

NAVAL FACILITIES ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370

Technical Memorandum TM-2227-AMP

REVIEW OF THE STRUCTURAL INTEGRITY OF THE ARMY FLOATING MODULAR CAUSEWAY PIER

by

P. R. Kane

October 1996

Sponsor U. S. Army Aviation and Troop Command (ATCOM)

Approved for public release; distribution is unlimited.

EXECUTIVE SUMMARY

The structural integrity of the U. S. Army's floating modular causeway pier was evaluated. Specific areas of concern included the adequacy of the Anchor Mooring System, the flexor and shear connector interfaces, and a proposed 120-ft long by 88-ft wide pierhead. Findings from this study indicate that the Anchor Mooring System is adequate for the proposed pier configurations, the 120-ft long pierhead is inadequate in seas greater than sea state 3, and limitations should be placed on berthing Army watercraft during certain longshore currents and at minimum water depths.

TABLE OF CONTENTS

TABLE OF CONTENTSiii
INTRODUCTION
Problem Statement 1 Objective 1 Purpose 1 Background 1 Scope of the Investigation 2 Plan of Treatment 2
APPROACH
System Requirements
ACKNOWLEDGMENTS
APPENDICES
A. Offshore Section Loading Calculation

.

INTRODUCTION

Problem Statement

The U. S. Army is replacing their Navy Lightered (NL) causeway lighterage assets with the Modular Causeway Section (MCS) system. The modularity of the MCS system is allowing the Army to redefine the shapes and sizes of the various platforms required for ship to shore transfer of cargo. Because of this modularity, the Army has realized the need for guidelines to limit overall platform shape and size. During the transition between the NL and MCS systems, the Army also wishes to validate that certain hardware designed for the NL system can be used with the MCS system.

Objective

It is the objective of this study to evaluate the integrity of the Army's Causeway Pier, specifically the adequacy of the Anchor Mooring System (AMS), the flexor and shear connector interfaces, and the pierhead.

Purpose

Several pier configurations (Figure 1 through Figure 3) were submitted by the U. S. Army Aviation and Troop Command (ATCOM) to the Naval Facilities Engineering Service Center (NFESC) (formerly Naval Civil Engineering Laboratory (NCEL)) for review¹ due to concerns at ATCOM that the Army users were constructing large MCS platforms that would experience increased loads on the MCS hardware and AMS.

Background

The MCS (Figure 4) is a U. S. Army container-compatible causeway system which can be transported in an ISOPAK configuration (Figure 5) by containerships and handled by standard commercial or military container equipment. An MCS consists of six raked pontoons (20- by 8by $4\frac{1}{2}$ -ft) and three box-end pontoons (40- by 8- by $4\frac{1}{2}$ -ft). The pontoons are designed with an integral connection system, allowing for repeated assembly and disassembly of modular platforms. When assembled, the MCS is nominally 80-ft long by 24-ft wide.

Assembled causeway sections can be end-connected to form causeway ferries and piers. The end connection system consists of flexors and shear connectors (Figure 6). The shear connectors are pipe and socket devices on the causeway ends that absorb shear and compression forces. The flexors are designed to work in tension, holding the causeway sections together, but still allowing relative pitch motion between the sections. The flexors extend from a stowed position in the end pontoons into identical receivers in connecting pontoons. The flexors are secured in place with guillotine sockets at each end.

As the Army replaces their NL causeway system assets with this new MCS system, field users are using the MCS' modularity to redefine existing platform shapes and sizes. Recent

¹ Facsimile from ATCOM AMSAT-W-TA to NCEL Code L65/Kane dated 24 Jul 92

exercises have seen the MCS pontoons used to assemble a Roll-On/Roll-Off (RO/RO) platform (two 80- by 72-ft sections end connected), a High Sea State Container Transfer System (HISEACOTS) (160- by 56-ft), and an air cushion supported platform (80- by 24-ft) equipped with the Pontoon Air Cushion Kit (PACK). Even traditional roles such as floating causeway ferries and piers have undergone change. A double-wide causeway ferry (two 80- by 48-ft sections, end connected) was demonstrated during JLOTS-III to transport 40-ft containers. Several new configurations have also been tested to increase the efficiency of operation on the floating causeway pier. All of the pier configurations have one thing in common—a large semi-rigid platform (up to 120- by 88-ft) at the end. Access to the pierhead from the beach would be from single or dual roadways. An offshore section would be end connected to the seaward end of the pierhead. Vessels that could offload cargo on this floating causeway pier would include causeway ferries, the various Landing Crafts, Utility (LCU's), and the Logistics Support Vessel (LSV).

As no guidance was provided to the Army for assembling other than standard (24- by 80ft) MCS', concern has been raised as to the integrity of these new platforms.

Scope of the Investigation

NFESC was retained by ATCOM^{2,3,4} to determine the end connector (flexor and shear) loading on the offshore section, suitability of the AMS and the structural integrity of the 120- by 88-ft pierhead.

Plan of Treatment

The plan of treatment was to determine berthing, mooring, and environmental loading on offshore section during operating conditions and analyze allowable loading of the end connector system (flexor and shear). The environmental loading on the pierhead for operating and survival conditions, as well as for the AMS, was determined to verify integrity of pier and suitability of AMS. The structural integrity of a 120- by 88-ft pierhead was determined by analyzing a finite element model of the pontoon and pin/guillotine connection system, and comparing dynamic loads to an acceptable pin loading.

² Ltr from ATCOM AMSAT-W-TA (70-17b) to NCEL Code L65 of 27 Aug 92

³ Ltr from NCEL (Ser L65/0997) to ATCOM of 10 Dec 92

⁴ Memo from ATCOM AMSAT-W-TA (70-17b) to NCEL Code L65 of 4 Jan 93

APPROACH

System Requirements

The requirements to be considered during this analysis for the causeway pier can be divided into two categories: (1) environmental condition requirements and (2) causeway requirements.

Environmental Condition Requirements:

- Normal operations will occur in sea state 2 or below, and limited operating capability is expected during sea state 3. The pier should survive sea state 5.
- Maximum expected current during normal operations is a 4-kt cross current.
- Maximum tide range of 7-ft.
- Windloads can be calculated using side area of one vehicle per causeway section for Sea State 2 or below. This ratio of vehicles per section will be lower during Sea State 3 due to limited operations.

Sea states were assumed to be those of a fully arisen sea as defined by the Pierson-Moskowitz Sea Spectrum⁵.

Causeway Requirements:

- The seaward end of the causeway must reach a water depth of 12 ft. This depth was chosen to accommodate the draft of an LSV.
- Causeway length will not exceed 1500-ft (16 roadway sections, 120-ft pierhead, and 80-ft offshore section).

End Connector Loading - Offshore Section

An offshore section is located seaward of the causeway pierhead and serves as both a cargo discharge point and a berthing pier for Army lighters. The section(s) seaward of the pierhead is connected to the pier with flexor and shear connectors and is not supported directly by an anchoring system. It is the structural integrity of this flexor joint, between the pierhead and offshore section, that is in question.

Flexor and Shear Connector Strength

Because of the lack of MCS design data, it was assumed that the strength of the MCS flexor causeway connection system is equivalent to that of the NL P-8 pontoon-flexor causeway connection system (Figure 6), which is capable of resisting⁶:

⁵ Pierson-Moskowitz Sea Spectrum, Table G-1, Joint Pub 4-01.6, Joint Tactics, Techniques, and Procedures for Joint Logistics Over the Shore, 22 Aug 1991, p G-2.

- 1. Cyclic tensile forces up to 50-kip per flexor with a period of 7 seconds and ±7 degrees of flexing (e.g., wave-induced loads to the system during transit in a seaway up to sea state 3).
- 2. Noncyclic tensile forces up to 300-kip per flexor (e.g., loads induced by causeway beaching and retrieving maneuvering).
- 3. Vertical forces up to 100-kip per pair of pipe/socket connectors.

For a causeway section seaward of the pierhead, the primary loading concern is the ability of the connection interface to resist a horizontal moment applied during the berthing process and while a watercraft is moored alongside. These loads would be considered in the same category as paragraph 2 above.

The connection system interface would therefore be capable of withstanding a horizontal moment of 5,250 ft-kip (300-kip x 17.5-ft (the distance between the flexor centerline and furthest shear connector where rotation would be resisted)).

Berthing Impact

One of the most significant loads the causeway section(s) seaward of the pierhead will experience is the impact load from a berthing watercraft. This load will depend primarily on the displacement of the watercraft and its approach velocity. The procedures for calculating berthing force as well as the results for both an LSV and LCU-2000 are provided as part of Appendix A. The results indicate that forces as large as 126-kip can be experienced (representing an LSV with an approach velocity of 1.5-ft/s (0.9-kt)). To calculate the moment on the connection system that this load would create, the point of contact of the watercraft with the pier must be known. For an LSV, it would be reasonable to expect the point of impact to be approximately 80-ft from where the ramp would be placed on deck. For a pierhead configuration that uses 20-ft raked pairs alongside the seaward sections, this point of impact would be approximately 100-ft from the connection interface (20-ft (ramp at mid-point of 20-ft raked pairs) plus 80-ft). With this moment arm, a moment of 12,600 ft-kip (126-kip x 100-ft) would be experienced. It can be clearly seen that this moment exceeds the 5,250 ft-kip capability determined in the previous section.

By reducing the approach velocity of an LSV to 1.0-ft/s (0.6-kt), the impact force is greatly reduced. This force acting over the same moment arm would create a moment of 5,590 ft-kip (55.9-kip x 100-ft), which still exceeds the allowable moment on the connection system.

Because neither the pier configuration nor the requirement to dock an LSV alongside a causeway pier is likely to change, extreme care should be exercised during when berthing an LSV to the pier. Measures that can be exercised include dropping the LSV's bow anchor prior to approach in higher wave and current environments, and docking at the seaward end of the offshore section(s) thereby avoiding the impact.

The berthing force for an LCU-2000 is considerably smaller than that of the LSV. At an approach velocity of 1.5-ft/s (0.9-kt), the berthing force is 33.0-kip. This force acting over a

⁶ Hatch, W. G. (1985). Development of P-8 Pontoon-Flexor End Connector System for Navy Pontoon Causeway Equipment, Naval Civil Engineering Laboratory, Technical Note N-1727. Port Hueneme, CA, July 1985, p. 25.

moment arm of 100-ft would create a moment of 3,330 ft-kip (33.0-kip x 100-ft), which is less than the capability of the connection system (5,250 ft-kip). The approach velocity of an LCU-2000 could be increased to 1.89-ft/s (1.12-kt) to equal the horizontal moment capability of the connection system.

Loads while Watercraft Moored Alongside

The wind and current loads for watercraft moored alongside the offshore section(s) are also presented in Appendix A. The wind load calculated for an LSV (4,307-lb) is almost insignificant when compared to the current loads (e.g., from Appendix A, Figure A-1: 320,000-lb for an LSV in 15-ft water depth in a 4-kt cross current).

As stated earlier, the end connection system between the pierhead and offshore sections can resist a horizontal moment of 5,250 ft-kip. This equates to a capability to withstand a 43.75kip (5,250 ft-kip/120-ft⁷) combined current and wind load acting on a watercraft moored alongside the offshore section(s). Operating conditions exist that are both within and exceeding this load range. For example, if an LSV were moored alongside the pier in a 2-kt cross current at high tide (25-ft water depth), the current load on the LSV would be 33-kip (Figure A-1). When combined with the wind load, the total load would still be less than the 43.75-kip allowed. However, given the same vessel and cross current, but changing from a high to low tide, the combined load would greatly exceed the allowed load [80-kip (Figure A-1) + 4.3-kip > 43.75kip].

Because the LCU-2000 generates less lateral wind and current load, broader operations can be conducted; however, the connection system could still be damaged in higher current conditions and when multiple craft are moored alongside the offshore sections. Two LCU-2000's could be accommodated at the pierhead (one each side of the offshore sections) at low tide if the current was less than 2-kt (2 x 19-kip < 43.75-kip) and wind loads were negligible. Only one LCU could be accommodated at low tide if the current were to reach 3-kt (43-kip current load \cong 43.75-kip allowed).

As mentioned earlier, the impact of the current and wind loads could be reduced if the watercraft were to make use of their bow anchors prior to approaching the causeway pier and while alongside.

Mooring System Loads

The AMS was originally designed for a NL causeway pier with a single discharge point at the seaward end. This discharge point could accommodate a Tank Landing Ship (LST) as well as other landing craft. Because of the similar size and draft of the NL and MCS systems, no changes to the AMS, other than interface hardware would be expected; however, the Army has adopted a new pier configuration to handle multiple discharge points. This new pier configuration, which makes use of a larger pierhead, will experience greater current and wind loading at the pierhead due to the new lighterage discharge points.

⁷ The 120-ft moment arm is an approximation based on likely mooring points for both an LSV and LCU-2000.

The procedure for calculating the mooring loads on the causeway pier as well as results of the analysis are provided in Appendix B. Using this data as well as the environmental loads on the different watercraft generated in Appendix A, the suitability of the AMS can be determined.

The AMS makes use the of 2K NAVMOOR anchors in single and tandem configurations. Their holding capacity are as follows⁸:

	single	<u>tandem</u>
mud	48-kip	120-kip
sand	60-kip	150-kip

It should be noted that these values represent "set" anchors. The drag distance required to reach maximum capacity is variable and dependent upon soil density. For a sand seafloor, the drag distance ranges from 8 to 13 fluke lengths to achieve maximum capacity and about 3 fluke lengths to achieve the safe capacity (50% of maximum).⁹ The 2K NAVMOOR anchor fluke length is 5-ft, which means the anchor would have to be dragged approximately 40- to 65-ft to achieve maximum capacity. Unfortunately, existing Army watercraft and procedures do not allow for the anchors to be pre-set in this manner.

As shown in Appendix B, in SS5 survival conditions (assuming no craft moored at the pierhead) a load of 108-kip could be experienced on a causeway section approximately half-way along the pier length. This estimate is conservative since diminishing wave heights along the pier's length caused by breaking waves weren't considered. The analysis is also conservative by selecting a beam sea condition, something unlikely because of wave refraction. "Refraction simply means bending. As waves move into shoaling water the friction of the bottom causes them to slow down, and those in the shallowest water move the slowest. Since different segments of the wave front are traveling in different depths of water, the crests bend and wave direction constantly changes. Thus the wave fronts tend to become roughly parallel to the underwater contours."10 If refraction was considered and a still conservative approaching wave angle of 45° was used, the drift force component could be reduced to 66-kip, resulting in a combined load of 81-kip per section. Even given the conservative environmental load of 108-kip, the existing anchor arrangement would be sufficient along the roadway. Because the offshore section(s) are unsupported by mooring legs, the loads acting on them must be taken up by the mooring legs at the pierhead. Each of the pierhead configurations provided for analysis (Figure 1 through Figure 3) show two tandem NAVMOOR anchor legs on the pierhead. These anchors could hold against a force of 240-kip to 300-kip. For two unanchored offshore sections plus the pierhead (3 x 81-kip = 243-kip), the two tandem anchor legs will just prove adequate.

