

AFRL-RY-WP-TR-2020-0002

SCALABLE TRANSPARENCY ARCHITECTURE FOR
RESEARCH COLLABORATION (STARC) – DARPA
TRANSPARENT COMPUTING (TC) PROGRAM

John Griffith, Derrick Kong, Armando Caro, Brett Benyo, Joud Khoury,
Timothy Upthegrove, Timothy Christovich, Stanislav Ponomorov, Ali Sydney,
Arjun Saini, Vladimir Shurbanov, Christopher Willig, David Levin, and Jack Dietz

Raytheon BBN Technologies Corp.

MARCH 2020
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

© 2020 Raytheon BBN Technologies Corp.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with The Under Secretary of Defense memorandum
dated 24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020. This
report is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2020-0002 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//
__ _______________________________________
CHARLES P. SATTERTHWAITE, DR-03 DAVID G. HAGSTROM, DR-04
Program Manager Chief, Resilient and Agile Avionics Branch
Chief, Resilient and Agile Avionics Branch Spectrum Warfare Division

//Signature//

JOHN F. CARR, DR-04
Chief, Spectrum Warfare Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

March 2020 Final 12 June 2015 – 30 November 2019
4. TITLE AND SUBTITLE

SCALABLE TRANSPARENCY ARCHITECTURE FOR RESEARCH
COLLABORATION (STARC) – DARPA TRANSPARENT COMPUTING
(TC) PROGRAM

5a. CONTRACT NUMBER

FA8650-15-C-7559
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

61101E
6. AUTHOR(S)

John Griffith, Derrick Kong, Armando Caro, Brett Benyo, Joud Khoury,
Timothy Upthegrove, Timothy Christovich, Stanislav Ponomorov, Ali Sydney,
Arjun Saini, Vladimir Shurbanov, Christopher Willig, David Levin, and
Jack Dietz

5d. PROJECT NUMBER

1000
5e. TASK NUMBER

N/A
5f. WORK UNIT NUMBER

Y1AZ
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

Raytheon BBN Technologies Corp.
10 Moulton Street
Cambridge, MA 02138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research
Projects Agency

DARPA/I2O
675 North Randolph Street
Arlington, VA 22203

AFRL/RYZC

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

AFRL-RY-WP-TR-2020-0002

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

This report is the result of contracted fundamental research deemed exempt from public affairs security and policy
review in accordance with The Under Secretary of Defense memorandum dated 24 May 2010 and AFRL/DSO policy
clarification email dated 13 January 2020. © 2020 Raytheon BBN Technologies Corp. This work was funded in whole
or in part by Department of the Air Force Contract FA8650-15-C-7559. The U.S. Government has for itself and others
acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license to use, modify, reproduce, release, perform,
display, or disclose the work by or on behalf of the U. S. Government. Report contains color.

14. ABSTRACT

The STARC project designed, built, and operated a test range and infrastructure to support the development and
operation of systems designed to detect and identify malware, most importantly Advanced Persistent Threats operating
in a heterogeneous enterprise environment. This effort also involved developing a cross-system event logging system
and a policy enforcement module that could read these events and a policy statement, make decisions as to whether or
not a proposed action should be allowed or blocked, and return this decision to an endpoint to be acted upon. This
program demonstrated that such a system is feasible and deserves further investigation and development.

15. SUBJECT TERMS
cyber range, test range, cyber events, cyber monitoring, cyber defense, event monitoring, large scale data collection and analysis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 148

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Charles P. Satterthwaite
19b. TELEPHONE NUMBER (Include Area Code)

N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i

Approved for public release; Distribution is unlimited.

TABLE OF CONTENTS

Section Page

LIST OF FIGURES .. VI

LIST OF TABLES ... VIII

SUMMARY ... 1

INTRODUCTION .. 2

METHODS, ASSUMPTIONS AND PROCEDURES ... 6

Introduction .. 6

Architecture .. 6

3.2.1. Proposed .. 6

Master Data Store ... 6

Batch Processing Framework ... 7

Indexed Forensic View ... 7

Real Time Substrate ... 7

Stream Processing Framework ... 8

Indexed Real Time View .. 8

3.2.2. Lambda Architecture vs. Kappa Architecture ... 9

3.2.3. What Was Implemented .. 10

Master Data Store ... 11

3.2.4. Real Time Layer .. 12

3.2.5. Query Layer ... 12

3.2.6. Enforcement .. 13

3.2.7. Feedback .. 13

Common Data Model (CDM) ... 13

3.3.1. CDM Goals .. 13

3.3.2. CDM Conceptual View ... 14

3.3.3. Objects ... 16

ii

Approved for public release; Distribution is unlimited.

3.3.4. Tags ... 16

3.3.5. Extensibility Points .. 17

3.3.6. Typed Schema Definition .. 18

3.3.7. CDM Evolution ... 18

 Engagements ... 18

3.4.1. Engagement #1 .. 19

3.4.2. Engagement #2 .. 21

3.4.3. Engagement #3 .. 22

3.4.4. Engagement #4 .. 23

3.4.5. Engagement #5 .. 24

3.4.6. Challenges with Reproducibility ... 24

 Policy Enforcement Capability ... 25

3.5.1. Overview ... 25

3.5.2. Motivating Example .. 25

3.5.3. Policy Enforcement Module Design .. 26

3.5.4. Evolution of the Policy Enforcement Demonstration .. 27

 The TA1 Delay Issue .. 28

 Engagement #4 Policy Enforcement Demonstration Scenarios ... 31

 Policy Enforcement Module Update (Engagement #4) .. 31

 Infrastructure .. 32

3.6.1. Goals .. 32

3.6.2. Project Evolution ... 33

 Description ... 33

 Separation of Privileges .. 33

iii

Approved for public release; Distribution is unlimited.

