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PREFACE 

Major advances have been made in recent years in the control of uncertain dynamical systems 
using reinforcement learning and data-driven approaches; examples range from allowing robots 
to perform more sophisticated controls tasks such as robotic hand manipulation, to sequential 
decision making in game domains (e.g., AlphaGo). Many of these successes have relied on 
sampling-based reinforcement learning algorithms, including the deep Reinforcement Learning 
(DeepRL) approaches, where we have little theoretical understanding of their efficiency from 
statistical or computational perspectives. In contrast, control theory (optimal and adaptive 
control) has a rich body of tools, with provable guarantees, for related sequential decision-
making problems, particularly those that involve continuous control. These latter techniques are 
often model-based: they estimate an explicit dynamical model first (e.g., system identification) 
and then design optimal controllers in contrast to the direct model-free approaches, such as those 
in DeepRL.  

The objective of this project has been to build an overarching bridge between these two lines of 
work, namely, between optimal control theory and sample-based reinforcement learning 
methods, to better connect the model-based and model-free methods, and provide rigorous theory 
for practical and popular sampling-based methods in applied machine learning and applied 
control. In particular, we report advances on the Linear Quadratic Regulator in control (from a 
new perspective) and on Markov Decision Processes. 
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1 SUMMARY 

Direct policy gradient methods for reinforcement learning and continuous control problems are a 
popular approach for a variety of reasons: 1) they are easy to implement without explicit 
knowledge of the underlying model, 2) they are an “end-to-end” approach, directly optimizing 
the performance metric of interest, 3) they inherently allow for richly parameterized policies. A 
notable drawback is that even in the most basic continuous control problem (the linear quadratic 
regulator), these methods must solve a non-convex optimization problem, where little is 
understood about their efficiency from both computational and statistical perspectives. In 
contrast, system identification and model-based methods in optimal control theory have a more 
solid theoretical footing. This project has aimed to bridge the gap between the two communities 
of control theory and RL. 

Our exploration has focused on two pillars of system theory and learning, namely, Linear 
Quadratic Regulator (LQR) problem on one hand, and Markov Decision Processes (MDPs) 
on the other hand. In this project, we have considered the LQR problem in both discrete and 
continuous time and over an infinite time horizon. When exact gradients of the cost function with 
respect to the control gain are available to our control algorithms, the optimal solution to the 
problem is well-known. In this case, we ask whether applying (several versions of) the popular 
policy gradient methods to this problem will give the same known solution. The reason this 
question is challenging is that algorithms that update the “policy” must solve a nonconvex 
optimization problem to find the globally optimal policy. 

Our first set of results in this project had been as follows. We proved that despite the 
nonconvexity, gradient descent starting from a stabilizing policy converges to the globally 
optimal policy. We then extended this to sampling-based policy gradient type methods without 
access to exact gradients, at the cost of taking a number of samples of function value. Thus, we 
are able to conclude that policy gradient methods globally converge to the optimal solution, and 
have sample complexity and computational complexity that depends polynomially on relevant 
problem parameters. 

The results above appeared in a paper published in ICML 2018 (International Conference on 
Machine Learning). This work, which obtained the first theoretical guarantees on convergence of 
policy gradient methods on the linear quadratic regulator problem, is receiving attention from 
both the control theory and the machine learning communities, contributing to the growing 
interest in the intersection of these two fields (the paper has already has 74 citations in just over a 
year according to Google Scholar). 

Since the publication of our ICML paper, our team has been able to delve into deeper technical 
aspects of the problem setup: we identified some of the control theoretic aspects of the direct 
policy updates, extensions to natural gradient and quasi-Newton updates, and also pointed out 
conditions under which direct policy update recovers some other algorithms for solving this class 
of problems. As such, our work has not only provided a bridge between learning and control in 
the context of LQR, but also has provided new insights into reasoning about algorithm design for 
this important class of control synthesis problems. In fact, we have also been able to extend the 
setup of policy gradients/natural gradient/quasi-Newton updates to continuous LQR problems, 
requiring distinct analysis techniques. The main issue here is that although one can construct a 
map between discrete-time and continuous time representations of a dynamical systems (the so-
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called bilinear transform), there is no analogous map between the corresponding feedback gains. 
That is, gradient policy updates for discrete-time systems cannot in general be mapped directly to 
the corresponding updates for continuous-time problems. However, using the overarching theme 
of the project, we have been able to show certain desirable properties of the continuous-time 
LQR, that would allow the extension of the direct policy updates. 

One of the advantages of adopting direct policy updates via first-order gradient based approach 
to control synthesis is the ability to restrict the control structure on a subspace or convex set, and 
then use a “projected” gradient (when this projection is not costly). This is in sharp contrast to 
means of imposing structure on the control (policy) through the so-called certificates, such as the 
solution of the Riccati equation (that parameterizes the cost-to-go). In this latter case, one needs 
to impose a structure on this certificate, such that when this structured certificate is used for 
control synthesis, the resulting controller has the desired structure. This plan of action, however, 
turns out to be rather intricate as it is far from obvious what structure on the certificate leads to 
the desired structure on feedback control. Direct policy update circumvents this issue. However, 
there are a number of theoretical questions that need to be addressed to for this more direct 
structured synthesis approach. For example, it is not clear whether the process of policy update 
followed by a projection retains the stabilizing feature of the feedback gains. It is also not clear 
whether this projected gradient update leads to stationary point or whether the set of structured 
stabilizing feedback gains is in fact connected. In this project, we have obtained several results 
on these questions: we have shown that certain structures on the feedback gain can lead to 
exponentially many connected components (in the topological sense) and also derived sufficient 
conditions on this structure under which one can ensure that the set of stabilizing structured 
feedback gains has only one connected component. Furthermore, we have shown that when the 
controller is restricted to a subspace, projected gradient update with carefully chosen learning 
rate does in fact convergence to stationary point of the structured LQ problems.    