The mooring system must also withstand the additional load placed on the causeway pier by moored vessels. As shown in the previous section, the maximum load the connection system could support from a lighter moored alongside the offshore section(s) was less than 50-kip. The

⁸ Johnson, B. A. (1987). Design of Mooring System for Army Floating Causeway Pier, Naval Civil Engineering Laboratory, Technical Memorandum M-42-87-05. Port Hueneme, CA, Jan. 1987, p. 13

⁹ Taylor, R. (1987). The NAVMOOR Anchor, Naval Civil Engineering Laboratory, Techdata Sheet 87-05. Port Hueneme, CA, May 1987.

¹⁰ Bascom, W. (1980). Waves and Beaches, pp. 78-79.

maximum environmental loads per causeway section in SS3 operating conditions is approximately 31-kip. Adding the vessel load (50-kip) to the environmental loads on the pierhead (3 x 31-kip), results in a load of approximately 143-kip, which is less than the 240-kip to 300-kip capacity of the two tandem anchor mooring legs at the pierhead.

Based on the results of this analysis, the AMS should prove sufficient for the new Army causeway pier configurations.

Structural Integrity of Pierhead

The MCS pontoons with their integral connection system give field users the capability of assembling semi-rigid platforms of various sizes and shapes. Though platforms of large sizes can be assembled, consideration must be given to the limits of the pontoon's pin and guillotine connection system. From a structural engineering viewpoint, platforms assembled from MCS pontoons are not rigid. The pin and guillotine connection system is fabricated with a given tolerance to allow for the easy assembly of platforms. Past experience at NFESC with the prototype of the MCS system has shown that large cyclic loading can be experienced in the pin and guillotine system due to the looseness of the connection. As no guidance has been provided for other than the construction of standard 24- by 80-ft causeway sections, a review of the larger pierheads was conducted.

As the largest platform is likely to generate the greatest internal loads, the 120- by 88-ft pierhead was selected for analysis. The internal structural loads were calculated using the diffraction theory program, MORA, for operating and survival conditions. Experience suggests that the results of this type of linear theory analysis yields good results for small-amplitude waves; however, it is unclear where nonlinear effects would become significant. The procedures and results of the analysis are provided in Appendix C.

The loads of interest are from a vertical plane at the midship of the platform. From Appendix C, Figure C-13, the largest moment that the 88- by 120-ft pierhead is expected to experience is 8,575,000 ft-lb. Along this plane of maximum moment the pierhead is held together with 22 pins along the bottom and 22 along the top. The vertical distance between the centers of the top and bottom pins is 47-in. At SS5 the load on one pin is:

 $P_s = (8,575,000 \text{ ft-lb}) / [(47-\text{in x 1-ft/12-in}) (22 \text{ pins})] = 99,516 \text{ lbs/pin}$

This load is well within the 75-ton tensile rating of the pin; however, since the pin is subjected to a cyclic load from passing waves, additional issues such as fatigue need to be addressed. Dynamic impact load was not a concern because the period of the fluctuating load cycle is on the order of several seconds.

Based on previous experience with the prototype and fielded MCS systems, it was felt that the component most likely to fail would be the male lock pin. A fatigue analysis of the pin was conducted to evaluate its endurance over a number of cycles (see Appendix D). A S-N diagram for the male lock pin was plotted (Appendix D, Figure D-2). From this diagram, it can be seen that the SS5 pin load calculated above will cause failure of the pin after 24,000 load cycles in a 120- by 88-ft platform. This equates to less than a 2-day (approximately 40-hr) storm duration. Even if the storm were to not last 40-hrs, permanent damage to the pin would have occurred, resulting in a lower endurance limit and earlier failure under less stress at a later date. For example, prior to the SS5 conditions, the pins would have theoretically lasted infinitely long because the stress on a pin during SS3 conditions is less than that of the endurance limit (10,472 psi < 11,160 psi); however, after a 15-hr SS5 storm, the modified endurance limit for the damaged pins is 7,700 psi. If the pins were then subjected to SS3 conditions, they would fail in less than 3-wks time. Appendix D provides further information on cumulative fatigue damage.

FINDINGS

For an LSV, approach velocities greater than approximately 1-ft/s (0.6-kt) during berthing creates an impact load which exceeds the offshore section flexor/shear connection system capability.

For an LCU-2000, approach velocities greater than approximately 1.9-ft/s (1.1-kt) during berthing creates an impact load which exceeds the offshore section flexor/shear connection system capability.

The ability to moor watercraft alongside the sections seaward of the pierhead is highly dependent upon the current load, which increases significantly as the draft of the watercraft approaches the available water depth.

- For an LSV, at low tide only a 1-kt cross current is acceptable. In a 2-kt cross current, a minimum water depth of 25-ft is required.
- For an LCU-2000, at low tide a 2.5-kt cross current is acceptable. In a 3-kt cross current, the minimum water depth required is 15-ft; 3.5-kt / 20-ft; and 4.0-kt / 25-ft.
- For two LCU-2000's, at low tide a 1.5-kt cross current is acceptable. In a 2.0-kt cross current, the minimum water depth required is 15-ft, and a 2.5-kt current requires 20-ft.

The existing AMS design is adequate for the roadway sections.

Two tandem anchor mooring legs are required on each side of the pierhead.

The results of the fatigue analysis indicates that fatigue must be considered when evaluating pierhead survivability (i.e., when compared to the pin's rated load, the environmental load did not cause failure; however, applying the same load over thousands of cycles caused the pin to fail).

The stress on the MCS male lock pins of a 120- by 88-ft pierhead during SS3 conditions is slightly less than the pins' endurance limit. During SS5 conditions, the stress exceeds the pins' endurance limit, meaning the pins have a finite fatigue life when (and after) being exposed to SS5 conditions.

RECOMMENDATIONS

Inform watercraft operators of affect of impact velocity on pierhead and develop/follow operational procedures to limit berthing impact force.

Develop procedures to determine under what water depth and cross current conditions it is advisable to moor LSV's and LCU-2000's at the pierhead

Use watercrafts' anchoring and bow thruster capabilities to reduce berthing impact force and mooring loads on the pierhead.

Consider other pierhead arrangements to increase moment capability between pierhead and offshore sections.

Use two tandem anchor mooring legs on each side of the pierhead.

Do not assemble and operate a 120-ft long pierhead where seas greater than SS3 are expected.

Develop and implement a program to determine pin life, periodic inspection and replacement criteria.

Perform statistically meaningful experimental tests to determine the fatigue strength and endurance limit mean and standard deviation of the male lock pin. Then determine the value of cyclic stress that would require periodic inspection.

Very little experimental data is available in the literature for shallow-draft barge motions of the type considered here. In view of this, certain well-designed model tests including measurements of both motions and loads would be warranted.

ACKNOWLEDGMENTS

The following NFESC personnel assisted greatly in the completion of this report: Mr. Billy Karrh (structural engineering); Rob Johnston and John Norbutas (finite element modeling and fatigue analysis); Tom Lin (mooring analysis); and Dan McCambridge (berthing analysis). Dr. C. J. Garrison of C. J. Garrison and Associates is acknowledged for performing the hydrodynamic analysis. NFESC would also like to thank Mr. Steve Woolery of USA TRANSCOM for the opportunity to perform this work and the patience shown during its execution.

Figure 1. Single Pierhead, Single Roadway

Figure 2. Dual Pierhead, Single Roadway

Figure 3. Dual Pierhead, Dual Roadway

Figure 4. Modular Causeway Section (MCS)

Figure 6. Flexor and Shear Connector Interface

Appendix A. Offshore Section Loading Calculation

This appendix addresses the loading on an offshore section that is located seaward of the causeway pierhead and serves as both a cargo discharge point and a berthing pier for Army lighters. The section seaward of the pierhead is connected to the pier with FLEXOR and Shear connectors and is not supported directly by an anchoring system.

The recommended analysis procedure requires the forces on this offshore section due to the impact load of the berthing vessel and the wind, waves and current acting on the berthed vessel. Wind, waves and current each produce a steady state force. These forces are evaluated individually and summed to get the total steady state environmental force. The energy absorbed and the force developed by a berthing lighter is based on factors such as the form of the lighter, water depth, berthing velocity, difficulty of the approach, angle of approach, maneuvering space, and location of the pier. The most significant of these factors is the approach velocity, since berthing energy is a function of the square of the normal component of the approach velocity. By doubling the design value of the approach velocity, the lighter's kinetic energy is quadrupled.

The wind and current loads are calculated using procedures established in the Naval Facilities Engineering Command (NAVFAC) Design Manual (DM) 26.5, Fleet Moorings, Basic Criteria and Planning Guidelines, June 1985. The berthing loads are calculated using procedures established in the Military Handbook for Piers and Wharves (MIL-HDBK-1025/1).

Wind Load Calculation

Lateral wind load is determined using the following equation:

$$F_{yw} = \frac{1}{2} \rho_a V_w^2 A_y C_{yw} f_{yw} (\theta_w)$$

where

The lateral wind-force drag coefficient depends upon the hull and superstructure of the vessel:

$$C_{yw} = 0.92 [(V_s/V_R)^2 A_s + (V_H/V_R)^2 A_H] / A_y$$

where

 V_s/V_R = average normalized wind velocity over superstructure V_R = reference wind velocity at 33.33 feet above sea level A_s = lateral projected area of superstructure only, in sq. ft. V_H/V_R = average normalized wind velocity over hull A_{H} = lateral projected area of hull only, in sq. ft. A_{v} = lateral projected area of ship, in sq. ft.

The values of V_s/V_p and V_H/V_p are determined using the following equations

$$V_{s}/V_{R} = (h_{s}/h_{R})^{1/7}$$

 $V_{H}/V_{R} = (h_{H}/h_{R})^{1/7}$

where

 h_s = average height of superstructure, in feet h_R = reference height of wind speed (33.33 ft) h_H = average height of hull, in feet

For an LSV (see Appendix E for LSV characteristics):

 $V_s/V_R = (h_s/h_R)^{1/7} = (36 \text{ ft} / 33.33 \text{ ft})^{1/7} = 1.011$ $V_H/V_R = (h_H/h_R)^{1/7} = (12 \text{ ft} / 33.33 \text{ ft})^{1/7} = 0.864$

The lateral wind-force drag coefficient can now be calculated as:

$$C_{yw} = 0.92 [(V_{g}/V_{R})^{2}A_{s} + (V_{H}/V_{R})^{2}A_{H}] / A_{y}$$

= 0.92 [(1.011)² 960 ft2 + (0.864)² 5933 ft2] / 6893 ft2
= 0.722

For $\theta_w = 90^\circ$, and $V_w = 16$ kt (27.024 ft/s), the lateral wind load on an LSV is:

$$F_{yw} = \frac{\frac{1}{2} \rho_{a} V_{w}^{2} A_{y} C_{yw} f_{yw} (\theta_{w})}{\frac{1}{2} (0.00237 \text{ slugs/ft3}) (27.024 \text{ ft/s})^{2} (6893 \text{ ft2}) (0.722) (1)}{4,307 \text{ lb}}$$

Current Load Calculation

The Lateral current load is determined from the following equation:

$$F_{yc} = \frac{1}{2} \rho_w V_c^2 L_{wL} T C_{yc} \sin\theta_c$$

where

- F_{ve} = lateral current load, in pounds
- ρ_{w} = mass density of water = 2 slugs/ft³ for sea water
- $V_c = current$ velocity, in feet per second
- L_{wL} = vessel waterline length, in feet

T = vessel draft, in feet

- C_{vc} = lateral current-force drag coefficient
- $\dot{\theta}_{c} = \text{current angle}$

The lateral current-force drag coefficient is given by:

$$C_{yc} = C_{yc}j_{\infty} + (C_{yc}j_{1} - C_{yc}j_{\infty}) e^{-k(wd/T - 1)}$$

where

Values of $C_{yel_{\infty}}$ are given in NAVFAC DM26.5 Figure 56 as a function of L_{wl}/B and vessel block coefficient, ϕ . For an LSV ($L_{wl}/B = 255.4$ ft / 60.0 ft = 4.26 and $\phi = 0.80$), $C_{wl_{\infty}} = 0.58$.

Values of $C_{y_cl_1}$ are given in NAVFAC DM26.5 Figure 57 as a function of $C_p L_{w_L} / T^{V_1}$, where C_p is the prismatic coefficient. For an LSV ($C_p L_{w_L} / T^{V_2} = (0.80)(255.4 \text{ ft})/(12.0 \text{ ft})^{V_2} = 59.0$), $C_{y_cl_1} = 3.60$.

The value of the coefficient, k, is given in NAVFAC DM26.5 Figure 58 as a function of ϕ and the vessel hull shape (either block-shaped or normal ship-shaped). For an LSV (block-shaped hull form and $\phi = 0.80$), k = 1.7.

It is important to note that the lateral current-force drag coefficient varies with water depth. As water depth decreases, the current load will increase. The maximum water depth at the pierhead is determined by lighterage draft, tide range and wave height plus a minimum clearance between the lighter bottom and seafloor to reduce damage to the hull from grounding (this will vary depending on the preference of the vessel operator). For an LSV:

wdmax	=	T + tide + wave trough + clearance
	=	12.0 ft + 7-ft + 6-ft/2 + 3-ft
	=	25-ft

The minimum water depth to consider is equal to the draft of the lighter plus the ground clearance:

wd	=	T + clearance
	=	12.0 ft + 3 ft
	=	15-ft

With this information, all of the data required to calculate $C_{_{yc}}$ and $F_{_{yc}}$ is available.

 $C_{y_c} = C_{y_c} I_{\infty} + (C_{y_c} I_1 - C_{y_c} I_{\infty}) e^{-k(wd/T - 1)}$ = 0.58 + (3.60 - 0.58) e^{-1.7 (wd/12 - 1)} for wd = 12-ft, C_{yc} = 3.60

for wd = 15-ft, $C_{ye} = 2.55$

for wd = 20-ft, $C_{yc} = 1.55$ for wd = 25-ft, $C_{yc} = 1.06$

> 500,000 450,000 wd = 12 t 400,000 350,000 wd = 15 ft 300,000 Load (lb) 250,000 200,000 wd = 20 ft 150,000 wd = 25 ft 100,000 50,000 b 0.0 0.5 1.0 1.5 2.0 3.0 3.5 2.5 4.0 Current (kt)

For these water depths, the lateral current load on the LSV as a function of current is provided in Figure A-1.

