshing parameters exposed in the GUI to an
interactive user of Pointwise. If no attribution information is provided the scripts will attempt to
generate an isotropic unstructured tetrahedral mesh given a closed geometry input file. With
attribution the system will produce a mesh more closely aligned with the user’s intent. The more
commonly used attributes are the naming functions and specifying normal wall spacing values
on surfaces associated with viscous boundary conditions.

The third subtask was to develop and evolve the system of Glyph scripts, known as
GeomToMesh, to import the attributed ESP geometry and generate a completed unstructured
volume mesh ready for flowfield analysis. These scripts are completely general in the sense that
no assumptions are made with respect to the configuration shape or purpose. An additional
Glyph file containing other meshing parameters can be provided by the user to further control the
meshing process. These parameters have default values that are loaded at startup. Any
parameters provided by this user file override the default values.

Using the GeomToMesh system simply involves providing the ESP geometry file and the
optional user parameter file to the scripts run in Pointwise. The system can be executed through
the GUI or can be run in batch mode on the command line. A detailed description of the
processing and capabilities can be found in [24].
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PW:Name
PW:QuiltName

PW:Baffle

PW:DomainAlgorithm

PW:DomainlsoType
PW:DomainMinEdge
PW:DomainMaxEdge
PW:DomainMaxAngle

PW:DomainMaxDeviation

PW:DomainSwapCells
PW:DomainQuadMaxAngle
PW:DomainQuadMaxWarp

PW:DomainDecay

PW:DomainMaxLayers

PW:DomainFullLayers

PW:DomainTRexGrowthRate
PW:DomainTRexType

PW:DomainTRexIsoHeight
PW:WallSpacing

PW:TRexIsoHeight

PW:TRexCollisionBuffer
PW:TRexMaxSkewAngle
PW:TRexGrowthRate

PW:TRexType
PW:BoundaryDecay
PW:EdgeMaxGrowthRate

PW:MinEdge

PW:MaxEdge

PW:ConnectorMaxEdge
PW:ConnectorEndSpacing
PW:ConnectorDimension

PW:ConnectorAverageDS
PW:ConnectorMaxAngle

PW:ConnectorMaxDeviation

PW:NodeSpacing

Preceding $ means it is a character string

SBaffle or SIntersect

SDelaunay, SAdvancingFront,
SAdvancingFrontOrtho
STriangle, $TriangleQuad
S$Boundary or > 0.0
SBoundary or > 0.0
[0, 180)

[ O, infinity )

true or false
(90, 180)

(0,90)
[0,1]

[ O, infinity )

[ O, infinity )

[ 1, infinity )

STriangle, STriangleQuad

>0.0
>0.0

>0.0

>0.0
[0,180]
[ 1, infinity )

STetPyramid, $TetPyramidPrismHex, or

SAllAndConvertWallDoms
[0,1]

[ 1, infinity)
$Boundary or > 0.0

SBoundary or > 0.0

>0.0
>0.0
>0

>0.0
[0,180)
[ O, infinity )

> 0.0

Face

Face
Face

Face

Face
Face
Face
Face

Face

Face
Face
Face
Face
Face

Face

Face
Face

Face

Face

Model

Model
Model
Model

Model
Model
Model

Model

Model

Edge
Edge
Edge

Edge
Edge
Edge

Node

Boundary name for domain or collection of domains.
Name to give one or more quilts that are assembled
into a single quilt. No angle test is performed.

Either a true baffle surface or a surface intersected by
a baffle.

Surface meshing algorithm.

Surface cell type. Global default is Triangle.

Cell Minimum Equilateral Edge Length in domain.
Cell Maximum Equilateral Edge Length in domain.
Cell Maximum Angle in domain (0.0 = NOT APPLIED)
Cell Maximum Deviation in domain (0.0 = NOT
APPLIED)

Swap cells with no interior points.

Quad Maximum Included Angle in domain.

Cell Maximum Warp Angle in domain.

Boundary decay applied on domain.

Maximum T-Rex layers in domain.

Number of full T-Rex layers in domain. (0 allows
multi-normals)

T-Rex growth rate in domain.

Cell types in T-Rex layers in domain.

Isotropic height for T-Rex cells in domain. Default is
1.0.

Viscous normal spacing for T-Rex extrusion.

Isotropic height for volume T-Rex cells. Default is 1.0.

T-Rex collision buffer. Default is 0.5.
T-Rex maximum skew angle. Default 180 (Off)
T-Rex growth rate.

T-Rex cell type

Volumetric boundary decay. Default is 0.5.
Volumetric edge maximum growth rate. Default is
1.8.

Tetrahedral Minimum Equilateral Edge Length in
block.

Tetrahedral Maximum Equilateral Edge Length in
block.

Maximum Edge Length in connector.

Specified connector endpoint spacing.

Specify connector dimension.

Specified average delta spacing for connector
dimension.

Connector Maximum Angle. (0.0 = NOT APPLIED)
Connector Maximum Deviation. (0.0 = NOT APPLIED)

Specified connector endpoint spacing for a node.

Figure 32. Sample key-value pairs recognized by the GeomToMesh scripts.

Additional capabilities were incorporated into the scripts since the paper was presented. These
include exporting geometry-to-mesh associativity data used by ESP, enabling the use of Point
Cloud Datasets for performing mesh adaptation and enhanced geometry feature detection
techniques that can recognize high curvature regions and convex/concave Edges. The scripts are
used routinely to generate meshes for many different configurations. The automation afforded by
the scripts allows a user to create a complete mesh sequences for a grid convergence study, such
as the two meshes shown in Figure 33 and Figure 34 for an upcoming AIAA workshop on high-

order CFD methods.
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Figure 33. First mesh in the Juncture Flow

Model mesh series.

Figulre 34 Eleventh mesh in'rthe Juhcture FIoW Model mésh éeries.
The GeomToMesh system has been posted on GitHub for any Pointwise user to download. It is
also included in the ESP distribution.

3.2.3 Packaging

The goal of the packaging application is to determine the location and orientation of a set of
given components (here called “packages”) so as to use up the least volume in a prescribed outer
container. Figure 35 shows an example set of 11 packages that are to be placed in a rectangular
box with the minimum volume.
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Figure 35. Initial “Packages” to place in a minimal box.

The packaging application performs this optimization using a genetic algorithm. To do this, a
voxelated version of each of the packages is created, as shown in Figure 36. This voxelated
representation forms a “skin” around each package.
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Figure 36. Voxelated representation of “Packages”

The genetic algorithm picks a packing order that the packages should be placed onto a
background grid, using a greedy (iterative, locally optimal) algorithm for each placement. For
each placement, up to 24 package orientations are considered. The “fitness” associated with each
packing order is the necessary outer volume size.
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When complete, the genetic algorithm produces several configurations that could be used as the
starting points for another optimizer. Figure 37 shows one such packaging for this problem. Note
that there is a small buffer around each package, due to the granularity in the voxelation process.
The user must choose this granularity as a balance between packing tightness and computational
speed.

e @ e T e © & +ymo £

\ s

ESP has been initialized and is attached to 'servecsy’
t S P “autoBgads.csm” has been loaded
| S

Figure 37. A minimal packing configuration for the Packages seen in Figure 35.

The “packages” are then tessellated and an interference computation is performed on the discrete
geometry via pairs of packages. The distance and derivatives of the translation and Euler angles
(6 values per pair) are computed. This will be used to do a gradient-based optimization from the
number of seed points made available via the genetic algorithm. The appropriate gradient-base
optimization scheme has yet to be found. This requires a global optimizer that can take as input
the interference data from the pairs (as well as the derivatives for movement) and move the
packages, constrained by avoiding interference, to satisfy some objective function such as
minimal volume and/or the center of gravity at some point in space.

3.2.4 Support and Continuation Tasks

The final task involves user support to the Air Force in the use of CAPS and those subtasks from
CAPS Phase #1 that include long-term maintenance, require integration, user testing, and/or
have been deferred.

As the number of ESP/CAPS users grows, there is a continual set of requests for expanded
capabilities (new commands), training, documentation, and general user support to ensure that
AFRL personnel use the tools in the most productive manner. The objective of this task is to
provide the continued user support in order to maximize the effectiveness of AFRL personnel in
the use of the ESP environment and its various tools.
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3.241 OpenCSM
See Section 3.1.3.2.

3.24.2 OverSet Meshing
See Section 3.1.7.1.

3.24.3 PLUGS

The process described in section 3.1.4.2 for PLUGS was reprogrammed and included within
CAPS. The major activity here was sanitizing the code base so as to be easy to maintain and is
thoroughly tested. The results of this integration are shown in Figure 38 and Figure 39. The
configuration is a wing, with the initial “guess” parameter values (the yellow expressed
geometry) and point clouds (black points in space) shown on the left-hand side of the figures and
the final optimized fits shown on the right-hand side. Note that for this case, PLUGS can start
from a very poor initial guess and produce good results.
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Figure 38. PLUGS start and best fit for a wing case.
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Figure 39. PLUGS wing case from another start parameterization.

3.24.4 FPC/HSM/IBL

Simulation efficiency for design can be improved through the use of medium-fidelity (instead of
high-fidelity) analysis techniques. A Full-Potential (FP) method formulated on the full outer
mold line (OML) geometry definition is arguably a medium fidelity aerodynamic model in-
between Vortex-Lattice and Euler/RANS methods. Simulations with the Full-Potential Code
(FPC) can be orders of magnitude faster than RANS, and will thus allow a corresponding
increase in the number of design iterations which can be performed on any given project. The FP
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formulation includes the effects of frame motion and supports stability and control derivatives,
thus allowing rapid flight-dynamics analyses and control law development for rigid aircraft. The
overall objective is to obtain a framework for relatively rapid development of air vehicle
configurations, similar to the existing AVL [9] and ASWING [25] methods, but with full-OML
geometric fidelity and the ability to handle transonic and supersonic flows.

A preliminary implementation of the 3D Full-Potential solver with the addition of static and
dynamic stability derivatives already exists in the MIT Solution Adaptive Numerical Simulator
(SANS) [26, 27] framework. The solver has been developed in a modern C++ framework
leveraging templates and template-based automatic differentiation to provide development
flexibility and while maintaining performance comparable to highly tuned equivalent software
written in FORTRAN. The solver framework can utilize both shared and distributed memory
parallelism, although the typical size of FPC cases tends not to warrant distributed parallelism.

The Full-Potential formulation also allows an opportunity to flexibly expand the simulation
capabilities to include viscous modeling, structural modeling, and geometric deformations
associated with design modes and/or control surfaces. Initial implementations for a 3D integral
boundary layer (IBL) and the HSM structural shell model (see Section 3.1.5) exist within the
same code base as the current Full-Potential solver. The FPC, IBL and HSM modules could be
strongly coupled in a Newton-based nonlinear solver formulation. Coupling between the FPC,
IBL and HSM will use wall transpiration on the fixed baseline geometry to model both the
surface’s displacement resulting from aeroelastic effects, as well as viscous displacement effects.
Virtual geometric displacements resulting from control-surface deflections and geometry design
modes can be modeled by the same transpiration formalism. Simulation results indicate that the
transpiration method can accurately model surprisingly large geometry deformations, and can
also be used to capture aeroelastic deformations and viscous-displacement effects. This
formalism makes FPC even more economical in a design setting compared to RANS, since with
the latter approach transpiration cannot be used and remeshing is always required to capture any
geometry changes.

Full-Potential. Full-Potential solvers have been successfully developed by a number of
researchers using finite-volume schemes and finite-element methods. Similar to Vortex-Lattice
methods, FP formulations solve irrotational inviscid flows, but better account for
compressibility effects and are suitable for capturing transonic flows with relatively weak
shocks. While more costly than Vortex-Lattice methods, FP solutions can be computed on the
order of seconds to minutes. The FP formulation also does not rely on small-disturbance
assumptions, and as a result requires the definition of an OML. However, since numerical
errors in FP solutions tend to be localized, details such as the rounding of wing tips and wing-
body fairings do not significantly impact the overall solution. Thus, OML designs that lack
complete geometric detail can still be analyzed with some confidence. Finally, the complete
Jacobian which is used as part of a Newton method for solving the FP equations also provides
the means to compute stability and control derivatives directly via only back-substitutions, as
can be done with Vortex-Lattice methods. Hence, a complete set of derivatives can be
evaluated for any point solution in the flight envelope without resorting to multiple or unsteady
simulations, or constructing reduced order models

Two versions of the potential formulation are currently implemented in the SANS code base:
an incompressible potential formulation, and a two-field compressible Full-Potential
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formulation. The incompressible potential and compressible FP formulations are solved using a
continuous Galerkin finite-element method, following well established methods. New
formulations (yet to be published — see Appendix D) of the Kutta and wake boundary
conditions have recently been developed that allow for adjoint consistency and higher order
methods. In contrast, all potential formulations in the literature fail to produce well defined
adjoint Kutta and wake boundary conditions. As a result, FP solvers based on these
conventional formulations are restricted to linear potential approximations within elements;
they also do not lend themselves easily to output-based adaptation methods.

Compressible Full-Potential formulations applied to transonic flows must account for the
presence of shocks. Conventional approaches use some variant of density or mass-flux up-
winding in supersonic regions to eliminate expansion shocks. Finite volume or finite difference
implementations of up-winding either result in first order discretization in supersonic regions
or use extended stencils. To provide for density up-winding while preserving a nearest-
neighbor stencil, we adopt a two-field approach. The equivalent FEM formulation solves for
density and potential separately using two weighted residuals: one for mass conservation and
another for the density-velocity relation.

Potential flow formulations require wake sheets to model vortical flow. Consistent with
classical FP implementations, the current formulation requires airfoil shapes with sharp trailing
edges where wakes originate. Wake sheets are currently generated as part of the geometric
build process with limited user input.

Currently mesh generation is performed internally in the CAPS framework using the attributed
BRep geometric definition and global meshing parameters as inputs. The BRep surface mesh is
generated with AFLR4, and volume mesh generation uses either AFLR3 or TetGen.

While AFLR and TetGen provide means of generating meshes in an automated way, both mesh
generators only generate isotropic grids. However, a significant portion of the potential
solution surrounding wakes is anisotropic. That is, there is large variation in the potential field
in the spanwise direction of the wake which requires fine resolution to capture. However, there
is little variation in the potential in the streamwise direction. Unfortunately, using isotropic
grids results in excessive resolution in the streamwise direction, producing unnecessarily long
runtimes for the analysis. This problem is mitigated by the use of the adaptive meshing work
described in Section 3.2.2.2 — see Figure 40, which shows a simple wing and wake sheet before
and after adaptation.
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Figure 40. Crinkle cut of linearized incompressible potential initial and adapted grids.

Integral Boundary Layer. This NASA funded project explores the viscous/inviscid zonal
formulations together with strongly-coupled solution methods that have proven to be extremely
effective in rapid viscous analyses of 2D aerodynamic flows. 2D example applications are
MSES [28] and XFOIL [15] both from Prof. Mark Drela of MIT. The relative robustness of the
strong-coupling method, and also its ability to handle limited flow separation, both stem from
its simultaneous solution of the viscous and inviscid equations as a fully-coupled system via a
global Newton method.

Numerous 3D integral boundary layer formulations have been developed in the past. All these
methods were formulated in curvilinear coordinates covering the body surface. A practical
difficulty with such coordinates is their relative intolerance of surface slope discontinuities,
which appear as singularities in the surface curvatures and in the corresponding metrics of the
equations. Also, if non-orthogonal curvilinear coordinates are employed, as required for
complete coverage of a general body shape, the resulting transformed equations become
extremely complex. These traditional difficulties have been sidestepped in the IBL 3D
approach [29] again of Mark Drela.