Separation of Base and Experimental Infrastructure .. 34

Management of Experimental Infrastructure .. 34

Managing Standard Base Systems .. 35

Performance Tuning ... 35

Services .. 36

3.6.2.1.7.1. Monitoring Infrastructure ... 36

Network .. 39

Hosts ... 41

3.6.2.2.2.1. Deployment .. 41

3.6.2.2.2.2. TA3 Experimental Infrastructure Services ... 42

Critical Factors Pyramid ... 44

Continuous Engagement Process .. 46

TC Range Security .. 46

RESULTS AND DISCUSSION ... 48

Critical Factors Pyramid and Architecture .. 48

Infrastructure .. 49

4.2.1. Network Performance .. 49

Pre-Engagement Experiments .. 50

4.2.1.1.1.1. Producer Performance Experiments ... 50

4.2.1.1.1.2. Kafka Latency Experiment ... 52

4.2.1.1.1.3. Consumer Performance Experiments ... 53

4.2.1.1.1.4. Results for Other Language Bindings .. 54

4.2.1.1.1.5. Stability Testing ... 55

Engagement #1 Results .. 56

Pre-Engagement Performance Testing and Improvements .. 58

Results .. 59

Data Volume Analysis .. 60

4.2.1.2.3.1. Data Description ... 61

4.2.1.2.3.2. Modeling Methodology .. 61

4.2.1.2.3.3. Known Issues with this Approach .. 61

4.2.1.2.3.4. Result – Enterprise Model A .. 62

4.2.1.2.3.5. Result – Enterprise Model B .. 62

Pre-Engagement Performance Testing and Improvements .. 63

TA2 Disk Performance Issues .. 64

Results .. 64

Kafka on CADETS ... 66

Publishing Delays ... 68

Results .. 68

iv

Approved for public release; Distribution is unlimited.

 Publishing Delay Monitoring ... 70

 NTP Time Synchronization Monitoring ... 71

 Network Overhead Metrics .. 71

4.2.1.5.3.1. TA1 to TA3 Traffic .. 72

4.2.1.5.3.2. TA3 to TA2 Traffic .. 73

4.2.1.5.3.3. TA3 to TA3 Traffic .. 74

 TA1 Performance and Overhead .. 74

4.2.2. Issues with Mobile Handsets ... 79

 Policy Enforcement Demonstrations .. 79

4.3.1. Engagement #3 .. 79

4.3.2. Engagement #4 .. 84

4.3.3. Engagement #5 .. 87

 CONCLUSIONS ... 90

 Architecture .. 90

 Common Data Model ... 90

 Infrastructure .. 91

 Engagements ... 91

 Policy Enforcement Demonstration .. 91

 RECOMMENDATIONS .. 92

 REFERENCES ... 94

APPENDIX A COMMON DATA MODEL VERSION 0.5 SCHEMA HIGHLIGHTS 96

APPENDIX B ORANGE – THE INFRASTRUCTURE FRAMEWORK DECISION REVISITED 99

B.1 Preamble ... 99

B.2 Philosophy .. 99

B.3 Requirements .. 100

B.3.1. Range Management Software .. 100

B.3.2. Range Hardware .. 101

B.3.3. Network ... 102

B.3.4. Ease of Use .. 103

B.3.5. Experiment Isolation .. 103

B.3.6. Experiment Logistics ... 103

B.4 Research and Experimentation Results ... 104

B.4.1. Preparations and Toolset Selection .. 104

B.4.2. OpenStack .. 105

v

Approved for public release; Distribution is unlimited.

B.4.3. CloudStack .. 111

B.5 Conclusion and Recommendations ... 113

APPENDIX C RE-IMPLEMENTING THE TC RANGE, GUIDE AND INSTRUCTIONS 115

C.1 Open Cloud Services and TC requirements .. 115

C.2 OpenStack Services for functions not provided by TC: .. 122

APPENDIX D GETTING STARTED – A GENERAL GUIDE FOR A TEAM PLANNING TO SET UP
A TEST RANGE ... 124

APPENDIX E ENGAGEMENT #1 INFRASTRUCTURE .. 126

APPENDIX F ENGAGEMENT #5 INFRASTRUCTURE .. 127

APPENDIX G ENGAGEMENT #3 POLICY DEMONSTRATION GROUND TRUTH
INFORMATION ... 131

G.1 Policy One Ground Truth ... 131

G.2 Policy Two Ground Truth ... 131

G.3 Policy Two Ground Truth for FAROS ... 132

G.4 Policy Three Ground Truth ... 133

G.5 Policy Four Ground Truth ... 133

vi

Approved for public release; Distribution is unlimited.

LIST OF FIGURES

 Page

Figure 1. The STARC Architecture Was Intended to be Driven by Experience ... 3

Figure 2. Original STARC Architecture ... 6

Figure 3. Example Implementation of the Lambda Architecture .. 9

Figure 4. Example Implementation of the Kappa Architecture .. 9

Figure 5. Proposed Architecture Supporting Both Real‐Time and Forensic Processing ... 10