In another work, we have studied the control of a linear dynamical system with adversarial 
disturbances (as opposed to statistical noise). The objective we consider is one of regret: we 
desire an online control procedure that can do nearly as well as that of a procedure that has full 
knowledge of the disturbances in hindsight. Our main result is an efficient algorithm that 
provides nearly tight regret bounds for this problem. From a technical standpoint, this work 
generalizes upon previous work in two main aspects: our model allows for adversarial noise in 
the dynamics, and allows for general convex costs. 

We have also examined the problem of low-order linear system identification, using the nuclear 
norm of the system’s Hankel matrix as a regularizer to promote a low-order solution. Model 
order is a measure of model complexity, and corresponds to system memory length, or the 
minimal number of states that are needed to describe the dynamics. While Hankel-nuclear-norm 
regularization is used in practice, it does not yet have a theoretical analysis that quantifies the 
complexity of the inputs (sample complexity analysis). We have started to obtain such sample 
complexity bounds for a specific system identification setup, where multiple input rollouts are 
allowed.  

Finally, we also examine related questions in Markov Decision Processes (MDPs).  
Specifically, we focus on: 1) the convergence and approximation properties of policy gradient 
methods, and 2) understanding discovery of how a system can learn to explore and manipulate its 
environment in the absence of any reward signal. 



3 
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. 

2 INTRODUCTION 

2.1 Linear Quadratic Regulator (LQR) in continuous control 
As mentioned in the introduction, in this project we have adopted a multi-pronged approach to 
the problem of direct policy optimization for uncertain linear dynamical systems; in control 
theory, such models are represented in the form, 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) + 𝐸𝐸𝐸𝐸(𝑡𝑡) 

or 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑘𝑘 + 𝐸𝐸𝐸𝐸𝑘𝑘 

where 𝐴𝐴 is the system matrix, 𝐵𝐵 encodes how the input effect the dynamics of the systems, and 𝐸𝐸 
captures how disturbances influence the dynamics. The former is referred to as the continuous 
time model and the latter as discrete time linear time-invariant model. In control theory, one aims 
to design a control 𝐵𝐵(𝑡𝑡) or 𝐵𝐵𝑘𝑘 such that certain stability and performance objectives are satisfied, 
given some knowledge of the system matrices. In this project, our first objective has been to 
completely resolve the adoption of direct policy updates for the so-called linear quadratic 
regulator (LQR) problem, where an integral quadratic cost is minimized over an infinite horizon 
for a linear system of the forms above. LQR is one of the pillars of the so-called state-space 
approach to control synthesis. Historically, LQR has been approached from the perspective of 
characterizing the cost-to-go, where it is first shown that the cost-to-go from a given state 
assumes a quadratic form, that can be found using the Riccati equation. Although this approach 
is very powerful, it is also very sensitive to the assumptions about the problem structure and 
knowledge of the system matrices. For example, one imposes a structure on the desired feedback 
gain, say a sparsity pattern, or when the control is synthesized using output feedback, the entire 
machinery that involves solving Riccati the equation becomes problematic. Our first objective 
has been to explore to what extend gradient descent and its variants can be adopted for direct 
policy updates for LQR and then use the insights to go beyond the LQR setup. In particular in 
our project we have addressed the following: 

a) Complete characterization of the direct policy optimization for LQR (for discrete time LTI 
models) for the model-based and model-free case, highlighting the convergence properties of 
the algorithm on the system parameters 

b) Complete characterization of the direct policy optimization for LQR (for continuous time 
LTI models) highlighting the convergence properties of the algorithm on the system 
parameters 

c) Proposing a quasi-Newton algorithm for policy optimization and optimal stepsize and 
showing its connection to other classes of iterative algorithms for LQR, including the so-
called Kleinman and Hewer algorithms. 

d) Complete characterization of the set of stabilizing feedback gains for discrete and continuous 
time system, and identifying its key topological and metrical properties and their algorithmic 
implications. 
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e) Proposing continuous flows for solving LQR-type control synthesis problems, including 
gradient flow, natural gradient flow, and quasi-Newton flow, both for discrete and 
continuous time models. 

f) We also consider the questions of robustness, where the disturbances 𝐸𝐸𝑡𝑡 may be adversarial. 
Here, we focus on comparing to the best linear controller which knows the disturbances in 
advance. We provide the first low regret result, showing that this is indeed possible. 

2.2 Introduction to Markov Decision Processes (MDPs) 
A (finite) Markov Decision Process (MDP) 𝑀𝑀 = (𝑆𝑆,𝐴𝐴,𝑃𝑃, 𝑟𝑟, 𝛾𝛾, 𝜌𝜌) is specified by: a finite state 
space 𝑆𝑆; a finite action space 𝐴𝐴; a transition model 𝑃𝑃 where 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) is the probability of 
transitioning into state 𝑠𝑠′ upon taking action 𝑎𝑎 in state 𝑠𝑠; a reward function 𝑟𝑟 ∶ 𝑆𝑆 × 𝐴𝐴 → [0, 1] 
where 𝑟𝑟(𝑠𝑠,𝑎𝑎) is the immediate reward associated with taking action 𝑎𝑎  in state 𝑠𝑠; a discount 
factor 𝛾𝛾 ∈ [0, 1); a starting state distribution 𝜌𝜌 over 𝑆𝑆. 