Figure A-1. Lateral Current Load for an Army LSV (Draft = 12 ft)

These same calculations can be repeated for an LCU-2000. Using:

$C_{y_c} _{\infty} = 0.54$	from NAVFAC DM26.5 Figure 56, where $L_{wl}/B = 3.57$ (156 ft/42.0 ft) and $\phi = 0.69$
$C_{yc}l_1 = 2.6$	from NAVFAC DM26.5 Figure 57, where $C_p L_{wl} / T^{1/2} = 36.9 ((0.69)(156 \text{ ft})/(8.5 \text{ ft})^{1/2})$
k = 1.1	from NAVFAC DM26.5 Figure 58, where $\phi = 0.69$ and using block-shaped hull form

the lateral current load on the LCU-2000 is calculated and provided as a function of current in Figure A-2:

Figure A-2. Lateral Current Load for an Army LCU-2000 (Draft = 8.5 ft)

Berthing Force Calculation

Berthing energy was calculated using the kinetic method as described in Section 5 of the Military Handbook for Piers and Wharves (MIL-HDBK-1025/1). When the displacement tonnage of the watercraft is known, the energy equation can be written as:

 $E_{ship} = \frac{1}{2} \frac{W}{\sigma} v^2$

where $E_{ship} = Berthing energy of ship (ft-lbs)$ W = Weight of ship (lbs)

g = Acceleration due to gravity (32 ft/s^2)

 $v_n = Berthing velocity normal to berth (ft/s)$

Several references were consulted to determine a suitable berthing velocity. It should be noted that the kinetic energy of the berthing vessel is a function of the square of the normal component of its approach velocity. Thus, the kinetic energy as well as the resultant force on the berthing structure are sensitive to changes in approach velocity. By doubling the design value of the approach velocity, the vessel's kinetic energy is quadrupled. Design values used for the approach velocity normal to the berth generally vary from 0.25 to 1.50 ft/s, depending on the size of the ship being docked and the tug assistance that is employed. Figure 44 of MIL-HDBK-1025/1 provides a berthing velocity of approximately 1.0 ft/s for a 5,000 long ton displacement vessel berthing in exposed conditions. In moderate wind and heavy sea conditions, berthing velocity is estimated at 1.5 ft/s from Appendix 3, Table 1 of Port Engineering by Per Bruun. Because higher approach velocities should be anticipated when the berth is located in exposed waters and when vessels self-dock (i.e., no tug assistance), the more conservative estimate was selected.

Given the LSV characteristics (Appendix E) and estimated berthing velocity, berthing energy of the LSV was calculated as:

$$E_{ship} = \frac{1}{2} \frac{W}{g} v^2 = \frac{1}{2} \frac{9,406 kips}{32 ft/s^2} (1.5 \frac{ft}{s})^2 = 330.7 \text{ ft-kip}$$

for $v_n = 1.0$ ft/s, $E_{ship} = 147.0$ ft-kip for $v_p = 0.5$ ft/s, $E_{ship} = 36.7$ ft-kip

There are other factors that modify the actual energy to be absorbed by the causeway pier and fendering system. The expression can be written as:

where

 $E_{\text{fender}} = C_{\text{b}} C_{\text{m}} E_{\text{shin}}$

 $C_m = Effective or virtual mass coefficient$

and

C_e = Eccentricity coefficient

 $C_{g} = Geometric coefficient$

 C_{d}^{*} = Deformation coefficient

C_e = Configuration coefficient

The coefficients that determine the berthing coefficient, C_b , are briefly discussed below. The eccentricity coefficient, C_e , accounts for rotation of the vessel around the contact point which dissipates part of the vessel's energy. Values of C_e typically are between 0.4 and 0.7. A value of 0.4 was chosen from Figure 43 of MIL-HDBK-1025/1. The geometric coefficient, C_g , depends upon the geometric configuration of the ship at the point of impact. Generally, 0.95 is recommended for the impact point at or beyond the quarter points of the vessel, and was selected for this analysis. The deformation coefficient, C_d , accounts for energy dissipated due to ship deformation. A coefficient of 1.0 was chosen since little or no deformation of the vessel is expected. The configuration coefficient, C_e , accounts for the difference between an open pier or wharf and a solid pier or wharf. The Army pier is considered an open pier, with a coefficient of 1.0. For this analysis, the berthing coefficient is:

$$C_{b} = C_{e}C_{a}C_{d}C_{c} = (0.4) (0.95) (1.0) (1.0) = 0.38$$

When a vessel approaches a pier, the berthing impact is induced not only by the mass of the moving vessel, but also by the water mass moving along with the ship. The effective mass or virtual mass coefficient, C_m , accounts for this "added" mass. Its value should be a minimum of 1.5 and need not exceed 2.0. It can be calculated as:

$$C_m = 1 + 2\frac{T}{B} = 1 + (2) (12.0 \text{ ft} / 60.0 \text{ ft}) = 1.4 < 1.5$$
, therefore select 1.5 as value

The actual energy of an LSV berthing alongside a pier can now be calculated as

$$E_{fender} = C_b C_m E_{stein} = (0.38) (1.5) (330.7 \text{ ft-kip}) = 188.5 \text{ ft-kip}$$

for $v_n = 1.0$ ft/s, $E_{fender} = 83.8$ ft-kip for $v_n = 0.5$ ft/s, $E_{fender} = 20.9$ ft-kip

The force, F, on the pier/fender can be calculated from this energy. The work, W, done by the pier/fender to bring the ship to rest is equal to the kinetic energy applied to the fender. Assuming the fender compressing 18 inches (approximately 50% compression on a 3-ft diameter SEA GUARD fender):

$$W_{pier/fender} = E_{fender} = F_{pier/fender} (dist pier / fender move)$$

$$F_{pier/fender} = \frac{E_{fender}}{dist \ pier / \ fender \ move} = \frac{188.5 \ ft - kips}{1.5 \ ft} = 125.7 \ kip$$

for $v_n = 1.0$ ft/s, $F_{pier/fender} = 55.9$ kip

for $v_{\rm n}$ = 0.5 ft/s, $F_{\rm pier/fender}$ = 13.9 kip

	LC	CU-2000			
v_n (ft/s) E_{shin} (ft-kip) E_{fender} (ft-kip) $F_{piet/fender}$ (kip					
1.5	86.8	49.5	33.0		
1.0	38.6	22.0	14.7		
0.5	9.6	5.5	3.6		

These same calculations can be repeated to find the berthing force of an LCU-2000 (vessel characteristics from Appendix F). The results are presented below:

Appendix B. Anchor Mooring System Review

The procedures established in NCEL Technical Memorandum M-42-87-05, Design of Mooring System for Army Floating Causeway Pier, with minor modifications by Dr. Tom Lin of the Amphibious Systems Division (Code ESC31) at NFESC, were used to calculate the environmental loads for this study. The significant environmental loads to be analyzed include current and drift force. When the waves hit the causeway pier, they are partly reflected and partly transmitted. This results in a fluctuating force on the causeway with a non-zero mean which is referred to as a "drift force." The magnitude of the drift force depends on the height, period and direction of the waves impinging upon the causeway pier. These quantities depend on the height, period and direction of the waves in deep water long before they reach the causeway and on the variations in the seafloor between the deepwater area and the location of the pier. The wave direction in deepwater that will produce the maximum load on the causeway varies depending on the water depth at the point of interest on the causeway. The magnitude of the drift force is also affected by the pier itself and how it affects the waves which depends on water depth, causeway draft (which changes with load and position of load), and direction of wave travel.

The low profile of a floating causeway pier provides little opportunity for large windloads to be generated. As shown in TM M-42-87-05, the windloads were insignificant in comparison to the other environmental loadings acting on the pier. Therefore, wind loads were not considered in this analysis.

The slope of the beach and the submerged bottom can also vary widely around the world. Since the intended use of the floating causeway pier is on beaches with too shallow a bottom slope for lighters to operate in, the slope of interest are in the range of 1:50 to 1:250 (vertical:horizontal distances) or flatter. A beach slope of 1:68, calculated as follows, was used for this study to obtain the required minimum water depth (12-ft) for the given pier length (1500-ft) during sea state 3 operations

Beach slope = vertical:horizontal distances Vertical Distance = water depth + tide + wave trough Horizontal Distance = 1500-ft Beach slope = (12-ft + 7-ft + 3-ft) : 1,500-ft = 22-ft : 1,500-ft = 1:68

The loads due to current were assumed to be perpendicular to the axis of the causeway. In accordance with TM M-42-87-05 the worst case drift force was also assumed perpendicular to the axis of the causeway and in the same direction as current to produce a total load of the worst possible case. For the calculation of the current loads, the following equation was used:

where

 $f_{e} = C_{D} (1 + K_{d}) A r V^{2}/2$

 $f_e =$ unit load due to current (lb/linear foot)

 C_{D} = drag coefficient (1 + K_d) = shallow water factor of drag coefficient A = area (cross-sectional of submerged causeway) (ft²)

r = density of seawater (lb/ft³)

V = velocity of current (ft/sec)

For the calculation of the drift force loads, the following equation was used:

 $f_{m} = f H^2$

where

 $f_w =$ unit force on causeway due to wave drift force (lb/linear-foot)

H = wave height at point of interest on causeway (feet)

 $f = drift force factor, f(a, d, T) (lb/ft^3)$

and

- a = wave angle (angle between wave crest and shoreline) at point of interest on causeway, f (a_o, d, T) (degrees)
- a_{o} = wave angle (angle between wave crest and shoreline) in deep water (degrees)

d = water depth at point of interest on causeway (feet)

T = period of waves (second)

The total load (current plus drift force) on the 1500-ft causeway pier in a sea state 5 survival condition (12-ft wave height) is presented in Figure B-1 and in Table B-1.

Figure B-1. Environmental loads on a 1500-ft single roadway causeway pier assuming a bottom slope of 1:68, tide range of 7 feet, cross current of 4-kt and a sea state 5.

INPUT DATA:				
$\begin{array}{rcl} \mathrm{NCASE} &=& 1, \ \mathrm{F} \\ \mathrm{WDMAX} &=& \mathrm{WAT} \\ \mathrm{AL} &=& \mathrm{A} \ \mathrm{B} \\ \mathrm{V1} &=& \mathrm{BEA} \\ \mathrm{NCASE} & \mathrm{WDMA} \\ && 2 & 22. \end{array}$	IXED BARGE; NCAS ER DEPTH AT PIER ARGE LENGTH M CURRENT, KNOT X LENGTH SLOP 0 80.0 68	E = 2, FLOATING BA $HEAD$ $SL = SEAF$ $T0 = DRAF$ $E V1 T0$ $. 4.0 2.2$	ARGE TLOOR SLOPE T, FT WAMP PERI 6.0 6.8	
OUTPUT DATA:				
WATER DEPTH (FT)	DIST. FROM SHORE (FT)	CURRENT FORCE (LB)	DRIFT FORCE (LB)	
.6	80.0	0.	321.	
1.8	160.0	0.	2888.	
2.9	240.0	0.	8022.	
4.1	320.0	0.	15723.	
5.3	400.0	0.	25992.	
6.5	480.0	9395.	38827.	
7.6	560.0	10568.	54230.	
8.8	640.0	12682.	72199.	
10.0	720.0	15296.	92736.	
11.2	800.0	13450.	92736.	
12.4	880.0	12363.	92736.	
13.5	960.0	11693.	92736.	
14.7	1040.0	11176.	92736.	
15.9	1120.0	10777.	92736.	
17.1	1200.0	10475.	92736.	
18.2	1280.0	10253.	92736.	
19.4	1360.0	10053.	92736.	
20.6	1440.0	9870.	92736.	
21.8	1520.0	9748.	92736.	

Table B-1. Environmental loads on a 1500-ft single roadway causeway pier assuming a bottom slope of 1:68, tide range of 7 feet and a sea state 5.

Appendix C. Wave Loads on Pierhead

This study was carried out to evaluate the internal structural loads at certain imaginary cuts through the pierhead. The general configuration of the structure is shown in Figure C-1. The overall dimensions are 120 feet by 88 feet by 4.5 feet in depth. The structure was taken to float at equilibrium with a draft of 14 inches. The water depth was constant at 16.0 feet.

Figure C-1. Simplified Army Causeway Pierhead

The coordinates used to describe the loads are represented by rectangular coordinates with y pointing upward, x pointing in the direction of wave propagation (at zero wave direction) and z pointing in the beamwise direction. The structure was subjected to irregular waves at sea state 3 and 5.

Loads have been calculated at vertical-plane cuts through the structure at 20 feet from the end (cut B), at the center (cut A) and along the centerline of the structure (cut C) as shown in Figure C-2. The statistical values of all six components of the loads as well as the moment RAO are presented for the cuts. Figure C-2 defines the wave direction and the load component designation. The load components follow the right hand coordinates system at the cut with y being upward and z being transverse to the long dimension of the structure and x being parallel to the long dimension of the structure in all three cases. To simplify the analysis, the structure was considered to be free-floating without moorings and responding to the wave motion.

Figure C-2. Definition of Loads & Cuts

Methodology

Analysis of the wave loads at three different sections through the pier have been carried out using the computer program package, MORA (MORA User's Guide (1993), C. J. Garrison & Associates). In this program, three-dimensional diffraction theory is used to evaluate the hydrodynamic coefficients and eventually the Response Amplitude Operator (RAO) for the load components resolved into the principal axes at the imaginary cut. The origin of the axes used to resolve the loads is located at the center of cut. This load RAO information is then used in conjunction with the wave spectrum to obtain the statistical properties of the loads. As noted in the following, however, it is actually only the bending moment about a horizontal axis at the interface which is of primary interest since only this component is large and effective in generating the critical structural loads.

Numerical Hydrodynamic Analysis

The three dimensional diffraction theory analysis requires discretizing the immersed surface of the multi-module structure into a quadrilateral grid. The immersed surface of the structure is then represented by a surface source distribution uniformly distributed over each panel. The subdivision of the immersed surface must be sufficiently fine to obtain convergence of the numerical solution. The grid used to make the calculations is shown in Figure C-3 for the complete pier structure. A total of 516 source panels was used to represent the complete immersed surface.

Figure C-3. Immersed Surface Grid

For purposes of evaluating the motions and loads, the mass distribution of the overall pierhead was needed. This was computed based on a 14.0 inch draft giving a displacement of 789.5 kip. The radii of gyration were estimated by assuming that the total mass of the module was uniformly distributed over the surface of the box-like form. That is, the module was approximated by a simple shell structure. The location of the center of gravity and moments of inertia corresponding to parts of the structure isolated by the cuts are listed in Table C-1. Section B, for example, refers to the part of the structure to the right of the cut B indicated in Figure C-1. The mass refers to this portion of the structure and the moments of inertia are about axes at the cut.

SECTION	C.G. Dist.	Mass	I_{xx}	I _{yy}	I _{zz}
	from center	(slugs)	(slug-ft ²)	(slug-ft ²)	(slug-ft ²)
А	30.5	1.227 10 ⁴	$0.8175 \ 10^7$	$2.44 10^7$	$1.578 \ 10^7$
В	50.97	0.437 104	$0.3087 \ 10^7$.3764 10 ⁷	$0.714\ 10^6$
С	23.03	$1.227 \ 10^4$	$0.8715 \ 10^7$	$2.44 10^7$	$1.578 \ 10^7$

Table C-1. Mass Properties of Sections of Strue	ture
---	------

Wave Spectra

There are two wave spectra which are considered in this report; an operational spectra and a survival spectra, characterized by an International Ship Structures Congress (ISSC) spectrum with significant wave height, H_{a} , and a peak frequency, f_{0} , as shown in Table C-2.