Figure 6. CDM Common Graph Data Model ... 14

Figure 7. Network Diagram for Engagement #1 .. 20

Figure 8. Network Layout for Engagement #2 .. 21

Figure 9. Network Layout for Engagement #3 .. 22

Figure 10. Engagement #3 Network ... 23

Figure 11. Policy Enforcement System Architecture ... 25

Figure 12. TA2 Policy Check Transaction .. 26

Figure 13. App Store Processing Flow .. 30

Figure 14. STARC Basic Topology ... 33

Figure 15. TC Range Monitoring Infrastructure .. 37

Figure 16. Engagement #2 Dashboard .. 38

Figure 17. Physical Network Layout ... 39

Figure 18. VLANS Configured for Engagement #1 ... 40

Figure 19. Data Store Architecture for Engagement #3 ... 43

Figure 20. Basic Hadoop Design for Engagement #3 ... 44

Figure 21. The Critical Factors Pyramid .. 45

Figure 22. CDM Data Accumulation Over Engagement #5 .. 48

Figure 23. Maximum Producer Data Rates ... 51

Figure 24. Producer Data Rate vs Record Size, Fixed Flushing ... 51

Figure 25. Producer Data Rate vs Record Size, OS‐Managed Buffering .. 52

Figure 26. Kafka Latency Experiment Setup ... 52

Figure 27. Java Consumer Throughput ... 54

Figure 28. Producer Performance for Engagement #1 C++ and Python Clients .. 54

Figure 29. Engagement #1 Stability Test ‐ Producer Side .. 55

Figure 30. Engagement #1 Stability Test ‐ Consumer Side ... 56

Figure 31. Enterprise Model A Storage Requirements Over Time ... 62

Figure 32. Enterprise Model B Storage Requirements Over Time (250 Servers) ... 63

vii

Approved for public release; Distribution is unlimited.

Figure 33. Enterprise Model B Storage Requirements Over Five Years for Varying Numbers of Servers 63

Figure 34. Proposed Kafka Setup for Engagement #4 ... 67

Figure 35. Maximum Data Rates, CADETS vs Normal Kafka Brokers ... 68

Figure 36. Publishing Delay Example Detail .. 70

Figure 37. Publishing Delay Over Time, Engagement #5 ... 71

Figure 38. CADETS Data Flow Showing Internal Use of Kafka .. 73

Figure 39. Mobile Phone Harness with Handset and WebCam ... 79

Figure 40. MARPLE Event Flow Graph .. 81

Figure 41. ADEPT Event Flow Graph ... 83

Figure 42. Event/Flows for Policy Demo Showing Missing IPC Provenance Data for AIA and TRACE 88

Figure 43. Event/Flows for Policy Demo Showing Missing IPC Provenance Data for CADETS and THEIA 88

Figure 44. Event/Flows for Policy Demo Showing Missing IPC Provenance Data for TRACE and MARPLE 89

Figure B‐1. OpenStack Main Components .. 106

Figure B‐2. A Feature‐full OpenStack Instance ... 106

Figure B‐3. A Basic CloudStack Deployment ... 112

viii

Approved for public release; Distribution is unlimited.

LIST OF TABLES

 Page

Table 1. General Descriptions of TC Program Technical Areas ... 2

Table 2. Transparent Computing Performers .. 5

Table 3. TC Engagement Dates .. 18

Table 4. Engagement #3 TC Policy Definitions .. 27

Table 5. CDM NetFlow Delays for TA1 ... 29

Table 6. Engagement #4 TC Policy Definitions .. 31

Table 7. Policy Enforcement Demos for Engagement #4 ... 31

Table 8. Policy Enforcement Scenarios for Engagement #5 ... 32

Table 9. Engagement #1 Bovia Record Statistics ... 57

Table 10. Engagement #1 Pandex Record Statistics .. 57

Table 11. Engagement #1 Stretch Period Record Statistics ... 57

Table 12. Engagement #1 Total Record Statistics ... 58

Table 13. Java vs Python 3 Producer Performance, Engagement #2 .. 59

Table 14. Engagement #2 Bovia Scenario Data Counts and Record Sizes ... 59

Table 15. Engagement #2 Pandex Scenario Data Counts and Record Sizes .. 60

Table 16. Data Rate Statistics for Engagement #2 .. 60

Table 17. Producer Throughput Experiment, SSL vs Plaintext and Kafka 0.11 vs 1.0 .. 64

Table 18. Consumer Throughput Experiments, SSL vs Plaintext and Kafka 0.11 vs 1.0 ... 64

Table 19. Producer Data Metrics for Engagement #3 .. 65

Table 20. Engagement #4 TA1 Publishing Volumes (One Day) .. 69

Table 21. Engagement #4 Cross‐Host Publishing Volumes (Three Day) ... 69

Table 22. Representative TA1 → TA3 Traffic .. 72

Table 23. CADETS‐Kafka Internal Traffic Volumes and Rates .. 73

Table 24. TA3 → TA2 Traffic Rates at Three Points in Time ... 74

Table 25. TA3 Internal Traffic over a Two Hour Period ... 74

Table 26. TA1 Metrics Collected Over One Hour ‐ TRACE, THEIA, and CADETS .. 76

Table 27. TA1 Metrics Collected Over One Hour – MARPLE, AIA and Clearscope ... 77

Table 28. Engagement #5 TA1 Data Production Results .. 78

Table 29. MARPLE Engagement #3 Policy Demonstration Results ... 80

Table 30. ADAPT Engagement #3 Policy Demonstration Results ... 82

Table 31. MARPLE Engagement #4 Policy Enforcement Results .. 85

Table 32. RIPE Engagement #4 Policy Enforcement Results .. 86

ix

Approved for public release; Distribution is unlimited.

Table 33. ADAPT Engagement #4 Policy Enforcement Results .. 86

1

Approved for public release; Distribution is unlimited.

 SUMMARY

BBNs Scalable Transparency Architecture for Research Collaboration (STARC) is an
expandable, flexible reference Transparent Computing architecture instantiated as a system
prototype comprised of a multi-layer data collection architecture, a shared data model, and an
analysis and enforcement engine. The prototype allowed integration of combinations of the full
breadth of event sources and policy enforcement points on heterogeneous endpoint systems and
analysis engines from multiple providers, enabling proactive enforcement of security policies,
near-real-time intrusion detection, and post-attack forensic analysis.