A deterministic, stationary policy 𝜋𝜋 ∶ 𝑆𝑆 → 𝐴𝐴 specifies a decision-making strategy in which the 
agent chooses actions adaptively based on the current state, i.e., 𝑎𝑎𝑡𝑡 = 𝜋𝜋(𝑠𝑠𝑡𝑡). The agent may also 
choose actions according to a stochastic policy 𝜋𝜋: 𝑆𝑆 → ∆(𝐴𝐴) (where ∆(𝐴𝐴) is the probability 
simplex over 𝐴𝐴). 

A policy induces a distribution over trajectories 𝜏𝜏 = (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡)𝑡𝑡=0∞ , where 𝑠𝑠0 is drawn from the 
starting state distribution 𝜌𝜌, and, for all subsequent timesteps 𝑡𝑡, 𝑎𝑎𝑡𝑡~𝜋𝜋(∙ |𝑠𝑠𝑡𝑡) and 
𝑠𝑠𝑡𝑡+1~𝑃𝑃(∙ |𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡). The value function 𝑉𝑉𝜋𝜋 ∶ 𝑆𝑆 → 𝑅𝑅 is defined as the discounted sum of future 
rewards starting at state s and executing 𝜋𝜋, i.e. 𝑉𝑉𝜋𝜋(𝑠𝑠) is the expected, discounted sum future 
rewards when the policy 𝜋𝜋 is executed starting from state 𝑠𝑠. 

We further define 𝑉𝑉𝜋𝜋(𝜌𝜌)  as the expected value under the initial state distribution 𝜌𝜌: 

𝑉𝑉𝜋𝜋(𝜌𝜌) ∶= 𝐸𝐸𝑠𝑠~𝜌𝜌[𝑉𝑉𝜋𝜋(𝑠𝑠)]. 

For MDPs, policy gradient methods are among the most effective methods in challenging 
reinforcement learning problems with large state and/or action spaces. Our work focused on their 
most basic theoretical convergence properties, where little was known before. This included: 

a) A complete characterization of how fast they converge to a globally optimal solution (say 
with a sufficiently rich policy class). 

b) A complete characterization of how they cope with approximation error due to using a 
restricted class of parametric policies. 

c) Bounds on their finite sample behavior. Such characterizations are important not only to 
compare these methods to their approximate value function counterparts (where such issues 
are relatively well understood, at least in the worst case), but also to help with more 
principled approaches to algorithm design. 

We also looked at the question of pure exploration, where we seek to discover what an agent is 
capable of doing with a reward function. For example, suppose an agent is in a (possibly 
unknown) Markov Decision Process in the absence of a reward signal, what might we hope that 
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an agent can efficiently learn to do? Our work studied a broad class of objectives that are defined 
solely as functions of the state-visitation frequencies that are induced by how the agent behaves. 
For example, one natural, intrinsically defined, objective problem is for the agent to learn a 
policy which induces a distribution over state space that is as uniform as possible, which can be 
measured in an entropic sense.  Our work here provided an efficient algorithm to optimize such 
intrinsically defined objectives, when given access to a black box planning oracle (which is 
robust to function approximation). 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 LQR methods, direct policy optimization, and system identification 
We first considered the LQR problem in discrete time and continuous time and over an infinite 
time horizon. This control synthesis problem assumes a linear model for the underlying 
dynamical system and aims to synthesis an optimal control with respect to an integral quadratic 
cost. The linearity assumption on the model however, is due to the fact that one aims to derive 
fundamental theoretic guarantees on resulting closed loop system, such as robustness to delays or 
model uncertainty. In practice, however, LQR is often used to synthesized a time-varying/state-
dependent controller when the underlying nonlinear systems is linearized around some nominal 
trajectory or equilibrium point. In this latter case the knowledge of the nonlinear model again 
becomes crucial for any formal guarantees. A power approach for analyzing the robustness of 
such linear and nonlinear systems is through Lyapunov theory, that in the case of LQR, is 
intimately related to the cost-to-go. The cost-to-go in the case of LQR is obtained through the 
solution of the Riccati equation, but again, this can be done given the knowledge of the system 
model. Hence, adopting a direct policy update to LQR and other related problems, although seem 
natural, but pose a number of issues that need to be addressed, such as ensure that updated 
policies remain stabilizing. Our assumption in this work adopts the typical requirements for LQR 
synthesis: the cost functions for continuous and discrete time models are of the forms, 

� 𝑥𝑥(𝑡𝑡)𝑇𝑇𝑄𝑄𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑅𝑅𝐵𝐵(𝑡𝑡)
∞

0
 

or 

�𝑥𝑥𝑘𝑘𝑇𝑇𝑄𝑄𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑘𝑘𝑅𝑅𝐵𝐵𝑘𝑘

∞

𝑘𝑘=0

 

The cost function parameters 𝑄𝑄 and 𝑅𝑅 are positive semidefinite and positive definite 
respectively, and the pairs (𝑄𝑄,𝐴𝐴) and (𝐴𝐴,𝐵𝐵) are detectable and stabilizable, respectively. Since 
we need to initialize the direct policy update from some initial controller that is already in the 
feedback loop, it is assumed that we have access to either an initial stabilizing feedback gain, or 
alternatively, that the system is open loop stable. Our team has since worked on other data-driven 
approaches to obtain this first stabilizing feedback gain. 

The algorithms we consider are based on gradient descent on the control cost as a function of the 
control policy (which we have been referring to as direct policy update methods). We are 
interested in analyzing these methods due to their popularity in practice. We have shown strong 
properties (convergence to the global minimum) for the LQR problem. Thinking towards the 
next stages of the current project, we asked: What can one say more generally, beyond the 
favorably-structured LQR problem? Understanding of gradient descent (and more generally, 
first-order optimization algorithms) for nonconvex landscapes will have to resolve issues related 
to saddle points: how can we ensure the algorithm can progress towards a local minimum and not 
get stuck in a saddlepoint? To examine this more broadly, we have used tools from Riemannian 
geometry to understand gradient descent on a smooth manifold and its rates of escape from 
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undesirable saddle points and convergence to local optima. Our results on this problem will be 
published in the proceedings of the upcoming 2019 NeurIPS conference. 

