
AD_________________ 

Award Number:  W81XWH-12-2-0013 

TITLE:  Locomotion With Loads: Practical Techniques for Predicting 

Performance Outcomes 

PRINCIPAL INVESTIGATOR:   Peter Weyand 

CONTRACTING ORGANIZATION:  Southern Methodist University 

      Dallas, TX  75205  

REPORT DATE: July  2019 

TYPE OF REPORT: Final 

PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
Fort Detrick, Maryland  21702-5012 

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution 
Unlimited 

The views, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy or decision 
unless so designated by other documentation. 



2 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 

data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 

this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-

4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 

valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE 
July 2019

2. REPORT TYPE

Final
3. DATES COVERED

5 Apr 2012 - 14 Apr 2019
4. TITLE AND SUBTITLE

Locomotion with loads: practical techniques for

predicting performance outcomes 

5a. CONTRACT NUMBER 

W81XWH-12-2-0013 

5b. GRANT NUMBER 

W81XWH-12-2-0013 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S)

Betty Diamond

5d. PROJECT NUMBER  

Peter Weyand 5e. TASK NUMBER 

E-Mail:  pweyand@smu.edu

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT

NUMBER

Southern Methodist University, Office of 

Research Administration, 6425 Boaz Lane, Suite 

103, Dallas, TX  75205  

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland  21702-5012

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Here, load carriage interventions for walking energy expenditure and running

speed have been designed to: 1) advance existing models and 2) contribute needed

data to the broader effort to develop load-carriage decision-aid tools for modern

soldiers. We hypothesize first that our height, weight (including load), speed,

and grade algorithms proposed will allow walking metabolic rates to be predicted

to within 6.0 and 12.0% in laboratory and field settings, respectively.  We

hypothesize second that the speed-load carriage algorithms will allow load-

induced decrements in all-out sprint running speeds to be predicted to within

6.0% in both laboratory and field settings. Respective load-carriage algorithms

for walking energy expenditure and running speed will be developed and tested

(Technical Objectives 1.0 and 2.0) in the laboratory and the field.

15. SUBJECT TERMS

gait, metabolism, performance, load carriage

16. SECURITY CLASSIFICATION OF:
Unclassified

17. LIMITATION

OF ABSTRACT

18. NUMBER

OF PAGES

19a. NAME OF RESPONSIBLE PERSON 

USAMRMC  

a. REPORT

U 
b. ABSTRACT

U 
c. THIS PAGE

U UU 

19 19b. TELEPHONE NUMBER (include area 

code) 



Table of Contents 

Cover……………………………………………………………….………………..…1 

SF 298……………………………………………………………………………..……2 

Table of Contents………………… ……………………………….………………..3 

Introduction…………………………………………………………….…..………....4 

Body…………………………………………………………………………………….10 

Key Research Accomplishments………………………………………….………11 

Reportable Outcomes……………………………………………………………….30 

Publications, Abstracts and Presentations……………………………………...33 

Conclusions…………………………………………………………………………...35 

References…………………………………………………………….……………….36 

Appendices…………………………………………………………….………………40 



 

4 

 

INTRODUCTION 

 

The Need for Load Carriage Decision-Aid Tools 
 

Load carriage is a foot-soldier requirement with direct consequences for a broad array of 

physiological, performance and health outcomes.  Metabolic energy expenditure, heat 

production, macronutrient requirements, water requirements, and injury risks are all directly 

elevated by the weight of the equipment soldiers carry while both short- and long-term mobility 

are substantially reduced (Knapik et al., 1996; Knapik et al., 2004).  Clearly, the physiological 

stresses and mobility losses induced by load carriage do not constitute desirable field outcomes.  

Indeed, anecdotal (Knapik & Reynolds, 2010) and formal (Dean, 2004) accounts of the negative 

consequences of pack overloads are readily available from a multitude of field combat situations. 

 In both modern and historical warfare environments alike, the physiological status and mobility 

of foot soldiers influence combat performance, wound and survival rates.  Accordingly, exacting 

considerations of the value of carried equipment evaluated against the negative performance, 

wound and mortality consequences of added weight are a matter of vital military importance.  
 

A priori, one might expect that the major advances in both material science and electronics in the 

modern era would provide soldiers with more effective equipment while simultaneously reducing 

the loads soldiers carry.  However, the historical record indicates a marked trend in the opposite 

direction.  During the 150-year period from the Civil War through the present day, the pack 

weights of American foot soldiers have increased by a factor of approximately 3-fold, from 15 

kg during the Civil War to 35 kg in World War II to approximately to 45 kg in Desert Shield 

(Knapik & Reynolds, 2010), and 45 kg or above in Afghanistan (Dean, 2004).  For an average-

sized male US soldier, a load of 45 kg constitutes well over 50% of the body’s weight.  Thus, the 

theoretical potential for technological advances in equipment and materials to lighten the pack 

and total body loads carried by modern foot soldiers has not been realized. 
 

This brief consideration of the historical trends for the loads carried by US soldiers across 

different eras begs two immediate questions: are the loads carried by modern soldiers excessive? 

And if so, how harmful is the additional weight carried to warfighter performance?  
 

This answer depends on a fundamental and long-standing load carriage trade-off assessment that 

balances the benefits of the equipment carried vs. the detrimental performance consequences 

imposed by carrying additional weight.  On a qualitative level, the benefits of modern body 

armor, firepower, and communication equipment are relatively obvious, as are the negative 

physiological and mobility consequences of carrying heavy loads.  However, at present, the data 

needed for quantitative, evidence-based considerations are unavailable.  Consequently, well-

informed decisions about the pack and total body loads that will be most effective for soldiers in 

operational environments are not possible. 
 

Given that warfighter field effectiveness is crucial to the efforts of the US military, moving 

beyond qualitative considerations of the load carriage cost-benefit trade-offs constitutes 

minimum due diligence to the soldiers in the field as well as to the enormous national investment 

in our military initiatives.  The work proposed here will contribute to a broader experimental 

work effort to develop load-carriage, decision aid tools that take an evidence-based approach to 

determining loads for foot-soldiers.   The specific experimental work we propose focuses on the 

cost, or detriment side of the load carriage trade-off equation.  This work is expected to provide 
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data that are currently lacking, but necessary for informing strategic decisions regarding pack and 

total load carriage weights. 
 

We present a series of experiments designed to quantify the negative physiological and 

performance consequences of the loads modern soldiers carry.  The work has been formulated 

using two promising physiological-mechanical models: 1) a stature-based model to explain 

walking energy expenditure, and 2) a ground force model to explain brief, all-out running speeds. 

 Fulfilling our experimental objectives should allow predictions of the specific physiological, 

performance and mobility decrements that would be expected across a broad continuum of 

potential loads.   

 

 

Objective One: Walking Energy Expenditure 
 

Previous Scientific Efforts of Direct Military Relevance: Because metabolic rates are so 

fundamentally related to physiological status and sustained performance capabilities, the Army 

has a long-standing interest in developing techniques to predict and monitor the metabolic rates 

of soldiers walking in the field.  As with most efforts to acquire or predict physiological data in 

field environments, this has proven to be a challenging undertaking.  However, modern 

monitoring capabilities and improved predictive modeling should allow for meaningful progress. 
 

The pioneering efforts of Pandolf and others in the 1970’s (Givoni & Goldman, 1971; Pandolf et 

al., 1977) established generalized equations that predict the metabolic rates of walking soldiers 

from total weight (i.e. body weight + load), speed and grade.  However, the utility of these 

equations depends heavily on the ability to acquire walking speed and grade data in the field.  

This ability was formerly quite limited, but in recent decades has become fully feasible and 

highly accurate.   
 

In part, because the ability to monitor speed and distance in field environments limited the 

original applicability of the Pandolf et al. equations, other approaches were pursued.  In the 

1990’s, Hoyt and colleagues (Hoyt et al., 1994; Hoyt & Weyand, 1996; Hoyt et al., 2004;  

Weyand et al., 2001) adopted an innovative technological approach that, in contrast to the 

Pandolf approach, did not require speed and distance data.  Hoyt devised a bio-monitoring 

strategy to predict locomotor metabolic rates from the body’s weight and the periods of foot-

ground contact.  This approach was inspired by algorithms (Kram & Taylor, 1990) that explained 

the metabolic rates of different-sized terrestrial running and hopping animals.  Hoyt and 

colleagues successfully developed biosensors that accurately monitored ambulatory foot-ground 

contact times and predicted metabolic rates under some conditions (Hoyt et al., 1994; Hoyt et al., 

2004; Weyand et al., 2001).  However, this approach was not without limitations.  Foot-ground 

contact monitoring requires a functioning sensor and a wireless network, and current monitors 

cannot detect the surface inclinations that have a substantial effect on walking energy 

expenditure (Margaria et al., 1968; Minetti et al., 1994; Minetti et al., 2002). 
 

Modeling Walking Metabolism: Recently, we have developed a promising model for predicting 

walking metabolic rates that combines the strengths of the Pandolf and Hoyt approaches that can 

be readily implemented in the field using the accurate geo-location systems now available. 
 

Our model may advance predictive accuracy beyond that provided by the two generalized models 

most commonly used to estimate the metabolic rates of human walkers at present: the Pandolf 
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and American College of Sports Medicine (ACSM) equations.  Both use body weight and 

walking speed, but not stature to predict metabolic rates.  Although comparative physiologists 

have long recognized (Alexander, 1976; Taylor et al., 1982; Kram & Taylor, 1990) that the mass-

specific metabolic cost of locomotion varies in a systematic manner with the linear dimensions of 

the body, the leading models for predicting locomotor costs of humans have not incorporated 

body or leg lengths.  The inverse relationship between the body’s length (i.e., height) and the 

mass-specific metabolic rates of individual human walkers has been recently demonstrated 

(Weyand et al., 2010) 

 

The Stature-Based Model of Walking Metabolism: Our new stature-based model of walking 

energy expenditure (Weyand et al., 2010) includes three fully independent variables: body mass, 

stature and walking speed.  The quantitative form of the model is as follows: 
 

Emetab = RMR + C1 • RMR + C2 • V
e/Ht  (eq. 1) 

 

where Emetab is the body’s total metabolic rate, RMR is resting metabolic rate, V is the velocity of 

walking, and Ht is height.  C1 and C2 are empirically derived coefficients, and e is an exponent 

that quantifies equivalent walking velocities for individuals who differ in height.  All metabolic 

rates in the equation are expressed in mass-specific terms. 
 

In our model, RMR is the body’s minimum or baseline rate of energy expenditure, the quantity 

(C1 • RMR) represents the factorial increase above resting metabolic rate needed to maintain a 

walking posture (i.e. a postural metabolic rate, or PMR), and the term (C2 • V
e/Ht) describes the 

curvilinear, or exponential, increase in mass-specific metabolic rates that occurs with increases in 

walking velocities standardized to height in accordance with the original suggestion of Alexander 

(Alexander, 1976; Alexander, 2003) to use the Froude Number (= V2/gravity • leg length).  The 

product of our slightly modified (for utility and convenience) model term Ve/Ht, and the 

coefficient C2,  represents the metabolic energy expended to lift, support and accelerate the 

body’s center of mass with each step as walking speed is increased.   
 

Two critical assumptions were involved in our development of the stature-based model to predict 

walking metabolic rates.  First, we assumed that the mass-specific metabolic energy expended 

per stride is the same at equivalent walking speeds regardless of the height and weight of the 

individual.  Second, we assumed that individuals who differ in stature walk in a mechanically 

similar way at equivalent walking speeds (i.e. the same Froude Number or value of V2/Ht).  

Here, mechanical similarity is defined as stride lengths and times being related by a constant 

proportion across individuals of different heights. 

 

Extending the Stature-Based Model to Load Carriage and Graded Walking: 
 

Load Carriage:  Two aspects of the model seem promising with respect to extending the stature-

based model to the load carriage conditions: the predictive accuracy of the model on the 

independent and heterogeneous subjects evaluated so far, and a clear conceptual and quantitative 

basis from which to predict the effect that loading will have.  Per below, our stature-based model 

breaks total walking metabolism into resting and walking components.   
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Ėmetab = RMR + C1∙RMR + C2∙V
e / Ht 

 

                       Resting          Walking 

  
Because the relationship between the weight supported and both of the walking, or non-resting 

component of our model is 1:1, the predictions of the model for the effect of loading are 

straightforward: loading will increase the walking portion of the total metabolic rate in direct 

proportion to the load added.  Thus, a load equal to 10% body’s weight will increase walking 

metabolic rates by 10%; a load equal to 20% of body’s weight will increase walking metabolic 

rates 20%, etc. 

 

While there is a relatively large body of literature on the consequences of loading for walking 

metabolism (Bastien et al., 2003; Das & Saha, 1966; Duggan & Haisman, 1992; Falola et al., 

2000; Griffin et al., 2003; Holewijn, 1990; Martin & Nelson, 1986; Pimental & Pandolf, 1979), 

none of the studies available provide the data needed to evaluate the predictive accuracy of the 

stature-based model under these conditions.  Two quantitative issues prevent this: existing data 

sets and models have not included the influence of stature on walking metabolism, and previous 

studies have not quantified or reported resting metabolic rates that can be quantitatively related to 

the resting and postural terms in our model.  However, the best data available for evaluating our 

model (Griffin et al., 2003) indicate that loading results in gross walking metabolic rates being 

elevated slightly less than in direct proportion to load, while net walking rates (subtracting a 

standing value) are elevated in slightly greater than 1:1 proportion are consistent with our model 

predictions. 
 

Graded Walking: Similarly, our expectation is that our model will also apply to graded walking, 

although per above, quantitative evaluations of our model using the existing literature (Margaria, 

1968; Minetti et al., 1994; Minetti et al., 2002; Wanta et al., 1993) are not possible.  For graded 

walking, our approach will be to extend our findings of a constant metabolic cost per stride at 

equivalent speeds for different individuals to inclined and declined conditions.  Under level 

walking conditions, we found that the lower mass-specific metabolic rates of taller vs. shorter 

individuals are fully explained by differences in body lengths (i.e. height) and proportional 

differences in the horizontal distance traveled with each stride (i.e. stride length).  Extending our 

stature-based model to explain metabolic rates during inclined and declined walking involves 

similar quantification of the distance traveled by the body during each stride.  During horizontal 

walking, including only the horizontal displacements is sufficient.  During graded walking, our 

stature-based model predicts metabolic rates will be a function of both the horizontal and vertical 

displacements of the body over the course of each stride.  Stride lengths during graded walking 

are expected to be proportional to stature at equivalent walking speeds as during horizontal 

walking.  However, the vertical displacements of the body over the course of each stride will be a 

function of both the surface grade and stature.  Per intuition, the vertical distance per stride 

traveled will be greater on any inclined or declined walking surface for taller vs. shorter 

individuals.  Accordingly, metabolic rate deviations from the level condition for taller vs. shorter 

individuals are also expected to be greater on any given incline or decline.  Mechanically, this is 

most easily conceptualized as the metabolic cost per stride increasing and decreasing in 

accordance with the positive and negative displacements of the body during each stride.  This 

metabolic pattern is well described in the comparative literature for large and small animals 

(Taylor et al., 1972), but the data needed to assess humans of different statures is unavailable.  
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Our expectation is that we can use stature and percent grade to quantify this effect.  In the 

specific terms of our model, our expectation is that our coefficient, C2 that describes the 

increases in metabolic rate in relation to increases in equivalent walking speeds, will have the 

same value for any given positive or negative vertical displacements of the body per stride.  

Although this relationship will need to be determined empirically, we can make the simple 

prediction that the value of C2 during inclined and declined walking will be proportional to the 

product of the stature of the individual and the percent grade of the surface (i.e. C2  Ht • % 

grade). 
 

The experiments proposed here represent the most fundamental empirical steps needed to extend 

and validate our stature-based model.  Once the basic work needed to develop algorithms 

including load, incline and decline conditions has been completed, additional work to incorporate 

the effects of fatigue (Epstein et al., 1988; Patton et al., 1991), terrain (Pandolf et al., 1977) and 

very steep downhill grades (Margaria, 1968; Santee et al., 2001) may then be explored in the 

context of the model. 
 

Objective Two: Sprint Running Speed 
 

Previous Scientific Efforts: The scientific literature on the basis of brief, all-out running 

performance is far less extensive than that devoted to the energy cost of walking.  Early efforts 

focused primarily on explaining performance in terms of the metabolic power available for these 

events (Hill, 1925; Hill, 1950; Ward-Smith, 1985; Ward-Smith, 1999; Ward-Smith, 2000).  

While some investigators have continued to use metabolic models to explain these performances 

(Rittweger et al., 2009), the predominant scientific focus has shifted to mechanical models 

(Bundle et al., 2006; Usherwood & Wilson, 2005; Usherwood & Wilson, 2006, Chang & Kram, 

2007; Weyand et al. 2000; Weyand et al., 20006; Weyand et al., 2010) to explain sprint exercise 

performances.  In our view, this shift is scientifically warranted as mechanical approaches can 

directly explain the motion of the body and promising force models using this approach are being 

developed (Weyand et al., 2006; Weyand et al., 2010).  In contrast, metabolic models continue to 

be difficult to validate at present due to the ongoing inability to quantify the whole-body 

anaerobic and total metabolic energy released during sprinting (Bangsbo, 1998; Van Pragh, 

2007). 
 

For the purposes of predicting sprint exercise performance here, we have opted to quantify load-

induced decrements in speed as fractional decrements from the unloaded condition.  Our 

interpretation of the existing literature indicates that this approach is likely to provide the greatest 

predictive accuracy from a simple, practical model.  There are at least two sound, literature-based 

reasons for adopting this approach.  First, maximal sprint performances vary considerably 

between individuals for physiological and mechanical reasons that are incompletely understood 

and likely cannot be modeled simply.  Second, the relationship between all-out sprint running 

speeds and the average ground forces applied during each step, both within and across 

individuals, is reasonably linear during sprint running (Weyand et al., 2000; Weyand et al., 2010) 

which simplifies model predictions.  
 

We expect to be able to predict load-induced decrements in speed with a high degree of accuracy 

because loads are not likely to alter the maximum forces runners can apply to the ground, but will 

predictably increase the ground force required to run at any speed.  Accordingly, we should be 

able to use a runner’s force maximum at his or her unloaded sprinting speed maximum, load-
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induced increases in the ground forces required, and the general force-speed relationship to 

predict load-induced decrements in all-out speed. 
 

Our speed model takes the simple following form: 
 

VL = C1 • (L/Wb) • VUL      (eq. 2) 
 

where VL is the maximum velocity of loaded running for all-out runs of brief duration, Wb is 

body weight, L is the weight of the load carried, C1 is the coefficient describing the load-induced 

decrements in speed resulting from fractional additions to the body’s weight (L/Wb) via loading, 

and VUL is the maximum velocity of running in the unloaded condition.   

 

Our force-speed model has its basis in both basic Newtonian mechanics and the ground force 

capabilities of individual runners.  An extensive body of scientific evidence supports the view 

that a primary mechanical requirement of running is supporting the body’s weight against 

gravity.  Successful characterizations of running energetics and even speed and distance 

monitoring have been realized from this conceptual starting point (Kram & Taylor, 1990; 

Weyand et al., 2001).  Our force-speed model also begins with this basic recognition.   

 

The mechanical basis of our empirically-formulated force model of sprint running is most easily 

understood by considering how the ground contact and aerial phases of a running stride change 

across speed for individual runners.  The relative durations of the aerial and foot-ground contact 

phases of a running stride vary with speed.  As runners increase their speeds, they spend 

relatively more time in the air and relatively less time on the ground.  Consequently, the ground 

support forces that runners apply increase in an approximately linear fashion with speed and are 

set by body mass.  For runners regardless of ability, stance-averaged ground support forces are 

1.5 times the body’s weight while jogging, and increase to 2.0 times the body’s weight or more 

when running at sprinting speeds. 

 

Here, we expect that loading will result in proportional increases in the stance-average ground 

reaction forces required with little effect on the time course of ground force application.  This 

result has also been reported from studies examining loaded running at slower speeds (Chang & 

Kram, 2000).  The consistency observed in the foot-ground contact times at any given speed 

across different loads suggests that our general approach is sound 

 

Beyond this, we have found that the limit to running speed occurs when runners reach that speed 

at which they are repositioning their limbs as quickly as possible while simultaneously applying 

maximum ground forces.  Contrary to intuition, the minimum times runners require to reposition 

their limbs at their top running speeds does not vary in relation to how fast they can run.  

Consequently, individual differences in speed are explained all but entirely by the mechanics of 

the stance phase.  These mechanical observations support a modeling approach that focuses on 

the ground force required and available for speed. 

 

At present, firm predictions of the decrements in brief, all-out running speeds that will occur with 

loading and that will be quantified by the coefficient C1 in our force-running speed model are 

difficult.  This is the case because only small number of studies to date have examined the effects 

of loading on sprint running performance (Alcaraz et al., 2008; Cronin et al., 2008; Holewijn & 

Lotens, 1992).  The few studies that do present loaded and unloaded all-out sprinting speed data 
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do so under conditions that make more generalized predictions difficult, and none of these 

studies include the ground reaction force data.  The most informative study with respect to our 

experimental objectives here is that of Holewijn & Lotens (1992) who reported that a load equal 

to 21% of body weight reduced all-out running velocities by 13 and 18% for all-out 80- and 400-

meter runs.  More recently, Alcaraz et al. (2008) reported only 3% reductions in brief, all-out 

running speeds with loads equal to 9% of the body’s mass, while Cronin et al. reported fractional 

reductions in all-out loaded sprinting speeds that were approximately half as large as the 

fractional increases in load/body weight ratios.  The disparity in the different results reported to 

date could result from a large number of factors, and is therefore difficult to interpret.  These 

empirical results project a C1 value in our model somewhere between 0.4 and 1.0.   

 

Fractional reductions in brief, all-out running speeds that are, in some cases only half as large as 

the fractional loading of the body’s weight reported are surprising.  The relatively shallow slope 

of the force-speed relationship portends a much greater sensitivity.  The mechanistic factors that 

explain a much more limited effect than would be theoretically expected from unloaded force-

speed data only are almost certainly rooted in the mechanics of the stance phase ground force 

application that occurs under loaded conditions.  These likely involve mechanical adaptations to 

loading that improve the leverage of the limb (Biewener et al., 2004) and thereby reduce the 

muscle forces required in relation to the load being carried. 

 

However, in the complete absence of ground reaction force data or the accompanying video data 

to determine limb leverage, speculating about the adjustments that may constrain load-induced 

decrements in speed is difficult.  The limited existing data available point to a critical need to 

acquire ground reaction force and video data under a variety of load and duration conditions to 

develop a robust predictive model.  These data should provide the key to understanding how 

musculoskeletal mechanics, loading strategies, training and conditioning strategies, and 

conceivably external aids like exoskeletons, may be utilized to minimize detrimental losses in the 

short-term mobility of soldiers that result from carrying heavy loads. 

 

 

BODY 

 

The majority of the calendar year has been devoted to analysis, synthesis and report and 

manuscript writing.  Individuals receiving support from the award during the last calendar year 

were: Jennifer Nollkamper, Lindsay Ludlow and Peter Weyand.  

 

The load carriage experiments have two specific objectives: 1) to develop and validate 

algorithms that predict walking metabolic rates from height, weight (including load), speed and 

grade, and 2) to develop and validate algorithms that predict brief, all-out running speeds from 

the body and pack weights of the individual.  These objectives will be pursued in parallel per the 

following experimental timeline. 

 

Objective 1 – Walking Energy Expenditure:   

 

We intend to acquire energy expenditure data in the laboratory on those subjects on whom our 

predictive metabolic equations will be developed using our stature-based model.  Subjects will 
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complete walking trials at a number of different walking speeds treadmill grades while their rates 

of oxygen uptake and energy expenditure are measured.   

 

We will also complete the aforementioned laboratory walking trials across speed and grade 

needed for our original subjects as needed for algorithm development.  In addition, we will 

undertake field data acquisition by having subjects will undergo a field march on a surveyed field 

course of known elevations and grades while instrumented to acquire the metabolic and position 

data. 

 

 

Objective 2 – Sprint Running Speed:   

 

We will first conduct high-speed running tests in the laboratory on subjects under three different 

loading conditions: unloaded, +15% body weight, and +30% body weight.  Subjects will 

complete protocols to determine their maximum speeds for efforts ranging from 2 to 90 s while 

force and video data are acquired. 

 

Next, we will acquire all-out overground running data in both indoor and outdoor settings on 

subjects.  These subjects will complete 25 meter runs indoors and 60 meter runs outdoors under 

four different loading conditions: unloaded, +15% body weight, +30% body weight, and +45% 

body weight.  Simultaneous force and video data will be acquired during the indoor 25-meter 

running trials. 

 

 

KEY RESEARCH ACCOMPLISHMENTS 

 

Key accomplishments over the reporting period of the grant were as follows: 

 

April 2012 – April 2013 

 

1) Set up experimental protocols and facilities to conduct work 

2) Filed applications for approvals to do research on human subjects 

3) HRPO approval granted in December 2012 

4) Experiments commenced in early 2013 

 

April - June of 2013 

 

1) Finalized the testing set-ups and protocols for both the loaded walking and running 

objectives. This included augmenting the treadmill frame with scaffolding to 

accommodate the downhill conditions.  

2) The protocol for unloaded walking across speed and incline for algorithm development 

was tested and refined.  

3) Weighting material, packaging, load distribution and related logistics were developed. 

4) Back-pack modifications were made for subject comfort.  These included switching 

backpack type for subject comfort and safety.  The newer version identified provided 

greater shoulder padding and comfort. 
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5) Standardized footwear was purchased to accommodate research subjects. 

 

The pilot data available for guiding our walking protocol development at this juncture appears in 

Figure 1 below. 

 

 

 
 

Figure 1.  Walking rates of oxygen uptake as a function of speed on three treadmill inclinations and under 

three loading conditions for one subject.  All measures were taken under steady-state conditions. 

 

The vest and backpack selection were finalized in the latter portion of the prior reporting year 

once human subjects testing authorization had been acquired.  The specific gear and loading 

schemes are illustrated in the pictures appearing in Figure 2: 
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Panel A 

 
 

Panel B 
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Figure 2.  The vest and backpack used to add loads to subjects from lateral (A) and front (B) views.  Yoga 

blocks and sealed bags of shot are used to add the condition-specific weight needed for protocol 

administration for subjects who differ in body mass. 

 

In the first quarter, we also acquired initial data from our loaded running protocol for both the 

areobic demands of running under load and the performance-duration relationship for all-out runs 

of brief duration.  Representative data from individual subjects appears below in Figure 3 

 

Panel A 

 
 

Panel B 

 
 
Figure 3. Steady-state rates of oxygen uptake measured during a progressive, discontinuous treadmill test 

up to the individual’s aerobic maximum in the unloaded condition (A) and all-out running speeds as a 
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function of run duration while running also in the unloaded condition.  The line depicts the predictions of 

the speed reserve model for performance under these conditions. 

 

July - September 2013 

 
 

1) Efforts were devoted primarily to testing and data acquisition, particularly to meet the 

very heavy testing and data acquisition requirements of objective 1 for predicting walking 

metabolic rates.  

2) Testing protocols, weighting schemes and general logistics for the laboratory testing 

protocols were largely finalized.  This included finalizing the protocol for the unloaded 

treadmill walking tests.  Some modifications for the treadmill running tests came under 

consideration for refinement due to the rigor and number of test sessions involved for 

individual subjects. 

3) Minor modifications were made to provide better padding of the backpacks for the 

walking sessions to make the subjects more comfortable during testing. 

4) In preparation for the running biomechanics testing for objective 2, we purchased a 

motion capture system which has been delivered and is now up and running in our main 

laboratory.  We prepared to begin validation of the new system against our existing 

system to ensure data validity. 

5) Software programming to precisely locate the center of pressure on the force platforms to 

be used to running data acquisition was also initiated.  The goal of these efforts was to 

resolve the location of the center of pressure on the force plates to within 1.0 millimeter 

or less.  The estimated programming time requirement at this juncture was 80 hours. 

6) We moved forward with site location and logistical preparations for the field test of the 

walking model. 

7) We revised our running force model paper that was in review at the Journal of 

Experimental Biology. 

8) Our manuscript that introduced a new generalized equation to predict walking metabolic 

rates was accepted and moved toward publication at the Journal of Applied Physiology. 

9) We began an effort to digitize a literature data set to test and refine the walking 

metabolism model introduced in the paper currently in press. 
 

Representative data for objective 2 on running metabolism are provided below in Figures 4 and 5 

for both steady-state running at speeds below the aerobic maximum and for all-out running as a 

function of run duration on both the weighted and un-weighted conditions. 
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Figure 4.  Rates of oxygen uptake vs. speed during unloaded and loaded running. 

 
 

 
 

Figure 5, All-out running speeds as a function of run duration during loaded running.  The solid 

indicates the speeds predicted by the force-based speed reserve model as detailed in the grant 

proposal. 

 
 

October 2013 - January 2014 

 

1) Continued testing and data acquisition, and technical efforts to set up data acquisition 

systems for objective two. 

2) We also organized our efforts to organize and reduce data and conduct data analysis for 

both the walking (1) and running (2) objectives of the project.  

3) Analysis and manuscript work continued in both the walking and running objectives. 
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4) Planning all aspects of the walking field tests also began.  These include equipment, data 

acquisition systems, site planning and preparation, tec.  

5) We made some modifications on specific test protocols for objective two on running 

mechanics to improve subject comfort. 

6) Considerable effort was devoted to the technical work needed to ensure high quality 

mechanics data for grant objective two.  These efforts included approximately 100 hours 

of software programming for precision location of the center of pressure on our 

contiguous in-ground force plates.  This work was successfully completed.  Per our last 

report, the resolution of the center of pressure on the force plates is 1.0 millimeter as 

anticipated.  These efforts also included approximately 80 hours of system set-up and data 

acquisition testing using a new Opti-Track Motion Capture System procured to execute 

the experimental work on objective two. 

7) We devised data reduction and organization systems for objective one on walking 

metabolism in order to allow for quick screening of the data upon acquisition.  We also 

implemented a data organization system that will allow for rapid analysis and modeling 

with the large and unique metabolic data set we are in the process of acquiring. 

8) We continued to refine our walking metabolism and running mechanics models with 

original and literature data.  Several hundred person hours were devoted to both efforts in 

the last quarter.  These efforts resulted in the submission of a revised manuscript on 

running mechanics to the Journal of Experimental Biology and a walking metabolism 

manuscript that is in preparation for submission to the Journal of Applied Physiology. 

 

Per the report details presented in the report from January of 2014, we presented some of the data 

set and analysis of our digitized literature data set that was acquired to provide a robust, valid, 

level walking data set spanning a broad range of body sizes and a broad range of walking speeds. 

 This data set includes original and literature data selected to maximize the natural biological 

variability present.  The data set is comprised of mean data, with the subjects within each group 

being similar in stature, but with substantial height differences being present across groups.  

These data and preliminary analyses appear below in Figures 6 and 7. 

 

 
 

Figure 6.  Rates of oxygen uptake vs. speed during unloaded walking (panel A, n=129).  Each 

data point represents the mean value acquired from a population of subjects walking on a firm 
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level surface.  The data set includes both over-ground and treadmill data.  The three symbol 

types for group 1 (circles), group 2 (squares) and group 3 (triangles) are for short, medium and 

tall subjects.  The overall mean values for all the subject groups within the three respective 

height ranges appear in panel B. 

 

 

 

 
 

 

Figure 7.  Predicted rates of oxygen uptake vs. speed during level walking for groups of 

individuals who differ in height (left-hand upper and lower panels; circles- short, squares – 

average height, triangles – tall.  The gray lines show the mean fits to the original data for each 

of the three height categories).  The predictions are best-fit based on two iterations of our 

walking metabolism model, one with two metabolic components (upper left panel) and one with 

three metabolic components (lower left panel). 
 

Measured vs. model predicted values for these data points appear on the right-hand upper and 

lower panels labeled for two and three components, respectively.  The proportion of variance 
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accounted for has increased from prior reports, the predictive error has decreased and the error in 

the direction of prediction has become less sensitive to the absolute oxygen uptake values. [Note: 

the data points appearing correspond to the original data points from Figure 1, left-hand panel 

above]. 
 

In the final quarter of the reporting year (January through March of 2014), as detailed in our 

April 2014 reports, our efforts were as follows: 

 

1) We nearly finished the data acquisition for the loaded portion of the treadmill walking 

protocol.   

2) We began recruiting for the unloaded portion of the laboratory walking protocol. 

3) Data analysis and manuscript preparation using a combined literature plus original data 

approach detailed in the last report continued.  The objective of this effort has been to 

refine our height-weight-speed model of walking metabolism on level surfaces. 

4) Preliminary modeling of the loaded treadmill walking data has begun. 

5) Experimental planning and preparations for the field testing portion of objective 1 has 

continued.  Refurbishing of our portable metabolic system was completed.  A vertical and 

horizontal GPS system was purchased and acquired. 

6) We completed preparations and begun pilot testing the biomechanics data acquisition 

system for objective 2.  These efforts included force plate and motion capture data 

acquisition systems as detailed previously.  These efforts required several hundred person 

hours during the last quarter.  Briefly, the overground running mechanics technical efforts 

included custom programming of the force plate data acquisition system using LabView, 

configuring the OptiTrack motion capture system, establishing the marker set to be used 

for the testing (which would not interfere with the vest/backpack system), developing a 

custom start trigger method and pilot testing two subjects. 

7) The treadmill running testing for objective 2 has continued. 
 

Pilot and technical data from the extensive work done in the fourth quarter to set up, validate and 

pilot test the laboratory overground running data acquisition system t meet objective 2 apopears 

below in Figures 8 and 9. 
 

 

 

 

 

 

 

 

Figure 8.  Lateral (blue), horizontal (red) and vertical (green) ground reaction forces during an 

all-out run from a standing start through the second step two of a 10-meter running trial. 
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Figure 9.  Center of foot-ground pressure data from a standing start and the first two steps of a 

brief all-out run from our custom three-force plate system. 
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April - June of 2014 

 

6) The loaded portion of the laboratory testing for objective 1 is essentially complete.  One 

subject has not been able to schedule his last remaining tests, but 19 subjects have 

finished the protocol. 

7) The unloaded portion of the laboratory testing for objective 1 is well underway.  We 

expect the majority of the laboratory experimental work unloaded walking to be 

completed in the coming quarter.  With good fortune, the unloaded testing will be 

finished before the end of the next quarter. 

8) Modeling efforts have been a primary focus in the past quarter.  These occurred in 

parallel with two data sets: a) a literature compiled data set that is being used to refine our 

level walking model of walking energetics, and b) the newly acquired walking 

metabolism data across speed and loaded conditions.  Our level model is now being 

extended to include both incline and load. 

9) Manuscript preparation for modeling the level walking data has move forward and 

remains in progress. 

10) Preparations for field testing have continued.   These include the acquisition of a GPS 

unit for the field testing, an on-site demo/training session from the GPS representative 

and plotting of potential courses for the field testing. 

11) Technical and validation work on our instrumentation for the overground portion of 

objective has also continued.  These efforts have included: a) validating the center of 

mass motion form our newly acquired OptiTrack motion capture system vs. force plate 

data and instrumented push bars for an independent test.   

12) Treadmill testing for objective 2 has continued. 

13) Modeling of the determining factors of running ground reaction forces which are critical 

for performance has continued. 
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Figure 1. Actual rates of oxygen uptake vs. those predicted by the Height-Weight-Speed model as currently adapted 

to inclined and loaded walking at different speeds (as of June 2014). 

 

July - September of 2014 

 

1) The loaded portion of the laboratory testing for objective 1 is complete.   

2) The unloaded portion of the treadmill walking tests is nearing completion.  The unloaded 

portion of the protocol involves walking across a range of speed at a series of different 

treadmill grades. 

3) Modeling efforts of the walk model in general and specific modeling of the now available 

incline and loaded walking data continue.  Our initial efforts have been reasonably 

positive for the prospect of successful extension of our height-weight-speed model to 

graded and loaded conditions. 

4) Significant progress has been made on a new manuscript involving a rigorous test of the 

height-weight-speed model. 

5) Preparations for field testing have progressed.   These include a site visit by Project 

Officer William Santee in August during which the course was visited and evaluated.  

Plans for a minor protocol adjustment were also discussed. 

6) A protocol amendment involving a slight modification of the field test was submitted for 

and approved by the SMU IRB.   
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7) The approved amendment was provided to HRPO from whom we received notification 

that no further action on the protocol adjustment is needed. 

8) The treadmill running tests to meet grant objective 2 were also modified to require fewer 

sessions. 

9) A new motion capture system was implemented and integrated with the force treadmill 

for simultaneous force and motion data acquisition. 

10) Work has continued on our mechanics model that links running ground reaction forces 

and motion. 
 

 

October 2014 - January 2015 

 

1) The unloaded portion of the laboratory testing for objective 1 was completed during the 

last quarterly period. 

2) Modeling efforts are now being extended to include the unloaded treadmill walking data 

which are being screened and finalized as incorporated into our modeling spreadsheets. 

3) Technical work to introduce and validate a new motion capture data acquisition system 

into our existing force treadmill was completed to support objective 2.  Some custom 

programming was necessary to avoid marker occlusion under loaded conditions. 

4) Technical work was conducted on our in-ground force-motion data system. 

5) Objective 2 treadmill testing has continued. 

6) Preparations for field testing for objective 1 also continue. 

7) Manuscript preparation of our most recent level walking metabolism modeling effort 

continues. 

8) Work has continued on our mechanics model that links running ground reaction forces 

and motion. 

 

January - March 2015 

 

1) The laboratory portion of the objective 1 work has been completed Modeling of the data  

for algorithm determination has begun. 

2) Specific modeling to extend the level algorithm to include load and grade is underway.  

3) Field testing preparations have continued. Pilot testing of the walking course has begun.  

GPS survey and course data has been acquired.  

4)  Testing on objective 2, loaded running has continued.  

5)  Manuscript preparations of our most recent level walking metabolism modeling effort 

have continued. Two manuscripts were submitted  

6)  Work has continued on our mechanics model that links running ground reaction forces 

and motion.  
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Figure 2. Mass-specific rates of O2 uptake (mls/kg •min) vs. walking speed (m/s) on different grades with 
and without load.  
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Figure 3. Mass-specific rates of O2 uptake (mls/kg •min) vs. walking speed (m/s) on different grades with 
and without load (as of April 2015).  

 

 

April 2015 - July 2015 

 

1) Modeling of the data for algorithm determination for objective 1 continued.  Specific 

modeling to extend the level algorithm to include load and grade began. 

2) Field testing of the algorithm for objective 1 began.  We completed 4 unloaded field trials 

and one pilot loaded trial.  The course was finalized and includes varied terrain as well as 

up and downhill slopes of consistent grade. 

3) Testing on objective 2, loaded running continued.  The treadmill portion of the testing 

was nearly completed.  Field tests of overground acceleration testing commenced and 

were nearly completed.  

4) Two manuscripts are in press, a third was revised for submission to a new journal. 

5) Work has continued on our mechanics model that links running ground reaction forces 

and motion.  Substantial progress has been made on the mechanical basis of the 

horizontal component of the ground reaction force. 

 

July 2015 – October 2015 

 

1) Modeling of the data for algorithm determination for objective 1 continued.  Specific 

modeling to extend the level algorithm to include load and grade was underway. 

2) Our large laboratory data sets have been organized to allow both best-fit and cross-

validation modeling of speed, load, and grade.   
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3) Field testing of the algorithms developed for objective 1 began.  We enrolled and tested 

subjects to complete the lab and field testing needed for algorithm validation. 

4) As part of object the field testing, we tested our portable vs. laboratory metabolic units to 

be sure we have accurately quantified any system differences that will directly influence 

field validations. 

5) Testing on objective 2, loaded running was completed.  In the last quarter, both the 

treadmill and overground running tests were finished. 

6) An editorial manuscript on sprint running acceleration published.   

7) Our manuscript which further developed our level walking metabolism algorithms was 

prepared for submission to the Journal of Applied Physiology. 

8) Work has continued on our mechanics model that links running ground reaction forces 

and motion.  Substantial progress was made on the mechanical basis of the horizontal 

component of the ground reaction force. 

9) With the running load data now fully acquired, we began using the load condition to test 

our existing model. 

 

Oct 2015 – Jan 2016  

 

1) Modeling of the data for algorithm determination for objective 1 continued after 

finalization and organization of the data in the prior quarter.  Specific modeling to extend 

the level algorithm to include load and grade began. 

2) Modeling objectives include expanding our Height-Weight-Speed algorithms to load, 

grade and terrain.  We are also testing the expanded version vs. other predictive models. 

3) Field testing of the algorithms developed for objective 1 continued. 

4) As part of object the field testing, we tested our portable vs. laboratory metabolic units to 

be sure we have accurately quantified any system differences that will directly influence 

field validations. 

5) Our annual service calibration of our portable metabolic system was completed at the end 

of the end of the quarter. 

6) Testing on objective 2, loaded running was completed in the 4th quarter of 2015.  Analysis 

of the data began. 

7) A manuscript on loaded running mechanics was prepared for the upcoming Body Sensor 

Network conference. 

8) Work has continued on our mechanics model that links running ground reaction forces 

and motion.  

9) With the running load data now fully acquired, we began using the load condition to test 

our existing model. 

 

Jan 2016 – April 2016 

 

1) Field testing of loaded and unloaded walking metabolism continued. 

2) Modeling of the laboratory data base for walking metabolism for objective 1 continued 

3) Modeling efforts on our loaded running mechanics data for objective 2 continued 

4) Two manuscripts were prepared and submitted for the upcoming IEEE Body Sensor 

Network conference in June. 
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5) An original manuscript on the relationship between running force and motion was 

prepared and submitted to the Journal of Experimental Biology. 

 

April 2016 - July 2016 

 

1) Field testing of loaded and unloaded walking metabolism continued. 

2) Modeling of the laboratory data base for walking metabolism for objective 1 continued 

3) Modeling efforts on our loaded running mechanics data for objective 2 continued 

4) Two manuscripts were prepared for the upcoming IEEE Body Sensor Network 

conference in June. 

5) An original manuscript on the relationship between running force and motion was 

prepared and submitted to the Journal of Experimental Biology. 

6) A new version of our level walking metabolic model published in the Journal of Applied 

Physiology. 

7) Scientific American visited for the laboratory for two days to shoot and interview for an 

upcoming feature story on running performance to appear in a summer issue of the 

magazine. 

 
July 2016 – October 2016 

 
1) Field testing of loaded and unloaded walking metabolism continued. 

2) Additional laboratory testing for declined surfaces was undertaken.  Field tests for 

quantifying the influence of terrain were planned. 

3) Modeling of the laboratory data base for walking metabolism for objective 1 continued. 

4) Modeling efforts on our loaded running mechanics data for objective 2 continued. 

5) Two manuscripts from the upcoming IEEE Body Sensor Network conference in June 

were accepted for publication. 

6) An original manuscript on the relationship between running force and motion was revised 

for imminent resubmission to the Journal of Experimental Biology. 

7) Our new level walking metabolic model that published in the Journal of Applied 

Physiology received media coverage from a number of media outlets. 

8) Scientific American visited for the laboratory for two days to shoot and interview for an 

upcoming feature story on running performance to appear in a summer issue of the 

magazine. 

9) Two subjects were tested during the last quarter, undergoing the complementary field and 

lab testing protocol. 

10) Objective 2 testing on loaded running continues in the analysis phase. 

11) Two IEEE manuscripts were presented at the Body Sensor Network Conference in San 

Francisco in June in preparation: one on loaded running and one on the metabolic cost of 

loaded walking.    

12) Two manuscripts were accepted for publication in IEEE Engineering and Medicine in 

Biology. 

13) One manuscript was revised for resubmission to the Journal of Experimental Biology. 
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Oct 2016 – Jan 2017 

 

1) Laboratory testing for extreme declines on a subset of subjects was completed. 

2) Analysis of field testing of loaded and unloaded walking metabolism continued. 

3) Additional field sites for field testing for terrain and flatter surface trials have been 

identified. 

4) Modeling of the laboratory data base for walking metabolism for objective 1 continued. 

5) Modeling efforts on our loaded running mechanics data for objective 2 continued. 

6) An original manuscript on the relationship between running force and motion was 

resubmitted and accepted at the Journal of Experimental Biology  

7) Preparation of a manuscript that presents our expanded, generalized model of walking 

metabolism has continued. 

8) An analysis of standing metabolism is underway for a more in-depth understanding of the 

metabolic requirements for postural support. 

 

 

January 2017 - April 2017 

 

1) Manuscript preparation with ongoing analysis of the laboratory algorithm for walking 

metabolism took place. 

2) Continued analysis of field data trials continued.  This included smoothing of the GPS 

data and interpretation of the Cosmed portable metabolic system data. 

3) Declined metabolic efforts continued. 

4) Analysis of loaded running continued.  

 

 

April 2017 - July 2017 

 

1) Laboratory testing for extreme declines on an expanded subset of subjects has been 

identified as a need.  Recruiting has commenced. 

2) Analysis of field testing of loaded and unloaded walking metabolism has continued. 

3) Modeling of the laboratory data base for walking metabolism for objective 1 continued. 

4) Modeling efforts on our loaded running mechanics data for objective 2 continued. 

5) Preparation of a manuscript that presents our expanded, generalized model of walking 

metabolism has continued and continued. 

6) An analysis of standing metabolism is underway for a more in-depth understanding of the 

metabolic requirements for postural support continues. 

 
July 2017 – October 2017 

 
1) Analysis of field testing of loaded and unloaded walking metabolism has continued. 

2) Modeling efforts on our loaded running mechanics data for objective 2 continued. 

3) Preparation of a manuscript that presents our expanded, generalized model of walking 

metabolism has continued and continued. 

4) Revision of our manuscript on predicting walking metabolism commenced after receiving 

reviews of the first submission. 
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5) Preparation of a provisional patent on our method of predicting walking energy 

expenditure is also in progress. 

 

Oct 2017 – Jan 2018 

 

1) Analysis of field testing of loaded and unloaded walking metabolism has continued. 

2) Modeling efforts on our loaded running mechanics data for objective 2 continued. 

3) A manuscript reporting our field testing of our walking metabolic model is in progress. 

4) Analysis of stride mechanics data to assess the mechanical basis of our walking model 

has been engaged as a first part of a comprehensive evaluation. 

5) A footwear test of our running mechanics model is being analyzed. 

6) A video abstract of our November J Applied Physiology manuscript was completed and 

published online. 

 

January 2018 - April 2018 

 

1) Analysis of field testing of loaded and unloaded walking metabolism has continued. 

2) Modeling efforts on our loaded running mechanics data for objective 2 continued. 

3) A short manuscript using our running mechanics model to predict impact forces has been 

prepared, submitted and accepted at Current Issues in Sport Sciences. 

4) A manuscript reporting our field testing of our walking metabolic model is in progress. 

5) Reduction of stride mechanics data to assess the mechanical basis of our walking model 

has been completed.  This required time-extensive quantification of foot-ground contact 

and stride times from 21 subjects on six grades under three load conditions. This will 

allow the mechanical basis of our model predicting walking metabolic rates to be 

assessed via ongoing analysis. 

6) A footwear test of our running mechanics model is being analyzed. 

7) A manuscript modeling the mechanics of maximal acceleration during running is now in 

progress. 

 

 

April 2018 - July 2018 

 

In the last quarterly period: 

1) Analysis of field testing of loaded and unloaded walking metabolism has continued. 

2) Modeling efforts on our loaded running mechanics data for objective 2 continued. 

3) A manuscript reporting our field testing of our walking metabolic model is in progress. 

4) Reduction of stride mechanics data to assess the mechanical basis of our walking model 

has been completed.  This required time-extensive quantification of foot-ground contact 

and stride times from 21 subjects on six grades under three load conditions. This will 

allow the mechanical basis of our model predicting walking metabolic rates to be 

assessed via ongoing analysis. 

5) A footwear test of our running mechanics model has been submitted to the journal of 

Royal Society Interface. 

6) A manuscript modeling the mechanics of maximal acceleration during running has been 

submitted to the journal of biomechanics. 
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August 2018 – April 2019 

 

In the last quarterly period: 

1) Analysis and modeling of loaded and unloaded walking metabolism has continued. 

2) Modeling efforts on our loaded running mechanics data for objective 2 continued.  We 

are currently analyzing the effect of loading condition on ground force application to 

identify the determinants of the mechanics runners adopt under load conditions. 

3) A manuscript reporting our field testing of our walking metabolic model continues to 

progress. 

4) Analysis of our walking stride mechanics data for integration with our metabolic model 

has also continued. 

5) A footwear test of our running mechanics model has been revised and resubmitted to the 

Journal of Applied Physiology. 

6) A manuscript modeling the mechanics of maximal acceleration during running is being 

revised for resubmission to the journal of biomechanics and is currently in revision. 

 

 

 

 

 

 

 

 

 

 
 

REPORTABLE OUTCOMES 

 

Reportable outcomes follow directly from the key accomplishments listed for each quarter above. 

 These were: 

 

April 2014 – April 2015 

 

1. We enrolled and tested 43 research subjects.  Of these, 14 withdrew.  Eleven of the 

withdrawals were voluntary, three were screen failures. 

2. One hundred and eighty-eight test sessions were completed. 

3. Nearly all of the loaded laboratory data acquisition for loaded walking was completed. 

4. A portion of the loaded treadmill running data acquisition has been completed. 

5. We have begun recruiting subjects for the unloaded portion of the treadmill walking 

protocol. 

6. The data acquisition systems for the over-ground loaded running tests were set-up and 

validated.  These preparations required hundreds of hours of technical work on force plate 

systems, motion capture systems, and timing systems. 

7. The protocol for the loaded treadmill running tests has been modified to reduce the 

number of test sessions required. 
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8. The elaborate preparations needed to undertake the field walking studies were begun.  