We developed a data collection system based on the Lambda architecture to support both real-
time analysis performed for alerting and policy evaluation, and batch processing used for
forensic investigation. The implementation is based on Apache Kafka using multiple Kafka
brokers. As the system integrator, BBN developed clients for Java, Python and C allowing
endpoints to send data into Kafka Topics and for analysis engines to receive real-time feeds and
execute queries from those Topics.

The data itself consisted of records specified by a Common Data Model (CDM) describing
security-relevant events occurring on each protected endpoint. The goal of CDM is to provide
sufficient detail on the flow of information within each endpoint to allow an analysis to trace
information and affects as they move through a system and to allow questions such as:

What files downloaded from the network has Process X read or accessed before requesting
privileged access to a system?

Was the file Node A is attempting to load for execution created by an untrusted user?

Was this data transfer out of the network initiated by a user, and not a script?

A primary advantage of a common event definition and record format is that it supports cross-
system (Windows, Linux, VxWorks, iOS, Android, etc.) data collection and analysis. While each
system may support concepts that are unique, most operations such as file reads and writes,
interprocess communications, network reads and writes, shared memory operations, and other
such information flows are common across all operating systems.

We developed a near real-time application for the TC infrastructure allowing the collected data –
in combination with queries supported by the analysis engines – to enforce provenance-based
policies over a single host such as those listed above. Extensions to this system could allow the
enforcement of complex, multi-host policies such as ‘never allow the transfer any file
downloaded from the network from a DMZ host to any host except those specifically
authorized’.

Finally, we developed and deployed a small range to support and exercise TC components for
five vendors – allowing a penetration tester to attack protected endpoints. An isolated range was
necessary as the use of malware was planned in violation of the terms of service of commercial
cloud operators. We evaluated OpenStack as the basis for the operations framework at the
beginning of the program and decided it was too complex and over-featured for TC needs and
created our own, eventually depending on PXE, SaltStack and a number of scripts and data files.
As it turns out, some of the assumptions made at the start of the program and changing
conditions encountered during the period of the program caused us to re-examine that decision at
the end and we determined that using an existing open source framework may have been a better
choice after all.

2

Approved for public release; Distribution is unlimited.

 INTRODUCTION

Modern cyber security currently faces a host of threats for which it has either no antidote or only
limited methods to detect and counter. The most devastating of these are the Advanced Persistent
Threats (APTs), a set of sophisticated programs that use stealthy long-term reconnaissance and
subversion to achieve a set of goals including infiltration, persistence, detection avoidance,
privilege escalation, lateral movement, system control and information exfiltration. Current
systems typically do not detect APTs until after months or years of subversive activity, and
cannot counter them without wiping and resetting a large portion of the targeted network. The
Transparent Computing (TC) Program aimed at earlier detection by tagging and tracking causal
relationships among activities across an enterprise. This transparency into otherwise opaque
computing systems was intended to allow development of an enterprise-wide information plane

to reason over these structures, and hence a means to detect APTs earlier and enact effective,
granular enforcement policies.

The TC Program was originally envisioned with a set of five Technical Areas (TAs) as noted in
Table 1.

As a solution for TA-3, Raytheon BBN Technologies (BBN) proposed the Scalable
Transparency Architecture for Research Collaboration (STARC), an expandable, flexible
reference TC architecture, instantiated as a system prototype comprising a multi-layer data
collection architecture and an analysis and enforcement engine. The prototype was intended to
allow integration of combinations of the full breadth of TA1 and TA2 technology alternatives,

Table 1. General Descriptions of TC Program Technical Areas

Technical Area Description

TA1 – Tagging and Tracking Identify and report APT related events and event metadata that can
be used to effectively identify the presence of an APT earlier in its
life-cycle.

TA2 – Detection and Policy
Enforcement

Analyze and reason over large volumes of TA1 generated data to
detect and block attacks in progress

TA3 - Architecture Work with TA1 and TA2 performers to design and develop the
experimental prototype simulating deployment in an enterprise IT
environment while maintaining security and supporting rapid speed
of detection, effective use of network bandwidth, and accurate
situational awareness.

TA4 – Scenario Development Develop operational scenarios involving APT infiltration and
operation in order to provide an information base for TA1 and TA2
providers and to serve as the basis for establishing metrics in the
latter phases of the effort.

TA5 - Evaluation 5.1 – Adversarial Challenge Team: Create new methodologies and
tools to conduct new attacks to identify strengths and weaknesses
of the TC solutions.

5.2 – Baseline Team: Use current commercially available SIEM
tools to assume the role of a TA1/2 team attempting to detect
attacks by the TA5.1 team.

3

Approved for public release; Distribution is unlimited.

enabling both proactive enforcement of security policies and near-real-time intrusion detection
and forensic analysis. Note that in this introductory section, we outline the high-level vision of
the STARC architecture as originally proposed to DARPA and in later sections expand upon this
and also indicate where our eventual work diverged from this vision.

Building STARC involved two main thrusts:

 Production of a flexible, expandable reference architecture, including APIs and data
formats, based on architectural considerations for coordination and composition of TC
technologies, and for integration of these technologies with the enterprise;

 Implementation of the TC system infrastructure components to produce a working
prototype of the reference architecture that can accommodate the candidate TA1 and TA2
technologies.

Figure 1 shows a high-level view of STARC, including the components that were in the original
design, and how they were intended to interact with the other TC components, the host enterprise
and our design and development methodology. The proposed STARC components included a
data handling system, a common data model, an analysis and enforcement dashboard, security,
and finally APIs to allow these components to interact with each other. All of these used the
Critical Factors Pyramid methodology to guide their cooperative design and implementation.

The proposal included a number of innovative claims dealing with the initial architecture, the
common data model (CDM), and the process of evolving both the architecture and the Critical
Factors Pyramid:

 Application of the Lambda Architecture [1] pattern for the data handling system enables
sub-second processing latencies over terabytes of data and horizontal scaling of both real-
time and forensic processing.