The major development was to formulate the integral boundary layer equations in finite-
element form using local Cartesian coordinates defined for each residual. This eliminates the
need to construct curvilinear body surface coordinates, and thus largely sidesteps most of the
geometry smoothness requirements. It also allows solving the equations on arbitrary triangular
or quadrilateral surface meshes, and does not require the identification of stagnation points or
attachment lines for the application of initial conditions. All these features greatly simplify the
application of the 3D integral boundary layer equations to relatively complex surface shapes.

Another issue which has received scant attention is the incorporation of a suitable transition
prediction method into the integral boundary layer methods. The approach has been to either
specify the transition line explicitly, or to use 2D correlations or €N type methods along strips
or streamlines to set the transition location in an ad-hoc loosely coupled manner. This approach
is unreliable if transition is triggered by laminar separation, as frequently occurs in low
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Reynolds number flows. In the “envelope e formulation used in the 2D MSES [28] and
XFOIL [15] codes, the amplification equation which governs the transition location is solved
simultaneously with the inviscid and boundary layer equations, giving a robust overall method
for transitional flows. In IBL this strongly-coupled transition prediction formulation was
extended and applied to the 3D boundary layer case, so that the transition location is in effect a
fundamental unknown of the solution.

The IBL 3D formulation supports a standard inviscid/viscous interaction model that imposes a
transpiration boundary condition on the inviscid formulation at the body surface. The specified
inviscid transpiration mass flux is equal to the surface-divergence of the mass defect of the
viscous layer, which is equivalent to the physical requirement that the normal mass fluxes in
the viscous and inviscid zones are equal immediately outside of the boundary layer. This
normal-flow imposition is the only mechanism by which the viscous layer can influence the
overall outer inviscid flow, and thus is fully consistent with the physics of high Reynolds
number flows.

Figure 41. Double-taper wing with 41 by 12 paneling. Wake 9 by 12 mesh not shown.

The basic feasibility of the IBL 3D formulation for application to non-trivial geometry has
been demonstrated, where IBL was strongly coupled to a low order panel method using
constant doublet strengths, together with constant source-panel strengths to impose the wall
transpiration. The overall coupled formulation was solved using a global Newton method, and
was used to predict separated flow over a double-taper wing. Figure 41 shows the wing
paneling, and Figure 42 shows the computed wall streamlines with a zoom-in on the right. The
attachment and separation lines are captured in the solution by the strongly coupled
formulation. This is in contrast to the classical 3D boundary layer solvers, which typically
require the identification of an attachment line where the space-marching procedure is started.
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Figure 42. Computed wall streamlines on double-taper wing at 4° angle of attack.

It should be noted that this subtask is, overall, still work in progress. HSM has yet to be fully
integrated into the SANS framework (but is available in CAPS from the original FORTRAN
implementation — see Section 3.1.8.5). And, because the Full Potential Code is grid sensitive it
requires adaptation and the proper technique to adjust the mesh is through error estimation via
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the adjoint, which is not yet complete. Only recently has an analytic adjoint been developed,
which is required for error estimation, see Appendix D.

The full potential code is currently incorporated directly into an unpublished AIM. The AIM
automatically generates a mesh using either TetGen or AFLR3, where the surface mesh is
generated directly by the AIM due to the non-manifold nature of the wake sheet. A number of
aerodynamic quantities of interest such as lift, drag, and pitching moment are available. The
ability to deflect control surface is also incorporated into the AIM. In addition, both dynamic and
static stability derivatives are available. A set of unpublished UDPs have also been created in
order to simply the geometry generation (including wake sheets off of lifting surfaces) and
application of attributions for full potential computations. This was used during the first CAPS
training (see Section 3.1.10.2) but was provided only in the PreBuilt distributions. The UDPs and
AIM have since been removed waiting for mesh adaptation to ensure better accuracy.

3.2.4.5 CAPS APl and AlMs

This task is similar to the maintenance subtask described in Section 3.1.3.2, but now that the
CAPS software infrastructure is maturing (and is in constant use at AFRL and elsewhere) this
maintenance includes all of the CAPS software. As deficiencies were found, the API has been
enhanced to provide a better interface to the attached analysis suites. As pyCAPS (the Python
connection to CAPS) improves, it drives some minor changes to the CAPS APL

The suite of AIMs developed during the first phase of the CAPS contract included many more
analysis connections than originally proposed (see Sections 2.3 and 3.1.8).

3.24.6 SLUGS

SLUGS is the “Static Legacy Unstructured Geometry System” (see Section 3.1.4.1) is the part of
CAPS that allows a user to generate a watertight BSpline-based BRep from a cloud of points.

Although SLUGS has been exercised on several test cases, the state of the code is such that new
cases often reveal minor extensions (and bug fixes) that would improve its utility.

3.2.4.7 Vehicle Configurator (GLOVES)

When modeling a new aircraft, one of the first steps is to create the baseline parametric model.
Fortunately, there is a fair amount of commonality between aircraft of different types (such as
tube and wing). The Vehicle Sketch Pad from NASA was developed to assemble aircraft
components (wing and fuselage) quickly to generate a visual representation that is useful in very
early design phases. Unfortunately, VSP’s output is not a watertight BRep; that is, VSP’s
resultant geometry is not all that useful for medium to high fidelity analyses, such as aeroelastic
analysis. Also, VSP’s user interface does not allow one to naturally interact with a design, but
instead has the use adjusting sliders, etc.

GLOVES (the Graphical Layout Of VEhicle Systems) is a tool for creating a vehicle model
using a set of standard primitives, such as a wing-like lifting surface or a fuselage-like blended
body. Each body type has a set of standard design parameters. For example, the wing-like lifting
surface is defined in terms of its root (origin), area, aspect ratio, taper ratio, sweep, dihedral,
twist, thickness (distribution) and camber (distribution).
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Once the vehicle components are assembled, GLOVES presents the user with a wire-frame
representation, such as shown in Figure 43. This example is a transport-like configuration,
consisting of a fuselage, a wing, and a horizontal tail.
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Figure 43. GLOVES Graphical User Interface.

Once this configuration is shown on the screen, the user interacts with it by hovering over one of
the corner points for the wireframe. When over the point, a pop-up menu is displayed that
informs the user as to which of the design parameters effect the location of this point. In the
figure, hovering over the point at the upper-surface trailing-edge wingtip tells the user that the
location of this point is determined by the wing’s Xroot, Zroot, area, aspect (ratio), taper
(ratio), sweep, dihedral, and thickness. When the user click on one of these items, motion of
the mouse will cause the wireframe to track the mouse (as best as possible) by only changing the
selected item.

GLOVES is particularly useful in creating a “first guess” for PLUGS. By having a configuration
closer to the cloud, many less iterations would be required to find the closest parameter fit.

3.24.8 Documentation

One of the biggest challenges in generating useful software of a complex nature is the writing of
a clear, concise, and understandable suite of documentation. This is even more difficult when the
software is under heavy development. Without the documentation, even the best implemented
software is of dubious value (if no one can figure out how to use it, how useful can it be?).

A great deal of effort is spent before a software release in order to fill-in the missing parts of the
documentation and to ensure that the current state of the documentation set is consistent with the
software to be released. Writing the documentation is a team effort because the software
generated under the ESP umbrella is a team endeavor. The location of the documents with the
ESP distribution is listed in Table 4.
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Table 4. Documentation and location.

Document Location in the distribution
EGADS API doc/EGADS/egads.pdf
OpenCSM API include/OpenCSM.h
CAPS API doc/CAPSapi.pdf
AIM Development doc/AlMdevel.pdf
CAPS Discretization doc/capsDiscr.pdf
ESP ESP/ESP-help.html
AIM References doc/CAPSdoc/*
pyCAPS doc/pyCAPS/*
Training training/*
WebViewer API doc/Viewer.pdf

The training material has also become an important part of the documentation suite. Much effort
is expended before a training in reviewing the contents, updating the material, including new
features and adding updated “best practices” (also possibly deemphasizing aspects of the
material when timing associated with overall content becomes an issue).

3.2.49 Software Releases
See Section 3.1.10.3

3.2.4.10 Software Installation on Air Force Computational Facilities

As stated in Section 3.1.10.3 there are 3 basic ways that ESP/CAPS is installed on individual
workstations at AFRL: direct access to the MIT source code repositories, the use of source Beta
releases, or the use of official releases (either source or PreBuilt distributions). This has caused
some problems at AFRL in regards to the dissemination of plugins that are not a part of the
official release (3 above). These UDP/UDFs and/or AIMs either have not been cleared (to
Distribution A) or are proprietary and/or sensitive. The problem is that these plugins do not go
through the same rigorous testing and need to be distributed separately by some other internal
procedure. A better distribution solution is required.

3.2.4.11 ESP and CAPS Training
See Section 3.1.10.2.
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4 CONCLUSIONS

A recent overview of the CAPS project [30] concluded with:

“We believe that a shift in the role and representation of geometry plays a central role in
enabling an environment capable of rapid, multifidelity, multidisciplinary design. Most
significantly, we advocate for constructing design models that encode the design intent
and conceptual elements that comprise a vehicle, rather than a producing a single — albeit
typically parametric — view of geometry, which is traditionally approached from a
manufacturing rather than analysis mindset. Such a design model enables the construction
of multiple, analysis-specific views from a single specification, eliminating the necessity
and ambiguity of reinterpreting geometry for different purposes. From this representation,
it naturally extends that geometry serves as a conduit for transferring data between
coupled analyses. Hence, the geometry should play an active role throughout the analysis
process extending beyond analysis preprocessing.

We have also found persistent attribution of geometry to be a critical element of the
design environment. When coupled with trimmed, watertight geometry, attributes drive
the automated generation of analysis meshes and inputs, removing a bottle neck that
precludes using many high-fidelity analyses in the early design process. Ultimately, the
attributes provide a linkage between geometry and non-geometric information required
for analysis. However, in our experience, the application of analysis attributes in the
midst of the design model specification can present more of a conceptual burden than
advantage, particularly for structural models requiring identification of BRep Edges and
Nodes. A more practicable approach is to attribute geometry with its conceptual purpose
as it is built, and to apply analysis-specific attributes to the analysis-specific views after
their construction. This dichotomy has the advantage of supporting the typical separation
of the modeler, or configurator, from the analyst.

Underpinned by the attributed design model, we have produced and demonstrated the
CAPS infrastructure to manage the flow of information between the geometry subsystem,
various analysis interface modules (AIMs), and the environment driven by an external
design process. Beyond producing the design model, the user’s primary interaction with
CAPS is in the configuration and coordination of AIMs within an executive process. The
AlIMs themselves perform pre- and post-processing, having a one-to-one mapping with a
particular analysis package. The actual execution of an analysis within the computational
environment is managed external to the AIM by design, as to permit interoperability
across a wide range of environments.

Aside from the shift of cultural mindset required, perhaps the greatest barrier to adoption
of CAPS technology is learning to script the design model. While the Engineering Sketch
Pad (ESP) provides a native viewer with built-in script editor, the graphical process
entails selecting model operations from a menu and auto-generating the corresponding
script. In our experience, users typically construct the design model within ESP by
making small script modifications and viewing the results. To users accustomed to
graphical geometry layout and perhaps uninitiated in computer programming, producing
a design model script can be a daunting process. One step we have recently taken to
lower this barrier is the introduction pre-coded analysis view generators. When loaded,
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these scripts take geometry attributed under a convention and produce the representations
required by certain analyses. Similarly, a library of typical components with a predefined
design intent could be envisioned, allowing users to construct vehicle models with a
building block approach.

Looking more outwardly, widespread adoption will require the incorporation of these
modeling philosophies into industry-standard modeling packages and design frameworks.
Our hope is that by demonstrating continued success, the ideas espoused by CAPS will
attain broad acceptance to advance the state of design by multifidelity, multidisciplinary
analysis.”

By any measure, the CAPS contract is a success. Throughout the course of the contract there has
been a great deal of communication and this has changed the priority of various tasks, to
continually accommodate the use of ESP/CAPS within AFRL. In a real sense this contract has
been handled as a Cooperative Agreement (due to the close collaboration) to the benefit of both
the CAPS team and AFRL. Since the useful output of the effort has been the software and
changes are (continuously) available, the feedback we have gotten has improved our knowledge
of the problems at-hand and has provided a better “product” overall.

Even though there has been some adjustment of priorities, most all of the tasks listed above have
been successfully completed. Those that were not, either fit into the category of finding an
alternative (OverSet Meshing — Section 3.1.7.1) or required a great deal of research, where
significant progress can be seen. Examples of the latter are Sculpting (Section 3.2.1.2),
Packaging (Section 3.2.3) and FPC/HSM/IBL (Section 3.2.4.4).

Much has been learned [30] (as mentioned above). A number of both Masters and PhD students
at MIT and Syracuse University have been funded through CAPS and have graduated. The
Bibliography is, yet again, another reflection of the intellectual output of this effort overall. And
most importantly the software is available (http://acdl.mit.edu/ESP) and is being continuously
used at AFRL and elsewhere.
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APPENDIX A — Geometry Concepts

P EGADS Geometry Objects

surface
.3D surfaces of 2 parameters [u, v]

Types: Plane, Spherical, Cylindrical, Revolution, Toriodal, Trimmed, Bezier, BSpline, Offset,

Conical, Extrusion

!All types abstracted to [x,y,z] = f(u,v)

pcurve — Parameter Space Curves

.ZD curves in the Parametric space [u, v] of a surface

Typ€SZ Line, Circle, Ellipse, Parabola, Hyperbola, Trimmed, Bezier, BSpline, Offset

!All types abstracted to [u, v] = g(7)
curve
.3D curve — single running parameter (¢)
!Same types as pcurve but abstracted to [x, y, z] = g(7)

Bob Haimes ESP Concepts

&P EGADS Topology

Boundary Representation — BRep

Top | Topological Entity | Geometric Entity | Function

Down
Model
Body Solid, Sheet, Wire
Shell
Face surface (x,y,2) = f(u,v)
Loop
Bottom Edge cuf've (x,y,2) = g(t)
Up Node point

odes that bound Edges may not be on underlying curves

dges in the Loops that trim the Face may not sit on the surface
hence the use of pcurves

Bob Haimes ESP Concepts
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P EGADS Topology Objects

Node A

*ontains a point — [x, y, ]

!Types: none

‘{as a 3D curve (if not Degenerate)
as a t range (f,iy tO tyax, Where t,i, < tnax)

Note: The positive orientation is going from #,,;, t0 ..
as a Node for ¢,,;,, and for ¢,,,, — can be the same Node

.Types: ONENODE - periodic, TWONODE — normal,
DEGENERATE - single Node, ¢ range used for the pcurve
t = by t = byax
—o0 o—
Ny N>

Bob Haimes ESP Concepts

&P EGADS Topology Objects — Loops

Loop — without a reference surface

ree standing connected Edges that can be used in a non-manifold
etting (for example in WireBodies)

O list of connected Edges associated with a Plane (which does not
equire pcurves)

n ordered collection of Edge objects with associated senses that
define the connected Wire/Contour/Loop

egregates space by maintaining material to the left of the
running Loop (or traversed right-handed pointing out of the
intended volume)
‘\Io Edges should be Degenerate

!Types: OPEN or CLOSED (comes back on itself)

Bob Haimes ESP Concepts
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ESP

Loop — without a reference surface

E5 E3
Ny - N Nig - oM
+| Ea Es |- +| Ex
i O + O
M E, N, E;

Ny N,

Open: +E, +E; -E; Closed: +E,| +E, -E; -E4

Loop — with a reference surface

orresponding collection of pcurves that define the [u, v| trimming
on the surface

egenerate Edges are required when the [u, v| mapping collapses
like at the apex of a cone (note that the pcurve is needed to be
fully defined using the Edge’s # range)

n Edge may be found in a Loop twice (with opposite senses)
and with different pcurves. For example a closed cylindrical
surface at the seam — one pcurve would represent the beginning of
the period where the other is the end of the periodic range.