These have included the refurbishing of our portable metabolic unit, the identification of 

field site, the identification of a GPS system that provides both vertical and horizontal 

position data. 

9. Two manuscripts were accepted for publication: one each in the Journal of Applied 

Physiology and Journal of Experimental Biology. 

10. An additional manuscript on our walking metabolism is in progress. 

 

 

April 2015 – April 2016 

 

1. We enrolled and tested 68 research subjects.  Of these, 16 withdrew.  Thirteen of the 

withdrawals were voluntary, three were screen failures. 

2. Three hundred and thirty-two test sessions have completed to date. 

3. All of the loaded laboratory data acquisition for loaded and unloaded walking has been 

completed. 

4. Most of the loaded treadmill running data acquisition has been completed. 

5. Overground running testing has been scheduled. 

6. The preparations needed to undertake the field walking studies have been completed.  

Preliminary field testing has begun. 

7. One manuscript has been accepted for publication in the IEEE Biology and Medicine 

section.  One was accepted and was published in the Journal of Experimental Biology. 

8. One manuscript has been submitted to the American Journal of Physiology. 

9. An additional editorial manuscript has been submitted to the Scandinavian Journal of 

Medicine and Science in Sports. 

10. Supported Personnel: Lindsay Ludlow, Jennifer Nollkamper, Kenneth Clark and Peter 

Weyand. 

 

 

April 2016 – April 2017 

 

1. Two subjects and ten field trials were tested during the last quarter.  Eighteen test 

sessions were completed on the subjects enrolled. 

2. Objective 2 testing on loaded running is no in the analysis phase. 

3. Our level walking model manuscript published in the March issue of the Journal of 

Applied Physiology. 

4. Two IEEE manuscripts are in preparation: one on loaded running, one of walking energy 

expenditure.    

5. Two manuscripts were accepted for publication in IEEE Engineering and Medicine in 

Biology. 

6. One manuscript was submitted to IEEE Journal of Biomedical and Health Informatics 

7. Two subjects were tested during the last quarter, undergoing the complementary field and 

lab testing protocol. 

8. Objective 2 testing on loaded running continues in the analysis phase. 
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9. Two IEEE manuscripts were presented at the Body Sensor Network Conference in San 

Francisco in June in preparation: one on loaded running and one on the metabolic cost of 

loaded walking.    

10. Two manuscripts were accepted for publication in IEEE Engineering and Medicine in 

Biology. 

11. One manuscript was revised for resubmission to the Journal of Experimental Biology. 

12. Two subjects were tested to measure the metabolic requirements of walking on a series of 

steep declines.  

13. Objective 2 testing on loaded running continues in the analysis phase. 

14. Experimental plans and field sites have been identified to evaluate terrain influences and 

for field validations for loaded and unloaded trials on relatively flatter courses. 

15. Two invention disclosures were submitted to SMU’s Office of Research Administration. 

16. One manuscript was accepted and is now in press at the Journal of Experimental Biology. 

17. One manuscript is in preparation for submission to the Journal of Applied Physiology. 

18. The laboratory work and algorithm continued in preparation for manuscript submission. 

19. Analysis of loaded running data continued. 

20. Analysis of field data and early stages of manuscript preparation began. 

21. One invited lecture was delivered at the American College of Sports Medicine national 

conference in May. 

 

 

April 2017 - July 2017 

 

1. A manuscript introducing our multi-conditional model of walking metabolism was 

revised and re-submitted to the Journal of Applied Physiology.  

2. Objective 2 testing on loaded running continues in the analysis phase. 

3. Two invention disclosures were submitted to SMU’s Office of Research Administration. 

4. A provisional patent for a method for predicting walking metabolism continues to be 

prepared. 

5. An invited keynote lecture on locomotor performance was delivered at the meeting of the 

International Society for Biomechanics in Sports. 

6. Our walking metabolism manuscript was accepted and is in press at the Journal of 

Applied Physiology.  A copy of the manuscript has been submitted with this report. 

 

April 2017 – April 2018 

 

1. A manuscript introducing our multi-conditional model of walking metabolism was 

accepted and has published at the Journal of Applied Physiology.  

2. Objective 2 testing on loaded running continues in the analysis phase. 

3. Two invention disclosures were submitted to SMU’s Office of Research Administration. 

4. A provisional patent for a method for predicting walking metabolism has been submitted. 

5. Work on our running mechanics model has continued. 

6. Data acquisition for downhill walking metabolism has continued to support our field 

validation effort. 

7. Objective 2 testing on loaded running continues in the analysis phase. 

8. Kinematic data analysis of our loaded walking data set has been completed. 
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9. Work on our running mechanics model has continued. 

10. Model comparisons for our field walking trials are being implemented and analyzed as 

part of our manuscript preparation process. 

11. Some acquisition of downhill walking data continues to finalize recommendations for 

field uses of our walking model. 

 

April 2018 – April 2019 

 

1. Objective 2 testing on loaded running continues in the analysis phase. 

2. Kinematic data analysis of our loaded walking data set has been completed allowing 

integration of the stride mechanics data with our walking metabolic rate model (see 

Figure 1 below for data from one subject).  

3. Work on our running mechanics model has continued. 

4. Model comparisons for our field walking trials are being implemented and analyzed as 

part of our manuscript preparation process. 

5. Some acquisition of downhill walking data continues to finalize recommendations for 

field uses of our walking model. 
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CONCLUSIONS 

 

Per the above reporting on outcomes and publication, we have met the objectives of the grant to 

develop and validate a new walking energy expenditure model that predicts walking metabolic 

rates across a broad range of speed, grade and load conditions. We have also developed and 

tested our running gait mechanics model that predicts all-out running speeds on the basis gait 

mechanics and ground force as well as duration.  The work published has received significant 

international attention in the scholarly literature and popular media as well. 
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Sensor-based predictions for walking energy expenditure 
require sufficiently versatile algorithms to generalize to a variety of 
conditions.  Here we test whether our height-weight-speed (HWS) 
model validated across speed under level conditions is similarly 
accurate for loaded walking.  We hypothesized that increases in 
walking energy expenditure would be proportional to added load 
when resting metabolism was subtracted from gross walking 
metabolism.  After subtracting resting metabolic rate, walking 
energy expenditure was found to increase in direct proportion to 
load at walking speeds of 0.6, 1.0, and 1.4 m·s-1.  With load carriage 
treated as body weight, the predictive algorithms derived using the 
HWS model were similar for loaded and unloaded conditions.  
Determination of the direct relationship between load and energy 
expenditure for level walking provides insight which may be used to 
refine algorithms, such as the HWS model, for use in body sensors 
to monitor physiological status in the field.  

Keywords—load carriage, sensors, generalized equation, 
algorithm, metabolism 

I. INTRODUCTION  
Prediction and monitoring of whole-body energy 

expenditure depends heavily on the accuracy of the algorithms 
utilized.  For individuals at rest, algorithms that accurately 
predict metabolic rates from body size, sex, and age have been 
established for decades [1].  For individuals during locomotion, 
however, the algorithms currently available are not 
equivalently accurate [2,3].  Prediction of the latter is 
considerably more difficult because of the many factors that 
influence the extent to which whole-body metabolism is 
elevated during locomotion.  These include but are not limited 
to: height, weight, speed, grade, terrain, and load carriage. 

Recent work indicates that whole-body locomotor 
metabolism can be predicted accurately under certain 
controlled conditions.  Specifically, we found that walking 
metabolic rates on firm, level surfaces could be predicted to 
within 8% if the height, weight, and speed of the walker are 
known.  Thus, under these controlled conditions, sensors 
capable of [4,5] providing walking speed could be used in 
conjunction with height and weight to accurately estimate 
whole-body metabolic rates.  Here, under the same conditions, 
we test whether our existing HWS algorithm can similarly 
describe walking metabolic rates when torso loads are carried. 

Theoretically, the existing HWS model might accurately 
account for loaded metabolic rates if the added load is treated 

as additional body weight in the existing equation.  A critical 
issue for considering this possibility is the method used to 
partition the body’s total metabolic rate into resting vs. walking 
portions.  A common approach has been to subtract a standing 
metabolic rate to represent the resting component [7,8].  
However, during quiet standing, metabolic rates have been 
reported to be 1.15 – 1.5 times greater than those obtained 
during a traditional supine resting measurement (RMR) 
[8,9,10,11,12,13].  The variability in standing metabolic rates 
may explain some of the inconsistency thus far reported in the 
metabolic responses to walking with loads when the former is 
the baseline quantity subtracted.  While the general consensus 
has been that metabolic rates increase in proportion to the load 
carried, results have been somewhat variable [12,14,15].     

Here, we used the elevations in locomotor metabolic rates 
introduced by load carriage as an experimental tool for two 
purposes.  Our first objective was to investigate whether the 
elevations in locomotor metabolic rates (gross – supine rest) 
would be directly proportional to loads added to the torso.  A 
direct relationship would allow the influence of added loads on 
locomotor metabolism to be more easily predicted and 
modeled.  After quantifying the relationship between walking 
energy expenditure and load, our second objective was to 
determine if the HWS model would accurately predict 
unloaded and loaded metabolic rates.  If so, the HWS model 
would provide a robust algorithm for sensor development with 
potential to determine walking metabolic rate under multiple 
conditions.  We specifically tested the following corresponding 
hypotheses.  First, we hypothesized that the net energy 
expended while walking (gross – supine rest) would increase in 
direct proportion to the load carried.  Second, we hypothesized 
that the independent equations derived in the form of the HWS 
model would be similar for loaded and unloaded conditions. 

II. METHODS 

A. Experimental Design 
To test whether locomotor energy expenditure increases in 

proportion to added torso load we measured metabolic rate 
under three conditions: unloaded (i.e. body weight only, Wb), 
and two added load conditions equaling 1.17 Wb, and 1.31 Wb.  
We utilized metabolic data acquired from all three load 
conditions, as well as metabolic rates during supine rest and 
quiet standing, to assess the influence of the baseline quantity 
subtracted.  Using supine rest as our baseline subtraction 
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quantity, we assessed whether walking metabolic rates 
increased in direct proportion to the loads carried.  

B. Subjects 
Ten volunteer subjects, 5 male and 5 female (means ± 

SEM, age = 29.6 ± 1.4 years, height = 171.6 ± 2.2 cm, mass = 
67.0 ± 2.9 kg) participated in the study after providing written 
informed consent in accordance with the Institutional Review 
Board of Southern Methodist University.  All subjects were 
healthy and did not have cardiovascular risk factors as a 
contraindication for exercise according to the guidelines set 
forth by the American College of Sports Medicine.  Subjects 
reported to the laboratory on eight different days for testing 
sessions consisting of a VO2max test, 6 sessions of loaded and 
unloaded walking, and a final session for measurement of 
metabolic rate during supine rest, and quiet standing.  For the 
final session, subjects were instructed to arrive at the laboratory 
immediately after waking, to avoid exercise prior to testing and 
refrain from eating and caffeine use for eight hours prior.     

C. Gross Metabolic Rates 
Metabolic rates were determined from indirect calorimetry 

through the measurement of expired gases during supine 
resting, quiet standing, and walking at three different treadmill 
speeds and under three different load conditions (no load, 
~15% of body weight, ~30% of body weight) using a 
computerized metabolic system (Parvo Medics TrueOne 2400, 
Sandy, UT, USA).  A one-way breathing valve and tubing 
were used to collect expired gases and direct flow through a 
pneumotach, which measured volume flow rates, and into a 
mixing chamber.  Aliquots of expired air were sampled from 
the mixing chamber and analyzed for O2 and CO2 fractions 
using paramagnetic and infrared gas analyzers, respectively.  
Data were collected continuously, with rates of oxygen uptake 
averaged over a two minute period under steady-state 
conditions.  Resting metabolic rates were determined from the 
lowest 10-minute average during a 30-minute, supine resting 
trial.  The lowest five minute average during the final 10 
minutes of a 15-minute trial was used to determine standing 
metabolic rate. 

D. Treadmill Testing Protocol 
Walking bouts were conducted on a level treadmill at 

speeds of 0.6, 1.0, and 1.4 m·s-1.  All speeds were completed 
under the following loaded conditions: unloaded, carrying 
~15% body weight, and carrying ~30% bodyweight.  Subjects 
were weighed on their first visit to the laboratory and assigned 
a loading scheme based on their weight rounded to the nearest 
ten pound increment.  Therefore the exact percentage of body 
weight carried varied slightly from 15% and 30% for some 
subjects, with the average actual percent body weight across 
the 10 subjects coming out to 17% and 31% for the two 
different load carriage conditions.  For the loaded trials, weight 
was carried both on the front in a vest and on the back in a 
backpack and was symmetrically distributed about the torso.  
For each condition, walking trials lasted for five minutes to 
ensure that the final two minutes were under steady-state 
conditions.  All loaded conditions and walking speeds were 
repeated on two separate days, and the average of the steady-
state values from the two trials was taken to determine gross 
energy expenditure.    

E. Relationship Between Load and Metabolic Rate 
Net metabolic rate was calculated by subtracting supine 

resting energy expenditure from gross energy expenditure 
while walking.  In order to determine whether metabolic rate 
increases in direct proportion to the mass of the load carried we 
calculated the ratio of energy expenditure while loaded    
(Emetab L) to energy expenditure unloaded (Emetab U) at all 
walking speeds for both gross and net metabolic rates.  We 
then plotted these values against the ratio of total mass (MTotal) 
to body mass (MBody) for each walking speed.   

F. Height-Weight-Speed Model Equation Derivations  
Walking metabolic rates were estimated using the 

previously published HWS model [6].  The HWS model is 
comprised of three components: a resting metabolic rate 
(RMR), a minimum walking metabolic rate which is modeled 
as a multiple of RMR, and a speed-dependent metabolic rate, 
as shown by equation 1 below.    

VO2 = RMR + C1·RMR + C2·V2·height-1       (eq. 1) 

All of the terms for the HWS model were derived and are 
reported in mass-specific units of oxygen uptake in ml∙kg-

1∙min-1.  However, illustrated metabolic rates are presented in 
SI units (W∙kg·-1).  

 For the present study, the coefficients C1 and C2 were 
derived to obtain a best fit to the data set.  Optimized 
coefficients were obtained for the unloaded and loaded 
conditions alone, as well as with the unloaded and loaded 
conditions combined.  The optimizer function in Excel was 
used to determine the values of C1 and C2 such that the sum 
squared error was minimized.  The Excel optimizer (Microsoft 
Excel Solver, Excel 2010 version) was chosen due to its ability 
to optimize a coefficient while holding other values (resting 
metabolic rate, walking speed, and subject height) constant 
[16].  Once the forms of the equations were derived they were 
used to describe walking metabolic rates for each subject 
across all walking speeds and load conditions.  The R2 values 
for measured versus predicted values, as well as the standard 
error of estimate (SEE) were calculated for each equation.  An 
accurate model fit was evaluated using the criteria of a value 
for SEE of less than 10% of the grand mean.  

III. RESULTS 

A. Gross Metabolic Rates 
The mean standing metabolic rate was 1.1 times greater 

than the mean for supine rest (1.16 ± 0.03 vs. 1.27 ± 0.04 
W·kg-1; Fig. 1).  Between-subject variability was appreciable, 
with standing values ranging from 1.03 to 1.19 times greater 
than respective supine resting values.  The difference between 
metabolic rate during supine rest and during quiet standing 
varied for most, but not all subjects, as several subjects had 
essentially the same values under the two conditions (Fig. 2).  

Walking metabolic rates increased across walking speeds 
under all three load conditions (Fig. 1).  Further, load carriage 
resulted in an increase in walking energy expenditure at all 
walking speeds that was in direct proportion to the load carried 
(Fig. 1). 
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Fig. 1. Mass-specific gross metabolic rate (Emetab) increases with walking 
speed under all three load conditions.  Emetab is plotted for walking without 
load, walking with a load equal to ~17% of body weight, and with a load of 
~31% of body weight.  On the y-axis, the value for kilograms includes the 
weight of the subject plus the weight of the load carried (kgtotal

-1).  Metabolic 
rate during quiet standing and during supine rest are depicted as constants.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 2. Individual mass-specific gross metabolic rates (Emetab) during supine 
rest and quiet standing.  Subjects are represented on the graph in ascending 
order of body mass from 52.2 to 82.8 kg. 
 

B. Relationship Between Load and Metabolic Rate 
Across all walking speeds, increases in gross metabolic 

rates in the loaded conditions were not proportional to the 
loads carried (Fig. 3).  However, increases in net walking 
metabolic rates under loaded conditions were almost exactly 
proportional to the load carried as hypothesized. When 
subtracting energy expenditure for supine rest to calculate net 
metabolic rate, we found that walking energy expenditure 
increased in proportion to load carried across all three walking 
speeds (Fig. 3).  For example, at 1 m·s-1, when subjects carried 
a load that was 31% greater than their body weight, gross 
metabolic rate only increased by 19%, whereas net metabolic 
rate increased by 29%.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 3. Net metabolic rate increases in direct proportion to load carried.  Panels 
A-C depict the ratio of metabolic rate while carrying load (Emetab L) to metabolic 
rate while unloaded (Emetab U) plotted against the ratio of total mass (body mass 
+ load; MTotal) to body mass (Mbody).  Gross metabolic rate and net metabolic 
rate are plotted for walking speeds of 0.6 (Panel A), 1.0 (Panel B), and 1.4 m·s-1 

(Panel C).  The diagonal line indicates direct proportionality between the X and 
Y values such that metabolic rate is proportional to the mass of the load carried. 

C. HWS Model Predictions of Walking Energy Expenditure 
The optimized HWS model coefficients for the unloaded, 

loaded, and all three load conditions combined appear in Table 
1.  The unloaded, loaded, and combined loaded and unloaded 
model derivations produced similar values for both coefficients 
in the HWS model equation.  Further, using the three 
optimized equations to provide best fits of the data produced 
similar values for R2 and standard error of estimate (SEE).  For 
the optimized HWS model on the unloaded data, an R2 of 0.91 
and SEE of 0.52 mls O2∙kg-1∙min-1 were attained (Table 1).  For 
the loaded data, the optimized equation resulted in a best fit 
with an R2 of 0.85 and SEE of 0.72 mls O2∙kg-1∙min-1 (Table 1).  
When loaded and unloaded conditions were combined, the 
optimized HWS model fits produced an R2 of 0.84 and SEE of 
0.74 mls O2∙kg-1∙min-1 (Table 1).  For all three equations, the 
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SEE was less than 10% of the grand mean, thus meeting our 
criteria for model accuracy,  

 
Table 1. Empirical Derivations of the Height-Weight-Speed Model Equation 
with all metabolic units, including SEE, expressed in mls O2∙kg-1∙min-1.    
 

IV. DISCUSSION 
Our first finding was that the energy expended for level 

walking, when determined as the quantity: (gross – supine 
rest), increases in direct proportion to the load carried.  We 
found direct proportionality across all three speeds and the two 
load conditions we tested.  This finding is of particular 
importance as it allows for added torso load to be directly 
incorporated into predictive algorithms for walking 
metabolism.  Second, as hypothesized, we found that the HWS 
model provided accurate descriptions of walking metabolic rate 
both with and without load.  The independent equations 
derived in the form of the HWS model for loaded and unloaded 
conditions (Table 1) were nearly identical. 

A. Baseline Subtractions 
Metabolic rates measured during quiet standing are 

commonly utilized as a baseline subtraction quantity in order to 
determine net walking metabolic rates.  However, the typical 
elevations observed in the energy expended in the standing vs. 
supine resting condition (Fig. 1) seem likely to result from the 
muscular activation required for postural support [17,18,19].  
Accordingly, standing metabolism seems unlikely to generally 
represent the body’s true resting metabolic rate.  Moreover, 
subtracting standing rates from the gross metabolic rates 
measured during walking risks subtracting out a portion of the 
metabolic energy expended to support the body’s weight 
against gravity while walking.  In light of the substantial 
evidence of a relationship between weight supported and 
walking energy expenditure across studies of load carriage 
[12,14,15], obesity [11], and weight loss [20] the use of 
standing metabolic rate as a standard baseline subtraction 
measure should be carefully considered in accordance with 
experimental objectives.  If the objective is the most valid 
partitioning of the resting vs. walking portions of the body’s 
gross locomotor metabolic rates, our results suggest supine 
resting values are likely to provide a more valid baseline 
quantity than quiet standing for doing so. 

The above conclusion is based in part upon the individual 
variability observed in standing metabolic rate values.  When 
our measured standing values were expressed in relation to 
supine resting values, the elevations observed for different 
individuals ranged from 1.03 to 1.19 times the latter value.  
The variability observed raises the possibility that quiet 
standing may include a skill component that influences the 
extent of the elevations observed above supine rest.  At 
present, the correct interpretations of measured standing 
metabolic rates, both in general and as a baseline subtraction 
quantity, are not fully clear.  

B. Load Carriage and Energy Expenditure 
As hypothesized, we found that walking metabolic rates 

(gross - supine rest) increased in close proportion to the loads 
carried and regardless of speed.  Across the three speeds and 
two loading conditions included here, the mean deviation from 
the direct proportionality expected was 1.6 ± 0.85%.  Others 
have reported previously that when net metabolic rates are 
determined by subtracting standing metabolism from gross 
walking metabolism, metabolic rate to increase in a fashion 
that is greater than proportional to load carriage [12].  We 
found the standing metabolic rate values to be larger than 
resting metabolic rate, thus load-induced increases in metabolic 
rate would also be greater than the added load using the 
standing metabolic rate subtraction.  Our data are consistent 
with a multitude of prior experimental results indicating that 
the primary determinant of locomotor metabolic rates is the 
weight that must be supported against gravity, whether the 
body’s weight only or the body’s weight plus an external load 
[21,22]. 

C. Estimating Walking Energy Expenditure 
While numerous equations have been derived to predict 

walking energy expenditure, the accuracy many of these 
equations under conditions such as load carriage is not known 
[6].  Predictive accuracy is of critical importance in order for 
algorithms for walking energy expenditure to be incorporated 
into sensor technologies.  In the set of ten subjects presented 
here, the optimized HWS model provides accurate (SEE < 
10% of grand mean) descriptions of walking metabolism 
across a range of walking speeds both with and without load 
carriage.  Our data indicate that the HWS model is an 
attractive candidate for use in body sensor devices to estimate 
walking energy expenditure. 

D. Conclusions and Recommendations 
Our results indicate that level walking metabolic rates 

increase in close proportion to added torso loads across a range 
of speeds and loads up to nearly one-third of the body’s 
weight.  This finding should simplify the incorporation of torso 
loads into predictive equations for sensor-based and other field 
applications.  Accurate determination of the relationship 
between load carriage and energy expenditure is of particular 
military importance to predicting and monitoring the 
performance of soldiers in the field, and also for the general 
population seeking accurate methods for quantifying energy 
expenditure during exercise that involves load carriage (e.g. 
weighted vest, backpacking).  Additional efforts will be needed 
to expand predictive capabilities to include additional load, 
grade and terrain conditions. 
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Ludlow LW, Weyand PG. Energy expenditure during level hu-
man walking: seeking a simple and accurate predictive solution. J
Appl Physiol 120: 481–494, 2016. First published December 17,
2015; doi:10.1152/japplphysiol.00864.2015.—Accurate prediction of
the metabolic energy that walking requires can inform numerous
health, bodily status, and fitness outcomes. We adopted a two-step
approach to identifying a concise, generalized equation for predicting
level human walking metabolism. Using literature-aggregated values
we compared 1) the predictive accuracy of three literature equations:
American College of Sports Medicine (ACSM), Pandolf et al., and
Height-Weight-Speed (HWS); and 2) the goodness-of-fit possible
from one- vs. two-component descriptions of walking metabolism.
Literature metabolic rate values (n � 127; speed range � 0.4 to 1.9
m/s) were aggregated from 25 subject populations (n � 5-42) whose
means spanned a 1.8-fold range of heights and a 4.2-fold range of
weights. Population-specific resting metabolic rates (V̇O2rest) were
determined using standardized equations. Our first finding was that the
ACSM and Pandolf et al. equations underpredicted nearly all 127
literature-aggregated values. Consequently, their standard errors of
estimate (SEE) were nearly four times greater than those of the HWS
equation (4.51 and 4.39 vs. 1.13 ml O2·kg�1·min�1, respectively). For
our second comparison, empirical best-fit relationships for walking
metabolism were derived from the data set in one- and two-compo-
nent forms for three V̇O2-speed model types: linear (�V1.0), exponen-
tial (�V2.0), and exponential/height (�V2.0/Ht). We found that the
proportion of variance (R2) accounted for, when averaged across the
three model types, was substantially lower for one- vs. two-compo-
nent versions (0.63 � 0.1 vs. 0.90 � 0.03) and the predictive errors
were nearly twice as great (SEE � 2.22 vs. 1.21 ml O2·kg�1·min�1).
Our final analysis identified the following concise, generalized equa-
tion for predicting level human walking metabolism: V̇O2total �
V̇O2rest � 3.85 � 5.97·V2/Ht (where V is measured in m/s, Ht in
meters, and V̇O2 in ml O2·kg�1·min�1).

walking economy; generalized equation; algorithm; exercise metabo-
lism; wearable sensors

THE METABOLIC ENERGY THAT WALKING requires can be accurately
measured, but it is difficult to predict in the absence of direct
measurement. Two factors have prompted extensive efforts to
develop predictive equations: the fundamental importance of
walking metabolism to the body’s health, fitness, and physio-
logical status, and the impracticality of direct measurement
under most circumstances. The large majority of the many
predictive equations that currently exist were developed on
small, homogeneous populations using best-fit approaches.
This includes the two leading standardized equations (3, 36)
that have been heavily used since their original formulations

decades ago. Accordingly, the large majority of existing equa-
tions have not been validated beyond the test populations on
whom they were developed, and many have not been validated
at all. With the advent of affordable, wearable sensors capable
of incorporating predictive algorithms, the importance and
potential application of these algorithms have arguably never
been greater. Nonetheless, a comprehensive assessment of the
relative accuracy, or lack thereof, of the algorithms that cur-
rently exist is largely unavailable.

The two most established and commonly used predictive
equations, the American College of Sports Medicine (ACSM)
(3) and Pandolf et al. (36) equations, respectively, were devel-
oped using very small, homogeneous populations of adult men.
Each partitions the body’s total or gross, mass-specific meta-
bolic rate during walking into resting and nonresting compo-
nents, quantifying the latter as a single, speed-dependent com-
ponent. However, they differ formulaically in how they do so:
the ACSM equation quantifies the relationship between walk-
ing speed and metabolic rate as a linear function, whereas the
Pandolf et al. equation uses an exponential description. The
former equation is heavily used throughout health, fitness, and
clinical communities; the latter is heavily used for military
purposes. To date, independent assessments of the accuracy of
these standard equations have been surprisingly limited given
their broad acceptance and widespread use. Consequently, their
general accuracy, the predictive consequences of their different
mathematical forms, and their ability to generalize to popula-
tions other than adult men of average stature are largely
unknown.

We recently formulated a model with potentially broader
applicability to human walking metabolism. Our approach
deviated from the long-standing practice of testing populations
that are homogeneous with respect to both age and body size
(3, 9, 16, 36, 48). We did so because our earlier work indicated
that age, long considered to be a factor explaining the elevated
metabolic requirements of children, has no quantifiable effect
when body size and related gait mechanics are taken into
account (49). Hence we used body size stratification as an
experimental tool for model development to maximize the
generalizability of our model. Formulaically, the Height-
Weight-Speed (HWS) model that resulted, like the Pandolf et
al. model, describes the metabolic rate vs. speed relationship as
exponential, but it does so with two features that differ from
literature norms (Fig. 1). The first is that walking metabolism
is partitioned into two components: one that is primarily
postural and constant across speed, and a second that is
speed-dependent. The second differentiating feature is that the
term describing speed-dependent increases in walking meta-
bolic rates includes an inverse relationship to stature (Vexp/Ht).
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This second feature quantifies the economizing influence of
stature on walking metabolism (15, 18, 31, 33, 49, 51).

In our original study, these features apparently allowed our
HWS model to achieve greater overall accuracy than either the
ACSM or Pandolf et al. models for the level condition inves-
tigated. For our sample of 78 subjects who varied substantially
in body size (derivation group, n � 39; validation group, n �
39), the HWS model was able to predict measured metabolic
rates to within an average of 8.1 � 6.7%. Additionally, we
found the predictive error of the HWS model to be one-third
that of the two older standardized equations on our validation-
group subjects, and less than half that when only larger or adult
subjects were assessed. These results raised several questions
regarding the basis of the predictive accuracy originally ob-
served for our HWS model. First, from a technical standpoint,
the relative accuracy of the HWS model was likely overrepre-
sented because we evaluated our own model, but not the other
two, with data acquired under identical conditions with the
same instrumentation. Second, from a scientific standpoint, our
original study did not reveal the extent to which the largely
distinct features of the HWS model were responsible for the
greater predictive accuracy achieved. Specifically, we did not
know the predictive importance of 1) the addition of a second
metabolic component for walking metabolism, and 2) the
incorporation of height into predictions of speed-dependent
increases in walking metabolic rates.

Our overall goal was to identify a concise, broadly accurate
equation for predicting metabolic rates during level human
walking. For this purpose, we used the existing literature to
compile a data set that was well-stratified with respect to both
the walking speeds and body sizes of the subject populations
included. We used this data set to pursue our overall objective
in two analytical steps. First, we assessed how accurately the

aforementioned three equations were able to predict the fully
independent metabolic rate values in the literature data set.
Second, we used the different mathematical forms of these
three equations to identify the elements that are essential for
broad, accurate prediction. This included specifically evaluat-
ing whether the total or gross walking metabolic rates in the
data set would be more accurately described when the
walking, or nonresting portion, of the body’s total metabolic
rate consisted of two components rather than one. Accord-
ingly, we formulated both one- and two-component versions
of three V̇O2-speed model types: linear (�V1.0), exponential
(�V2.0), and exponential with an inverse relationship to
height (�V2.0/Ht).

Our first hypothesis was that the error of the HWS model
equation in predicting the literature data set values would be
less than half that of both the ACSM and Pandolf et al.
equations. Our second hypothesis was that accounting for 90%
of the total data set variability would be possible when walking
metabolism was quantified with two components, but not
possible when quantified with only one.

METHODS

Experimental Design

We adopted a literature compilation approach to evaluating the
relative accuracy with which formulaically different models predict
human walking metabolism for several reasons. First, the existing
literature is now sufficiently expansive to comprehensively incorpo-
rate the influences of height, weight, and speed on level walking
metabolic rates. Second, the aggregation of means from many studies
should mitigate measurement or condition-specific error from indi-
vidual studies. Finally, contemporary digitizing techniques allow data
published in graphic form to be extracted with a high degree of
accuracy (21, 43). Collectively, these factors should allow for the
aggregation of a robust, powerful data set for investigating our two
hypotheses regarding energy cost of level human walking.

Hypothesis Tests One and Two

Based largely on the prior results reported on 78 individuals who
spanned a broad range of body sizes (51), we expected two hypothesis
test outcomes. First, we expected that the error with which the
aggregated literature means would be predicted by the ACSM and
Pandolf et al. equations would be at least two times larger than the
corresponding error of prediction of the HWS model equation using
the standard error of estimate (SEE) as our evaluative standard.
Second, we expected that the SEE would, on average, be at least twice
as large when the walking portion of the body’s total metabolic rate
was modeled with one component rather than two. Furthermore, as
general evaluative standards for whether each model was able to fit to
the aggregated data set well, we set a priori thresholds of �90% of the
total data set variance explained and �10% error in the accuracy of
the estimates of individual data set values. These thresholds were set
in accordance with our expectation that an accurate model should 1)
account for 90% of the total variability in the data set and 2) have a
predictive error of less than 10% of the grand mean of the 127 values
in the data set. The first threshold was quantified using the R2 statistic,
the second using the coefficient of variation, here calculated using the
SEE divided by the grand mean of the values (n � 127) in the data set
(i.e., SEE/grand mean � 100).

Data Set Criteria

Our literature data set was strategically aggregated to broadly
encompass the influences of height, weight, and speed on human
walking metabolism. However, we did not seek to acquire all the valid
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Fig. 1. A schematic representation of the metabolic rate vs. walking speed
relationship illustrating how the body’s total metabolic rate can be partitioned
into one resting (V̇O2rest), and two walking components per the Height-Weight-
Speed (HWS) model [according to (51)]. In the HWS model, walking meta-
bolic rates are the sum of a minimum walking rate (V̇O2Walk Minimum) and a
speed-dependent walking rate (V̇O2Speed-Dependent). Alternatively, the walking
portion of the body’s total metabolic rate can be modeled as a single metabolic
component. Per physiological convention, metabolic rates are presented as
rates of oxygen uptake throughout the manuscript.
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data available from the literature. We avoided this because doing so
would have skewed the data set toward the adult populations that are
overrepresented in the literature. Accordingly, nearly all of the suit-
able literature data from subadult populations was included, whereas
much of the data available from adult populations was not. The
criteria for determining whether the literature values available quali-
fied for inclusion were as follows. First, the mean height and weight
of the group had to be reported in the original study. Second,
metabolic means from a sufficient number of speeds to provide a
minimum value for the energy expended per unit distance, or meta-
bolic cost of transport, needed to be available. Third, to avoid speeds
in the walk-run transition range that were too fast to be true walking
speeds, we implemented a standardized maximum-speed cut-off using
an analog of the Froude number (51) adapted from Alexander (2):

Fr � walking speed ⁄ �g · (ht · 0.52), (1)

where walking speed is in units of m/s, height is in meters, and g is the
gravitational constant in m/s2. The Froude number is widely used to
quantify speeds that are equivalent for walkers and runners who differ
in body size. The standard Froude index does so using leg length.
Here, as previously, we used a Froude number analog that substitutes
height for leg length because studies on walking metabolism generally
report the height means of the groups tested, but often do not report
leg length. To avoid including values that were at or above the
walk-run transition we removed data points with a Froude analog
value of �0.65. We limited our analysis to subjects of normal weight,
excluding groups of people who were classified as obese in their
respective original publications. We excluded data from subject
groups �65 years of age because the metabolic cost of walking is
generally elevated in elderly subjects (35) for reasons that have not yet
been fully identified. We included populations of a minimum age of
3–5 years because they exhibit adult-like patterns for gait and metab-
olism when leg length is taken into account (18, 49).

Digitizing Process

Values for group means were acquired from the tables or figures in
prior publications. Those data points acquired from figures were

digitized in accordance with the highly accurate techniques now
available (21, 43). Original illustrations were enlarged and oriented on
a grid to allow precise vertical and horizontal line fits to the data point
of interest. Line fits were extended to the x- and y-axes to determine
the x and y values for each data point. Data point values were also
determined using an automated digitizer available online [WebPlot-
Digitizer (40)].

Data Set Characteristics

Using the inclusion criteria specified, our literature search from the
early 1900s to the present yielded 25 subject groups from 10 publi-
cations (Table 1) spanning a 50-year period from 1960 to 2010. The
number of subjects per population group ranged from 5 to 42. Mean
age ranged from 5.2 to 40.7 years, mean height ranged from 1.03 to
1.82 m, and mean body mass ranged from 18.9 to 78.0 kg. Body mass
index ranged from 15.5 to 25.4 kg/m2. A minimum of four and a
maximum of six metabolic rate values from different walking speeds
were acquired from the different population groups (mean � 5.1 �
0.7 values per population group), resulting in a total of 127 values in
the final data set. Of the 127 group means included, 95 were acquired
from subjects walking on treadmills, whereas 32 were acquired from
overground walking at constant speeds. The grand mean for the rate
of O2 uptake from the 127 values aggregated was 14.0 ml
O2·kg�1·min�1.

Predictive Accuracy—Original HWS Model vs. ACSM and Pandolf
et al.

According to the forms of the three respective literature equations
provided in Table 2, literature values were predicted using the ACSM
and Pandolf et al. equations on the basis of walking speed. For the
original HWS model, literature values were predicted using walking
speed, estimated V̇O2rest, and the mean height of each population
group. The agreement between actual and predicted values across the
three equations was evaluated using both the R2 statistic and SEE.

Table 1. Literature sources meeting inclusion criteria for use in modeling analysis

Subjects* Number Age, years Height, m Mass, kg RMR† Reference

Adults 10 23.7 1.76 66.6 3.55 Bastien et al. (5)
Nonobese adults, M 10 20.6 1.82 74.7 3.51 Browning et al. (7)
Nonobese adults, F 10 26.6 1.68 58.7 3.38
Adults, M 11 19.4 1.73 61.5 3.79 Cotes and Meade (16)
Children aged 3–4 6 4.1 1.03 18.0 6.93 DeJaeger et al.‡ (18)
Children aged 5–6 6 6.2 1.17 21.3 6.26
Children aged 7–8 6 7.6 1.27 25.2 5.90
Children aged 9–10 6 9.9 1.40 34.0 5.18
Children aged 11–12 6 11.6 1.52 39.6 4.76
Adults 6 24.3 1.77 64.9 3.51
Nonobese children 17 9.2 1.37 30.3 5.44 Maffeis et al.‡ (29)
Young active adults 30 21.3 1.69 63.2 3.44 Martin et al.‡ (30)
Young sedentary adults 30 20.6 1.65 62.4 3.41
Adolescents 40 15.5 1.67 62.0 3.81 McCann and Adams‡ (31)
Adults 42 40.7 1.68 71.6 3.17
Adults, M 12 26.6 1.76 78.0 3.45 Mian et al.‡ (32)
Children age 6 23 6.2 1.19 22.5 6.33 Morgan et al.‡ (33)
Children age 7 23 7.2 1.26 25.9 5.50
Children age 8 23 8.2 1.32 29.7 4.80
Children age 9 23 9.3 1.39 34.1 4.17
Children age 10 23 10.3 1.45 39.4 4.64
Children 5 5.4 1.14 21.3 6.60 Weyand et al.‡ (49)
Children 9 10.6 1.42 43.4 4.64
Adults 28 17.3 1.62 56.7 3.90
Adults 14 22.2 1.77 75.9 3.36

*Groups without a designation for sex (M, male; F, female) are mixed. †RMR, resting metabolic rate (oxygen units of ml O2·kg�1·min�1). ‡Means from one
or more subject groups were excluded because they did not meet the inclusion criteria.
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Walking Metabolism Models

The specific forms of the one-and two-metabolic components used
to model the walking, or nonresting portion, of gross walking metab-
olism were guided by both the primary literature traditions and our
recent modeling efforts. Our recently introduced HWS model of
walking metabolism appears schematically in Fig. 1 (51). Partitioning
gross or total metabolic rates into a baseline component that corre-
sponds to resting metabolic rate and an exercise component is a
common practice (31, 41, 49–51). However, the HWS model is
atypical in dividing the walking component of the body’s total
metabolic rate into two components: a constant, predominantly pos-
tural component, termed the minimum walking metabolic rate; and a
second speed-dependent component. The novel component of the
HWS model, the minimum-walk component, is attributed to the
support and postural costs of the walking movement and is indepen-
dent of walking speed (51). The speed-dependent component quanti-
fies the simultaneous influences of walking speed, height, and gait
mechanics as previously described (51). The HWS model incorporates
body mass into the denominator of each metabolic component and
takes the following form:

VO2total � VO2rest

Ç
Resting Metabolism

� C1 · VO2restÇ
Minimum Walking

� �C2 · Vexp� · Ht�1

Ç
Speed-DependentÇ

Walking Metabolism

(2)

where V̇O2total is the body’s total rate of oxygen uptake; V̇O2rest is the
body’s supine resting rate of oxygen uptake; C1 is a coefficient that
describes the minimum walking rate of oxygen uptake as a multiple of
the resting rate; and C2 is a coefficient describing the speed-dependent
increases in the rate of oxygen uptake as a function of walking
velocity, V, raised to the exponent, exp, divided by the height (Ht) of
the individual. Hence the sum of the model’s second and third
components represents the metabolic rate attributable to walking
(V̇O2walk). All the terms in Eq. 2 are expressed in mass-specific units
of oxygen uptake of ml O2·kg�1·min�1 in accordance with literature
convention and for consistency with the original publication for the
HWS model. The theoretical basis for the model, including its mass-
specific form, has been previously provided (51). Per our scientific
objectives, Fig. 1, Eq. 2, and our previous work, the term “metabolic
rate” is used to refer to mass-specific rates of oxygen uptake through-
out the manuscript.

Resting Metabolic Rates

The resting portion of the gross or total walking metabolic rates in
our literature data set was determined on the basis of height, weight,
sex, and age for each of the 25 population means using the prediction
equations of Schofield et al. (42). These equations have been exten-
sively validated and are known to predict resting metabolic rates with
a high degree of accuracy, typically in the range of 0.5 ml

O2·kg�1·min�1 (19, 26, 38, 39, 47, 50). Because all of the predictive
models tested incorporated the same Schofield-derived resting meta-
bolic rate quantity, this portion of the total or gross metabolic rate
attributed to V̇O2rest did not differ across all the model types tested.
We did not use measured V̇O2rest data because these values were not
reported in most of our literature sources. We converted the units of
kJ/day from the Schofield equation to oxygen units of ml
O2·kg�1·min�1 using the conversion factor of 20.1 J per milliliter of
oxygen. Schofield equations modified to oxygen units appear in Table
4 of the original HWS manuscript (51).

Modeling Iterations, Analyses, and Equations

Models of three basic forms for describing the metabolic rate vs.
walking speed (V) relationship were evaluated: linear (�V1.0), expo-
nential (�V2.0), and exponential with an inverse relationship to height
(�V2.0/Ht). For each of the three model types, both one- and two-
component versions were derived. The equations corresponding to
these six different model derivations are provided in Table 3. The
procedures used to determine the best fits of these model forms to the
literature data set are described below.

Model Best-Fit Procedures

For each of the three basic model forms, separate model versions
were derived, a first that treated net walking metabolism as a single
entity; and a second that partitioned walking metabolism into two
components: a constant, largely postural component, and a separate
speed-dependent component in accordance with the schematic in Fig.
1. For consistency and ease of interpretation, the postural component
of walking metabolism was modeled the same way across the three
model types, specifically as a multiple of V̇O2rest, therefore equal to
the quantity C1·V̇O2rest according to Eq. 2.

To maximize the fits provided by each equation, the coefficients
derived were those that provided the best fit to the data points acquired
from the literature sources (i.e., highest R2 value) across the range of
height, weight, and walking speeds present. The coefficient describing
the minimum walking metabolic rate (C1) in the two-component
models, and the coefficient describing the speed-dependent walking
metabolic rate (C2) in all models were specifically optimized to
minimize the sum-squared error of prediction. The optimizer function
in Microsoft Excel was used because of its ability to optimize a
coefficient while holding other values such as estimated resting
metabolic rate, walking velocity, and height fixed at their known
values [Microsoft Excel Solver, Excel 2010 version (24)]. Once
best-fit equations were derived they were used to estimate walking
V̇O2 values for all 127 literature data points and subsequently plotted
against walking speed.

We also tested a seventh model, the modified HWS model, which
has only a two-component form and differed from the first six in that
the minimum-walk component was modeled as a constant absolute
value (in ml O2·kg�1·min�1) across all group means rather than as a
multiple of the group-specific V̇O2rest values. We did so because our
prior results (51) raised the possibility of limited predictive bias being

Table 3. Predictive equations used in modeling analysis

Model Form Equation

One-component linear V̇O2total � V̇O2rest � C1·V
Two-component linear V̇O2total � V̇O2rest � C1·V̇O2rest � C2·V
One-component exponential V̇O2total � V̇O2rest � C1·V2

Two-component exponential V̇O2total � V̇O2rest � C1·V̇O2rest � C2·V2

One-component exponential/height V̇O2total � V̇O2rest � C1·V2/Ht
Two-component exponential/height V̇O2total � V̇O2rest � C1·V̇O2rest � C2·V2/Ht
Two-component, absolute minimum-walk V̇O2total � V̇O2rest � C1 � C2·V2/Ht

Ht, height in meters; V̇O2total and V̇O2rest are in oxygen units of ml
O2·kg�1·min�1; C1 and C2 are coefficients that were optimized for each
equation; V, velocity (m/s).

Table 2. Prediction equations from previous literature
sources

Equation Reference

V̇O2 (ml O2·kg�1·min�1) � (0.1·V) � (1.8·V·G)
� 3.5 ml·kg�1·min�1 ACSM (3)

V̇O2 equiv (watts) � 1.5·M �2.0·(M � L)(L/M)2

� n(M � L)[1.5·V2 � 0.35·V·G] Pandolf et al. (36)
V̇O2 (ml O2·kg�1·min�1) � RMR �0.97·RMR �

4.87·V2.34/Ht Weyand et al. (51)

V, velocity*; M, body mass (kg); Ht, height (m); L, load (body weight
units); G, grade (%); �, terrain factor (arbitrary units); RMR, resting metabolic
rate (ml O2·kg�1·min�1). *Units for velocity are reference-specific as follows:
V, velocity; ACSM, meters per minute (m/min); Pandolf et al., meters per
second (m/s); HWS model, meters per second (m/s).
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introduced by quantifying V̇O2Walk Minimum as a multiple of V̇O2rest. In
this case, the equation consisted of V̇O2rest, a constant in ml
O2·kg�1·min�1 that replaced the C1·V̇O2rest term, and a coefficient
(C2) times walking velocity squared divided by height. Additionally,
to further investigate the importance of height as a predictor we also
analyzed the modified-HWS model without height in the equation.

Validation of Modified-HWS Model on Data from Individual
Subjects

Upon completing our model evaluation we tested how well the
derived equation predicted values previously acquired from individual
subjects. We did so using previously published level walking meta-
bolic data collected from 57 individuals (30 men, 27 women) whose
heights ranged from 1.07 to 1.89 m, and weights ranged from 15.9 to
88.95 kg (51).

Derivation of a Final Generalized Equation

Once the essential elements for broad accurate prediction were
formulaically established using the full data set, our final analytic step
was to identify the best-fit coefficients for the equation form identi-
fied. We did so using only those values in the data set acquired using
the gold standard technique for measurements of exercise metabolism,
the Douglas bag method (13). For this purpose, we used all the
Douglas bag values in the data set excepting those from Maffeis et al.
(29), whose walking metabolic rate (V̇O2walk) values for subjects of
1.37 m in height were, for unknown reasons, substantially higher than
those from other sources in the data set for subjects of similar height.
The final equation was derived on 42 group mean values. For these 42
group means, subject height ranged from 1.19 to 1.73 m, weight
ranged from 22.5 to 71.6 kg, and walking speed ranged from 0.44 to
1.80 m/s.

Data Set Categorization by Stature

The 127 values for population group-mean metabolic rates in our
aggregated data set appear in Fig. 2A as a function of walking speed.
The influence of height on gross walking metabolic rates led us to
classify these values by stature using a three-category scheme of short,
intermediate, and tall. These stature classifications were not necessary
for, and indeed were not part of, our formal hypothesis tests. Rather,

we implemented these classifications to allow for visual evaluation of
whether the different model versions evaluated fit the walking meta-
bolic rate values equivalently across the different stature means
present in the data set, or were biased toward shorter or taller
individuals. The stature, weight, and age means of the populations in
the short, intermediate, and tall groups appear in Table 4.

Also, for graphical purposes, within each height classification
group, we determined representative metabolic rate vs. speed relation-
ships as follows. For each of the three groups, we averaged the
literature metabolic rate data points acquired to determine values at or
near six speeds: 0.5, 0.8, 1.0, 1.3, 1.6, and 1.8 m/s. The precise speeds
for the respective height groups varied slightly in accordance with the
different protocol speeds administered in the different literature
sources. This process allowed us to formulate trend lines for the
metabolic rate vs. speed relationships that corresponded to the liter-
ature values for each of the three respective height classification
groups (Fig. 2B). These trend lines, which appear in grayscale, were
formulated to provide a visual reference for evaluating each model’s
ability to fit both the stature- and speed-variability present in the data
set.

RESULTS

Digitizing Accuracy

The average absolute percent difference between the 20
original numeric values [Fig. 1A in (49)] and those acquired via
digitization was found to be 	1.00% in 17 of the 20 cases
when values were obtained by the grid technique. Across these
20 data points, the error ranged from 0.03 to 2.43% with an
overall mean of 0.65%. Using three different published graphs
and original data sets [Fig. 1A in (49), Fig. 2A in (51), and Fig.
4A in (51)] with a combined 47 data points, the absolute
percent difference between the measured data and the derived
data was 	0.60%. When using the automated digitizer, the
original values and digitized values across the 47 data points
agreed to within an average of 0.51% [WebPlotDigitizer (40)].

Data presentation. The actual vs. predicted values for the
equations evaluated for both hypotheses are presented using
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Fig. 2. A: gross metabolic rates vs. walking speed for the 127 mean values acquired from the 25 small population groups values in the literature-aggregated
data set. The symbols for short (circles), intermediate (squares), and tall (triangles) classifications correspond to the mean height of the subjects in each
of the 25 population groups as described in the text. B: representative trend lines for the V̇O2 vs. speed relationship for each of the three height
classification groups. The horizontal lines in B represent the respective contributions of the resting metabolic rate (V̇O2rest) to the total measured during
walking for each of the height classification groups, short (- - - - -), intermediate (———), and tall (—··—). (For reference purposes, the three stature
classification trend lines in B appear in grayscale in Figs. 3, A, C, and E, and Figs. 4 –7, A and C. The mean stature for each of the 25 population groups
is provided in Table 2.)
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the same graphical format. First, the values predicted for each
of the 127 original literature means by the respective equations
are plotted as a function of walking speed (Figs. 3–7, left).
Second, the same respective, predicted values are subsequently
plotted vs. their actual values (Figs. 3–7, right). The height
classification trend lines from Fig. 2B appear in grayscale in
those figures in which equation-predicted values are plotted in
relation to speed (Fig. 3, A, C, and E; and Figs. 4–7, A and C).