 Use and adaptation of the W3C provenance data model [2] and domain-type enforcement
fosters common conceptual data models, workflow provenance and policy
representations.

Figure 1. The STARC Architecture Was Intended to be Driven by Experience

4

Approved for public release; Distribution is unlimited.

 Implementation of an analysis and enforcement dashboard for fusing TA2 alerts allows
enhanced situational awareness view and confidence in dispatching suggested
enforcement actions.

 Feasibility assessment of using introspection and meta-policy within the TC system to
prevent information leakage and provide defense against compromised devices.

 Use of the Critical Factors Pyramid facilitates thorough analysis of architectural design
choices and provides a process for a design and validation cycle, and

 Continuous engagement process provides a cooperative environment for overall system
development and allows rapid adoption of new developments during program execution.

The core of STARC was a multi-layer data collection architecture that integrated different TA1
technologies operating across various software layers, applications, and platforms. A central
challenge for TC was to handle the voluminous granular data produced by multiple TA1
instantiations throughout the enterprise. BBN’s data handling system architecture was based
on the big-data Lambda Architecture [1] [3] (LA) pattern. The LA pattern is a state-of-the-art,
industry proven best practice for performing infinitely scalable and arbitrary computations on
large volumes of data in real-time and forensically. STARC was designed to use smart collectors
and enterprise instrumentation for tag propagation across system boundaries. It was well suited
for cloud deployments and grounded in standard, open-source technologies.

Another set of technical challenges involved the creation of common conceptual data models
for workflow provenance data and policy representations, required for the creation of common
data formats and API specifications. BBN's plan was to closely collaborate with all technology
performers to build common shared data models and specifications using the emerging World
Wide Web Consortium (W3C) Provenance Data Model [2] (PROV-DM) standard as a starting
point. In addition, it was expected that complete root-cause analysis would require harmonization
of the potentially orthogonal TA2 data for consistent policy enforcement and complete
actionable situational awareness. Thus, STARC was designed to use a common policy
representation based on a variation of the standard Domain-Type Enforcement (DTE) Model [4]
as a starting point for reconciling policy alerts raised by TA2s.

A key TC system goal was to provide enhanced situational awareness, allowing prompt detection
and proactive enforcement of policies against APTs. To address this challenge, STARC intended
to build an analysis and enforcement dashboard to fuse TA2 outputs (e.g., alerts, actions) and
interface with enterprise devices to trigger the enforcement mechanisms.

Securing the TC architecture itself against tampering and leakage would be a critical requirement
for transitioning the technology to an actual working enterprise. STARC's approach to securing
the architecture was based on a combination of applying proven security best-practices and
technologies, and leveraging novel capabilities produced by the TC architecture to enable self-
protection using introspection. BBN worked with TA1 and TA2 performers to investigate the
feasibility of building an introspection capability in order to allow the TC system to monitor
itself.

Assembling a large breadth of TA1 and TA2 technologies, each with potentially different design
parameters, required a methodical approach for exploring the design space. Our methodology,
governed by our Critical Factors Pyramid framework, ensured complete bottom-up coverage
of the design space, including quantitative and qualitative assessment of the design choices, with
a focus on meeting the overall program goals. The topics we assessed include tradeoffs relating

5

Approved for public release; Distribution is unlimited.

to the integration of TC technologies with enterprise networks, potential partial deployment of
TC technologies, composition of different TA1s, and the centralization of TA2 instantiations.
We built and refined our Critical Factors Pyramid framework through direct collaboration with
all the performers and DARPA to ensure the design effort met the expected program goals.

BBN had developed numerous architectural designs and performed as integrator for DARPA and
other government customers, and had acted as the challenge team in multiple programs. In order
to achieve success and provide a venue for all contributors to demonstrate their capabilities, each
of these efforts required a deep understanding of all of the core technologies being developed by
the program. To develop STARC, BBN used a Continuous Engagement Process that ensures
constructive interaction among the TC performers, creating a strong collaborative design effort.
Continuous interactions provided an ongoing dialogue to capture changes and new findings
quickly and efficiently, and allowed each participant to elucidate and understand their own and
others’ contributions. Further, this process ensured that the architecture and the instantiated
prototype would evolve and adapt to new findings and results as they emerged.

References to the performers of TC will be made throughout this document. For clarity, we
provide a list of their names and the TAs they participated in here for reference.

Table 2. Transparent Computing Performers
Short Name Full Name Team Members TA

Participation
ADAPT A Diagnostic Approach for

Persistent Threat Detection
Galois, University of Edinburgh,
Oregon State University

2

AIA Acuity Intelligence Agent Five Directions 1
CLEARSCOPE Clearscope Massachusetts Institute of Technology,

Aarno Labs
1

FAROS FAROS University of Florida 1
MARPLE Mitigating APT Damage by

Reasoning with Provenance in
Large Enterprise Networks

IBM, Stony Brook University,
Northwestern University, University of
Illinois at Chicago

1, 2

RIPE Rapid Identification and
Prevention of Exfiltration

BAE Systems, University of Texas at
Austin

2

STARC Scalable Transparency
Architecture for Research
Collaboration

Raytheon BBN Technologies 3

THEIA Tagging and Tracking of
Multi-Level Host Events for
Transparent Computing and
Information Assurance

Georgia Institute of Technology 1

TRACE Tracking and Analysis of
Causality at Enterprise Level

SRI International, Purdue University,
University of Wisconsin, University of
Georgia

1

5.1 Kudu Dynamics 5.1
5.2 CPT 2nd Cyber Protection Battalion, US

Army
5.2

6

Approved for public release; Distribution is unlimited.

 METHODS, ASSUMPTIONS AND PROCEDURES

 Introduction

In this section we will describe our original proposed approach for the architecture, Common
Data Model (CDM), conduct of engagements, the policy enforcement model, and the underlying
infrastructure supporting the operation and monitoring of the range. We describe the metrics
used to evaluate system performance and throughput and the steps we took to alleviate any issues
discovered and the rationale behind them.