Table C-2. ISSC Wave Spectra

Sea State	H _s (ft)	f ₀ (peak, Hz.)
3.0	3.3	0.18
5.0	10.0	0.11

The operational and survival spectra as defined above are plotted in Figure C-4 and Figure C-5, respectively.

Load Components

The three components of force and three components of moment have been computed for each of the three sections identified as section A, B and C in Figure C-2. The loads have been computed corresponding to both the operational spectrum (sea state 3) and the survival spectrum (sea state 5). In all cases the loads have been computed as a function of wave direction as well as sea state. The input and output MORA data files for this analysis are provided beginning on page C-9 and C-14 respectively.

The load values shown in the figures represent significant loads. These are sometimes referred to as the average of the one third highest peak values. From a statistical viewpoint, the maximum value can be computed based on a Rayleigh distribution by multiplying the significant values by the factor $(LnN/2)^{44}$ where N denotes the total number of waves during the duration of exposure to the sea state in question.

The significant values of the force components at Cut A (transverse cut through the middle of the pier) are shown in Figure C-6 and Figure C-7 for sea state 3 and 5, respectively. The results appear very similar to each other with the exception that the magnitudes are greater, as expected, for sea state 5 compared to sea state 3.

Figure C-6. Significant Loads at Cut A, SS3

Figure C-7. Significant Loads at Cut A, SS5

Significant values of the force components at cut B (cut 20 ft. from the end) are shown in Figure C-8 and Figure C-9. The vertical "shear force" is found to be the greatest component as shown by the figures when the waves approach from the end where the cut is located (180 degrees).

Figure C-8. Significant Loads at Cut B, SS3

Figure C-9. Significant Loads at Cut B, SS5

Figure C-10 and Figure C-11 show the three components of the significant force at cut C (centerline cut). Here the vertical force which always represents the greatest component has its maximum value at wave direction of 90 degrees and, of course, is zero at zero degrees wave direction due to symmetry.

Figure C-10. Significant Loads at Cut C, SS3

Figure C-11. Significant Loads at Cut C, SS5

The values of the significant moments at the cuts A, B and C are shown in Figure C-12 through Figure C-17. In the case of cut A described in Figure C-12 and Figure C-13 the values of Mx shows the largest peak, but this is somewhat misleading from the view point of resulting stresses within the structure. Even though Mx is large, its effect on the structure is minor since the sectional area through the structure available to resist this load component is very large. That is, there is a great deal of sectional area with large associated lever arm. The effect of My is also negligible in view of the fact that it is not only small but also has a large associated lever arm.

The most important load for cut A is Mz, the moment about a horizontal axis along the cut. Mz is large at zero wave direction and the lever arm of the sectional area or connector device, which ever provides the resistance, is small (only 2.25 feet maximum from the center of the section).

Figure C-12. Significant Moment at Cut A, SS3

Figure C-13. Significant Moment at Cut A, SS5

The values of the significant moment at cut B (20 feet from the end of the structure) presented in Figure C-14 and Figure C-15 shows that Mx and Mz are both sizable. Here again, Mx is probably not of much importance but Mz is very important even though it is smaller in magnitude than Mx due to the fact that the vertical dimension of the structure is rather small (only 4.5 feet).

Figure C-14. Significant Moment at Cut B, SS3

Figure C-15. Significant Moment at Cut B, SS 5

In Figure C-16 and Figure C-17 the significant moment components for cut C are presented. Cut C is perpendicular to cut A and B and is along the centerline of the structure. Thus, Mx (as opposed to Mz) is the most important moment component from the view point of structural resistance. In

Figure C-16 and Figure C-17 Mz is large but from the view point of the structure it is of little significance.

Figure C-16. Significant Moments at Cut C, SS3

Figure C-17. Significant Moments at Cut C, SS5

Moment RAO

In Figure C-12 through Figure C-17 the significant values of the load components are presented. These values were obtained by use of the load RAO and spectral density functions. The results and configuration of the structure indicate that for cut A and B the significant value of Mz is the most important load component. Thus, the RAO's which were used to produce these figures showing significant load are presented in Figure C-18 and Figure C-19. The results indicate the variation of the moment per unit wave amplitude for 75 and 90 degrees wave direction. The figures generally show fairly large values of the RAO in the region of large wave spectral density. This results in large (significant) loads.

Figure C-18. Moment RAO at Cut A

In Figure C-20 the Mx moment RAO, for cut C is shown. The z-component is actually the largest moment component but the moment component Mx, which is maximum at 90 degrees, is the one of primary interest in the way that it effects the structure. Mx at this cut lies horizontally along the cut and represents the most critical component of load as it affects the structure.

Figure C-20. Mx Moment RAO at Cut C

MORHAL INPUT FILE

F	loating Pie 2 152	er - 12 516	0' x 88' x 0	: 1.16	57			
	0 1	. 5	1	0	1			
	0 0	0	0	7	1			
	16.0000	15 00	4.0000	2.00	1 0020	32.1740	.0000	
	.245400E+0	15.00	0000E+00	.00000	1.0030 0E+00	00000E+00	0000002+00	0000008+00
	.000000E+0	0.24	5400E+05	.00000	0E+00	.000000E+00	.000000E+00	.000000E+00
	.000000E+0	0.00	0000E+00	.24540	0E+05	.000000E+00	.000000E+00	.000000E+00
	.00000E+0	0.00	0000E+00	.00000	0E+00	.174300E+08	.000000E+00	.000000E+00
	.000000E+0	0.00	0000E+00	.00000	0E+00	.000000E+00	.488000E+08	.000000E+00
	000000E+0		000000000000000000000000000000000000000	.00000	10E+00	.000000E+00	.000000E+00	-315700E+08
	.000000E+0	0.00	0000E+00	.00000	0E+00	.000000E+00	.000000E+00	.000000E+00
	.000000E+0	0.00	0000E+00	.00000	0E+00	.000000E+00	.000000E+00	.000000E+00
	.000000E+0	0.00	0000E+00	.00000	0E+00	.000000E+00	.000000E+00	.000000E+00
	.000000E+0	0.00	0000E+00	.00000	0E+00	.000000E+00	.000000E+00	.000000E+00
	.000000E+0	10 .00	1 1670	.00000	05+00	.000000E+00	.000000E+00	.000000E+00
	1 60	.0000		0	44.000)		
	2 60	.0000	.000	0	.0000)		
	3	.0000	.000	0	44.0000)		
	4	.0000	.000	0	.0000)		
	5 55	.0000	.000	0	.0000)		
	50 DU 7 45	0000	.000		.0000)		
	8 40	.0000	.000	0	.0000	,)		
	9 35	.0000	.000	0	.0000)		
	10 30	.0000	.000	0	.0000)		
	11 25	.0000	.000	0	.0000)		
	12 20	0000	.000		.0000)		
	14 10	.0000	.000	0	.0000)		
	15 5	.0000	.000	0	.0000)		r
	16 55	.0000	.000	0	44.0000)		
	17 50	.0000	.000	0	44.0000)		
	18 45	.0000	.000		44.0000)		
	20 35	.0000	.000	10	44.0000)		
	21 30	.0000	.000	0	44.0000)		
	22 25	.0000	.000	0	44.0000)		
	23 20	.0000	.000	0	44.0000)		
	24 15	.0000	.000	10	44.0000)		
	25 10	.0000	.000	10	44.0000)		
	27 60	.0000	.000	0	39.1111	-		
	28 60	.0000	- 000	0	34.2222	2		
	29 60	.0000	.000	0	29.3333	3		
	30 60		.000	10	24.4444	<u>+</u>		
	32 60	00000	.000	0	14.666	7		
	33 60	.0000	.000	0	9.7778	3		
	34 60	.0000	.000	0	4.8889)		
	35	.0000	.000	0	39.1111			
	30	.0000	.000	0	34.2222	2		
	38	.0000	.000	10	24.444	1		
	39	.0000	.000	0	19.5556	5		
	40	.0000	.000	0	14.666	7		
	41	.0000	.000	0	9.777	3		
	42	.0000	.000	0	4.8889)		
	44 50	.0000	.000	00	4.8889)		

45 45.0000 46 40.0000 47 35.0000 48 30.0000 50 20.0000 50 20.0000 51 15.0000 52 10.0000 53 5.0000 54 55.0000 55 50.0000 56 45.0000 57 40.0000 58 35.0000 60 25.0000 61 20.0000 62 15.0000 63 10.0000 64 5.0000 65 55.0000 66 50.0000 67 45.0000 68 40.0000 69 35.0000 70 30.0000 71 25.0000 72 20.0000 73 15.0000 74 10.0000 75 5.0000 76 55.0000 77 50.0000 78 45.0000 79 40.0000 80 35.0000 81 30.0000 84 15.0000 90 40.0000 91 35.0000 92 30.0000 93 25.0000 94 20.0000 95 15.0000 96 10.0000 97 5.0000 98 55.0000 99 50.0000 104 25.0000 105 20.0000 106 15.0000 107 10.0000 </th <th></th> <th>4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 14.6667 14.6667 14.6667 14.6667 14.6667 14.6667 19.5556 19.3333 29.33333 29.33333 29.3333 29.3333 29.3333 29.333</th>		4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 4.8889 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 9.7778 14.6667 14.6667 14.6667 14.6667 14.6667 14.6667 19.5556 19.3333 29.33333 29.33333 29.3333 29.3333 29.3333 29.333
--	--	---

111111111112222223456789012345678901234567890121234567890123456789012322222222222222222222222222222222222	4332211 5544332211 11223344556666666666 567890890662345678907895512 112256 1112256 1112256	0.000 0.0000 0.000	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .1670 1.1600 1.1600 1.1600 1.1600 1.1600 1.1600 1.	34.222 34.222 34.222 34.222 34.222 34.222 34.222 34.222 34.222 34.222 39.111 39.1
110 111 112 113 114 115 116 117 118	54 4 3 2 2 1 1	0.000 5.000 5.000 5.000 5.000 5.000 5.000		.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	34.22 34.22 34.22 34.22 34.22 34.22 34.22 34.22 34.22 34.22 34.22
119 120 121 122 123 124 125 126 127 128	5 5 4 3 2 2 1	5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000		.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	34.222 39.111 39.111 39.111 39.111 39.111 39.111 39.111 39.111 39.111
129 130 131 132 133 134 135 136 137 138	1 1 2 2 3 3	0.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000	000000000000000000000000000000000000000	.0000 .0000 1.1670 1.1670 1.1670 1.1670 1.1670 1.1670 1.1670 1.1670	39.111 39.111 44.000 44.000 44.000 44.000 44.000 44.000 44.000 44.000 44.000 44.000
139 140 141 142 143 144 145 145 146	4 4 5 5 6 6 6 6 6	0.000 5.000 5.000 0.000 0.000 0.000 0.000	000000000000000000000000000000000000000	1.1670 1.1670 1.1670 1.1670 1.1670 1.1670 1.1670 1.1670 1.1670	44.000 44.000 44.000 44.000 39.111 34.222 29.333 24.444
148 149 150 151 152 1 2 3 4 5	6 6 53 64 75 86 97	0.000 0.000 0.000 0.000 15 53 64 75 86	0 0 0 0 4 42 41 40 39	1.1670 1.1670 1.1670 1.1670 1.1670 42 41 40 39 38	19.555 14.666 9.777 4.888 .000
6 7 9 10 11 12 13 14	108 119 130 26 52 63 74 85	97 108 119 130 3 14 52 63 74	38 37 36 35 131 15 53 64 75	37 36 35 3 132 53 64 75 86	
15 16 17 18 19 20 21 22	96 107 118 129 25 25 51 62	85 96 107 118 129 26 13 51	86 97 108 119 130 132 14 52	97 108 119 130 26 133 52 63	

2222223333333334444444444445555555555666666666	895 1017842012346789012346789012228901221789012340067890123995670 10122245789012390123995670 101222890122245789012340067890123995670	$\begin{array}{c} 73\\ 8 \\ 9 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	$\begin{array}{c} 78567893312345677842012345675190123456608901234579789012348867891123123456789012348867890123456608901234579789012348867890123488678901234886789012348867890123488678901234886789012348867890123488678901234886789012348867890123488678901234886789012348886789012348886789012348886789012348886789012348886789012348886789012348886789012348886789012348886789012348886789012348886789012348886789012348886789012348886789001234888678900123488867890012348886789000000000000000000000000000000000$	856789541223450784501234506736901223789012234567890122345012236901223457890122345689012340967801122234568901234096780112223456890123409678011223456890123409678011223456890123409678011223456890123409678011223456890123409678011223456890123409678011223456890123409678011223456890123409678011223456890123409678001234568900123456890012345689001234568900123456890012345689000000000000000000000000000000000000
--	---	---	---	---

.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 123\\ 139\\ 7\\ 45\\ 67\\ 78\\ 9\\ 100\\ 112\\ 140\\ 6\\ 44\\ 55\\ 66\\ 78\\ 99\\ 1121\\ 14\\ 23\\ 32\\ 16\\ 151\\ 149\\ 144\\ 143\\ 322\\ 151\\ 149\\ 144\\ 143\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146$	$\begin{array}{c} 144\\ 456\\ 678\\ 901\\ 1128\\ 1128\\ 1128\\ 1128\\ 1128\\ 1128\\ 1128\\ 1128\\ 1217\\ 1456\\ 789\\ 91217\\ 1456\\ 789\\ 1456\\ 789\\ 1456\\ 789\\ 1456\\ 789\\ 1456\\ 789\\ 1456\\ 789\\ 1456\\ 789\\ 1456\\ 789\\ 1456\\ 780\\ 780\\ 780\\ 780\\ 780\\ 780\\ 780\\ 780$
		$\begin{array}{c} 112\\ 123\\ 139\\ 7\\ 567\\ 890\\ 1120\\ 45567\\ 890\\ 1120\\ 45567\\ 890\\ 1121\\ 243\\ 321\\ 0928\\ 1422\\ 1443\\ 1443\\ 144443\\ 14443\\ 14443\\ 14443\\ 14443\\ 14443\\ 144443\\ 144443\\ 144443\\ 144443\\ 144444\\ 144444\\ 144444\\ 144444\\ 144444\\ 144444\\ 144444\\ 144444\\ 144444\\ 144444\\ 144444\\ 14444444\\ 144444\\ 144444\\ 14444444\\ 144444\\ 144444\\ 1444444\\ 1444444\\ 1444444$