The best-fit coefficients derived for the one- and two-com-
ponent models of each of the three basic model types (linear,
exponential, and exponential with height) appear in Table 5.
The goodness-of-fit of each of the six equations derived is
provided graphically in two formats that follow the original
graphic presentations of the literature values appearing in Fig.
2, A and B. For each of the six respective best-fit equations
derived, one- and two-component version are vertically juxta-
posed in the upper and lower portions of Figs. 4, 5, and 6. The
one-component model forms and corresponding predictions
appear at the top of each figure (A and B), whereas the
two-component model forms appear in the bottom of each
figure (C and D).

Each illustration of the goodness-of-fit between actual and
predicted or estimated values includes an R2 value for the fit
provided and the corresponding SEE. The grand mean for all of
the values in the literature data set was 14.0 ml O2·kg�1·min�1.
Accordingly, those fits with SEE values below 1.40 ml
O2·kg�1·min�1 met our criteria of a coefficient of variation of
	10%.

Hypothesis Test One: Predictive Accuracy of HWS vs.
Standard Equations

The metabolic rates predicted for each of the 127 literature
means using the ACSM (3), Pandolf et al. (36), and original
HWS equations (51) appear as a function of walking speed in
Fig. 3, C and E, and in relation to the actual values in Fig. 3,
B, D, and F. The ACSM and Pandolf et al. equations were
largely unable to predict the 127 values in the literature data
set. In both cases, the proportion of variance accounted was
less than zero, indicating that the error between predicted and
actual values was greater than the total variability present in the
data set. The HWS equation was considerably more accurate,
accounting for just over 90% of the total variability present in
these values.

Both the ACSM and Pandolf et al. equations result in
significant underprediction of walking metabolic rate for all
height groups; however, for the tall group, Pandolf et al.
accurately predicts values at the intermediate and faster speeds,
whereas the ACSM equation does not (Fig. 3, A and C). When
plotting predicted vs. measured metabolic rates, the tendency
toward underprediction by both equations is obvious. Almost
all the data points fall on or below the line of identity for the

ACSM equation (Fig. 3B), and all but a limited number of data
points predicted by Pandolf et al. also fall below the line of
identity (Fig. 3D). In contrast, the values predicted by the
original HWS model fall relatively close to their respective
height group trend lines (Fig. 3E) and to the line of identity
(Fig. 3F). The predictive error (SEE) of the original HWS
model equation was roughly one-fourth that of the ACSM and
Pandolf et al. equations. Both ACSM and Pandolf et al.
equations had greater predictive error than the benchmark SEE
value (1.40 ml O2·kg�1·min�1), whereas the HWS model
equation had appreciably less.

We also tested the predictive accuracy of the ACSM, Pan-
dolf et al., and HWS equations on the subset of literature values
from adults only because both ACSM and Pandolf et al. were
designed to serve adult-only populations. For adult groups, the
R2 value for measured vs. predicted data points was 0.50 and
the SEE was 2.69 ml O2·kg�1·min�1 using the ACSM equa-
tion. For the Pandolf et al. equation, the R2 value was 0.71 and
SEE was 2.06 ml O2·kg�1·min�1 for the adult values. For both
ACSM and Pandolf et al. equations almost all the adult values
in the data set were underpredicted. In contrast, the HWS
equation resulted in an R2 of 0.90 and SEE of 1.21 ml
O2·kg�1·min�1 in predicting the same adult values.

Hypothesis Test Two: One- vs. Two-Component Models

Linear model results. The best-fits resulting from the linear
forms of one- and two-component metabolic rate vs. speed
models appear in Fig. 4. The best-fit from the one-component
model slightly underpredicted the values of the shorter groups
of subjects and overpredicted the values of taller ones (Fig.
4A). The stature-biased predictions were largely absent in the
best-fit predicted values from the two-component form of the
linear model (Fig. 4C). Both the one- and two-component
model forms exhibited speed-dependent bias (Fig. 4, B and D).
In both cases, the metabolic rate means at relatively slow and
fast walking speeds tended to be underpredicted, whereas those
at intermediate walking speeds were generally overpredicted.
The goodness-of-fit and SEE of the two- vs. one-component
model demonstrated only marginally better agreement (
R2 �
0.03 and 
SEE � 0.14 ml O2·kg�1·min�1), primarily because
the addition of the second component allowed the stature-
related stratification of the literature means to be fit somewhat
more closely.

Exponential model results. The best-fit equation predictions
from the one- and two-component exponential models appear in Fig.
5. The one-component exponential model fit the literature values
relatively poorly and was the only one of the six best-fit equations that
did not account for at least half of the total variance present in the
literature data set (R2 	 0.50; Fig. 5, A and B). The literature means
at the slowest walking speeds were predicted least accurately and
were consistently lower than the actual values. The predictions at
faster speeds were also in error, being generally higher than the actual
values (Fig. 5B). In contrast, the best-fit relationship from the two-
component exponential model accounted for �90% of the total
variance present in the literature values (Fig. 5D) because the addition
of the minimum walking component substantially improved the
agreement with the actual values at all speeds, particularly the slower
ones (Fig. 5C). The agreement between the two-component, best-fit
estimated and actual values indicated slight speed-dependent bias

Table 4. Physical characteristics of the three height groups

Group Data Points, n Height, m Weight, kg Age, years

1 26 1.18 � 0.04 22.5 � 1.2 6.2 � 0.5
2 35 1.41 � 0.02 35.8 � 1.9 9.9 � 0.4
3 66 1.72 � 0.02 66.2 � 2.2 23.2 � 2.1

Total 127

Values are means � SE.
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with most of the values at the slower and faster speeds falling just
below the line of identity indicating slight underprediction (Fig. 5D).

Exponential model with height results. The best-fit equation
estimations derived for the two-component exponential model with
height included appear in Fig. 6. The addition of height to the
exponential model improved the one-component fit to the literature
values slightly but did not improve the two-component fit at all. The
one-component exponential model with height substantially under-
estimated the literature values at the slower walking speeds across all
three height classification groups (Fig. 6, A and B). Best-fit estima-
tions at the faster speeds were more accurate but tended toward
overestimation, particularly for the values at the fastest walking
speeds. The two-component exponential model with height provided
a substantially better fit than the one-component model, primarily by

improving the accuracy of the estimations for the values at the
slowest walking speeds (Fig. 6, C and D), although a slight tendency
toward underestimation among the tallest groups remained. The
estimations of the intermediate and faster speed values were generally
accurate and without obvious speed-dependent bias or trends. The
two-component model with height was the second of the six best-fit
equations derived that was able to capture greater than 90% of the
total variance present among the literature data set means.

Modified HWS model. The best-fit equation resulting from
modeling the minimum-walk component as a constant absolute
metabolic rate value was:

V
�

O2total
� V

�

O2rest
� 3.90 � 6.05

V2

Ht
. (3)
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Fig. 3. The gross walking metabolic rates
predicted by three standardized equations for
the 127 literature means in the data set: the
Pandolf et al. (36) equation (A), the Ameri-
can College of Sports Medicine (ACSM; 3)
equation (C), and the original HWS model
equations (51) (D). In B, D, and E, the
model-predicted values appearing in A, C,
and E, respectively, are plotted against the
actual data set values. The R2 values calcu-
lated against the line of identity, as well as
the error of individual predictions (SEE), are
included to provide an indication of the pre-
dictive accuracy of each model. The error of
individual prediction (SEE) was four times
greater for the Pandolf et al. and ACSM
equations than than for the HWS equation
model.
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By comparison, the two-component model with minimum-
walk-component treated as a constant absolute value resulted
in an SEE of 1.00 ml O2·kg�1·min�1 (Fig. 7D), indicating that
this refinement of our HWS model improved the goodness-of-
fit to our literature data set. Modifying the first of the two
walking, or nonresting, components of the HWS model re-
moved the slight bias toward underprediction at the slowest
walking speeds that were present in both of the exponential
two-component models. For each of the three height-classifi-
cation groups, the literature means at the slow, moderate, and
faster walking speeds all conformed closely to the correspond-
ing height classification trend lines (Fig. 7C). The error present
in the values predicted from the modified HWS model vs. the
actual literature values was small and equally distributed above
and below the line of identity across the full range of walking
speeds and metabolic rate values.

The modified-HWS model equation was able to fit the
literature values more closely when speed-dependent in-
creases in walking metabolic rates were described as an
exponential function with an inverse relationship to height
vs. without. When height was not included as a predictor,
the SEE was 1.5 times greater and the proportion of variance
accounted for was nearly 10% lower (Fig. 7, B and D).
When height was absent from this form of the model, values
were overestimated for the tallest groups and underesti-
mated for the shortest groups (Fig. 7A), with the greatest

disagreement occurring at the fastest speeds for the shortest
subject populations.

Final generalized equation for level walking metabolism.
The best-fit equation derived in the form identified as having the
least predictive bias, and on the subset of literature values ac-
quired from Douglas bags, and therefore considered to be most
valid, was

V
�

O2total
� V

�

O2rest
� 3.85 � 5.97·

V2

Ht
. (4)

DISCUSSION

Our two-step strategy for identifying the elements that are
essential for accurate generalized prediction of level human
walking metabolism was indeed effective. Our first test re-
vealed that the two leading standardized equations that predict
walking metabolism are inadequate for humans of different
body sizes walking across a broad range of speeds on level
surfaces. Our second test identified the quantitative elements
that are required for accurate generalized predictions, but
lacking in the leading standardized equations. In both cases, the
primary conclusion supported is that accurate generalized pre-
dictions are possible when the body’s walking, or nonresting,
metabolism is quantified with two components, but not possi-
ble when quantified with only one.
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Fig. 4. Model-predicted gross metabolic rate
values vs. walking speed for each of the 127
literature means in the data set (A and C).
Predicted values were determined from the
best-fit equations derived from the entire data
set for the appropriate model type [one-com-
ponent linear (A); two-component linear (C)].
In B and D, the respective model-predicted
values that appear in A and C are plotted
against the actual data set values. The height
classification trend line means (gray lines, A
and C) provide a visual reference for evalu-
ating how closely the respective models pre-
dicted the data set values across speed for
each of the three height classification groups.
The diagonal lines appearing in the mea-
sured-predicted plots (B and D) represent the
line of identity. Also provided is the propor-
tion of variance accounted for (R2) and SEE
for the best-fits of the respective model types,
here and in subsequent figures.
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Quantitatively, our first hypothesis test indicated that the
group-mean metabolic rate values in our data set were pre-
dicted four times more accurately (SEE) by the HWS model
equation, which includes two components for walking metab-
olism, vs. the leading literature equations (3, 36) that include
only one (Fig. 3). The relative differences in predictive error of
the leading standard equations vs. that of the HWS equation
identified here actually exceed those we previously reported
(51) on individual data. This quantification of larger differ-
ences in the independent data set compiled here indicates that
our original study did not in fact overrepresent across-equation
differences in predictive accuracy as it might have. Our second
hypothesis test outcome indicated that in each of the three
model forms, the best fits possible to the literature data were
unable to account for either the speed- or stature-related vari-
ance present when they included only one component to
describe the walking, or the nonresting, portion of the body’s
total metabolism (Figs. 4–6, A and B). In two out of three
model types evaluated, the SEE was more than twice as large
when walking metabolism was modeled with one component
vs. two. Collectively, across the three model types on average,
the one- vs. two-metabolic component versions provided
poorer overall fits (
R2 � �0.27) with substantially larger
predictive errors (
SEE � �1.21 ml O2·kg�1·min�1).

Hypothesis Test One: Predictive Accuracy of Existing One-
vs. Two-Component Equations

Our first hypothesis test revealed that predictions of level human
walking metabolism were roughly four times more accurate when
based on our two-component HWS model equation vs. the leading
one-component equations from the literature (Fig. 3). Certainly, some
of the difference in predictive accuracy observed across these equa-
tions would be expected given 1) the presence of an additional
metabolic component in the HWS model, 2) the formulation and
validation of the HWS model on a data set similarly heterogeneous to
that aggregated here, and 3) the broader conditional objectives the
ACSM and Pandolf et al. equations were meant to serve for adult-
only populations (3, 36). The first two factors we have addressed
throughout the manuscript, the last we were able to partially address
here. For the 66 adult-population values in our literature data set, the
respective predictive errors of the ACSM and Pandolf et al. equations
were 2.2 and 1.7 times greater than that of the HWS model equation.
Thus much of the difference in predictive error we identified for the
entire data set was also present even when comparisons were limited
to values from the adult-only populations that the ACSM and Pandolf
et al. equations were meant to serve.

A primary contributor to the relative predictive errors we
report is the substantial skew with which the leading literature
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Fig. 5. Model-predicted gross metabolic rate
values vs. walking speed for each of the 127
literature means in the data set (A and C).
Predicted values were determined from the
best-fit equations derived on the entire data
set for the appropriate model type [one-com-
ponent exponential (A); two-component ex-
ponential (C)]. The respective model-pre-
dicted values that appear in A and C are
plotted against the actual data set values in B
and D. The height classification trend line
means (gray lines, A and C) provide a visual
reference for evaluating how closely the re-
spective exponential models predicted the
data set values across speed for each of the
three height classification groups.
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equations predict the existing literature data. Of the 254 total
values predicted by the ACSM and Pandolf et al. equations
combined only seven were overpredicted, whereas the remain-
ing 247 values were underpredicted by these two equations
(Fig. 3, B and C). Although the tendency toward underpredic-
tion has been noted previously for the ACSM equation (1, 8,
10, 25, 51), the substantial intrinsic bias of both equations has
not been previously documented. Almost certainly, a portion of
the bias identified is attributable to the narrow original deriva-
tions of the respective equations. The Pandolf et al. equation
was derived from data from six male soldiers of similar body
size (36). The level portion of the ACSM equation was derived
from only three adult men (22). The skew and systematic error
now evident for both of these widely used equations under
level conditions highlights a significant weakness in this heav-
ily researched area. Leading generalized equations were de-
rived from populations that were too small and homogeneous
to provide broadly accurate predictions.

Hypothesis Test Two: One vs. Two Metabolic Components
for Walking Metabolism?

The distribution of values in our literature data set (Fig. 2, A
and B) requires accurate formulaic descriptions to account for
two visually evident features: 1) the near-baseline differences
in total metabolic rates at slow walking speeds that are related

to stature and mass, and 2) the curvilinear increases in walking
metabolic rates across speed that have modest slope differences
across stature groups (Fig. 2, A and B). The first feature is
unsurprising given that the greater mass-specific rates of rest-
ing metabolism in shorter, less-massive individuals are well
established (42). The constant V̇O2rest values that we used
across all our model iterations (Table 1, Fig. 2B, horizontal
lines) addressed this reasonably because this single factor
accounted for an appreciable portion of the across-group dif-
ferences in total metabolic rates at slower walking speeds. The
second feature posed the perhaps greater quantitative chal-
lenge of simultaneously describing a metabolic rate vs.
speed relationship that is curvilinear for all of the population
groups in the data set, but with greater stratification than can
be accounted for by differences in resting metabolism alone.
One consequence of these distribution features was that
best-fit differences between one- and two-component model
versions differed substantially by model type.

The form of our linear model resulted in almost no differ-
ence in the relative goodness of the fits provided between the
one- and two-component versions. In both cases, group-spe-
cific differences in V̇O2rest values allowed group differences at
slower speeds to be reasonably approximated. Metabolic rate
increases across speed were described by slope values that
differed little between one- and two-component best-fit ver-
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Fig. 6. Model-predicted gross metabolic rate
values vs. walking speed for each of the 127
literature means in the data set (A and C).
Predicted values were determined from the
best-fit equations derived from the entire data
set for the appropriate model type [one-com-
ponent exponential with an inverse relation-
ship to height (A); two-component exponen-
tial with an inverse relationship to height (C)].
The respective model-predicted values that
appear in A and C are plotted against the
actual data set values in B and D,
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sions (Table 5). Consequently, both the goodness-of-fit in-
crease (
R2 � �0.03) and predictive error decrease (
SEE �
�0.14 ml O2·kg�1·min�1) that resulted from the addition of a
second component were negligible. The inability of a linear
model to describe the curvilinear metabolic rate vs. speed
relationship resulted in substantial speed-dependent error in the
best-fits achieved by both versions.

In contrast to the similar best-fits observed across one- and
two-component versions of the linear model type, respective
best-fit differences across both exponential model types were
large. For both the exponential models with and without height
included, describing the entire walking, or nonresting, portion
of the total metabolic rate as single component substantially
overpredicted the slope of the metabolic rate vs. speed rela-
tionship. The exaggerated slopes forced by single-component
exponential fits resulted in large underestimations of metabolic
rate values at slower speeds and overestimations at faster ones
(Figs. 5A and 6A, respectively). The addition of the second
component to both model types reduced the slopes (Table 5) to
align more closely with those actually present (Figs. 5C and
6C). Improved slope alignment also allowed model best-fit
estimations at slower walking speeds to align more closely
with the actual values of the different height groups. Conse-
quently, both two-component exponential model versions were

able to account for �90% of the total data set variance with
predictive errors �10% of the grand mean.

Although the best-fits provided by our two-component ex-
ponential models exceeded our general criteria for good overall
fits, both exhibited modest speed-dependent estimation bias vs.
the line of identity. Slower-speed values were underestimated
by both versions, whereas faster speed values were underesti-
mated by the exponential model version that did not include
height (Figs. 5D and 6D). The nature of the speed-dependent
estimation bias present was consistent with our postulation that

Table 5. Empirical derivations of model coefficients

Model C1 C2 Exponent

One-component linear 8.46
Two-component linear 0.33 7.33
One-component exponential 5.85 2
Two-component exponential 0.92 3.86 2
One-component exponential/height 9.08 2
Two-component exponential/height 0.77 6.43 2
Two-component absolute minimum walking

metabolic rate 3.90* 6.05 2

*This value has units of ml O2·kg�1·min�1 whereas the other C1 column
values lack units per Eq. 2.
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Fig. 7. Model-predicted gross metabolic rate
values vs. walking speed for each of the 127
literature means in the data set (A and C).
Predicted values were determined from the
best-fit equations deived from the entire data
set for the appropriate model type [two-
component exponential model with a nu-
meric constant for the first component (A);
two-component exponential model with a
numeric constant for the first component and
an inverse relationship to height for the sec-
ond (C)]. The model-predicted values that
appear in A and C are plotted against the
actual data set values in B and D.
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modeling the minimum-walk component as a multiple of
group-specific V̇O2rest values might overestimate across-group
differences at slower walking speeds. Accordingly, we modi-
fied our two-component exponential model with height (Eq. 3)
to describe the minimum-walk component using the same
constant (ml O2·kg�1·min�1) across all 25 population groups.
The resulting best-fit exhibited little to no discernible speed-
dependent bias vs. the line of identity, accounted for a slightly
greater proportion of the total variance, and had the lowest
predictive error of all seven of our best-fit modeling iterations
(Fig. 7D).

Body-Size Dependency of Walking Economy: Is Height
Needed for Predictive Accuracy?

On the asis of our previous findings, we anticipated that the
model forms with the speed-dependent component expressed
inversely to height would better describe walking metabolic
rates than models that did not include this feature. However,
across the two-component exponential models, this was not the
case. The best-fit provided by the two-component model that
did incorporate height to describe speed-dependent increases in
walking metabolic rates was no better than the best-fit provided
by the two-component exponential model that did not (Fig. 5D
vs. Fig. 6D). This result may at first seem inconsistent with two
previous findings: 1) of a near-inverse relationship between
stature and the energy walkers expend per unit distance (49);
and 2) the predictive accuracy previously achieved when in-
corporating height in the same formulaic manner (51). How-
ever, the cursory interpretation that height is unimportant is
incorrect.

The consistency with which gross, mass-specific walking
metabolic rates have been reported to be inversely related to
height has been essentially absolute (15, 18, 29, 31, 33, 49, 51).
Indeed, this consistency is responsible for the distribution of
walking metabolic rate values by stature classification groups
evident in our literature data set (Fig. 2). Although a portion of
the stature-related differences in the gross metabolic rates
consistently observed results from the greater resting metabolic
rates of smaller, less massive individuals, the majority of the
difference is attributable to the walking or nonresting portion
[Fig. 2 here, Fig. 1 in (49)]. Indeed, when we analyzed the
current walking metabolic rate data (i.e., V̇O2total � V̇O2rest per
Eq. 1) to quantify the height-transport cost relationship (COT,
O2/kg·m) at the mechanically equivalent walking speeds that
different-sized individuals typically self-select per our earlier
analysis (49), we again found a large, negative, and nearly
inverse relationship (COT �Ht�0.77). Thus on a strictly bio-
logical level, our results here and those from previous literature
are consistent in indicating that height is a fundamental deter-
minant of level human walking economy.

The relative unimportance of height as a predictor across our
exponential models resulted from the majority of the height-
related variance being accounted for in the first of our two-
model components of walking metabolism. Because this first
component, the minimum-walk component, was modeled as a
multiple of resting metabolic rates that vary by stature and
mass (Table 3), the minimum-walk component values across
different stature groups were greater for shorter populations
and smaller for large ones, thereby accounting for much of the
stature-related variance in the walking metabolic rates. Thus

the incorporation of height into the second and speed-depen-
dent metabolic component (as V2/Ht) did not improve the
best-fit provided because the stature-related variance had al-
ready been largely accounted for. This aforementioned effect
becomes visually apparent in the modified HWS iterations that
treated the minimum-walk component as a constant and there-
fore did not indirectly incorporate the influence of height into
this portion of walking metabolism (Fig. 7). The version of this
iteration which did not include a heightvariety of technologies-
related treatment in either walking component, was unable to
account for stature-related variation in metabolic rates across
all speeds, particularly faster ones (Fig. 7, A and B). However,
when height was added to the speed-dependent component of
this model version, the best-fits for populations of different
statures across all speeds were the closest of all of our model
iterations (Fig. 7, C and D).

Why Are Two Nonresting Components Needed to Describe
Human Walking Metabolism?

The most immediate scientific question raised by our con-
clusion that two metabolic components are required to ade-
quately describe human walking metabolism is: To what extent
does the two-component conclusion from our whole-body
modeling approach correspond to internal physiological real-
ity? Clearly, the ability to selectively activate tissues and tissue
compartments within the muscular system across speed makes
our simplified two-component description theoretically possi-
ble. The first component purportedly represents a constant
minimum walking metabolic “baseline” set by the volume of
muscle recruited largely to satisfy postural requirements. The
second component purportedly represents speed-dependent in-
creases in metabolic rates resulting from disproportionate in-
creases in muscular activation across faster walking speeds.
However, direct evaluation of these ideas is limited by the
inability to measure metabolic rates within the body on a
tissue-by-tissue basis.

Given this basic measurement limitation, investigators have
used a number of indirect approaches to infer differential tissue
contributions to the body’s total walking metabolic rates. Of
these, two partially overlapping approaches have been the most
informative. The more direct of the two has been the use of
surface electromyography (EMG) to measure the electrical
activity of individual muscles (11, 12, 23, 34). The EMG
studies available provide reasonable support for disproportion-
ate increases in neuromuscular activity at faster walking
speeds. Several of these indicate that hip flexor and extensor
muscles that are largely inactive at slower walking speeds
become activated at faster ones. These studies also demonstrate
disproportionately large increases in knee extensor muscle
activity across faster speeds that coincide with the greater knee
extensor moments also observed (6, 23, 34). A less direct but
more comprehensive approach is the detailed musculoskeletal
modeling (20, 34, 37) that has advanced rapidly in the last
decade. This approach uses forward dynamic simulations
based on extensive kinematic, anatomical, neural, and physio-
logical inputs. When applied across walking speeds, these
detailed models also identify de novo recruitment of hip flexor
and extensor muscles, and disproportionate increases in knee
extensor muscle activation across the faster walking speeds.
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Finally, we note that earlier investigators who adopted a
combined theoretical-empirical approach to modeling whole-
body walking metabolic rates reached a two-component con-
clusion similar to ours. Workman and Armstrong (53) used an
energy-per-step framework in conjunction with direct measure-
ments to develop their original equation for predicting level
walking metabolic rates. Their lengthy equation, which also
incorporates height, has been shown to be relatively accurate
across a range of walking speeds and for different individuals
(51). A retrospective scientific consideration of their work by
the original authors led them to conclusions that have been
largely overlooked, but are highly relevant here. Both the
conceptual model [Fig. 5 in (52)] and quantitative conclusions
they ultimately reached agree closely with ours even though
the data and theoretical framework used were fully indepen-
dent.

Summary and Future Recommendations:

On a practical level, empirical evidence now exists to
conclude that the HWS model offers a more accurate alterna-
tive to the ACSM or Pandolf et al. equations for nonobese
children and adults (	65 years) walking on firm, level sur-
faces. In addition to the accuracy already noted, our modified
HWS equation offers several other noteworthy features. First,
the HWS equation (Eq. 3) appears to be similarly accurate for
both treadmill and overground conditions because we found
virtually no difference in the goodness-of-fit (Eq. 3 and Fig.
7C) between the values from these conditions (
R2 � 0.03 and

SEE � 0.15 ml O2·kg�1·min�1). Second, two of the three
metabolic terms in the HWS equations presented can be com-
bined by adding a minimum-walk component constant to a
population-specific V̇O2rest value to provide a concise two-term
equation. Finally, for adult-only populations, the need for
population-specific V̇O2rest values can be eliminated without
any appreciable loss of accuracy. Simply using a global V̇O2rest

constant of 3.3 ml O2·kg�1·min�1, added to the 3.85 ml
O2·kg�1·min�1 constant for the minimum-walk component
from Eq. 4 yields the following equation:

V
�

O2total
� 7.15 � 5.97·

V2

Ht
, (5)

which fits our adult literature data set values with an R2 �0.93
and an SEE of 	1.0 ml O2·kg�1·min�1.

Our expectation is that our final modified-HWS equations (Eqs. 4
and 5) will prove to be accurate in subsequent validations, but a
degree of caution is warranted. We opted to derive the final form
using only the Douglas bag values in our literature data set because
measurements from both laboratory and portable metabolic systems
are typically slightly but systematically higher than Douglas bag
values. Accordingly, Eq. 4 represents our best present generalized
equation to describe what the actual O2 uptake values during level
walking will be. To assess this expectation on values acquired from
individuals per the expected use of the equation, we evaluated Eq. 4
using data previously acquired from individual subjects (51). The
resulting predictions conformed to the level of accuracy expected,
with a resultant R2 of 0.88 and SEE of 1.35 ml O2·kg�1·min�1 for a
height, weight, and age-stratified group of 57 subjects. However, we
note that the laboratory metabolic system we use provides excellent
agreement with Douglas bag values, whereas many others do not (4,
17). Accordingly, users of those metabolic systems that tend to

provide slightly but systematically higher values may experience
better agreement with the best-fit equation derived on the full litera-
ture data set (Eq. 3), which includes values acquired from these
systems. However, given the general acceptance of the Douglas bag
method as the most valid technique, we believe Eq. 4 represents the
concise, broadly accurate generalized equation we sought to identify.

Concluding Remarks

The emergence of an accurate, robust generalized relationship to
predict the energy expended during level human walking is arguably
scientifically overdue in addition to being practically opportune. From
a basic standpoint, human walking has been studied far more exten-
sively than any other animal gait. Nonetheless, a concise, relationship
with predictive capabilities that could generalize across walking
speeds and regardless of body size had not emerged (51) due to a
tradition of focusing heavily on across-population differences rather
than identifying the truly generalized relationships. This record con-
trasts with the robust, generalized relationships that exist for mam-
malian metabolism at rest (28) and during locomotion (44–46). In
each of these cases, generalized relationships formulated on the basis
of large data sets were established decades ago. Indeed, our experi-
mental strategy here drew directly upon the comparative tradition of
maximizing both speed and body-size related influences on locomo-
tor metabolism.

From a practical standpoint, the relationship we report could
be used to predict walking energy expenditure either with or
without contemporary technology because the inputs required
are minimal. Although present use is limited to level surfaces,
under such conditions only velocity data are required if height
and body weight are known. Thus low-tech field uses can be
implemented with only time and distance inputs to compute an
average velocity. In fitness settings, the equations we present
here (Eqs. 3 and 4) could be used during level treadmill
walking at known speeds. Across settings, technology-enabled
implementations abound because many wearable sensors now
provide velocity data (14). These include global positioning
systems, geo-locating smart phones, and precision pedometers
that determine speed from a variety of technologies and which
are available from numerous manufacturers.

As health, medicine, military, and personal monitoring
merge with mobile technologies, the accuracy of the general-
ized relationships available will be a primary determinant of
the validity of the data streams that will inevitably become both
widely available and heavily used.
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Ludlow LW, Weyand PG. Walking economy is predictably
determined by speed, grade, and gravitational load. J Appl Physiol
123: 1288 –1302, 2017. First published July 20, 2017; doi:10.1152/
japplphysiol.00504.2017.—The metabolic energy that human walk-
ing requires can vary by more than 10-fold, depending on the speed,
surface gradient, and load carried. Although the mechanical factors
determining economy are generally considered to be numerous and
complex, we tested a minimum mechanics hypothesis that only three
variables are needed for broad, accurate prediction: speed, surface
grade, and total gravitational load. We first measured steady-state
rates of oxygen uptake in 20 healthy adult subjects during unloaded
treadmill trials from 0.4 to 1.6 m/s on six gradients: �6, �3, 0, 3, 6,
and 9°. Next, we tested a second set of 20 subjects under three
torso-loading conditions (no-load, �18, and �31% body weight) at
speeds from 0.6 to 1.4 m/s on the same six gradients. Metabolic rates
spanned a 14-fold range from supine rest to the greatest single-trial
walking mean (3.1 � 0.1 to 43.3 � 0.5 ml O2·kg-body

�1·min�1, re-
spectively). As theorized, the walking portion (V̇O2-walk � V̇O2-gross –
V̇O2-supine-rest) of the body’s gross metabolic rate increased in direct
proportion to load and largely in accordance with support force
requirements across both speed and grade. Consequently, a single
minimum-mechanics equation was derived from the data of 10
unloaded-condition subjects to predict the pooled mass-specific
economy (V̇O2-gross, ml O2·kg-body � load

�1·min�1) of all the re-
maining loaded and unloaded trials combined (n � 1,412 trials
from 90 speed/grade/load conditions). The accuracy of prediction
achieved (r2 � 0.99, SEE � 1.06 ml O2·kg�1·min�1) leads us to
conclude that human walking economy is predictably determined
by the minimum mechanical requirements present across a broad
range of conditions.

NEW & NOTEWORTHY Introduced is a “minimum mechanics”
model that predicts human walking economy across a broad range of
conditions from only three variables: speed, surface grade, and body-
plus-load mass. The derivation/validation data set includes steady-
state loaded and unloaded walking trials (n � 3,414) that span a
fourfold range of walking speeds on each of six different surface
gradients (�6 to �9°). The accuracy of our minimum mechanics
model (r2 � 0.99; SEE � 1.06 ml O2·kg�1·min�1) appreciably ex-
ceeds that of currently used standards.

metabolism; locomotion; generalized equation; load carriage; algo-
rithm; wearable sensors

THE METABOLIC ENERGY that human walking requires can vary
considerably, depending on mechanical and muscular de-

mands. Slow walking on level and declined surfaces elevates
metabolism only marginally above the body’s basal or resting
rates. Fast walking on inclines can elevate the body’s resting
metabolic rate by an order of magnitude or more. Inclined
walking with loads can require metabolic rates that exceed the
aerobic maximums of even the fittest human endurance ath-
letes. Because metabolism is a fundamental determinant of the
body’s physiological state and walking is the most common
form of human physical activity, hundreds of studies have
examined the metabolic requirements of walking since formal
investigation began more than a century ago (78).

Despite extensive and ongoing scientific attention, a gener-
alized understanding of walking metabolism across the full
range of conditions humans typically walk remains unavail-
able. Scores of predictive equations have been developed, but
the vast majority have been limited to level surface conditions
(10, 46, 59, 71, 73, 77). The two predictive equations with
greatest conditional breadth, those of Pandolf et al. (56) and the
American College of Sports Medicine (ACSM) (3), are the
most widely used. However, both were formulated using very
small sample sizes, have somewhat unclear scientific founda-
tions, do not include declined conditions, and generally under-
predict walking metabolic rates under the predominantly level
conditions under which they have been thus far evaluated (46).

A primary difficulty in identifying the determinants of the
metabolic cost, or economy of human walking is isolating the
limited metabolic signal present under typical experimental
conditions. The large majority of investigations have under-
standably been limited to level surface conditions. However,
long periods of ground force application to support the body’s
weight (12, 36) and conservative, pendulum-like gait mechan-
ics that minimize muscular work (11, 12) constrain gait-
induced elevations in whole body metabolism two to four times
the body’s supine resting rate across the level walking
speeds typically used. Additionally, quantitative approaches
to isolating and predicting the walking, or nonresting, por-
tion of the body’s total metabolic rate have been inconsis-
tent and are potentially confounding (1, 75). Some studies
analyze the body’s gross metabolic rates without implementing
a baseline subtraction (15, 33, 38, 44), some subtract supine
resting metabolic rate (46, 47, 76), and some subtract a
measured rate of sitting metabolism (32), whereas many
subtract a preexercise standing metabolic rate (13, 14, 16,
19, 20, 27–29, 65, 72). The rationale for standing metabolic
rate subtractions is unclear because standing, like walking,
includes a nonresting metabolic cost of supporting the
body’s weight against gravity (75).
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Signal size and isolation issues have undoubtedly contrib-
uted to the lack of consensus regarding the determinants of
human walking economy. At present, a substantial portion of
the metabolic cost has been attributed to each of the following
mechanical factors: gravitational support force requirements
(29, 45, 46, 74), the mechanical work of lifting and accelerat-
ing the body’s mass (29), the pushing and braking that the
trailing and leading limbs perform, respectively, against one
another during double contact (19, 43), swinging of the limbs
(18, 27, 51), lateral stabilization of the body’s center of mass
(20), and others. Similarly unresolved is whether the per
kilogram metabolic costs of body mass vs. external mass
affixed to the torso are equal (6, 26, 30, 37, 45, 51, 58, 67).
Finally, the validity of existing explanations for the substantial
differences in walking economy observed across different
surface gradients (3, 8, 49, 54, 56) is largely unknown.

Here, we used speed, grade, and torso loading as experimen-
tal tools to vary mechanical demands and maximize the range
of gait-induced metabolic signals obtained. We reasoned that
conservative gait mechanics should effectively reduce meta-
bolic demands to those required to satisfy the gross mechanical
requirements across these broad test conditions. This approach
has previously been applied successfully to gaits such as
running and bipedal hopping that provide large, easily isolated
metabolic signals (41, 62). Analytically, we approached this
question by building upon our prior work that successfully
predicted both speed and body size-related variability under
level conditions by using a two-component description of
walking metabolism (46, 76): a first component that is constant
across speed and a second that increases as a function of the
velocity of walking squared (2, 76).

We hypothesize that the walking economy of adult humans
can be predicted across a broad range of conditions from three
basic mechanical variables: speed, surface grade, and the total
weight (i.e., body plus load) supported against gravity. Suc-
cessful test outcomes would provide a predictive and analytical
tool with broad application. Potential uses include exercise
prescription, physiological monitoring, performance predic-
tion, and modeling of rates of heat production and fatigue. The
rapid advancement of wearable sensing technologies capable
of incorporating the three basic inputs in our model could avail
broad, nearly immediate use to the general public during daily
living.

METHODS

Experimental Design and Overview

We adopted a two-step approach to testing the hypothesis that the
economy of human walking across a broad range of conditions can be
predicted from three basic mechanical requirements: speed, grade, and
total gravitational load. The two-step sequence was implemented to
facilitate the acquisition of the large volume of data needed to develop
a robust, multiconditional model. The data set ultimately compiled
includes 3,414 steady-state walking trials acquired from 32 subjects
over a period spanning 2 yr.

In part I, we measured walking economy across a broad range of
walking speeds on six different grades in 20 subjects. In part II, we
measured walking economy across a slightly narrower range of speeds
on the same six grades under three different load conditions: unloaded
(1.0 Wb), �18% added torso weight (1.18 Wb), and �31% added
torso weight (1.31 Wb).

In contrast to our prior investigations of walking on level surfaces
only (46, 76), height was not included in the present model for both
scientific and pragmatic reasons. Scientifically, our objective of de-
veloping a generalized equation for predicting human walking metab-
olism in an adult population across a broad range of conditions did not
require an age- or height-stratified sample. Pragmatically, the volume
and intensity of the testing protocol was too rigorous to reasonably
include children.

Minimum Mechanics Model of Walking Metabolism

For predictive purposes, our minimum mechanics model partitions
the body’s total metabolic rate into one resting and two walking
components. In the original, level-only formulations (45, 76), the
model was expressed as

V̇o2-gross � V̇o2-rest � C1 � V̇o2-rest
Ç

MWMR

� C2 � V2 ⁄ Ht
Ç

SDWMR

(1)

where V̇O2-gross is the body’s gross, or total, metabolic rate; V̇O2-rest is
supine, resting metabolic rate; C1 is the coefficient describing the
model’s first walking metabolic component, the minimum walking
metabolic rate (MWMR) as a multiple of the resting metabolic rate;
C2 is the coefficient describing the model’s second metabolic com-
ponent, speed-dependent walking metabolic rate (SDWMR), V is the
velocity of walking in meters/seconds, and Ht is height in meters.
Above and throughout this article, all the metabolic terms are ex-
pressed in mass-specific units of oxygen uptake (ml O2·kg�1·min�1),
in keeping with physiological convention for weight-bearing exercise
and the scientific rationale for the model.

Multiconditional Formulation of the Minimum Mechanics Model

We expanded the prior level-only version of the model to the
multiconditional purposes examined here by incorporating grade as
follows:

VO2-gross � VO2-rest
Ç

Rest

� (C1 � G) � VO2-walk min
Ç

Minimum Walking

� (1 � (C2 � G)) � (C3 � V2)
Ç

Speed-dependent
Ç

Walking Metabolism
(2)

where V̇O2-gross, V̇O2-rest, and V are as defined above, V̇O2-walk min is
a constant, G is the positive surface inclination expressed in percent
grade, C1 is a coefficient describing the minimum walking metabolic
rate in conjunction with grade, C2 is a coefficient describing the
influence of grade on speed-dependent walking metabolism, and C3 is
a coefficient that describes the influence of velocity on speed-depen-
dent walking metabolism regardless of grade. The number 1 is
included in the speed-dependent walking metabolism term to prevent
this portion of walking metabolic rate from equaling zero at 0% grade.
A Cdecline coefficient was also derived to quantify walking, or non-
resting, metabolic rates on negative grades as a fraction of the level
values provided by the final equation.

The specific values of four coefficients, C1, C2, C3, and Cdecline, and
one constant, V̇O2walk-min, were determined empirically. All V̇O2 terms
are expressed in ml O2·kg�1·min�1, whereas V has the units of meters
per second. The physiological basis of the model is provided below.

Model Formulaic and Scientific Rationale

The model assumes that elevations in the body’s metabolic rate
above supine resting rates due to walking 1) result entirely from the
activity of skeletal muscle, 2) are attributable primarily to the activity
of the limb muscles to support the weight of the body, or body plus
load, against gravity (69, 70), and 3) vary across grade in accordance
with muscular contractions that elevate, maintain, or lower the body’s
center of mass during each step (34, 35, 49, 50).
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Our third assumption deviates from the long-standing practice of
modeling walking and running metabolic rates on positive grades as a
separate, supplemental metabolic component to level metabolic rates.
Although a distinguished tradition for this practice exists from the
pioneering work of Zuntz (78) and Dill (17) forward (3, 8, 25, 56), a
physiological justification for doing so is lacking. Contemporary
observations document progressive alterations in the contractile ac-
tivity (24, 61) and neuromuscular activation (65) across different
grades in accordance with our assumption.

Added Load: Modeling Validation and Signal Isolation Analysis

The walking portion of the body’s metabolic rate was isolated by
subtracting each subject’s measured supine resting metabolic rate
from the total or gross metabolic rate measured during exercise
(V̇O2-walk � V̇O2-gross – V̇O2-rest). In the event that each kilogram of
added torso weight incurred an equal metabolic cost to each kilogram
of body weight as postulated, load-induced increases in the walking
portion of the body’s total metabolic rate should be directly propor-
tional to the additional load carried; thus

V̇o2walk-L ⁄ V̇o2walk-UL � Wbody�load ⁄ Wbody (3)

where V̇O2walk-L and V̇O2walk-UL are walking metabolic rates under
loaded and unloaded conditions, respectively, Wbody � load is the total
weight of the body plus load and Wbody is body weight only.
Accordingly, our model predicts that the ratio of loaded to unloaded
walking metabolic rate (V̇O2walk-L/V̇O2walk-UL) will equal the ratio of
loaded to unloaded walking weight, which here equaled 1.18 and 1.31,
respectively, across all of the speed and grade trials administered for
the respective load conditions.

Signal Isolation Analysis

We also used the loaded walking data acquired to evaluate the
effectiveness of signal isolation via resting metabolic rate subtrac-
tions. We did so by repeating the above analysis with two methods for
quantifying walking metabolic rates that were expected to be inaccu-
rate. The first was to examine load-induced increases in metabolic rates
without implementing a baseline subtraction, thereby making the unten-
able assumption that the body’s resting or basal metabolic requirement
becomes zero during exercise (i.e., V̇O2-walk � V̇O2-gross). The second
was to subtract a preexercise standing metabolic rate (V̇O2-walk �
V̇O2-total – V̇O2-stand) that likely overestimates the body’s baseline
metabolic rate requirements that are present during walking. This
second approach ignores the elevations above supine resting meta-
bolic rates that result from standing (68, 75). The error introduced
from these two alternative approaches is expected to skew the ratios
of V̇O2walk-L/ V̇O2walk-UL on the left side of Eq. 3: negatively for the
zero under-subtraction treatment and positively for the standing over-
subtraction treatment. In both cases, ratio skewing is expected to be
signal size dependent, affecting trials with the lowest gross metabolic
rates most and trials with the greatest gross metabolic rates least.

Because of the considerable variability present in the literature for
standing metabolic rate values, we compiled values reported from
those laboratories and investigators who have frequently subtracted
measured standing rates from gross exercise rates to isolate walking
metabolism. A representative literature average was used to assess the
error potentially introduced.

Experimental Protocol and Measurements

Subjects. Twenty subjects each participated in parts I (males, n �
13; females, n � 7) and II (males, n � 12; females, n � 8) of the study
(Table 1). Because eight subjects participated in both parts I and II,
the total number of participating subjects was 32. All subjects were
physically active and without contraindications for exercise according
to the cardiovascular guidelines set forth by the American College of
Sports Medicine. Each provided written, informed consent before

testing in accordance with the protocol approved by the Institutional
Review Board of Southern Methodist University.

Treadmill testing protocol: part I. The 20 subjects in part I
completed 5-min walking trials at five treadmill speeds (0.4, 0.7, 1.0,
1.3, and 1.6 m/s) on each of six different grades (�6, �3, 0, 3, 6, and
9°). Subjects reported to the laboratory for one session for measure-
ment of resting, sitting, and standing metabolic rates, one session for
measuring maximal aerobic rates, and a minimum of five sessions for
measurement of walking economy at different speeds and grades
without added weight. For the resting, sitting, and standing test
session, subjects were asked to arrive at the laboratory as close to
waking as possible, to refrain from exercise on the morning of the test,
and to avoid caffeine and food consumption for a minimum of 8 h
before testing. For the five walking sessions, each combination of
grade and speed was tested on separate days to acquire two steady-
state metabolic rates for each trial condition. Each subject was
equipped with Brooks (Cascade Trail model) shoes.

Treadmill testing protocol: part II. The 20 subjects in part II
completed 5-min treadmill walking trials at three speeds (0.6, 1.0, and
1.4 m/s) at six different grades (�6, �3, 0, 3, 6, and 9°) under three
load conditions: unloaded (1.0 Wb), �18% added body mass (1.18
Wb), and �31% of added body mass (1.31 Wb). Nine of the 20
subjects completed an additional speed of 1.8 m/s for the two declined
conditions. Each of the 20 part II subjects reported to the laboratory
on a minimum of 8 different days for test sessions. As for the part I
subjects, one early morning session was devoted to measuring post-
absorptive resting, sitting, and standing metabolic rates. Maximal
aerobic rates were measured in a single separate test session. The
other six sessions were devoted to steady-state walking at the speeds,
grades, and loads required. For each of the walking sessions, data
from two grades, and all three load and speed conditions were
acquired. Six sessions were required to acquire duplicate, separate-
day walking metabolic measurements at each combination of grade,
speed, and load. Within sessions, breaks occurred when it was
necessary to change the treadmill grade and load or upon subject
request. A subset of the data from 10 subjects has been reported
previously (45).

Loads were added based on each subject’s body weight rounded to
the nearest 10-lb. increment. The exact percentage of body mass
carried by each subject varied, with the group average values being 18
and 31%, respectively, for the two loaded conditions. Loads were
added using vacuum-sealed steel shot packaged in 0.5, 1.0, and 2.0-lb.
pouches. The weight added was distributed symmetrically about the
torso by placing the blocks with shot into a military style backpack
(5.11 Rush72; 5.11, Irvine, CA) posteriorly and vest (5.11 TacTec
plate carrier) anteriorly. Seven blocks were fit into a tightly fitting
backpack configuration to minimize or eliminate bouncing and load
shifting. Vest blocks of equal weight were inserted into 14 tightly
attached MOLLE pouches (5.11 C5 case).

The duplicate-trial walking metabolic rates acquired in part I and
part II (n � 3,414) were averaged to obtain single trial-specific means
for the modeling analysis. Trials were not administered above 85% of
the subject’s measured maximum rate of aerobic metabolism to avoid
fatigue and nonsteady-state conditions.

Metabolic Measurements. Metabolic rates were determined by
indirect calorimetry using a computerized metabolic system (TrueOne
2400; Parvo Medics, Sandy, UT). Samples of expired gases were
collected during walking, supine resting, sitting, and standing. Col-

Table 1. Subject characteristics by group

Group n (Males) Age, yr Mass, kg Height, cm

Experimental 10 (6) 28.1 � 2.3 73.6 � 4.7 170.9 � 3.5
Validation 10 (7) 26.4 � 1.6 75.2 � 6.0 170.5 � 2.7
Load 20 (12) 30.2 � 1.1 73.9 � 2.7 171.8 � 1.8

Values are means � SE.
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lection occurred through a one-way breathing valve and tubing that
directed flow first through a pneumotach for measurement of volume
flow rates and then into a mixing chamber. Expired air was sampled
from the mixing chamber with O2 and CO2 fractions analyzed using
paramagnetic and infrared gas analyzers, respectively. Rates of oxy-
gen uptake (V̇O2) were determined from the average value during the
last 2 min of each 5-minute trial.

Resting, sitting, and standing rates of oxygen uptake were acquired
in the early morning with the subjects in a postabsorptive state. In
each of these nonwalking measurement conditions, subjects were
instructed to remain awake and refrain from fidgeting or any unnec-
essary motion. Resting rates were determined from the lowest, con-
secutive-segment, 10-min average over a 30-min test period. Sitting
and standing metabolic rates were determined from the lowest, con-
secutive-segment, 5-min average during the 15-min test period. Max-
imum aerobic rates were determined using a continuous, grade-
incremented, treadmill-running protocol to failure. Resting metabolic
rates were also estimated using the population equation of Schofield
(64).

Throughout this article, metabolic rates are reported in units of
oxygen uptake. In all cases, mass-specific units denoting either body
mass only (kg-body), or body-plus-load mass (kg-total) are reported per
the widespread conventions for expressing weight-bearing exercise
rates and per the scientific foundation of our model.

Minimum Mechanics Model Formula Derivation and Validation

Hypothesis evaluation relied upon a cross-validation design that
match-paired and split the 20 part I subjects into experimental and
validation groups of 10 subjects each. Subjects were randomly as-
signed to experimental and validation groups after being match-paired
by stature and body mass. Empirical values for our three-input,
minimum mechanics model of walking metabolism were determined
using the data from the 10 experimental group subjects only. In
accordance with prior procedures (45, 76), the optimizer function in
Excel was used for the empirical derivation of the values, providing
the best overall fits to the experimental group data while holding all
other values constant (23). Here, the values of four coefficients, C1,
C2, C3, and Cdecline, and one constant, V̇O2walk-min, were optimized
empirically using the data of the experimental group subjects. The
predictive accuracy of the model across speed and grade without loads
was then evaluated on 10 validation group subjects, whose data were
not used in the model’s empirical formulation.

Subsequently, the walking economy values of all 20 part II subjects
were predicted using the model formulated from the data of the
experimental group subjects in part I. Model predictions across load
conditions assumed equal per kilogram metabolic requirements for
body vs. added weight. This assumption allowed the model formu-
lated in part I to be used without modification to predict walking
economy across the load conditions examined in part II. The body
weight term in the model equation was modified to include the total
weight supported against gravity (i.e., body plus load) under loaded
conditions. A one-way ANOVA (� � 0.05) was used to test the effect
of load condition on walking economy per total body-plus-load mass
(ml O2·kg-total

�1·min�1).