!Types: OPEN or CLOSED (comes back on itself)
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ESP

Loop — with a reference surface (CLOSED)

dotted lines indicate associated pcurves

Face

surface bounded by one or more Loops with associated senses

nly one outer Loop (sense = 1) and any number of inner Loops
(sense = -1). Note that under very rare conditions a Loop may be
found in more than 1 Face — in this case the one marked with
sense = +/- 2 must be used in a reverse manner.

11 Loops must be CLOSED
oop(s) must not contain reference geometry for Planar surfaces

f the surface is not a Plane then the Loop’s reference Object must
match that of the Face
)[ype is the orientation of the Face based on surface’s U ® V:
@ SFORWARD or SREVERSE when the orientations are opposed

Note that this is coupled with the Loop’s orientation (i.e. an outer Loop traverses the Face in a
right-handed manner defining the outward direction)
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Face

’An outer Loop traverses the Face in a right-handed manner
‘nner Loops trim the Face in a left-handed manner
‘Waterial is to the left of the Edges going around the Loops

surface normal

o Nag
is out of the page

Ey4

Single Outer Loop — right handed/counterclockwise: +E; +E; -E3 -E4

E;

I
I
I
I
I
:
|
E4 | —
I
I
I
I
I
I
I
|

wuter Loop — right handed/counterclockwise: +E| +E, -E3 -Ey4
.[nner Loop - left handed/clockwise: -Es -Eg
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Es3
///”——__‘\\\\ N% _______________ 1{hv=%m

T |
| |
! |
| |
| |
1 1
! |
E, E, EPC4 PCZ: E>
| |
! |
| |
R ! I
/// \\\\ | '
Lo re
O 3O V=
\O‘—/ N1 E; 1
Ny u=0 u=2r

Unrolled periodic cylinder Face
Single Outer Loop — right handed/counterclockwise:
+E, +E, -E5 -E,

N Mg — S0 N2
: pes |
1
! I
! I
! I
! I
! I
Ey || pes per | E
| |
! 1
! I
! I
! I
I
| 149} !
——————————————— =l
© 50
Ny E; Np
M u=0 u=2m

Unrolled Cone
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N4(-\ — f?N3
- +
E, |- Q o) o) +| Ex
= +
+
O O
Ny Eq Ny

uter Loop — right handed/counterclockwise: +E; +E, -E3 -E4
.lnner Loop #1 — left handed/clockwise: -Es -E¢
‘nner Loop #2 — left handed/clockwise: +E7 +Eg

3

No o _ ,?N5
+

E; |- +| Es
o,
Ey+|-

+ +
O 2O
Ny E; N> Ey4 Ny

Single Outer Loop — right handed/counterclockwise:
+E, +E> +E5 -E> +E4 +E5 -E¢ -E5

Note: pcurve is the same for both sides of E;
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P EGADS Topology Objects
Shell

collection of one or more connected Faces that if CLOSED
segregates regions of 3-Space

11 Faces must be properly oriented
on-manifold Shells can have more than 2 Faces sharing an Edge
.Types: OPEN (including non-manifold) or CLOSED

Face #1 LOOpI +E| +E; -E3 -Ey4
Face #2 Loop: +E5 +E¢ -E7 -E»

Bob Haimes ESP Concepts

P EGADS Topology Objects

Body

yontainer used to aggregate Topology

onnected to support non-manifold collections at the Model level

wns all the Objects contained within

@ A WIREBODY type contains a single Loop
@ A FACEBODY contains a single Face — IGES import
QA SHEETBODY contains one or more Shell(s) which can be
either non-manifold or manifold (though usually a manifold Body
of this type is promoted to a SOLIDBODY)
Q SOLIDBODY:
. A manifold collection of one or more CLOSED Shells with
associated senses
There may be only one outer Shell (sense = 1) and any number of

inner Shells (sense = -1)
Q Edges (except DEGENERATE) found exactly twice (sense = £1)

Bob Haimes ESP Concepts
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Simple SOLIDBODY example

8 Nodes, 12 Edges, 6 Loops and 6 Faces

P
Manifold (SOLID) vs. Non-manifold (SHEET) Bodies

manifold manifold

non-manifold
Model
collection of Bodies — becomes the Owner of contained Objects
eturned by SBO & Sew Functions
_.Qead and Written by EGADS

ESP Concepts
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Body Examples

Wire Bodies Face (Sheet) Bodies *
Sheet Bodies Solid Body

* OpenCSMtreats all FACEBODYsas SHEETBODY's

.Attributes — metadata consisting of name/value pairs
@ Unique name — no spaces
@ A single type: Integer *, Real, String, CSys (Coordinate Systems)
@ A length (not for strings)
bjects
@ Any EGADS Object can have multiple Attributes (each with a
unique name)
@ Only Attributes on Topological Objects are copied and are
persistent (saved)
BO & Intersection Functions

@ Unmodified Topological Objects maintain their Attributes
@ Face Attributes are carried through to the resultant fragments
@ All other Attributes are lost

¢Sys Attributes are modified through Transformations

* OpenCSM supports only Real numeric attributes (integer values are converted)
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APPENDIX B — CAPS API

Bob Haimes

haimes @mit.edu
Aerospace Computational Design Lab
Massachusetts Institute of Technology

Note: Sections in red are changes in CAPS from Revision 1.14.

o Hames  CAPSAPL 17May 2019 1/47
N
ESP Geometry (— 2
UI ( ....................... ) Subsystem Geometry
— Database
OpenCSM
EGADS —
Computa- / ¢
pyCAPS K—{ tional =
Aircraft Analvsi IArt]arI'fySIS
Prototype {¢—| Analysis nterface
Syntheses| |Subsystem = & Meshing
(CAPS) (AIM)
User k.- API '\ S
T
Problem
MDO Database
Framework — _J
Sorcer
STl S ....y| Analysis Analysis
ModelCenter tools /O Files
o Hames  CAPSAPL 17May 2019 2/47
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Problem Object (

The Problem is the top-level container for a single mission. It maintains a single set
of interrelated geometric models, analyses to be executed, connectivity and data
associated with the run(s), which can be both multi-fidelity and multidisciplinary.
There can be multiple Problems in a single execution of CAPS and each Problem is
designed to be thread safe allowing for multi-threading of CAPS at the highest level.

Value Object

A Value Object is the fundamental data container that is used within CAPS. It can
represent inputs to the Analysis and Geometry subsystems and outputs from both.
Also Value Objects can refer to mission parameters that are stored at the top-level of
the CAPS database. The values contained in any input Value Object can be bypassed
by the linkage connection to another Value (or DataSer) Object of the same shape.
Attributes are also cast to temporary (User) Value Objects.

Haimes CAPS API 17 May 2019 3/47

Analysis Object

The Analysis Object refers to an instance of running an analysis code. It holds the
input and output Value Objects for the instance and a directory path in which to
execute the code (though no explicit execution is initiated). Multiple various
analyses can be utilized and multiple instances of the same analysis can be handled
under the same Problem.

Bound Object

A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the “outer surface of the wing”’). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body).

Dimensionally:
D — Collection of Edges
D — Collection of Faces

Haimes CAPS API 17 May 2019 4/47
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VertexSet Object

A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
it’s data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

DataSet Object

A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

 Haimes CAPS API 17May 2019 5/47
| Object | SubTypes | Parent Object |
capsProblem Parametric, Static
capsValue Geometryln, GeometryOut, | capsProblem,
Branch, Parameter, User capsValue
capsAnalysis capsProblem
caps Value AnalysisIn, AnalysisOut capsAnalysis,
capsValue
capsBound capsProblem
capsVertexSet | Connected, Unconnected capsBound
capsDataSet | User, Analysis, Interpolate, caps VertexSet
Conserve, Builtin, Sensitivity

Body Objects are EGADS Obijects (egos)

e cas AP M 209 6147
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caps

Filtering the active CSM Bodies occurs at two different stages, once in
the CAPS framework, and once in the AIMs. The filtering in the CAPS
framework creates sub-groups of Bodies from the CSM stack that are
passed to the specified AIM. Each AIM instance is then responsible for
selecting the appropriate Bodies from the list it has received.

The filtering is performed by using two Body attributes:
“capsAIM” and “capslntent”.

Filtering within AIM Code

Each AIM can adopt it’s own filtering scheme for down-selecting how to use each
Body it receives. The “capsIntent” string is accessible to the AIM, but it is for
information only.

Haimes CAPS API 17 May 2019 7/47

CSM AIM targeting: “capsAIM”

The CSM script generates Bodies which are designed to be used by specific AIMs.
The AIMs that the Body is designed for is communicated to the CAPS framework via
the “capsAIM” string attribute. This is a semicolon-separated string with the list of
AIM names. Thus, the CSM author can give a clear indication to which AIMs should
use the Body. For example, a body designed for a CFD calculation could have:

ATTRIBUTE capsAIM $su2 AIM;fun3dAIM;cart3dAIM

CAPS AIM Instantiation: “capsIntent”

The “capsIntent” Body attribute is used to disambiguate which AIM instance should
receive a given Body targeted for the AIM. An argument to caps_load accepts a
semicolon-separated list of keywords when an AIM is instantiated in CAPS/pyCAPS.
Bodies from the “capsAIM” selection with a matching string attribute “capslntent”
are passed to the AIM instance. The attribute “capsIntent” is a semicolon-separated
list of keywords. If the string to caps_load is NULL, all Bodies with a “capsAIM”
attribute that matches the AIM name are given to the AIM instance.

Haimes CAPS API 17 May 2019 8/47
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capsLength

This string Attribute must be applied to an EGADS Body to indicate the length units
used in the geometric construction.

capsBound

This string Attribute must be applied to EGADS BRep Objects to indicate which
CAPS Bound(s) are associated with the geometry. A entity can be assigned to
multiple Bounds by having the Bound names separated by a semicolon. Face

LRI

examples could be “Wing”, “Wing;Flap”, “Fuselage”, and etc.

Note: Bound names should not cross dimensional lines.

capsGroup

This string Attribute can be applied to EGADS BRep Objects to assist in grouping
geometry into logical sets. A geometric entity can be assigned to multiple groups in
the same manner as the capsBound attribute.

Note: CAPS does not internally use this, but is suggested of classifying geometry.

o
Mee————1
Geometry Setup (or read) the Problem:
Database nitialize Problem with csm (or static) file
GeomlIn and GeomOut parameters
pecify mission parameters
ake Analysis instances
pyCAPS N Compulla— ’AnalysisIn and AnalysisOut params
tional -
Analysi ) Analysis reate Bounds, VetrexSets & DataSets
GENES Analysis Interface
Prototype [€=—| Subsystem < & Meshing stablish linkages between parameters
Syieses (AIM) Run‘the Problem:
(CAPS) .
Executive \ = djust the appropriate parameters
/L te G try (if dirty
egenerate Geometry (if dirty)
K== ) all for Analysis Input file generation
MDO [l;;?abklzrsne ramework/user runs each solver
Framework nform CAPS that an Analysis has run
- — fills AnalysisOut params & DataSets (lazy)
Sorcer L
ModelCenter enerate Objective Function
OpenMDAO
¢ ] Analysis Analysis Save the Problem DB (checkpointing)
tools I/O Files
e capS AP Tyt 10747
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Open CAPS Problem

icode = caps_open(char xname, char xpname, capsObj xproblem)

name the input file name — action based on file extension:
*.caps read the saved CAPS problem file

*.csm  initialize the project using the specified OpenCSM file
*.egads initialize the project based on the static geometry

pname the input CAPS problem process name
problem the returned CAPS problem Object

Set Verbosity Level

icode = caps.outLevel (capsObj problem, int outLevel)

problem the CAPS problem object
outLevel O - minimal, | - standard (default), 2 - debug

icode the integer return code / old outLevel

Close CAPS Problem

icode = caps-close (capsObj problem)

problem the input CAPS problem to close and perform a memory cleanup

Save Problem file

icode = caps-save (capsObj problem,

char =*name)

problem the input CAPS problem Object to write
name the save file name — no extension (added by this function)

icode the integer return code

Information about an Object

icode = caps-info(capsObj object, char **name, enum *type, enum *stype,
capsObj xlink, capsObj *parent, capsOwn =*last)

object the input CAPS Object
name the returned Object name pointer (if any)
type the returned data type: Problem, Value, Analysis, Bound, VertexSet, DataSet
stype the returned subtype (depending on type)
link the returned linkage Value Object (NULL — no link)
parent the returned parent Object (NULL for a Problem or an Attribute generated User Value)

last the returned last owner to fouch the Object

icode integer return code

e cars AP M 12747
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Children Sizing 1

from a Parent Object

icode =
object

type

stype

size

icode

caps-size (capsObj object,

enum type, enum stype, int *size)

the input CAPS Object

the data type to size: Bodies, Attributes, Value, Analysis, Bound, VertexSet, DataSet
the subtype to size (depending on type)

the returned size

integer return code

Get Child by Index

icode =

object
type
stype
index
child

icode

caps-childByIndex (capsObj object,

enum type,
capsObj =*child)

enum stype,
int index,

the input parent Object

the Object type to return: Value, Analysis, Bound, VertexSet, DataSet

the subtype to find (depending on type)

the index [1-size]

the returned CAPS Object

integer return code

CAPS API 17 May 2019

Get Child by Name

icode =

object
type
stype
name
child

icode

caps-childByName (capsObj object,

enum type,
capsObj *child)

enum stype,
char #*name,

the input parent Object

the Object type to return: Value, Analysis, Bound, VertexSet, DataSet

the subtype to find (depending on type)

a pointer to the index character string

the returned CAPS Object

integer return code

Delete an Object

icode = caps-delete (capsObj object)
object the Object to be deleted
Note: only Value Objects of subtype User and Bound Objects may be deleted!
icode integer return code
e caPs APt My 2019 14747
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Get Body by index

icode = caps-bodyByIndex (capsObj obj, int ind, ego xbody, char x+unit)
obj the input CAPS Problem or Analysis Object
ind the index [1-size]
body the returned EGADS Body Object
units pointer to the string declaring the length units — NULL for unitless values

icode integer return code

Set Owner Data

icode = caps-setOwner (capsObj prob, char xpname, capsOwn *owner)
prob the input CAPS Problem Object

pname a pointer to the process name character string

owner a pointer to the CAPS Owner structure to fill
icode integer return code
Notes: (1) This increases the Problem’s sequence number

(2) This does not return the owner pointer, but uses the address to fill
(3) The internal strings can be freed up with caps_freeOwner

e caps AP M D15/

Free Owner Information

caps-freeOwner (capsOwn *owner)

owner a pointer to the CAPS Owner structure to free up the members pname, pID and user