A related (classical) problem in control theory is system identification. While methods for 
identifying a linear dynamical system given input-output observations are well-studied, 
understanding their sample complexity (how much data is needed for a given identification 
accuracy) is much more recent topic, which brings recent statistical techniques to classical 
control. We focus on methods that use regularization to encourage fitting low-order dynamical 
models. Model order is a measure of complexity: memory length, smallest possible dimension 
for (hidden) state 𝑥𝑥𝑡𝑡. Given data 𝐵𝐵𝑡𝑡, 𝑦𝑦𝑡𝑡, 𝑡𝑡 = 0, 1, … ,𝑇𝑇, we would like to identify a low-order 
model given by the set of matrices (𝐴𝐴,𝐵𝐵,𝐶𝐶), or equivalently the Markov parameters 𝐶𝐶𝐴𝐴𝑡𝑡−1𝐵𝐵, 
𝑡𝑡 = 1, 2, … such that the block-Hankel matrix (defined in section 4) has a low rank. We have 
started to examine this problem, focusing on nuclear-norm regularized least squares fitting; our 
work on this topic is in progress. The methods used are statistical guarantees for recovering a 
structured low-rank matrix from random measurements (in this case, by applying random inputs 
to the system). 

3.2 MDP methods 
This work studies ascent methods for the optimization problem: 

max𝑉𝑉𝜋𝜋𝜋𝜋(𝜌𝜌), 𝜃𝜃 ∈ Θ 

where {𝜋𝜋𝜋𝜋|𝜃𝜃 ∈ Θ} is some class of parametric (stochastic) policies. We consider a number of 
different policy classes. One is complete in the sense that any stochastic policy can be 
represented in the class; specifically, we consider the standard softmax policy class. We also 
consider a restrictive policy class, which may not contain the optimal policy. 

• For the softmax parameterization: For unconstrained 𝜃𝜃 ∈ 𝑅𝑅|𝑆𝑆||𝐴𝐴| we have that 𝜋𝜋𝜋𝜋(𝑎𝑎|𝑠𝑠) =
𝜃𝜃𝑠𝑠,𝑎𝑎 𝑍𝑍⁄ πθ (where 𝑍𝑍 is a normalizing constant). The softmax parameterization is complete. 

• Restricted parameterizations: We also study parametric classes {𝜋𝜋𝜋𝜋|𝜃𝜃 ∈ Θ} that may not 
contain all stochastic policies. Here, the best we may hope for is an agnostic result where we 
do as well as the best policy in this class. For example, this class may be neural network 
policies. 

For optimization, we actually consider a different measure under a distribution 𝜇𝜇 over states (as 
opposed to 𝜌𝜌), which will become clear in our results section. The policy gradient algorithm we 
consider is: 

𝜃𝜃(𝑡𝑡+1) = 𝜃𝜃(𝑡𝑡) + 𝜂𝜂∇𝜋𝜋𝑉𝑉(𝑡𝑡)(𝜇𝜇) 

The widely used natural gradient algorithm we consider is: 

𝜃𝜃(𝑡𝑡+1) = 𝜃𝜃(𝑡𝑡) + 𝜂𝜂𝐹𝐹−1∇𝜋𝜋𝑉𝑉(𝑡𝑡) 

where 𝐹𝐹 is Fisher information matrix under the state action visitation measure (as in [Kakade, 
‘02]). 
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4 RESULTS AND DISCUSSION 

4.1 Direct policy optimization with exact gradients 
The cost function of the typical LQR problem is a function of the initial condition of the system, 
although the optimal policy (feedback gain) is independent of any initialization, 𝑥𝑥0 or 𝑥𝑥(0). Our 
first step to adopt direct policy update for LQR has been to randomize over the initial conditions 
(or choosing a spanning set of initial conditions) and then letting the input 𝐵𝐵 be state feedback 
form 𝐵𝐵 = −𝐾𝐾𝑥𝑥. Then the LQR cost function becomes a function of 𝐾𝐾, namely 𝑓𝑓(𝐾𝐾). In order to 
write the gradient update for LQR in the form, 

𝐾𝐾𝑗𝑗+1 = 𝐾𝐾𝑗𝑗 − 𝜂𝜂𝑗𝑗∇𝑓𝑓�𝐾𝐾𝑗𝑗� 

One has to characterize the gradient; we have shown that this gradient is of the form, 