Model Accuracy Comparisons

The predictive accuracy of our optimized minimum mechanics
model of walking metabolism was directly compared with the two
most commonly used predictive standards, those of the American
College of Sports Medicine (ACSM) and Pandolf et al. (56), using
the equations provided in Table 2. Because the ACSM equation
was not formulated to include declined or added load conditions,
negative grade predictions for this model were generated here by
using the level condition equation, whereas load carriage predic-
tions were generated by incorporating added load weight into body
weight. The one quantitative addition needed to generate predic-

tions using Pandolf et al. (56) for all conditions here was the
utilization of the declined extension for Pandolf et al.’s (56) equation
developed by Santee et al. (63). The predictions derived from the
ACSM and Pandolf et al. (56) model equations were compared with
those obtained from our minimum mechanics model for both the
validation group subjects from part I and the load group subjects in
part II. The agreement between measured and predicted values was
evaluated primarily via the standard error of the estimate (SEE) and
secondarily using the r2 statistic. A first modified Bland-Altman (42)
analysis of the performance of our two-component model, ACSM,
and Pandolf et al. (56) across speed and grade was conducted on the
data acquired from validation group subjects in part I. A second
modified Bland-Altman analysis was conducted using the data ac-
quired across all the speeds, grades, and load conditions completed by
the 20 subjects who participated in part II of the study.

Data are reported as means � SE throughout unless otherwise
specified.

RESULTS

Metabolic Rates: Resting, Sitting, Standing, and
Aerobic Maximums

The mean measured supine resting metabolic rate for all 32
subjects was 3.13 � 0.07 ml O2·kg�1·min�1 (range: 2.34–3.82
ml O2·kg�1·min�1). The corresponding mean for sitting met-
abolic rates was 3.16 � 0.08 ml O2·kg�1·min�1 (range: 2.22–
4.24 ml O2·kg�1·min�1), whereas the mean measured standing
rate was 3.51 � 0.08 ml O2·kg�1·min�1 (range: 2.62–4.55 ml
O2·kg�1·min�1).

The mean overall supine resting value measured for the 20
part I subjects of 3.05 ml O2·kg�1·min�1 was used to generate
our minimum mechanics model predictions for both part I and
part II. The supine resting values predicted for all 32 subjects
using the population equations of Schofield et al. (64) based on
height, weight, and sex of 3.21 � 0.05 ml O2·kg�1·min�1

agreed to within �0.1 ml O2·kg�1·min�1 of the mean mea-
sured value provided above.

The mean maximum rates of aerobic metabolism for the
male and female participants were 53.2 � 1.6 and 45.7 � 3.0
ml O2·kg�1·min�1, respectively.

Standing Metabolic Rates: Literature Values

The mean standing metabolic rate compiled from the subject
test population means in 12 literature sources (Table 3) of
4.5 � 0.19 ml O2·kg�1·min�1 was 1.4 times greater than the
mean supine resting metabolic rate measured of the 32 subjects
tested here.

Table 2. ACSM and Pandolf et al. (56) prediction equations

Equation Reference

V̇O2 (ml O2·kg�1·min�1) � (0.1·V) � (1.8·V � G) �
3.5 ml·kg�1·min�1 ACSM (3)

V̇O2-equiv (watts) � 1.5·M �2.0·(M � L) (L/M)2 �
	 (M � L) [1.5·V2 �0.35·V � G] Pandolf et al. (56)

Decline CF � 	[G·(W � L)·V]/3.5 � {[(W � L)·
(G �6)2]/W} � (25 � v2) Santee et al. (63)

ACSM, American College of Sports Medicine; V, velocity; M, body mass
(kg); L, load (body weight units); G, grade (%); 	, terrain factor, (arbitrary
units). For V, units are reference specific: ACSM, m/min; Pandolf et al. (56)
and decline CF [Santee et al. (63)], m/s.
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Walking Economy: Individual Variability

Individual variability in walking economy was limited, with
the mean standard deviation from each of the 90 different trial
conditions averaging �0.8 ml O2·kg-body

�1·min�1. When in-
dividual variability was quantified in relation to each trial mean
as a coefficient of variation (� standard deviation/trial mean),
values ranged from a minimum of 0.034 to a maximum of
0.122. In general, coefficient of variation values tended to be
greater for trials eliciting lower metabolic rates.

Walking Economy Across Speed, Grade, and Load

The grand mean for all walking metabolic rates measured
across the 90 different speed, grade, and load trial conditions
administered was 14.4 � 0.21 ml O2·kg-body

�1·min�1, represent-
ing a 4.7-fold elevation on average of the body’s supine, resting
metabolic rate. Across these 90 different trial conditions, individ-
ual walking metabolic rates spanned a nearly 10-fold range from
a minimum of 4.8 ml O2·kg-body

�1·min�1 to a maximum of 45.4
ml O2·kg-body

�1·min�1.
The gross metabolic rates measured, expressed in relation to

body mass (i.e., per kg-body) across all the speed, grade, and
load conditions administered appear in Fig. 1. The same gross,
or total, metabolic rates measured, expressed per kilogram

total, or load plus body mass (i.e., per kg-total), appear in Fig.
2A. The corresponding rates due to walking (i.e., net
rates � V̇O2-gross – V̇O2-rest), expressed per kg-total appear in
Fig. 2B. Across each of the six different grades examined,
walking metabolic rates increased from roughly two to four
times across the fourfold range of test speeds administered
from 0.4 to 1.6 m/s, with greater increases being observed on

Table 3. Standing metabolic rates from the walking
metabolism literature

Reported Stand Value,
ml O2·kg�1·min�1 Author(s) Year

5.6 Bastien et al. (6) 2005
3.9 Browning et al. (9) 2006
4.5 Collins and Kuo (13) 2010
4.4 Collins et al. (14) 2015
5.8 DeJaeger et al. (16) 2001
4.4 Farley and McMahon (21) 1992
4.9 Gottschall and Kram (27) 2005
4.6 Grabowski et al. (29) 2005
4.5 Martin et al. (48) 1992
3.9 Silder et al. (65) 2012
4.1 Silder et al. (66) 2013
3.4 Vanderpool et al. (72) 2008

Average 4.5
Minimum 3.4
Maximum 5.8
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the steeper positive grades. At all grades, speed-induced in-
creases in walking metabolic rates were slightly curvilinear.

The influence of grade on walking economy was larger than
that of speed (Figs. 1 and 2). At any given speed in the
protocol, walking metabolic rates spanned a minimum range of
fourfold and as much as sevenfold range from the �6 to �9°
grade conditions examined. The grade-induced differences
present at any speed were an approximately linear function of
grade across positive grades from 0 to 9°. In contrast, grade-
induced differences in walking metabolic rates from 0 to �6°
were not linear. The differences observed between the 0 and
�3° conditions were relatively small, and there were essen-
tially no differences between the �3 and �6° conditions.

The addition of either 18 or 31% of the body’s weight
resulted in proportional increases in walking metabolic rates
regardless of the speed or grade of the walking trial (Fig. 1).
Consequently, when the load-induced increases in the body’s
mass-specific (i.e., per kg-body) walking metabolic rates were
expressed in relation to the total load carried, or per kg-total,
there were no discernable differences across any of the 20
speed and grade conditions for which each of the three load
conditions were administered (Fig. 2). There was no effect

of load condition on walking economy per kilogram total
load (ml O2·kg-total

�1·min�1; ANOVA, � � 0.05).

Added Load: Modeling Validation and Signal
Isolation Analysis

The ratios of loaded to unloaded walking economy (V̇O2-L/
V̇O2-UL) observed across all speeds and grades for the two
respective load conditions appear in Fig. 3, A and B, (�18 and
�31%, respectively), where they are plotted in relation to the
gross metabolic rates (V̇O2-gross) measured. When walking
metabolic rates were determined by subtracting supine resting
rates from the gross rates measured (i.e., V̇O2-walk �
V̇O2-gross � V̇O2-rest), load-induced increases in walking metab-
olism were a close function of the load added regardless of the
speed, grade, and gross metabolic rate elicited by the trial (Fig.
3, blue open circles and curve fits, and Table 3). The mean
value for the ratio of V̇O2-L to V̇O2-UL across the 20 common
speeds and grades administered with the lighter load was
1.17 � 0.004. The mean overall ratio for the heavier load from
these 20 speeds and grades was 1.35 � 0.006. There was no
discernable trend across the gross metabolic rates measured
under either load condition.

Both alternative data treatments of the gross metabolic rates
measured during walking were signal size dependent. When no
baseline quantity was subtracted (Fig. 3, red open squares and
curve fits), the ratio of loaded to unloaded walking metabolic rates
(V̇O2-L/V̇O2-UL) was appreciably less than the relative increase in
load. For both the �18 and �31% added load conditions, ratios
were lowest at low metabolic rates and greatest at the highest
ones. For both load conditions, the ratios progressively ap-
proached a value directly proportional to the relative load added as
the measured gross metabolic rates increased.

The opposite pattern was observed when the literature
standing value of 4.5 ml O2·kg�1·min�1 was subtracted
from the V̇O2-gross values measured (where V̇O2-walk �
V̇O2-gross � V̇O2-stand; Fig. 3, green open triangles and curve
fits). Subtraction of the literature standing values from mea-
sured rates resulted in ratios of loaded to unloaded walking
metabolic rates (V̇O2-L/V̇O2-UL) that were appreciably greater
than the respective relative increase in load for both conditions.
For both the �18 and �31% added load conditions, the ratios
observed were greatest at low metabolic rates and least at the
highest ones. In both cases, the ratios progressively decreased
toward a value proportional to the relative load added as the
measured gross metabolic rates increased.

Predictive Accuracy of the Minimum Mechanics Model

Part I. The optimized coefficients for our minimum mechan-
ics model of walking metabolism derived from the experimen-
tal group subjects appear in Table 4. The accuracy of the model
equation predictions on the validation group subject’s data is
provided in Fig. 4, A and B. Equation-predicted curves and the
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Fig. 3. The ratio of loaded to unloaded metabolic rates for the �18 (A) and �31%
load conditions (B) vs. the body’s gross metabolic rate during loaded walking.
Ratios were determined using 3 different baseline subtraction methods: no sub-
traction (red squares and curve fits), gross metabolic rate � supine resting
metabolic rate (blue circles and curve fits), and gross metabolic rate � average
standing metabolic rate reported in the literature (green triangles and curve fits).
Dashed horizontal lines represent the relative VO2 increases predicted for
respective conditions: 1.18 (A) and 1.31 (B). Logarithmic trend lines are
included for each baseline subtraction method. Shaded gray vertical bars
highlight the metabolic rates for level walking at the speeds typically
self-selected (1.0 –1.3 m/s).

Table 4. Empirically derived minimum mechanics model
equation values

Experimental
group n C1 VO2-walk-min C2 C3 Cdecline r2 SEE

Value 10 0.32 3.28 0.19 2.66 0.73 0.98 1.12

SEE, standard error of estimate.
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experimental group mean values measured for each unloaded
speed and grade appear in Fig. 4A, whereas the measured vs.
equation-predicted values for each of the individual subjects in
the validation group are plotted in Fig. 4B. The overall error of
individual prediction, or SEE value, for the individual mea-
sured metabolic rates for the validation group subjects of �1.0
ml O2·kg�1·min�1 corresponded to 7.4% of overall mean
measured. The proportion of the total variance in the 297
measured metabolic rates for the validation group subjects
accounted for by the minimum-mechanics model was 
98%.

The overall error of individual prediction of our minimum
mechanics model was roughly one-half that of the ACSM and
Pandolf et al. equations on average when evaluated with the SEE
statistic. The equivalent evaluations of the ACSM and Pandolf et
al. equations are presented in relation to speed and grade means
for the validation group subjects (Fig. 4, C and E) and measured
vs. equation-predicted values (Fig. 4, D and F). The ACSM
equation generally overpredicted declined and inclined val-
ues while slightly underpredicting level values. The Pandolf
et al. (56) equations tended to underpredict level and declined
values while also overpredicting the values obtained on positive
grades. Consequently, the respective SEE values for the ACSM

and Pandolf et al. (56) equations corresponded to 15.8 and
13.4%, respectively, of the overall mean measured for the
validation group subjects across all of the trials completed
(2.13/13.5 � 15.8 and 1.81/13.5 � 13.4%).

Part II. Both economy vs. speed and actual vs. predicted
model accuracies for the minimum mechanics model, ACSM
and Pandolf et al. (56) across the three load conditions admin-
istered for part II appear in Fig. 5. Because of the close
relationship between increases in mass-specific metabolic rates
and added gravitational loads relative to body weight, the
accuracy of the minimum mechanics model under loaded
conditions was almost the same as under unloaded conditions
(Fig. 5, A and B). The absolute accuracy of the ACSM equation
also declined marginally vs. the prediction of the unloaded
values in part I, whereas that of the Pandolf et al. (56) equation
improved marginally by 0.1 ml O2·kg�1·min�1.

Modified Bland-Altman Analysis

The difference between measured and model-predicted val-
ues in ml O2·kg-total

�1·min�1 for the three predictive models
evaluated, minimum mechanics, ACSM, and Pandolf et al.
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Fig. 4. Measured metabolic rate means dur-
ing unloaded walking for the experimental
group subjects vs. walking speed (all sym-
bols in A, C, and E) in relation to the meta-
bolic rates predicted (dashed lines) by our
minimum-mechanics model (A), the Ameri-
can College of Sports Medicine (ACSM)
equation (C), and the Pandolf et al. (56)
equation (E) on each of the 6 surface grades
investigated. Measured metabolic rates for
each of the walking trials completed by val-
idation group subjects vs. those predicted by
our minimum mechanics model (B), the
ACSM equation (D), and the Pandolf et al.
(56) equation (F). Diagonal lines in B, D, and
F represent the lines of identity. Declined
gradient predictions were calculated using
the level equation for ACSM and the de-
clined extension of the Pandolf et al. (56)
equation by Santee et al. (63).
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(56), appear for the unloaded trials completed by validation
group subjects in part I in Fig. 6, A, C, and E, respectively. For
the minimum mechanics model, the mean overall difference
was nearly equal to zero per the ideal (�0.36 ml O2·
kg�1·min�1), the standard deviation of the prediction was
relatively small, and little speed- or grade-dependent bias in
the accuracy of the predictions was evident. For both the
ACSM and Pandolf et al. (56) equations, the standard errors
of estimate were nearly twice as large and exhibited bias
predominantly across grade. In both cases, the established
standardized equations tended to underpredict metabolic
rates at lower grades and lower metabolic rates and over-
predict at higher ones. The overall predictive error for
ACSM was larger, as was the zero error baseline vs. the
equation of Pandolf et al. (56). The same error analysis for
the three loaded conditions using the three predictive equa-

tions appears in Fig. 6, B, D, and F. The grade- and signal
size-dependent predictive bias patterns of the loaded condi-
tions were similar to those in the unloaded trials in part I.

DISCUSSION

Per our minimum mechanics hypothesis, we were able to
predict walking economy accurately across a broad range of
conditions from only three mechanical variables: speed, grade,
and the total weight supported against gravity. Across more
than 1,400 individual values from 90 different speed, grade,
and load trial conditions and gross metabolic rates that ranged
from two to 14 times the body’s resting rate, our model
predicted the rates we measured with a standard error of
estimate of just 
1.0 ml O2·kg�1·min�1 out of an overall mean
nearly 14 times larger (14.6 � 0.2 ml O2·kg-body

�1·min�1; n �
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Fig. 5. Measured metabolic rate means during loaded walking for load group subjects vs. walking speed (all symbols in A, C, and E) in relation to the metabolic
rates predicted (dashed lines) by our minimum-mechanics model (A), the ACSM equation (C), and the Pandolf et al. (56) equation (E) on each of the 6 surface
grades investigated. Measured metabolic rates for each of the walking trials completed by load group subjects vs. those predicted by our minimum-mechanics
model (B), the ACSM equation (D), and the Pandolf et al. (56) equation (F). Diagonal lines in B, D, and F represent the lines of identity. Declined gradient
predictions were determined using the level equation for the ACSM and the declined extension of the Pandolf et al. (56) equation by Santee et al. (63).
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1,412). The relative agreement between the model-predicted
and measured values across nearly 300 speed and grade values
in part I and across 
1,100 speed, grade, and load values in
part II was 
98% in each case (Figs. 4B and 5B). Before
specifically considering the economy influences of each of the
three mechanical variables we altered, we note that our out-
comes offer capabilities and scientific insights not previously
available. Practically, the extension of generalized predictive
capabilities to declined gradients that are equally present in the
natural world, but not included in earlier predictive equations,
offers a more comprehensive field tool than previously avail-
able. Scientifically, if support forces were not the fundamental
determinant of walking economy as modeled, accurate meta-
bolic predictions across the 90 different speed, grade, and load
conditions investigated here would have been unlikely, if not
impossible.

Loaded Walking Economy Is Determined by the Total Mass
Supported Against Gravity

Many investigations under level-only conditions have re-
ported that, on a per kilogram basis, each unit of additional

torso mass incurs a relatively greater metabolic cost than each
kilogram of body mass (6, 29–31, 37). However, our 738
individual loaded walking trials spanning a 2.5-fold range of
speeds on six different grades consistently supported the alter-
native conclusion that each kilogram of body and load mass
incurs the same metabolic cost (Figs. 2 and 3 and Table 5).
This is evident from the agreement between the ratios of loaded
to unloaded walking economy (V̇O2-walk-L/V̇O2-walk-UL; Eq. 3)
and loaded to unloaded walking weight (Wbody � load/Wbody) to
within �1% for the lighter load (�17.4% with �17.6% added
weight), 5% for the heavier load (�35.8% with �31.0% added
weight), and �3% (�2.5 � 0.4%; n � 40) overall for the
speed and grade means acquired from both added-load condi-
tions.

Although load-induced increases in walking metabolism
might have been greater than our model predictions for the
trials inducing greater elevations in the body’s metabolic rate
(51), no discernable pattern was present. Deviations from the
relative increases expected based upon the weight added
(Wbody � load/Wbody; Eq. 3) were negligible across speed and
either absent or inconsistent across the �6 to �9° slopes tested
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(Table 5). The possibility of load-related deviation being re-
sponsible for marginally greater relative increases for the
heavier vs. lighter load condition as suggested by several
investigators (25, 26, 38, 51, 58) to occur for loads 
0.3 body
weights cannot be completely ruled out. However, evaluation
is difficult in our data because our heaviest load corresponded
to the load threshold suggested (51). Evaluation of this possi-
bility more broadly in the existing literature is difficult for
several other reasons. First, the data available from loads 
0.3
times body weight are limited and include unbalanced loading
schemes that compromise economy regardless of load mass
(40, 44). Second, the most informative heavy-load study avail-
able (67), which involved balanced torso loads of �1.0 times
body mass, concluded that there is little and perhaps no
difference in per kilogram costs between body and load mass.
Third, the apparently poor mass-specific economy reported for
both lighter (29–31, 37) and heavier load masses (6) from
level-only investigations appears to be an analytic artifact intro-
duced by resting metabolism oversubtractions (see APPENDIX).

Mechanistically, our load results are consistent with the
manner in which our model incorporates the mechanical con-
sequences of added mass, with each kilogram of body or load
mass supported requiring the application of the same ground
support force ( � 1.0 kg � gravitational acceleration) over the
course of each stride. Assuming the limb’s leverage is not
altered by balanced loading, the volume of limb extensor
muscle activated, and, therefore, the rate at which chemical
energy is used, to provide the requisite support forces should
be a direct function of the total body-plus-load mass supported.
This interpretation is fully consistent with the neuromuscular
activation data available from the tissue level under different
load conditions (52, 66).

Isolating Walking Metabolism Requires a Valid Resting
Baseline Subtraction

The close agreement between the ratio of loaded to unloaded
economy and the ratio of loaded to unloaded walking weight
across the four- to fivefold range of gross metabolic rates
measured under two load conditions (Fig. 3) indicates that two
factors almost certainly remained essentially constant as as-

sumed: 1) the metabolic requirements per kilogram added load
(V̇O2-kg-total, Figs. 2B and 3), as noted above, and 2) the basal
metabolic requirements of the body’s nonlocomotor tissues as
implied by earlier studies examining O2 delivery to these
tissues across rest and exercise conditions (4). Accordingly, the
constant ratios for each load condition allow us to infer that the
measured supine resting rates we subtracted (3.1 � 0.1 ml
O2·kg-body

�1·min�1) from the gross bodily rates measured
during walking (i.e., V̇O2-gross – V̇O2-rest) accurately isolated the
non-resting fraction of bodily metabolism for which walking
was responsible.

Alternatively, if a resting rate that was either too low or too
high had been subtracted, positive or negative trends, respec-
tively, would have been observed as the body’s gross meta-
bolic rate increased and the fractional contributions of resting
to gross metabolic rate decreased. Analysis of the positive and
negative trends illustrated in Fig. 3 for the “no-subtraction” and
“minus-stand” ratios vs. the body’s gross metabolic rate ap-
pears in the APPENDIX.

Grade Walking Economy Varies with Muscular Support
Force Dynamics

The walking economy data we acquired with and without
loads on six different grades support our model’s theoretical
foundation while extending the grade-walking insights offered
by Margaria (49) eight decades ago. This pioneering investi-
gator recognized that the rate at which metabolic energy was
expended to support and displace the body on steep positive
and steep negative grades matched the metabolic cost of
generating force during concentric and eccentric muscular
contractions in isolated skeletal muscle. The quantitative
agreement between tissue and whole body levels allowed
Margaria (49) to deduce that essentially all of the metabolic
energy being expended to walk on steep gradients was attrib-
utable to supporting and displacing the body’s mass either
positively via concentric contractions on steep inclines or
negatively via eccentric contractions on steep declines. The
constant metabolic rates per total kilogram supported across
three load conditions on all six inclines (Fig. 2B) investigated
here reveal that Margaria’s support and displacement conclu-
sions from unloaded walking on very steep positive and neg-
ative grades also apply to the moderate and intermediate grades
we examined here.

The alternative suggestions that significant metabolic re-
quirements exist for factors other than supporting and displac-
ing the body’s mass, such as repositioning the limbs between
steps (18, 27) and the trailing and leading limbs pushing
against one another during double support (19, 43), do not
explain our results. The torso loads added here increased
ground support force requirements in a direct 1:1 ratio, with no
direct effect on limb-repositioning requirements. Thus, if limb
repositioning accounted for an appreciable portion of the total
walking metabolic rate at any given speed and grade, then
load-induced increases in economy should have been substan-
tially less than the 1:1 relationship that consistently resulted
across different speeds and grades (Figs. 2B and 3). Similarly,
the double-stance limb antagonism suggested by some to be a
major metabolic requirement during level walking does not
occur on inclines and declines of 3° and greater (22). Rather,
single-limb data importantly demonstrate (22) that leading and

Table 5. Ratios of loaded to unloaded walking economy for
all load trials

Grade (°) Load (� Wb)

Speed, m/s

Average0.6 1.0 1.4 1.8

�6 1.176 1.170 1.193 1.165 1.16 1.173
�3 1.176 1.176 1.143 1.210 1.19 1.181

0 1.176 1.156 1.150 1.166 NA 1.157
3 1.176 1.155 1.159 1.179 NA 1.164
6 1.176 1.167 1.179 1.193 NA 1.180
9 1.176 1.174 1.190 1.195 NA 1.186

�6 1.310 1.371 1.399 1.401 1.393 1.391
�3 1.310 1.359 1.362 1.430 1.417 1.392

0 1.310 1.303 1.312 1.354 NA 1.323
3 1.310 1.302 1.318 1.352 NA 1.324
6 1.310 1.328 1.344 1.386 NA 1.353
9 1.310 1.328 1.346 1.350 NA 1.342

Average
1.18 � Wb 1.166 1.169 1.185 1.178
1.31 � Wb 1.332 1.347 1.379 1.405

NA, not available.
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trailing limbs operate synergistically to simultaneously support
and displace the body on positive and negative gradients,
respectively, largely in accordance with Margaria and col-
leagues’ (49, 50) insights from very steep grades.

The nearly universal approach to considering graded walk-
ing economy by investigators other than Margaria (49) and
Minetti et al. (54) has been to do so 1) only for positive
gradients and 2) to model inclined-only walking metabolic
rates as a supplement to a level baseline rate that remains
constant across all grades. However, neither the muscular
activity present during level walking nor the metabolic require-
ment of this activity remain as constants across different
grades. If this were the case, the extension of this theoretical
framework to declined conditions would then logically require
subtracting a bodily energy savings accrued during downhill
walking from the level baseline requirements rate held constant
by these model equations (8, 17, 25, 56). The inability of
skeletal muscle to convert lost gravitational potential energy
into accumulated chemical energy reveals the physiologically
unsound foundation of this prevailing approach (3, 8, 17, 25,
56, 78).

Our formulaic avoidance of modeling inclined and declined
walking economy by supplementing or subtracting from a
constant level metabolism baseline simplified the quantitative
treatment of both (Eq. 2) while reducing the number of model
terms required. This is most evident from our negative gradient
modeling solution, which fractionally reduced all of the body’s
walking or nonresting metabolism (Eq. 2) to describe economy
differences vs. nonnegative gradients. The empirically derived
decline coefficient of 0.73 (Table 4) is consistent with the
metabolic reductions suggested by the slope of the force-
velocity curve for eccentric muscular contractions in vivo (60).

Our results, the foundational context provided by Margaria
and colleagues (49, 50), and the muscle activation and length-
change data now available from the tissue level (24, 61) all
support the same mechanistic explanation for differences in
walking economy across grade. A small portion of the fivefold
range in walking economy values observed across grade at
each protocol speed tested here (Fig. 2B) can be attributed to
within-fiber rates of ATP utilization being greater during con-
centric uphill vs. eccentric downhill contractions (34, 35, 39,
70). However, the majority is explained by the different per-
fiber muscular forces generated under the different grade con-
ditions. Relatively greater volumes of muscle must be activated
during the relatively low-force concentric contractions that
simultaneously support and elevate the body’s weight on pos-
itive grades. Relatively smaller muscle volumes are activated
during the relatively high-force eccentric contractions that
simultaneously support and lower the body on negative grades
(24, 61).

Speed-Dependent Walking Economy Is Predicted Accurately
by a Two-Component Model

The modeling of our third independent variable partially
followed the widely accepted literature convention of describ-
ing speed-induced increases in walking metabolic rates as a
square function of walking velocity. However, here, as previ-
ously (46, 76), we deviated from widespread convention in
doing so for only a portion of the body’s walking metabolism;
a separate portion was modeled as a constant across speed.

This approach, although more mathematically descriptive than
physiologically mechanistic, ultimately provided highly accu-
rate descriptions of the two- to fourfold increases in walking
metabolic rates observed across the fourfold range of speeds
investigated on the six different grades (Figs. 2, 3, 4, and 5).
The somewhat larger relative increases on the more positive
grades and smaller ones on the level and declined gradients
were described equally well by our two-component approach.

The relatively small departure of walking metabolic rates
from linearity across speed on each of the six grades tested
(Figs. 1 and 2), in conjunction with our velocity-squared
description of only a portion of walking metabolism, made the
high degree of predictive accuracy possible (Figs. 4 and 5, A
and B). The nearly linear relationship may perhaps be ex-
plained by a mechanistic relationship between the duration of
the foot-contact time when ground force is applied and the rate
of ATP utilization in the muscle fibers recruited to apply
support forces, as suggested by Taylor (70). The approach was
successfully applied to level human walking by Hoyt et al.
(36), who expressed rate of ground force application in terms
of body weight and time of foot-ground contact (Wb/tc), but
has been explored only limitedly since (31). Our earlier efforts
employing body size stratification and stride frequency varia-
tion as experimental tools (74) support the possibility that the
Wb/tc approach may provide a general mechanistic explanation
for human walking economy across speed that we report for the
different grades investigated here.

Predictive Accuracy of Existing Standard Models

A primary factor enabling us to develop a model with greater
conditional breadth and roughly one-half the predictive error of
the two leading standards was the singly-focused nature of our
effort. In contrast, both the ACSM (3); and Pandolf et al. (56)
model equations are amalgams of a series of smaller studies
and data sets (for ACSM, see Refs 17 and 55; for Pandolf et al,
see Refs. 25 and 26). The piecemeal formulation of these older
standards, although impressive in terms of the accuracy
achieved, also has intrinsic limitations. The intrinsic strengths
and weaknesses that resulted explain the patterns of agreement
between actual and predicted values that appear in Figs. 4 and
5 for the loaded and unloaded data sets and in Fig. 6 from the
modified Bland-Altman mean difference plots. These patterns
also reflect the formulaic differences resulting from the distinct
intellectual legacies of the three models.

For the ACSM model equation, a minor weakness (Figs. 4,
C and D, 5, C and D, and 6, C and D), given the broad purpose
served, is the inability to fully describe the walking metabolic
rate speed using a linear relationship. This understandable
simplification is responsible for a small portion of the scatter
above and below the lines of identity in Figs. 4D and 5D.
However, the more significant limitation of the ACSM model
equation is the overprediction of walking metabolic rates on all
nonzero grades. For the declined gradients, overprediction
resulted from the need to use the level condition predictions
because the model equation does not extend to negative gra-
dients. This conditional limitation and the consistent overpre-
diction of inclined walking metabolic rates resulted in most of
the predicted values falling above the line of identity (Figs.
4D and 5D) and a mean predictive error that was roughly 2
ml O2·kgbody

�1·min�1 too low for both the loaded and
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unloaded conditions (black horizontal lines in Figs. 6C and
6D).

The greater conditional breadth of the Pandolf et al. (56)
model equation resulted in slightly better overall performance
(Figs. 4, E and F, 5, E and F, and 6, E and F) vs. the ACSM
model equation. The considerable length of the Pandolf et al.
(56) equation resulted in part from the more complex incorpo-
ration of load compared with our model as well as the arduous
work required of Santee et al. (63) to extend the original model
to negative grades. The elaborate final equation that incorpo-
rates at least four identifiable components of walking metabo-
lism was able to predict the multiconditional variation present
in both of our data sets reasonably well, resulting in a mean
overall error near zero (black horizontal lines in Fig. 6, E and
F). Predictive error was most pronounced across slower speeds
and at lower metabolic rates for two reasons. The first is a
conflation of resting metabolism with unloaded and loaded
standing metabolic terms. These modeling choices do not seem
scientifically well justified in terms of either the tight economy-
load linkage we report (Figs. 2B and 3, Table 5, and APPENDIX)
or differences in standing vs. walking posture (7) that likely
decouple the metabolic requirements of supporting body
weight across these different conditions. These factors in
combination with a description that slightly overestimates the
slope of the walking metabolic rate vs. speed relationship
resulted in consistent underpredictions at slower walking
speeds and a tendency toward overprediction at faster ones.
These limitations are responsible for the pattern of predictive
error in the modified Bland-Altman plots (Fig. 6, E and F) that
are most evident at lower metabolic rates.

Concluding Remarks

Given the ubiquity of human walking and general availabil-
ity of the basic inputs our model requires to predict walking
metabolic rates, broad potential for application exists. Tradi-

tional uses such as exercise prescription, energy balance and
weight management, and metabolic rate assessments from
walking speeds and grades are directly computational. How-
ever, new applications may also be enabled by the accuracy of
our minimum mechanics model. A half century ago, Astrand
and Rhyming (5) were able to develop a submaximal test for
estimating maximal aerobic power in part because of the
accuracy with which they were able to predict cycling meta-
bolic rates from mechanical work rates. In their original work,
these authors reported being able to do so with an accuracy
of �6.0% for 67% of their cycling trials. The accuracy of our
walking predictions here approached that of Astrand and
Rhyming’s (5) cycling predictions. Here, 63% of our unloaded
level and inclined walking trials fell within the �6.0% stan-
dard.

Finally, we note that new technological tools, like wearable
sensors and digital topographical maps, expand potential usage
well beyond traditional realms. These and other contemporary
tools may allow our minimum mechanics model to be used to
determine hiking route transport costs, sustainable walking
speeds with and without loads, and instantaneous rates of
metabolism and bodily heat production in the field. If the total
supported load is known, these capabilities are potentially
available from any technology that can provide speed and
grade data in the field.

APPENDIX

The agreement between the ratios of loaded to unloaded walking
economy and loaded to unloaded walking weight (Eq. 3) across two
load conditions with 20 specific trial speed and grade conditions each
(Fig. 3, A and B, blue circles and line fits) enables an informative
analysis. Specifically, deviation from economy ratios specified a priori
on the basis of load weight can be used to detect resting baseline
under- and oversubtractions. At lower metabolic rates particularly, the
relatively greater influence of incorrect subtractions on the smaller
unloaded values in the denominator vs. the loaded values of the
numerator (V̇O2-walk-L/V̇O2-walk-UL) introduces inequality with the
respective walking weight ratios (Wbody � load/Wbody).

First, we consider an undersubtraction that incorrectly assumes that
the body’s basal metabolic requirement during walking is zero (i.e.,
V̇O2-gross � V̇O2-walk). Not removing any contribution of resting to the
gross metabolic rate signal measured during walking disproportion-
ately inflates the metabolic requirements of walking in the unloaded
condition. Accordingly, ratios of loaded to unloaded walking econ-
omy that are smaller than the ratios of loaded to unloaded walking
weight should result from doing so. Indeed, this is precisely what we
observed, as nearly all the zero-subtraction economy ratios from 40
different load condition trials administered were lower than the ratio
of loaded to unloaded walking weight (Fig. 3, A and B, red squares
and line fits).

Next, we consider an oversubtraction that results from using a
measured preexercise standing metabolic rate, or equivalent, as a
surrogate for the body’s resting metabolic rate. The average liter-
ature value of 4.5 ml O2·kg�1·min�1 in Table 3 exceeds the supine
resting values measured for our subjects here (mean � 3.1 ml
O2·kgbody

�1·min�1; n � 32) by 1.4 ml O2·kg�1·min�1. Removing a
quantity larger than the actual contributions of resting to the gross
metabolic rates measured disproportionately deflates the metabolic
requirements of walking in the unloaded condition. Therefore, this
data treatment should result in economy ratios that are greater than the
respective condition/weight ratios. As illustrated (Fig. 3, A and B,
green triangles and curve fits), this is precisely what we observed.

For both the under- and oversubtraction data treatments, economy
ratio deviation from respective condition weight ratios was signal size
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Fig. 7. Mean measured gross metabolic rates vs. walking speed for our
unloaded subjects walking on 0 (squares) and �3° (circles) surface gradients.
Horizontal lines correspond to the resting metabolic rate mean measured for
our subjects (solid line) and the average standing metabolic rates (dashed line)
reported from the 12 literature studies appearing in Table 3. Literature data
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gravity (21), are also illustrated.
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dependent. In each case, economy ratios progressively approached the
condition weight ratios as the body’s gross metabolic rates increased.
At the greatest metabolic rates for which the resting subtraction
quantities have the least influence, the economy ratios from all three
subtraction methods converged at or very near the values of the
weight ratios from the respective conditions: 1.18 for the lighter load
and 1.31 for the heavier one (Figs. 3A and 3B, respectively). Conver-
gence at the greatest metabolic rates where economy ratio values are
minimally affected by the subtracted quantity results from the direct
influence of balanced torso loads on walking economy. These obser-
vations allow the error potentially introduced by incorrect baseline
oversubtractions to be reasonably quantified.

The error potentially introduced by an oversubtraction of 1.4 ml
O2·kg�1·min�1 is substantial because the metabolic rates measured
under typical walking conditions are quite small (Fig. 7). For example,
on a level surface at an intermediate walking speed of 1.0 m/s in the
unloaded condition, 1.4 ml O2·kg�1·min�1 constitutes 15.1% of the
body’s gross metabolic rate and 22.7% of the walking rates based on
our data. For our level walking economy data illustrated in Fig. 7, the
resulting underestimations of walking metabolic rates range from a
maximum of 33.9% at 0.4 m/s to a minimum of 12.0% at 1.6 m/s.
Accordingly, across-speed analyses and other scientific assessments
are directly affected and potentially confounded by the baseline
quantity subtracted. The recent analysis of the most economical
walking speed (ml O2·kg�1·min�1) by Abe et al. (1) illustrates this
phenomenon. These authors reported that the speed identified as most
economical differed over a 20% range, depending upon the baseline
quantity subtracted from their gross metabolic rates. Potential effects
for those conditions and interventions that elicit relatively low walk-
ing metabolic rates, such as walking downhill, in simulated reduced
gravity, and with assistive pulling, will be most heavily influenced by
the specific value of the baseline quantity subtracted. As Fig. 7
illustrates, in many of these cases, the literature standing subtraction
eliminates most of the originally measured metabolic signal.

The factors responsible for the common usage of preexercise, or in
some cases postexercise, standing metabolic rates as a resting baseline
subtraction quantity are less clear than the difficulties potentially
introduced. Scientifically, the justification for subtracting a baseline
rate that includes a metabolic cost of supporting the body’s weight
against gravity is questionable since gravitational support is the
primary determinant of walking metabolism. Conceivably, a standing
subtraction would be justified if one wanted to assess a difference
between the metabolic requirements of supporting the body while
stationary vs. doing so while walking. However, the scientific objec-
tive that would be served by doing so is unclear. More generally, a
rationale for subtracting any quantity greater than the body’s supine
resting rate is difficult to identify, particularly since doing so elimi-
nates a portion of the body’s walking metabolism that the subtraction
is meant to isolate.

A basic quantitative issue with preexercise standing metabolic
rates in Table 3 also exists. These measures are substantially
greater on average than the values reported in the literature from
those studies for which measuring standing metabolic rate was a
primary rather than a secondary objective. The mean standing
metabolic rate we measured under postabsorptive conditions here of
3.53 � 0.08 ml O2·kg�1·min�1 is representative of this difference.
Our mean is nearly 1.0 ml·kg�1·min�1 lower than the literature mean
in Table 3 but in good agreement with the dedicated standing values
appearing in the classic (68) and more recent literature (53). The
factors responsible for the greater mean and considerable between-
study variability in the standing values in Table 3 are difficult to
identify from the limited measurement information available in many
of these studies. Possible elevating factors include the preexercise
condition, brief measurement period durations, and perhaps other
factors.

Because advances in exoskeletons (14, 57), prosthetics (33), and
other assistive devices continue to bring about reductions in walking

metabolism, valid baseline subtractions are necessary if the effect
sizes resulting from these and other interventions are to be accurately
quantified. More generally, these results identify resting supine met-
abolic rates as a sound standard for quantifying exercise metabolic
rates more broadly.

Practical Baseline Subtraction Suggestions for Isolating
Walking Metabolism

For circumstances in which resting supine metabolic rate measure-
ments are impractical or impossible, the literature identifies one, and
perhaps two, viable alternatives. First, the extensively validated
population equations of Schofield et al. (64) provide accurate
resting metabolic rate estimates from only sex, height, and weight.
For our subjects here, these equations predicted a mean resting
metabolic rate (3.21 � 0.05 ml O2·kg�1·min�1) that was within
0.08 ml O2·kg�1·min�1 of the measured mean, with an average
individual error of 0.26 � 0.04 ml O2·kg�1·min�1. Second, our mea-
surements suggest that sitting metabolism may be able to serve as a
reasonable supine resting rate surrogate. The postabsorptive sitting
metabolic rates of our subjects were essentially identical to their
supine resting rates (3.13 � 0.07 vs. 3.16 � 0.08 ml O2·kg �1·min�1,
respectively; n � 32).
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Sensor-based predictions for walking energy expenditure 

require sufficiently versatile algorithms to generalize to a variety of 

conditions.  Here we test whether our height-weight-speed (HWS) 

model validated across speed under level conditions is similarly 

accurate for loaded walking.  We hypothesized that increases in 

walking energy expenditure would be proportional to added load 

when resting metabolism was subtracted from gross walking 

metabolism.  After subtracting resting metabolic rate, walking 

energy expenditure was found to increase in direct proportion to 

load at walking speeds of 0.6, 1.0, and 1.4 m∙s-1.  With load carriage 

treated as body weight, the predictive algorithms derived using the 

HWS model were similar for loaded and unloaded conditions.  

Determination of the direct relationship between load and energy 

expenditure for level walking provides insight which may be used to 

refine algorithms, such as the HWS model, for use in body sensors 

to monitor physiological status in the field.  

Keywords—load carriage, sensors, generalized equation, 

algorithm, metabolism 

I. INTRODUCTION  

Prediction and monitoring of whole-body energy 
expenditure depends heavily on the accuracy of the algorithms 
utilized.  For individuals at rest, algorithms that accurately 
predict metabolic rates from body size, sex, and age have been 
established for decades [1].  For individuals during locomotion, 
however, the algorithms currently available are not 
equivalently accurate [2,3].  Prediction of the latter is 
considerably more difficult because of the many factors that 
influence the extent to which whole-body metabolism is 
elevated during locomotion.  These include but are not limited 
to: height, weight, speed, grade, terrain, and load carriage. 

Recent work indicates that whole-body locomotor 
metabolism can be predicted accurately under certain 
controlled conditions.  Specifically, we found that walking 
metabolic rates on firm, level surfaces could be predicted to 
within 8% if the height, weight, and speed of the walker are 
known.  Thus, under these controlled conditions, sensors 
capable of [4,5] providing walking speed could be used in 
conjunction with height and weight to accurately estimate 
whole-body metabolic rates.  Here, under the same conditions, 
we test whether our existing HWS algorithm can similarly 
describe walking metabolic rates when torso loads are carried. 

Theoretically, the existing HWS model might accurately 
account for loaded metabolic rates if the added load is treated 

as additional body weight in the existing equation.  A critical 
issue for considering this possibility is the method used to 
partition the body’s total metabolic rate into resting vs. walking 
portions.  A common approach has been to subtract a standing 
metabolic rate to represent the resting component [7,8].  
However, during quiet standing, metabolic rates have been 
reported to be 1.15 – 1.5 times greater than those obtained 
during a traditional supine resting measurement (RMR) 
[8,9,10,11,12,13].  The variability in standing metabolic rates 
may explain some of the inconsistency thus far reported in the 
metabolic responses to walking with loads when the former is 
the baseline quantity subtracted.  While the general consensus 
has been that metabolic rates increase in proportion to the load 
carried, results have been somewhat variable [12,14,15].     

Here, we used the elevations in locomotor metabolic rates 
introduced by load carriage as an experimental tool for two 
purposes.  Our first objective was to investigate whether the 
elevations in locomotor metabolic rates (gross – supine rest) 
would be directly proportional to loads added to the torso.  A 
direct relationship would allow the influence of added loads on 
locomotor metabolism to be more easily predicted and 
modeled.  After quantifying the relationship between walking 
energy expenditure and load, our second objective was to 
determine if the HWS model would accurately predict 
unloaded and loaded metabolic rates.  If so, the HWS model 
would provide a robust algorithm for sensor development with 
potential to determine walking metabolic rate under multiple 
conditions.  We specifically tested the following corresponding 
hypotheses.  First, we hypothesized that the net energy 
expended while walking (gross – supine rest) would increase in 
direct proportion to the load carried.  Second, we hypothesized 
that the independent equations derived in the form of the HWS 
model would be similar for loaded and unloaded conditions. 

II. METHODS 

A. Experimental Design 

To test whether locomotor energy expenditure increases in 
proportion to added torso load we measured metabolic rate 
under three conditions: unloaded (i.e. body weight only, Wb), 
and two added load conditions equaling 1.17 Wb, and 1.31 Wb.  
We utilized metabolic data acquired from all three load 
conditions, as well as metabolic rates during supine rest and 
quiet standing, to assess the influence of the baseline quantity 
subtracted.  Using supine rest as our baseline subtraction 
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quantity, we assessed whether walking metabolic rates 
increased in direct proportion to the loads carried.  

B. Subjects 

Ten volunteer subjects, 5 male and 5 female (means ± 
SEM, age = 29.6 ± 1.4 years, height = 171.6 ± 2.2 cm, mass = 
67.0 ± 2.9 kg) participated in the study after providing written 
informed consent in accordance with the Institutional Review 
Board of Southern Methodist University.  All subjects were 
healthy and did not have cardiovascular risk factors as a 
contraindication for exercise according to the guidelines set 
forth by the American College of Sports Medicine.  Subjects 
reported to the laboratory on eight different days for testing 
sessions consisting of a VO2max test, 6 sessions of loaded and 
unloaded walking, and a final session for measurement of 
metabolic rate during supine rest, and quiet standing.  For the 
final session, subjects were instructed to arrive at the laboratory 
immediately after waking, to avoid exercise prior to testing and 
refrain from eating and caffeine use for eight hours prior.     

C. Gross Metabolic Rates 

Metabolic rates were determined from indirect calorimetry 
through the measurement of expired gases during supine 
resting, quiet standing, and walking at three different treadmill 
speeds and under three different load conditions (no load, 
~15% of body weight, ~30% of body weight) using a 
computerized metabolic system (Parvo Medics TrueOne 2400, 
Sandy, UT, USA).  A one-way breathing valve and tubing 
were used to collect expired gases and direct flow through a 
pneumotach, which measured volume flow rates, and into a 
mixing chamber.  Aliquots of expired air were sampled from 
the mixing chamber and analyzed for O2 and CO2 fractions 
using paramagnetic and infrared gas analyzers, respectively.  
Data were collected continuously, with rates of oxygen uptake 
averaged over a two minute period under steady-state 
conditions.  Resting metabolic rates were determined from the 
lowest 10-minute average during a 30-minute, supine resting 
trial.  The lowest five minute average during the final 10 
minutes of a 15-minute trial was used to determine standing 
metabolic rate. 

D. Treadmill Testing Protocol 

Walking bouts were conducted on a level treadmill at 
speeds of 0.6, 1.0, and 1.4 m∙s

-1
.  All speeds were completed 

under the following loaded conditions: unloaded, carrying 
~15% body weight, and carrying ~30% bodyweight.  Subjects 
were weighed on their first visit to the laboratory and assigned 
a loading scheme based on their weight rounded to the nearest 
ten pound increment.  Therefore the exact percentage of body 
weight carried varied slightly from 15% and 30% for some 
subjects, with the average actual percent body weight across 
the 10 subjects coming out to 17% and 31% for the two 
different load carriage conditions.  For the loaded trials, weight 
was carried both on the front in a vest and on the back in a 
backpack and was symmetrically distributed about the torso.  
For each condition, walking trials lasted for five minutes to 
ensure that the final two minutes were under steady-state 
conditions.  All loaded conditions and walking speeds were 
repeated on two separate days, and the average of the steady-
state values from the two trials was taken to determine gross 
energy expenditure.    

E. Relationship Between Load and Metabolic Rate 

Net metabolic rate was calculated by subtracting supine 
resting energy expenditure from gross energy expenditure 
while walking.  In order to determine whether metabolic rate 
increases in direct proportion to the mass of the load carried we 
calculated the ratio of energy expenditure while loaded    
(Emetab L) to energy expenditure unloaded (Emetab U) at all 
walking speeds for both gross and net metabolic rates.  We 
then plotted these values against the ratio of total mass (MTotal) 
to body mass (MBody) for each walking speed.   

F. Height-Weight-Speed Model Equation Derivations  

Walking metabolic rates were estimated using the 
previously published HWS model [6].  The HWS model is 
comprised of three components: a resting metabolic rate 
(RMR), a minimum walking metabolic rate which is modeled 
as a multiple of RMR, and a speed-dependent metabolic rate, 
as shown by equation 1 below.    

VO2 = RMR + C1∙RMR + C2∙V
2
∙height

-1    
   (eq. 1) 

All of the terms for the HWS model were derived and are 
reported in mass-specific units of oxygen uptake in ml∙kg

-

1∙min
-1

.  However, illustrated metabolic rates are presented in 

SI units (W∙kg∙
-1

).  

 For the present study, the coefficients C1 and C2 were 
derived to obtain a best fit to the data set.  Optimized 
coefficients were obtained for the unloaded and loaded 
conditions alone, as well as with the unloaded and loaded 
conditions combined.  The optimizer function in Excel was 
used to determine the values of C1 and C2 such that the sum 
squared error was minimized.  The Excel optimizer (Microsoft 
Excel Solver, Excel 2010 version) was chosen due to its ability 
to optimize a coefficient while holding other values (resting 
metabolic rate, walking speed, and subject height) constant 
[16].  Once the forms of the equations were derived they were 
used to describe walking metabolic rates for each subject 
across all walking speeds and load conditions.  The R

2
 values 

for measured versus predicted values, as well as the standard 
error of estimate (SEE) were calculated for each equation.  An 
accurate model fit was evaluated using the criteria of a value 
for SEE of less than 10% of the grand mean.  

III. RESULTS 

A. Gross Metabolic Rates 

The mean standing metabolic rate was 1.1 times greater 
than the mean for supine rest (1.16 ± 0.03 vs. 1.27 ± 0.04 
W∙kg

-1
; Fig. 1).  Between-subject variability was appreciable, 

with standing values ranging from 1.03 to 1.19 times greater 
than respective supine resting values.  The difference between 
metabolic rate during supine rest and during quiet standing 
varied for most, but not all subjects, as several subjects had 
essentially the same values under the two conditions (Fig. 2).  

Walking metabolic rates increased across walking speeds 
under all three load conditions (Fig. 1).  Further, load carriage 
resulted in an increase in walking energy expenditure at all 
walking speeds that was in direct proportion to the load carried 
(Fig. 1). 

 



 

     

 

 

 

 

 

 

 

 

 

Fig. 1. Mass-specific gross metabolic rate (Emetab) increases with walking 

speed under all three load conditions.  Emetab is plotted for walking without 
load, walking with a load equal to ~17% of body weight, and with a load of 

~31% of body weight.  On the y-axis, the value for kilograms includes the 

weight of the subject plus the weight of the load carried (kgtotal
-1).  Metabolic 

rate during quiet standing and during supine rest are depicted as constants.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2. Individual mass-specific gross metabolic rates (Emetab) during supine 
rest and quiet standing.  Subjects are represented on the graph in ascending 

order of body mass from 52.2 to 82.8 kg. 