Get Owner Information

icode = caps.ownerInfo (capsOwn owner, char x*pname, char x*pID,
char xxuserID, short datetime[6], long xsNum)

owner the input CAPS Owner structure
pname the returned pointer to the process name
pID the returned pointer to the process ID
userID the returned pointer to the user ID
datetime the filled date/time stamp info [year, month, day, hour, minute, second]

sNum the sequence number (always increasing)

icode integer return code

e cars APl TMay 2019 16747
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Get Error Information

icode = caps-erroriInfo (capsErrs xerrors, int eindex, capsObj *errObj,
int xnLines, char =xx+lines)

errors the input CAPS Error structure
eindex the index into error (1 bias)
errObj the offending CAPS Object
nLines the returned number of comment lines to describe the error

lines a pointer to a list of character strings with the error description

icode integer return code

Free Error Structure

icode = caps_freeError (capsErrs *errors)
errors the CAPS Error structure to be freed

icode integer return code

Free memory in Value Structure

caps-freeValue (capsValue xvalue)

value a pointer to the Value structure to be cleaned up

T Haee CaRS API 17May 201

Create A Value Object

icode = caps.makeValue (capsObj problem, char xvname, enum subtype,
enum vtype, int nrow, int ncol, void =xdata,
char xunits, capsObj =*val)

problem the input CAPS Problem Object where the Value to to reside
vname the Value Object name to be created
subtype the Object subtype: Parameter or User

vtype the value data type:
0  Boolean | 2  Double 4 String Tuple
1 Integer 3 Character String

nrow number of rows (not needed for Character Strings)
ncol number of columns (not needed for strings) — vlen = nrow * ncol

data pointer to the appropriate block of memory
must be a pointer to a capsTuple structure(s) when vtype is a Tuple

units pointer to the string declaring the units — NULL for unitless values
val the returned CAPS Value Object

icode integer return code

e cas AP My 2019 18/
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Retrieve Values

icode = caps_getValue (capsObj val, enum xvtype, int *vlen, void *xdata,
char xxunits, int *nErr, capsErrs xxerrs)

val the input Value Object

vtype the returned data type:
0  Boolean | 2  Double 4 String Tuple
1 Integer 3 Character String | 5  Value Object

vlen the returned value length

data a filled pointer to the appropriate block of memory (NULL — don’t fill)
Can use childByIndex to get Value Objects

units the returned pointer to the string declaring the units
nErr the returned number of errors generated — 0 means no errors

errs the returned CAPS error structure — NULL with no errors

icode integer return code

Use the structure capsTuple when casting data if a Tuple (4)

e caps AP My 019 19747

Reset A Value Object

icode = caps-setValue (capsObj val, int nrow, int ncol, void xdata)
val the input CAPS Value Object (not for GeometryOut or AnalysisOut)
nrow number of rows (not needed for Character Strings)
ncol number of columns (not needed for strings) —vlen = nrow * ncol
data pointer to the appropriate block of memory used to reset the values

Get Valid Value Range !

icode = caps_getLimits (capsObj val, void *xlimits)
val the input Value Object

limits an returned pointer to a block of memory containing the valid range [2*sizeof(vtype)
in length] — or —- NULL if not yet filled

Set Valid Value Range

icode = caps.setLimits (capsObj val, void *limits)
val the input Value Object (only for the User & Parameter subtypes)
limits a pointer to the appropriate block of memory which contains the minimum and
maximum range allowed (2 in length)
icode integer return code

e cas AP ST
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Get Value Shape/Dimension

icode =

val

dim

Ifixed
sfixed
ntype

nrow

ncol

icode

caps_getValueShape (capsObj val,

int xdim, enum =*1fixed,
enum xsfixed, enum =xntype,
int *nrow, int #ncol)

the input Value Object

the returned dimensionality:
0 scalar only
1 vector or scalar
2 scalar, vector or 2D array

0 — the length(s) can change, | — the length is fixed
0 — the Shape can change, | — Shape is fixed

0 — NULL invalid, 1 — not NULL, 2 — is NULL
number of rows — parent index for Value vtypes

number of columns
Note: vlen = nrow * ncol

integer return code

CAPS API 17 May 2019 21/47

Set Value Shape/Dimension

icode =

val

dim

1fixed
sfixed

ntype

caps_setValueShape (capsObj val,

int dim, enum lfixed,

enum sfixed, enum ntype)
the input Value Object (only for the User & Parameter subtypes)

the dimensionality:
0 scalar only
1 vector or scalar
2 scalar, vector or 2D array

0 — the length(s) can change, 1 — the length is fixed
0 — the Shape can change, 1 — Shape is fixed
0 —NULL invalid, 1 —not NULL, 2 —is NULL

Units conversion

icode =

val
units
in

out

caps_convert (capsObj wval,

char xunits, double in, double =xout)
the reference Value Object
the pointer to the string declaring the source units

the source value to be converted

the returned converted value in the Value Object’s units

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
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Transfer Values

icode = caps-transferValues (capsObj src, enum tmethod, capsObj dst,
int xnErr, capsErrs #xerrs)

src  the source input Value Object (not for Value or Tuple vtypes) — or —
DataSet Object
tmethod 0 - copy, | — integrate, 2 — weighted average — (1 & 2 only for DataSet src)

dst the destination Value Object to receive the data
Notes:

ust not be GeometryOut or AnalysisOut
hapes must be compatible
verwrites any Linkage

nErr the returned number of errors generated — 0 means no errors
errs the returned CAPS error structure — NULL with no errors

icode integer return code

CAPS API 17 May 2019

<aps

Establish Linkage

icode = caps-makelLinkage (capsObj link, enum tmethod, capsObj trgt)

link linking Value Object (not for Value or Tuple vtypes or Value subtype User) — or —
DataSet Object

tmethod 0 — copy, 1 — integrate, 2 — weighted average — (1 & 2 only for DataSet 1ink)

trgt the target Value Object which will get its data from 1ink
Notes:
ust not be GeometryOut or AnalysisOut
hapes must be compatible
ink = NULL removes any Linkage

icode integer return code

Note: circular linkages are not allowed!

e cas AP M09 24747
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Get Attribute by name

icode = caps.attrByName (capsObj object, char xname, capsObj xattr)
object any CAPS Object
name a string referring to the Attribute name

attr the returned User Value Object (must be deleted when no longer needed)

icode integer return code

Get Attribute by index

icode = caps-attrByIndex (capsObj object, int in, capsObj xattr)
object any CAPS Object
in the index (bias 1) to the list of Attributes

attr the returned User Value Object (must be deleted when no longer needed)
Attribute name is the Value Object name

icode integer return code

Note: The shape of the original Value Object is not maintained, but the length is correct.

e caps APt My 019 25/47

Set an Attribute
icode = caps-setAttr (capsObj object, char xname, capsObj attr)
object any CAPS Object

name a string referring to the Attribute name — NULL: use name in attr
Note: an existing Attribute of this name is overwritten with the new value

attr the Value Object containing the attribute
The attribute will not maintain the Value Object’s shape

icode integer return code

Delete an Attribute
icode = caps.deleteAttr (capsObj object, char xname)
object any CAPS Object

name a string referring to the Attribute to delete
NULL deletes all attributes attached to the Object

icode integer return code

e caPs APt May 2019 26/47
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Query Analysis — Does not ‘load’ or create an object

icode

problem

aname

nln
nOut
execution

icode

caps_queryAnalysis (capsObj problem,

char *aname,
int xnIn, int *nOut, int xexecution)

a CAPS Problem Object

the Analysis (and AIM plugin) name

Note: this causes the the DLL/Shared-Object to be loaded (if not already resident)
the returned number of Inputs

the returned number of Outputs
the returned execution flag: 0 — no execution, 1 — AIM performs analysis

integer return code

Get Bodies

icode = caps_getBodies (capsObj analysis, int *xnBody, ego *x*bodies)
analysis the Analysis Object
nBody the returned number of EGADS Body Objects that match the Analysis’ intent
bodies the returned pointer to a list of EGADS Body/Node Objects,
Tessellation Objects (set by aim_setTess) follow (length — 2*nBody)
icode integer return code
~ Haimes CAPS API 17May 2019 27/47

Query Analysis Input Information

icode

problem
aname
index
ainame
default

caps-

getInput (capsObj problem,
char **ainame,

a CAPS Problem Object
the Analysis (and AIM plugin) name
the Input index [1-nIn]

char xaname, int index,
capsValue xdefault)

a pointer to the returned Analysis Input variable name (use EG_free to free memory)

a pointer to the filled default value(s) and units — use caps_freeValue to cleanup

Query Analysis Output Information

icode = caps_getOutput (capsObj problem, char xaname, int index,
char xxaoname, capsValue xform)
problem a CAPS Problem Object
aname the Analysis (and AIM plugin) name

index the Output index [1-nOut]
aoname a pointer to the returned Analysis Output variable name (use EG_free)

form a pointer to the Value Shape & Units information — returned

use caps-freeValue to cleanup
~ Hames CAPS API 17 May 2019 28/47
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Load Analysis into a Problem

icode =

problem

aname

apath

unitSys

intent
naobj
aobjs
analysis

icode

caps-load (capsObj problem,

char xaname, char =xapath,
char xintent, int naobj,
capsObj *analysis)

char xunitSys,
capsObj xaobjs,
a CAPS Problem Object

the Analysis (and AIM plugin) name
Note: this causes the the DLL/Shared-Object to be loaded (if not already resident)

the absolute filesystem path to both read and write files
this is required even if the AIM does not use the the filesystem, so that the combination
of aname and apath is unique

pointer to string describing the unit system to be used by the AIM (can be NULL)
see specific AIM documentation for a list of strings for which the AIM will respond

the intent character string used to pass Bodies to the AIM, NULL — no filtering
the number of parent Analysis Object(s)

a list of the parent Analysis Object(s) — may be NULL if naobj ==

the resultant Analysis Object

integer return code

CAPS API 17 May 2019

Initialize Analysis from another

icode =

from

apath

naobj
aobjs
analysis

icode

caps-dupAnalysis (capsObj from,

Analysis Object

char xapath, int naobj,
capsObj wxaobjs, capsObj xanalysis)

an existing CAPS Analysis Object

the absolute filesystem path to both read and write files
required so that the combination of aname and apath is unique

the number of parent Analysis Object(s)
a list of the parent Analysis Object(s) — may be NULL if naobj ==
the resultant Analysis Object

integer return code

Get Dirty Analysis Object(s)

icode =

problem
nAobjs
aobjs

icode

caps-dirtyAnalysis (capsObj object,

int xnAobj, capsObj **aobjs)

a CAPS Problem, Bound or Analysis Object
the returned number of dirty Analysis Objects
a returned pointer to the list of dirty Analysis Objects (freeable)

integer return code

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
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Initialize Analysis from another Analysis Object

icode = caps_dupAnalysis (capsObj from, char xapath, int naobj,
capsObj *aobjs, capsObj xanalysis)
from an existing CAPS Analysis Object

apath the absolute filesystem path to both read and write files
required so that the combination of aname and apath is unique

naobj the number of parent Analysis Object(s)
aobjs a list of the parent Analysis Object(s) — may be NULL if naobj==0
analysis the resultant Analysis Object

icode integer return code

Get Dirty Analysis Object(s)

icode = caps.dirtyAnalysis(capsObj object, int *nAobj, capsObj x*aobjs)

problem a CAPS Problem, Bound or Analysis Object
nAobjs the returned number of dirty Analysis Objects
aobjs a returned pointer to the list of dirty Analysis Objects (freeable)

icode integer return code

e caps APt M D 3047

Generate Analysis Inputs

icode = caps_preAnalysis (capsObj analysis, int xnErr, capsErrs *xerrs)

analysis the Analysis (or Problem) Object
a Geometry-only regen is forced when this is a Problem Object

nErr the returned number of errors generated — 0 means no errors
errs the returned CAPS error structure — NULL with no errors

icode integer return code

Mark Analysis as Run

icode = caps-postAnalysis (capsObj analysis, capsOwn current, int #*nErr,
capsErrs x*errors)

analysis the Analysis Object
Note: this clears all Analysis Output Objects to force reloads/recomputes

current the CAPS owner structure information for the run
nErr the returned number of errors generated — 0 means no errors

errors the returned CAPS error structure — NULL with no errors

icode integer return code

e cas AP M D 524
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Create a Bound — Open until completeBound

icode = caps-makeBound (capsObj problem, int dim, char xbname,
capsObj xbound)

problem a CAPS Problem Object
dim the dimensionality of the Bound (1 — 3)

bname the Bound name (matching the capsBound Attribute)
bound the resultant open Bound Object

icode integer return code

Complete a Bound

icode = caps_completeBound (capsObj bound)

bound the CAPS Bound Object to close after creating all of the VertexSets & DataSets
make calls to makeVertexSet and makeDataSet in between these 2 functions

icode integer return code

o ee caPs AP My 019 53/47

Get Information about a Bound

icode = caps_boundInfo (capsObj bound, enum xstate, int xdim,
double *plims)

bound the CAPS Bound Object

state the returned Bound state:

-1 Open
Empty & Closed
1 single BRep entity
multiple BRep entities

-2 multiple BRep entities — Error in reparameterization!
dim the returned dimensionality of the Bound (1 — 3)

plims the filled parameterization limits (2 values when dimis 1, 4 when dim is 2)

icode integer return code

N caps APl My 09 34747
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Make a VertexSet

icode = caps-makeVertexSet (capsObj bound, capsObj analysis,
char xvname, capsObj =*vset)

bound an input open CAPS Bound Object
analysis the Analysis Object (NULL — Unconnected)
vname a character string naming the VertexSet (can be NULL for a Connected VertexSet)
vset the returned VertexSet Object

icode integer return code

Get Info about a VertexSet

icode = caps-vertexSetInfo (capsObj vset, int *nGpts, int *nDpts,
capsObj xbound, capsObj *analysis)
vset the VertexSet Object
nGpts the returned number of Geometry points in the VertexSet
nDpts the returned number of point Data positions in the VertexSet
bound the returned associated Bound Object
analysis the returned associated Analysis Object (NULL — Unconnected)

icode integer return code

e caps a1 M0 35747

Fill VertexSets for cyclic/incremental transfers

icode = caps_-fillVertexSets (capsObj bound, int *nErr, capsErrs x+errs)
bound an input closed CAPS Bound Object

nErr the returned number of errors generated — 0 means no errors

errs the returned CAPS error structure — NULL with no errors
icode integer return code

Note: Causes the filling of the VertexSets owned by the Bound by forcing the invocation of the appropriate
aimDiscr functions in the AIM. Under normal circumstances this is deferred to the last postAnalysis
call of the collected VertexSets.

Fill an Unconnected VertexSet
icode = caps_fillUnVertexSet (capsObj vset, int npts, double xxyzs)
vset the input Unconnected VertexSet Object
npts the number of points in the VertexSet

xyzs the point positions (3*npt s in length)

icode integer return code

e cas AP My 2019 30047
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Output a VertexSet for Plotting/Debugging (
icode = caps.outputVertexSet (capsObj vset, char xfilename)
vset the VertexSet Object
filename the VertexSet filename (should have the extension “.vs’)

icode integer return code

The CAPS application VVS can be used to interactively view the file generated by this function.

CAPS API 17 May 2019 37/47

DataSet Naming Conventions

‘Vlultiple DataSets in a Bound can have the same Name
llows for automatic data transfers
ne source (from either Analysis or User Methods)
‘{eserved Names:
DSet Name rank Meaning Comments
Xyz 3 Geometry Positions
xyzd 3 Data Positions Not for vertex-based
discretizations
param* 1/2  tor [u,v] data for Geometry
Positions
paramd* 1/2  tor [u,v] for Data Positions  Not for vertex-based
discretizations
GeomlIn* 3 Sensitivity for the Geometry can have [irow, icol] in
Input Geomln name
* Note: not valid for 3D Bounds
e caps a1 a0 4
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Create a DataSet

icode = caps.makeDataSet (capsObj vset, char *dname, enum method,
int rank, capsObj xdset)

vset the VertexSet Object — associated Bound must be open

dname a pointer to a string containing the name of the DataSet (i.e., pressure)
method the method used for data transfers: (Sensitivity, Analysis, Interpolate, Conserve, User)
rank the rank of the data (e.g., 1 — scalar, 3 — vector)
dset the returned DataSet Object

Initialize DataSet for cyclic/incremental startup

icode = caps-initDataSet (capsObj dset, int rank, double xstartup)
dset the DataSet Object (Method must be Interpolate or Conserve)

rank the rank of the data (e.g., 1 — scalar, 3 — vector)
startup the pointer to the constant startup data (rank in length)

Note: invocations of caps_getData and aim_getDataSet will return this data (and a length of 1)
until properly filled.

e caps APt My 019 39747

Get Data from a DataSet

icode = caps-getData(capsObj dset, int =*npts, int =xrank,
double **data, char xxunits)

dset the DataSet Object

npts the returned number of points in the DataSet

rank the returned rank of the data (e.g., 1 — scalar, 3 — vector)
data the returned pointer to the data (rank*npts in length)

units the returned pointer to the string declaring the units

icode integer return code

Get History of a DataSet
icode = caps_getHistory (capsObj dset, capsObj xvset, int xnhist,
capsOwn *xhist)
dset the DataSet Object
vset the returned associated VertexSet Object

nhist the returned length of the history list
hist the returned pointer to the list (nhist in length)

icode integer return code

e cas AP M a0
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Put User Data into a DataSet

icode =

dset
nverts
rank
data
units

icode

caps-setData (capsObj dset,

int nverts,
char xunits)

the DataSet Object

the number of points in data — must match declared npts

the rank of the data — must match declared rank (e.g., 1 — scalar, 3 — vector)
a pointer to the data (rank*nverts in length)

the pointer to the string declaring the units

integer return code

Get DataSet Objects by Name

icode =

bound
dname
nobj
dsets

icode

caps-

getDataSets (capsObj bound, char *dname,
capsObj **dsets)

an input CAPS Bound Object

a pointer to a string containing the name of the DataSet

int =xnobj,

the returned number of Objects with the name
a returned pointer to the list of DataSet Objects (freeable)

integer return code

int rank, double =data,

CAPS API 17 May 2019
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Get Triangulations for a 2D VertexSet

icode =

vset
nGtris
Gtris

nDtris
Dtris

icode

caps-triangulate (capsObj vset,

int xnGtris,
int xxDtris)

the input CAPS Connected VertexSet Object

the returned number of Geometry-based Triangles

int xxGtris,
int xnDtris,

the returned pointer to a list of indices (bias 1) referencing Geometry-based points
(3*nGtris in length) — freeable

the returned number of Data-based Triangles (0 if discretization is vertex based)

the returned pointer to a list of indices (bias 1) referencing Data-based points
(3*nDtris in length) — freeable

integer return code

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
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Backdoor AIM Specific Communication

icode = caps.AIMbackdoor (capsObj analysis, char xJSONin,
char x*JSONout)

analysis the Analysis Object

JSONin a pointer to a character string that AIM function aimBackdoor will respond to.