4

MORHAL OUTPUT FILE

******HYDRODYNAMIC INPUT DATA*****

ADDED MASS MATRIX

FREQ.=	.060					
	.0110 .0000 .0000 .0000 .0000 1474	.0000 7.8850 .0000 .0000 .0000 .0000	.0000 .0000 .0154 .1184 .0000 .0000	.0000 .0000 .0758 1.3660 .0000 .0000	.0000 .0000 .0000 .0000 .0000 .0069 .0000	0940 .0000 .0000 .0000 .0000 3.2990
FREQ.=	.080					
	.0098 .0000 .0000 .0000 .0000 1180	.0000 6.3040 .0000 .0000 .0000 .0000	.0000 .0141 .1008 .0000 .0000	.0000 .0642 1.2220 .0000 .0000	.0000 .0000 .0000 .0000 .0071 .0000	0748 .0000 .0000 .0000 .0000 2.8580
FREQ.=	.100					
	.0086 .0000 .0000 .0000 .0000 0899	.0000 5.3940 .0000 .0000 .0000 .0000	.0000 .0000 .0125 .0810 .0000 .0000	.0000 .0000 .0512 1.0630 .0000 .0000	.0000 .0000 .0000 .0000 .0073 .0000	0565 .0000 .0000 .0000 .0000 2.4430
FREQ.=	.120					
	.0078 .0000 .0000 .0000 .0000 0672	.0000 4.8240 .0000 .0000 .0000 .0000	.0000 .0000 .0111 .0630 .0000 .0000	.0000 .0000 .0394 .9227 .0000 .0000	-0000 -0000 -0000 -0000 -0074 -0000	0416 .0000 .0000 .0000 .0000 2.1100
FREQ.=	.140					
	.0071 .0000 .0000 .0000 .0000 0497	.0000 4.4450 .0000 .0000 .0000 .0000	.0000 .0000 .0099 .0482 .0000 .0000	.0000 .0000 .0296 .8106 .0000 .0000	.0000 .0000 .0000 .0000 .0076 .0000	0302 .0000 .0000 .0000 .0000 1.8580
FREQ.=	.160					
	.0066 .0000 .0000 .0000 .0000 0363	.0000 4.1840 .0000 .0000 .0000 .0000	.0000 .0000 .0090 .0365 .0000 .0000	.0000 .0000 .0219 .7254 .0000 .0000	.0000 .0000 .0000 .0000 .0079 .0000	0213 .0000 .0000 .0000 .0000 1.6670

FREQ.= .180

	.0062 .0000 .0000 .0000 .0000 0260	.0000 4.0070 .0000 .0000 .0000 .0000	.0000 .0000 .0083 .0276 .0000 .0000	.0000 .0000 .0160 .6618 .0000 .0000	.0000 .0000 .0000 .0000 .0080 .0080	0146 .0000 .0000 .0000 .0000 1.5220
FREQ.=	.200					
	.0058 .0000 .0000 .0000 .0000 0181	.0000 3.8990 .0000 .0000 .0000 .0000	-0000 -0000 -0078 -0208 -0000 -0000	.0000 .0000 .0114 .6145 .0000 .0000	.0000 .0000 .0000 .0000 .0081 .0081	0094 .0000 .0000 .0000 .0000 1.4100
FREQ.=	.220					
	.0055 .0000 .0000 .0000 .0000 0124	.0000 3.8490 .0000 .0000 .0000 .0000	.0000 .0000 .0075 .0157 .0000 .0000	.0000 .0000 .0079 .5791 .0000 .0000	.0000 .0000 .0000 .0000 .0080 .0080	0055 .0000 .0000 .0000 .0000 1.3250
FREQ.=	.240					
	.0053 .0000 .0000 .0000 .0000 0083	.0000 3.8510 .0000 .0000 .0000 .0000	.0000 .0000 .0072 .0116 .0000 .0000	.0000 .0000 .0052 .5527 .0000 .0000	.0000 .0000 .0000 .0000 .0078 .0000	0027 .0000 .0000 .0000 .0000 1.2650
FREQ.=	.260					
	.0051 .0000 .0000 .0000 .0000 0053	.0000 3.8970 .0000 .0000 .0000 .0000	.0000 .0000 .0069 .0082 .0000 .0000	.0000 .0029 .5331 .0000 .0000	.0000 .0000 .0000 .0000 .0076 .0000	0006 .0000 .0000 .0000 .0000 1.2300
FREQ.=	.280					
	.0049 .0000 .0000 .0000 .0000 0026	.0000 3.9880 .0000 .0000 .0000 .0000	.0000 .0000 .0065 .0052 .0000 .0000	.0000 .0000 .0008 .5195 .0000 .0000	.0000 .0000 .0000 .0000 .0074 .0000	.0013 .0000 .0000 .0000 .0000 1.2140
FREQ.=	.300					
	.0047 .0000 .0000 .0000 .0000 0002	.0000 4.1340 .0000 .0000 .0000 .0000	.0000 .0000 .0062 .0027 .0000 .0000	.0000 .0000 0010 .5120 .0000 .0000	.0000 .0000 .0000 .0000 .0071 .0000	.0030 .0000 .0000 .0000 .0000 1.2130
FREQ.=	.320					
	.0044	.0000	.0000	.0000	.0000	.0046

	.0000 .0000 .0000 .0000 .0021	4.3500 .0000 .0000 .0000 .0000	.0000 .0059 .0005 .0000 .0000	.0000 0025 .5110 .0000 .0000	.0000 .0000 .0000 .0068 .0000	.0000 .0000 .0000 .0000 1.2240
FREQ.=	.3	340				
	.0041 .0000 .0000 .0000 .0000 .0045	.0000 4.7080 .0000 .0000 .0000 .0000	.0000 .0055 0016 .0000 .0000	.0000 .0000 0040 .5164 .0000 .0000	.0000 .0000 .0000 .0000 .0065 .0000	.0063 .0000 .0000 .0000 .0000 1.2530
FREQ.=	.3	360				
	.0039 .0000 .0000 .0000 .0000 .0000	.0000 5.1640 .0000 .0000 .0000 .0000	.0000 .0000 .0051 0038 .0000 .0000	.0000 .0000 0055 .5270 .0000 .0000	-0000 -0000 -0000 -0000 -0062 -0062	.0079 .0000 .0000 .0000 .0000 1.2960
		**DAME	NG MATRIX	**		
FREQ.=	.0	060				
	.0037 .0000 .0000 .0000 .0000 0839	.0000 10.0500 .0000 .0000 .0000 .0000	.0000 .0000 .0046 .0543 .0000 .0000	.0000 .0000 .0354 .4191 .0000 .0000	.0000 .0000 .0000 .0000 .0001 .0001	0545 .0000 .0000 .0000 .0000 1.2210
FREQ.=	.0	080				
	.0046 .0000 .0000 .0000 .0000 1022	.0000 8.1960 .0000 .0000 .0000 .0000	.0000 .0000 .0061 .0715 .0000 .0000	.0000 .0000 .0466 .5440 .0000 .0000	.0000 .0000 .0000 .0000 .0002 .0002	0664 .0000 .0000 .0000 .0000 1.4750
FREQ.=	.1	.00				
	.0049 .0000 .0000 .0000 .0000 1076	.0000 6.8510 .0000 .0000 .0000 .0000	20000 20000 20070 20799 20000 20000	.0000 .0000 .0521 .5976 .0000 .0000	.0000 .0000 .0000 .0000 .0003 .0003	0698 .0000 .0000 .0000 .0000 1.5370
FREQ.=	.1	.20				
	.0050 .0000 .0000 .0000 .0000 1056	.0000 5.8350 .0000 .0000 .0000 .0000	.0000 .0000 .0073 .0818 .0000 .0000	.0000 .0000 .0533 .5993 .0000 .0000	.0000 .0000 .0000 .0000 .0005 .0005	0684 .0000 .0000 .0000 .0000 1.4910

FREQ.= .140

			2 /			
	.0049 .0000 .0000 .0000 .0000 1003	.0000 5.0410 .0000 .0000 .0000 .0000	.0000 .0000 .0073 .0798 .0000 .0000	.0000 .0000 .0520 .5716 .0000 .0000	.0000 .0000 .0000 .0000 .0007 .0007	0649 .0000 .0000 .0000 .0000 1.3980
FREQ.=	.160					
	.0048 .0000 .0000 .0000 .0000 0936	.0000 4.3980 .0000 .0000 .0000 .0000	.0000 .0000 .0071 .0758 .0000 .0000	.0000 .0000 .0493 .5307 .0000 .0000	.0000 .0000 .0000 .0000 .0011 .0000	0605 .0000 .0000 .0000 .0000 1.2900
FREQ.=	.180					
	.0048 .0000 .0000 .0000 .0000 0867	.0000 3.8610 .0000 .0000 .0000 .0000	.0000 .0000 .0069 .0710 .0000 .0000	.0000 .0000 .0461 .4861 .0000 .0000	.0000 .0000 .0000 .0000 .0015 .0000	0559 .0000 .0000 .0000 .0000 1.1800
FREQ.=	.200					
	.0047 .0000 .0000 .0000 .0000 .0000	.0000 3.4060 .0000 .0000 .0000 .0000	.0000 .0000 .0066 .0662 .0000 .0000	.0000 .0000 .0428 .4424 .0000 .0000	.0000 .0000 .0000 .0000 .0021 .0000	0513 .0000 .0000 .0000 .0000 1.0720
FREQ.=	.220					
	.0047 .0000 .0000 .0000 .0000 0731	.0000 3.0210 .0000 .0000 .0000 .0000	.0000 .0000 .0065 .0616 .0000 .0000	.0000 .0000 .0397 .4014 .0000 .0000	.0000 .0000 .0000 .0000 .0026 .0026	0469 .0000 .0000 .0000 .0000 .9658
FREQ.=	.240					
	.0046 .0000 .0000 .0000 .0000 0673	.0000 2.6970 .0000 .0000 .0000 .0000	.0000 .0000 .0065 .0576 .0000 .0000	.0000 .0000 .0370 .3636 .0000 .0000	.0000 .0000 .0000 .0000 .0030 .0030	0431 .0000 .0000 .0000 .0000 .8635
FREQ.=	.260					
	.0046 .0000 .0000 .0000 .0000 .0000 0626	.0000 2.4290 .0000 .0000 .0000 .0000	.0000 .0000 .0065 .0542 .0000 .0000	.0000 .0000 .0346 .3287 .0000 .0000	.0000 .0000 .0000 .0000 .0034 .0000	0399 .0000 .0000 .0000 .0000 .7694
FREQ.=	.280					
	.0046	.0000 2.2080	.0000	.0000	.0000	0372

.0000 .0000 .0000 0587	- 0000 - 0000 - 0000 - 0000	.0066 .0510 .0000 .0000	.0325 .2960 .0000 .0000	.0000 .0000 .0038 .0000	.0000 .0000 .0000 .6869	
FREQ. = .3	00					
.0047 .0000 .0000 .0000 .0000 0554	.0000 2.0300 .0000 .0000 .0000 .0000	.0000 .0000 .0066 .0481 .0000 .0000	.0000 .0000 .0304 .2653 .0000 .0000	.0000 .0000 .0000 .0000 .0042 .0000	0349 .0000 .0000 .0000 .0000 .6163	
FREQ.= .3	20					
.0048 .0000 .0000 .0000 .0000 0525	.0000 1.8980 .0000 .0000 .0000 .0000	.0000 .0000 .0066 .0455 .0000 .0000	.0000 .0000 .0286 .2375 .0000 .0000	-0000 -0000 .0000 .0000 .0045 .0000	0328 .0000 .0000 .0000 .0000 .5554	
FREQ.= .3	40					
.0049 .0000 .0000 .0000 .0000 0500	.0000 1.8520 .0000 .0000 .0000 .0000	.0000 .0000 .0067 .0433 .0000 .0000	.0000 .0000 .0270 .2142 .0000 .0000	.0000 .0000 .0000 .0000 .0048 .0000	0310 .0000 .0000 .0000 .0000 .5056	
FREQ. = .3	60					
.0048 .0000 .0000 .0000 .0000 0474	.0000 1.8250 .0000 .0000 .0000 .0000	.0000 .0000 .0067 .0410 .0000 .0000	.0000 .0000 .0254 .1929 .0000 .0000	.0000 .0000 .0000 .0000 .0051 .0000	0293 .0000 .0000 .0000 .0000 .4592	
	EXCII	ATION LOAD	S			
FREQ. = .00	50					
LOAD COMPONENTS PHASE ANGLES:	B 2.0827 -1.6324	ETA = 3.6736 4831	.000000 .0000 .0000	.0000	.0000	1.9012 1.5108
LOAD COMPONENTS PHASE ANGLES:	: .0805 -1.6318	3.6966	.0234	.2677 -1.5896	.0058 3.1414	1.8385 1.5109
LOAD COMPONENTS PHASE ANGLES:	: .0738 -1.6302 B	ETA = 3.7584 4830 ETA =	.523600 .0457 -1.5894 .785400	.5288 -1.5899	.0098 3.1414	1.6531 1.5114
LOAD COMPONENTS PHASE ANGLES:	: .0619 -1.6282	3.8411 4829 ETA = 1	.0658 -1.5901 047000	.7704 -1.5903	.0109 3.1414	1.3546 1.5121
LOAD COMPONENTS PHASE ANGLES:	.0449 -1.6263	3.9215 4827 ETA = 1	.0820 -1.5908	.9714 -1.5907	.0091 3.1413	.9610 1.5127
LOAD COMPONENTS PHASE ANGLES:	: .0237 -1.6249 B	3.9790 4826 ETA = 1	.0925 -1.5913 .571000	1.1060 -1.5910	.0051 3.1413	.4985 1.5132

LOAD COMPONENTS: PHASE ANGLES:	.0000	3.9997 4826	0961. 1.5915-	1.1536 -1.5912	.0000	.0000 1.5033
FREQ. = .080						
	ਸ਼	ידיא –	000000			
LOAD COMPONENTS.	0873	3 1056	000000	0000	0000	2 0440
PHASE ANGLES:	-1.7620	7594	.0000	.0000	.0000	1.3895
LOAD COMPONENTS.	0857	3 1476	0254	2767	0000	1 0706
PHASE ANGLES:	-1.7587	7583	-1.6514	-1.6572	3.1324	1.3900
LOAD COMPONENTS:	. 0803	3 2600	0504	5592	0163	1 70/7
PHASE ANGLES:	-1.7503	7554	-1.6535	-1.6579	3.1318	1.3913
LOAD COMPONENTS:	.0693	3.4073	0738	8384	0176	1 4664
PHASE ANGLES:	-1.7399 BF	7519	-1.6566	-1.6589	3.1309	1.3930
LOAD COMPONENTS:	.0515	3.5471	0931	1 0853	01/1	1 0/10
PHASE ANGLES:	-1.7307 BE	7489	-1.6598	-1.6599	3.1297	1.3947
LOAD COMPONENTS:	.0276	3.6445	.1059	1.2583	0077	5408
PHASE ANGLES:	-1.7246 BE	7469 TA = 1.	-1.6623	-1.6607	3.1288	1.3959
LOAD COMPONENTS:	.0000	3.6791	.1103	1.3208	.0000	.0000
PHASE ANGLES:	.0000	7462	-1.6632	-1.6609	.0000	1.4553
FREQ.= .100						
	BE	TA =	.000000			
LOAD COMPONENTS:	.0839	2.5749	.0000	.0000	.0000	2.0275
PHASE ANGLES:	-1.9788 BE	-1.0814 TA =	.0000 .261800	.0000	.0000	1.2009
LOAD COMPONENTS:	.0835	2.6419	.0246	.2485	.0144	1.9663
PHASE ANGLES:	-1.9664 BE	-1.0752 TA =	-1.7543 523600	-1.7794	3.1046	1.2019
LOAD COMPONENTS:	.0809	2.8190	.0501	.5224	.0233	1.7797
PHASE ANGLES:	-1.9365 BE	-1.0604 TA =	-1.7599 785400	-1.7791	3.1007	1.2044
LOAD COMPONENTS:	.0726	3.0463	.0754	.8212	.0240	1.4668
PHASE ANGLES:	-1.9026 BE	-1.0442 TA = 1.	-1.7684 .047000	-1.7792	3.0940	1.2076
LOAD COMPONENTS:	.0557	3.2544	.0972	1.1072	.0181	1.0426
PHASE ANGLES:	-1.8749 BE	-1.0317 TA = 1.	-1.7781 .309000	-1.7797	3.0847	1.2106
LOAD COMPONENTS:	.0304	3.3934	.1118	1.3179	.0092	.5404
PHASE ANGLES:	-1.8576 BE	-1.0243 TA = 1.	-1.7859 .571000	-1.7802	3.0754	1.2127
LOAD COMPONENTS:	.0000	3.4412	.1169	1.3957	.0000	.0000
PHASE ANGLES:	.0000	-1.0220	-1.7890	-1.7804	.0000	1.1808
FREQ.= .120						
	BE	TA =	.000000			
LOAD COMPONENTS:	.0772	2.0977	.0000	.0000	.0000	1.9244
PHASE ANGLES:	-2.2947 BE	-1.4685 TA =	.0000 .261800	.0000	.0000	.9529
LOAD COMPONENTS:	.0781	2.1889	.0213	.1934	.0193	1.8725
PHASE ANGLES:	-2.2598 BE	-1.4470 TA =	-1.8981 .523600	-1.9764	3.0545	.9547
LOAD COMPONENTS:	.0786	2.4312	.0458	- 4380	.0303	1.7060
PHASE ANGLES:	-2.1798 BE	-1.3990 TA =	-1.9054	-1.9648	3.0409	-9589
DUAD COMPONENTS: PHASE ANGLES.	-2 0735	2./382 _1 3520	-1 0201	.7454	.0294	1.4113
CONTRACT CONTLETES.	0 - 11 / / /				5 111717	