 

B. Relationship Between Load and Metabolic Rate 

Across all walking speeds, increases in gross metabolic 
rates in the loaded conditions were not proportional to the 
loads carried (Fig. 3).  However, increases in net walking 
metabolic rates under loaded conditions were almost exactly 
proportional to the load carried as hypothesized. When 
subtracting energy expenditure for supine rest to calculate net 
metabolic rate, we found that walking energy expenditure 
increased in proportion to load carried across all three walking 
speeds (Fig. 3).  For example, at 1 m∙s

-1
, when subjects carried 

a load that was 31% greater than their body weight, gross 
metabolic rate only increased by 19%, whereas net metabolic 
rate increased by 29%.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 3. Net metabolic rate increases in direct proportion to load carried.  Panels 
A-C depict the ratio of metabolic rate while carrying load (Emetab L) to metabolic 
rate while unloaded (Emetab U) plotted against the ratio of total mass (body mass 
+ load; MTotal) to body mass (Mbody).  Gross metabolic rate and net metabolic 
rate are plotted for walking speeds of 0.6 (Panel A), 1.0 (Panel B), and 1.4 m∙s-1 

(Panel C).  The diagonal line indicates direct proportionality between the X and 
Y values such that metabolic rate is proportional to the mass of the load carried. 

C. HWS Model Predictions of Walking Energy Expenditure 

The optimized HWS model coefficients for the unloaded, 
loaded, and all three load conditions combined appear in Table 
1.  The unloaded, loaded, and combined loaded and unloaded 
model derivations produced similar values for both coefficients 
in the HWS model equation.  Further, using the three 
optimized equations to provide best fits of the data produced 
similar values for R

2
 and standard error of estimate (SEE).  For 

the optimized HWS model on the unloaded data, an R
2
 of 0.91 

and SEE of 0.52 mls O2∙kg
-1∙min

-1
 were attained (Table 1).  For 

the loaded data, the optimized equation resulted in a best fit 
with an R

2
 of 0.85 and SEE of 0.72 mls O2∙kg

-1∙min
-1

 (Table 1).  
When loaded and unloaded conditions were combined, the 
optimized HWS model fits produced an R

2
 of 0.84 and SEE of 

0.74 mls O2∙kg
-1∙min

-1
 (Table 1).  For all three equations, the 

 

 

 



SEE was less than 10% of the grand mean, thus meeting our 
criteria for model accuracy,  

 

Table 1. Empirical Derivations of the Height-Weight-Speed Model Equation 

with all metabolic units, including SEE, expressed in mls O2∙kg-1∙min-1.    

 

IV. DISCUSSION 

Our first finding was that the energy expended for level 
walking, when determined as the quantity: (gross – supine 
rest), increases in direct proportion to the load carried.  We 
found direct proportionality across all three speeds and the two 
load conditions we tested.  This finding is of particular 
importance as it allows for added torso load to be directly 
incorporated into predictive algorithms for walking 
metabolism.  Second, as hypothesized, we found that the HWS 
model provided accurate descriptions of walking metabolic rate 
both with and without load.  The independent equations 
derived in the form of the HWS model for loaded and unloaded 
conditions (Table 1) were nearly identical. 

A. Baseline Subtractions 

Metabolic rates measured during quiet standing are 
commonly utilized as a baseline subtraction quantity in order to 
determine net walking metabolic rates.  However, the typical 
elevations observed in the energy expended in the standing vs. 
supine resting condition (Fig. 1) seem likely to result from the 
muscular activation required for postural support [17,18,19].  
Accordingly, standing metabolism seems unlikely to generally 
represent the body’s true resting metabolic rate.  Moreover, 
subtracting standing rates from the gross metabolic rates 
measured during walking risks subtracting out a portion of the 
metabolic energy expended to support the body’s weight 
against gravity while walking.  In light of the substantial 
evidence of a relationship between weight supported and 
walking energy expenditure across studies of load carriage 
[12,14,15], obesity [11], and weight loss [20] the use of 
standing metabolic rate as a standard baseline subtraction 
measure should be carefully considered in accordance with 
experimental objectives.  If the objective is the most valid 
partitioning of the resting vs. walking portions of the body’s 
gross locomotor metabolic rates, our results suggest supine 
resting values are likely to provide a more valid baseline 
quantity than quiet standing for doing so. 

The above conclusion is based in part upon the individual 
variability observed in standing metabolic rate values.  When 
our measured standing values were expressed in relation to 
supine resting values, the elevations observed for different 
individuals ranged from 1.03 to 1.19 times the latter value.  
The variability observed raises the possibility that quiet 
standing may include a skill component that influences the 
extent of the elevations observed above supine rest.  At 
present, the correct interpretations of measured standing 
metabolic rates, both in general and as a baseline subtraction 
quantity, are not fully clear.  

B. Load Carriage and Energy Expenditure 

As hypothesized, we found that walking metabolic rates 
(gross - supine rest) increased in close proportion to the loads 
carried and regardless of speed.  Across the three speeds and 
two loading conditions included here, the mean deviation from 
the direct proportionality expected was 1.6 ± 0.85%.  Others 
have reported previously that when net metabolic rates are 
determined by subtracting standing metabolism from gross 
walking metabolism, metabolic rate to increase in a fashion 
that is greater than proportional to load carriage [12].  We 
found the standing metabolic rate values to be larger than 
resting metabolic rate, thus load-induced increases in metabolic 
rate would also be greater than the added load using the 
standing metabolic rate subtraction.  Our data are consistent 
with a multitude of prior experimental results indicating that 
the primary determinant of locomotor metabolic rates is the 
weight that must be supported against gravity, whether the 
body’s weight only or the body’s weight plus an external load 
[21,22]. 

C. Estimating Walking Energy Expenditure 

While numerous equations have been derived to predict 

walking energy expenditure, the accuracy many of these 

equations under conditions such as load carriage is not known 

[6].  Predictive accuracy is of critical importance in order for 

algorithms for walking energy expenditure to be incorporated 

into sensor technologies.  In the set of ten subjects presented 

here, the optimized HWS model provides accurate (SEE < 

10% of grand mean) descriptions of walking metabolism 

across a range of walking speeds both with and without load 

carriage.  Our data indicate that the HWS model is an 

attractive candidate for use in body sensor devices to estimate 

walking energy expenditure. 

D. Conclusions and Recommendations 

Our results indicate that level walking metabolic rates 
increase in close proportion to added torso loads across a range 
of speeds and loads up to nearly one-third of the body’s 
weight.  This finding should simplify the incorporation of torso 
loads into predictive equations for sensor-based and other field 
applications.  Accurate determination of the relationship 
between load carriage and energy expenditure is of particular 
military importance to predicting and monitoring the 
performance of soldiers in the field, and also for the general 
population seeking accurate methods for quantifying energy 
expenditure during exercise that involves load carriage (e.g. 
weighted vest, backpacking).  Additional efforts will be needed 
to expand predictive capabilities to include additional load, 
grade and terrain conditions. 
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A general relationship links gait mechanics and running ground
reaction forces
Kenneth P. Clark1,2, Laurence J. Ryan1 and Peter G. Weyand1,*

ABSTRACT
The relationship between gait mechanics and running ground
reaction forces is widely regarded as complex. This viewpoint has
evolved primarily via efforts to explain the rising edge of vertical force–
time waveforms observed during slow human running. Existing
theoretical models do provide good rising-edge fits, but require more
than a dozen input variables to sum the force contributions of four or
more vague components of the body’s total mass (mb). Here, we
hypothesized that the force contributions of two discrete body mass
components are sufficient to account for vertical ground reaction force–
time waveform patterns in full (stance foot and shank, m1=0.08mb;
remaining mass, m2=0.92mb). We tested this hypothesis directly by
acquiring simultaneous limb motion and ground reaction force data
across a broad range of running speeds (3.0–11.1 m s−1) from 42
subjects who differed in body mass (range: 43–105 kg) and foot-strike
mechanics. Predicted waveforms were generated from our two-mass
model using body mass and three stride-specific measures: contact
time, aerial time and lower limb vertical acceleration during impact.
Measured waveforms (N=500) differed in shape and varied by more
than twofold in amplitude and duration. Nonetheless, the overall
agreement between the 500 measured waveforms and those
generated independently by the model approached unity (R2=0.95
±0.04, mean±s.d.), with minimal variation across the slow, medium and
fast running speeds tested (ΔR2≤0.04), and between rear-foot
(R2=0.94±0.04, N=177) versus fore-foot (R2=0.95±0.04, N=323)
strike mechanics. We conclude that the motion of two anatomically
discrete components of the body’s mass is sufficient to explain the
vertical ground reaction force–time waveform patterns observed during
human running.

KEYWORDS: Impact forces, Two-mass model, Spring–mass model,
Running performance, Motion sensing, Wearable sensors

INTRODUCTION
Running ground reaction forces are of fundamental physical and
biological importance. Acutely, they determine the body’s state of
motion, limb-loading rates and tissue stresses. Over time, they
influence the health and functional status of the tissues, limb and
runner. However, the mechanical basis of the vertical force–time
waveform patterns described most extensively for human runners
(Cavanagh, 1987; Munro et al., 1987) continues to be a matter of

significant disagreement (Chi and Schmitt, 2005; Clark et al., 2014;
Denoth, 1986; Derrick, 2004; Lieberman et al., 2010; Nigg, 2010;
Shorten and Mientjes, 2011). The current discordance is at least
partially attributable to the mechanical complexities of the limbs and
bodies responsible for the forces present at the limb–ground interface.
Human and other vertebrate runners are mechanically complex in
their body and limb-segment morphology, tissue properties, neural
control of muscle forces, and joint and limb stiffnesses. These
features allow body mass components to accelerate differently with
respect to one another and the ground. Because the total waveform
corresponds to the acceleration of the body’s entire mass, the summed
accelerations of different mass components must somehow determine
the instantaneous forces and waveform patterns observed.

At present, the most common approach to explaining the force–
time waveform patterns of human runners are lumped element,
spring–mass systems that include four or more hypothetical mass
components with multiple springs and dashpots (Fig. 1A). Most
current versions include 14 or more input variables derived via
forward dynamics simulations (Chi and Schmitt, 2005; Liu and
Nigg, 2000; Ly et al., 2010; Nigg and Liu, 1999; Nikooyan and
Zadpoor, 2011; Zadpoor and Nikooyan, 2010). Per their intended
purpose, these models are able to provide close, post facto fits to the
rising edge of the force–time waveforms that result from rear-foot
strike mechanics at jogging speeds under a variety of surface,
footwear and other conditions (Ly et al., 2010; Zadpoor and
Nikooyan, 2010). However, these models do not attempt to predict
the falling edge of the waveform, they do not explain the differently
shaped waveforms that typically result from fore-foot strike
mechanics, and their ability to fit waveforms from intermediate
and fast running speeds is completely unknown.

A scientific justification for including numerous mass
components to account for vertical ground reaction force–time
waveforms was importantly provided by a direct motion-to-force
experiment conducted by Bobbert et al. (1991) a quarter century
ago. These investigators demonstrated that the total waveform can
indeed be reasonably predicted from the summed accelerations of
seven body mass components at modest running speeds. Recently,
we have theorized that an alternative approach may allow the
number of masses needed for full waveform prediction to be
reduced from seven to only two.

Our approach (Clark et al., 2014) divides the body’s mass into
two, anatomically based, invariant, mass components: the first
corresponding to the mass of the lower limb (m1, 8% total body
mass) and the second corresponding to the remainder of the body’s
mass (m2, 92% total body mass; Fig. 1B). The model theoretically
allows the full vertical force–time waveform to be predicted from
the force contributions corresponding to the two body mass
components. Impulse 1 results from the vertical collision of m1

with the running surface and impulse 2 results from the vertical
accelerations of m2 throughout the ground contact period (Clark
et al., 2014). Our introductory effort (Clark et al., 2014) was able toReceived 25 January 2016; Accepted 24 October 2016
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account for essentially all of the variation present in four vertical
force–time waveforms (R2 range: 0.95–0.98, mean=0.97±0.01)
selected for their amplitude, duration and shape heterogeneity.
However, the close fits achieved resulted from post facto selection
of the input parameters to maximize the goodness of each fit.
Here, we undertook a direct, experimental test of the hypothesis

that the motion of two discrete body mass components is sufficient
to predict running vertical ground reaction force–time waveforms in
full. The two-mass model requires only body mass and three stride-
specific measures as inputs: contact time, aerial time and lower limb
acceleration. Because these three inputs can be readily acquired
from a variety of video or other inexpensive motion-sensing
technologies, our model potentially offers economical options for
generating running ground reaction force waveforms without a force
platform. Additionally, the concise running force–motion linkage
provided could be applied to footwear, prosthetic and orthotic
design, or used to inform gait interventions designed to reduce
injuries or enhance running performance.

MATERIALS AND METHODS
Model formulation
Although the physical motion of running occurs in three spatial
dimensions, the total vertical ground reaction force waveform is
determined by the forces due to the instantaneous vertical
accelerations of the body mass components. Our computational
model utilizes experimental measurements to determine the
parameters linking running motion to impulse forces, thus
avoiding the limitations of modeling ground reaction forces with
single-axis or single-body mass–spring-damper systems (Nikooyan
and Zadpoor, 2011). The fundamental premise of the two-mass
model (see Appendix for detailed derivation) is that the total vertical
ground reaction force waveform is composed of two overlapping
bell-shaped impulses due to the vertical collision of the lower limb
(J1) with the running surface and the concurrent vertical

accelerations of the rest of the body (J2) during ground contact.
The total ground reaction impulse JT is the sum of J1 and J2 and can
be determined by the total stance-averaged vertical ground reaction
force FT,avg during the ground contact time tc:

JT ¼ J1 þ J2 ¼ FT;avgtc: ð1Þ

The model assumes steady-speed level running where the speed is
constant and the net vertical displacement of the center of mass of
the body is zero over each step. Thus, the time-averaged vertical
ground reaction force must equal the body’s weight and FT,avg can
be determined if contact time tc and aerial time ta are known:

FT;avg ¼ mbg
tc þ ta
tc

; ð2Þ

where mb is body mass and g is gravitational acceleration
(g=9.8 m s−2), and the quantity tc+ta equals the step time, tstep.

Impulse J1 corresponds to the vertical deceleration of m1 during
surface impact:

J1 ¼ F1;avgð2Dt1Þ ¼ m1
Dv1
Dt1

þ m1g

� �
ð2Dt1Þ; ð3Þ

where m1 is 8.0% of the body’s mass (Plagenhoef et al., 1983;
Winter, 1990), Δt1 is the time interval between touchdown and the
vertical velocity of m1 slowing to zero, Δv1 is the change in vertical
velocity of m1 during Δt1, and F1,avg is the average force during the
total time interval (2Δt1) of impulse J1, here defined as the impact
interval. A single ankle marker is used to measure Δv1 and Δt1,
which determine the vertical acceleration of the lower limb mass m1

(Fig. 2). The lower limb attains a relatively constant positive
velocity after the impact interval (Fig. 2C), resulting in a near-zero
acceleration of m1 (Fig. 2D) and negligible force (Fig. 2E). Thus, J1
can be represented by a finite impulse during the impact interval.
Kinematic data for the ankle marker position during the impact
interval for representative rear-foot strike (RFS) and fore-foot strike
(FFS) subjects appear in Fig. 3. For highest accuracy of the Δt1
measurement, a velocity threshold and projection method is used to
eliminate minor fluctuations in the ankle marker velocity profile
near zero (see Appendix). To assess the accuracy of this projection
method, the measured ankle marker velocity at the projected time to
zero was quantified for all footfalls.

Impulse J2 corresponds to the remainder of the body’s mass and is
determined from total ground reaction impulse JT in Eqn 1 and
impulse J1 in Eqn 3:

J2 ¼ F2;avgtc ¼ JT � J1; ð4Þ
where F2,avg is the average force of impulse J2 during the contact
time tc.

The raised cosine bell (RCB) curve function was used to generate
the F(t) waveforms of J1 and J2 for both foundational and empirical
reasons. The RCB function is unique among all bell curve functions
in that it can be derived from the first two terms of the Fourier series
(see Appendix). Analyses of vertical ground reaction force–time
waveforms from jumping in place indicate that using a function
consisting of two bell curves provides a superior representation and
requires a lower number of Fourier terms than a half-sine curve
(Racic and Pavic, 2009). Direct waveform comparisons indicate that
the RCB function provides superior descriptions versus both the
half-cosine and Gaussian functions (see cos2 data in table 2 of Sim
et al., 2008) when vertical ground reaction force impulses are
generated at frequencies ≥2 Hz.

m4

m3

k5

k4 c4

k3

k2 c2

k1 c1

m1

m2

k0 c0

A B

Mass 1
(8% mb)

Mass 2
(92% mb)

Fig. 1. Multi-mass model and two-mass model. (A) Representative multi-
element spring–mass-damper model (diagram adapted from Nigg, 2010). This
type of model relates variations in ground reaction forces to mechanical
characteristics of specific elements in the model. (B) The two-mass model is a
computational model incorporating the known mass distributions of the human
body as illustrated. Mass 1 (m1) represents the lower limb (8% total bodymass,
mb) and mass 2 (m2) represents the remainder of the body’s mass (92% total
body mass). Prior to touchdown, m1 typically has a greater vertical velocity
than m2 as a result of the extension of the leg prior to impact.

248

RESEARCH ARTICLE Journal of Experimental Biology (2017) 220, 247-258 doi:10.1242/jeb.138057

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



Thus, each impulse uses the RCB function for the forcewaveform
F(t) during the interval B−C≤t≤B+C:

FðtÞ ¼ A

2
1þ cos

t � B

C
p

� �� �
; ð5Þ

where A=2Favg is the peak amplitude, B is the center time of the peak
and C is the half-width time interval. For higher accuracy, the
waveform function for impulse J2 includes an offset to account for
the force plate threshold and an asymmetry adjustment to account
for the center of mass height difference at takeoff and touchdown. A
J2 force peak corresponding to the minimum height of the center of
mass was set at 0.47tc based on the observations of Cavagna et al.
(1977, see their table 4) for human running (see Appendix for
additional details).
The total force curve FT(t) is the sum of the two individual force

waveforms representing impulse J1 and impulse J2 :

FTðtÞ ¼ F1ðtÞ þ F2ðtÞ: ð6Þ

Model force–time waveforms
Model-predicted versus measured vertical force waveforms were
tested for both individual footfalls and trial-averaged force data. For
the individual footfall predictions, the input parameters of body
mass, ground contact time, subsequent aerial time, m1 vertical
velocity at touchdown and impact interval time Δt1 were used to
generate the model-predicted waveform, which was then compared
with the measured waveform from that footfall. For the trial-
averaged waveform comparisons, the input parameters from each

right footfall were averaged for that trial. A minimum of three and a
maximum of six right footfalls were included in the trial average,
depending on the number of steps completed during the trial. The
measured input parameters from each trial average were used to
generate a model-predicted waveform, which was then compared
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Fig. 2. Lower limb motion and force during ground contact.
(A) A stick figure illustration of mass segment m1 motion (a–d)
during the foot–ground portion of a running step. The red circle
represents the axis of rotation of the ankle joint. (B–E)
Corresponding schematic graphs for vertical position (B),
velocity (C), acceleration (D) and force (E) of lower limb massm1

versus time during the ground contact phase. After the impact
interval, m1 reaches a relatively constant positive velocity,
resulting in near-zero acceleration of m1 and a negligible force
contribution from the lower limb mass for the remainder of the
ground contact phase. A simplifying assumption of the two-mass
model is that the force resulting from the acceleration of m1 can
be accurately modeled by a finite impulse during the impact
interval.
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Fig. 3. Ankle marker vertical position versus time data just prior to
touchdown and during the initial ground contact phase for a
representative rear-foot strike (RFS) and fore-foot strike (FFS) runner.
After touchdown, the ankle marker decreases in vertical position until it
reaches its lowest position above the running surface (Min.); the time interval
for this deceleration is bracketed by Δt1 for the RFS and FFS, respectively.
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with the measured trial-averaged waveform. An example of this data
treatment appears in Fig. 4, including a series of original measured
waveforms (Fig. 4A), the trial-average model-predicted waveform
(Fig. 4B), and the model-predicted versus trial-average measured
waveform (Fig. 4C). Both single-footfall and trial-averaged
predictions were assessed to evaluate whether the number of
footfalls included influences the predictive accuracy of the model.
To validate the anatomical mass fractions in our model,

waveforms were alternatively generated with literature-suggested
impact-mass minimum and maximum values (Derrick, 2004). A
smallerm1 quantity of 1.5% was used (representing the approximate
mass of the foot; Plagenhoef et al., 1983; Winter, 1990; Hamill and
Knutzen, 2009) with a corresponding m2 quantity of 98.5%. A
larger m1 quantity of 16% was used (representing the approximate
mass of the entire stance limb; Plagenhoef et al., 1983; Winter,
1990; Hamill and Knutzen, 2009) with a corresponding m2 quantity
of 84.0%. We predicted that across both speed and foot-strike
mechanics, values along the rising edge of the waveform would be
under-predicted with an m1 quantity of 1.5% and over-predicted
with an m1 quantity of 16%.

Statistical analysis
The predictive accuracy of the model was assessed on the 500
individual footfalls acquired using both the R2 statistic and the root
mean square error (RMSE) statistic, global values that quantify
goodness of fit in relative and absolute terms, respectively. These
statistical assessments are broadly used for a variety of purposes,
including quantifying the degree of overlap present in time-series
data per prior practice (Cohen, 2013; Clark et al., 2014; Clark and
Weyand, 2014; Morin et al., 2005). The footfall sample size was

sufficiently large to detect very small differences in model
performance across foot-strike type and speed using the R2 and
RMSE statistics.

A two-way ANOVA was used to evaluate whether goodness-of-
fit and RMSE values varied as a function of speed (slow, medium,
fast) and foot-strike (rear- versus fore-foot categories) classifications
(P≤0.05, Table 1) on all 500 footfall waveforms acquired.

Subjects and participation
A total of 42 subjects, 23 men and 19 women, volunteered and
provided written informed consent. The consent process and all
experimental procedures were approved by, and conformed to, the
approval terms granted by the Institutional Review Board of Southern
Methodist University. All subjects were between 18 and 37 years of
age and engaged in regular physical activity at the time of testing. The
mean age and size characteristics of the men and women were as
follows:men: age=23.3±5.0 years, range=18–37 years; height=1.79±
0.07 m, range=1.69–1.95 m; mass=81.1±8.5 kg, range=71.0–
101.5 kg; and women: age=22.5±1.7 years, range=18–36 years;
height=1.68±0.06 m, range=1.55–1.78 m; mass=63.3±9.4 kg,
range=43.4–82.0 kg. Subjects included recreationally trained
individuals, intercollegiate team-sport athletes, and professional
track and field athletes, four of whom were Olympic medalists in
sprint or hurdle events.

Data acquisition
Data were collected across a range of speeds (3.0 m s−1 to top
speed) on a three-axis, custom-built high-speed force treadmill
(AMTI, Watertown, MA, USA) capable of speeds of over
20 m s−1. To ensure that the model was being evaluated at
speeds that required a normal running gait, only trials above a
Froude speed of 1.0 [v/√(gL0)>1.0] were included in the
statistical analysis. For both submaximal and maximal tests,
subjects followed testing procedures similar to those described in
Weyand et al. (2000, 2010). Thirty-nine of the 42 subjects
completed trials up to top speed, and these subjects were
habituated to high-speed treadmill running during one or more
familiarization sessions before undergoing top speed testing. All
subjects wore standardized black compression shirts and shorts,
and the same model of running shoes (Nike Waffle Racer version
7.0, Beaverton, OR, USA).

Kinetic and kinematic data collection and analysis
Ground reaction force data were acquired at 1000 Hz and were
post-filtered using a low-pass, fourth-order, zero-phase-shift
Butterworth filter with a cutoff frequency of 25 Hz (Winter,
1990). For each footfall, the vertical ground reaction force applied
during the contact period was determined from the time during
which the vertical force signal exceeded a threshold of 40 N.
Additionally, trial-averaged vertical ground reaction force
waveforms were generated for individual subjects at different
trial speeds by averaging the force from each millisecond of the
contact period for the right-foot waveforms that had corresponding
kinematic data.

For each trial, 3.46 s of video data were collected using a high-
speed video system consisting of three Fastec Imaging HiSpec 2G
cameras (Mikrotron GmbH, Unterschleissheim, Germany)
operating at 1000 frames s−1. Subjects wore reflective markers on
the heel and ball of the foot on the lateral aspect of the right running
shoe, as well as on the lateral aspect of the joint axes of rotation of
the right ankle, knee and hip to capture these respective positions
during the trials. A single-frame video file of each subject was
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combined to form the trial-averaged model force waveform. (C) The model-
predicted force waveform and measured average force waveform for the three
right footfalls.
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recorded prior to testing to serve as a reference for the kinematic
analyses. To assess the predictive accuracy of the model across
different foot-strike types, footfalls were classified as RFS if the first
surface contact occurred on the posterior half of the foot, and FFS if
the first surface contact occurred on the anterior half.
The procedures used in extracting three-dimensional marker

coordinates from the high-quality multiple camera videos consisted
of correcting image distortions, calibrating the three-dimensional
space and digitizing the markers. The calibration and digitization
routines extensively used functions from the MATLAB Image
Processing Toolbox (MathWorks, Natick, MA, USA). The
calibration and digitization MATLAB routines were developed by
the Hedrick Lab at the University of North Carolina (Hedrick,
2008). A resolution of 0.7 mm was measured under dynamic
conditions using the high-speed video system with the custom
MATLAB image correction, calibration and digitization routines.
Data acquisition timing for the AMTI DigiAmp amplifier and
Fastec Imaging cameras was synchronized through hardware
interfaces. The digitized marker data were filtered at 25 Hz using
the same filter as for the force data.

RESULTS
Overall agreement between model-predicted and measured
waveforms
The goodness-of-fit agreement (R2) between the 500 ground
reaction force waveforms we measured and those predicted by our
two-mass model approached unity as hypothesized (Table 1). The
corresponding error of prediction expressed in force units
standardized to the body’s weight was slightly greater than 0.2Wb

and was equal to 11.5% of the mean stance-averaged vertical force
from all 500 trials (1.82±0.23Wb). The R2 and RMSE statistics for
the 108 trial-averaged waveform values were nearly identical to
those for the 500 individual waveforms. Specifically, the goodness
of fit between model-predicted and measured trial-averaged
ensemble waveforms was only 0.01 greater (R2=0.96±
0.03) than the individual footfall value, while the RMSE of
prediction was only 0.02Wb less (0.19±0.07Wb) than the
corresponding individual footfall values.

Predictive accuracy across foot-strike types and running
speeds
The goodness-of-fit between the model-predicted and measured
waveforms (R2) was nearly identical (ΔR2=0.01) for the 177 RFS
versus 323 FFS waveforms (Table 1). Because of the large number
of footfalls tested and minimal variability in model predictive
accuracy, the 0.01 greater R2 value for the FFS versus RFS
waveforms was significantly different statistically. Corresponding
RMSE differences for the RFS versus FFS waveform predictions
were small (ΔRMSE=+0.04Wb) and not statistically different.

The goodness-of-fit between the model-generated and actual
waveforms was slightly, but significantly, better for waveforms
acquired from slow and medium speeds versus those from fast
speeds. The R2 values, when averaged for the waveforms from the
three speed ranges (R2 total, Table 1) regardless of foot-strike type,
were slightly, but significantly lower (ΔR2=−0.03) for the faster
versus medium and slower speed trials. Similarly, the RMSE of the
model fits to the slow and medium speed waveforms were not
different from one another; however, both were significantly smaller
than the error of prediction for the waveforms from the fastest
speeds. Similar across-speed patterns were present for both the R2

and RMSE statistics when the waveforms were analyzed within
either the RFS or FFS mechanics categories (Table 1).

The waveforms generated with the two-mass model accurately
predicted the more rapid rising edges of the RFS versus FFS
waveforms, including transient rising-edge peaks when present,
regardless of the running speed, and total waveform amplitude and
duration (Figs 5A,C,E and 6A,C,E). Waveform shape variability
across foot-strike types was accurately predicted from the shorter
deceleration periods of the m1 mass segment for RFS versus FFS
(Δt1, Table 2) with little difference in the overall J1 impulse values
(Fig. 5B,D,F versus Fig. 6B,D,F; Δv1, Table 2) at similar speeds.
From slower to faster speeds, J1 impulses predicted by the model
became greater for both RFS and FFS waveforms as a result of the
greater pre-impact ankle velocities (Table 2). The close fits to the
middle and later portions of all the waveforms resulted largely or
exclusively from the J2 impulse predicted from the model because
the m1 impact deceleration event concluded during the first quarter
to half of the total contact period.

The measured ankle marker velocity at the time our projection
technique identified a zero value was, on average, −0.05±
0.04 m s−1 for the 500 individual trials. All but two of the
footfalls had a measured velocity within ±0.20 m s−1 of a literal zero
value (i.e. 0.00 m s−1).

Model predictive accuracy with alternative m1 segment
values
Poorer agreement between model-predicted and measured
waveforms resulted from using m1 segment values that were either
smaller or larger than the originally assigned anatomical model
value of 8.0% of mb. As hypothesized, waveforms generated using
lesser m1 values (m1=1.5% with m2=98.5% of mb) consistently
under-predicted the force values measured along the rising edge of
the waveforms (Figs 7A,D,G and 8A,D,G). Conversely, waveforms
generated using greater m1 values (m1=16.0% with m2=84.0% of
mb) consistently over-predicted measured rising-edge force values
(Figs 7C,F,I and 8C,F,I). Differences were more pronounced at the
faster trial speeds because of the greater m1 segment decelerations
and correspondingly larger J1 impulses at faster speeds.

Table 1. R2 and RMSE (Wb) statistics for individual modeled-predicted waveforms

Speed

Foot-strike type Slow (3–4 m s−1) Medium (5–6 m s−1) Fast (≥7 m s−1) Total

R2 RFS 0.94±0.05 (N=70) 0.97±0.02 (N=50) 0.93±0.05 (N=57) 0.94±0.04 (N=177)
R2 FFS 0.97±0.02 (N=73) 0.96±0.03 (N=82) 0.93±0.05 (N=168) 0.95±0.04‡ (N=323)
R2 total 0.96±0.04* (N=143) 0.96±0.03* (N=132) 0.93±0.05 (N=225) 0.95±0.04 (N=500)

RMSE RFS 0.18±0.08 (N=70) 0.15±0.05 (N=50) 0.23±0.07 (N=57) 0.19±0.08 (N=177)
RMSE FFS 0.16±0.07 (N=73) 0.18±0.08 (N=82) 0.28±0.09 (N=168) 0.23±0.10 (N=323)
RMSE total 0.17±0.07* (N=143) 0.17±0.07* (N=132) 0.27±0.09 (N=225) 0.21±0.09 (N=500)

Values are means±s.d. RMSE, root mean square error; Wb, force units standardized to body weight; FFS, fore-foot strike; RFS, rear-foot strike.
*Significantly different versus fast speed (P≤0.001). ‡Significantly different versus RFS (P≤0.01).
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The R2 goodness of fit values for the 500 individual footfall
waveforms generated using m1 values equal to 1.5% and 16.0% of
mb accounted for 12% and 21% less variance, respectively, versus
the original m1=8.0% results (m1−1.5% R2=0.83±0.16 and
m1−16.0% R2=0.74±0.21). Predictive error values for the
waveforms generated using the two alternative m1 segment values
were approximately twice as large as those obtained using the
original 8.0% value (m1−1.5% RMSE=0.36±0.17Wb; m1−16.0%
RMSE=0.47±0.24Wb).

DISCUSSION
As hypothesized, we found that the force contributions of two
discrete body mass components do indeed suffice to predict running
vertical ground reaction force–time waveforms in full. Our two-
mass, two-impulse model independently predicted nearly all of the
variation in measured running ground reaction force waveforms,
which differed considerably in their shape, amplitude and duration.
Although our prior, best-fit analysis indicated that this outcome
might be theoretically possible (Clark et al., 2014), an experimental
test incorporating simultaneous motion and force data had not been
previously undertaken. Our direct test here indicated that regardless
of whether our 42 human subjects jogged, ran at intermediate speeds
or sprinted, and whether they first contacted the running surface
with the fore or rear portions of their feet, there was near-complete
agreement between the model-predicted and measured force–time
waveforms across the 500 footfalls we analyzed (Table 1). Thus, we

conclude that the vertical ground reaction forces of human runners
can be broadly understood from the motion of two discrete portions
of the body: (1) the contacting lower limb and (2) the remainder of
the body’s mass.

Two-mass model: scientific and technical elements
A primary scientific challenge here was not knowing a priori how
well the waveform contributions from the 92% of the body’s mass
could be predicted when modeled as a single mass component.
Conceivably, the summed force contributions resulting from the
motion of the head, arms, trunk, upper portion of the contacting leg
and full mass of the non-contacting leg might defy accurate
prediction when treated as a single mass (Bobbert et al., 1991). This
large, multi-jointed mass component lacks a fixed, readily
measurable center because of the non-uniform motion of the
different segments that comprise it. Hence, the complexity of the
within-segment and total motion of our model’s mass component
m2 and its corresponding force contribution would be difficult to
measure and predict from positional data. We ultimately
implemented an indirect approach that allowed the force
contributions of mass m2 to be quantified without position and
time data. We simply subtracted impulse J1 from the total ground
reaction impulse JT, after quantifying the latter from body mass,
gravity and the contact proportion of the total step time (Eqns 1–3).
The resulting fits supported the efficacy of the approach as the
agreement between model-predicted and measured waveforms was
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Fig. 6. Vertical ground reaction force–timewaveforms for FFS trials. Trials
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consistently excellent over the later portions of the stance period
where the total waveform is predominantly determined by impulse
J2 (Figs 5A,C,E and 6A,C,E, waveform trailing edges).
A potential limitation of our impulse subtraction approach was

the required assumption that the net vertical displacement of the
body’s center of mass over the course of one or many strides is zero.
However, our analysis indicated that little to no predictive error was
introduced by this assumption under our level, treadmill-running
test conditions. We found similar levels of predictive accuracy for
trial-averaged and individual-footfall waveforms even though non-
zero vertical displacements of the center of mass, when considered
on a per-step basis, could have been substantially greater over the
course of an individual step versus multiple consecutive steps.
However, for our across-speed comparisons, it seems likely that our
slightly less accurate waveform predictions for the fastest speeds,
where step-to-step mechanics are generally less consistent versus

medium and slower speeds (Weyand et al., 2010), are probably
attributable to marginally greater violations of this assumption for
the faster trials (Table 1).

An additional technical challenge involved accurate and
consistent quantification of the duration of mass component m1’s
impact-period deceleration to a zero velocity (i.e. Δt1 in Eqn 3; see
also Fig. 2) for all footfalls. Following RFS impacts, the ankle
marker position–time trajectories consistently provided a discrete
vertical position minimum corresponding to the zero velocity
needed to quantify half-impact duration Δt1 in our model (Fig. 3).
However, for some FFS footfalls, the rates of the positional change
versus time during the last fraction of the deceleration period were
less consistent and more prolonged than the FFS data in Fig. 3. This
led us to implement an ankle marker projection technique (see
Appendix) to avoid basing impulse J1 predictions on Δt1 values that,
in these cases, are not representative of the overall timing of the

Table 2. Impulse 1 kinematic input parameters for individual modeled-predicted waveforms (N=500)

Speed

Foot-strike type Slow (3–4 m s−1) Medium (5–6 m s−1) Fast (≥7 m s−1) Total

RFS
Δv1 (m s−1) 0.85±0.02 1.28±0.03 2.01±0.04 1.35±0.04
Δt1 (s) 0.029±0.0005 0.023±0.0003 0.019±0.0002 0.024±0.0004

(N=70) (N=50) (N=57) (N=177)
FFS
Δv1 (m s−1) 1.30±0.04 1.37±0.02 2.08±0.03 1.72±0.03
Δt1 (s) 0.046±0.0011 0.034±0.0008 0.027±0.0003 0.033±0.0006

(N=73) (N=82) (N=168) (N=323)
All footfalls
Δv1 (m s−1) 1.08±0.03 1.34±0.02 2.06±0.02 1.59±0.02
Δt1 (s) 0.038±0.0010 0.030±0.0007 0.025±0.0004 0.030±0.0004

(N=143) (N=132) (N=225) (N=500)

Values are means±s.d. Δv1, change in vertical velocity of m1 during Δt1; Δt1, time interval between touchdown and the vertical velocity of m1 slowing to zero.
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Fig. 7. The vertical ground reaction
force–time waveforms generated by
the model for RFS trials with varied
m1 values. For all panels, the solid
black line represents the average of the
vertical ground reaction force data
measured during the trial, the solid blue
line represents the model-predicted
waveform from the average kinematics
measured during the trial and the input
m1 and m2 values, and the dotted red
line represents the impulse resulting
from the impact of m1 with the running
surface. (A–C) Measured and predicted
at 3.0 m s−1; (D–F) measured and
predicted at 5.0 m s−1; and
(G–I) measured and predicted at
7.2 m s−1. A, D and G illustrate
waveforms predicted usingm1 values of
1.5% total body mass and m2 values of
98.5% total body mass; B, E and H
illustrate waveforms predicted using m1

values of 8.0% total body mass and m2

values of 92.0% total body mass; and
C, F and I illustrate waveforms predicted
using m1 values of 16.0% total body
mass andm2 values of 84.0% total body
mass.
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impact-deceleration event. Upon implementation across all 500
footfalls, we found that the measured ankle marker velocities at the
time that the projection technique identified a zero velocity value
were very near the true zero value desired (mean vankle=−0.05
±0.04 m s−1). Given the overall mean ankle marker vertical
velocity, Δv1, of −1.59±0.02 m s−1 at impact across all 500
footfalls (Δv1, Table 2), this method, on average, captured 97% of
m1 total post-impact deceleration to zero.
The ability to consistently predict rising-edge waveform peaks

that occurred from 15 to 50 ms after initial impact is a noteworthy
aspect of our model validation. As the timing of rising-edge peaks
on individual waveforms is determined by the overlap of the two
impulses in our model, successful prediction required precisely
capturing the timing of both the high- (J1) and low-frequency (J2)
components of the waveforms. The timing of impulse J1 was
determined from motion data, and was therefore fully independent
of our force data, filtering and processing routines. Conversely, the
timing of impulse J2 was directly dependent on our force data and
processing routines, and was therefore fully independent of our
kinematic data and processing routines. Had even a minor degree
of temporal inaccuracy been present in either our kinematic or
kinetic data, the predictive accuracy with which the two-mass
model identified rising-edge force peaks would not have been
possible.

Integrating two-mass model and multi-mass model results
Our experimental goal was to identify the most concise mechanical
explanation that running ground reaction force waveforms might
have. The multi-mass models, in contrast, were formulated to
evaluate the potential influence of numerous factors on the
waveform rising edge. Many of the features incorporated into the
multi-mass models provide reasonable theoretical representations of

the numerous, potentially influential musculoskeletal complexities
present (Liu and Nigg, 2000; Ly et al., 2010; Nigg and Liu, 1999;
Nikooyan and Zadpoor, 2011; Zadpoor and Nikooyan, 2010).
These include mass components that vary in stiffness, that are both
rigid and wobbling in nature, and that are connected with both serial
and parallel elements (Fig. 1A). While the quantitative descriptions
derived for these features undoubtedly include uncertainty, their
basic influence on the RFS jogging waveforms thus far analyzed are
plausible and largely consistent with other experimental and
modeling approaches (Gruber et al., 1998; LaFortune et al., 1996;
Pain and Challis, 2001; Shorten and Mientjes, 2011). Accordingly,
our demonstration that a substantially more concise model can
account for running ground reaction force waveforms in full should
not be regarded as incompatible with the more theoretical results the
multi-mass models have provided. Indeed, the most reasonable
conclusion from the different approaches is that the collective
influence of the many biological complexities incorporated into the
multi-mass models is, in sum, accurately described by the concise
impulse–momentum relationships the two-mass model provides.

The force–motion relationship for human running: general or
foot-strike specific?
In contrast to the prevailing view that the impact forces resulting
from RFSs and FFSs involve different mass quantities (Lieberman
et al., 2010; Nigg, 2010), our results indicate that mass quantities
and force–motion relationships do not differ across strike types. This
becomes fully apparent when J1 impact impulses are quantified
using measured, foot-strike-specific deceleration durations in
conjunction with the invariant, anatomically based mass
quantities in our model. With both factors in place, we were able
to accurately predict the waveforms in full for both foot-strike types
at slow, intermediate and fast running speeds alike.
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Fig. 8. The vertical ground reaction
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predicted waveform from the average
kinematics measured during the trial
and the input m1 and m2 values, and
the dotted red line represents the
impulse resulting from the impact ofm1

with the running surface.
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waveforms predicted using m1 values
of 1.5% total bodymass andm2 values
of 98.5% total body mass; B, E and H
illustrate waveforms predicted using
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and C, F and I illustrate waveforms
predicted using m1 values of 16.0%
total body mass and m2 values of
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As is evident from both our impulse J1 illustrations (Figs 5 and 6)
and the Δv1 values in Table 2, rising-edge force peaks that are
generally visible for RFS but not FFS waveforms can be fully
attributed to the different m1 deceleration durations we measured.
Longer FFS deceleration durations reduce and delay the J1 peak
force values; they also result in greater waveform force contributions
from impulse J2 at the time of the J1 force peak. In combination,
these timing-dependent factors typically do not allow the J1 impulse
peak to introduce a localized force peak along the rising edge of the
full waveform (Fig. 6B and Fig. 8B,E). We found this to be the case
even though the total ground reaction impulses resulting from FFSs
in our data set were just as large as those resulting from RFSs (note:
J1 impulses are∝Δv1 in Table 2). One noteworthy exception to these
general foot-strike-specific waveform patterns has recently been
documented for specialized sprinters (Clark and Weyand, 2014).
These fore-foot striking athletes have waveforms that are
characterized by prominent rising-edge force peaks that result
from brief, large J1 impulse peaks. The high pre-impact limb
velocities (Δv1) and brief impact deceleration periods (Δt1) of
specialized sprinters introduce conspicuous rising-edge force peaks,
particularly at faster running speeds (Fig. 6E,F and Fig. 8H).
Our waveform predictions using alternative mass fractions for

segments m1 and m2 also support the validity of describing FFS and
RFS waveforms with the same fractional body mass quantities and
force–motion relationships. As hypothesized for these alternative
mass distributions, substantially reducing the lower limbmass value
ofm1 from the anatomical fractional value of 0.08 (Plagenhoef et al.,
1983) to the much lower value of 0.015 resulted in predicted rising-
edge force values that fell consistently below measured values
(Figs 7A,D,G and 8A,D,G). Conversely, substantially increasing
them1 fractional mass value to 0.16 resulted in predicted rising-edge
force values that fell consistently above the measured values
(Figs 7C,F,I and 8C,F,I). The magnitudes of the respective
predictive errors and trends observed across speed were similar
for the two foot-strike types using the aforementioned alternativem1

fractional mass values. In both cases, the increases in the magnitude
of the J1 impulse across speed introduced greater predictive errors at
higher versus lower speeds. More globally, the contrast between the
systematic predictive errors present in both sets of alternative-mass
generated waveforms versus the near-full agreement achieved with
the original values provides strong support for the validity of the
anatomical values originally assigned to mass components m1 and
m2 in our two-mass model.

General considerations, applications and concluding
remarks
The accuracy and conciseness of our mechanical explanation for the
variable ground reaction force–time patterns of dozens of human
runners performing across their full range of speeds raises a
noteworthy possibility. Our two-mass, two-impulse approach may
offer a mechanical explanation that generalizes to the ground
reaction force–time patterns of other running species. However, for
non-human runners, the lesser distal-limb mass segments typically
present (Hildebrand, 1960; Rubenson et al., 2011) could alter both
the form and applicability of the two-mass approach. Minimally,
species-specific mass distributions would need to be incorporated to
generate waveforms from the basic stride measures included in the
model. In this regard, comparative anatomical variation constitutes
both a challenge and an experimental opportunity to evaluate the
basic tenets of the model. More broadly, the testable hypotheses the
model offers should be tractable using a variety of direct and indirect
approaches.

Finally, our empirical validation of a concise model that can fully
predict running vertical ground reaction forces offers basic insights
with immediate potential for application. In contrast to simplified,
single-mass models (Blickhan, 1989; Blum et al., 2009; Farley and
Gonzalez, 1996; McMahon and Cheng, 1990; Silder et al., 2015),
which are incapable of capturing the high-frequency, impact-phase
components of the waveform (Bullimore and Burn, 2007; Clark and
Weyand, 2014; Shorten and Mientjes, 2011), and multi-mass
models that do not account for the whole waveform and are too
theoretical and complex for practical application, the two-mass
model requires only body mass and very limited motion data in
order to predict thewaveform in full. These attributes enable indirect
assessment of impact forces, limb loading rates, and other
informative, force-based outcomes using video or other
inexpensive motion-sensing technologies. Potential model
applications include: informing the design of running robots,
exoskeletons and prostheses, the customization of running shoes
and orthotics from individual gait mechanics, the development of
wearable ground force sensors, and the improvement of evidenced-
based feedback for gait analyses, intervention and modification.

APPENDIX
Impulse determination
The model assumes steady-speed horizontal running where the net
vertical displacement of the center of mass of the body is zero over
each step and the speed is constant. Each step is defined by a contact
time tc with vertical ground reaction force F(t), and an aerial time ta
where the force is zero. Under these conditions, a runner supports an
average of one body weight during the step time (tstep=tc+ta). This
can be expressed using the formal mathematical definition of the
average value of the force function F(t) over the interval t=0 to tstep:

1

tstep

ðtstep

0

FðtÞdt ¼ mbg; ðA1Þ

where body weight is defined by the product of mass mb and
gravitational acceleration g=9.8 m s−2. This equation yields the total
average force FT,avg during the contact time interval:

FT;avg ¼ mbg
tstep
tc

: ðA2Þ

The total ground reaction impulse JT can simply be determined from
body weight and tstep:

JT ¼ FT;avgtc ¼ mbg tstep: ðA3Þ
The ground reaction force is a result of the acceleration ai(t) of body
components i with mass mi contacting the ground:

SFiðtÞ ¼ SmiaiðtÞ: ðA4Þ
The average force due to each body component is:

SðFi;avg � migÞ ¼ Sðmiai;avgÞ; ðA5Þ

SFi;avg ¼ Sðmiai;avg þ migÞ: ðA6Þ
The ground reaction force is the sum of two distinct impulse
waveforms. Each impulse waveform has an associated Fi,avg and
time interval. Impulse J1 results from the acceleration of the lower
limb during the limb impact interval. Impulse J2 results from the
acceleration of the remainder of the body’s mass during the entire
contact interval. The total ground reaction impulse JT is the sum of
J1 and J2:

JT ¼ J1 þ J2: ðA7Þ
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Impulse J1 is quantified from the vertical deceleration of m1

during surface impact:

J1 ¼ F1;avgð2Dt1Þ ¼ m1
Dv1
Dt1

þ m1g

� �
ð2Dt1Þ; ðA8Þ

where m1 is 8.0% of the body’s mass, Δt1 is the time interval
between touchdown and the vertical velocity of m1 slowing to zero,
Δv1 is the change in vertical velocity of m1 during Δt1, and F1,avg is
the average force during the total time interval (2Δt1) of impulse J1.
Impulse J2 corresponds to the remainder of the body’s mass and is

determined from J1 in Eqn A8 and total ground reaction impulse JT
in Eqn A3:

J2 ¼ F2;avgtc ¼ JT � J1: ðA9Þ

Force curve function
The bell-shaped force curve F(t) for each impulse (J1, J2) can be
accurately modeled using the RCB curve (Clark et al., 2014). The
raised cosine function can be derived from the first two terms of the
Fourier series:

FðtÞ ¼ a0 þ
XN
n¼1

ansinð2pfnt þ unÞ; ðA10Þ

where α0 is the mean of the signal, and fn, αn and θn are the
frequency, amplitude and phase angle of the nth harmonic (Clark
and Weyand, 2014; Winter, 1990). The first two terms are:

FðtÞ ¼ a0 þ a1sinð2pf1t þ u1Þ: ðA11Þ
The peak of this function can be referenced to t=0 by defining phase
θ1=π/2:

FðtÞ ¼ a0 þ a1cosð2pf1tÞ: ðA12Þ
Term α0 is the mean of the function, and term α1 is the amplitude of
the function. Each term is defined by the total peak amplitude A,
resulting in α0=α1=A/2. The peak is located at center time B.
Frequency f1 can be expressed in terms of width parameter C, which
is defined from the peak at t=B to the timewhere F(t) decays to zero,
resulting in f1=1/(2C ). The constants A, B and C are inserted into
Eqn A12 to yield the raised cosine periodic function:

FðtÞ ¼ A

2
þ A

2
cos

p

C
ðt � BÞ

� �
: ðA13Þ

The RCB curve is defined over a finite time interval of one period:

FðtÞ ¼
0 for t , B� C
A

2
1þ cos

t � B

C
p

� �� �
for B� C � t � Bþ C

0 for t . Bþ C

8>><
>>:

9>>=
>>;
;

ðA14Þ
where A is the peak amplitude, B is the center time of the peak andC
is the half-width time interval. Because of the simple properties of
this function, peak amplitude A=2Favg, and the area under the curve
is J=AC.
Impulse J1 has force waveform F1(t) during the interval

B1−C1≤t≤B1+C1:

F1ðtÞ ¼ A1

2
1þ cos

t � B1

C1
p

� �� �
; ðA15Þ

where A1=2F1,avg using F1,avg in Eqn A8, and B1 and C1 equal the
time Δt1 after touchdown for the vertical velocity ofm1 to reach zero.

Impulse J2 has force waveform F2(t) during the interval
B2−C2≤t≤B2+C2:

F2ðtÞ ¼ A2

2
1þ cos

t � B2

C2
p

� �� �
; ðA16Þ

where A2=2F2,avg using F2,avg in Eqn A9, and B2 and C2 equal 0.5tc
for a symmetrical waveform.