JSONout areturned pointer to a character string that AIM function aimBackdoor creates and
passes back as the result to the request (may be freeable — depending on the AIM).

icode integer return code

Note: Look at the specific AIM documentation to determine i
respond and to what JSONin commands.

~ Hames CAPS API 17May 2019 43/47
<aps
CAPS_SUCCESS 0 CAPS_CIRCULARLINK -319
CAPS_BADRANK -301 CAPS_UNITERR -320
CAPS_BADDSETNAME  -302 CAPS_NULLBLIND -321
CAPS_NOTFOUND -303 CAPS_SHAPEERR -322
CAPS_BADINDEX -304 CAPS_LINKERR -323
CAPS_NOTCHANGED -305 CAPS_MISMATCH -324
CAPS_BADTYPE -306 CAPS_NOTPROBLEM -325
CAPS_NULLVALUE -307 CAPS_RANGEERR -326
CAPS_NULLNAME -308 CAPS_DIRTY -327
CAPS_NULLOBJ -309 CAPS_HIERARCHERR -328
CAPS_BADOBJECT -310 CAPS_STATEERR -329
CAPS_BADVALUE -311 CAPS_SOURCEERR -330
CAPS_PARAMBNDERR  -312 CAPS_EXISTS -331
CAPS_NOTCONNECT -313 CAPS_IOERR -332
CAPS_NOTPARMTRIC -314 CAPS_DIRERR -333
CAPS_READONLYERR  -315 CAPS_NOTIMPLEMENT  -334
CAPS_FIXEDLEN -316 CAPS_EXECERR -335
CAPS_BADNAME -317 CAPS_CLEAN -336
CAPS_BADMETHOD -318 CAPS_BADINTENT -337
e CAPS AP M09 4747
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Bounds needed to be fully populated (i.e., the VertexSets need to be filled for all
analyses) before they can be used. This is due to the requirement to have all points
available to ensure that there is a single UV space (either by construction or by
re-parameterization).

The Population of the VertexSets

By default this is done in the “post” phase of the last analysis in the Bound to be
updated, which makes it basically impossible to have an intermediate result for the
first iteration (such as in Fluid/Structure Interaction). This issue is mitigated by using
the function caps_fillVertexSets before the first analysis is invoked. What
this does is call the AIM to fill the aimDiscr structure (basically the VertexSet) before
the “pre” phase but requires the mesh (or performs the meshing) at that time.

v

NOTE: An analysis AIM that supports aimDiscr and also generates meshes “on the
fly” must be able to generate meshes and call aim_setTess from both aimDiscr
and aimPreAnalysis (whenever and wherever the mesh gets generated).

o ee caps APt My 2019 45/

Fluid/Structure Interaction Pseudocode

caps_load TetGen aim —> mobj

caps_load fluids aim -> fobj

caps_load structures -> sobj

caps_makeBound "srf" -> bobj

caps_makeVertexSet (bobj, fobj) -> vfobj
caps_makeVertexSet (bobj, sobj) -> vsobj

caps_makeDataSet (vfobj, "Pressure", Analysis, 1) -> dpfobj
caps_makeDataSet (vsobj, "Pressure", Conserve, 1) -> dpsobj
caps_makeDataSet (vsobj, "Displace", Analysis, 3) -> ddsobj
caps_makeDataSet (vfobj, "Displace", Conserve, 3) -> ddfobj
caps_completeBound (bobj)

caps_preAnalysis (mobj)

caps_postAnalysis (mobj) /* generate fluids mesh */
caps_fillVertexSets (bob3j) /* Note #1 =/
caps_initDataSet (ddfobj, 3, zeros) /* Note #2 x/
for (iter = 0; iter < nlIter; iter++) {

caps_getData (ddfobj, ...) /* Note #3 x/

caps_preAnalysis (fobj)
/* execute fluids analysis */
caps_postAnalysis (fob3j)

caps_getData (dpsobj, ...) /* Note #3 x/
caps_preAnalysis (sobj)

/* execute structures analysis x/
caps_postAnalysis (sob3j)

e cas AP My 201 46047
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Pseudocode Notes
The fluids AIM requires the “Displace” values during its “pre” phase, just as the structural analysis AIM

requires “Pressure” (i.e., loads) during its “pre” phase to fill in all the inputs.
ps-fillVertexSets calls aimDiscr in the fluids AIM, so that AIM must transfer the data
m the TetGen AIM to populate the aimDiscr structure. The structures AIM can still do the
essellation in its aimDiscr function, but it will be invoked before any “pre” phase. Care must be
taken so that any tessellation input data can be taken from the AIM inputs.
ps-initDataSet gets called to set the first displacement data to zeros, in that no structural

alysis will have been run at start, but is needed by the fluids.
ps_getData is currently required to actually do the interpolation/conservative data transfer
., it cannot be done in the AIM by the invocation of aim_getDataSet). This will be changed
1n the future, so these calls will not be required, but current scripts and code will still function.

e lines in red now cause aimUsesDataSet to be invoked to determine if the DataSet is

uired by the Analysis (and will make it dirty).

17 May 2019 47147

e caps APt
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APPENDIX C — AIM DEVELOPMENT

Bob Haimes

haimes @mit.edu
Aerospace Computational Design Lab
Massachusetts Institute of Technology

Note: Sections in red are changes in CAPS from Revision 1.14.
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Object-based Not Object Orientated
ike egos in EGADS

ointer to a C structure — allows for an function-based API
\[reated as blind pointers (i.e., not meant to be dereferenced)
Header info used to determine how to dereference the pointer
PI Functions

@ Returns an int error code or CAPS_SUCCESS
@ Usually have one (or more) input Objects
@ Can have an output Object (usually at the end of the argument list)

fan interface with multiple compiled languages

See $ESP_ROOT/doc/CAPSapi.pdf

<aps

Problem Object

The Problem is the top-level container for a single mission. It maintains a single set
of interrelated geometric models, analyses to be executed, connectivity and data
associated with the run(s), which can be both multi-fidelity and multidisciplinary.
There can be multiple Problems in a single execution of CAPS and each Problem is
designed to be thread safe allowing for multi-threading of CAPS at the highest level.

Value Object

A Value Object is the fundamental data container that is used within CAPS. It can
represent inputs to the Analysis and Geometry subsystems and outputs from both.
Also Value Objects can refer to mission parameters that are stored at the top-level of
the CAPS database. The values contained in any input Value Object can be bypassed
by the linkage connection to another Value (or DataSer) Object of the same shape.
Attributes are also cast to temporary (User) Value Objects.
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Analysis Object (

The Analysis Object refers to an instance of running an analysis code. It holds the
input and output Value Objects for the instance and a directory path in which to
execute the code (though no explicit execution is initiated). Multiple various
analyses can be utilized and multiple instances of the same analysis can be handled
under the same Problem.

Bound Object

A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the “outer surface of the wing”’). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body).

Dimensionally:
D — Collection of Edges
D — Collection of Faces
Haimes Aim Development 17 May 2019 5/50
VertexSet Object

A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
it’s data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

DataSet Object

A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

Haimes Aim Development 17 May 2019 6/50
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| Object | SubTypes | Parent Object |
capsProblem Parametric, Static
capsValue Geometryln, GeometryOut, | capsProblem,
Branch, Parameter, User capsValue
capsAnalysis capsProblem
capsValue AnalysisIn, AnalysisOut capsAnalysis,
capsValue
capsBound capsProblem
capsVertexSet | Connected, Unconnected capsBound
capsDataSet | User, Analysis, Interpolate, caps VertexSet
Conserve, Builtin, Sensitivity

Body Objects are EGADS Objects (egos)

Filtering the active CSM Bodies occurs at two different stages, once in
the CAPS framework, and once in the AIMs. The filtering in the CAPS
framework creates sub-groups of Bodies from the CSM stack that are
passed to the specified AIM. Each AIM instance is then responsible for
selecting the appropriate Bodies from the list it has received.

The filtering is performed by using two Body attributes:
“capsAIM” and “capsIntent”.

Filtering within AIM Code

Each AIM can adopt it’s own filtering scheme for down-selecting how to use each
Body it receives. The “capsIntent” string is accessible to the AIM, but it is for
information only.
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CSM AIM targeting: “capsAIM”

The CSM script generates Bodies which are designed to be used by specific AIMs.
The AIMs that the Body is designed for is communicated to the CAPS framework via
the “capsAIM” string attribute. This is a semicolon-separated string with the list of
AIM names. Thus, the CSM author can give a clear indication to which AIMs should
use the Body. For example, a body designed for a CFD calculation could have:

ATTRIBUTE capsAIM $su2 AIM;fun3dAIM;cart3dAIM

CAPS AIM Instantiation: “capsIntent”

The “capsIntent” Body attribute is used to disambiguate which AIM instance should
receive a given Body targeted for the AIM. An argument to caps_load accepts a
semicolon-separated list of keywords when an AIM is instantiated in CAPS/pyCAPS.
Bodies from the “capsAIM” selection with a matching string attribute “capsIntent”
are passed to the AIM instance. The attribute “capsIntent” is a semicolon-separated
list of keywords. If the string to caps_load is NULL, all Bodies with a “capsAIM”
attribute that matches the AIM name are given to the AIM instance.

ides all of the individual Analysis details (and peculiarities)

@ [ndividual plugin functions translate from the Analysis’
perspective back and forth to CAPS

@ Provides a direct connection to BRep geometry and attribution
through EGADS

utside the CAPS Object infrastructure

.Use of C structures
Q@AM Utility library (with the context enbedded in aimInfo)

n AIM plugin is required for each Analysis code at:

@ a specific intent
@ a specific mode (i.e., where the inputs may be different)
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IMs can be hierarchical

@ Parent Analysis Objects specified at CAPS Analysis load
@ Parent and child AIMs can directly communicate

ynamically loaded at runtime — extendibility and extensibility

Windows Dynamically Loaded Libraries (name .d11)
LINUX Shared Objects (name . so)
MAC Bundles, CAPS will use the so file extension

‘Dlugin names must be unique — loaded by the name

i indicates memory handled by CAPS in the following functions
i.e., CAPS will free these memory blocks when necessary

The capsValue Structure is simply the data found within a CAPS Value Object.
aimInputs and aimOutputs must fill the structure with the type, form and
optionally units of the data. aimInputs also sets the default value(s) in the vals
member. The structure’s members listed below must be filled (most have defaults).

Value Type — no default
The value fype can be one of:
enum capsvIype {Boolean, Integer, Double, String, Tuple, Value};

Note:
The Value type in a capsValue is only supported at the CAPS level and not in AIMs

The tuple structure

typedef struct {

char xname; /% the name */
char xvalue; /* the value for the pair =*/
} capsTuple;
s T — Thay 209 12150
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Shape of the Value — 0 1s the default

dim can be one of:
0  scalar only
1 vector or scalar
2 scalar, vector or 2D array

Value Dimensions — 1 is the default

nrow and ncol set the dimension of the Value. If both are 1 this has a scalar shape.
If either nrow or ncol are one then the shape is vector. If both are greater than 1
then this represents a 2D array of values.

)

Other enumerated constants

enum capsFixed {Change, Fixed};
enum capsNull {NotAllowed, NotNull, IsNull};
enum capstMethod {Copy, Integrate, Average};

[ b

Aim Development 17 May 2019 13/50

Varying Length — the default is “Fixed”

The member [fixed indicates whether the length of the Value is allowed
to change.

Varying Shape — the default is “Fixed”

The member sfixed indicates whether the shape of the Value is allowed
to change.

Can Value be NULL? — the default 1s “NotAllowe

The member nullVal indicates whether the Value is or can be NULL
Options are found in enum capsNULL

Aim Development 17 May 2019 14/50
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<aps

caps Value Member Usage Notes

sfixed & dim

If the shape is “Fixed” then nrow and ncol must fit that shape (or a lesser
dimension). [Note that the length can change if lfixed is “Change”.] If sfixed is
“Change” then you change dim before changing nrow and ncol to a higher
dimension than the current setting.

‘ﬁxed & nrow/ncol

If the length is “Fixed” then all updates of the Value(s) must match in both
nrow and ncol (which presumes a “Fixed” shape).