	BE	TA = 1	047000			
LOAD COMPONENTS:	.0580	3.0080	.0970	1.0687	.0199	1.0004
PHASE ANGLES:	-2.0367	-1.3223	-1.9401	-1.9477	2.9688	.9667
	BE	TA = 1	.309000			
LOAD COMPONENTS:	.0321	3.1767	.1134	1.3197	.0089	.5153
PHASE ANGLES:	-2.0012	-1.3074	-1.9582	-1.9445	2.9097	.9682
	BE	TA = 1				
LOAD COMPONENTS:	.0000	3.2316	.1191	1.4145	.0000	.0000
PHASE ANGLES:	.0000	-1.3033	-1.9657	-1.9436	.0000	.5856
FREQ.= .140						
	BE	TA =	.000000			
LOAD COMPONENTS:	.0717	1.7178	.0000	.0000	.0000	1.7776
PHASE ANGLES:	-2.7135	-1.9448	.0000	.0000	.0000	.6524
	BE	TA =	.261800			
LOAD COMPONENTS:	.0728	1.8166	.0157	1249	0244	1.7407
PHASE ANGLES:	-2.6380	-1.8883	-2.1159	-2.3324	2,9918	. 6563
	BE	TA =	523600	2.0001	2.0010	.0505
LOAD COMPONENTS.	0748	2 0956	0380	3270	0374	1 6059
PHASE ANGLES.	-2 4706	-1 7702	-2 1001	-2 2520	2 9593	6642
THICE HIGHED.	2.4/00 BF	TTA -	785400	2.2420	4.2.2.2.2	.0042
LOAD COMPONENTS.	0722	2 1632	0666	6318	0338	1 3350
DHASE ANGLES.	-2 3116	-1 6705	-2 1075	-2 1930	2 9960	T.3333
FIASE ANGLES.	-Z.JIIU DT		-2.1075	-2.1930	2.0000	.0033
LOND COMDONENES.	0500	1A - 1		0020	0100	0206
DUAD COMPONENTS:	2 2047	2.1110	.0942	. 9938	.0198	.9396
PHASE ANGLES:	-2.2047	-1.01/2	-2.1307	-2.1000	2.1249	.00/8
TOND COMPONENTS	0222	A = 1	1107	1 0001	0072	47.00
LOAD COMPONENTS:	.0323	2.9571	.112/	1.2801	.0073	.4/68
PHASE ANGLES:	-2.14//	-1.5993	-2.1/02	-2.1456	2.4148	.6622
	Bb	ra = 1	5/1000	1 0000	2000	
LOAD COMPONENTS:	.0000	3.0103	.1190	1.3987	.0000	.0000
PHASE ANGLES:	.0000	-1.5965	-2.1852	-2.1414	.0000	.6952
FREQ.= .160						
	BE	TA =	.000000			4 6065
LOAD COMPONENTS:	BE .0708	TA = 1.4883	.000000	.0000	.0000	1.6065
LOAD COMPONENTS: PHASE ANGLES:	BF .0708 3.0811	TA = 1.4883 -2.5136	.000000 .0000 .0000	.0000	.0000	1.6065 .2999
LOAD COMPONENTS: PHASE ANGLES:	BF .0708 3.0811 BF	TA = 1.4883 -2.5136 TA =	.000000 .0000 .0000 .261800	.0000	.0000	1.6065
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS:	BF .0708 3.0811 BF .0702	ETA = 1.4883 -2.5136 ETA = 1.5531	.000000 .0000 .261800 .0088	.0000 .0000	.0000 .0000	1.6065 .2999 1.5912
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038	.000000 .0000 .261800 .0088 -2.6077	.0000 .0000 .0715 3.1001	.0000 .0000 .0292 2.9289	1.6065 .2999 1.5912 .3108
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 BH	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA =	.000000 .0000 .261800 .0088 -2.6077 .523600	.0000 .0000 .0715 3.1001	.0000 .0000 .0292 2.9289	1.6065 .2999 1.5912 .3108
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS:	BH .0708 3.0811 BH .0702 -3.0805 BH .0705	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277	.0000 .0000 .0715 3.1001 .2189	.0000 .0000 .0292 2.9289 .0443	1.6065 .2999 1.5912 .3108 1.5014
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941	.0000 .0000 .0715 3.1001 .2189 -2.7443	.0000 .0000 .0292 2.9289 .0443 2.8715	1.6065 .2999 1.5912 .3108 1.5014 .3304
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA =	$\begin{array}{r} .000000\\ .0000\\ .0000\\ .261800\\ .0088\\ -2.6077\\ .523600\\ .0277\\ -2.3941\\ .785400\\ \end{array}$.0000 .0000 .0715 3.1001 .2189 -2.7443	.0000 .0000 .0292 2.9289 .0443 2.8715	1.6065 .2999 1.5912 .3108 1.5014 .3304
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS:	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH .0686	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA = 2.1920	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132	.0000 .0000 .0292 2.9289 .0443 2.8715 .0379	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH .0686 -2.5405	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA = 2.1920 -1.9904	$\begin{array}{r} .000000\\ .0000\\ .0000\\ .261800\\ .0088\\ -2.6077\\ .523600\\ .0277\\ -2.3941\\ .785400\\ .0581\\ -2.3312\\ \end{array}$.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135	.0000 .0000 2.9289 .0443 2.8715 .0379 2.7227	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH .0686 -2.5405 BH	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA = 2.1920 -1.9904 ETA = 1	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135	.0000 .0000 2.9289 .0443 2.8715 .0379 2.7227	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS:	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH .0686 -2.5405 BH .0554	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA = 2.1920 -1.9904 ETA = 2.5392	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992	.0000 .0000 2.9289 .0443 2.8715 .0379 2.7227 .0198	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3363
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -3.0805 BH .0705 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA = 2.1920 -1.9904 ETA = 2.5392 -1.9158	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174	.0000 .0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3363 .8763 .3177
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -3.0805 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA = 2.1920 -1.9904 ETA = 1 2.5392 -1.9158 ETA = 1	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174	.0000 .0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3363 .8763 .3177
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -3.0805 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303	$\begin{array}{rcrr} \text{TA} &= & & \\ & 1.4883 \\ -2.5136 \\ \text{TA} &= & \\ & 1.5531 \\ -2.4038 \\ \text{TA} &= & \\ & 1.7990 \\ -2.1714 \\ \text{TA} &= & \\ & 2.1920 \\ -1.9904 \\ \text{TA} &= & 1 \\ & 2.5392 \\ -1.9158 \\ \text{TA} &= & 1 \\ & 2.7244 \end{array}$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174 1.2271	.0000 .0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3363 .8763 .3177 .4330
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -3.0805 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126	$\begin{array}{rcrr} \text{TA} &= & & \\ & 1.4883 \\ -2.5136 \\ \text{TA} &= & \\ & 1.5531 \\ -2.4038 \\ \text{TA} &= & \\ & 1.7990 \\ -2.1714 \\ \text{TA} &= & \\ & 2.1920 \\ -1.9904 \\ \text{TA} &= & 1 \\ & 2.5392 \\ -1.9158 \\ \text{TA} &= & 1 \\ & 2.7244 \\ -1.9095 \end{array}$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174 1.2271 -2.3794	.0000 .0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3363 .3177 .4330 .2851
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH	$\begin{array}{rrrr} \text{TA} &= \\ 1.4883 \\ -2.5136 \\ \text{TA} &= \\ 1.5531 \\ -2.4038 \\ \text{TA} &= \\ 1.7990 \\ -2.1714 \\ \text{TA} &= \\ 2.1920 \\ -1.9904 \\ \text{TA} &= 1 \\ 2.5392 \\ -1.9158 \\ \text{TA} &= 1 \\ 2.7244 \\ -1.9095 \\ \text{TA} &= 1 \end{array}$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000	$\begin{array}{r} .0000\\ .0000\\ .0715\\ 3.1001\\ .2189\\ -2.7443\\ .5132\\ -2.5135\\ .8992\\ -2.4174\\ 1.2271\\ -2.3794 \end{array}$.0000 .0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3363 .3177 .4330 .2851
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000	$\begin{array}{rcrr} \text{TA} &= & & \\ & 1.4883 \\ -2.5136 \\ \text{TA} &= & \\ & 1.5531 \\ -2.4038 \\ \text{TA} &= & \\ & 1.7990 \\ -2.1714 \\ \text{TA} &= & \\ & 2.1920 \\ -1.9904 \\ \text{TA} &= & 1 \\ & 2.5392 \\ -1.9158 \\ \text{TA} &= & 1 \\ & 2.7244 \\ -1.9095 \\ \text{TA} &= & 1 \\ & 2.7743 \end{array}$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177	0000 0000 0015 1001 2189 -2.7443 5132 -2.5135 .8992 -2.4174 1.2271 -2.3794 1.3548	.0000 .0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3177 .4330 .2851 .0000
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000 .0000	$\begin{array}{rcrr} \text{TA} &= & & \\ & 1.4883 \\ -2.5136 \\ \text{TA} &= & \\ & 1.5531 \\ -2.4038 \\ \text{TA} &= & \\ & 1.7990 \\ -2.1714 \\ \text{TA} &= & \\ & 2.1920 \\ -1.9904 \\ \text{TA} &= & 1 \\ & 2.5392 \\ -1.9158 \\ \text{TA} &= & 1 \\ & 2.7244 \\ -1.9095 \\ \text{TA} &= & 1 \\ & 2.7743 \\ -1.9162 \end{array}$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177 -2.4418	0000 0000 0715 1001 2189 -2.7443 5132 -2.5135 .8992 -2.4174 1.2271 -2.3794 1.3548 -2.3694	.0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791 .0000 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3177 .4330 .2851 .0000 .2226
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000 .0000	$\begin{array}{r} \text{TA} = \\ 1.4883 \\ -2.5136 \\ \text{TA} = \\ 1.5531 \\ -2.4038 \\ \text{TA} = \\ 1.7990 \\ -2.1714 \\ \text{TA} = \\ 2.1920 \\ -1.9904 \\ \text{TA} = 1 \\ 2.5392 \\ -1.9158 \\ \text{TA} = 1 \\ 2.7244 \\ -1.9095 \\ \text{TA} = 1 \\ 2.7743 \\ -1.9162 \end{array}$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177 -2.4418	$\begin{array}{r} .0000\\ .0000\\ .0015\\ 3.1001\\ .2189\\ -2.7443\\ .5132\\ -2.5135\\ .8992\\ -2.4174\\ 1.2271\\ -2.3794\\ 1.3548\\ -2.3694 \end{array}$.0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791 .0000 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3177 .4330 .2851 .0000 .2226
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -2.7997 .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000 .0000	$\begin{array}{r} \text{TA} = \\ 1.4883 \\ -2.5136 \\ \text{TA} = \\ 1.5531 \\ -2.4038 \\ \text{TA} = \\ 1.7990 \\ -2.1714 \\ \text{TA} = \\ 2.1920 \\ -1.9904 \\ \text{TA} = 1 \\ 2.5392 \\ -1.9158 \\ \text{TA} = 1 \\ 2.7244 \\ -1.905 \\ \text{TA} = 1 \\ 2.7743 \\ -1.9162 \end{array}$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177 -2.4418	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174 1.2271 -2.3794 1.3548 -2.3694	.0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791 .0000 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3177 .4330 .2851 .0000 .2226
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -2.7997 .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000 .0000	$ TA = 1.4883 \\ -2.5136 \\ TA = 1.5531 \\ -2.4038 \\ TA = 1.7990 \\ -2.1714 \\ TA = 2.1920 \\ -1.9904 \\ TA = 12.5392 \\ -1.9158 \\ TA = 12.7244 \\ -1.905 \\ TA = 12.7743 \\ -1.9162 \\ \end{bmatrix} $.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177 -2.4418	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174 1.2271 -2.3794 1.3548 -2.3694	.0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791 .0000 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3177 .4330 .2851 .0000 .2226
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES:	BH .0708 3.0811 BH .0702 -3.0805 -2.7997 .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000 .0000 BH	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA = 2.1920 -1.9904 ETA = 1.2.5392 -1.9158 ETA = 2.7244 -1.905 ETA = 2.7743 -1.9162	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177 -2.4418	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174 1.2271 -2.3794 1.3548 -2.3694	.0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791 .0000 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .3177 .4330 .2851 .0000 .2226
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: FREQ.= .180	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000 .0000 BH .0000	TA = 1.4883 -2.5136 $TA = 1.5531 -2.4038$ $TA = 1.7990 -2.1714$ $TA = 2.1920 -1.9904$ $TA = 12.5392 -1.9158$ $TA = 12.7244 -1.9095$ $TA = 12.7743 -1.9162$ $TA = 12.7743 -1.9162$ $TA = 12.7743 -1.9162$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177 -2.4418	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174 1.2271 -2.3794 1.3548 -2.3694	.0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791 .0000 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .8763 .3177 .4330 .2851 .0000 .2226
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: FREQ.= .180	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000 .0000 .0000 BH .0745 2.5813	$\begin{array}{r} \text{TA} = \\ 1.4883 \\ -2.5136 \\ \text{TA} = \\ 1.5531 \\ -2.4038 \\ \text{TA} = \\ 1.7990 \\ -2.1714 \\ \text{TA} = \\ 2.1920 \\ -1.9904 \\ \text{TA} = 1 \\ 2.5392 \\ -1.9158 \\ \text{TA} = 1 \\ 2.7244 \\ -1.9095 \\ \text{TA} = 1 \\ 2.7743 \\ -1.9162 \\ \text{TA} = 1 \\ 2.774 \\ -1.916 \\ -1.9$.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177 -2.4418	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174 1.2271 -2.3794 1.3548 -2.3694	.0000 .0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 .0091 1.4791 .0000 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .8763 .3177 .4330 .2851 .0000 .2226 1.4250 1141
LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: LOAD COMPONENTS: PHASE ANGLES: FREQ.= .180	BH .0708 3.0811 BH .0702 -3.0805 BH .0705 -2.7997 BH .0686 -2.5405 BH .0554 -2.3845 BH .0303 -2.3126 BH .0000 .0000 .0000 BH .0745 2.5813 BH	ETA = 1.4883 -2.5136 ETA = 1.5531 -2.4038 ETA = 1.7990 -2.1714 ETA = 2.1920 -1.9904 ETA = 1.25392 -1.9158 ETA = 2.7244 -1.9095 ETA = 1.27743 -1.9162 ETA = 1.4258 -3.1201 ETA =	.000000 .0000 .261800 .0088 -2.6077 .523600 .0277 -2.3941 .785400 .0581 -2.3312 .047000 .0895 -2.3583 .309000 .1106 -2.4141 .571000 .1177 -2.4418	.0000 .0000 .0715 3.1001 .2189 -2.7443 .5132 -2.5135 .8992 -2.4174 1.2271 -2.3794 1.3548 -2.3694	.0000 .0000 .0292 2.9289 .0443 2.8715 .0379 2.7227 .0198 2.3011 1.4791 .0000 .0000	1.6065 .2999 1.5912 .3108 1.5014 .3304 1.2623 .3363 .8763 .3177 .4330 .2851 .0000 .2226 1.4250 1141