 Architecture

3.2.1. Proposed

The original architecture proposed for STARC is shown in Figure 2. The numbers show the
sequential data flow, with the two subsets - 3, 4 and 5 and 6, 7, and 8, each occurring in parallel.
Each of the major components is discussed below.

 Smart Collectors

The idea behind the smart collectors was that granular causal tags and metadata produced by
TA1 performers could be collected there and delivered to the TA3 central architecture in a
consistent manner using proven secure protocols. The smart collectors could also augment the
data stream with additional data useful to analysis.

 Forensic Layer

 Master Data Store

The master data store is intended to be the source of ground truth in the system. A good master
data store possesses the following qualities:

Figure 2. Original STARC Architecture

7

Approved for public release; Distribution is unlimited.

 Fast sequential write capability to keep up with incoming records
 Preserved order of incoming records
 Almost never delete data
 Scale out to retain data for as long as necessary

The data store should not attempt to structure or index the data, as that could affect its ability to
keep up with the incoming write speeds. Furthermore, because it is the source of ground truth,
data is almost never deleted from the store. The only times data should be deleted from the
master data store is in rare cases where the data itself is entirely corrupted or incorrect. Analysis
and conclusions based on the data should happen at later stages of the processing pipeline by
combining, aggregating, and augmenting the ground truth.

 Batch Processing Framework

The batch processing framework is the mechanism for processing all historical data into smaller
views of data. It may calculate summarizing statistics or it may use algorithms to look for
anomalies. A batch processing framework has the following characteristics:

 Performs high-latency-high-accuracy calculations
 Duration of algorithm depends highly on data set size

The batch processing framework can make calculations with high accuracy because of its high
latency. It is able to go back and query the data store as many times as necessary in order to get
the correct answer. It is not subject to any real time constraints, and in particular it is not
influenced by the rate at which new data comes in.

 Indexed Forensic View

An indexed forensic view is an output of the batch processing. There may be multiple views
calculated over a single run of algorithms through the batch processing framework. The indexed
forensic view provides the following:

 Stores the output of batch processing framework for analysis
 Provides low latency access to last completed batch output, where last batch may be stale
 Accessible through a common query layer

The output provided by the indexed forensic view is in some sense always stale. Because the
batch processing framework takes a long time to run a job, and because new data is always
coming in, there will essentially always be data missing from the indexed forensic view. In this
sense, while the views should be highly accurate given the data they were computed from, they
are not highly accurate in terms of the data available to the entire system. Also, it is worth
pointing out that unlike the master data store, the indexed forensic views may be written into a
data base that requires random writes for the views being computed.

 Real Time Layer

 Real Time Substrate

The real time substrate is the input point for data coming into the system. It requires the
following characteristics:

 Fast sequential write
 Introduce as little latency as possible

8

Approved for public release; Distribution is unlimited.

 Provide fault tolerance

The fast sequential write requirement is similar to the master data store, but only the most recent
data needs to be present. The real time substrate should provide access to data almost as soon as
it comes in, but since it is the entry point for all data (even for data destined for the master data
store), it needs to implement some amount of fault tolerance in the event that a machine has a
fault.

 Stream Processing Framework

The stream processing framework is similar to the batch processing framework, except that it
needs to implement similar features with far lower latency. The stream processing framework
needs the following qualities:

 Provides framework to perform processing over data stream
 Only operates on data starting from whenever the last batch processing job was

completed
 When historical data is needed, use estimators and summarizing statistics

Data may not be totally accurate due to the inability to look up and calculate things based on
historical data. It may not be obvious what values are needed in advance, depending on the
algorithm being implemented. In that case, one may need to rely on precalculated summarizing
statistics or estimators in order to make progress. Furthermore, the real time processing system is
more complex in that if a job fails, it cannot start back up from historical data without violating
its real time constraint. As such, it needs more fault tolerance and redundancy built into the
system assuming the real time aspect cannot be temporarily suspended in the event of operational
issues.

 Indexed Real Time View

The indexed real time view is the output of stream processing. It provides the following:

 Stores output of stream processing framework for analysis
 Accessible through a common query layer

Similar to the batch views, writing the real time views to their data base often requires random
writes. This is another major complication in the data processing pipeline which can cause
backup of data flow if it is not carefully designed.

 Query Layer

The query layer is intended to provide a common query interface to both indexed batch views
and indexed real time views. It should provide the capability of merging the two views to
combine the highly accurate forensic view data with the more recent real time view data.

 Enforcement

We envisioned an enforcement dashboard for analysts to view what was going on in the system
and take some action through appliances like firewalls or through the TA2 components.

 Feedback

We envisioned the TA2s having a mechanism for controlling what TA1 sensors should focus on
in data collection. This would allow for the data flow from TA1s to either be limited to what
TA2s wanted, or to ask TA1s to gather more data on specific focus areas.

9

Approved for public release; Distribution is unlimited.

3.2.2. Lambda Architecture vs. Kappa Architecture

The original STARC proposal was to implement a Lambda architecture using agreed-upon tools
across TA2s. During the project, a new type of architecture, the Kappa architecture
(https://www.oreilly.com/radar/questioning-the-lambda-architecture/), started to gain
momentum. Its creator claimed that in their opinion, stream processing is not inherently less
accurate than batch processing, but rather the tooling available at specific points in time has been
the limiting factor. Furthermore, the author believed that the cost of creating and maintaining
code for both stream and batch processing at the same time is not worth the gains. The
architectural differences between the Lambda and the Kappa architectures are shown in Figure 3
and Figure 4.