.tullVal & nrowlncol
nrow and ncol should remain at their values even if the Value is NULL to
maintain the dimension (and possibly length) when “Fixed”. To indicate a
NULL all that is necessary is to set nullVal to “IsNull”. The actual allocated
storage can remain in the vals member or set to NULL.

jJ se EG_alloc to allocate any memory required for the vals member.

o ee Aim Deveopmen My 201915750

caps
/x
* structure for CAPS object -- VALUE
*/
typedef struct {
int type; /+ value type -- capsvType */
int length; /+ number of values */
int dim; /* the dimension */
int nrow; /* number of rows */
int ncol; /* the number of columns */
int 1fixed; /+ length is fixed -- capsFixed */
int sfixed; /+ shape is fixed -- capsFixed =/
int nullval; /% NULL handling -- capsNull */
int plndex; /+ parent index for vIType = Value =*/
union {
int integer; /% single int -- length == 1 */
int *integers; /+ multiple ints */
double real; /% single double -- length == 1 %/
double *reals; /+ mutiple doubles */
char *string; /* character string (no single char) =/
capsTuple «*tuple; /+ tuple (no single tuple) */
capsObject xobject; /+ single object -- not used in AIMsx*/
capsObject xxobjects; /+ multiple objects -- not used in AIMs */
} vals;
union {
int ilims[2]; /+ integer limits */
double dlims[2]; /* double limits =*/
} limits;
char *units; /* the units for the values */
capsObject *1link; /+ the linked object (or NULL) =/
int linkMethod; /+ the link method -- capstMethod */

} capsValue;

e Aim Desclopmen M0 16150
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AIM Plugin Functions

.Registration & Declaring Inputs / Outputs

re-Analysis & Retrieving Output
Write and read files — or — use Analyses API if available

‘Discrete Support — Interpolation & Integration

icode = aimInitialize (int nglIn, capsValue xgIn, int =*qgeFlg,
const char xunitSys, int xnIn, int =xnOut,
int *nFields, char ***fnames, int xxranks)
ngln the number of Geometry Input value structures

gln a pointer to the list of Geometry Input value structures

qeFlg onlInput: 1 indicates a query and not an analysis instance;
on Output: 1 specifies that the AIM executes the analysis

unitSys a pointer to a character string declaring the unit system — can be NULL
nln the returned number of Inputs (minimum of 1)*
nOut the returned number of possible Outputs™
nFields the returned number of fields to responds to for DataSet filling
fnames a returned pointer to a list of character strings with the field/DataSet names
ranks a returned pointer to a list of ranks associated with each field t

icode integer return code (-) or AIM instance counter

*nIn & nOut should not depend on the intent
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<aps

icode = aimInputs (int inst, void %aimInfo, int index, char xxainame,
capsValue xdefval)
inst the AIM instance index

aimInfo the AIM context — NULL if called from caps_get Input
index the Inputindex [1-nIn]
ainame a returned pointer to the returned Analysis Input variable name
defval a pointer to the filled default value(s) and units — CAPS will free any allocated memory

icode integer return code

icode = aimOutputs (int inst, void xaimInfo, int index, char *xaonam,
capsValue xform)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)
index the Output index [1-nOut]
aonam a returned pointer to the returned Analysis Output variable name

form a pointer to the Value Shape & Units information — to be filled
any actual values stored are ignored/freed

icode integer return code

Is the DataSet required by aimPreAnalysis — Optional

icode = aimUsesDataSet (int inst, void xaimInfo, const char xbname,
const char xdname, enum capsdMethod dMethod)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)
bname the Bound name
dname the DataSet name

dMethod the data method used (either Interpolate or Conserve)

icode integer return code — use CAPS_NOTNEEDED if not required

Called at caps_makeDataSet, when the data method used is either In
Conserve, for possible dependent VertexSets with dname. If it is depende
Analysis Object is made dirty when the DataSet needs updating.
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Parse Input data & Optionally Generate Input File(s)

icode = aimPreAnalysis(int inst, void xaimInfo, const char xapath,
capsValue xinputs, capsErrs xxerrs)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)
apath the filesystem path where the input file(s) are to be written
inputs the complete suite of Analysis inputs (nIn in length)

errs a pointer to the returned structure where input error(s) occurred — NULL no errors

icode integer return code

Called to prepare the input to an Analysis or prepare the inpu
execute the Analysis (based on geFlg).

o ee Aim Deveopmen My 19 21750

<aps

Perform any processing after the Analysis is run — Optional

icode = aimPostAnalysis (int inst, void *aimInfo, const char =xapath,
capsErrs xxerrs)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)
apath the filesystem path where the file(s) have been written

errs a pointer to the returned structure where error(s) may have occurred — NULL no errors

icode integer return code

| &
Free up any memory the AIM has stored

void aimCleanup ()

e Aim Desclopmen M0 2050
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Calculate/Retrieve Output Information

icode = aimCalcOutput (int inst, void xaimInfo, const char =xapath,
int index, capsValue xval, capsErrs **errors)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)
apath the filesystem path where the Analysis output file(s) should be read
index the Output index [1-nOut] for this single result
val a pointer to the capsValue data to fill - CAPS will free any allocated memory

errors a pointer to the returned error structure where output parsing error(s) occurred
NULL with no errors

icode integer return code

Called in a lazy manner and only when the output is needed
the Analysis is run).

Discrete Structure — Used to define a VertexSet

The CAPS Discrete data structure holds the spatial discretization information for a
Bound. It defines reference positions for the location of the vertices that support the
geometry and optionally the positions for the data locations (if these differ). This
structure can contain a homogeneous or heterogeneous collection of element types
and optionally specifies match positions for conservative data transfers.

EGADS Tessellation Object

‘\I ot a requirement — but useful in dealing with sensitivities
equires triangles

an be constructed from an external mesh generator

.Lookat EG_initTessBody, EG_setTessEdge,
EG_setTessFace & EG_statusTessBody
@ Make it part of CSM & CAPS by aim setTess

e Aim Deveopmen My 2019 24750
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<aps

/+ defines the element discretization type by the number of reference positions
* (for geometry and optionally data) within the element.

* simple tri: nref = 3; ndata = 0; st = {0.0,0.0, 1.0,0.0, 0.0,1.0}

* simple quad: nref = 4; ndata = 0; st = {0.0,0.0, 1.0,0.0, 1.0,1.0, 0.0,1.0}
* internal triangles are used for the in/out predicates and represent linear
* triangles in [u,v] space.

* ndata is the number of data referece positions, which can be zero for simple
* nodal or isoparametric discretizations.

* match points are used for conservative transfers. Must be set when data

* and geometry positions differ, specifically for discontinuous mappings.
* For example:

* neighbors neighbors

* 2 tri-side vertices 4 side vertices

* /\ 0 12 0 12

* / \ 1 20 2

* / \ 2 01 2 34

P R 1 3 45

* 4 50

* neighbors 5 01

* 3= 2 quad-side vertices nref = 7

* | | 0 12

* | | 1 23 6 neighbors

* | | 2 30 3-——.-—=2 quad-side vertices
* O-——=—= 1 3 01 | | 0 12

* 7. 8 .5 1 2 3

* neighbors | | 2 30

* 4 3 side vertices 0-—=.-—-1 3 01

* | | 0 12 4

* | 2 1 3

* | | 2 34 nref = 9

* O-—————= 1 3 40

* 4 01

* nref = 5

*/
typedef struct {

int nref; /+ number of geometry reference points */

int ndata; /+ number of data ref points -- 0 data at ref =/

int nmat; /+ number of match points (0 -- match at
geometry reference points) */

int ntrij; /+ number of triangles to represent the elem */

double =*gst; /+ [s,t] geom reference coordinates in the
element -- 2xnref in length */

double =xdst; /+ [s,t] data reference coordinates in the
element -- 2xndata in length */

double *matst; /+ [s,t] positions for match points - NULL
when using reference points (2*nmat long) =/

int *tris; /* the triangles defined by geom reference indices
(bias 1) -- 3xntri in length =/

} capsEleType;

You will usually have only a small number of element types.
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/x
* defines the element discretization for geometric and optionally data
* positions.

*/
typedef struct {
int bIndex; /+ the Body index (bias 1) */
int tIndex; /* the element type index (bias 1) x/
int eIndex; /* element owning index -- dim 1 Edge, 2 Face x/
int *gIndices; /% local indices (bias 1) geom ref positions,
tess index -- 2xnref in length «*/
int *dIndices; /* the vertex indices (bias 1) for data ref
positions -- ndata in length or NULL */
union {
int tqgq(2]; /* tri or quad (bias 1) for ntri <= 2 %/
int *poly; /* the multiple indices (bias 1) for ntri > 2 x/
} eTris; /+ triangle indices that make up the element =/
} capsElement;

See ATAA paper 2014-0294 in the distribution for a more complete
description ($ESP_ROOT/doc/Papers/AIA Apaper2014-0294.pdf).

<aps

/+ defines a discretized collection of Elements

*

« specifies the connectivity based on a collection of Element Types and the
« elements referencing the types.

*/
typedef struct {
int dim; /* dimensionality [1-3] */
int instance; /* analysis instance =*/
void +*alnfo; /* AIM info «*/
/+ below handled by the AIMs: x/

int nPoints; /+ number of entries in the point definition %/
int *mapping; /+ tessellation indices to the discrete space

2xnPoints in len (body, global tess index) =/
int nvVerts; /+ number of data ref positions or unconnected %/
double *verts; /+ data ref (3xnVerts) -- NULL if same as geom =/
int ~celem; /+ element containing vert (nVerts in len) or NULL =/
int nTypes; /+ number of Element Types */
capsEleType xtypes; /* the Element Types (nTypes in length) x/
int nElems; /+ number of Elements */
capsElement xelems; /* the Elements (nElems in length) x/
int nDtris; /* number of triangles to plot data =/
int *dtris; /* NULL for NULL verts —-- indices into verts */
void *ptrm; /+ pointer for optional AIM use x/

} capsDiscr;

See $SESP_ROOT/doc/capsDiscr.pdf for a more complete description.
. Hame  AmDewlopment 17May 2019 28/50
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caps

Fill-in the Discrete data for a Bound Object — Optional

icode = aimDiscr (char xtname, capsDiscr *discr)
tname the Bound name
Note: all of the BRep entities are examined for the attribute capsBound. Any that
match tname must be included when filling this capsDiscr.

discr the Discrete structure to fill
Note: the AIM instance, AIM info pointer and the dimensionality have been filled in
before this function is invoked.

icode integer return code

Frees up data in a Discrete Structure — Optional

icode = aimFreeDiscr (capsDiscr xdiscr)
discr the Discrete Structure to have its members freed

icode integer return code

e Aim Deveopmen My 2019 29750

<aps

Return Element in the Mesh — Optional

icode = aimLocateElement (capsDiscr xdiscr, double *params,
double *param, int xeIndex, double xbary)
discr the input Discrete Structure

params the input global parametric space (at all of the geometry support positions)
rank is the dimensionality (¢ for 1D, [u, v] for 2D and [x, y, ] for 3D)

param the input requested parametric position in params (dimensionality in length)
elndex the returned element index in the discr where the position was found (1 bias)

bary the resultant Barycentric/reference position in the element e Index

icode integer return code

e Aim Deveopmen My 19 50750
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Data Associated with the Discrete Structure — Optional

icode = aimTransfer (capsDiscr xdiscr, const char «fname, int npts,
int rank, double xdata, char **xunits)
discr the input Discrete Structure

fname the field name to that corresponds to the fill
npts the number of points to be filled
rank the rank of the data
data a pointer associated with the data to be filled (rank*npts in length)

units the returned pointer to the string declaring the units |
return NULL to indicate unitless values

icode integer return code

Fills in the DataSet Object

o ee Aim Deveopmen M 19 31750
ca ES

Interpolation on the Bound — Optional

icode = aimInterpolation(capsDiscr xdiscr, const char *name,
int eIndex, double xbary, int rank,
double xdata, double =*result)
icode = aimInterpolateBar (capsDiscr xdiscr, const char =xname,
int eIndex, double xbary, int rank,
double xr bar, double =xd_bar)
discr the input Discrete Structure

name a pointer to the input DataSet name string
elndex the input target element index (1 bias) in the Discrete Structure

bary the input Barycentric/reference position in the element e Index
rank the input rank of the data
data values at the data (or geometry) positions

result the filled in results (rank in length)

r_bar input d(objective)/d(result)

d_bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
~ Hames Aim Development 17 May 2019 32/50
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<aps

Element Integration on the Bound — Optional

icode = aimIntegration (capsDiscr *discr, const char sname,
int eIndex, int rank,
double xdata, double =*result)
icode = aimIntegrateBar (capsDiscr xdiscr, const char xname,
int eIndex, int rank,
double xr_bar, double xd_bar)
discr the input Discrete Structure

name a pointer to the input DataSet name string
elndex the input target element index (1 bias) in discr

rank the input rank of the data

data values at the data (or geometry) positions — NULL length/area/volume of element
result the filled in results (rank in length)

r_bar input d(objective)/d(result)
d_bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
o Hames Aim Development 17May 2019 33/50
CaES

Data Transfer to Child AIM — Optional

icode = aimData (int inst, const char xname, enum *xvtype, int xrank,
int xnrow, int xncol, void xxdata, char xxunits)
inst the AIM instance index

name the agreed-upon data name to transfer
vtype value data type — returned

rank the rank of the data — returned (negative — child should free data)
nrow the number of rows — returned

ncol the number of columns — returned

data a void pointer associated with the data — returned

units the pointer to the string declaring the units (will be free’d by child) — returned

e Aim Desclopmen M0 34150
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AIM specific Communication — Optional

icode = aimBackdoor (int inst, void xaimInfo, const char x=JSONin,
char *%*JSONout)
inst the AIM instance index

aimInfo the AIM context

JSONin a pointer to a character string that represents the inputs.

JSONout areturned pointer to a character string that is the output of the request.

e Aim Deveopmen M 19 35750

AIM Helper Functions

‘)rovides useful functions for the AIM programmer
ives access to CAPS Object data
ote that all function names begin with aim_

if any of these functions are used, then the library must be
included in the AIM so/DLL build
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Get Bodies

icode = aim_getBodies (void *aimInfo, char xxintent, int xnBody,
ego *xbodies)
aimInfo the AIM context

intent the returned pointer to the capsIntent string used to filter the Bodies
nBody the returned number of EGADS Body Objects that match the intent

bodies the returned pointer to a list of EGADS Body/Node Objects,
Tessellation Objects (set by aim_setTess) follow (length — 2*nBody)

icode integer return code

Is Node Body

icode = aim_isNodeBody (ego body, double xxyz)
body the EGADS Body Objects to query

xyz the returned XYZ of the Node (if a Node Body)

icode integer return code

Units conversion

icode = aim_convert (void xaimInfo, char *xinUnits, double inValue,
char xoutUnits, double *xoutValue)
aimInfo the AIM context

inUnits the pointer to the string declaring the source units
inValue the value to be converted
outUnits the pointer to the string declaring the desired units

outValue the returned converted value

icode integer return code
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Units multiplication

icode = aimunitMultiply(void %aimInfo, char xinUnitsl, char *inUnits2,
char **outUnits)
aimInfo the AIM context

inUnits] the pointer to the string declaring left units
inUnits2 the pointer to the string declaring right units
outUnits the returned string units = inUnits1*inUnits2 (freeable)

icode integer return code

icode = aimunitDivision(void xaimInfo, char xinUnitsl, char xinUnits2,
char **outUnits)
aimInfo the AIM context

inUnits] the pointer to the string declaring numerator units
inUnits2 the pointer to the string declaring denominator units

outUnits the returned string units = inUnits1/inUnits2 (freeable)

icode integer return code

Units invert

icode = aimunitInvert (void xaimInfo, char *inUnits,
char xxoutUnits)
aimInfo the AIM context

inUnits the pointer to the string declaring units
outUnits the returned string units = 1/inUnits (freeable)

icode integer return code

Units raise to power

icode = aim_unitRaise (void *xaimInfo, char xinUnits, const int power,
char x*xoutUnits)
aimInfo the AIM context

inUnits the pointer to the string declaring units

outUnits the returned string units = inUnits "~ power (freeable)

icode integer return code
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Name to Index lookup

icode = aim_getIndex(void xaimInfo, char *name, enum stype)
aimInfo the AIM context

name the pointer to the string specifying the name to look-up
NULL returns the total number of members in the subtype

stype  GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALYSISOUT

icode index (1 bias) or negative integer return code

Index to Name lookup

icode = aim_getName (void xaimInfo, int index, enum stype, char xxname)
aimInfo the AIM context

index the index to use (1 bias)
stype  GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALY SISOUT
name the returned pointer to the string specifying the name

icode integer return code

Get Discretization State

icode = aim_getDiscrState(void xaimInfo, char *bname)
aimInfo the AIM context

bname the Bound name
icode integer return code — CAPS_SUCCESS is clean

Get Value Structure

icode = aim_getValue (void xaimInfo, int index, enum stype,
capsValue =*value)
aimInfo the AIM context

index the index to use (1 bias)
stype  GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALYSISOUT

value the returned pointer to the capsValue structure

icode integer return code
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Data Transfer from Parent AIM(s)

icode = aim_getData (void xaimInfo, char xname, enum *vtype, int +rank,
int xnrow, int #*ncol, void *xdata, char x*units)
aimInfo the AIM context

name the requested agreed-upon name to fill
vtype the returned value data type

rank the returned rank of the data (negative — data should be free’d when done)
nrow the returned number of rows

ncol the returned number of columns

data areturned void pointer associated with the data

units the returned pointer to the string declaring the units (should be free’d)
NULL indicates unitless values

icode integer return code

Notes: All parent AIMs are queried. If none properly respond, this functi
CAPS_NOTFOUND. If multiple parents respond then this function returns
CAPS_SOURCEERR. Parents must not be dirty.