PHASE ANGLES:	2.7306 -2.9 BETA =	729 2.3071	1.8904	2.8659	0830	
LOAD COMPONENTS: PHASE ANGLES:	.0653 1.5 3.1220 -2.6	203 .0176 091 -2.9515	.1600 2.6847	.0499 2.7855	1.3969 0297	
LOAD COMPONENTS: PHASE ANGLES:	BETA = .0626 1.8 -2.7849 -2.3	.785400 379 .0479 124 -2.5916	.4020 -2.9350	.0419 2.5494	1.1961 0186	
LOAD COMPONENTS: PHASE ANGLES:	BETA = .0498 2.2 -2.5929 -2.2	1.047000 723 .0831 197 -2.5955	.7974 -2.7167	.0235 1.8016	-8203 0784	
LOAD COMPONENTS: PHASE ANGLES:	BETA = .0260 2.4 -2.5391 -2.2	1.309000 398 .1071 468 -2.6885	1.1485 -2.6470	.0174	.3952 1838	
LOAD COMPONENTS: PHASE ANGLES:	BETA = .0000 2.5 .0000 -2.2	1.571000 542 .1153 749 -2.7389	1.2856 -2.6308	.0000	.0000 1399	
FREQ.= .200						
	₿₽ሞ∆ =	00000				
LOAD COMPONENTS-	0803 1 4	593 0000	0000	0000	1 2501	
PHASE ANGLES:	2.0977 2.5 BETA =	916 .0000 .261800	.0000	.0000	6066	
LOAD COMPONENTS: PHASE ANGLES:	.0722 1.3 2.2478 2.7 BETA =	589 .0143 297 1.5578 523600	.1327 1.2454	.0316 2.7765	1.2742 5319	
LOAD COMPONENTS: PHASE ANGLES:	.0589 1.23 2.7217 -3.1	594 .0146 592 2.2908	.1792 1.7495	.0525 2.6922	1.2769 4047	
LOAD COMPONENTS: PHASE ANGLES:	.0542 1.5 -3.0415 -2.6	.785400 323 .0364 522 -2.8876	.3128 2.8 1 43	.0455 2.3908	1.1222 3766	
LOAD COMPONENTS: PHASE ANGLES:	.0424 1.9 -2.8452 -2.5	1.047000 530 .0744 358 -2.8381	.6954 -3.0532	.0305 1.4155	.7755 5118	
LOAD COMPONENTS: PHASE ANGLES:	BETA = .0207 2.2 -2.9065 -2.6	1.309000 574 .1024 150 -2.9976	1.0581 -2.9522	.0287 .6979	.3846 7495	
LOAD COMPONENTS: PHASE ANGLES:	BETA = .0000 2.3 .0000 -2.6	1.571000 341 .1130 726 -3.0849	1.1987 -2.9336	.0000	.0000 8606	
FREQ.= .220						
	BETA =	.000000				
LOAD COMPONENTS: PHASE ANGLES:	.0850 1.4 1.6212 2.0	796 .0000 558 .0000	.0000	.0000	1.1431 -1.1806	
LOAD COMPONENTS: PHASE ANGLES:	.0741 1.3 1.7530 2.1	431 .0211 510 1.2488	.1675	.0263 2.5853	1.1246 -1.0471	
LOAD COMPONENTS: PHASE ANGLES:	BETA = .0513 1.0 2.2545 2.5	.523600 544 .0211 823 1.4807	.2311	.0509 2.5668	1.1142 7977	
LOAD COMPONENTS: PHASE ANGLES:	BETA = .0432 1.1 2.9784 -3.0	.785400 461 .0233 427 3.0370	.2476	.0474	1.0100	
LOAD COMPONENTS:	BETA = .0343 1.6	1.047000 160 .0623	.5917	.0372	.7385	
FRASE ANGLES:	3.1415 -2.8 BETA =	1.309000	2.8648	1.1257	9711	
PHASE ANGLES:	.0175 2.0 2.7924 -3.0 BETA =	149 2.9377 1.571000	.9633 2.9866	.0403 .4982	.4215 -1.3372	
LOAD COMPONENTS: PHASE ANGLES:	.0000 2.2 .0000 -3.0	685 .1130 999 2.8057	1.1061 2.9976	.0000	.0000 -1.4214	

FREQ.= .240

	BETA = .00	0000		
LOAD COMPONENTS:	.0860 1.4306	.0000 .0000	.0000	1.0905
PHASE ANGLES:	1.1174 1.5045	.0000 .0000	.0000	-1.8027
	BETA = .26	1800		
LOAD COMPONENTS:	.0748 1.3120	.0238 .1786	.0185	.9996
PHASE ANGLES:	1.2382 1.5931	.9988 .3126	2.0784	-1.6368
	BETA = .52	3600		
LOAD COMPONENTS:	.0451 .9451	.0282 .2775	-0454	.8998
PHASE ANGLES:	1.6955 1.9243	1.0209 .5113	2.3804	-1.2411
	BETA = .78	5400		
LOAD COMPONENTS:	.0300 .7814	.0101 .2162	.0464	-8389
PHASE ANGLES:	2.7127 2.7484	2.3544 1.3322	2.1734	-1.0995
	BETA = 1.04	7000		
LOAD COMPONENTS:	.0258 1.2492	.0467 .4792	.0409	.6971
PHASE ANGLES:	2.8198 3.0298	2.9633 2.4741	.8392	-1.4506
	BETA = 1.30	19000		
LOAD COMPONENTS:	.0186 1.8619	.0908 .8666	.0510	.4891
PHASE ANGLES:	2.1336 2.8336	2.5504 2.6051	.2810	-1.8591
	BETA = 1.57	1000		****
LOAD COMPONENTS:	.0000 2.1886	.1157 1.0188	.0000	.0000
PHASE ANGLES:	.0000 2.7324	2.3859 2.5932	.0000	-2.0282
FREQ. = .260				
LOND COMPONENTS	BETA = .00	10000		
LOAD COMPONENTS:	.0831 1.3302	.0000 .0000	.0000	1.0633
PHASE ANGLES:	.5309 .8841	.0000 .0000	.0000	-2.4449
LOND CONDONENTE	BETA = .26	1800	01.0.4	0445
LUAD COMPONENTS:	.0733 1.2399	.0210 .1666	.0184	.9115
PHASE ANGLES:	.68/1 1.0000	.66942805	1.0783	-2.2967
	BETA = .52	3600	0.2 5 6	6600
LUAD COMPONENTS:	.0418 .8966	.0314 .3026	.0370	.6692
PHASE ANGLES:	1.1025 1.2853	-0152 -0152	2.1053	-1./9//
LOND CONDONENTO	BETA = .78	15400	0400	6010
DUAD COMPONENTS:	.0100 .4941	.0089 .2334	.0423	- 6218
PHASE ANGLES:	2.4//3 2.0810	.5066 .4978	2.13/1	-1.5121
LOND COMPONENTIC.	BETA = 1.04	.7000	0415	6400
DUAD COMPONENTS:	.0102 .8853	.0292 .3542	.0415	.6402
PRASE ANGLES:	2.4938 2.3964	2.7410 2.0452	.4951	-1.9618
LOND COMPONENTIC -	BETA = 1.30	0041 7637	0500	F 400
DUNCE ANGURG.	.0223 I.0747	.0841 ./03/	.0593	.5499
PHASE ANGLES:		2.1230 2.18/1	.0281	-2.3304
LOAD COMPONENTS.	0000 2 1261	1100 0412	0000	0000
DUNCE ANCIEC.	0000 2.1201	1 0501 0 1261	.0000	2 4021
FRASE ANGLES:	.0000 2.2574	1.9501 2.1501	.0000	-2.4931
FPF0 - 290				
rRby200				
	0.0	0000		
LOAD COMPONENTIC.	0012 1 2254	0000 0000	0000	1 0054
DUAD COMPONENIS:	1715 1670	.0000 .0000	.0000	2 1102
FIASE ANGLES.		1900	.0000	-2.1102
LOAD COMPONENTS.	A600 1 1005	0140 1550	0206	0613
BUASE ANCLES.	0712 2470	.0149 .10339	.0200	2 0005
THE THE CHICK .	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3600 -1.0942	.3022	-3.0006
LOAD COMPONIENTS.	0382 9175	0202 2040	0270	1000
PHASE ANGLES.	5750 6016	3161 _ 5661	1 6000	-9 5211
		5400	1.0072	-2.JJT4
LOAD COMPONENTS.	.0042 3176	0160 2620	0366	2022
PHASE ANGLES.	2 7860 1 1682	- 2338 - 1630	2 1701	-2 0000
and mollo.	BETA = 1 04	7000	2.1/01	-2.0009
LOAD COMPONENTS.	0059 5544	0128 2220	0/10	5709
PHASE ANGLES.	2 1349 2 0706	2 7370 1 5307	.0410	-2 5220
			• V 2 V - J	4.141.7

	BETA	= 1	.309000			
LOAD COMPONENTS: PHASE ANGLES:	.0255 1 1.2118 1 BETA	.5065 .8373 = 1	.0765 1.6503	.6490 1.7221	.0632 2866	.5871 -2.8260
LOAD COMPONENTS: PHASE ANGLES:	.0000 2 .0000 1	.0614 .7541	.1208 1.4872	.8746 1.6246	.0000	.0000 -2.8318
FREQ.= .300						
	BETA	=	.000000			
LOAD COMPONENTS:	.0841 1	.1893	.0000	.0000	.0000	.9615
PHASE ANGLES:	9353 -	.6289	.0000	.0000	.0000	2.4339
I OND COMPONIZING.	BETA :	=	.261800	1710	0005	0.0 A.P.
PHASE ANGLES	- 6425 -	4052	-1 0372	.1/18 _1 9885	.03/5	.8145
TIMOL MIGDLD.	BETA	=	.523600	-1.9005	0570	2.5705
LOAD COMPONENTS:	.0297	.6625	.0213	.2529	.0184	.3947
PHASE ANGLES:	.1216	.0897	0247	-1.2180	.9102	2.9053
	BETA :	=	.785400			
LOAD COMPONENTS:	.0078	.2470	-0176	.2706	.0327	.1778
PRASE ANGUES:	-2.1007 BETA	= 1	047000	-,/084	2.2814	-2.6352
LOAD COMPONENTS:	.0034	.2839	.0094	.1075	.0393	4987
PHASE ANGLES:	-1.1074 1	.3723	-2.3921	.7537	2870	-3.1286
	BETA	= 1.	.309000			
LOAD COMPONENTS:	.0257 1	.3560	.0684	.5296	.0630	.6014
PHASE ANGLES:	.8574 1	.2827	1.1333	1.1814	7066	2.9287
LOAD COMPONENTS.	0000 1	- <u>-</u>	1105	0004	0000	0000
PHASE ANGLES:	.0000 1	.2103	.9740	1 0565	.0000	2 8447
				1.0000	.0000	2.011,
FREQ.= .320						
LOAD COMPONENTS.	BETA :	1000	.000000	0000	0000	0700
PHASE ANGLES	-1 7197 -1	4673	.0000	.0000	.0000	1 6046
	BETA	=	.261800	.0000	.0000	1.0040
LOAD COMPONENTS:	.0585	.9087	.0183	.1954	.0381	.7153
PHASE ANGLES:	-1.4509 -1	.2638	-1.8588	-2.8175	5230	1.8238
	BETA :	=	.523600			
LOAD COMPONENTS:	.01/2	.4582	.0090	.2057	.0219	.3261
TIASE ANGLES.	2092 - BETA :	.0050 =	785400	~2.0807	1190	2.1131
LOAD COMPONENTS:	.0130	.2275	.0131	.2207	.0326	.0474
PHASE ANGLES:	-2.5492 -	.9593	-1.1679	-1.2459	2.4026	1.4214
	BETA :	= 1.	.047000			
LOAD COMPONENTS:	.0087	.1084	.0195	.0546	.0338	.4143
PHASE ANGLES:	-1.0129 -	.0190	-2.3134	9009	5979	2.5414
LOAD COMPONENTS:	.0223 1	= 1. 1998	0594	4276	0615	5011
PHASE ANGLES:	.4646	.7028	.5952	.5457	-1.2458	2 3496
	BETA	= 1	.571000		212200	2.0100
LOAD COMPONENTS:	.0000 1	.8924	.1166	.7834	.0000	.0000
PHASE ANGLES:	.0000	.6108	.3824	.4335	.0000	2.1636
FREQ.= .340						
	BETA	=	.000000			
DUAD COMPONENTS:	.0845 1	3/2/	.0000	.0000	.0000	.8347
כקתמות ממעיניי:	-2.J040 -2 RETA	- 3444	261800	.0000	.0000	. 6599
LOAD COMPONENTS:	.0552	.8807	.0193	,2046	.0316	5876
PHASE ANGLES:	-2.2946 -2	.1390	-2.4304	2.6363	-1.2782	.9270
	BETA	=	.523600			
LOAD COMPONENTS:	.0062	.2763	.0035	.1978	0308	2228