About half way through the program, we presented the Kappa architecture to the TA2 teams. We
suggested that whether or not stream processing was capable of performing accurate calculations
for their algorithms was largely up to those teams, as they should have a good sense of what
kinds of things they were doing at that point of the program. The major upside to using the
Kappa architecture was that it was almost exactly what all of the teams were already doing. It is
a simple solution which still extends to working in many operational cases, and that includes the
cases we went through for the first few engagements. The TA2s were only streaming data from
Kafka and processing it as it came in. If their code had a bug in it or if a transient crash occurred,
they would simply reprocess the data from the beginning.

One major downside to the Kappa architecture that we saw for a program like TC was that it
relied on replaying data for a limited history, as the data is only stored in a place like Kafka. The

Figure 3. Example Implementation of the Lambda Architecture

Figure 4. Example Implementation of the Kappa Architecture

10

Approved for public release; Distribution is unlimited.

inherent problem is that Kafka topics, each a container of a single data stream, are not intended
to horizontally scale sequentially as the stream grows. They can be split into partitions, each of
which can reside on different machines, but those partitions are parallel processing constructs,
and not a mechanism for expanding an ordered data stream across multiple machines. We felt
that forensic analysis was a core piece of what an analyst may need to do once an APT was
detected, and that the storage limitations of any single machine in a Kafka cluster should be
independent of the desired retention policy of data to be used for forensic analysis. Therefore we
suggested that the data still be hooked up to a long term data store as shown in Figure 5. The
thought was that if long term reprocessing was needed, then data could essentially be "paged in"
from the long term data store into Kafka for replay if the team preferred that approach. This
could be used to process a window of historical data, or it could be used to reprocess all data
from a point up until the current time in the event of an analysis layer bugfix. As long as data
could be processed faster than new data came in, then eventually, the paged in data would
overlap with the live topic, at which point the consumer could switch back to processing the live
topic, ignoring records which it had already processed from that topic and starting from those it
hadn't processed yet until it caught up to real time.

3.2.3. What Was Implemented

 Smart Collectors

Kafka already had the machinery present to give us metadata such as timestamps and host IDs.
In particular, Kafka tracks timestamps on either the producer client side or the server side. Also,
we decided to use a single topic per producer host, and thus we were able to use the hostname of
the producer as the Kafka topic name. A Common Data Model (CDM) supported a common
schema and syntax across all TA1 producers. Kafka APIs were both robust and easy to use, with
our API wrappers making integrating with our Kafka clusters even easier due to pre-
configuration in the distributed code. Each TA1 was able to easily integrate with Kafka, so the
need for smart collectors was alleviated.

Figure 5. Proposed Architecture Supporting Both Real-Time and Forensic Processing

11

Approved for public release; Distribution is unlimited.

 TA1 Translators

While we did not use smart collectors, most TA1 teams opted to use translators running as
separate processes, sometimes even running on separate hosts. For example, the Five Directions
team used a process running on a separate host to take in records using their internal format and
convert it into a CDM data stream. This function is very similar to one of the intentions for the
smart collectors, although the sole focus is really taking a TA1-internal format and converting it
into the common data format.

 Forensic Layer

 Master Data Store

We explored setting up HDFS as a long term data store, and we set up the code to automate and
manage deployment. We also deployed master data stores for each TA2 to use leading into
Engagement #3. We ended up not using these deployments, however, and we ultimately shifted
away from further development of the master data store. For the TC program, the length of the
engagements meant that the data set sizes were not overly large and we could easily fit all topics
with data replication into our cluster of 6 Kafka servers each with 4 TB of data.

Prior to Engagement #3, we proposed artificially limiting the data retention in Kafka to some
period of time shorter than the planned engagements with the intention that the data would be
available in the Master Data Store. The TA2 teams expressed concern about us adding in this
new change, in particular because we were still developing pieces for integration between Kafka
and the data store and we were already experiencing delays and issues integrating the TA1
technologies. Because of this, we did not finish setting up the infrastructure to automatically
write from Kafka topics into HDFS prior to Engagement #3, opting to focus on other integration
issues instead.

We still believe that the long term data store is a critical component for maintaining both scale
out for data retention and fast sequential writes in a real deployment. Because of the limited scale
of the TC engagements, it was not critical for the program evaluations due to the duration of the
engagements and the relatively small volume of data generated.

It is worth pointing out that the MARPLE team ultimately had their own version of a master data
store that was implemented on top of HDFS, and they wrote to that data store when consuming
from Kafka. The RIPE team also created their own master data store by consuming the CDM
data, converting it to their own format, and writing that data into a file. Each TA2 had 16 TB of
disk space at their disposal, but even this seemed limiting at times due to the desire to keep
historical data which had been processed from previous engagements.

 Batch Processing Framework

The choice of batch processing framework was made irrelevant by the fact that two of the TA2
teams chose to focus on a TA3 Kappa-style architecture, and the third TA2 team (RIPE) not
participating fully in the last two engagements. If we had proceeded with a TA2 team with a
Lambda-style architecture, then the choice of framework would have depended on what the TA2
wanted based on their preference of language and platform. We likely would have set up a stack
for each Lambda-style TA2.

12

Approved for public release; Distribution is unlimited.

 Indexed Forensic View

This also ended up being driven by TA2 decisions. The RIPE and ADAPT teams each
implemented their own forensic views of the data by building up private databases in the real
time pipeline and used the query language provided by their database framework to do their
analysis. At least one TA2 team changed their choice of database implementation over time as
they encountered performance and feature issues, but many of them ended up using something
like Neo4j. Neo4j seemed to have many convenient properties for analysis, but it makes use of
random writes, which exacerbated some of the input/output rate challenges that we saw during
the engagements. This was discussed with the TA2 teams over the final three engagements but
they had, by the beginning of engagement four, solidified their design decisions.