∇𝑓𝑓(𝐾𝐾) = 2�𝑅𝑅𝐾𝐾 − 𝐵𝐵𝑇𝑇𝑋𝑋(𝐴𝐴 − 𝐵𝐵𝐾𝐾)�𝑌𝑌 

where Y satisfies the Lyapunov equation, 

𝐴𝐴𝐾𝐾𝑌𝑌𝐴𝐴𝐾𝐾𝑇𝑇 − 𝑌𝑌 + Σ = 0 

with Σ representing the covariance of the random initial conditions or sum of outer products of 
the deterministic spanning initial conditions. Using this setup, we were then able to show a 
number of important properties for 𝑓𝑓(𝐾𝐾), namely, (1) 𝑓𝑓 is real analytic function over its domain, 
(2) 𝑓𝑓 is coercive and has a compact sublevel sets, and (3) 𝑓𝑓 is gradient dominated. We note that 
it is exactly these properties of the LQR problem that allows the application of Polyak’s results 
on the convergence of first order methods for gradient dominated functions. Gradient dominance 
essentially bounds how much the function value deviates from its optimal value as a function of 
its gradient. This property then allows the adoption of first order method for certain classes of 
(nonconvex) optimization problems, and in particular LQR.  That is, by correctly choosing the 
stepsize, the gradient update above can be used for LQR with a global convergence. This key 
observation has then provided springboard to consider extensions of gradient descent update, 
some of which further improve the convergence of the baseline update. In particular, our team 
also considered the so-called natural gradient update and quasi-Newton updates for LQR; some 
examples of performance for these algorithms are included in Figure 1 below. 
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Figure 1 Performance of gradient descent, natural gradient descent, and quasi-Newton 
iterations for the LQR problem 
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It can also be shown that the quasi-Newton update with the optimal stepsize, in fact recovers the 
so-called Kleinman-Hewer algorithms for solving discrete Riccati equations. As such, the goal of 
connecting control theory with RL has had a number of side-benefits, including providing an 
overarching framework on how various algorithms for control synthesis are related to each other. 

Continuous flows that mimic their discrete time implementation in terms of numerical 
algorithms, offer unique analytic insights for design and analysis off numerical algorithms. In 
such a setting, gradient descent, for example, can be examined using the machinery of gradient 
flows in a streamlined fashion. In our project we thus became interested to examine gradient 
flows for nonconvex direct policy update for LQR. Continuous flow policies can highlight some 
of the global characteristics of their discrete counterparts. For example, given that direct policy 
updates for control synthesis in general and LQR in particular is a nonconvex optimization 
problem (nonconvex objective function over a nonconvex set of stabilizing feedback gains), the 
selection of the stepsize requires intricate analysis. Gradient flows and their extensions, namely 
natural gradient flow and quasi-Newton flow, circumvent the issue of stepsize selection and offer 
a more transparent convergence analysis. We have been able to pursue this agenda to a great 
extent in this project, showing exponential convergence for a host of gradient flow policies, 
admitting easy to work with Lyapunov functions. Some of the numerical results for our work are 
presented in Figure 2 below. 

   
Figure 2 Performance of gradient flow, natural gradient flow, and quasi-Newton flow for 

the LQR problem 

4.2 Direct policy optimization with sampling (inexact gradients) 
When direct gradient of the LQR cost with respect to the policy are not available (e.g., model-
free set up, with unknown 𝐴𝐴, 𝐵𝐵 matrices), it is common to try to estimate the cost gradients by 
perturbing the policy (around the current point) and observing the change in the cost. The idea is 
analogous to zeroth-order or derivative-free optimization. We analyze this approach for the LQR 
problem, and show that with enough samples (number of rollouts, times length of each rollout, 
times number of algorithm iteration) convergence to the global optimum happens when the 
initial policy 𝐾𝐾0 is stabilizing, and stepsize is chosen appropriately. 

4.3 Geometry of set of stabilizing controllers 
Direct policy updates for LQR and its extension has required us to examine the metrical and 
topological properties of the set of stabilizing feedback policies in a more systematic way. This is 
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due to the fact that by solving for the cost-to-go first, for example using the Riccati equation, one 
can only implicitly address the stabilizing features of the resulting feedback gain. More 
generally, such topological properties have received renewed interest in system literature as they 
have direct implications for adopting learning algorithms for control design. We also note that 
insights into topological and metrical properties of stabilizing feedback gains also reveal 
fundamental shortcomings in certain optimization algorithms. For example, if the set of 
stabilizing feedback gains has several path-connected components, the solutions of gradient-type 
learning algorithms will be highly dependent on the initialization process. It is thus surprising 
that despite the long historical interest in characterizing the set of stabilizing feedback gains, 
research works on its set-theoretic and topological properties are rather limited. This is 
potentially due to significantly more interest in characterizing the set of certificates for 
stabilizing controllers, e.g., in terms of linear matrix inequalities. In this work we have examined 
the convexity, connectedness, and topological properties of the set of stabilizing feedback gains. 

Our work has characterized topological, metrical, and geometric properties of the set of 
stabilizing controllers for both continuous and discrete-time LTI systems. We have shown that 
the set of stabilizing state-feedback gains for a continuous SISO system is regular open, 
unbounded, in general nonconvex, and path-connected in the Euclidean topology. In the 
meantime, the set of stabilizing output-feedback controllers is shown to be open but not 
connected in general, and can be bounded or unbounded. In recent works, based on the implicit 
assumption that stable and unstable intervals of the feedback gain interlace, it has been stated 
that the set of stabilizing output feedback controllers for SISO systems can have at most 𝑛𝑛 
connected components. If this assumption does not hold, however, the line of reasoning reported 
in the literature lead to the upper bounds of 2𝑛𝑛 and 𝑛𝑛, respectively. In the work supported by this 
project we have proved a tight bound of 𝑛𝑛 2⁄  for continuous as well as discrete time LTI systems 
(as seen in Figure 3); moreover, all of our results are constructive (they lead to algorithms for 
characterizing these sets) and rely on basic topology and analytic theory of polynomials. 