The total force curve FT(t) is the sum of these two individual
force waveforms:

FTðtÞ ¼ F1ðtÞ þ F2ðtÞ: ðA17Þ

Impulse J1 ankle marker velocity considerations
Impulse J1 results from the acceleration of the lower limb during the
limb impact interval and is quantified by Eqn A8. Δv1 and Δt1 are
determined using ankle marker kinematics to represent the motion
of the lower limb mass m1. The lower limb attains a relatively
constant positive velocity after the impact interval (Fig. 2C),
resulting in a near-zero acceleration of m1 (Fig. 2D) and negligible
force F1=m1g (Fig. 2E) as described in Eqn A6. This force is less
than 55 N for a subject with body mass mb=70 kg and lower limb
mass m1=5.6 kg (m1=0.08×70 kg). Thus, J1 can be modeled by a
finite impulse during the impact interval.

Kinematic data for the ankle marker position during the impact
interval for representative RFS and FFS subjects appear in Fig. 3.
Δt1 is the time interval between touchdown and the vertical
velocity of m1 slowing to zero. For some FFS runners at slower
speeds, minor fluctuations in the ankle marker velocity–time
profile near the end of the m1 impact interval can create variability
in the Δt1 measurements as a result of slow m1 impact velocities
and skin marker motion artifact during the impact interval
(Bobbert et al., 1991). Accordingly, Δt1 was quantified using a
technique that represented the functional end of the m1 impact
time interval. An ankle marker velocity of −0.25 m s−1 was used
as a threshold point, and the previous 10 ms of data were utilized
for a linear projection of the ankle marker velocity to zero. For
consistency in analysis, this method was applied to all ankle
marker kinematics data, regardless of the speed or foot-strike
mechanics of the runner (see Results).

Impulse J2 asymmetry considerations
The temporal location of the peak of impulse J2 is dependent on the
relative location of the center of mass at touchdown and takeoff.
Idealized spring–mass running has symmetrical center of mass
displacement, and thus a symmetrical profile where the location of
peak B2 is 0.50tc. However, the stance leg is more extended at
takeoff than at touchdown (Blickhan, 1989), and this causes the
center of mass height to be lower at touchdown than at takeoff
(Cavagna, 2006), which results in an asymmetrical impulse J2
profile. The model waveform F2(t) for impulse J2 can be modified
to include width parameters to control the symmetry:

F2ðtÞ¼

0 for t,B2�C2L

A2

2
1þcos

t�B2

C2L
p

� �� �
for B2�C2L�t�B2

A2

2
1þcos

t�B2

C2T
p

� �� �
for B2,t�B2þC2T

0 for t.B2þC2T

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; ðA18Þ

where A2 is the peak amplitude, B2 is the center time of the peak,C2L

is the leading half-width time interval, and C2T is the trailing half-
width time interval. The location of peak B2 was set at 0.47tc as per
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the center of mass asymmetry originally reported by Cavagna et al.
(1977) (see their table 4). With the symmetry control, C2L=B2 and
C2T=tc−B2.

Impulse J2 threshold considerations
A baseline noise level is present in all force platforms. To establish
accurate and reproducible contact measurements, a threshold value
is specified such that any ground reaction force signal below this
value is zero. The threshold setting can be incorporated into the
impulse J2 model waveform F2(t). Eqn A18 can be solved for the
width parameters C2:

C2 ¼ jt � B2jp
cos�1ðð2F2=A2Þ � 1Þ : ðA19Þ

This equation is specifically evaluated for each width parameter at
time t where the force F2 is equal to the threshold. A force threshold
of 40 N was used for the AMTI high-speed force treadmill system.
The leading width parameter C2=C2L is determined at the first
channel (t=1 ms) and the trailing width parameter C2=C2T is
determined at the last channel (t=tc). Leading and trailing width
parameters C2L and C2T are calculated using the same peak location
B2 and peak amplitude A2.
The peak amplitude is recalculated after the width parameters

are changed in order to preserve the impulse. The impulse after
the calculation of width parameters (J2A) should approximately
equal the impulse before the calculation of width parameters
(J2B):

J2A ¼ J2B; ðA20Þ

1

2
A2AC2LA þ 1

2
A2AC2TA ¼ 1

2
A2BC2LB þ 1

2
A2BC2TB; ðA21Þ

A2A ¼ A2B
C2LB þ C2TB

C2LA þ C2TA
: ðA22Þ

As a result of this recalculation, the impulse is approximately
equal to the original impulse and the values at the first and last
channel are approximately equal to the threshold value.
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ABSTRACT
Running performance, energy requirements and musculoskeletal
stresses are directly related to the action–reaction forces between the
limb and the ground. For human runners, the force–time patterns
from individual footfalls can vary considerably across speed, foot-
strike and footwear conditions. Here, we used four human footfalls
with distinctly different vertical force–time waveform patterns to
evaluate whether a basic mechanical model might explain all of them.
Our model partitions the body’s total mass (1.0Mb) into two invariant
mass fractions (lower limb=0.08, remaining body mass=0.92) and
allows the instantaneous collisional velocities of the former to vary.
The best fits achieved (R2 range=0.95–0.98, mean=0.97±0.01)
indicate that the model is capable of accounting for nearly all of the
variability observed in the four waveform types tested: barefoot jog,
rear-foot strike run, fore-foot strike run and fore-foot strike sprint. We
conclude that different running ground reaction force–time patterns
may have the same mechanical basis.

KEY WORDS: Force-motion, Biomechanics, Running performance,
Barefoot running

INTRODUCTION
The bodily motion of terrestrial animals that use bouncing gaits is
determined by the action–reaction forces between the limbs and the
ground. However, the predominant orientation of these forces during
straight-path, level running and hopping is not in the horizontal
direction of travel (Cavagna et al., 1977). Horizontal force
requirements are minimized by an effective step-to-step maintenance
of forward momentum once an animal is up to speed. Vertical force
requirements, in contrast, can exceed body weight by a factor of two
or more during periods of limb–ground contact (Weyand et al.,
2000). Large vertical forces result from two factors: the need for
stride-averaged vertical forces to equal the body’s weight, and
limb–ground contact periods that comprise only a fraction of the
total stride time. Consequently, the vertically oriented ground
reaction forces exceed horizontal forces by a factor of five or more,
and lateral forces by greater margins.

The vertical force versus time waveforms of individual running
and hopping footfalls can vary considerably in duration, amplitude
and shape. This variation has been documented for a variety of
species (Cavagna et al., 1977) and most comprehensively for
humans (Bobbert et al., 1991; Munro et al., 1987). At present,
several factors are known to introduce the shape variation that
occurs predominantly in the initial portion of these force–time
waveforms. These include: running speed (Bobbert et al., 1991;
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Kuitunen et al., 2002; Munro et al., 1987; Weyand et al., 2009;
Weyand et al., 2010), the portion of the foot that initially contacts
the running surface (Cavanagh, 1987; Chi and Schmitt, 2005;
Dickinson et al., 1985; Ker et al., 1989; Lieberman et al., 2010; Nigg
et al., 1987) and footwear (Liu and Nigg, 2000; Ly et al., 2010; Nigg
et al., 1987; Nigg and Liu, 1999; Zadpoor and Nikooyan, 2010).
Current understanding rests heavily on the two types of models most
frequently used to interpret these waveforms: the spring-mass model
and multi-mass models. Models of both types are well-founded and
have undergone extensive evaluation. However, neither was
formulated to explain these waveforms in full.

The most basic treatment of the vertical force–time waveforms is
provided by the classic spring-mass model (Blickhan, 1989;
McMahon and Cheng, 1990). The single-mass approach models
running and hopping animals as a lumped point-mass mass
bouncing on a massless leg spring. This single-mass model explains
many aspects of running and hopping gaits with remarkable
accuracy given its mechanical simplicity (Bullimore and Burn,
2007; Farley et al., 1993; Ferris and Farley, 1997; McMahon and
Cheng, 1990). However, this classic model was formulated largely
for broad evaluative purposes, not specific quantitative ones.
Accordingly, the perfectly symmetrical force–time waveforms the
model predicts (Bullimore and Burn, 2007; Robilliard and Wilson,
2005) cannot account for the non-symmetrical components that the
force–time waveforms inevitably contain. These include, but are not
limited to, heel-strike impacts at slow speeds and extremely rapid
rising edges at faster ones (Kuitunen et al., 2002; Weyand et al.,
2009; Weyand et al., 2010).

A second, more complex variety of multi-mass models developed
from the two-mass ideas initially put forward by McMahon
(McMahon et al., 1987) and Alexander (Alexander, 1988). These
models have evolved in their complexity, largely by building upon
Alexander’s two-mass, stacked-spring model (Alexander, 1988;
Alexander, 1990; Derrick et al., 2000; Ker et al., 1989).
Contemporary versions include at least four masses and more than
a dozen spring, mass and damping elements (Liu and Nigg, 2000;
Ly et al., 2010; Nigg and Liu, 1999; Nikooyan and Zadpoor, 2011;
Zadpoor and Nikooyan, 2010). In contrast to the single-mass
models, a primary objective of the multi-mass models has been to
provide detailed explanations of waveform variability, specifically
the impact and rising-edge variability observed for human joggers
(Nigg, 2010; Zadpoor and Nikooyan, 2010). However, the relatively
specific objective of the multi-mass models has limited the breadth
of their application. Evaluations typically ignore the descending
edge of the waveforms and have been limited to jogging speeds.
Accordingly, the ability of the now-elaborate, multi-mass models to
explain either the falling edge of jogging waveforms or the entirety
of the waveforms from intermediate and fast running speeds is not
known.

Here, we seek to explain running ground reaction forces in full
with an approach that is slightly more complex than the single-mass
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models, but considerably simpler than current multi-mass models.
For this purpose, we formulated a two-mass model that theorizes
that running vertical force–time waveforms consist of two
components, each corresponding to the motion of a discrete portion
of the body’s mass. A smaller component (m1) corresponds to the
impact of the lower limb with the running surface while a larger
component (m2) corresponds to the accelerations of the remainder
of the body’s mass (Fig. 1A). We hypothesize that our two-mass

model can explain running ground reaction force–time waveforms
in their entirety across different speed, foot-strike and footwear
conditions.

RESULTS AND DISCUSSION
In keeping with our hypothesis, our two-mass model was able to
account for virtually all of the duration, amplitude and force–time
pattern variability present in the vertical ground reaction force
waveforms analyzed. Despite the large differences in waveform
characteristics introduced by different speed, foot-strike and
footwear conditions, our model accounted for an average of 97% of
the individual force–time relationships (mean R2=0.97±0.01) and a
minimum of 95% (Fig. 1). The accuracy of these fits across the
heterogeneous waveforms tested suggests that two mechanical
phenomena, acting in parallel, are sufficient to explain running
ground reaction forces: (1) the collision of the lower limb with the
running surface, and (2) the motion of the remainder of the body’s
mass throughout the stance phase.

The accuracy of the fits achieved using a model with only two
mass components and with mass component values held constant
across conditions differs from prevailing paradigms in several
respects. First, while the sequential additions of third, fourth and
fifth mass components to multi-mass models over the last two
decades (Liu and Nigg, 2000; Ly et al., 2010; Nigg and Liu, 1999;
Nikooyan and Zadpoor, 2011; Zadpoor and Nikooyan, 2010) may
describe physical and mechanical reality as theorized (Nigg, 2010;
Zadpoor and Nikooyan, 2010), these additional masses may also be
unnecessary for waveform prediction. Second, the conclusion that
the mass quantity decelerated upon foot–ground impact differs
substantially for rear foot versus forefoot impacts (Lieberman et al.,
2010; Nigg, 2010) should be reconsidered. The close fits we report
here using a constant value of 8.0% of the body’s mass across all
foot-strike conditions indicates that a variable ‘effective mass’ may
be unnecessary for accurate modeling and could be mechanically
incorrect. For example, if we predict the sprint running waveform
analyzed here (Fig. 1G,H) using the effective mass proportions
suggested for a forefoot impact [m1=1.7% and m2=98.3% of total
body mass Mb (Lieberman et al., 2010)] with a speed-specific foot
collisional velocity (Mann and Herman, 1985) (Table 1), the rising
edge of the sprint waveform is substantially under-predicted and the
overall goodness of fit is considerably reduced (R2=0.95 to 0.82; see
supplementary material Fig. S1). Third, the model’s general features
and simplifying assumptions permit impulse J1 and J2 durations and
forces to be independent. In contrast, the dual ‘stacked spring-mass’
model-type (Alexander, 1990; Derrick et al., 2000; Ker et al., 1989)
that Alexander originally introduced (Alexander, 1988) uses a serial,
coupled configuration that may be incapable of predicting the brief
simultaneous impulses responsible for the characteristic pattern of
sprint running waveforms.

Indeed, the model’s design was essential for achieving close fits
to waveforms with variable rising edges, smooth falling edges and
significantly different durations. Given the fixed-mass value of our
lower-limb mass component, the close fits to the variable rising
edges were achieved predominantly via the two model inputs
(Table 1) responsible for the shape of collisional impulse J1

(Fig. 1). Values for the first of the two, the vertical velocity of the
lower limb at touchdown, are well-supported by the waveform-
specific literature values available. Values for the second, the
deceleration time of the lower limb upon touchdown, are well-
supported by the detailed analysis of Nigg et al. (Nigg et al., 1987)
for waveform 2, but are lacking for the other three. Fits along the
smoother falling edges depend directly upon impulse J2 because
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Fig. 1. Modeled versus actual vertical ground reaction force waveforms
from four different running footfalls. (A,B) Barefoot, fore-foot strike at
3.5 m s−1; (C,D) shod, rear-foot strike at 5.0 m s−1; (E,F) shod, fore-foot strike
at 5.0 m s−1; (G,H) shod, fore-foot strike at 10.5 m s−1. A, C, E and G illustrate
the two-mass model (solid blue line) compared with the digitized waveforms
(dashed black line). B, D, F and H illustrate the contributions of the first
impulse (J1, dotted red line) and second impulse (J2, dashed green line) to
the total predicted by the model (solid blue line). Modeled versus digitized
waveform R2 values are provided in the figure; root mean square error values
were 0.15, 0.16, 0.15 and 0.35Wb for waveforms 1–4, respectively. [Note: the
model assumes that the force contributed by m1 after impulse J1 has ended
is zero; original sources for waveforms 1–4 were: Lieberman et al.
(Lieberman et al., 2010), their fig. 1c, step #1; Weyand et al. (Weyand et al.,
2000), their fig. 1B, step #2; Weyand et al. (Weyand et al., 2010), their fig. 1A,
step #1; Weyand et al. (Weyand et al., 2009), their fig. 1B, step #1 of the
intact-limb runner.]
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of the early conclusion of the J1 collisional event. Given a known
physical basis for determining total impulse JT from contact and
step times (Eqn 1; see Materials and methods), correctly
quantifying impulse J2 depends solely on the quantity subtracted
for impulse J1 (Eqn 2). While empirical validation clearly remains
for several elements of our model, the fits achieved using
anatomical mass inputs, realistic lower-limb velocities, and one
mechanical explanation across conditions raise the possibility that
the running force–motion relationship may be more general than
previously recognized.

An additional factor in the accuracy of the fits we report was
undoubtedly the model evaluation method adopted. The method
chosen allowed us to assess a greater variety of waveforms than
would have been possible via direct experimentation, but also
involved two potential limitations. First, because the model fits were
generated by varying the inputs, the goodness-of-fit values obtained
should be regarded as the upper performance limits of the model.
Second, the digitizing process enabling our approach might have
transformed the literature waveforms into more model-conducive
shapes. We were able to evaluate this second possibility empirically
by applying the inputs used to fit two of the digitized waveforms (3
and 4) to the original waveform data. This process yielded fits that
were the same or slightly greater for the original (respective R2

values of 0.98 and 0.96) versus digitized versions because the
original waveforms were so closely reproduced by digitizing (see
supplementary material Tables S1–S4).

We close by providing respective, illustrative examples of the
basic and applied advances made possible by the concise physical
basis of our two-mass model. One basic insight provided by the
framework of the model is the identification of a mechanical
strategy that runners can adopt to achieve faster speeds. By simply
increasing the lower limb’s velocity prior to touchdown, and
reducing deceleration time during impact, runners can elevate the
collisional impulse (J1) and total ground reaction forces as needed
to attain faster speeds (Weyand et al., 2000; Weyand et al., 2009;
Weyand et al., 2010). Both the existing literature data (Table 1) and
our modeling results (Fig. 1) are consistent with this being a primary
mechanism by which faster human runners do, in fact, attain faster
sprint running speeds.

In application, the conciseness of the model could translate into
practical techniques for determining ground reaction forces
indirectly. At present, the lone indirect assessment method available
(Bobbert et al., 1991) is scientifically rigorous, but impractical for
broad usage. The existing technique involves the instantaneous
summation of the accelerations of seven body segments based on
high-frequency positional data from 10 bodily locations. In contrast,
the scientific basis of our two-mass model (Eqns 1–6) reduces the
data needed for indirect force determinations to three basic

variables: aerial time, contact time and the vertical velocity of the
lower limb. Thus, our model may allow video and other motion
capture techniques to become practical tools for determining vertical
ground reaction forces without direct measurement.

MATERIALS AND METHODS
Model formulation
Because the net vertical displacement of the body over time during steady-
speed, level running is zero, the time-averaged vertical ground reaction force
must equal the body’s weight. Thus, the total stance-averaged vertical force
FTavg can be determined if foot–ground contact time tc and aerial time ta are
known:

where tstep is step time (tstep=tc+ta), m is body mass and g is gravitational
acceleration (9.8 m s−2).

The ground reaction force waveform represents the instantaneous
acceleration of the body’s mass. Accordingly, the waveform can be
conceptualized as the sum of the instantaneous accelerations of different
segments that make up the body’s total mass (Bobbert et al., 1991). In our
model (Fig. 1), impulse J1 results from the acceleration of the lower limb
during surface impact, and J2 corresponds to the acceleration of the
remainder of the body’s mass. The total impulse JT, is the sum of J1 and J2:

JT = J1 + J2 = FTavgtc . (2)

Impulse mass m1 is the 8.0% of the body’s total mass attributed to the
lower limb, while impulse mass m2 is the remaining 92.0%. Impulse J1 is
quantified from the deceleration of m1 during surface impact:

where Δt1 is the time interval between touchdown and vertical velocity of
m1 slowing to zero, Δv1 is the change in vertical velocity of m1 during Δt1,
and F1avg is the average force during the total time interval (2Δt1) of impulse
J1. After the J1 time interval, the model assumes F1avg=0. J2 is determined
from J1 and total impulse JT as:

J2 = JT – J1 = F2avgtc , (4)

where F2avg is the average force of J2 during the interval tc.

Modeled waveforms
The bell-shaped force curves F(t) for J1 and J2 are a result of non-linear
elastic collisions (Cross, 1999) that can be accurately modeled using the
raised cosine function:

where A is the peak amplitude, B is the center time of the peak and C is the
half-width time interval. Because of the symmetrical properties of this
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Table 1. Waveform information
vzlimb at touchdown

Fig. 1 Speed Shod Mass 
(m s−1)

Waveform Reference panels (m s−1) Foot-strike condition (kg) tc (s) ta (s) Δt1 (s) Model Published

1 Lieberman et al., 2010 A, B 3.5 Fore-foot Barefoot 70.00 0.251 0.087 0.070 −0.80 −0.80a

2 Weyand et al., 2000 C, D 5.0 Rear foot Shod 72.06 0.181 0.136 0.025 −1.70 −1.60b

3 Weyand et al., 2010 E, F 5.0 Fore-foot Shod 69.21 0.182 0.152 0.040 −1.70 −1.60b

4 Weyand et al., 2009 G, H 10.5 Fore-foot Shod 69.21 0.091 0.136 0.025 −3.10 −3.00c

tc, contact time; ta, aerial time; Δt1, time interval between touchdown and vertical velocity of component m1 slowing to zero; vzlimb, vertical velocity of lower limb.
aData from Nigg et al. (Nigg et al., 1987), table 1 in their appendix; listed value is −0.80 m s−1 at running speed of 3.0 m s−1.
bData from Nigg et al. (Nigg et al., 1987), table 1 in their appendix.
cData derived from Mann and Herman (Mann and Herman, 1985); listed value is a horizontal foot velocity of −7.93 m s−1 at a running speed of 10.21 m s−1.
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function, peak amplitude A=2Favg, and the area under the curve is J=AC. The
total force waveform FT(t) is the sum of each impulse waveform:

A1 is calculated from F1avg using the Δv1 and Δt1 terms in Eqn 3, and B1 and
C1 equal the time Δt1 after touchdown for the vertical velocity of m1 to reach
zero. A2 is calculated from F2avg in Eqn 4, and B2 and C2 equal one-half the
contact time tc.

Modeled versus actual waveforms
We digitized (Engauge, version 4.1) four published waveforms that varied
in duration, amplitude and shape (Table 1). Model fits of the four digitized
waveforms (Fig. 1) were performed via a manual iterative process that
constrained the inputs for Δt1 and Δv1 to values deemed realistic on the basis
of existing literature. Inputs for tc and subsequent ta were determined from
the waveforms using a threshold of 60 N. In two cases (waveforms 3 and 4),
goodness of fit between modeled and original data waveforms were
determined to supplement the evaluation of the digitized versions.

Model fits were quantified in two ways: (1) in force units standardized to
the body’s weight (Wb) using the root mean square statistic (RMSE), and (2)
for goodness of fit using the R2 statistic. Digitized waveforms were
interpolated as needed to provide force data on a per millisecond basis for
these analyses. We hypothesized that the model would explain 90% or more
(i.e. R2≥0.90) of the force–time variation present in each of the four
waveforms analyzed. Data for all digitized, modeled and original waveforms
used in the analysis are provided in supplementary material Tables S1–S4.

All variables are presented in SI units, but, per convention, force
waveforms are illustrated in mass-specific units.
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Clark KP, Weyand PG. Are running speeds maximized with simple-
spring stance mechanics?. J Appl Physiol 117: 604–615, 2014. First
published July 31, 2014; doi:10.1152/japplphysiol.00174.2014.—Are
the fastest running speeds achieved using the simple-spring stance
mechanics predicted by the classic spring-mass model? We hypoth-
esized that a passive, linear-spring model would not account for the
running mechanics that maximize ground force application and speed.
We tested this hypothesis by comparing patterns of ground force
application across athletic specialization (competitive sprinters vs.
athlete nonsprinters, n � 7 each) and running speed (top speeds vs.
slower ones). Vertical ground reaction forces at 5.0 and 7.0 m/s, and
individual top speeds (n � 797 total footfalls) were acquired while
subjects ran on a custom, high-speed force treadmill. The goodness
of fit between measured vertical force vs. time waveform patterns
and the patterns predicted by the spring-mass model were assessed
using the R2 statistic (where an R2 of 1.00 � perfect fit). As
hypothesized, the force application patterns of the competitive sprint-
ers deviated significantly more from the simple-spring pattern than
those of the athlete, nonsprinters across the three test speeds (R2

�0.85 vs. R2 � 0.91, respectively), and deviated most at top speed
(R2 � 0.78 � 0.02). Sprinters attained faster top speeds than non-
sprinters (10.4 � 0.3 vs. 8.7 � 0.3 m/s) by applying greater vertical
forces during the first half (2.65 � 0.05 vs. 2.21 � 0.05 body wt), but
not the second half (1.71 � 0.04 vs. 1.73 � 0.04 body wt) of the
stance phase. We conclude that a passive, simple-spring model has
limited application to sprint running performance because the swiftest
runners use an asymmetrical pattern of force application to maximize
ground reaction forces and attain faster speeds.

sprinting performance; musculoskeletal mechanics; ground reaction
forces; gait; spring-mass model

RUNNING SWIFTLY IS AN ATHLETIC attribute that has captivated the
human imagination from prehistoric times through the present
day. However, interest in running speed as an athletic phenom-
enon has probably never been greater than at present. A
number of factors have heightened contemporary interest and
focused it upon the determinants of how swiftly humans can
run. These factors include the globalization and professional-
ization of athletics, the parallel emergence of a performance-
training profession, advances in scientific and technical meth-
ods for enhancing performance, and record-breaking sprint
running performances in recent international competitions. Yet
despite interest, incentives, and intervention options that are
arguably all without precedent, the scientific understanding of
how the fastest human running speeds are achieved remains
significantly incomplete.

At the whole-body level, the basic gait mechanics responsi-
ble for the swiftest human running speeds are well established.
Contrary to intuition, fast and slow runners take essentially the

same amount of time to reposition their limbs when sprinting
at their different respective top speeds (36, 38). Hence, the time
taken to reposition the limbs in the air is not a differentiating
factor for human speed. Rather, the predominant mechanism
by which faster runners attain swifter speeds is by applying
greater forces in relation to body mass during shorter periods of
foot-ground force application (36, 38). What factors enable
swifter runners to apply greater mass-specific ground forces?
At present, this answer is unknown. Moreover, the limited
scientific information that is available offers two competing
possibilities.

The first possibility is drawn from the classic view of
steady-speed running mechanics. In this classic view, runners
optimize force production, economy, and overall performance
by using their legs in a spring-like manner during each contact
period with the ground (13, 16, 31). During the first portion of
the stance phase, the limb is compressed as the body is pulled
downward by the force of gravity, storing strain energy in the
elastic tissues of the leg. In the latter portion of the stance
phase, this strain energy is released via elastic recoil that lifts
and accelerates the body into the next step (30). The stance
phase dynamics observed have been modeled as a lumped
point-mass bouncing atop a massless leg spring (2, 4, 18, 19,
26, 32). This simple model makes the basic predictions illus-
trated in Fig. 1A: 1) the ground reaction force vs. time wave-
form will take the shape of a half-sine wave, 2) the displace-
ment of the body’s center of mass during the compression and
rebound portions of the contact period will be symmetrical
about body weight, and 3) the peak force will occur at mid-
stance when the center of mass reaches its lowest position.
Despite its mechanical simplicity, the classic spring-mass
model provides relatively accurate predictions of the vertical
force vs. time waveforms observed at slow and intermediate
running speeds.

The second possibility emerges from the more limited
ground reaction force data that are available from humans
running at faster speeds. These more limited data (3, 5, 10, 23,
25, 35, 37, 38) generally exhibit vertical ground reaction force
vs. time waveforms that are asymmetrical and therefore not
fully consistent with the simple, linear-spring pattern predicted
by the spring-mass model. Indeed, the tendency toward asym-
metry appears to be most pronounced in the ground reaction
force waveforms from the fastest speeds (3, 10, 37, 38), which
show an appreciably steeper rising vs. trailing edge and a force
peak that occurs well before midstance (Fig. 1B, Example 1).
The more asymmetrical pattern at faster speeds may result
from greater impact-phase limb decelerations (14) that elevate
the ground reaction forces in the early portion of the stance
phase. This mechanism would enhance ground force applica-
tion within the short contact periods available during sprint
running (36, 38) and appears to be consistent with gait kine-
matics used by the fastest human sprinters (24).
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We undertook this study to evaluate whether or not the
fastest human running speeds are achieved using simple, lin-
ear-spring stance mechanics. We did so using the vertical
ground reaction force vs. time relationship predicted by the
spring-mass model in Fig. 1A as a null standard for compari-
sons. We quantified conformation to, or deviation from, the
pattern of ground force application predicted by the spring-
mass model from the degree of overlap (i.e., goodness of fit,
R2) between modeled and measured waveforms as illustrated in
Fig. 1B. Two experimental tools were used to test the idea that
the fastest human running speeds are attained using an asym-
metrical pattern of ground force application that deviates from
the simple, linear spring predictions of the spring-mass model:
1) athletic specialization and 2) running speed. In the first case,
we hypothesized that patterns of ground force application of
competitive sprinters would deviate more from spring-mass
model predictions than those of athlete nonsprinters. In the
second case, for subjects in both groups, we hypothesized that
patterns of ground force application would deviate more from
spring-mass model predictions at top speed vs. slower running
speeds.

METHODS

Experimental Overview and Design

Spring model predictions. Per the methods outlined by Alexander
et al. (2) and Robilliard and Wilson (32), half-sine wave formulations
of the vertical ground reaction force waveforms predicted by the
spring-mass model were determined from the runner’s contact time
(tc), aerial time (taer), and step time (tstep � tc � taer):

F�t� ⁄ Wb � ��
�

2 � · � tstep

tc
� · sin�� · � t

tc
�� , 0 � t � tc

0, tc � t � tstep

(Eq. 1)

where F(t) is the force at time t and Wb is the force of the body’s
weight. The peak mass-specific force, Fpeak/Wb, occurs during ground
contact tc at time t � tc/2:

Fpeak

Wb
� ��

2 � · � tstep

tc
� (Eq. 2)

The degree of overlap between the measured vertical ground
reaction force-time waveforms vs. those predicted by the spring-mass
model was determined using the R2 goodness of fit statistic and
mass-specific force values as follows. First, differences between the
force values measured during each millisecond and the overall
waveform mean value were squared and summed to obtain an
index of the total variation present within the waveform, or the
total sum of squares [SStotal � �(F/Wb, measured � F/Wb, mean)2].
Next, the predictive error of the spring model was determined from
the difference between the spring-modeled values (Equations 1 and
2) and measured force values also using the same sum of squares
method [SSerror � �(F/Wb, measured � F/Wb, spring model)2]. Finally,
the proportion of the total force waveform variation accounted for by
the spring-mass model was then calculated using the R2 statistic:

R2 � 1 � �SSerror

SStotal
� (Eq. 3)

Accordingly, our spring-model goodness of fit R2 values have a
theoretical maximum 1.00 (where R2 � 1.00 is exact agreement with
the spring model). In practice, and on the basis of prior literature (14),
we expected patterns that were relatively well predicted by the model
to have R2 agreement values �0.90 and patterns that were predicted
relative poorly to have agreement values �0.90. This somewhat
subjective threshold was identified simply to facilitate goodness-of-fit
interpretations. The example waveforms appearing in Fig. 1B provide
a frame of reference between the degree of waveform overlap with the
spring-model and corresponding numeric R2 values. In accordance
with our respective hypotheses, we predicted that: 1) the R2 values for
competitive sprinters would be significantly lower than those of
athlete nonsprinters, and 2) the R2 values at top speed would be
significantly lower than those at slower running speeds for the sub-
jects in both groups.

In addition to the relative values provided by our R2 spring-model
goodness of fit index, we also quantified the agreement between
measured patterns of ground force application and the spring model-
predicted patterns in the units of force most relevant to sprinting
performance (F/Wb). We did so using the root mean square error
(RMSE) statistic as follows:

RMSE ���SSerror

n � (Eq. 4)

where n equals the number of observations. Accordingly, larger
RMSE values will result from patterns of ground force application
that deviate more from the spring-mass model, and vice versa. Hence,
the RMSE can be here conceptualized as an index of force disagree-

Fig. 1. A schematic illustration of the classic spring-mass model [modified
with permission from (12)] during forward running and the half-sine waveform
representing the vertical force produced by the mathematical expression of the
model (A). The half-sine waveform representing the spring-mass model (solid
black line) vs. two different example waveforms. Example 1 (dashed black
line) has relatively poor conformation to the model, whereas Example 2 (dotted
gray line) has relatively better conformation to the model (B). Ground reaction
forces are presented in mass-specific form (i.e., after standardization to body
weight) in all illustrations.
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ment between the measured force waveforms vs. those predicted by
the spring-mass model expressed in force units of the body’s weight.
Thus for this second statistic, we predicted RMSE values would be: 1)
significantly greater for competitive sprinters vs. athlete nonsprinters,
and 2) significantly greater at top speed vs. slower speeds for the
subjects in both groups.

We analyzed only the vertical component of the ground force
because previous work (10, 36, 38) has directly linked stance-average,
mass-specific vertical ground reaction forces to the sprinting speeds
attained:

Speed � �Favg

Wb
� · Lc · Freqstep (Eq. 5)

where speed is the body’s forward running velocity, Favg/Wb is the
stance-averaged vertical force applied to the running surface in units
of the body’s weight, Lc is the length of contact, or forward distance
the body travels during the foot-ground contact period, and Freqstep is
1/(tstep). The equation has been shown to be accurate within 3.0% or
less during steady-speed running (38). Because we used a simple
vertical spring-mass model rather than a planar model for hypothesis
testing, horizontal ground reaction forces were not included in the
analysis.

Design and data acquisition strategies. For the competitive sprinter
group, we recruited only track athletes who specialized in the 100- and
200-meter events and who had intercollegiate track and field experi-
ence or the equivalent. For the athlete nonsprinter group, we recruited
athletes who regularly ran at high speeds for their sport specialization,
but who were not competitive sprinters. In both groups, we recruited
and enrolled only those athletes with midfoot and forefoot strike
patterns because the fast subjects we were seeking to enroll do not
heel strike when running at high speeds.

We maximized ground reaction force data quality and quantity by
conducting tests on a high-speed force treadmill capable of acquiring
data from a large number of consecutive footfalls at precisely con-
trolled speeds. Acquiring equivalently robust data for the purpose of
quantifying patterns of foot-ground force application using in-ground
force plates would be difficult, or perhaps impossible, given that
overground conditions greatly limit the number of footfalls acquired,
and substantially increase the variability present in both running
speeds and foot-strike patterns. For athletic subjects running on a
treadmill vs. overground, prior studies have demonstrated a close
correspondence between sprint running performances (9), sprinting
kinematics (20), and patterns of ground force application at speeds at
which comparative data are available (22, 29).

Although we acquired data from many speeds, we used the ground
reaction force data from only three of these for hypothesis testing: 5
m/s, 7 m/s, and individual top speed.

Subjects and Participation

A total of 14 subjects (8 men, 6 women) volunteered and provided
written, informed consent in accordance with the requirements of the
local institutional review board. All subjects were between 19 and 31
yr of age and regularly active at the time of the testing. The compo-
sitions of the competitive sprinter group (age 23.9 � 1.6 yr, height
1.72 � 0.03 m, mass 73.8 � 4.3 kg) and the athlete nonsprinter group
(age 21.7 � 1.5 yr, height 1.77 � 0.03 m, mass 75.8 � 4.6 kg) were
gender balanced; both included four men and three women. Subjects
ranged in athletic experience from intercollegiate team-sport athletes
to professional, world-class track athletes. In the athlete, nonsprinter
group, all seven subjects had intercollegiate athletic experience. In the
competitive sprinter group, six of the seven subjects had intercolle-
giate track and field experience, five had international experience, and
four had participated in both the Olympics and Track and Field World
Championships. Physical characteristics and athletic specializations of
all participants appear in Table 1. Also provided are the 100- and
200-m personal records of the competitive sprinters.

Measurements

Top speed. Participants were habituated to running on a custom,
high-speed force treadmill during one or more familiarization sessions
before undergoing top speed testing. For all trials, subjects were
fastened into a safety harness attached to an overhead suspension that
would support them above the treadmill belt in the event of a fall. The
harness and ceiling suspension had sufficient slack to not impede the
subjects’ natural running mechanics. A progressive, discontinuous
treadmill protocol similar to that described by Weyand et al. (36) was
administered to determine each subject’s top speed. The protocol
began at speeds of 2.5 or 3.0 m/s and typically increased in 1.0 m/s
increments for each trial at slower speeds and 0.2–0.5 m/s at faster
speeds. Trial speeds were progressively increased until a speed was
reached at which the subject could not complete eight consecutive
steps without backward movement exceeding 0.2 m on the treadmill.
Subjects typically made two to three unsuccessful attempts at the
failure speed before the test was terminated. The top speed success-
fully completed was within 0.3 m/s of the failure speed for all
subjects. For each trial, subjects straddled the treadmill belt as it was
increased to the desired trial speed. Handrails on the sides of the
treadmill were set at waist-height and aided subjects in their transition
onto the moving belt. Once the treadmill belt had increased to the
selected speed, subjects transitioned onto the belt by taking several
steps before releasing the handrails. Data acquisition was not initiated
until the subject had released the rails. There was no limit on the
number of handrail-assisted steps the subjects could complete during
their transition onto the belt. Trials at speeds slower than 5 m/s
typically lasted 10 to 20 s, whereas trials at speeds faster than 5 m/s

Table 1. Physical and descriptive characteristics of subjects

Group Sex Age, yr Height, m Mass, kg Sport 100-m PR, s 200-m PR, s

Sprinter Male 28 1.85 91.6 Track and Field 9.96 20.57
Sprinter Male 23 1.78 83.4 Track and Field 10.06 20.29
Sprinter Male 20 1.74 74.4 Track and Field 10.26 21.10
Sprinter Male 19 1.70 71.8 Track and Field 10.80 22.20
Sprinter Female 23 1.70 61.8 Track and Field 11.12 22.29
Sprinter Female 31 1.70 74.1 Track and Field 11.04 22.33
Sprinter Female 23 1.60 59.4 Track and Field 11.52 24.04
Nonsprinter Male 23 1.95 101.5 NCAA varsity football
Nonsprinter Male 19 1.74 72.7 NCAA club lacrosse
Nonsprinter Male 30 1.74 74.6 Former NCAA varsity soccer
Nonsprinter Male 20 1.79 78.4 Intercollegiate distance runner
Nonsprinter Female 19 1.76 72.6 Intercollegiate varsity soccer
Nonsprinter Female 20 1.70 64.4 Intercollegiate varsity soccer
Nonsprinter Female 21 1.74 66.3 Intercollegiate varsity soccer
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typically lasted less than 5 s. Subjects were instructed to take full
recovery between trials. They typically took 1–2 min between slow
and intermediate speed trials, and 1–10 min between faster speeds
trials. To reduce the risk of injury or muscle soreness, testing was
terminated before top speed was attained if the subjects reported
muscle or joint discomfort.

Treadmill force data. Ground reaction force data were acquired at
1,000 Hz from a high-speed, three-axis, force treadmill (AMTI,
Watertown, MA). The treadmill uses a Baldor BSM100C-4ATSAA
custom high-speed servo motor and a Baldor SD23H2A22-E stock
servo controller, and is capable of speeds of �20 m/s. The custom
embedded force plate has a length of 198 cm and a width of 68 cm,
and interfaces with an AMTI DigiAmp amplifier running NetForce
software. The force data were postfiltered using a low-pass, fourth-
order, zero-phase-shift Butterworth filter with a cutoff frequency of 25
Hz (39).

Stride timing, length, and center of mass motion variables were
determined as follows. For each footfall, contact times were deter-
mined from the time the vertical force signal exceeded a threshold of
40 N. Aerial times were determined from the time elapsing between
the end of one period of foot-ground contact and the beginning of the
next. Step times were determined from the time elapsing during
consecutive foot-ground contact and aerial times. Step frequencies
were determined from the inverse of step times. Limb repositioning,
or swing times, were determined from the time a given foot was not
in contact with the running surface between consecutive steps. Con-
tact lengths were determined by multiplying the time of foot-ground
contact by the speed of the trial. Trial speeds were determined from
the average belt velocity over time. The vertical displacement of the
center of mass during ground contact period was determined by
double integration of the vertical force waveforms following the
procedures described by Cavagna (12).

Force data acquired. Individual subjects completed 12–20 tread-
mill trials during their top speed tests to failure. The number of
consecutive footfalls from which force waveforms were acquired
during these tests was generally greater for the slower, less demanding
trials. For example, we typically acquired �20 consecutive footfalls
for slow and intermediate speeds, 10–20 at moderately fast speeds,
and 8–12 during top-speed and near top-speed trials.

The number of footfalls acquired at the subset of three speeds used
for formal statistical testing purposes reflect the general pattern of
acquiring fewer footfalls at faster speeds. For the competitive sprint
and athlete nonsprint subjects, the average number of footfalls ac-
quired at the three hypothesis test speeds were as follows: 31 and 28
at 5.0 m/s, 23 and 13 at 7.0 m/s, and 10 and 9 at top speed,
respectively. The number of force waveforms acquired from the three
selected speeds used for statistical testing purposes was 797. The total
number of footfalls acquired from all subjects at all speeds was
�3,000.

For illustrative purposes, ensemble-averaged waveforms were de-
termined for individual subjects and the two subject groups at all of
the trial speeds completed including the top sprinting speed. For
individual subjects at each speed of interest, ensemble-averaged

waveforms were generated by averaging the force from each milli-
second of the stance period for all of the waveforms acquired. At those
speeds completed by all seven subjects of the respective groups, the
seven individual ensemble-averaged waveforms were combined to
form ensemble-averages for each of the respective groups. These
group force–time waveforms were compiled by standardizing the
vertical force values to units of the body’s weight and time values to
the percentage of the total stance contact time. Neither the individual
nor group ensemble averages were used for formal hypothesis testing
purposes.

To provide a supplementary assessment of waveform shape char-
acteristics, we also performed a basic Fourier analysis similar to that
described by Alexander and Jayes (1), and which appears in the
APPENDIX.

Statistics

Both hypothesis tests were evaluated using a two-factor ANOVA
(group 	 speed) that analyzed the mean goodness of fit (R2 values)
between spring-model predicted ground reaction force waveforms and
those directly measured from our subjects. Secondary tests of the
same hypotheses were conducted using the RMSE statistic. For both
force application hypothesis test one (group effect) and test two
(speed effect), the a priori thresholds for significance were set at 
 �
0.05. Homogeneity of variance was tested using the Fligner-Killeen
test.

Percentage differences between group means for all variables were
calculated as: {(larger � smaller)/[(larger � smaller)/2]} 	 100. For
stance-averaged vertical forces, mean percentage differences were
calculated after subtracting a baseline value equal to 1.0 Wb for
running at zero speed, or standing.

RESULTS

Top Speeds and Stance-Averaged Vertical Forces

Group means (�SE) for top speeds, stance-averaged vertical
forces, contact times, aerial times, swing times, and contact
lengths at top speed appear in Table 2. The table includes the
overall group means for the competitive sprinters and athlete
nonsprinters as well as the within-group means for the men and
women. For the overall means, the between-group differences
in two variables, top speed (� � 1.64 m/s) and stance-averaged
vertical forces (� � 0.21 Wb), when expressed on a percentage
basis (top speed � � 17.2%; stance-average vertical force � �
19.2%), were nearly identical. The similar percentage differ-
ences in top speed and stance-averaged force means variables
across the groups resulted from the lack of variation in mean
contact lengths and step frequencies (Equation 5).

When considered by sex, between-group differences in top
speeds and stance-averaged vertical forces were both slightly
larger for women vs. men (top speed � � 1.76 vs. 1.56 m/s;

Table 2. Top-speed gait mechanics

Group Top Speed, m/s Favg, Wb Lc, m tc, s taer, s Tsw, s Freqstep, s�1

Sprinter
Males 10.84 � 0.12 2.18 � 0.02 1.10 � 0.04 0.102 � 0.004 0.114 � 0.004 0.330 � 0.010 4.65 � 0.14
Females 9.73 � 0.35 2.22 � 0.06 0.96 � 0.05 0.099 � 0.002 0.118 � 0.004 0.335 � 0.006 4.61 � 0.06
Average 10.36 � 0.27 2.20 � 0.03 1.04 � 0.04 0.100 � 0.002 0.116 � 0.003 0.332 � 0.006 4.63 � 0.08

Nonsprinter
Males 9.28 � 0.17 2.01 � 0.07 1.04 � 0.06 0.112 � 0.006 0.111 � 0.006 0.334 � 0.012 4.49 � 0.14
Females 7.97 � 0.19 1.95 � 0.01 0.96 � 0.02 0.121 � 0.001 0.113 � 0.005 0.346 � 0.010 4.29 � 0.10
Average 8.72 � 0.29 1.99 � 0.04 1.01 � 0.03 0.116 � 0.004 0.112 � 0.004 0.340 � 0.008 4.40 � 0.09

Values are means � SE. Lc, length of contact; tc, runner’s contact time; taer, runner’s aerial time; tSW, swing time; Freqstep, 1/(tstep).
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stance-averaged vertical force � � 0.27 vs. 0.17 Wb). Because
neither step frequencies nor stance-averaged vertical forces
varied appreciably by gender, the top speed differences be-
tween male and female subjects resulted largely from differ-
ences in contact lengths. The latter were 10.8% shorter for the
overall female vs. male mean (female vs. male �Lc sprinters �
13.6%, athlete nonsprinters � 8.0%).

Patterns of Ground Force Application as a Function of
Running Speed

Ground force application data from the same two female
subjects, one sprinter and one athlete nonsprinter, appear in
Figs. 2 through 4 to allow the relationships between original
force waveforms (Fig. 2), stance-averaged vertical forces (Fig. 3),
and patterns of ground force application (Fig. 4) to be fully
illustrated. The step-by-step, ground reaction force waveforms
from the respective top-speed trials of these athletes (Fig. 2, A
and B, respectively) were greater in magnitude and briefer in
duration for the competitive sprinter vs. the athlete non-
sprinter.

The mass-specific, stance-averaged vertical forces for both
athletes (Fig. 3, A and B) increased in a largely linear fashion
with speed, from a jog of 3.0 m/s through top speed, with
values for the sprinter being 0.2 Wb greater across common
speeds. Ensemble-averaged patterns of ground force applica-
tion for the respective athletes at the same trial speeds (Fig. 4,
A and B) illustrate that both athletes had relatively symmetrical
waveforms at the slowest speed of 3.0 m/s. With increases in
speed above 3.0 m/s, patterns of ground force application by
the sprinter became progressively less symmetrical. The cor-
responding waveforms for the athlete nonsprinter were rela-
tively symmetrical across all speeds, including her top sprint-
ing speed.

Patterns of Ground Force Application vs. the Spring-Mass
Model Predictions

Ensemble-averaged patterns of ground force application at
5.0 m/s, 7.0 m/s, and top speed, as well as their quantitative

Fig. 2. Vertical ground reaction forces from four consecutive steps for a female
competitive sprinter (A) and a female athlete nonsprinter (B) at their individual
top speeds (10.3 and 8.1 m/s, respectively). The stance-averaged vertical forces
applied during the respective trials are represented by the dashed horizontal
lines. The competitive sprinter applies greater stance-averaged and peak
vertical forces during briefer contact phases than the athlete nonsprinter.

Fig. 3. Stance-averaged, vertical force (mean � SE) vs. running speed for the
same female competitive sprinter (squares) and female athlete nonsprinter
(circles) whose data appear in Fig. 2. For both subjects, stance-averaged
vertical forces increased across the range of speeds (linear best fits illustrated).
The competitive sprinter applied greater forces at equal speeds and top speed.

Fig. 4. Trial-averaged composite vertical ground reaction force-time wave-
forms across running speeds for the same female competitive sprinter (A) and
female athlete nonsprinter (B) whose data appear in Figs. 2 and 3. For both
subjects, stance-averaged vertical forces increased and ground contact times
decreased across the range of speeds. (Confidence intervals are omitted for
clarity, here and in subsequent figures).
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relationship to the spring-mass model predicted waveforms,
appear in Fig. 5 for one male sprinter (Fig. 5, A, C, and E) and
one male athlete nonsprinter (Fig. 5, B, D, and F). The male
sprinter’s waveforms have a qualitatively biphasic appear-
ance due the rapid rising edge and early force peaks present on
the waveforms at all three speeds. Thus patterns of ground
force application for the sprinter were generally in relatively
poor agreement with the spring-mass model at all three speeds
(all R2 values � 0.80). Because the rising edges of the wave-
forms were steeper and the early force peaks were greater in
magnitude at faster speeds, the degree of conformation of the
sprinters waveforms to the spring-mass model predicted wave-
forms decreased as speed increased, reaching an R2 minimum
of 0.67 at top speed. The ground reaction force waveforms of
the male athlete nonsprinter lacked a rapid rising edge and
conformed relatively closely to the spring-mass model at all
three speeds (R2 range: 0.93–0.94).

The ensemble-averaged waveform patterns of ground force
application for the competitive sprint group and athlete non-
sprint groups at the three test speeds (Fig. 6) exhibited the
patterns similar to those of the individual athletes in Fig. 5,
albeit to a slightly smaller degree. The rising edge of the group
ensemble-averaged waveform for the competitive sprinters was
steeper in general than that of the athlete nonsprinters, and
became progressively more steep at the faster speeds. The
group ensemble-averaged patterns of ground force application
of the athlete nonsprinters conformed closely to the spring-
model predicted waveforms at all three speeds (all R2 values �
0.93), exhibiting little discernible speed-related deviation.

The relative stance times at which the peak force occurred
during top speed running, as assessed from the group compos-
ite waveforms in Fig. 6, E and F, were t � 30.2% of tc for
competitive sprinters and t � 45.7% of tc for the athlete
nonsprinters. The corresponding values for the percentage of

Fig. 5. The trial-averaged composite vertical ground reaction force-time
waveforms for a representative male competitive sprinter and representative
male athlete nonsprinter are plotted against the half-sine waveform predicted
by the spring-mass model for 5.0 m/s, 7.0 m/s, and each individual’s top speed
(11.1 and 9.4 m/s for the competitive sprinter and athlete nonsprinter, respec-
tively). The waveforms of the competitive sprinter progressively deviated from
the spring-mass model as the speeds increased from 5.0 m/s to 7.0 m/s to top
speed (A, C, and E), whereas the waveforms of the athlete nonsprinter
generally conformed to the spring-mass model at all speeds (B, D, and F).

Fig. 6. The trial-averaged composite vertical ground reaction force-time
waveform for the competitive sprinter group and the athlete nonsprinter group
plotted against the half-sine waveform predicted by the spring-mass model for
5.0 m/s, 7.0 m/s, and top speed. The waveforms of the competitive sprinters
progressively deviated from the spring-mass model predictions as the speed
increased from 5.0 m/s to 7.0 m/s to top speed (A, C, and E), whereas the
waveforms of the athlete nonsprinters generally conformed to the spring-mass
model predictions at all speeds (B, D, and F).

609Sprinting Patterns of Ground Force Application • Clark KP et al.

J Appl Physiol • doi:10.1152/japplphysiol.00174.2014 • www.jappl.org

on S
eptem

ber 15, 2014
D

ow
nloaded from

 



the total contact time at which the center of mass reached its
minimum height, as determined from the double-integration of
the composite, top speed waveforms in Fig. 6, were t � 40.5%
of tc and t � 48.7% of tc for the competitive sprinters and
athlete nonsprinters, respectively.