N Aim Development Ny 2019 4375

Establish Linkage from Parent or Geometry

icode = aim_link (void xaimInfo, char xname, enum stype,
capsValue xdefault)
aimInfo the AIM context

name the requested Value Object name to link

stype Value subtype (GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or
ANALSYSOUT)

default the pointer from aimInputs

icode integer return code

Note: For ANALYSISIN or ANALYSISOUT subtypes all parent Analys
queried. If none is found in the parent hierarchy, this function returns
CAPS_NOTFOUND. The query is performed from the oldest ancestor down.
match is used.

e Aim Desclopmen M0 4150
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Get Geometry State WRT the Analysis

icode = aim.newGeometry (void xaimInfo)
aimInfo the AIM context

icode CAPS_SUCCESS for new, CAPS_CLEAN if not regenerated since last here

Set Tessellation for a Body

icode = aim_setTess (void xaimInfo, ego object)
aimInfo the AIM context
object the EGADS Tessellation Object to use for the associated Body —or —
the Body Object to remove and delete an existing tessellation
Note that the Body Object is part of the Tessellation Object

icode integer return code
An error is raised when trying to set a Tessellation Object when one exists.

If the Problem is STATIC then the AIM (or CAPS application) is responsible for
deleting the Tessellation Object. Otherwise removal of the Tessellation Object is
controlled internally during Body operations. If a Tessellation Object is removed (no
longer associated with the Body) then CAPS deletes the Tessellation Object.

Get Discretization Structure

icode = aim_getDiscr (void xaimInfo, char xbname, capsDiscr xxdiscr)
aimInfo the AIM context

bname the Bound name
discr pointer to the returned Discrete structure

icode integer return code

Get Data from Existing DataSet

icode = aim_getDataSet (capsDiscr xdiscr, char *dname, enum *method,
int *npts, int *rank, double xxdata)
discr the input Discrete Structure

dname the requested DataSet name
method the returned method used for data transfers
npts the returned number of points in the DataSet
rank the returned rank of the DataSet

data areturned pointer to the data within the DataSet

icode integer return code
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caps

Get Bound Names

icode = aim_getBounds (void *aimInfo, int *nBname, char *xxbnames)
aimInfo the AIM context

nBname returned number of Bound names
bnames returned pointer to list of Bound names (freeable)

icode integer return code

icode = aim_unitSys (void xaimInfo, char **unitSys)
aimInfo the AIM context

unitSys a returned pointer to a character string declaring the unit system — can be NULL

icode integer return code

e Aim Deveopmen 17May 201

Setup for Sensitivities

icode = aim_setSensitivity(void xaimInfo, char *GIname, int xirow,
int *icol)

aimInfo the AIM context
GIname the pointer to the string that matches the Geometry Input Parameter name
irow the parameter row to use — 1 bias

icol the parameter column to use — 1 bias

icode integer return code

Notes: (1) aim_setTess must have been invoked sometime before calling this function t
tessellations for the Bodies of interest.
(2) Call aim_setSensitivity before call(s) to aim_getSensitivity.

e Aim Desclopmen M0 s8050
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Get Sensitivities based on Tessellation Components

icode =

aimInfo

aim_getSensitivity(void xaimInfo,

int index,
the AIM context

int =npts,

ego tess,

int ttype,
double *xdxyz)

tess

ttype

the EGADS Tessellation Object

topological type — 0 - NODE, 1 - EDGE, 2 - FACE
Configuration Sensitivities — -1 - EDGE, -2 - FACE

the index in the Body (associated with the tessellation) based on the type

index
npts the returned number of sensitivities (number of tessellation points)

dxyz a pointer to the returned sensitivities — 3*npts in length (freeable)

icode integer return code

Note: Call aim_setSensitivity before call(s) to aim getSensit

Aim Development 17 May 2019

49/50

<aps

Get Global Tessellation Sensitivities

icode = aim_sensitivity (void =xaimInfo,
int icol,

the AIM context

char xGIname, int irow,

ego tess, int xnpts, double x*xdxyz)
aimInfo
GIname the pointer to the string that matches the Geometry Input Parameter name
irow the parameter row to use — 1 bias
icol the parameter column to use — 1 bias
the EGADS Tessellation Object

the returned number of sensitivities (number of global vertices)

tess
npts

dxyz a pointer to the returned sensitivities — 3*npts in length (freeable)

icode integer return code

Note: Used to get the tessellation sensitivities for the entire Tessellation
number of points is the global number of vertices in the tessellation.

Aim Development 17 May 2019

50/50

118
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



APPENDIX D — LINEARIZED INCOMPRESSIBLE POTENTIAL: WAKE
AND KUTTA CONDITION

1 Preliminaries

‘Wake Sum/Difference Operators

Wake-sheet summation and difference operators are defined as,
Y (c) =+ cu, Ale)=c—cy (1)

where c is a scalar, and subscripts | and u are lower and upper, respectively.

Product formulas:

E(ab):%[E(a)Z(b) INOINGIE A(ab):%[E(a)A(b) + AT ). 2)

Surface Tangentials and Surface Integration-by-Parts

Surface tangential component:

ﬁ:f“f(f-ﬁ,)ﬁ:fﬁx(ﬁ,xf“) (3)
Surface gradient,
V=V — @A
Vo =Vo ann (4)
From vector triple product,
fLX(’leV(]b):(fl-Vd))ﬁ*(}'ﬁ/)VLf):ﬁ%*V(f) — 6(/):7ﬁ,><(ﬁ><v¢)) (5)

Surface divergence (from applying above to each component and summing trace),

V- f=V-f-n- - (6)

//Sﬁ-(wgv:yéwf-g: (7)

where £ is the unit tangential to dS (oriented right-hand rule). Substituting § = 7 x f,

Jla-vsaxi)y= [[57=¢ i-(x7) = @xa-7 (®)

The unit vector i = £ x 7 is called the conormal; it is outward pointing, tangent to the surface and normal to its
bounding contour line.

Stokes theorem gives

Surface curl,

ﬁx[ﬁx(fo)]:[ﬁ‘(fo)]ﬁ,f(ﬁ-ﬁ)(fo) (9)
Define surface curl as,
ﬁxszxffﬁ{ﬁ-(fo)]:fﬁx[ﬁx(fo)] (10)

Note that ¥ x fis a surface vector,

ﬁ-(%xf):ﬁ‘(fo)f(ﬁﬁ){ﬁ(fo)]:O (11)
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2 Linearized Incompressible Potential: PDE and BCs

PDE

The full (®) and perturbation (¢) potentials are related by,
d=U-7+¢ (12)
where U is freestream velocity, and 7= zi + yj + 2k is physical position.

Mass conservation assuming incompressible,

V- (pV®) =V - (p [[7 + ng]) =pV2p=0. (13)

‘Wall BC

Flow tangency condition along the body; this is a Neumann condition,

o o . 0¢
%—U-n+%—0, on O, (14)
Farfield BC
Dirichlet/Neumann...
Wake BCs
mass flux: b (g—i) =0 (15)
potential jump: A(p)=-T (16)
pressure jump: A (l_f . ng) (17)
We can combine these into a surface PDE for circulation T',
_ = AR 0p - =\ 1 o R, s
0=A (U : v@) —A (UH% +0, ~v¢>> = SAUNT (%> +0,-VA() =T, - VT, (18)

since U, flips sign (giving ¥ (U,) = 0), and [j\l and V are uniquely defined in the wake.

Kutta Condition

Kutta condition
A (@) = —TI're, on Cre (19)

where A (¢),, is evaluated on the wing in the limit as the TE is approached. In addition, there probably needs to
be a BC at the wingtip
A (¢)wingtip = Duingeip = 0, at Clingip (20)

Tranair (FTJ, 1992) implements A (¢) = —T" along the TE, effectively treating this as an initial condition for the
wake-surface PDE for I': U} - VI' = 0.
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3 BC Formulations without Lagrange Multipliers: sans-Lagrange

3.1 Wake BCs: Mass Flux, Potential Jump and Circulation Gradient

mass flux: (%) =0 (21)
potential jump: A(¢p)=-T (22)
circulation: [j\l VT =0 (23)

Primal strong form: find ¢ € V and T' € W such that R4(¢,T'; ¥, T) =0 for all ) € V and T € W, where,

Rio.1i0.0) == Il 6(520) + [ foutw = (52) + v 1)[A @)+ 1] + et 1) (07911 2

where wg, wy, and w, are weighting functions of ) and T,

We = a1% (1) + asA (V) + ag¥ (g“’) +faA (d

on >+a5T+a6[UH VT]-'—CW[UH VZ(?Z))}-FGS[[}“%A (¢)] (25)

and similarly for wy, (a; — b;) and w. (a; — ¢;).

///g¢+# h¢+h— (26)

where g, h and h,, are functions of position but do not depend on the solution. The boundary contributions include
possibly different values of h and h,, on upper and lower sides of the wake sheet,

#m WH%%] -~ //ag,, +//an +//¢m [E (h¢) + % (hn%ﬂ @)

[ (h) S (6) + A (h) A (¢)]7 ) (hn%> - % [2 (hn) 2 <g—i’> + A (hy) A (%)] , (28)

Consider the linear primal output functional,

and

% (he) =

L\’)M—l

Duality:
T(6) = Rs(d. ) = T (¥) = R5(¥, ¢) (29)
Invoke IBP twice to isolate adjoint PDE,

f///ﬂw(V%)://Qw Vo — mw%f // o(v%0) # [ %w%} (30)

For the wake the IBP terms become

B oo ol = I+ Lo (95 —50)
L () (o)
= [l 2 (45 —+5) (31
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where

A (ab) = [z (@A (D) +A)S (b)] (32)

N | =

Substitute into duality,

J(é)—-R
///g<z>+//dQ (ho) +E<h gﬁ)]
7///9“” (-v%9) //mw{“’a ( )+wb[A(¢)+F}+wc[(7”-§lﬂ},
—///¢ (-7 —g) —//{mw—A< %—w%)
//OQ {wa ( >+wb[A(¢)+F}+wc g - vr} //8(2 (ho) +E(hn%>} (33

Accumulating wake terms in the strong-form adjoint residual and grouping by weights,

//89 { <¢* - "?) e (%) + wy[A (9) +T] + we[T)) - VT = 2 (ho) - 3 (hn%)}
N //aszw uMw (34)

where
(¢ ()
A(o) A(y)
X (0¢/0n) Y (0¢/0n)
A (0¢/on) A (0¢/0n)
u= T ’ W= T ) (35)
U,-vr U,-vY
0y V() G-V (@)
Uj-VA(¢) Uy - VA (1)
0 0 0 -1/2 0 0 0 O
b bo bs—1/2 by bs bsg br bg
ar az+1/2 as as as ag ar das
_11/2 0 0 0 0 0 0 O
M = b ba b3 by by bg by by (36)
C1 C2 Cc3 C4 s Cg C7 C8
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O

We note that I' and ﬁ\l - VT cannot be independent weights for the adjoint residual; similarly for X (¢) and
ﬁl\ .V (¢), etc. Anticipating possible issues related to this, the adjoint residual can be rewritten with integration-
by-parts within the wake surface; given some 7,

// RURD // TV () 55 (TT) - (37

where C,, is the bounding contour of the wake, and j is the wake surface co-normal (2 = £ x 7). Note that the
co-normal /i is the same on lower and upper (since both ¢ and # flip signs). The first term on the right-hand side
can be written
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Without changing the adjoint residual, we can then add the term,
{// (U - VD) + T (U - Vr) + 7TV - UH] 9§ (rTT)) ~p} =0 (39)
O Cuy

with 6 a parameter. Expanding this to other possible combinations of terms, the following will have a surface IBP
adjustment:

00 : [U)-VE(@)]S () (40)
02 [U)-VE ()] A (v) (41)
03 [U)-VS(¢)]T (42)
04 [T} - VA (9)]Z (v) (43)
05 : [U)-VA(@®)]A (W) (44)
06 [U)- VA (9)]Y (45)
6; : [0)-VIIS () (46)
0s : [0)-VI]A() (47)
0 [0,-vr]T (48)

The resulting adjusted strong-form adjoint residual is

//69 { <¢7_w8¢> az(g¢> +wy[A(¢) + T + we[U) - VI —E(h@)-g(m%)

+01 ([0 V2 @] @) + [T - VE @2 (@) + [V T () S ()
+ 02 ([0 VE(@)]A ) + [0 VAW]Z (9) + [V - TS () A ()
+05 ([0 - VE @)1 + [0 VY] (@) + [V - TS (9) T)

+01 ([0)- VA @)= () + [0) - VS ()] A (9) + [?-ﬁu]A(M(w)
+05 ([0 VA (@) A @) + [0 - VA @) A (0) [v INGIND))
+05 ([0)- VA @)Y + [0 - VY] A (9) + [V - T)]A r)

+97([]‘ VIS () + [0 - VE (@)]T + [V - T ]TS (¢

+ s ([0 VT]A () + [0 - VA @)D + [V - §)]ra (¢))
+99([ﬁ|‘~§F}T+[l7H~§T]F+[V-UMFT)}

~f (OzW S EAW +aZE)T
010 (6) S () + 52 (6) A (1) + 662 () T
40,7 () + OsDA () + 99FT) ((7” - ﬂ)

:(//mw u'Nw — 7%,“('”) (19)
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with

b1+94(v-(7“) b2+95(v~ﬁ‘|) by —1/2 by b5+96(v~ﬁ”) b +6g by 46y bg+05
ay as + 1/2 as ay4 as ag ar as
N — 1/% . 0 0 0 0 0 0 0 (50)
b1+97(V'U“) ba + Og bs by bs + 6y be +0y by 467 bg+0s
c1 + 67 c2 + s c3 N cs + 6 cr cs
0, 0 0 0 03 0 0 0
04 05 0 0 Og 0 0 0

We seek 3 adjoint BCs. This means determining parameters such that the matrix M is rank 3, and its zero
eigenvalue has algebraic and geometric multiplicity of 5 (i.e. 8 — 3 = 5). The zero eigenvector system is

Mx =0 (51)

with x = {x1, 2, ¥3, 24, T5, T6, 7, T8 }'. This zero eigenvector will have 5 free parameters. The solution process
is as follows: first determine 3 of the z; components in terms of the remaining 5; then determine parameters a;,
b;, ¢; and 0; so that all coefficients of these remaining 5 x; components in Mx vanish, satisfying the above zero
eigenvector equation. The resulting matrix will then have rank 3.