 

Figure 3 Stabilizing feedback gains for an output feedback problem 

For discrete time systems, the spectra of the closed loop system has to be in the unit disk; this example 
shows that for an output feedback problem on a system for n=4 states, the set of stabilizing feedback 

gains can show two connected components 
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The separate treatment for continuous and discrete time systems has been warranted; in fact, in 
contrast to the folklore expectation of unified properties for continuous and discrete time systems, 
there are counterexamples to show that the analogies between the two are far from complete. The 
distinct difference between continuous and discrete LTI systems might be due to the fact that the 
generalized bilinear transform has poles and thus not continuous. Therefore, generalizing the 
proposed topological properties of the set of stabilizing feedback gains from continuous LTI 
systems to discrete ones is not straightforward. Nevertheless, in this project we have been able to 
show that the set of stabilizing state feedback gains for discrete-time LTI SISO systems enjoys 
some of the topological properties as its continuous counterpart, i.e., open and path connected in 
Euclidean topology and nonconvexity. But in contrast to the continuous case, the set of stabilizing 
state feedback gains is bounded. For output feedback SISO systems, the corresponding set of 
stabilizing gains is open, bounded and in general nonconvex, but is no longer path-connected. 
Accordingly, we have proved that the set can have at most 𝑛𝑛 2⁄  path-connected components, which 
is a tight bound supported by simulation results. In this part of the project, we have also been able 
to propose an algorithm for determining the intervals of stabilizing feedback gains for general 
continuous and discrete LTI systems. This algorithm also computes the number of unstable roots 
in each unstable interval. 

4.4 Direct policy updates for structured control design 
Our work has also considered the extension of direct policy updates via gradient descent to the 
problem of designing feedback gains with an arbitrary sparsity pattern. Such structured control 
synthesis problems are notoriously difficult. In this project, we have proposed a formalism to set 
up the problem where projected gradient descent of the form, 

𝐾𝐾𝑖𝑖+1 = 𝒫𝒫𝑈𝑈�𝐾𝐾𝑗𝑗 − 𝜂𝜂∇𝑓𝑓(𝐾𝐾𝑗𝑗)� 

can be applied to structured synthesis problems. However, in the case of structured synthesis, the 
LQR cost function is no longer gradient dominated and the choice of stepsize cannot be 
generalized from the unstructured case. In our work, we have adapted the machinery developed 
for the unstructured LQR for the structured synthesis: we first define the initial state independent 
LQR formulation and then show that the cost function can be equivalently defined as the 
unstructured LQR cost function restricted to the linear space defined by the information-
exchange graph; as such, the cost function is smooth in the subspace topology and has a coercive 
property. Using this setup, we the obtain the gradient and Hessian of the cost function, leading to 
a natural choice of stepsize by bounding the Hessian over the initial sublevel set. We show this 
stepsize will guarantee a non-asymptotic sublinear convergence rate to the first-order stationary 
point. 

Structured control synthesis is in general is an open line of research in control theory, believed to 
be NP-hard event for the stabilization issue. That is, given a linear time-invariant system encoded 
by the pair (𝐴𝐴,𝐵𝐵), there is currently no polynomial time algorithm that can verify whether there 
exists a 𝐾𝐾 with a given sparsity pattern that 𝐴𝐴 − 𝐵𝐵𝐾𝐾 is stable; noting that this problem is 
considered difficult even there is no notion of optimality in the problem setup. For example, we 
have shown that the set of structured stabilizing feedback gains for a linear system can have 
exponentially many connected components- as such it would be difficult in general to find first 
order methods for structured synthesis as the underlying algorithm needs to figure out a way to 
navigate a disconnected feasible set. Nevertheless, we are still able to show that our proposed 
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algorithm can find controllers in each component that satisfy first order stationary condition on 
each connected subset. Such insights were then adopted for networked systems, when the 
structure of the feedback gain is induced by a graph. In this project, we have had a number of 
observations and computational studies to shed light on this notoriously difficult problem in 
control theory—a representative numerical example is shown in Figure 4 below. 

 

Figure 4 Performance of Distributed Gradient Descent vs. Centralized Gradient Descent 
for a networked system with a specified sparsity pattern 

4.5 LQR with adversarial disturbances and regret 
Our studies the robust control of linear dynamical systems, whereas before the linear dynamical 
system is governed by the dynamics equation  

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝐵𝐵𝑡𝑡 + 𝐸𝐸𝑡𝑡, 

where 𝑥𝑥𝑡𝑡 is the state, 𝐵𝐵𝑡𝑡 is the control and 𝐸𝐸𝑡𝑡 is a disturbance to the system. The key differences 
here as follows: first, the disturbance 𝐸𝐸𝑡𝑡 may be adversarial chosen (as opposed to some known 
statistical model); second, at every time step 𝑡𝑡, the controller suffers a cost 𝑐𝑐(𝑥𝑥𝑡𝑡,𝐵𝐵𝑡𝑡) to enforce 
the control (where 𝑐𝑐 is may be a more general convex cost as opposed to just a quadratic cost). In 
other words, we consider the setting of online control with arbitrary disturbances. Formally, the 
setting involves, at every time step 𝑡𝑡, an adversary selecting a convex cost function 𝑐𝑐𝑡𝑡(𝑥𝑥,𝐵𝐵) and 
a disturbance 𝐸𝐸𝑡𝑡, and the goal of the controller is to generate a sequence of controls 𝐵𝐵𝑡𝑡 such that 
a sequence of convex costs 𝑐𝑐𝑡𝑡(𝑥𝑥𝑡𝑡,𝐵𝐵𝑡𝑡) is minimized. This setting generalizes a fundamental 
problem in control theory (including the Linear Quadratic Regulator) which has been studied 
over several decades. However, despite the significant research literature on the problem, our 
generalization and results address several challenges that have remained. It is worthwhile 
discussing the challenges that we had to address: 

Challenge 1. Perhaps the most important challenge we address is in dealing with arbitrary 
disturbances 𝐸𝐸𝑡𝑡 in the dynamics. This is a difficult problem, and so standard approaches almost 
exclusively assume i.i.d. Gaussian noise. Worst-case approaches in the control literature, also 
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known as 𝐻𝐻∞-control and its variants, are overly pessimistic. Instead, we take an online 
(adaptive) approach to dealing with adversarial disturbances.  