Hypotheses One and Two: Statistical Test Results

The R2 goodness of fit and RMSE force disagreement values
(means � SE) from the footfall waveforms (n � 797) analyzed
at 5.0 m/s, 7.0 m/s, and top speed appear in Table 3. In keeping
with our first hypothesis, the patterns of ground force applica-
tion of the competitive sprinters conformed significantly less to
the spring-mass model predictions than those of athlete non-
sprinters when evaluated with the R2 goodness of fit statistic
(two-factor ANOVA, F � 243.8, P � 0.001). This was the
case even when the much greater variability in the waveforms
of the sprinters vs. athlete nonsprinters was taken into account
by the Fligner-Killeen test. In partial support of our second
hypothesis test using R2 goodness of fit values, the patterns of
ground force application conformed less to the simple spring-
predicted pattern for sprinters at top speed than at 5.0 and 7.0
m/s. However, there were no significant differences across
speed for athlete nonsprinters whose goodness of fit values
were nearly identical at 5.0 m/s, 7.0 m/s, and top speed. Hence,
interaction between athletic group and running speed was
significant (F � 51.5, P � 0.01).

The hypothesis test results obtained when RMSE values
were used to evaluate patterns of ground force application vs.
those predicted by the spring-mass model were fully consistent
with the results of the R2 tests. The main effect of athletic
group was significant, and there was an interaction between
group and running speed. After again accounting for the lack of
homogeneity of variance as tested by the Fligner-Killeen test,
the RMSE force disagreement values vs. the simple-spring
patterns predicted by the spring-mass model at all three test
speeds were significantly greater for the competitive sprinters
than the athlete nonsprinters (F � 442.8; df � 1, 795; P �
0.001). RMSE values were also statistically different across the
three running speeds (F � 104.0; df � 5, 791; P � 0.001) with
post hoc testing indicating that this difference was present for
the competitive sprinters, but not the athlete, nonsprinters
(Table 3).

Individual Variability in Patterns of Ground Force
Application

At each of the three analysis speeds, the standard errors
about the R2 and RMSE means were approximately two times
greater for the sprinters than the athlete nonsprinters (Table 3).
The greatest within-group stratification for both variables ex-
isted among the four men in the competitive sprinter group. For
the ensemble-averaged waveforms, subjects 1 and 2 had re-
spective R2 goodness of fit values to the spring-mass model
predicted waveforms of 0.78 and 0.73 across the three test
speeds, whereas subjects 3 and 4 had respective values of 0.89
and 0.91. The corresponding RMSE values for subjects 1 and
2 were 0.62 and 0.58 Wb, respectively, vs. 0.35 and 0.37 Wb for
subjects 3 and 4. Top speed patterns of ground force applica-
tion for these respective pairs of competitive male sprinters
(subjects 1 and 2, elite vs. subjects 3 and 4, sub-elite) and the
corresponding ensemble average of all of the male subjects in
the athlete nonsprinter group (n � 4) appear in Fig. 7A. The
trend most evident for male sprinters was present throughout
the entire sample. Differences in the stance-average vertical
forces applied at top speed were determined entirely during the
first half of the stance period (Fig. 7B) because all 14 subjects
in our sample applied nearly the same vertical force over the
second half of the stance phase (1.72 � 0.04 Wb).

DISCUSSION

Our first objective was to answer the basic question posed in
our title: are running speeds maximized with simple-spring
stance mechanics? Although selected results did not precisely
conform to our predictions, our data in total provided a defin-
itively negative answer. With nearly complete consistency, we
found that the runners who applied the greatest mass-specific
vertical forces, and thereby attained the fastest speeds, deviated
most from the simple-spring pattern of ground force applica-
tion predicted by the spring-mass model (Figs. 2, 4, 5, 6, and
7; Table 3). Given the need for all runners to reduce periods of
ground force application as they run faster, these data provide
two closely linked conclusions. First, the simple-spring pat-
terns of ground force application generally regarded as advan-
tageous at slower speeds (15, 16, 31) likely constrain force
application and performance at faster ones. Second, deviating
from simple-spring, stance mechanics appears to be a strategy
that sprinters use (14) to apply the greater mass-specific ground
forces needed to attain faster speeds.

Hypothesis Test Outcomes: Simple-Spring Stance Mechanics
at the Fastest Speeds?

From a strictly experimental perspective, our first simple-
spring hypothesis test outcome conformed to our expectations
in full, whereas our second outcome conformed only in part.
As predicted, test 1, which used athletic specialization as an
experimental tool, revealed that the patterns of ground force
application of the competitive sprinters deviated more from
simple-spring predicted behavior than those of athlete non-
sprinters regardless of speed (Table 3). Between-group quan-
titative differences were sufficiently large to be qualitatively
obvious from the shapes of the waveforms, whether for indi-
vidual athletes (Figs. 4 and 5), or the entire athletic specialty
groups (Figs. 6 and 7). However, test 2, which used across-

Table 3. Mean R2 agreement and RMSE force disagreement
values vs. the spring-mass model predicted waveforms

Group Steps, n R2 RMSE, Wb

Sprinter
5.0 m/s 218 0.829 � 0.007 0.440 � 0.009
7.0 m/s 163 0.843 � 0.008 0.437 � 0.012
Top speed 67 0.782 � 0.016*† 0.571 � 0.025*†

Nonsprinter
5.0 m/s 194 0.910 � 0.003 0.276 � 0.004
7.0 m/s 89 0.923 � 0.004 0.276 � 0.007
Top speed 66 0.915 � 0.006 0.307 � 0.012

RMSE, root mean square error. Competitive sprinters differed significantly
from athlete nonsprinters across all speeds for both R2 pattern agreement and
RMSE force disagreement values (ANOVA, main effects, P � 0.001). Values
are means � SE. *Significantly different from 5.0 m/s; †significantly different
from 7.0 m/s.
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speed comparisons as an experimental tool, yielded results that
were mixed by athletic specialization; differences across speed
were present for the competitive sprinters, but absent for the
athlete nonsprinters. For the competitive sprinters, R2 pattern-
agreement and RMSE force-disagreement values at 5.0 and 7.0
m/s were similar to one another (R2 range 0.83 to 0.85; RMSE
range 0.43 to 0.44 Wb; Table 3), whereas their top-speed
patterns deviated significantly more from model predictions
(R2 �0.80; RMSE �0.55 Wb). Using our R2 threshold of 0.90
for simple-spring vs. nonsimple-spring patterns, the sprinters
did not conform to simple-spring predictions at any of the three
speeds, and deviated most at top speed. In contrast, the athlete
nonsprinters used patterns of ground force application that
conformed relatively closely (R2 �0.90) regardless of whether
they were running at top speed or the two fixed test speeds of

5.0 and 7.0 m/s (Table 3). Unlike the competitive sprinters, the
athlete nonsprinters exhibited virtually no differences in their
patterns of ground force application across speed. Both their R2

pattern-agreement and RMSE force-disagreement values vs.
the model predicted patterns model were essentially identical
across 5.0 m/s, 7.0 m/s, and top speed (�R2 �0.02; �RMSE �
0.03 Wb).

Although our results across running speed were mixed with
respect to our hypothesis, the conclusions regarding the force
application patterns that maximize running speed were fully
consistent. The across-speed results obtained from the compet-
itive sprinters suggest that deviating from a simple-spring
pattern of ground force application may be a mechanism these
athletes used to attain faster speeds. Athlete nonsprinters, in
contrast, did not alter their patterns across speed, nor deviate
appreciably from simple-spring pattern at any speed. Notably,
we found essentially the same pattern contrasts across individ-
ual subjects of differing performance capabilities. Of the four
men in the competitive sprinter group, the two nonelite athletes
(subjects 3 and 4) used top-speed, stance-limb mechanics
reflective of their intermediate performance status. Specifi-
cally, these two sub-elite men had stance-limb mechanics that
deviated more from the simple-spring predicted pattern than
the athlete nonsprinters whom they could outperform. How-
ever, their mechanics deviated less from the pattern (R2 means
of 0.83 vs. 0.71, respectively) than those of the two world-class
men (Fig. 7A, Table 3). Collectively, these observations sug-
gest that the deviation from the simple-spring pattern observed
for the world-class sprinters may be a force-augmentation
mechanism that sub-elite sprinters cannot utilize to the same
degree, and that athlete nonsprinters may be generally unable
to use at all.

Applicability of the Spring-Mass Model to High-Speed
Running

The broad acceptance of the spring-mass model over the
course of the last two decades has been heavily based on
running and hopping data from relatively slow speeds (4, 18,
19, 26, 33). The more recent application of the model to faster
running speeds (25, 27, 34) is understandable given positive
results from slower speeds and the limited data available at
faster ones (6). The data set we have compiled here includes
hundreds of high-speed running footfalls from athletes span-
ning a broad range of sprinting abilities. The emergent finding
from these data that the fastest speeds are achieved via con-
sistent, specific deviation from the model’s predictions war-
rants critical evaluation of the spring-mass model’s assumed
applicability to sprint running.

One means of assessing relative conformation to the spring-
mass model is to examine the model-predicted force-motion
dynamics vs. those actually observed. The model predicts that
the peak force will occur at the temporal midpoint of the
foot-ground contact period (i.e., at t � 50% of tc), and that the
center of mass will reach its lowest position at the same time.
We found that our athlete nonsprinters conformed to these
model-predicted behaviors somewhat (Fig. 6F), whereas our
competitive sprint subjects conformed little or not at all. For
the competitive sprinters at top speed, the group-averaged,
ensemble waveform exhibited a force peak at t � 30% of tc
(Fig. 6E), and a corresponding height minimum of the center of

Fig. 7. Trial-averaged composite vertical ground reaction force-time wave-
forms vs. top speed for the two male elite sprinters (solid black line), the two
male sub-elite sprinters (dotted black line), and four male athlete nonsprinters
(solid gray line) (A). Average vertical forces for the first and second half of the
ground contact period for subjects in both groups at top speed (B). Circles
represent male subjects; triangles represent females subjects; open symbols
represent average vertical forces for the first half of the ground contact; shaded
symbols represent average vertical forces for the second half of ground contact
period. Line fits for the data from the first half of the ground contact period are
provided by sex to appropriately account for the leg and contact length
differences (Eq. 5, Table 2) that influence top speeds. A single line fit for the
data from the second half of the ground contact period is plotted for all 14
subjects because the values are similar in magnitude across group and sex.
[Linear best-fit regression equations appearing in B that relate ground force to
top running speeds are as follows: men first half-stance, force (Wb) � 0.26·Spd �
0.22; women first half contact, force (Wb) � 0.23·Spd � 0.41; all subjects second
half contact force (Wb) � 0.004·Spd � 1.68].
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mass at t � 40% of tc rather than the model-predicted values of
t � 50% for both. Many of the individual sprinter’s waveforms
at faster speeds had force peaks that occurred at t �25% of tc
(Figs. 2A, 4A, 5E), and some exhibited two force peaks, with
the first occurring at t �20% and the second at t �50% of tc
(Fig. 5C). By even generous assessment, these results indicate
that the spring-mass model is a poor descriptor of the stance-
limb mechanics of high-caliber sprint athletes. These findings
also raise basic questions about using the vertical and limb
stiffness variables derived from the spring-mass model to
describe the mechanics of running at higher speeds (25, 27,
34). The value of these stiffness variables as descriptors of
sprint running mechanics is at best unclear if sprinting perfor-
mance is optimized by not conforming to the assumptions
required to calculate them.

The prior success of the spring-mass model as a descriptor of
running mechanics raises an immediate question regarding our
negative test outcomes for sprinters: why do these athletes not
conform to the model when so many other runners and hoppers
do? Our results suggest that the performance demands of
sprinting are probably not compatible with the stance-limb
mechanics predicted by the simple, linear spring in the spring-
mass model. The model was formulated as a mechanical
approximation for describing the apparently spring-like center
of mass dynamics observed in the early, classic studies on gait
mechanics (4, 11, 26). The presence of spring-like mechanics
that the original investigators inferred at the level of the whole
limb have subsequently been measured in selected muscles,
tendons, and ligaments that contribute to the limb’s overall
behavior (21, 30). Indeed, during slower-speed running and
hopping, the tissue-level stretch-shortening cycles (21, 31) that
conserve mechanical energy could contribute as theorized to
waveform patterns that generally conform to the predictions of
the spring-mass model at these speeds (8). However, as con-
sidered in detail elsewhere (10), the success of sprinters does
not depend upon either the conservation of mechanical energy
or locomotor economy, but rather upon the ability to apply
large mass-specific forces to the ground quickly.

An important caution is warranted in the interpretation of
our finding that the mechanics of the fastest human runners
generally do not conform to the predictions of the spring-mass
model. Specifically, the deviations we report from the simple,
linear-spring predicted behavior of the model should not be
interpreted more broadly as an absence of either spring-like
dynamics or energy storage. Indeed, the greater ground reac-
tion forces observed in faster runners and at faster speeds may
coincide with relatively greater tissue strains and energy stor-
age (21, 31). Rather, our findings are best understood within
the context of our test objectives and the limitations of the
classic spring-mass model. Our objectives required a null
standard of comparison for the purpose of quantifying different
patterns of ground force application. We used the simple,
linear-spring predictions of the spring-mass model for this
purpose because these waveforms have served as the literature
standard for well over a decade. However, our objectives could
have been just as easily met by using some other pattern as a
standard of comparison. Accordingly, we caution against in-
terpreting the patterns reported using an energy storage frame-
work.

Ground Force Application Strategies for Speed

Swifter runners are known to attain their faster top speeds
primarily by applying greater mass-specific forces to the
ground, but the mechanism by which they do so has not been
previously identified. Here, two design strategies helped us to
elucidate the force application strategy they use. First, we
chose to analyze force application on a millisecond-by-milli-
second basis rather than by averaging over the full stance
period (per Fig. 3) as previously (36–38). Second, we recruited
a pool of athletic subjects with a fairly broad range of individ-
ual top speeds. The latter strategy included enrolling four
sprinters who were world-class track athletes (Table 1, subjects
1, 2, 5, and 6) and a fifth who was a national-class athlete with
Olympic and world championship experience (subject 7). The
scores of sprint-running force waveforms acquired from this
heterogeneous group of fast-running athletes provided force
and speed data not previously available from this population.
The consistent manner in which faster runners deviated from
the pattern predicted by the simple spring-mass model to apply
greater mass-specific forces provided crucial mechanistic in-
sight.

Our finding that speed is maximized via a common force
application strategy was certainly not a foregone conclusion at
the outset of the study. From a purely theoretical perspective,
the data acquired might have resulted in several outcomes other
than the one we obtained. For example, faster athletes might
have applied greater forces while utilizing a simple, linear-
spring pattern. Alternatively, they might have employed an
asymmetrical strategy that resulted in the greatest forces oc-
curring later rather than earlier in the stance period. Finally,
different athletes might have used different patterns to maxi-
mize force application and speed. Our finding that the degree
of conformation to a particular pattern was consistently related
to magnitude of the mass-specific force applied and top speeds
attained provides two basic conclusions. First, our data indicate
that the fastest human runners have converged on a common
mechanical solution for maximizing ground force and speed.
Second, the convergence on a common solution implies the
existence of a single most effective mechanism by which
human runners can maximize speed.

Indeed, the mechanical strategy identified was so consistent
that even simple approaches to examining stance-phase patterns
of force application were sufficient to reveal it. When the top
speed forces of our 14 subjects were assessed by dividing the
stance period into halves (Fig. 7B), this simple analysis re-
vealed that individual differences in the total stance-averaged
forces were all but completely determined during only one of
the two periods. Specifically, we found a strong positive
relationship between top speed and the average force applied
during the first half of the stance period, and essentially no
relationship to the average force applied during the second
half. These respective results are illustrated in Fig. 7B, with the
first-half, best-fit relationships being provided by sex to appro-
priately account for the leg and contact length differences
(Equation 5, Table 2) that directly influence top speeds.

An immediate question raised by our findings is why
essentially all of the differences in stance-averaged forces at
top speed are attributable to a relatively small portion of the
total stance period. We cannot fully answer this question on
the basis of force application data alone. However, the
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results illustrated in Fig. 7 and those from our Fourier
analysis (see APPENDIX) are consistent with the impact-phase,
limb-deceleration mechanism we have recently described
(14). This mechanism appears to explain how several of the
gait features classically associated with competitive sprint-
ers (24) translate into the greater mass-specific ground
forces they apply. First, the knee elevation sprinters achieve
late in the swing phase appears to contribute to early stance
ground force application by allowing greater limb velocities
to be achieved prior to foot-ground impact (24). Second, the
erect stance-phase posture sprinters adopt likely contributes
to the stiffness required to decelerate the limb and body
relatively quickly after the instant of foot-ground impact.
The progressive, rising-edge deviation observed vs. the
simple spring pattern, in relation to both top sprinting
speeds (Figs. 5, 6, and 7) and across different speeds in
individual sprinters (Figs. 2A, 5A, 5C, 5E, 6A, 6C, 6E, and
7) is consistent with the impact-phase, limb deceleration
differences that may present across these trials (14).

Concluding Remarks: A Ground Force Signature for Speed

We conclude that a relatively specific, asymmetrical pattern
of force application maximizes the ground forces runners can
apply during the brief contact periods that sprinting requires.
The factors responsible for the pattern are not yet fully known,
but result in the fastest sprinters applying substantially greater
forces than nonsprinters during the early portion of the stance
period. Consistent pattern asymmetry among the swiftest
sprinters, and less pronounced pattern asymmetry among less-
swift athletes lead us to conclude that 1) the fastest athletes
have converged on a common mechanical solution for speed,
and 2) that less-swift athletes generally do not execute the
pattern. On this basis, we suggest that the force-time pattern
documented here for the most competitive sprinters in our
sample (Fig. 7A; supplementary video) constitutes a ground
force application signature for maximizing human running
speeds.

APPENDIX

Vertical ground reaction force waveforms during running are
composed of high-frequency components due to the acceleration of
the lower limb during the impact phase, and low-frequency compo-
nents due to the acceleration of the rest of the body during the entire

contact phase (14). Fourier analysis can be used to analyze these
components.

Any time-varying signal s(t) can be represented as a sum of sine
waves [(39), Equation 2.3, p. 28] and can be expressed as:

Table A1. Fourier terms of competitive sprinter at 11.1 m/s
measured force data

Harmonic fn, Hz an, Wb �n, Radians

0 2.1739
1 9.8039 1.5513 �0.9871
2 19.6078 0.6461 �1.2683
3 29.4118 �0.3049 0.6676
4 39.2157 �0.0678 0.0262

fn, Frequency of the harmonic; an, amplitude of the harmonic; �n, phase of
the harmonic.

Table A2. Fourier terms of competitive sprinter at 11.1 m/s
modeled half-sine waveform

Harmonic fn, Hz an, Wb �n, Radians

0 2.1739 –
1 9.8039 1.4664 �1.5721
2 19.6078 0.2968 �1.5733
3 29.4118 �0.1297 1.5672
4 39.2157 0.0740 �1.5755

Table A3. Fourier terms of athlete nonsprinter at 9.4 m/s
measured force data

Harmonic fn Hz an, Wb �n, Radians

0 2.1199
1 9.8039 1.5324 �1.3331
2 19.6078 0.4448 �1.4240
3 29.4118 �0.1038 0.8629
4 39.2157 �0.0382 0.4151

Table A4. Fourier terms of athlete nonsprinter at 9.4 m/s
modeled half-sine waveform

Harmonic fn, Hz an, Wb �n, Radians

0 2.1199
1 9.8039 1.4299 �1.5721
2 19.6078 0.2895 �1.5733
3 29.4118 �0.1265 1.5672
4 39.2157 0.0722 �1.5755

Fig. A1. These graphs are generated from the Fourier
terms listed in Table A1 (competitive sprinter at 11.1
m/s) (A) and Table A3 (athlete nonsprinter at 9.4 m/s)
(B). Low-frequency components (green line) include
terms n � 0 and n � 1; high-frequency components (red
line) include terms n �2, n �3, and n �4. The sum-
mation of all components (blue line) accurately repro-
duces the original measured data.
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s�t� � a0 	 �
n�1

N

an sin �2�fnt 	 �n� (Eq. 6)

where ao is the mean of the signal, and fn, an, and �n are the frequency,
amplitude, and phase angle of the nth harmonic, respectively. The
signal or waveform can be reproduced from these variables using N
harmonics, with reproductive accuracy increasing as N increases.

To serve as an example of performing the Fourier analysis, the
measured force data and modeled half-sine waveforms from Fig. 5, E
and F, were analyzed using Equation 6. For both the competitive
sprinter and the athlete nonsprinter, the trial average contact time was
0.102 s. The force data were measured on an instrumented force
treadmill and filtered at 25 Hz. Four harmonics (n � 4) were sufficient
to accurately reproduce the original measured data and the modeled
half-sine waveforms.

Tables A1–A4 provide the terms for the variables described in
Equation 6. The waveforms appearing in Fig. A1, A and B, were
generated from the terms listed in Table A1 and Table A3, respec-
tively. Low-frequency components (green line) include terms n � 0
and n � 1 and high-frequency components (red line) include terms n
� 2, n � 3, and n � 4. The summation of all components (blue line)
accurately reproduces the measured data.

The appearance of waveform differences above, but not below, the
10 Hz domain, is consistent with the time course of the impact-phase,
force-enhancement mechanism proposed recently (14) and included
here to explain the differences observed between the patterns of
ground force of competitive sprinters vs. athlete, nonsprinters.
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A B S T R AC T

Running impact forces have immediate relevance for the muscle tuning paradigm proposed here 
and broader relevance for overuse injuries, shoe design and running performance. Here, we consider 
their mechanical basis. Several studies demonstrate that the vertical ground reaction force-time 
(vGRFT) impulse, from touchdown to toe-off, corresponds to the instantaneous accelerations of the 
body’s entire mass (Mb) divided into two or more portions. The simplest, a two-mass partitioning 
of the body (lower-limb, M1=0.08•Mb; remaining mass, M2=0.92•Mb) can account for the full vGRFT 
waveform under virtually all constant-speed, level-running conditions. Model validation data indi-
cate that: 1) the non-contacting mass, M2, often accounts for one-third or more of the early “impact” 
portion of the vGRFT, and 2) extracting a valid impact impulse from measured force waveforms re-
quires only lower-limb motion data and the fixed body mass fraction of 0.08 for M1.  
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Impact Forces Revisited

Dr. Nigg and colleagues deserve commendation for efforts 
that have endowed the area of running biomechanics with a 
sizeable body of empirical observations. These observations 
have, and undoubtedly will, continue to inform work on a 
broad range of topics that include running injuries, running 
shoes and the relationship between the two. Their willingness 
to confront the experimental challenges involved in studying 
a largely unpredictable phenomenon like running injuries de-
serves particular praise.
Here, we focus on the impact force conclusions offered by 
Nigg, Mohr and Nigg (2017) in their target article. While their 
contribution purports a lack of importance in overuse injury 
etiology, there are compelling scientific reasons to consider 

their basis and importance from an independent, contempo-
rary perspective. These are: 1) the existence of credible evi-
dence supporting a running impact force-overuse injury link 
(Daoud, Geissler, Wang, Saretsky, Daoud, & Liebermann, 2012; 
Milner, Ferber, Pollard, Hamill, & Davis, 2006), 2) the direct effect 
of impact forces on bodily motion and performance (Clark & 
Weyand, 2014), and 3) the need for valid quantification to ad-
vance general understanding and inform specific applications. 
One noteworthy application is the input signal required by the 
muscle-tuning paradigm Nigg et al. advance in their target ar-
ticle here. More broadly, the inability to quantify running im-
pact forces recently noted by Nigg and colleagues elsewhere 
(Baltich, Maurer & Nigg, 2015) is obviously a direct impediment 
to reaching firm conclusions regarding their importance.
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From our perspective, the development of a quantitative un-
derstanding has been at least partially impeded by two as-
sumptions that have framed the study of running impact forces 
for decades. These are: 1) assuming that the early portion of the 
vertical ground reaction force-time waveform can be attribut-
ed to a small fraction (i.e. an “effective mass”) of the body’s total 
mass (Mb) while ignoring the rest (Chi & Schmitt, 2005; Denoth, 
1986; Derrick, 2004; Lieberman, Venkadesan, Werbel, Daoud, 
D’Andrea, Davis, Mang’eni & Pitsilades, 2010 ; Nigg, 2010; Nigg, 
Mohr, Nigg, 2017), and 2) assuming that the impact impulse 
can be quantified using the localized force peak often visible 
on the rising edge of the measured waveform (Figure 1). Three 
studies indicate that these assumptions obscure the mechanics 
of the impact event. 
The first study was provided by Bobbert, Schamhardt and Nigg 
(1991) more than 25 years ago. These investigators demonstrat-
ed that the instantaneous accelerations of seven body mass 
components (comprising 100% of Mb: right and left foot, shank, 
and upper leg components plus a combined head-arms-torso 
mass) acquired from motion data, can be summed to provide 
a close match to the measured total vertical ground reaction 
force-time (vGRFT) waveform during slow and moderate speed 
running (i.e. Fz1 + Fz2 + Fz3 + Fz4 + Fz5 + Fz6 + Fz7 = Fz-total; where z des-
ignates the vertical component of the ground reaction force). 
This noteworthy experimental accomplishment was based on 
Newton’s 2nd Law including the first-principle recognition that 
the measured vGRFT waveform must somehow correspond to 
the instantaneous accelerations of 100% of the body’s mass. 
The second insightful study was the detailed temporal and 
spatial analysis of the rising edge of the vGRFT undertaken by 
Shorten and Mientjes (2011). From pressure mapping data on 
the sole of the foot and frequency analyses of measured wave-
forms, these investigators also concluded that the body’s entire 
mass contributed to the rising edge of the waveform. Per their 
title, they concluded that the localized, rising-edge waveform 
force peak widely attributed to heel impact, is in fact, “neither 
heel, nor impact” during heel-toe running.
The most recent of the three studies involved an experimental 
effort from our laboratory (Clark, Ryan & Weyand, 2017) that, 
like Bobbert et al. adopted a Newtonian approach. We did so 
with the goal of identifying the simplest partitioning of the 
body that might account for the vGRFT waveform in full. Our 
efforts led to the two body-mass component, two-impulse 
waveform explanation illustrated in Figure 1. Ultimately, this 
approach was able to predict 500 measured vGRFT waveforms 
acquired at speeds from 3.0 to 11.0 m/s regardless of the run-
ner’s foot-strike mechanics. Due to the model’s conciseness, 
only three inputs are required to generate the waveforms from 
a runner’s gait mechanics: contact time, aerial time, and the 
vertical acceleration of the lower limb. The close agreement 
between model-generated and measured vGRFT waveforms 
(R2=0.95) supports the general validity of the two-mass, two-
impulse explanation for their mechanical basis.

The Rising Edge of the vGRFT Waveform: Impact Is 
Not Enough

Clearly, additional experimental work remains to test and re-
fine the existing Newtonian explanations for running vGRFT 
waveforms. However, the two studies that have successfully 
linked bodily motion to running ground reaction forces share 
the foundational recognition that the waveform represents the 
summed acceleration of 100% of body mass. 
The holistic Newtonian view that emerges for the rising-edge 
of the total vGRFT waveform, broadly conceived elsewhere as 
an “impact-only” event, is illustrated in Figure 1. The data ap-
pearing in the figure have been adapted from original vGRFT 
data acquired at a speed of 5.0 meters per second from a run-
ner with heel-strike mechanics. As illustrated, the body’s full 
mass contributes to the rising edge of the waveform. Accurate-
ly predicting the magnitude and timing of the localized peak, 
for example, requires summing the impulse contributions of 
the model’s body mass components. Per the illustration, cor-
rect prediction of the overall impact mechanics using the two 
masses in our model relies heavily on the kinematic data used 
to determine Δt1 from the period elapsing between the instant 
of initial foot-ground contact and subsequent time at which 
mass M1 slows to a vertical velocity of zero. Correct identifica-
tion of the localized rising-edge peaks for heel-strikers at all 
speeds and competitive sprinters at faster ones as previously 
reported would have been virtually impossible (Clark, Ryan & 
Weyand, 2017, Figures 5, 6 and 7) without both: 1) accurate 

Figure 1: Running vertical ground reaction forces can be quan-
tified as the sum of two impulses: a relatively brief 
impact impulse (J1) that corresponds to the decelera-
tion of the foot and shank (M1=0.08•Mb), and a larger, 
longer-duration impulse (J2) that corresponds to the 
acceleration of the remainder of the body’s mass 
(M2=0.92•Mb) throughout the stance period. Both im-
pulses begin at the instant of touchdown and contrib-
ute substantially to the rising-edge of the force-time 
waveform. Note that impact impulse, J1, is quantified 
from 8% of Mb and the time Δt1 at which the ankle 
reaches its minimum vertical position.
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kinematic data, and 2) a model capable of predicting the sig-
nificant variability in the timing and magnitude of rising-edge 
force peaks across scores of different footfalls.
Figure 1 also reveals the specific manner in which the assump-
tions required by the effective mass techniques obscure the 
mechanical basis of the rising edge of the waveform. In the 
footfall illustrated, the effective mass approach assumes that 
mass M2 would make little or no contribution to the rising-
edge impulse up to the localized force peak. However, as illus-
trated, M2 is actually responsible for roughly one-third of the 
total impulse over this early period of this illustrated waveform. 
During slow and moderate speed fore-foot strikes, the impulse 
contributions of mass M2 actually exceed those of M1, primarily 
because the impact period Δt1 is relatively longer (Clark, Ryan 
& Weyand, 2017, Figures 5 and 6, Table 2). Also evident in the 
figure is that the localized peak on the total vGRFT waveform 
is not simultaneous with the peak of impact impulse J1 as im-
plicitly assumed by effective mass quantification techniques. 
Rather, the time-dependent contributions of impulse J2 cause 
the total waveform peak to occur at a later point in time than 
the J1 impulse peak. In the case of most forefoot strike wave-
forms, the longer Δt1 period results in the rising edge of the 
measured waveform lacking a localized force peak altogeth-
er (Clark, Ryan & Weyand, 2014; Clark, Ryan & Weyand, 2017, 
Figure 6, Table 2).

Impact Forces and New Paradigms: Retro- and 
Prospective Considerations

Intuitive appeal and computational simplicity may be respon-
sible for the common conceptualization and quantification 
of the rising edge of human running vGRFT waveforms as an 
impact-only phenomenon. However, the works synthesized 
here: 1) provide a valid mechanical basis for the vGRFTs wave-
forms based on the body’s entire mass, and 2) offer quantitative 
methods that apply over essentially all level-speed and foot-
strike conditions. A two-mass partitioning of the human body 
allows the full running vGRFT waveform to be predicted from 
gait motion. The two-mass approach also allows the impact 
portion of the impulse to be extracted from measured vGRFT 
waveforms. Doing so requires only motion data from the ankle 
and the fixed lower-limb mass fraction identified for M1. 
Finally, we applaud Nigg, Mohr and Nigg for proposing mus-
cle tuning and movement path paradigms in an effort to ad-
vance basic and applied understanding of running mechanics. 
We share their view that evaluating these paradigms will be a 
major and lengthy experimental undertaking. One useful tool 
for these efforts, directly in the case of muscle tuning and indi-
rectly for preferred movement paths, is the holistic quantitative 
understanding of impact forces that is currently available.
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Editorial

Sprint running research speeds up: A first look at the
mechanics of elite acceleration

The relationship between force and acceleration has
been regarded as seminal since first identified by Isaac
Newton. However, more than three centuries after New-
ton’s formulation of the force, mass, acceleration rela-
tionship (F = m·a), we have a limited understanding of
the gait mechanics that determine how quickly we can
accelerate ourselves. This topic has general relevance for
scientific and engineering efforts in legged locomotion,
and direct application in athletics. Yet, in contrast to
other topics in the rich history of locomotion research
(Hill, 1950; Muybridge, 1957; Gray, 1959), maximal,
straight-line acceleration has received relatively little
attention. Prior work has generally not met either of two
basic challenges: first, acquiring ground reaction force
data from multiple, sequential steps, and second, enroll-
ing the athletic subjects who excel at this type of perfor-
mance. In their recent contribution to the Scandinavian
Journal of Medicine and Science in Sports, Rabita et al.
(2015) have met both challenges simultaneously. By
contributing the first ground force data on elite sprinters
during acceleration, their study complements and
extends the understanding of running mechanics estab-
lished largely under constant-velocity conditions.

Constant-velocity running

One of the fundamentals of running at near-constant
velocities on level ground is that runners maintain their
horizontal momentum within and across steps. For this
reason, the classic work of Cavagna et al. (1964) likened
running under constant-velocity conditions to a rubber
ball bouncing along the ground. After the initial push or
throw, the ball maintains its forward velocity while
bouncing through successive ground contact and aerial
periods without the application of additional propulsive
force. Hence, the primary requirement for runners, once
they are up to speed, is to apply sufficient downward
forces to counteract gravity and lift the body (back up)
into the air for the ensuing step. These mechanics are
directly reflected in the respective magnitudes of the
vertical and horizontal forces measured under these con-
ditions. At intermediate and faster speeds, the average
forces with a vertical orientation (Fz) to the running
surface typically exceed those with a horizontal orienta-

tion (Fy, i.e., in the fore-aft direction) by a factor of five
or more (Kuitunen et al., 2002; Weyand et al., 2009).
This magnitude difference exists for two basic reasons.
First, like the bouncing ball, runners have very limited
propulsive force requirements once they are up to speed.
The propulsive forces (+Fy) applied during the second
half of the stance phase are sufficient to offset the very
small velocity reductions that result from the braking
forces (−Fy) applied during the first half. Second, the
gravitational forces acting on the runner’s mass are
large. Thus, during sprint running, the stance-averaged
forces applied in the vertical direction typically exceed
twice the body’s weight while those applied horizontally
(i.e., propulsive and braking phase averages, respec-
tively) are roughly one third. Furthermore, as might be
intuited from Newton – the primary attribute of human
sprinters is their ability to apply large mass-specific
forces (F/m) during the brief contact periods that sprint-
ing requires (Weyand et al., 2000; Clark & Weyand,
2014).

Positive-acceleration running

The speeds runners ultimately attain, and how quickly
they do so, depend directly on the fore-aft forces in the
acceleration phase of a sprint run. In accordance with the
classic Newtonian relationship, the greater the propul-
sive force in relation to the body’s mass, the greater the
instantaneous acceleration (Fy/m = ay; Cavagna et al.,
1971). However, this requirement exists in addition to
the primary requirement present during constant-
velocity running of applying sufficiently large, time-
averaged vertical forces to support the body’s weight
against gravity. Previously, the gait mechanics “solu-
tion” adopted by the swiftest runners to satisfy these
simultaneous requirements has been largely unknown. In
their new work, Rabita et al. (2015) were able to obtain
ground reaction force data from the sequential steps of
both elite and sub-elite sprinters as they ran across 6 m
of contiguous, in-ground force platforms. The athletes
performed a number of all-out, 40-m trials from starting
blocks that were variably positioned on or behind the
platforms to capture force data from different steps of the
various trials.
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The new data nicely demonstrate that the most critical
between-athlete differences occur during the initial
backward push from the starting position. The initial
pushes from the athletes in both the elite and the
sub-elite groups were sufficient to achieve more than one
third of their respective maximum velocities before
touching the ground for their first step after the blocks.
However, the elite sprinters applied backward forces that
were nearly 20% greater in relation to body mass than
their sub-elite counterparts (9.59 N/kg vs 7.74 N/kg,
respectively). Doing so enabled the elites to leave the
starting blocks with a mean velocity 0.44 m/s greater
than that of the sub-elites (3.61 m/s vs 3.17 m/s, respec-
tively), thereby accounting for nearly 80% of the
between-group velocity differences for the entire sprint
(mean 40-m velocities: 8.16 m/s vs 7.59 m/s, respec-
tively). Propulsive force differences between the two
groups were present in the subsequent steps, but to an
appreciably smaller degree.

While this new work furthers the understanding of
sprinters as athletes adapted for mass-specific ground
force application, intriguing issues remain. One of the
more salient, and potentially difficult, is identifying the
optimal mechanical strategies for rapid accelerations
(Mann, 2011). In contrast to the performance require-
ments of near-constant velocity sprinting (Weyand et al.,
2000; Clark & Weyand, 2014), acceleration require-
ments vary with each and every step. Accordingly,

variable incoming velocities and other factors likely
dictate step-specific strategies for optimizing ground
force application. Consequently, integrated approaches
that simultaneously consider balance, body position, and
the total ground force applied (Roberts & Scales, 2002;
Kugler & Janshen, 2010) have been most enlightening to
date. These studies imply that the optimal performance
solutions involve limb and body positions that are deter-
mined in direct accordance with the magnitude of each
push on the ground. In contrast, approaches that empha-
size the forces applied in a single axis, or consider hori-
zontal and vertical forces as competing entities, seem
unpromising. The limb, after all, simply pushes in accor-
dance with the muscle extensor forces generated across
the ankle, knee, and hip joints – and does so without any
intrinsic regard to direction.

Future efforts will undoubtedly reveal more regarding
the respective roles that motor control, limb motion, and
mass-specific strength each play in maximizing accel-
eration performance. However, at present, Rabita et al.
(2015) should be applauded for giving the study of loco-
motor performance an important figurative push in a new
scientific direction.

K. P. Clark, P. G. Weyand
Locomotor Performance Laboratory, Department of

Applied Physiology and Wellness, Southern Methodist
University, Dallas, TX 75206, USA
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Abstract— Load carriage was used as an experimental tool to 
evaluate the ability of an anatomically-based, two-mass model of 
the human body to predict vertical impact and peak forces during 
running from only four inputs: body weight (Wb), contact time (tc), 
aerial time, (ta), and lower-limb acceleration (a1).  Simultaneous 
motion and force data were acquired from seven subjects during 
steady-speed trials (3.0-6.0 m•s-1) on a custom, force-instrumented 
treadmill under three loading conditions: unloaded (1.0 Wb), 15% 
added weight (1.15 Wb) and 30% added weight (1.30 Wb).  Model-
predicted impact and peak forces corresponded with measured 
values, on average, to within 14.9±1.3% and 13.8±0.6%, 
respectively (R2 best-fits=0.82 and 0.88, n=71).  Ankle jerk and 
velocity data derived from optical position-time data suggest 
wearable sensor acquisition of the model-needed inputs is fully 
feasible.  We conclude that the two-mass model offers a promising 
approach to quantifying running ground reaction forces using 
wearable technologies. 

 
Keywords – two-mass model, locomotion, gait, wearable 

sensors, spring-mass model  

I. INTRODUCTION 

Legged locomotion involves sequential periods of foot-
ground force application that repetitively load the limbs.  The 
forces the limbs experience during each loading cycle are 
substantial.  Peak values typically exceed the body’s weight 
during walking and can reach three to five times the body’s 
weight during running.  The magnitude of the reaction forces 
the limbs experience with each step on the ground are of 
fundamental importance.  They determine an individual’s 
functional movement capabilities [1] and directly influence the 
health of the limb’s musculoskeletal tissues.  A minimum 
number of loading cycles is necessary for bone and overall 
musculoskeletal tissue health while too many loading cycles 
can lead to overuse injuries. The latter are common among 
both foot soldiers and weight-bearing endurance athletes due 
to the thousands of daily loading cycles they often experience.  
The etiology of overuse injuries appears to be related to both 
the impact and peak forces the limbs experience during each 
loading cycle. 

The ground reaction forces present during steady-speed 
running are predominantly vertical in orientation. Vertical 
force peaks typically exceed horizontal peak values by a factor 
of five or more and lateral values by a substantially greater 
margin.  Accordingly, there have been many attempts to 
identify the mechanical determinants of the vertical force-time 
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waveforms present during running. Dedicated mechanical 
models span a range of complexities from very simple [2] to 
considerably complex [3,4,5,6].  To date, these models have 
not provided a full explanation for the waveforms.  
Consequently, motion-based approaches capable of sensing 
and predicting the instantaneous force-time values needed to 
quantify impact forces, peak forces and the associated loading 
rates are not available. 

General developments in wireless interfacing and micro-
technology have enabled the production of small devices to 
monitor health and fitness-related variables using a variety of 
approaches. Current methods for approximating ground 
reaction forces range from shoes affixed with pressure insoles 
[7], shoes instrumented with two 6-axial force and moment 
sensors [8,9], or five 3-axial sensors [10] all placed on the 
underside of the shoe.  However, these devices can interfere 
with normal gait mechanics, are typically costly and are often 
restricted to lab environments. Additionally, pressure inputs 
from sampling sites on the sole have a complex and variable 
relationship to impact forces, peak forces and loading rates. 

The recently introduced two-mass model [11] is 
sufficiently concise to provide sensible options for quantifying 
vertical ground reaction force-time waveforms. The 
conciseness of the model reduces the input variables required 
for a wearable sensor to only three in addition to body weight: 
contact time, aerial time, and vertical acceleration of the ankle 
of the contact limb.  In theory, acquisition of these variables 
would provide accurate predictions of the entire force-time 
waveform, and thereby provide the data needed to assess 
impact forces, peak forces and loading rates. The basic tenants 
of this model have shown promise in limited theoretical testing 
thus far. A critical aspect of the model is the division of the 
body’s mass (mB) into two invariant components (Figure 1A) 
that are used to decompose the waveform into two impulses 
(Figure 1B). The first impulse results from the acceleration of 
the lower limb segment, including the shank and foot (m1 = 
0.08mB). The second impulse results from the accelerations of 
the remaining 92% of the subject’s body mass (m2 = 0.92mB). 

Here, our primary objective was to test the ability of the 
model to predict impact and peak forces across a range of 
speeds under three gravitational force conditions: body weight, 
1.15 times body weight and 1.30 times body weight.   We used 
torso loading as an experimental tool to alter our model’s mass 
component m2 while holding mass component m1 constant.  

A.B. Udofa is with Southern Methodist University, Dallas, TX 75206 
USA (e-mail: audofa@smu.edu). 
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Our a priori expectation was that the force-time waveforms 
acquired across loading conditions and speeds would vary 
substantially and thereby provide a robust test of how well the 
motion-based inputs of the two-mass model can predict impact 
and peak forces of variable magnitudes.  Our secondary 
objective was to examine the motion of the lower-limb 
segment to evaluate the promise of model implementations 
involving wearable motion sensors like accelerometers.  

II. METHODS 

A. Subjects 
Seven healthy, physically active adults, between 24 and 34 

years of age, volunteered and participated in the study: two 
women (74.3 ± 13.2 kg) and five men (87.8 ± 7.1 kg). All 
provided written, informed consent in accordance with the 
requirements of the Southern Methodist University 
Institutional Review Board.  

B. Testing Protocol 
Subjects underwent progressive, discontinuous treadmill 

tests across the same range of speeds under three experimental 
conditions: unloaded (1.0 Wb), 1.15 times body weight (1.15 
Wb), and 1.30 times body weight (1.30 Wb).  Per the methods 
described in Clark and Weyand [12], all trials took place at 
constant speeds. Here, trials were administered in the same 
progressive sequence of: 3, 4, 5 and 6 m/s under each loading 
condition.  

Loads were added symmetrically to the torso using 
military style vests and backpacks. All subjects completed the 
experimental conditions in the following order: 1.0 Wb, 1.15 
Wb, and then 1.30 Wb to allow for progressive habituation to 
the loaded conditions and minimize the likelihood of 
musculoskeletal injury.  A minimum of two weeks elapsed 
between testing sessions to ensure full recovery and minimize 
the likelihood of injury.  

C. Data Acquisition 
An instrumented force treadmill and motion capture system 

were used to acquire simultaneous motion and force data. 
Ground reaction force data were acquired at 1000 Hz with a 
custom three-axis high-speed force treadmill (AMTI, 
Watertown, MA). The AMTI-force treadmill is capable of 
reaching speeds over 20 m/s with negligible belt speed 
fluctuations with subjects in excess of 140 kg. The embedded 
force plate (198 cm x 68 cm) interfaces with an AMTI 
DigiAmp amplifier running NetForce software and has a 
measurement range of 6000 N. The force data were filtered 
using a low-pass, fourth order, zero-phase-shift Butterworth 
filter with a cutoff frequency of 25 Hz [13].  

Motion data were obtained from an OptiTrack motion 
capture system (NaturalPoint, Corvallis, OR) configured with 
12 Prime 17W cameras. OptiTrack Motive:Body software was 
used for camera control, calibration, marker tracking, and 
positional data export. All data were acquired at 200 frames 
per second and synchronously triggered to the ground reaction 
force data through an OptiTrack eSync module. The capture 
volume was 2.9 m x 1.5 m x 2.2 m and the mean 3D error was 
less than 1 mm as reported by the Motive:Body calibration 
algorithm. A 12 marker system was used with placements on 
the ball of the foot, heel, ankle, knee, hip, and shoulder on each 
side of the body [13]. The exported marker coordinate data 

were upsampled to 1000 frames per second and low-pass 
filtered at 25 Hz using the same filter as the force data. The 
marker positional data allow for accurate velocity and 
acceleration calculations for the numerous body segments.   

D. Two-Mass Model and Model-Predicted Forces 
Force and impulse predictions were determined using the 

two-mass model [11] where the total vertical force waveform 
is modeled as the sum of two impulses: a first resulting from 
the deceleration of the lower limb upon impact and the second 
corresponding to the accelerations of the remainder of the 
body’s mass during ground contact (Figure 1). 

 

Fig. 1. A. An illustration of the mass components (m1 and m2) of our two-mass 
model of the human body. B. A model-predicted force-time waveform 
generated from the summation of the impulses, J1 and J2, which correspond to 
the accelerations of mass components m1 and m2. 

The total impulse JT during contact is:  

 
where impulse J1 results from the acceleration of the mass of 
the lower limb (m1 = 8.0% of body mass mB) during impact, 
and J2 corresponds to the acceleration of the remainder of the 
total mass. The total stance-averaged vertical force is: 

 

where tc and ta are the contact and aerial times determined from 
the vertical force signal, mT is total mass, and g is gravitational 
acceleration (g = +9.8 m•s-2). The total impulse is: 

 

The acceleration a1 due to the impact of the lower limb mass 
m1 is determined from the vertical velocity Δv1 of the ankle 
marker slowing to zero over the time interval Δt1: 

 

The average force F1avg of m1 during impact is: 

 

The impulse J1 of m1 during the total impact interval 2Δt1 is: 
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Impulse J2 is determined from impulse J1 and total impulse JT 
as: 

 

The average force F2avg of m2 during the contact interval tc is 
then: 

 

Each impulse (J1 and J2) is due to a non-linear elastic 
collision and has a bell-shaped force vs. time curve. The total 
force FT (t) is a summation of the two bell-shaped force curves 
[11, equation 6]: 

 

E. Data Analysis 
Predicted vs. measured impact and peak forces were 

assessed by quantifying the absolute percentage error between 
the two values: 

 

Predicted and measured impact force values were 
determined at the instant, or millisecond t = Δt1 and were 
therefore simultaneous. Per the model (eq. 4), the time of the 
impact impulse peak was identified from the instant at which 
the measured vertical velocity of the lower-limb, or v1, equaled 
zero. Predicted and measured peak force values were 
determined from the maximum values of the waveforms and 
therefore were generally not simultaneous. 

  Trials were analyzed at speeds of 3, 4, 5, and 6 m/s which 
were completed by all subjects under the three loaded 
conditions. Thirteen of the eighty-four total trials completed 
were not included in the analysis. Six were excluded due to 
trial-specific acquisition uncertainties; seven were excluded 
due to marker occlusions. Therefore, seventy-one trials were 
analyzed with at least eight footfalls per trial, and 860 footfalls 
were evaluated in total. Measured impact and peak force 
values were determined from ensemble-averaged waveforms 
across footfalls. Corresponding lower-limb acceleration 
values, Δt1 and Δv1, were averaged from the same individual 
footfalls for each trial and were used to generate model-
predicted waveforms. Relationships of best-fit between 
predicted and measured values were determined using the R2 
goodness of fit statistic with an accompanying standard error 
of estimate (SEE). 

We had two a priori expectations with respect to the 
performance of the two-mass model across load conditions.  
First, the magnitude of impulse J1 was not expected to vary 
with load condition since the mass of the foot and shank are 
unaffected by torso loading and therefore constant across the 
three experimental conditions.  Second, in contrast, the 
magnitude of impulse J2 was expected to vary significantly 
across the three conditions because total mass, mT, is a direct 
function of the body mass and load that must be supported 
against gravity during each step (ta + tc). 

III. RESULTS 

A. Influence of Load on Total Impulse  
 The total impulses (JT) predicted by the model and those 
we measured agreed on average to within 0.4 ± 0.1 % across 
all the speed and load conditions examined (Table 1).  

    Values are means ± SE.  
 
At each running speed, the total impulse increased (Table 1) 
and the aerial time decreased (Table 2) with increases in 
load. Within each load condition, total impulse and contact 
time decreased as running speed increased (Tables 1 and 2). 

          Values are means ± SE. 

 

B. Two-Mass Model-Predicted Impulses: J1 and J2 
Values for the impact impulse, J1, when averaged for the 

trials from the four speeds (J1 column, Table 1) did not change 
appreciably across loading conditions, but did increase 
slightly with speed. However, at each speed, J1 waveforms 
typically exhibited load-related variability that altered both 
the J1 peaks and Δt1 durations as illustrated in Figure 2B. 
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Values for impulse J2 increased with load at all speeds and 
accounted for virtually all of the load-related differences in 
total impulse JT (Table 1, Figure 2B). Within each load 
condition, impulse J2 values decreased as running speed 
increased. 
 