PHASE ANGLES:	1659	-1.5043	3.0626	-3.0841	-,5950	1.3645
LOAD COMPONENTS.	0145	1923	. 763400	1365	0338	1608
PHASE ANGLES.	3 1195	-1 8980	-1 5230	_1 8/51	2 4454	- 0365
THASE ANGLES.	D. TTDD	-т.субО Р/та = 1	047000	-1.0471	2.44.14	0505
LOAD COMPONENTS.	0095	1643	0261	0872	0249	2957
PHASE ANGLES.	-2 2086	-1 8598	-2 6837	-2 4646	- 7492	1 9229
THICL HIGHLO.	2.2000 B	ETA = 1	309000	2.7010	. / 1/2	1.7667
LOAD COMPONENTS.	.0169	1.0295	0473	3535	0608	5603
PHASE ANGLES.	- 0251	0895	0472	- 1440	-1 8818	1 6997
	B	ETA = 1	571000		1.0010	1.000
LOAD COMPONENTS:	. 0000	1.8407	.1161	7654	.0000	.0000
PHASE ANGLES:	.0000	0522	- 2839	- 2219	0000	1 5022
			.2005			1.0011
FREO. = .360						
	B	ETA =	.000000			
LOAD COMPONENTS:	.0838	1.1218	.0000	.0000	.0000	.8349
PHASE ANGLES:	2.7092	2,9593	.0000	.0000	.0000	3175
	B	ETA =	.261800			
LOAD COMPONENTS:	.0487	.7930	.0138	.1921	.0334	.5330
PHASE ANGLES:	3.1295	-3.0379	3.1376	1.6962	-2.3677	1078
	B	ETA =	.523600			
LOAD COMPONENTS:	.0078	.1657	.0077	.1936	.0314	.0940
PHASE ANGLES:	.5522	-2.7103	2.5930	2.3644	7972	.4861
	B	ETA =	.785400			
LOAD COMPONENTS:	.0124	.1189	.0077	.0446	.0312	.2106
PHASE ANGLES:	2.3420	3.0832	.9698	-2.6196	2.4227	7070
	B	ETA = 1	.047000			
LOAD COMPONENTS:	.0078	.2317	.0258	.1318	.0187	.1554
PHASE ANGLES:	-2.9685	-2.7357	3.1333	2.9265	4998	1.2017
	B	ETA = 1	.309000			
LOAD COMPONENTS:	.0112	.8316	.0324	.2822	.0620	.5201
PHASE ANGLES:	6676	5975	5389	8271	-2.5691	.9534
	B	ETA = 1	.571000			
LOAD COMPONENTS:	.0000	1.8238	.1183	.7317	.0000	.0000
PHASE ANGLES:	.0000	7855	9908	8995	.0000	.6438

Appendix D. Fatigue Analysis

Because the MCS pin and guillotine system is subjected to a cyclic load from passing waves, a fatigue analysis of the male lock pin was conducted (dynamic impact load was not a concern because the period of the fluctuating load cycle is on the order of several seconds). The fatigue analysis of the pin involves the ultimate and yield strengths, and the endurance limit of the pin material. The endurance limit is the value of stress that the subject material may endure for an unlimited number of cycles. If the pin experiences stresses below its endurance limit, it will not fail; however, if stresses exceed the endurance limit, the pin will fail after a certain number of cycles determined by an S-N diagram. If the pin is subjected to stresses above the endurance limit but for fewer than the number of cycles required to fail, the endurance limit for all subsequent cycles will be lower.

Material and Endurance Strength

Information provided by the Army to conduct this study did not include material properties of the male pin. Available references indicate that the pin material yield strength is 71,000 psi and ultimate strength, S_{e} , is 100,000 psi.

For steel with an ultimate strength less than 200,000 psi, the endurance strength, S $'_{e}$, equals 1/2 the ultimate strength.¹ For the male lock pin:

$$S'_{c} = 0.5 S_{u} = 0.5 (100,000 \text{ psi}) = 50,000 \text{ psi}$$

Endurance Limit

The endurance limit, the value of stress that the subject material may endure for an unlimited number of cycles, is determined from the endurance strength, S $'_{e}$, and modifying factors to reflect the actual conditions a pin must endure. The allowable stress for 1,000,000 cycles to infinity (endurance limit) for the male lock pin under a tension only fluctuating load is²:

$$S_e = k_a k_b k_c k_d k_e k_f S'_e$$

The values for the modifying factors are as follows:

<u>Surface finish</u>. For no surface finish, a surface finish factor $\mathbf{k}_* = 0.4$ is used (Shigley & Mischke, figure 13-7).

<u>Relative size</u>. For an axial loaded subject, a relative size factor $k_b = 0.9$ is used (Shigley & Mischke, p. 13-15).

¹ Joseph E. Shigley & Larry D. Mitchell, *Mechanical Engineering Design*, 4th ed., McGraw-Hill, New York, p. 276.

² Shigley, J. E., and Mischke, C. R. (1986). *Standard Handbook of Machine Design* (McGraw-Hill, New York), p. 13-11.

<u>Reliability</u>. For reliability of 50%, a reliability factor $\mathbf{k}_c = 1$ is used. This is not a true reliability analysis but it is a probability that a known (or assumed) stress will exceed the strength of a randomly selected component made from the pin material (8% standard deviation) (Shigley & Mischke, p. 13-19).

<u>Temperature</u>. For a temperature less than 600°F, temperature factor $\mathbf{k}_d = 1$ is used (Shigley & Mischke, p. 13-15).

<u>Stress concentration</u>. The stress concentration factor can be calculated using the following equation (Shigley & Mischke, p. 13-17):

$$\mathbf{k}_{e} = \frac{1}{1 + \mathbf{q} \cdot (\mathbf{K}_{t} - 1)}$$

where

 $k_e = stress concentration factor$ q = notch sensitivity $K_t = stress concentration = S_{max} / S_{avr}$

Notch sensitivity (q) of 100,000 psi steel for notch radius $\mathbf{r} = 0.04$ -in is $\mathbf{q} = 0.75$. (Shigley & Mischke, fig. 13-12).

The maximum stress, S_{max} , was determined from a linear finite element analysis of the pin loaded with a 134,400 lb. tension load. The result of this analysis shows a maximum stress of $S_{max} = 173,530$ psi (see Figure D-1).

Given a cross sectional area for the pin of 3.103 in^2 , the average stress on the pin can be calculated as:

 $S_{ave} = (134,400 \text{ lb}) / (3.103 \text{ in}2) = 43,313 \text{ psi}$

Figure D-1. Finite Element Model of MCS Male Lock Pin

The stress concentration factor can now be calculated:

$$\mathbf{k}_{e} = \frac{1}{1 + q \cdot (K_{t} - 1)} = \frac{1}{1 + 0.75 \cdot (173,530 \text{ psi} / 43,313 \text{ psi}) - 1)} = 0.31$$

<u>Miscellaneous</u>. Because the load varies from 0 to some maximum instead of +/- some maximum, a miscellaneous factor of $\mathbf{k}_t = 2$ was selected. Factors not taken into consideration include corrosion and frettage.

With the modifying factors defined, the endurance limit is calculated as:

$$S_{e} = k_{a} k_{b} k_{c} k_{d} k_{e} k_{f} S'_{e}$$

= (0.4) (0.9) (1) (1) (0.31) (2) (50,000 psi)
= 11,160 psi

Short Life Endurance Stress

For allowable stress at 1,000 cycles, use $S_{1000} = 0.8S_u = 0.8 (100,000 \text{ psi}) = 80,000 \text{ psi}$ (Shigley & Mitchell, p. 284).

S-N Diagram

With the short life endurance stress and endurance limit of the pin defined, an S-N diagram is created to determine fatigue strength as a function of number of loading cycles. Figure D-2 was created by drawing a line between the short life endurance stress at 1,000 cycles (80,000 psi) and the endurance limit at 1,000,000 cycles (11,160 psi).

Figure D-2. Fatigue Strength vs. Number of Stress Cycles for MCS Male Lock Pin

Pin Loading

In service the male lock pins are subjected to a fluctuating load that varies from 0 to some maximum tensile load. From Appendix C, Figure C-13, the largest moment that the 88- by 120-ft pierhead is expected to experience in SS5 is 8,575,000 ft-lb. Along this plane of maximum moment the pierhead is held together with 22 pins along the bottom and 22 along the top. The vertical distance between the centers of the top and bottom pins is 47-in. At SS5 the load on one pin is:

 $P_s = (8,575,000 \text{ ft-lb}) / [(47-\text{in x 1-ft/12-in}) (22 \text{ pins})] = 99,516 \text{ lbs/pin}$

which gives a stress of $P_s/a = 32,071$ psi. From the S-N Diagram (Figure D-2), the corresponding number of stress cycles for this stress is 24,000 cycles. The period of the fluctuating load cycle depends on the sea state, but is on the order of several seconds. For a 6-sec wave period, the 24,000 cycles could be experienced in a little over 40-hrs.

In normal operating conditions (SS3), a maximum moment of 2,800,000 ft-lb is expected (Appendix C, Figure C-12). This relates to a tensile load on a pin of 32,495-lb, equating to a stress of 10,472 psi. Although this operational pin stress (10,472 psi) is lower than the pin endurance limit found above (11,160 psi), it must be kept in mind that calculated endurance limits are the mean value of a highly dispersed, or spread, set of possibilities. "This spread will occur even when the tensile strengths of a large number of specimens remain exactly the same." (Shigley & Mitchell, p. 275). In the absence of experimental procedures to find the true endurance limit and standard deviation of the pin, a standard deviation of 15% is suggested (Shigley & Mitchell, p. 276). This means that to ensure that 68% of the pins do not fail, the pin endurance limit should be lowered to 9,350 psi. To ensure that 99% of the pins do not fail, the endurance limit should be lowered to 6,050 pounds.

Cumulative Fatigue Damage

It would be easy to calculate the life of a pin for a single stress σ acting for *n* cycles; however, a causeway pier is exposed to quite a different environment—the magnitude and duration of the sea continually changes. The fatigue life must be estimated for a pin subjected to σ_1 for n_1 cycles, σ_2 for n_2 cycles, σ_3 for n_3 cycles, etc. (e.g., SS2 for 6-wks, SS5 for 15-hrs, SS3 for 25-days, etc.). If any of theses stresses exceeded the endurance limit, the pin would be damaged and the pin's subsequent endurance limit would have to be calculated. Shigley & Mitchell (p. 336) state that "Under these conditions... A search of the literature reveals that this problem has not been solved completely. Therefore the results obtained using [either Miner's³ or Manson's⁴ approach] should be employed as guides to indicate how [to] seek improvement. They should *never* be used to

³ Palmgren, A. (1924). "Die Lebensdauer von Kugellagern," ZVDI, vol. 68, 1924, pp. 339-341; Miner, M. A. (1945). "Cumulative Damage in Fatigue," *J. Appl. Mech.*, vol. 12, *Trans. ASME*, vol. 67, 1945, pp. A159-A164.

⁴ Manson, S. S., et.al. (1965). "Further Investigation of a Relation for Cumulative Fatigue Damage in Bending," *Trans. ASME, J. Eng. Ind.*, ser. B, vol. 87, no. 1, Feb 1965, pp. 25-35.

obtain absolute values... [because] an approach consistently in agreement with experiment has not yet been reported." Given this constraint, we'll use Manson's method to estimate the endurance limit of a pin that has been overstressed for a finite number of cycles.

Using Manson's method, the log S-log N lines must be constructed in the same historical order in which the stresses occur. Using the above example (SS2 for 6-wks, SS5 for 15-hrs, SS3 for 25-days) a new S-N Diagram will be constructed. The log S-log N line for the undamaged material is the same as in Figure D-2. SS2 conditions do not result in stresses that exceed the original endurance limit; therefore, the endurance limit is unaffected and the original log S-log N line remains. SS5 conditions result in a stress (32,071 psi) that exceeds the pins' endurance limit (11,160 psi); therefore, we wish to find the new endurance limit S'_{e,1} of the damaged pin. Figure D-2 shows that at 32,071 psi the pin has a life $N_1 = 24,000$ cycles, and consequently, after the application of this stress for $n_1 = 9,000$ cycles (15-hrs x 1-cycle/wave x 1-wave/6-sec x 3600-sec/hr), there are $N_1 - n_1 = 15,000$ cycles of life remaining. Through this point and through 0.8S_u at 10³ cycles, we draw a heavy dashed line to meet $N = 10^6$ cycles and define the endurance limit S'_{e,1} of the damaged material. From Figure D-3, it can be seen that the new endurance limit is approximately 7,700 psi.

Figure D-3. Modified S-N Diagram

Using this modified S-N diagram, it can be seen that the stress for SS3 (10,472 psi) is no longer below the endurance limit (previously 11,160 psi, now modified to 7,700 psi). On this diagram, the number of cycles to failure for the SS3 stress is 400,000 cycles, which equates to 18.5-days of a 4-sec wave period. Though the pin did not fail during the SS5 storm, it could fail during what would be considered a normal operating environment (SS3).

Appendix E. Logistics Support Vessel (LSV) Characteristics

Characteristics obtained from Trinity Marine Group:

Displacement at design draft (D)	=	4,199 LT (9,406 kip)
Length overall (L)	=	272.75 ft
Length along waterline (L_{wl})	=	255.4 ft
Beam (B)	=	60.0 ft
Length between perpendicular (L_{pp})	=	256.0 ft
Location of CG	=	19.83 ft above keel and 127.75 ft aft of fwd pp
Draft, Design (T)	=	12.0 ft

Characteristics determined from drawing:

Lateral projected area of superstructure (A _s)	=	960 ft ²
Lateral projected area of hull (A_{H})	=	5933 ft ²
Lateral projected area of ship (A_{v})	=	6893 ft ²
Average height of superstructure (h _s)	=	36 ft
Average height of hull (h _B)	=	12 ft

Characteristics calculated:

Block Coefficient (ϕ) = 0.80 where ϕ = 35 D / (L_{wL} B T) = 35 (4,199 LT) / (255.4 ft x 60.0 ft x 12.0 ft) = 0.80

Prismatic Coefficient (C_p) = 0.80 where $C_p = \phi/C_m$

Appendix F. Landing Craft, Utility 2000 (LCU-2000) Characteristics

Characteristics obtained from Jane's (1993-94):

Displacement at design draft (D)	=	1,102 LT (2,468 kip)
Length overall (L)	=	173.8 ft
Length along waterline (L_{wL})	=	156 ft
Beam (B)	=	42.0 ft
Draft, Design (T)	=	8.5 ft

Characteristics calculated:

Block Coefficient (ϕ) = 0.69 where ϕ = 35 D / (L_{wL} B T) = 35 (1,102 LT) / (156 ft x 42.0 ft x 8.5 ft) = 0.69

Midship Section Coefficient (C_m) $\cong 1$ where $C_m = (\text{immersed area of midship section}) / B T$ $\cong 1$

Prismatic Coefficient (C_p) = 0.69 where $C_p = \phi/C_m$