Challenge 2. Another limitation for efficient methods is the classical assumption that the costs 
𝑐𝑐(𝑥𝑥𝑡𝑡,𝐵𝐵𝑡𝑡) are quadratic, as is the case for the linear quadratic regulator. Part of the focus in the 
literature on the quadratic costs is due to special properties that allow for efficient computation 
of the best linear controller in hindsight. One of our main goals is to introduce a more general 
technique that allows for efficient algorithms even when faced with arbitrary convex costs. 

Our contributions. In this work, we tackle both challenges outlined above: coping with 
adversarial noise, and general loss functions in an online setting. For this we turn to the time-
trusted methodology of regret minimization in online learning. In the field of online learning, 
regret minimization is known to be more robust and general than statistical learning, and a host 
of convex relaxation techniques are readily available. To define the performance metric, denote 
for any control algorithm 𝐴𝐴, 

𝐽𝐽𝑇𝑇(𝐴𝐴) = ∑ 𝑐𝑐𝑡𝑡(𝑥𝑥𝑡𝑡,𝐵𝐵𝑡𝑡)𝑇𝑇
𝑡𝑡=1 . 

The standard comparator in control is a linear controller, which generates a control signal as a 
linear function of the state, i.e. 𝐵𝐵𝑡𝑡 = −𝐾𝐾𝑥𝑥𝑡𝑡. Let 𝐽𝐽𝑇𝑇(𝐾𝐾) denote the cost of a linear controller from 
a certain class 𝐾𝐾 ∈ 𝐶𝐶𝐶𝐶𝑎𝑎𝑠𝑠𝑠𝑠𝐾𝐾. For an algorithm 𝐴𝐴, we define the regret as the sub-optimality of its 
cost with respect to the best linear controller from a certain set 

𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑅𝑅𝑡𝑡 = 𝐽𝐽𝑇𝑇(𝐴𝐴) − min𝐾𝐾∈𝐶𝐶𝐶𝐶𝑎𝑎𝑠𝑠𝑠𝑠 𝐽𝐽𝑇𝑇(𝐾𝐾). 

Our main result is an efficient algorithm for control which achieves regret 𝒪𝒪�√𝑇𝑇� in the setting 
described above. Ours is the first algorithm which achieves regret 𝒪𝒪�√𝑇𝑇� even in the presence of 
bounded adversarial disturbances. Previous regret bounds needed to assume that the disturbances 
𝐸𝐸𝑡𝑡 are drawn from a distribution with zero mean and bounded variance. Furthermore, our regret 
bounds apply to any sequence of adversarially chosen convex loss functions. Previous efficient 
algorithms applied to convex quadratic costs only. Our results above are obtained using a host of 
techniques from online learning and online convex optimization, notably online learning for loss 
functions with memory and improper learning using convex relaxation. 

The algorithm is one which can be viewed as an online optimization method, except that it takes 
the gradient using a memory. In fact, a notable contribution here is the use of two new proof 
techniques: 

Improper Policy Class: We parameterize the policy we execute at every step as a linear function 
of the disturbances in the past. This leads to a convex relaxation of the problem. We avoid a 
linear dependence on time for the number of parameters in our policy, by additionally including 
a stable linear controller in our policy allowing us to effectively consider only 𝒪𝒪(log(𝑇𝑇)) 
previous perturbations. 

A novel reduction to “online convex optimization with memory”: The choice of the policy class 
with an appropriately chosen horizon 𝐻𝐻 allows us to reduce the problem to compete with 
functions with truncated memory. This naturally falls under the class of online convex 
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optimization with memory. The key to our approach are new methods to bound the regret on 
truncated functions, where we use the Online Gradient Descent based approach. 

4.6 Convergence of policy gradients and common RL algorithms in MDPs 
The softmax parameterization: This is the most commonly used parameterization. Our work 
provided the first global convergence guarantees using only first-order gradient information for 
this widely-used parameterization. Our first result for this parameterization establishes the 
asymptotic convergence of the policy gradient algorithm; the analysis challenge here is that the 
optimal policy (which is deterministic) is attained by sending the softmax parameters to infinity. 
In order to establish a convergence rate to optimality for the softmax parameterization, we then 
consider a relative entropy regularizer and provide an iteration complexity bound that is 
polynomial in all relevant quantities. The use of our relative entropy regularizer is critical to 
avoiding collapsing gradients, an issue discussed in practice; in particular, the more general 
approach of entropy based regularizers is fairly common in practice. 

For these aforementioned algorithms, the convergence rates depend on a certain distribution 
mismatch coefficient, which is the (worst case) ratio between probability that an optimal policy 
reaches some state 𝑠𝑠 in comparison to the probability of 𝑠𝑠 under our start state measure 𝜇𝜇. This is 
reason in which we seek to have a measure 𝜇𝜇 which has coverage over all the states. 

We then consider the Natural Policy Gradient (NPG) algorithm [Kakade, 2002], which can be 
considered a quasi second-order method due to the use of its particular preconditioner, and 
provide an iteration complexity to achieve an 𝜀𝜀-optimal policy that is polynomial in 1 𝜀𝜀⁄  and has 
no dependence on the number of states, the number of actions, or the distribution mismatch 
coefficient. 

Restricted parameterizations and function approximation: We now summarize our results with 
regards to policy gradient methods in the setting where we work with a restricted policy class, 
which may not contain the optimal policy. In this sense, these methods can be viewed as 
approximate methods.  The focus in the function approximation setting is to avoid the worst-case 
𝐿𝐿∞ guarantees that are standard in approximate dynamic approaches. 