Fig. 2. A. Force, expressed in Newtons, from measured waveforms of a subject 
running at 6 m/s in the three loading conditions across time in seconds. B. 
Two-mass model-predicted waveform impulses (J1 and J2) from the same 
loaded and unloaded running trials illustrating the primary effect of the 
loading on J2 magnitude. 
 

C. Model Prediction of Impact and Peak Forces 
The agreement between the forces predicted at the time of 

the J1 peak, Δt1, from the modeled and measured waveforms 
was reasonably good, but slightly biased. The best-fit 
accounted for 82% of the total variability present while the 
average absolute error vs. the line of identity was 14.9 ± 1.3% 
(Figure 3A). There was a tendency for the model to slightly 
under-predict at lower force values and slightly over-predict 
at higher ones. The best-fit for model-predicted vs. measured 
peak forces accounted for a larger proportion of the total 
variation present, with an average absolute error vs. the line 
of identity that was similar in magnitude, but less variable at 
13.8 ± 0.6% (Figure 3B). The model over-predicted peak 
force values in all instances, but did so relatively consistently. 
Consequently, differential magnitude bias was not apparent in 
either the absolute error of prediction or in the best-fit 
relationship. 
 
 
 
 
 

Fig. 3. A. Measured vs. model-predicted impact forces across speeds and 
loading conditions. B. Measured vs. model-predicted peak forces across 
speeds and loading conditions. Black lines represents the best-fits with an 
intercept through the origin. Gray lines represent the line of identity (n=71 
trials for both panels). 
 

D. Lower-limb Acceleration, Velocity and Jerk 
Two motion variables acquired optically and directly 

related to lower-limb acceleration are illustrated in Figures 4 
and 5.  The 1st derivative of the position-time data provides 
the vertical velocity of the lower-limb during a single footfall, 
which identifies the parameters Δv1 and Δt1 used to model 
impulse J1 (Figure 4).   

 

Fig. 4. First derivative of position data (Vankle) taken from an ankle marker of 
a subject running at 5 m/s illustrating the ankle’s vertical velocity slowing to 
zero over the time interval (Δt1). 
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The 3rd derivative of the position-time data provides the 
vertical jerk of the lower limb which exhibits characteristic 
patterns at contact and toe-off as illustrated in Figure 5.  The 
respective waveform illustrations are from unloaded running 
trials, but are generally representative of those present across 
loading conditions and running speeds. 

Fig. 5. The third derivative of position data (Jerkankle) taken from the right 
ankle marker of a subject running at 6 m/s. Note the consistency of the jerk 
signal at touchdown and toe-off across consecutive contact times.  

IV. DISCUSSION 
Our test of the ability of the two-mass model to both predict 

and detect running ground reaction forces and limb loading 
rates was largely successful. The initial formulation of the 
model [11] suggested the potential for general accuracy, but 
did not include any direct experimental evaluations.  In our 
independent test here, the model performed reasonably well 
across loading and speed conditions that substantially altered 
the magnitude, timing and shape of vertical ground reaction 
force waveforms.   

The predictive portion of our effort generated values for 
impact and peak forces (Figure 3) that provided reasonable 
support for the validity and utility of the model.  This result 
would not have been possible without the near-exact 
agreement between measured and model-predicted total 
impulses (JT, Table 1) that the model requires for waveform 
decomposition (Figure 1) and instantaneous force predictions.  
The detection portion of our effort that explored the 
accelerations of the lower limb within and across footfalls was 
promising.  This effort revealed that the limited gait inputs the 
two-mass model requires: contact time, aerial time, and lower 
limb acceleration, should be detectable with wearable motion 
sensors (Figures 4 and 5).  To the best of our knowledge, the 
results we report are novel in identifying a motion-based 
approach to quantifying impact and peak forces that may be 
feasible for implementation using wearable technology.  

 

A. Predicted Impact and Peak Forces 
Although the absolute accuracies with which impact and 

peak forces were predicted was similar, the nature of the error 
and factors responsible differed (Figure 3).  More 
importantly, the likely etiology of the respective errors 
observed suggests substantially greater accuracy may be 
possible with refinements of our model.   

Successful prediction of impact forces requires accurate 
quantification of both the J1 and J2 impulses of our model 
since their sum determines the total force at the time of impact 
(Δt1 in Figure 1B).  Accordingly, predictive error could be 
introduced by incorrectly modeling the contributions of either 
of the model’s two impulses.  Here, the nature and consistency 
of the predictive bias observed across all three load conditions 
(Figure 3A) seems more likely to be attributable to an error in 
model-predicted impulse timing rather than magnitude.  This 
follows from the magnitude of impulse J1 being predicted 
using a constant mass across load and speed, and the 
magnitude of J2 being predicted from total loads (eq. 3) with 
an absence of any discernable load effect on the error 
observed.  Rather, the most consistent change across speed 
under all three load conditions was the reduction in contact 
time (Table 2).  The predictive error therefore seems most 
likely to be related to a differential temporal error in 
predicting the rising edge of impulse J2 because of the large 
millisecond-by-millisecond force differences present (Figure 
2).  Delayed rising-edge predictions would reduce J2 
contributions to the total force at time Δt1 and result in under-
prediction.  Conversely, early rising-edge predictions would 
increase J2 contributions and result in over-prediction of force 
at the model-defined impact time. The present analysis does 
not allow the full quantitative basis for what seems to be a 
time-related predictive bias to be determined.  However, the 
landing-takeoff asymmetries documented for the height of the 
center of mass during human running [14] would likely 
introduce impulse asymmetries in J2 that would affect rising-
edge force values in a manner not currently incorporated into 
our model. 

 
In contrast to the magnitude bias evident in the prediction 

of impact forces, peak force predictions were consistently 
high regardless of force magnitude across the different speeds 
and load conditions examined (Figure 3B).  Consequently, the 
best-fit between actual and predicted peak forces accounted 
for a larger portion of the variance present but, the absolute 
error of prediction equaled that for the impact forces, because 
predicted values were consistently too large. This over-
prediction is due to the model not incorporating the 40 N 
threshold used to identify the contact period as measured from 
our force platform.  Inclusion of the threshold setting at the 
beginning and end points of the impulse curve function with 
preservation of the mathematical area under the curve would 
lower the peak value. An additional possible factor for the 
over-prediction observed could be an intrinsic overshoot 
resulting from the impulse described by the bell curve 
function itself.  In the biomechanics literature, ground 
reaction force curves are most often modeled using a half sine 
wave rather than a bell curve function [2]. While this practice 
is fairly standard, the half-sine function also is known to 
introduce systematic error bias along the leading and trailing 
edges of the waveform.  The close matching between the bell 
curve function and collisional impulses measured from small 
force plates with much lower force thresholds than 40 N [16] 
suggest to us that a shape or function error is probably not 
responsible for the over-predictions observed here. 
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B. Acquiring Model Inputs from Lower-Limb Acceleration 
Evaluation of our ankle position-time data to evaluate 

sensor feasibility also yielded largely positive results which 
suggest that the two-mass model could be successfully 
implemented with wearable sensors. The three lower-limb 
motion inputs the model requires: contact time, aerial time, 
and lower limb acceleration could be determined from a worn 
accelerometer rather than the optical technology used here for 
motion data acquisition. Accelerometer measurement of 
contact and aerial times using ambulatory monitors on the 
lower limb is an established technology [17]. Extending these 
measurements to include lower limb kinematics would simply 
involve processing a data stream that is already available. The 
lower limb velocity Δv1 at touchdown and corresponding time 
interval Δt1 for the velocity to reach zero can typically range 
from Δv1 = 0.8 m/s, Δt1 = 0.070 s to Δv1 = 3.1 m/s, Δt1 = 0.025 
s for running speeds of 3.5 - 10.5 m/s [11]. This is an 
acceleration range of 1.2 - 12.7 g which can be measured by 
standard commercial 16 g accelerometers. Additionally, 
incorporating an inertial measurement unit (accelerometer, 
gyroscope, and magnetometer) into a wearable sensor would 
reduce orientation, offset, and integration errors of the lower 
limb vertical acceleration parameters. The derivative of the 
acceleration, or jerk, appears to provide consistent 
characteristics for touchdown and toe-off that would allow for 
the detection of contact and aerial times via signal processing 
(Figure 5). Simultaneously, the acceleration data can be 
integrated to produce a velocity profile which can be used to 
determine Δt1, and Δv1 (Figure 4). Thus, the accelerometer has 
the ability to provide the parameters needed to predict both J1 
and J2. The summation of J1 and J2 waveforms would then 
provide impact forces, peak forces, and conceivably also 
provide reasonable approximations of the entire force-time 
waveform using this approach.  

C. Concluding Remarks 
The motion basis of the two-mass model-based approach 

that we tested here for predicting instantaneous force values 
deviates from the primary traditions in this area of relying on 
force and pressure sensors embedded in shoes or insoles.  Our 
motion-based approach may have limited viability under field 
conditions that deviate from the relatively controlled steady-
speed level ground conditions our model assumes.  However, 
a motion-based approach offers at least two possible 
advantages vs, the direct sensing approaches that are more 
common.  The first is that our motion-based approach can be 
implemented with non-obtrusive micro-technology like an 
accelerometer, optical markers, or conceivably even from 
video data without any wearable requirement at all.  The 
second is that our model’s foundation allows, and indeed 
requires, direct linkage between gait mechanics and ground 
reaction forces.  In this latter regard, the two-mass model 
implementations are well suited for gait modification 
purposes ranging from rehabilitation to performance 
improvement. 
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Udofa AB, Clark KP, Ryan LJ, Weyand PG. Running ground
reaction forces across footwear conditions are predicted from the
motion of two body mass components. J Appl Physiol 126: 1315–
1325, 2019. First published February 14, 2019; doi:10.1152/japplphysiol.
00925.2018.—Although running shoes alter foot-ground reaction
forces, particularly during impact, how they do so is incompletely
understood. Here, we hypothesized that footwear effects on running
ground reaction force-time patterns can be accurately predicted from
the motion of two components of the body’s mass (mb): the contacting
lower-limb (m1 � 0.08mb) and the remainder (m2 � 0.92mb). Simul-
taneous motion and vertical ground reaction force-time data were
acquired at 1,000 Hz from eight uninstructed subjects running on a
force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear
conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical
ground reaction force-time patterns were generated from the two-mass
model using body mass and footfall-specific measures of contact time,
aerial time, and lower-limb impact deceleration. Model force-time
patterns generated using the empirical inputs acquired for each foot-
fall matched the measured patterns closely across the four footwear
conditions at both protocol speeds (r2 � 0.96 � 0.004; root mean
squared error � 0.17 � 0.01 body-weight units; n � 275 total foot-
falls). Foot landing angles (�F) were inversely related to footwear
thickness; more positive or plantar-flexed landing angles coincided
with longer-impact durations and force-time patterns lacking distinct
rising-edge force peaks. Our results support three conclusions: 1)
running ground reaction force-time patterns across footwear condi-
tions can be accurately predicted using our two-mass, two-impulse
model, 2) impact forces, regardless of foot strike mechanics, can be
accurately quantified from lower-limb motion and a fixed anatomical
mass (0.08mb), and 3) runners maintain similar loading rates
(�Fvertical/�time) across footwear conditions by altering foot strike
angle to regulate the duration of impact.

NEW & NOTEWORTHY Here, we validate a two-mass, two-
impulse model of running vertical ground reaction forces across four
footwear thickness conditions (barefoot, minimal, thin, thick). Our
model allows the impact portion of the impulse to be extracted from
measured total ground reaction force-time patterns using motion data
from the ankle. The gait adjustments observed across footwear con-
ditions revealed that runners maintained similar loading rates across
footwear conditions by altering foot strike angles to regulate the
duration of impact.

barefoot running; effective mass; impact forces; shoes; spring-mass
model; two-mass model

INTRODUCTION

The action-reaction forces between a runner’s foot and the
ground determine basic functional outcomes; they also inform the
design of shoe and other interventions that modify or accommo-
date them. Basic outcomes include bodily motion, running per-
formance, musculoskeletal stresses, loading rates, and the inci-
dence of overuse injury. Interventions include running shoes,
orthotics, prosthetics, and synthetic running surfaces. Although
hundreds of studies have measured running ground reaction force-
time patterns, their mechanical basis has been difficult to
identify for a variety of reasons. These include the anatom-
ical complexity of the musculoskeletal system, variable neu-
romuscular activation of muscle-tendon units involved, and
highly dynamic contractile conditions that affect muscle force
generation at the cross-bridge, fiber, and tissue levels. Conse-
quently, a quantitative understanding of the factors respon-
sible for the variability introduced in the force-time patterns
by footwear and other foot-ground interface interventions is
not available.

A long-standing observation in the running biomechanics
literature is that shoe cushioning fails to decrease the magni-
tude of the early, localized, rising-edge force peak (26) typi-
cally present on the overall force-time impulse (i.e., the force-
time integral; Fig. 1). This counterintuitive result, termed the
“impact force anomaly,” is at odds with expected attenuation
effects (29) and is not observed in nonrunning footwear cushion-
ing tests. Material testing of footwear (9, 17, 29) and non-weight-
bearing impact tests on shod individuals (1, 18) consistently
demonstrate the expected attenuation effects. Similarly, musculo-
skeletal and mechanical models consistently predict that impact
forces should be attenuated by shoe cushioning (21, 25, 35, 36).
Additionally, subjective self-reports of runners indicate that
impacts feel softer in more heavily cushioned shoes (22, 31).
Nonetheless, the expected mechanical effects of cushioning are
consistently deemed to be absent from force plate data acquired
from individuals running in differently cushioned shoes (2, 3, 9,
13, 14, 17, 23, 24, 29). Most of these studies report no change in
the magnitude of the localized force peak present along the rising
edge of the measured force-time impulse. However, some stud-
ies actually report greater rising-edge force peaks in more
heavily cushioned shoes (2, 3).
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A number of explanations have been proposed for the shoe-
cushioning impact force anomaly (29). The leading theory is that
runners adjust some combination of their pre-impact lower-limb
motion, foot strike orientation, and the stiffness of their ankle
and knee joints upon impact (i.e., “muscle tuning,” per Refs. 3,
25, 27, and 36). These explanations are fully plausible, as gait
kinematic changes before and during impact are commonly
observed across different shoe cushioning conditions (2, 4, 15,
30). In contrast, Shorten and Mientjes (29) have proposed that
the force anomaly is an artifact resulting from incorrect quantifi-
cation of the impact event itself. Through spatial and frequency
analyses, these investigators conclude that the rising edge of
force-time impulse represents the summed force contributions
from the body’s entire mass. Although fully consistent with
Newton’s law of acceleration, this suggestion is at odds with
common mechanical interpretations of the waveform’s rising
edge (2, 5, 11, 12, 19). Generally, the early portion of the
waveform is attributed to a small, distal fraction of the
body’s mass termed an “effective” mass that is not specif-
ically identified but that is deemed to stop abruptly on
surface contact (12, 27).

The explanation of running force-time patterns provided by
our recently introduced two-mass, two-impulse model (6, 7) may
explain the force anomaly while elucidating running impact me-
chanics more generally. The model is based on an impulse
momentum expression of Newton’s law of acceleration and re-
quires very limited, stride-specific data (contact time, aerial time,
ankle acceleration) to predict the full force-time pattern for any
given footfall. A strength of the model is that the two impulses
comprising the total ground reaction force are quantified from
motion data using classic force-motion relationships. This
model attribute should theoretically allow gait and impact
mechanics across different footwear and other conditions to be
measured and predicted per the illustration in Fig. 1. Our model
partitions the body’s mass (mb) into two discrete anatomical
components: a constant lower-limb mass fraction (foot and
shank, m1 � 0.08mb) (28) and the remainder of the body’s
mass (m2 � 0.92mb). Prior validation on 500 force-time im-
pulses acquired across a nearly fourfold speed range (3.0 to
11.2 m/s) in standardized footwear supported the model’s
theoretical basis (7). The average goodness of fit achieved

approached unity (r2 � 0.95) with a mean error of prediction of
only 0.17 � 0.010 Wb (where Wb is body weight).

Here, we hypothesized that running ground reaction force-
time patterns across different footwear conditions can be pre-
dicted by the motion of the two anatomical mass components
in our model. We tested this possibility across four shoe-sole
thickness conditions ranging from a zero, barefoot condition to
a relatively thick-soled running shoe with a 34-mm heel. The
present hypothesis is based on prior results indicating that the
slight delays in the rising-edge force peaks, such as those
consistently observed with additional cushioning (2, 3, 9, 13,
14, 17, 23, 24, 29), are sufficient to permit substantially larger
force contributions from the more proximal portions of the
body’s mass (m2 and J2 in Fig. 1). In theory, the inevitable
covariation that footwear introduces in lower-limb gait motion,
foot strike orientation, and landing stiffness should not confound
our test. Rather, the model’s force-motion linkage should quantify
and predict their summed, simultaneous effects on measured
force-time patterns. Empirical support for our hypothesis could
aide interpretations of the musculoskeletal and gait adjustments
observed across different footwear surface conditions. More
directly, our hypothesis test has the potential to advance the
currently incomplete understanding of running impact forces
(3) and provide a practical tool for assessing the mechanical
effects of footwear, orthotics, prosthetics, and synthetic run-
ning surfaces.

METHODS

Experimental design. We evaluated the ability of our motion-based
two-mass model to predict landing and total vertical ground reaction
forces across different footwear conditions using two approaches. Our
primary test was an experimental intervention that tested the model
under four footwear conditions commonly chosen by contemporary
runners. Footwear conditions that were deemed most likely to intro-
duce foot strike and landing mechanics variability in addition to
introducing material effects on impact mechanics were chosen to
maximize the rigor of the model test. The chosen footwear conditions
administered were barefoot (i.e., no shoes), a minimal sole (Vibram
FiveFinger KSO; Vibram, Concord, MA), a thin-soled racing flat
(NikeZoom Waffle Racer VII; Nike, Beaverton, OR), and a relatively
thick-soled jogging shoe (AsicsGel Cumulus-14; Asics, Kobe, Japan).
The respective footwear conditions are illustrated in Fig. 2; corre-
sponding footwear masses, heel, and forefoot thicknesses appear in
Table 1.

Our second test utilized the two-mass model to predict the effects
shoe cushioning should theoretically have on running ground reaction
force-time patterns. We accomplished this by incorporating the effects
of shoe cushioning on impact durations in vitro (29) into the timing of
the impact event under typical running footfall conditions in vivo
(�t1; Fig. 1). For this test, all running conditions and model inputs
other than impact timing (i.e., lower-limb velocity, contact time, and
aerial time) were held constant. We hypothesized that prolonging the
impact period would cause the localized force peak on the rising edge
of the total force time pattern to be 1) delayed in timing and 2) increased
in magnitude.

Two-mass model. The fundamental principle of the two-mass model
(7) is that the vertical ground reaction force waveform is composed of the
sum of two impulses due to the acceleration of the lower limb (m1)
during the impact interval and the simultaneous acceleration of the
rest of the body (m2) during the total contact interval (Fig. 1). Impulse
J1 corresponds to the acceleration a1 of lower limb mass m1 during
impact:
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Fig. 1. Two-mass model linkage between bodily motion and running ground
reaction forces. Impulse J1 corresponds to the impact of the lower limb mass
m1 with the ground (dashed red line). �t1 is the deceleration time interval of
m1. Impulse J2 corresponds to the motion of the remainder of the body’s mass,
m2 (dashed green line). The sum of the impulse curves provides the total
ground reaction force-time pattern (solid blue line). Wb, body weight.
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J1 � F1avg�2�t1� � �m1a1 � m1g��2�t1�, (1)

where F1avg is the average force of impulse J1 during the impact
interval 2�t1, m1 � 8% of total body mass mb (28), and g is the
acceleration due to gravity (g � �9.8 m/s2). Impulse J2 corresponds
to the acceleration a2 of mass m2 during contact:

J2 � F2avg�tc� � �m2a2 � m2g��tc�, (2)

where F2avg is the average force of impulse J2 during the contact time
interval tc and m2 � 92% of total body mass mb. The total impulse JT

during contact is

JT � J1 � J2. (3)

The total stance-averaged vertical force is

FTavg � mbg
tc � ta

tc
, (4)

where tc and ta are contact and aerial times and mb is the total body
mass. The total impulse can be calculated from FTavg and tc:

JT � FTavgtc. (5)

The acceleration a1 due to the impact of lower limb mass m1 is
determined from the vertical velocity �v1 of the ankle marker slowing
to zero over the time interval �t1:

a1 �
�v1

�t1
. (6)

Minor fluctuations in the ankle marker at the lowest position during
impact can cause variability in the velocity-time profile. To eliminate
this variability, a threshold of �0.25 ms and a projection to 0.0 ms is
used for �t1 measurements. From Eq. 1, the average force F1avg of m1

during impact is

F1avg � m1�a1 � g�. (7)

Impulse J1 of m1 during the total impact interval 2�t1 is

J1 � F1avg�2�t1�. (8)

Impulse J2 is determined from impulse J1 and total impulse JT as

J2 � JT � J1. (9)

The average force F2avg of m2 during the contact interval tc is then

F2avg �
J2

tc
. (10)

Acceleration a2 of mass m2 can be determined from F2avg using
Eq. 2:

a2 �
F2avg

m2
� g. (11)

The ground reaction force curves F(t) for J1 and J2 are a result of
nonlinear elastic collisions and are each modeled using a bell-shaped
curve function during the impact interval and contact interval, as de-
scribed by Clark et al. (7).

Subjects. Eight healthy, physically active subjects participated in
this study: three women (76.6 � 14.2 kg) and five men (86.6 � 14.7
kg) who were between 18 and 35 yr of age. All were running regularly
through some form of physical activity at the time of the study, but
they were not recreational or competitive runners. All subjects vol-
unteered and provided written, informed consent in accordance with
the requirements of the Southern Methodist University Institutional
Review Board, which approved the study.

Data acquisition. Custom-instrumented force treadmill and motion
capture equipment was used to acquire kinematic and kinetic parameters
for each of the footwear conditions. A force instrumented treadmill
(AMTI, Watertown, MA) capable of reaching speeds of �20 m/s was
used to collect vertical ground reaction force data at 1,000 Hz.
Simultaneous 1,000-Hz motion capture data with 0.7-mm resolution
were acquired for 3.5 s during each trial using three Fastec Imaging
HiSpec 2G cameras (Mikrotron, Unterschleissheim, Germany). Force
and motion data were filtered with a low-pass, fourth-order, zero-
phase-shift Butterworth filter with a cutoff frequency of 25 Hz.
Subjects wore reflective markers placed on the lateral aspect of the
right heel and forefoot that were affixed to the respective shoes or
skin. Reflective markers were also placed on the lateral aspect of the
joint axis of rotation for the right ankle, knee, and hip. All video data
were processed using MATLAB software (MathWorks, Natick, MA)
with custom digitization routines (16). The position-time data for the
ankle marker were used to determine impact impulse (J1) timing from
the time elapsing between initial foot-ground contact and the time at
which the ankle marker reached a vertical velocity of zero, or �t1.
Contact and aerial times were determined from the time during which
the measured force exceeded a 40-N threshold.

A B 

D C 

Fig. 2. Footwear conditions and sole thickness
designations. A: barefoot. B: minimal. C: thin. D:
thick.

Table 1. Shoe parameters for each footwear condition

Footwear Condition Barefoot Minimal Thin Thick

Brand None Vibram Nike Asics
Mass, g 0 159 190 331
Heel height, mm 0 5 13 34
Ball height, mm 0 3 11 21

Values provided are for men’s North American size 9 shoes.
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Per existing literature convention, foot angles upon impact were
quantified from the angle between foot and ground at touchdown as
follows: negative for rear-foot strikes and positive for forefoot strikes.
For this purpose, a neutral or zero condition standing baseline refer-
ence was acquired by having each subject stand while a single-frame
video file was recorded. Foot angles during running trials were quantified
in accordance with the deviation from the standing reference “zero”
condition established for each subject.

A minimum of three to six right footfalls were acquired from each
trial completed by subjects at each speed under each footwear condi-
tion (Fig. 3). Two subjects were unable to successfully complete the
7.0 m/s trial. Two hundred and seventy-five footfalls were ultimately
acquired and analyzed for their force-time pattern characteristics.
Footwear condition data for each subject were acquired during two
test sessions. Within each session, subjects completed two of the four
footwear conditions at random. Prior to protocol administration, subjects
were habituated to each footwear condition by walking on a treadmill at
a slow pace for 5 min and running for 10 s or more at a jogging
speed 	4.0 m/s. Protocol test speeds of 4.0 and 7.0 m/s were
completed in ascending order.

Measured step-by-step force-time patterns from single trials at 4.0
and 7.0 m/s appear in Fig. 3, A and D, respectively. Two-mass
model-generated force-time patterns for the steps from the right limb
for the respective trials appear in Fig. 3, B and C, for the 4.0 m/s trial
and in Fig. 3, E and F for the 7.0 m/s trial.

Data analysis. Modeled versus measured force-time patterns were
compared for each of the eight footwear-speed trial conditions as follows.
Model waveforms were generated empirically from the existing form of
the two-mass model (7) using the following measured inputs: body
mass (mb), contact time (tc), the aerial time (ta) following the footfall,
the vertical velocity of the ankle marker at touchdown (�v1), and the time
elapsing between the first instant of surface contact and the time at which
the ankle marker vertical velocity equaled zero (�t1). Agreement between
measured and model-predicted force-time patterns on a total of 275
measured footfalls was subsequently assessed using the r2 goodness-
of-fit and the root mean square error (RMSE) statistic per Clark and
colleagues (6–8). Because the force-time pattern variability across
footwear conditions was expected to occur predominantly along the
rising edge of force-time patterns, we also performed r2 and RMSE

statistical analysis on the first half of the waveforms only (50% of tc)
for comparison to the full (100% of tc) waveform values (n � 275).

In addition to the analysis performed on the 275 individual footfalls
acquired, trial mean values for the measured model inputs from sequen-
tial footfalls of the right limb for each subject under each experimental
condition were also determined. We did so to illustrate differences
across the eight experimental conditions in brief, representative
form.

We had two expectations for the performance of our two-mass
model across the four footwear conditions tested. First, we expected
that neither r2 goodness of fit nor root mean square error (RMSE)
trial-mean values would differ across footwear conditions at either
protocol speed (1-way ANOVAs, 
 � 0.05). Second, we postulated
that the overall performance of the model across footwear conditions
would be equivalent to that previously reported across a broad range
of speeds in standardized footwear (7): specifically, respective overall
values of r2 � 0.95 and RMSE � 0.20 Wb.

Lower limb surface impact velocities. To assess the influence of
running velocity on the vertical velocity of the limb at surface contact
(�v1) at and beyond the range of speeds in our protocol, we evaluated
the �v1 versus speed relationship from kinematic data acquired on a
separate cohort (n � 35) of nonspecialized runners who completed
treadmill trials at speeds from 3.0 to 9.0 m/s in standardized racing
flats (Nike Zoom Waffle Racer VII). We expected that �v1 values
would 1) increase systematically with running velocity across this
broad range of speeds and 2) not be affected by footwear condition at
either of the two specific speeds in our protocol.

Modeling the isolated effects of shoe cushioning on force-time
patterns. Force-time patterns with soft and firm cushioning were
generated for a hypothetical subject (mb � 80 kg) during heel-toe
intermediate speed running. Typical running stride parameters for
contact time (tc � 0.20 s), aerial time (ta � 0.15 s), and lower limb
impact velocity (�v1 � 1.25 m/s) were held constant across both
conditions. The timing of impact impulse 1 (�t1) across the two
conditions differed as follows; firm-cushioned �t1 was assigned
0.025 s, whereas the respective �t1 value for the soft-cushioned
condition was 0.030 s. These �t1 inputs resulted in a relatively higher
acceleration value of a1 � 50 m/s2 for the firm-cushioned versus a
value of a1 � 42 m/s2 for the soft-cushioned condition (Eq. 6).
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Fig. 3. Measured and modeled force-time patterns from moderate and fast protocol trials. Data were acquired and modeled for right leg footfalls (continuous line
segments) and subsequent aerial intervals, as illustrated. A: rear foot strike at 4 m/s in the minimal footwear condition with right leg footfalls 3, 5, and 7. B and
E: average values from the right leg footfalls and corresponding kinematics were used as input parameters to generate a trial-averaged impulse 1 (dashed red
line) and trial-averaged impulse 2 (dashed green line), which were summed to obtain the trial-averaged model-predicted force waveform (solid blue line). C and
F: model-predicted waveform (solid blue line) and measured average force waveform (solid black line) for the right leg footfalls analyzed for these respective
trials. D: forefoot strike at 7 m/s in the thin footwear condition with right leg footfalls 3, 5, 7, 9, and 11. Wb, body weight.
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RESULTS

Representative force-time patterns across footwear conditions.
Model-predicted versus measured force-time patterns across
footwear conditions for individual subjects running at 4.0 and
7.0 m/s appear in Figs. 4 and 5, respectively, as multistep
averages. As illustrated, model predicted force-time patterns
across the footwear conditions at both speeds matched the
measured patterns closely. The considerable footwear condition
variability present along the rising edge of the total force-time

patterns at both speeds was accurately predicted by the summed
contributions of impulses J1 and J2 of the model. Model impulse
summation successfully predicted the slope of the rising
edge as well as localized rising-edge force peaks that dif-
fered by roughly one-third in timing and by more than
twofold in magnitude across the eight different trial condi-
tions.

At both protocol speeds, the total force-time patterns from the
barefoot condition differed somewhat from the three footwear
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Fig. 4. Vertical ground reaction force-time impulse waveforms
at 4 m/s for each footwear condition from a representative
subject. The 1st (dashed red line) and 2nd impulse (dashed
green line) are summed to provide the model-predicted total
force-time waveform (solid blue line). Model-generated force-
time waveforms (solid blue line) were compared with trial-
averaged vertical ground reaction force waveforms (solid black
line) using the r2 goodness of fit statistic for each condition. A:
barefoot. B: minimal. C: thin. D: thick. Wb, body weight.
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barefoot. B: minimal. C: thin. D: thick. Wb, body weight.
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conditions in that the rising edge of the total force-time pattern
lacked a distinct, localized force peak.

Lower limb pre-impact velocities versus running speed. The
�v1 versus speed linear best-fit relationship obtained from our
separate cohort of 35 subjects running in standardized-foot-
wear (thin condition) appears in Fig. 6 (open circles). As
illustrated, the overall mean �v1 values (means � SE) of our
footwear subjects across all four conditions at both 4.0
(1.05 � 0.04 m/s) and 7.0 m/s (1.83 � 0.07 m/s) closely con-
formed to those of our separate, larger cohort of subjects
running in standardized footwear at the same speeds. At both
protocol speeds, the mean �v1 values of our footwear-condi-
tion subjects agreed with the best-fit normative value to within
0.15 m/s or less.

The influence of footwear condition on the �v1 means at each
protocol speed was negligible, as the four condition means were
nearly identical to one another in both cases.

Force-time patterns across footwear conditions. The total
force-time patterns and corresponding impact impulse J1 con-
tributions are illustrated in Fig. 7 as ensemble averages from all
of the footfalls analyzed at both 4.0 and 7.0 m/s. For both
protocol speeds the ensemble-averaged J1 impact impulse was
essentially invariant in magnitude across footwear conditions
but differed somewhat in duration and, therefore, peak force.
At both 4.0 and 7.0 m/s the impact impulse duration in the
barefoot condition was longer and the J1 impact peak force
lower than in each of the three footwear conditions (Fig. 7, C
and D). At the faster protocol speed of 7.0 m/s there was an
inverse relationship between the thickness of the shoe sole and
the duration of the impact event; the thicker the sole material
interface between the foot and the running surface, the briefer
the average duration of the impact interval. Additionally, at
7.0 m/s for both the barefoot and minimal footwear condi-
tions, the extended duration of the impact interval coincided
with a greater peak force on the ensemble-averaged total
force-time pattern (Fig. 7B).

Foot and ankle impact mechanics across footwear conditions.
Across footwear conditions at both speeds, the mean foot angle at
touchdown exhibited a relationship to shoe sole thickness that
was largely inverse in nature (Fig. 8, A and B). The less thick
the interface between the foot and ground, the more positive
the foot angle at touchdown. At the faster protocol speed of 7.0
m/s, at which the incoming limb velocities �v1 and impact
impulses J1 were nearly twice as great, subjects landed with
more positive foot angles in each of the four respective
footwear conditions. Therefore, the most positive foot angle
of �14° was observed for the condition that combined the
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greatest impact impulse with the least shoe cushioning, i.e.,
7.0 m/s barefoot.

The relationship between foot angle at touchdown and the
duration of the impact was positive (Fig. 8B) at both protocol
speeds. The more positive the foot angle at touchdown, the
longer the duration of the impact event. At the slower speed of
4.0 m/s at which incoming limb velocities were slower, the
condition times to the impact impulse peak �t1 ranged from a
minimum of 0.034 s in the thick footwear conditions to a
maximum of 0.041s in the barefoot condition. At 7.0 m/s, at
which incoming limb velocities were greater, the times to the
impact impulse peak �t1 ranged from a minimum of 0.028 s for
the thick condition to a maximum of 0.038 s for the barefoot
condition.

Model-predicted versus measured force-time pattern agre-
ement. The agreement between the model-generated force-time
versus measured force-time pattern averages for each of the
eight protocol trial conditions appear in Table 2 for goodness-
of-fit (r2) and Table 3 for the individual error of prediction
(RMSE). The overall goodness-of-fit mean approached unity at
r2 � 0.96 � 0.004 (Table 2), whereas the mean error of pre-
diction was 0.17 � 0.010 Wb (Table 3). Neither statistic varied
across the footwear conditions at the respective protocol speeds
(P � 0.05), as assessed by one-way ANOVA.

The r2 and RMSE values for the first half (50% of tc) of
force-time patterns from individual footfalls were nearly iden-

tical to the those for the full waveforms [first half:
r2 � 0.94 � 0.004, RMSE � 0.20 � 0.006; full waveforms:
r2 � 0.95 � 0.002, RMSE � 0.19 � 0.005, n � 275] indicat-
ing that the model predicted the more variable rising edge of
the impulse with similar accuracy to the overall force-time
patterns.

Model-predicted isolated effects of shoe cushioning on force-
time patterns. Two-mass model-predicted effects of cushioning-
induced prolongation in impulse 1 timing (�t1) on the total ground
reaction force waveform appear in Fig. 9, A and B. The prolon-
gation of �t1 by 0.005 s from 0.025 to 0.030 s while holding all
other runner, gait, and model factors constant resulted in a reduc-
tion in the slope of the rising edge of the total force-time impulse.
However, as hypothesized, increasing �t1 increased the mag-
nitude of the localized force peak by almost 200 N on the rising
edge per the figure illustration. The 0.005-s prolongation of �t1
was sufficient to double the force contributions made by impulse
J2 to the total impulse at the delayed time of the localized,
rising-edge force peak. Consequently, the localized rising-edge
force peak in the simulated soft-cushioned condition was
greater in magnitude despite the reduction in the magnitude of
the J1 impact impulse force peak.

DISCUSSION

As hypothesized, our two-mass model successfully predicted
vertical ground reaction force-time patterns across the four foot-
wear conditions tested at each of our two protocol speeds. Al-
though running ground reaction forces have been examined across
footwear conditions at considerable length, the apparent absence
of cushioning effects seemed to defy mechanical theory and
quantitative explanation. The present results indicate that footwear
effects can, in fact, be fully explained using classic force-motion
relationships. Here, when doing so with the few stride-specific
inputs our two-mass model requires, the force-time patterns we
predicted accounted for an average of 95–96% of the pattern
variability present within the footfalls analyzed across foot-
wear conditions.

Achieving close fits to measured data via some form of
mechanical modeling that relies upon iterative post-facto re-
finement, simulation, or other optimization techniques is not
uncommon. However, the present agreement was achieved
with directly measured inputs for each of the 275 individual
footfall force-time patterns analyzed and without any refinement
or optimization of the a priori form of our model (7). Accordingly,
the classic force-motion relationships in the model appear to be
fully capable of simultaneously quantifying the effects of foot-
ground cushioning, foot strike mechanics, and joint and limb
landing stiffness from precision motion data. Additionally, our
modeling test identified how shoe cushioning effects can be
obscured by conventional interpretations of the total force-
time waveform pattern.

One basic implication of our results is that shoe cushioning
can attenuate impact forces, as mechanical theory (29) and
intuition have long suggested it should.

Landing and impact mechanics: a tale of two impulses. The
accuracy and conciseness of the quantitative explanation of-
fered here for footwear effects on running ground reaction
forces prompts an immediate question: why were these effects
not previously identified? The mechanical issues in question
have been studied at considerable length for roughly four
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decades using a variety of experimental and theoretical ap-
proaches (1–3, 9, 12–14, 17–19, 23–25, 29). Through virtually
all of the prior work on this issue, the critical factor obscuring
footwear effects and thereby impeding mechanical understand-
ing of running ground reaction forces has been the contribution
of the non-impact portion of the body’s mass. In our model, the
substantial contributions of the non-impacting mass m2 (im-
pulse J2) to the total force-time impulse appear in Figs. 1, 3, 4,
and 5. As illustrated, the contributions of the non-impacting
mass m2 begin at the instant of touchdown and increase in a
direct, time-dependent manner. These contributions are suffi-
cient to equal or exceed half of the total impulse during the
early potion of the contact period generally conceptualized as
the impact period.

The obscuring effect that the non-impact mass and impulse
can have on the total force-time impulses under softer-cush-
ioned footwear conditions results from three simultaneous,
interdependent phenomena that are not present in material (9,
17, 29) and non-weight-bearing tests (1, 18) of shoe cushioning
effects. The first of these phenomena is a slight delay in the
time to the impact force peak (�t1), the second is a modest
reduction in the impact force peak, and the third is the in-
creased force contribution of the body’s nonimpacting mass
(m2) at the delayed time of the impact peak. In combination,
these three factors obscure the impact attenuation effect of shoe
cushioning on the overall force-time waveform patterns, as
illustrated by the example in Fig. 9. In this theoretical
example that holds the limb’s impact velocity and total J1

impulse constant, an impact attenuation effect that reduces the J1

force peak from roughly 770 to 660 N simultaneously extends the
time to the J1 peak, �t1, by 5 ms. This temporal delay
doubles the force contribution from mass m2 at the time of
the localized force peak on the rising edge of the total
force-time waveform, increasing J2 force contributions from
roughly 750 to 1200 N. The specific quantitative contributions
of these three interdependent phenomena will vary across
different running speeds, foot-ground contact times, incoming
limb velocities, impact durations, and cushioning-introduced
impact prolongation. However, the overall effects in Fig. 9
accurately represent the integrated, combined effects of cush-
ioning on the total force-time impulse.

A noteworthy outcome of the quantitative example illus-
trated in Fig. 9 is that the localized, rising-edge force peak is
actually greater in the condition in which the impact force peak

is smaller due to the cushioning-induced attenuation. In this
regard, our theoretical outcome is completely consistent with
the many shoe cushioning results reported in the literature over
the last four decades (2, 3, 9, 13, 14, 17, 23, 24, 29). These
studies vary somewhat in the relative magnitudes of the local-
ized force peak along the rising edge of the force-time impulse
in more heavily cushioned shoes; some report rising-edge force
peaks that are slightly less (20), with some slightly greater (3,
13), whereas most report no significant differences (2, 9, 14,
23, 24). However, these studies are fully consistent in reporting
that the rising-edge force peak occurs at a later post-impact
time in more heavily cushioned shoes. Per the time course of
the J2 impulses illustrated here and elsewhere, delays of even
several milliseconds in the timing of the J1 impulse peak
substantially increase the force contributed by the body’s
non-impacting mass both at the time of the impact peak and
more so at the time of the localized rising-edge peak on the
total force-time impulse waveform.

Quantitative implications of the mechanics of landing and
impact. Several insights are provided by the ability of the
two-mass model to predict the force-time patterns across our
experimental footwear test conditions, particularly along the
highly variable impulse rising edge. Most importantly, our
model fully supports and indeed quantifies the force summa-
tion effects Shorten and Mientjes (29) concluded must be
present in the early portion of the impulse. Our analysis, like
theirs, demonstrates that Newtonian interpretations of the im-
pulse are not only correct but also necessary for a quantitative
understanding of force-time patterns measured from force
platforms. Therefore, the widespread practice of quantifying
impact mechanics from the rising edge of the total force-
time waveform measured is problematic in two significant
respects. First, the attribution of the early portion of the total
impulse to a small fraction of the body’s mass violates
classic Newtonian mechanics. Consequently, the anatomi-
cally unclear effective masses often quantified via this
practice lack valid physical and mechanical interpretations.
Second, the localized rising-edge of the force-time pattern
should not be used to quantify the timing of running impact
forces. The more subtle mechanical effect introduced by the
impulse contribution of the body’s non-impacting mass, m2,
is the slight but inevitable timing delay between the actual
impact force peak J1 and the time at which a localized force

Table 2. Trial-averaged r2 values across footwear conditions

Speed, m/s Barefoot Minimal Thin Thick Average

4.0 0.98 � 0.006 0.96 � 0.010 0.98 � 0.004 0.98 � 0.005 0.97 � 0.003
7.0 0.92 � 0.020 0.93 � 0.020 0.97 � 0.009 0.97 � 0.005 0.95 � 0.008

Total 0.95 � 0.011 0.95 � 0.011 0.97 � 0.004 0.98 � 0.003 0.96 � 0.004

Values are means � SE.

Table 3. Trial-averaged RMSE values across footwear conditions

Speed, m/s Barefoot Minimal Thin Thick Average

4.0 0.14 � 0.021 0.16 � 0.026 0.14 � 0.014 0.12 � 0.012 0.14 � 0.009
7.0 0.27 � 0.039 0.26 � 0.033 0.18 � 0.030 0.17 � 0.013 0.22 � 0.017

Total 0.19 � 0.027 0.20 � 0.024 0.15 � 0.016 0.14 � 0.010 0.17 � 0.010

Root mean square error (RMSE) values are means � SE expressed units of the body’s weight.
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peak appears on the rising edge of the full waveform (Figs.
1, 4, 5).

Finally, our quantification of the importance of the body’s
non-impacting mass to the total force-time waveform ad-
dresses several observations for which a mechanical explana-
tion had not previously been available. A first is the apparent
discrepancy between the substantially greater reductions in shock
as measured from accelerometers mounted on the tibia versus the
relatively modest reductions in force-time, rising-edge force
“impact” peaks (10) after runners modify their landings to be
“softer” upon verbal instruction. More fundamentally, the con-
tributions of the non-impacting mass m2 explain why cushion-
ing effects are consistently present in material tests (9, 17, 29),
modeling exercises that hold all noncushioning effects constant
(21, 25, 35, 36), and non-weight-bearing tests that eliminate the
gravitational loading contributions of the non-impact portion of
the body’s mass (1, 18). In each of the aforementioned test
circumstances, the contributions of the non-impacting mass are
either absent or preclude the time-dependent quantification
necessary to correctly model the mechanical effects of shoes
that are present during running.

Foot strike selection regulates impact forces and limb loading
rates. The literature on running impact forces is extensive and
includes dozens of studies assessing the influence of footwear,
foot strike mechanics, running speed, and other factors. Nearly
all of the prior literature conclusions have been based on
inferences drawn from the total force-time patterns that did not

isolate the impact event as implicitly assumed (2, 3, 5, 10, 11,
14, 19, 23–25). Although prior practice is understandable in the
absence of a direct method for impact force quantification, the
predictive accuracy achieved by our model here, particularly
along the highly variable total impulse rising edge, indicates
that we have correctly quantified the impact impulse. In this
regard, our model’s decomposition of the rising edge of the
total force-time impulse into discrete impact and non-impact
portions provides a basis for interpreting foot strike and limb-
landing adaptations to footwear conditions that has not been
previously available (3). An important distinction versus prior
analyses is avoiding the complicating and potentially con-
founding assumption that the distal portion of the body’s mass that
is abruptly decelerated upon impact differs for forefoot versus rear
foot impacts (19, 27). In contrast, the recognition that the lower
limb’s mass does not vary with foot strike allows the impact
impulse to be quantified using classic force-motion relation-
ships. Accordingly, the only variables required to do so are the
mass of the lower limb, its pre-impact vertical velocity, and the
time to reach a vertical velocity of zero after initial impact.

An immediate capability that concise quantification of im-
pact forces provides is insight into the gait features that runners
can and cannot modify when impacting the surface. Given that
the anatomical mass of the lower limb is obviously constant,
runners could theoretically adjust impact forces by altering the
pre-impact velocity of the contacting limb (�v1), the time course
of deceleration after impact (�t1), or both. Our data indicate that
our subjects modified impact timing without altering pre-impact
limb velocities in the different footwear conditions tested. Why
do runners utilize only one of two theoretical mechanisms
available to them for impact attenuation?

Two aspects of our pre-impact limb velocity data suggest
that altering this variable is not a viable option for adjusting
impact forces. The first is how invariant pre-impact velocities
were across the four heterogeneous footwear conditions as-
sessed at each of our two protocol speeds. The average varia-
tion in pre-impact velocities across the different footwear
conditions was 3.6% or less of the overall �v1 mean at each of
our two protocol speeds. In contrast, the between-speed �v1

means differed by more than 50%. The second is the close
conformation of the �v1 means for our footwear subjects to the
values observed on a large cohort of athletic subjects running
in standardized footwear across a broad range of speeds (Fig.
6). As illustrated, the overall means of our eight footwear
subjects at 4.0 and 7.0 m/s agreed with the best-fit �v1 versus
speed relationship for the standardized footwear (thin condi-
tion) cohort of 35 subjects to within 0.03 and 2.6%, respec-
tively. The level of agreement observed from these indepen-
dent populations supports a basic coupling between limb pre-
impact velocities and running speed. This conclusion is well
supported by earlier investigations (7, 8) revealing that maximiz-
ing limb pre-impact velocities is a mechanical strategy
athletes use to maximize sprint-running speeds.

In contrast to limb impact velocities, runners did modify �t1
impact durations to a moderate extent across footwear condi-
tions at both protocol speeds (Figs. 7 and 8). At the faster
protocol speed involving impact impulses that were substan-
tially larger, there was an inverse relationship between impact
duration and shoe thickness (Fig. 7, B and D); the thinner the
shoe sole interface, the more runners opted to prolong the
duration of the impact period. A similar but less pronounced
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pattern of impact duration regulation across footwear thickness
was also observed at the slower speed. The pattern may have
been slightly less consistent at the slower speed because the
impact impulses at this speed were only half as large (Fig. 7, A
and C). Nonetheless, at our moderate protocol speed of 4.0 m/s
also, runners prolonged the impact period in the barefoot
condition that offered zero cushioning in comparison to the
three footwear conditions.

The consistent relationships between the angle of the foot at
touchdown (�F), footwear thickness, and impact duration iden-
tify the control strategy runners used to modify their impact
mechanics. Across both footwear condition and speed, our data
indicate that runners adopted more positive foot strike angles as a
strategy to prolong impact durations and reduce limb loading rates
(Figs. 7 and 8). Across footwear conditions at both speeds, the
more limited the material thickness between the foot and surface,
the more positive the foot angle runners selected before impact
and the more prolonged their impact durations. The trend
across our two protocol speeds conformed to the same overall
pattern; runners adopted more positive foot strike angles at the
faster speed that involved greater impact forces than they did at
the slower one. The outcome of impact duration modification
via foot strike-mediated �t1 regulation was that for each of our
two test speeds, the rising edges of force-time impulses and,
therefore, also the limb-loading rates were nearly identical
regardless of the presence or absence of cushioning and its
relative thickness.

Many earlier studies have reported the tendency for runners to
adopt more positive foot angles (i.e., more pronounced forefoot
landings) on impact when running barefoot or in minimal thick-
ness shoes (3, 4, 17, 19, 30). Our results here parallel these
earlier findings and in the basic context of impact mechanics
provide a consistent mechanical explanation for them. Adopt-
ing progressively more positive foot angles (�F) before impact
is a means by which the impact duration can be extended and
thereby reduce limb-loading rates and impact force peaks
(Figs. 7 and 8). The consistency with which runners altered
impact duration inversely with shoe thickness at running ve-
locities with different incoming velocities offers a remarkably
direct interpretation of foot strike landing angle modification.
Runners adjust foot strike mechanics as needed to substitute
musculoskeletal cushioning for shoe cushioning when the latter
is limited or absent. The more shoe cushioning available to
yield during the impact period, the more willing runners were
to land on or near the rear portion of their foot. In this regard,
our mechanical analysis of impact and landing supports intu-
ition as well as long-standing literature suggestions of a less
quantitative nature (3, 4, 13, 17, 19, 30, 34) and the cushioning
sensation reports of runners (22, 31). Runners avoid impact
landings on their heels when little or no cushioning is present,
particularly when running on firm surfaces.

Concluding remarks. The quantitative understanding of the
force-motion relationships involved in human running that we
have validated here across footwear conditions and previously
across running speed (7) has broad potential application. Al-
though footwear condition was the experimental intervention
implemented here, our two-mass, two-impulse model could
also be used to investigate the limb surface mechanical pertur-
bations introduced by orthotics, running prostheses, and sur-
face stiffness. More clinically focused applications targeting
load-related overuse injuries and rehabilitation are also possi-

ble. The ability to independently quantify the impact portion of
the total ground reaction force allows the effectiveness of gait
retraining for impact force reduction (10) to be assessed di-
rectly rather than inferred incorrectly from the total force-time
impulse measures that include non-impact forces. Impact as-
sessments could be based either on precision kinematic data
per our methods here or on acceleration data from sensors
mounted on the lower limb (10, 32, 33).

We close by noting that our methods make it possible to
compare the in vitro mechanical properties of running shoes
with their in vivo mechanical performance. We do so with the
caution that the individual variability in the impact-related
modifications runners adopt in different shoes mandates indi-
vidual in vivo testing for shoe performance assessments to be
fully valid.
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