By inspection, the easiest path forward is to solve equations 1, 4 and 2 minus 5 for 1, z3 and x4, giving
@1 =0, 3= 2[(95 ~ 6g) [(6 Oy)as + xg] + (66— 69) [(6 T s + xﬁ] (6 — 04)1»7], (52)
Ty = 2[6‘2 [(6 . U'H)xg + Ig] + 03 [(% . (7‘|).7£5 + xg} + €1x7] (53)
Substituting in and requiring the remaining equations in Mx = 0 to be satisfied, leads to the parameter constraints

1 ~ ~ .
aQ:—7+2a368(V-U”), a5:2a309(V~UH)7 a6:2a309,

2
ay = —2(asbh — az(07 — 04)), as = 2a30s, (54)
by = —(1—2b3)0s(V - U)), b5 =—(1—2b3)0(V-T)), bs=—(1—2b3)0,
by = —07 + 2b3(07 — 04) — 20461, bg = —(1 — 2b3)0s, (55)
o =—(1=2c3(V-T)))bs, 5 =—(1—=2c3(V-T))))0o, 5= 2csb,
7 = —2(cab1 — c3(07 — 04), s = 2c3bs, (56)
By =03 =05 =05=0 (57)

Designate M as the matrix with these parameter value substitutions. The matrix can be re-written as a product
of rank-3 left and right matrices (ala SVD)

M, = RyRE, (58)
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MoN, = Oss, NIR, = 0543, (59)

0 0 0 0 0 1 0 0
1 07 — 04 Oy Oy L . 0 0 205 (% . [jH)
0 0 0 0 —205(V-T)) 0 o0 1
0 —20105(V - 7)) 0 0 0 0 1 (67—64)/6
N, = . R, = R
0 0 0 s 0 0 0 269(V-T))
0 9 —0g (V . UH) 0 0 0 0 269
0 —05(V-T)) 0 0 0 0 —26; 0
~(V-T)) 0 0 0 0 0 0 205
(60)
6:(V - Ty) ~1/2 0
bl+94(VUH) ()4—(53—1/2)(97—94)/01 b3—1/2
aq ag — a3(97 - 94)/9] as
N —1 1/2 0 0
R, = MgR, (RIR,) = z . (61)
( " ) b1+97(V-UH) b4*b3(97*94)/01 b3
¢+ 07 cs — c3(07 — 04) /61 c3
01 0 0
04 0 0

The adjoint BCs are given by Riw and the primal weights are R}fu7

utMgw = (utRl) (RfW)
]

=w [E (w)] +w {A (%) -20,[0; - VE (W}

+ ws |:293 ((6 . ﬁH)A(’(b) + [ﬁH VA (’L/))]) + 3 <a£> + b7 — 04A <%> + 269 ((6 . [jH)T+ [[jH 6T]>:|

on 01 on
(62)
wi =0 ((% 0T (@) + [0 - VS (qﬁ)]) +04 ((6 U))A(9) + [0 - VA (¢)}) +bi(A(¢) +1)
1 07 — 0 07 — 0,4 07 — 0 0
wp=—3%(9) + 7291 LA (¢) + <b4—b3 791 1) (A(@)+T) + <a4—a3 791 4) b (a—f)
+ ((:4 - 1:3979_104> [0 V1] (64)
1 96 Lo
wy = =5 A(6) +b3(A(#) + 1) + a5% (a—) +e3[U) - VI (65)
The remaining wake bounding contour terms for the strong-form adjoint residual are
R - 5£ (013 (&)= (1) + 012 (8) £ (8) + 0TS (1) + 6sTA () + 60 ) (T - ) (66)

w

These must be combined with the Kutta condition and wake edge BCs.

Note that without the wake surface IBP (i.e. §; = 0 and (67 — 04)/61 = 0), the formulation still produces the
correct number of adjoint BCs, but these BCs become nonsensical. The quantities involved in the adjoints BCs

S@), s (g%f) . oA (g—”) (67)

become

125
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



which effectively sets the normal derivatives on both upper and lower, as well as setting the average value, but
does not prescribe any conditions on the adjoint circulation.

The final strong-form primal residual is

9 L~
Rs(p,T;90, ) //@Qw{wa D) (a—i) + wp[A (¢) + T + we [UH vy } (68)
where
We = a1 X () — %A (¥) 4+ asX <%/:> +asA (g%) + 2a30s ((6 : ﬁl\)A () + [[jn VA (U)])
+ 2a36y ((6 )Y+ [ %r]) — 2(asby — a3(07 — 04))[U)| - VE (1)) (69)
wy =02 (P) + 3T (g%) + by A (%)
— (07 — 2b3(07 — 0a) + 2ba) [T - VI ()] (70)
we= a2 () + o2 (g—w) TN (g—jf) 05 () — 05T
+ 205 [65 (V- 0))A @) + [0 - VA @)]) + 60 (V- T)) T + [T - V7] )|
+ 2 (03(97 — 64) — 0491) Uj” . %E (’l[))} (71)
Units

U~V;¢, ¢, T, T~ VL

///Q (V) ~ v
//a%{wa(w,“r) by (%) +wp(¥, T) [A () + T +we(v, T) [T ﬁp]} V213

This gives w, ~ VL, wy ~ V, and w, ~ L. Free parameters are then: a3 ~ 1, a3 ~ L, ag ~ L, by ~ 1/L, bg ~ 1,
b4 ~ 1, c1 ~ 1/V, c3 ~ |_/V7 Cyq ~ |_/V7 91 ~ ]./V.

3.2 Wake Free Edge BCs:

free edge potential jump: A (¢) =0, on Chee (72)
Primal strong-form residual
Rs(o,T; 9, T) / Wiree (¥, T) A (P) (73)
Chree

with 5 o
Whee = 00 () + oee () + 0E (98] 4 S ( 20) + €0 (74)

on on
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Strong-form adjoint residual from duality, including terms from wake surface IBP,

RE /C {7 (912 (6) S () + 04 (8) S (1) + 0:TS (1) + OsTA () + 9QFT> (U‘H - ﬂ)

+(mmzwo+mmAwo+@mz<g%>+mmz(%;>+ewx)pan}
= / u'Mw (75)
Chree
with
() X (¢)
A(9) A ()
u= | X(9d¢/0n) |, w=|X(0y/on) |, (76)
A (O¢p/On) A (0¢/0n)
r T
-0, (0) - ) 0 0 0 0
—04 ([jH : ﬂ) + Qpree Btvee Crree ivee Ciree
M = 0 0 0 0 0 (77)
0 0 0 0 0
~0e(0y i) =6s(Ty-i) 0 0 —o5(0-a)

Zero eigenvector has multiplicity of 4 (5 — 1 = 4), so set one z; in terms of all others. Obvious choice is z; = 0.
Zero coefficients for all other x; gives,

bree = Ciree = iree = Ciree = O3 = g =0 (78)

giving the strong-form adjoint residual

Riw X o00) s [ [0 (0 )2 )+ (o= 0a(0) 1)) A(0) — 65 (0 2)T] [B )] 9

free

and strong-form primal residual

Ra(6.T: 4, T) :A S () A () (80)

“free

leaving age., 01, 04 and 07 as free parameters.

3.3 Downstream Wake Edge BCs:

Assume perpendicular intersection of wake and downstream farfield boundary. Do we need to specify any BCs?

3.4 Kutta Condition:

Kutta condition
A (@) = —T're, on Cre (81)

where A (¢),, is evaluated on the wing in the limit as the TE is approached. In addition, there probably needs to
be a BC at the wingtip
A ((b)wmgtip = Fwi"glip = 07 at Cwingtip (82)
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Along the wing TE, the strong-form primal residual is

Re(6,T: 0, T) (0, 1) (A r 83
o) [ e (80)4T) (85)
with o o

Wre = Gl (zb) +breA (7/1) + creX (%) +dreA (%) +ereX (84)

Strong-form adjoint residual from duality, including terms from wake surface IBP,

R; (012 (8) B (¥) + 042 (6) = (¢) + 0TS () + OsTA (v) + 00T ) (U -
Cre

+ (016 () + breA (1) + creT (%) +dreA (%) +ereX) (A (0) + r)}
- / u'Mw (85)
Cre
with
2 (9) = (4)
A(9) A(y)
u= | X(9¢/0n) |, w=|X(0y/on) |, (86)
A (0¢/0n) A (09 /on)
r T
61 (0 - 1) 0 0 0 0
—04 (ﬁﬂ ' ﬂ) + are bre cre dre €T
M= 0 0 0 0 0 (87)
0 0 0 0 0

_67<ﬁ|\ ﬂ) + are _98(ﬁ\| . ﬂ) +bre cre dre —O9 (ﬁH . ﬂ) + ere

Zero eigenvector has multiplicity of 4 (5 — 1 = 4), so set one x; in terms of all others. Obvious choice is z; = 0.
Zero coefficients for all other x; gives,

bre=cre=die =erg =03 =09 =0 (88)
giving the strong-form adjoint residual
RI(6,T: 6.T) /C [0 (0 )% (0) + (are — 0 (0 2) ) A (@) + (are — 0Ty 2) ) T] [E ()] (89)
TE
and strong-form primal residual

Ri@Tiet) : [ een) (A@)+T) (90)

leaving are, 01, 04 and 07 as free parameters.

The wingtip has no additional IBP terms in the adjoint residual, so the most general primal weighting should

work,
RUGT 0 T) + [ w60 A ). (91)
Cwingtip
O oY
Wayingtip = awingtipz (d)) + bwingtipA (T/}) + Cwingtip2 (%) + dwingtipZ (%) + ewingtipT (92)
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3.4.1 Kutta Condition: Linearized Pressure Jump

Alternate Kutta condition: zero linearized pressure jump at TE

0=A (U : v¢)TE = A <(7H Vo + Un%> =A (UH Ve — UE)TE (93)

where the last form incorporates the wall BC. Along the wing TE, the strong-form primal residual is

Re(p, T, T) e, ) A (U - Vo — U2 94
@) [ 1A (0T - U3) (94)
with

Wre = aTEE (w) + bTEA (¢) + CTEE <%> + dTEA (g%) + 6'”;’r + fTE [[7” . 62 (Qb)} + gre [ﬁH . ﬁA (w)} (95)

Strong-form adjoint residual from duality, including terms from wake-surface IBP,
R {—(612 ()T (¥) + 02 (¢) T (¥) + 0TS (1) + sTA () + 05T ) (T - )
JCTE
0 o
+ ("LTEZl (¥) + breA () + ereX (%) + dreA (%) +ere L

+ 1el0) 98 )] + 9l T2 01]) (7 T2 ) }

- / u'Mw (96)
Cre
with
Z(¢) ()
A(9) A(y)
3 (9¢/0n) 3 (0 /on)
u=| A@¢/on) |, w=[A0y/on) |, (97)
r I
Uj- Y2 (9) Ui Y2 (@)
Uj-VA(¢) Uy - VA ()
—0, (U 0 0 0 0 0 0
—04(U)- 0 0 0 0 0 0
0 0 0 0 0 0 0
M= 0 0 0 0 0 0 0 (98)
—97 (ﬁH . ﬂ) —98 ([jH . [L) 0 0 —99 ((jH . ﬂ) 0 0
0 0 0 0 0 0 0
(r3 bre cre dre €1 fre g

Zero eigenvector has multiplicity of 6 (7 — 1 = 6), so set one z; in terms of all others. Obvious choice is z; = 0.
Zero coefficients for all other z; gives,

bTE:CTE:dTE:(ﬁTE:fTE:gTEZHS:eQ:O (99)
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giving the strong-form adjoint residual

R, T 0,T) - /(* [—91 (ﬁu 'ﬂ)z (¢) - 94<ﬁ|\ -ﬂ)A(¢) - 97(UH ~ﬂ>F +are [(7” VA (qﬁ)“ [E (w)}

(100)
and strong-form primal residual
RioTi00) ¢ [ ans(w) A (0)-Fo-U2) (101)
Cre TE
leaving are, 61, 04 and 07 as free parameters. Units: are ~ L/V; 01, 04, 07 ~ 1/V.
4 Energy Stability: BC Formulations without Lagrange Multipliers
Primal weak-form residual
Ru(é, T 4, T // Vi - V@ # wa— + {BCs} (102)
Q n
Energy
Rel) )
£ = Rul6, =[] [ve-ve] # 63 + (B}, =0 (103)
Q

4.1 'Wake BCs

IBP term on wake

//dm Jooy* . D 22
o/ (GRS COIRERY G v

Wake contribution to energy

o e () a0 ()

o) 3 (50) + (6.1 (8 (0) +T) 4wl ) [0 91} (105)
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where

wnl6.1) = n3(0) - 38 0) +ass (5 ) + i (32) + 200007 - [712 0)

4 2a300 V - {ﬁur] — 2(aab1 — a3(67 — 0.)) [T - VS (6)] (106)
wy(6,T) = b13 (6) + b <g¢> + A (gf)

— (1 —2b3) (93 A [UHA (¢)] + 996 . [ﬁur})

— (07 — 2b3(67 — 04) + 2b461) [U) - VE (¢)] (107)
we(d.T) = 1% (6) + 55 (g¢) SN <g¢) 042 (6) — BT

+2(c3(07 = 0a) — cah) [T} - VS ()] (108)

RE

Rewritten in matrix-vector form,

with...

We can scrape terms from the volume

fworvomecs [l n(Z) e [l m(3) = fl, o (+ ()
[ s[zos () ) s (<2i>2>}
e () () e (= () < (5(2))])

giving quadratic terms in the normal derivatives. Without further quadratics, all cross terms in X (¢) and A (¢)
must vanish; but this is not possible since the first term due to the volume IBP is always present (coefficient is

1/2).

5 BC Formulations with Lagrange Multipliers: mit-Lagrange

5.1 Wake BCs: Mass Flux, Potential Jump and Circulation Gradient

Primal BCs

¢
ass flux: Yl =) = 111
mass flux ( 8n> 0 (111)
potential jump: A(¢)=-T (112)
circulation: IjH VI'=0 (113)
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From sans-Lagrange, adjoint BCs are

A (%) —20:[0) - VE ()] = rhsy,
(114)

E('L/}) = I"hSQ,
(115)

> <%> + 9791 A @w) +205 (V- 0))A @) + [0y - VA @)]) + 26 (V- 0T + [0 V7] ) = rhsg
(116)

Primal weights are,
wa = X (¢) — %A(iﬂ) +as¥ <g¢> + asA <Zn> + 2a3bs ((6 T)A @)+ [0 - VA (w)])

+ 2a3by ((6 . ﬁH)T + [UH : VT]) — 2(a4by — az(67 — .94))[0'“ B> (L/))] 1)

wy = b1 T () + b3¥ (gw) + A (g:f)

(1= 209) (05 (V- T @) + [0 - VA @)]) + 6 (V- 0T + [T 97]) )

— (97 — 2b3(97 — 94) + 21)491) [ﬁH . %E (w)] (118)
we = 1% (Y) + 3% <g¢> + A (gf) —OsA (1) —

+ 2c3 {98 ((V UH)A( )+ [UH VA(!/J)]) + 69y ((6 : UH)T + [[j\\ . 6’1‘})}

+2 (03(97 — 94) — 6491) [U” . VZ (’l/})} (119)

Adjoint weights are (note reordering vs sans-Lagrange section),

B 07 — 0.
mz_% (¢)+9729194A(¢) (m—b . 61 94) (A@+D)+ <M—a3 76'1 4) (gi)

i <c4 - 6397;104> (G- vr] (120)
w2 =0 ((V U))% (9) + [0y - Ve (¢)]) + 04 ((6 T))A @) + [T - VA (@D +bi(A (@) +T)

o (?6) + %A (§¢) +07 ((V-0))0 + [0 V1) + 1 [0 - V1] (121)
w3 = —%A (¢) +b3(A () +T) +azx <g¢) +es[U) - VI (122)

giving the strong-form primal residual

//Qw{’“fa {E (%Z)} +wp[A (6) +T] + we [0 - vr]} (123)

and the corresponding strong-form adjoint residual

Ri(w,T; ¢,T) //BQW {wl [BC‘{ - rhsl] + wo [BC; - rhsﬁ + w3 [BC§ - rth} } (124)
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The mit-Lagrange formulation has strong-form primal residual

Rs(o, L, 9, C,p) -//89 .{ﬂl [E (%)} + p2 {A (¢) + F] + 3 {ﬁu '6F]
+ [Bc’{] [/\1 - wl] + [Bcg] [Az - w} + [Bcg] [Ag - W3] } (125)
and strong-form adjoint residual

REW, T 6, T,0) //emw{h [BC’{ - rhsl} NBW [Bc; - rth} s [Bcg - rhs;;]

[ ()] ] [0+ 790 - ]

(126)
Without altering duality, we can add arbitrarily to A; and p;
[oJ0) 1oJ0)
i = M+ AX(9)+ BA(¢) +CE n + D;A n +ET+... (127)
. _ - o _ o _
e A Vi A;Z (l/)) + B;A (l/)) + ;X % + D;A % + EY+... (128)
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