We focus on average case guarantees, that support the applicability of supervised machine 
learning methods to solve the underlying approximation problem. This is because supervised 
learning methods, like classification and regression, typically only have bounds that depend on 
the expected error under a distribution, as opposed to worst-case guarantees over all possible 
inputs. 

One key contribution of this work is in precisely quantifying the notion of (average case) 
approximation error that is relevant for policy gradient methods; for the natural gradient method, 
we quantify this in terms of the precisely defined regression error based on how well the policy 
class can approximate certain value functions, a notion related to that of compatible function 
approximation error [Sutton et al., 1999]. Furthermore, due to the direct nature of policy gradient 
methods and due to our precise quantification of approximation error, we provided finite sample 
and computational complexity results for the natural gradient algorithm. In particular, we provide 
a model-free, linear time algorithm for the natural policy gradient, requiring only simulation-
based rollouts (or restarts). 
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Our main result is showing how the Natural Policy Gradient (NPG) has a convergence guarantee 
that is comparable to the Conservative Policy Iteration (CPI) [Kakade and Langford, 2002]. CPI 
has been the algorithm with the strongest performance guarantees to date, and our work showed 
how the NPG has the same guarantee. This is perhaps surprising since the NPG is the a widely 
used algorithm, which has not had any performance analysis. One significant advantage of NPG 
over CPI is that the explicit parametric policy representation in NPG (and other policy gradient 
methods) leads to a succinct policy representation in comparison to CPI or related boosting-style 
methods, where the representation complexity of the policy of the latter class of methods grows 
linearly in the number of iterations (since these methods add one policy to the ensemble per 
iteration). This increased representation complexity is likely why CPI is less widely used in 
practice. 

4.7 Maximum Entropy Exploration and Curiosity Driven Learning 
The goal here is for the agent to discover what it is capable of doing, without given any explicit 
reward signal. We provide an efficient algorithm to optimize such intrinsically defined 
objectives, when given access to a black box planning oracle (which is robust to function 
approximation). Furthermore, when restricted to the tabular setting where we have sample based 
access to the MDP, our proposed algorithm is provably efficient, both in terms of its sample and 
computational complexities. Key to our algorithmic methodology is utilizing the conditional 
gradient method (a.k.a. the Frank-Wolfe algorithm) which utilizes an approximate MDP solver. 

To facilitate exploration in potentially unknown MDPs within a restricted policy class, we 
assume access to the environment using the following two oracles: 

Approximate planning oracle: Given a reward function (on states) 𝑟𝑟 ∶ 𝑆𝑆 → 𝑅𝑅 and a sub-
optimality gap 𝜀𝜀, the planning oracle returns a stationary policy 𝜋𝜋 = 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝑥𝑥𝑃𝑃𝐶𝐶𝑎𝑎𝑛𝑛(𝑟𝑟, 𝜀𝜀) with the 
guarantee that 𝑉𝑉(𝜋𝜋) ≥ max𝜋𝜋 𝑉𝑉(𝜋𝜋) − 𝜀𝜀, where 𝑉𝑉(𝜋𝜋) is the value of policy 𝜋𝜋.  

State distribution estimate oracle: A state distribution oracle estimates the state visitation 
distribution (the frequencies with which a policy visits the states in the MDP), 𝑑𝑑𝜋𝜋 =
𝐷𝐷𝑅𝑅𝑛𝑛𝑠𝑠𝐷𝐷𝑡𝑡𝑦𝑦𝐸𝐸𝑠𝑠𝑡𝑡(𝜋𝜋, 𝜀𝜀) of any given (non-stationary) policy 𝜋𝜋, guaranteeing that ‖𝑑𝑑𝜋𝜋 − 𝑑𝑑𝜋𝜋‖∞ ≤ 𝜀𝜀.  

Given access to these two oracles, we describe a method that provably optimizes any continuous 
and smooth objective over the state-visitation frequencies. Of special interest is the maximum 
entropy and relative entropy objectives. Our main result provides an efficient algorithm such that 
for any 𝛽𝛽-smooth objective function 𝑅𝑅, and any 𝜀𝜀 > 0, in 𝒪𝒪(1 𝜀𝜀⁄ log 1 𝜀𝜀⁄ ) calls to ApproxPlan 
and DensityEst, it returns a policy 𝜋𝜋 with 𝑅𝑅(𝑑𝑑𝜋𝜋) ≥ max𝜋𝜋 𝑅𝑅(𝑑𝑑𝜋𝜋) − 𝜀𝜀.  Some sample results 
obtained using the maximum entropy agent are shown in Figure 5. 
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Figure 5 Comparison of the maximum entropy agent to a random baseline policy for 
three sample problems 

In each plot, blue represents the MaxEnt agent, and orange represents the random baseline.  (a), (b), and 
(c) show the entropy of the policy evolving with the number of epochs.  (d), (e), and (f) show the log‐

probability of occupancy of the two‐dimensional state space.  In (f), the infinite x‐y grid is limited to the 
range [‐20,20]×[‐20,20] 
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5 CONCLUSIONS 

The objective of this project has been to build an overarching bridge between these two lines of 
work, namely, between optimal control theory and sample-based reinforcement learning 
methods. This has been accomplished in the context of two pillars of control theory and learning, 
namely, linear quadratic regulator problem and Markov decision processes. It has been shown 
that first order methods can effectively be used to provide a bridge between the two disciplines 
by clearly highlighting the interplay between modeling, data-driven decision making, statistical 
reasoning, and uncertainty. As such, this research has opened up a number of intriguing 
directions at the interface of control theory and learning that need to explored further in the 
coming years. 
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