3.2.4. Real Time Layer

 Real Time Substrate

We implemented a Kafka cluster for this component. Kafka ended up being the perfect tool for
the real time substrate, and it was the one constant that remained steady throughout all
engagements of the program. We ended up using a very limited feature set of Kafka, though, in
order to meet the needs of the program. In particular, Kafka provides a mechanism called
partitioning which is a method to balance the set of produced messages across a set of servers
and also allows for parallelization of consumption.

Kafka's partitioning does have a drawback in that it removes strict ordering of records across
partitions, something that the TC performers felt was necessary. Reconstructing this strict
ordering could have done by using timestamps created on the producer side and placing them
into each CDM record, but in order to reshuffle the data to get the ordering back, we would have
needed to send the data through a single bottleneck, taking away the benefits of parallel
processing.

 Stream Processing Framework

The TA2 teams ended up choosing their own processing pipelines. For the most part, it seemed
that they were not using the standard commercial streaming engines which we had envisioned
(such as Apache Spark or Apache Storm) and built their own custom processing engines. This
was a point of discussion leading into the first engagement, with TA3 wanting to let the TA2
teams explore what worked for them before trying to find a common framework for all teams to
agree on. Ultimately, each TA2 explored different directions based on their experience and, once
they decided on which one to use they were unwilling to change. We believe more familiarity
with the standard streaming engines on the part of the TA2 developers at the outset might have
made a decision to use one of them more palatable.

 Indexed Real Time View

Similar to the indexed forensic views and because each TA2 chose their own stream processing
framework, this was also a per-TA2 decision. Our observation was that their views were not
precomputed, but rather analysis was performed on the fly based on triggers such as point
detectors.

3.2.5. Query Layer

Because TA2 teams each controlled the prior stages of the architecture, they ultimately decided
what their query language looked like.

13

Approved for public release; Distribution is unlimited.

3.2.6. Enforcement

Various versions of an enforcement dashboard were discussed during the program, including a
Nagios-like green/yellow/red interface for viewing network and system status. While we did not
implement an enforcement dashboard, we tested system-level elements of policy enforcement
through a series of demos which is documented at Policy. This enforcement mechanism put an
enforcement point in the data plane which was much more flexible than a simple firewall. It
allowed for very fine-grained policy to be enforced based on data flow throughout the network.

3.2.7. Feedback

A TA2 control plane into TA1 systems was explored before the first engagement, but both TA1
and TA2 teams generally seemed wary of it. The FAROS team explored options for their own
feedback plane to control the level of granularity of their data collection, but this ultimately was
not used. Both the FAROS and THEIA teams explored control planes for replaying data, but this
was more about augmenting data with finer grained details rather than controlling data collection
granularity at run time.

 Common Data Model (CDM)

The TC program aims at early detection of APTs and root cause analysis by making otherwise
opaque enterprise systems transparent [5].

Transparency is achieved through granular tagging and tracking of causal relationships among
programs and data across the enterprise's communication/computation planes, assembly of these
dependencies into end-to-end behaviors, and reasoning over the behaviors both forensically and
in real-time. A wide breadth of techniques exist for building causal relationships among
activities. These may be coarse-grained such as those based on audit logging systems (e.g., MPI
[6] or MCI [7]) or finer-grained such as with information flow taint tracking systems (e.g.,
TaintDroid [8] or Panorama [9]). These techniques also differ by platform (e.g., desktop, server,
mobile, embedded) and layer of the software stack.

The primary technical challenge we had to address was how to record and preserve these causal
relationships to support the largest breadth of such tagging and tracking technologies.
Commercial forensic technologies tend to use the logging capabilities afforded by the operating
system audit and log features, which tend to be either very find-grained or very coarse in nature.

3.3.1. CDM Goals

The TC performers as a whole developed a set of primary goals for the model. They are:

 capture metadata about both the data and control planes with high fidelity and various
granularities,

 allow the TA1 performers to naturally express their information without adding undue
burden on them, and

 contain the semantics and information needed to enable real-time detection and forensic
analysis by TA2 performers.

Three of the TA2 teams, ADAPT, MARPLE, and RIPE, submitted proposals that could each
support their tool as then currently envisioned. The TC participants worked as a group to
consolidate these proposals over a number of months into a single usable model.

14

Approved for public release; Distribution is unlimited.

3.3.2. CDM Conceptual View

The agreed upon model was developed as a combination of the three proposals, and then added
to over time based on experience. The basis of the initial model was the MARPLE event-based
model where events are first-class entities, along with control flow (order) and data flow (tags).
The hierarchical relationships between subjects and objects were proposed by the ADAPT team
in its PROV-TC model, allowing the model to capture mixed granularities and containment
semantics. The RIPE team added the concept of representing events and data as vertices in a
graph and using this representation to explicitly show the relationships. The core data model is
shown in Figure 6.

 Events and Subjects

Events represent actions executed on behalf of subjects. Events could include system calls,
function calls, instruction executions, or even more abstract notions representing a “blind”
execution such as black boxes that are not instrumented (more shortly). Events are the core entity
in the model and they are the main abstraction for representing information flow between data
objects, and subjects.

Events are assumed to be atomic so there is no direct relationship between events. Instead, events
are related to other events through the affected subjects and objects.

Events can have different granularities but they are still atomic. For example, a function
boundary may execute many atomic events within it, hence the function entry call would be
captured as an event and so would the function exit call. The function boundary itself may be
captured as a subject in this case if needed. If the function boundary is not instrumented however
(black box), the function execution may still be captured as a “blind” event that relates the input
and output subjects and objects (more on blindness shortly).

The event sequence represents the logical order of the event relative to other events within the
same execution context. This guaranteed which is why we kept sequence. The event’s location

Figure 6. CDM Common Graph Data Model

15

Approved for public release; Distribution is unlimited.

and size attributes (from ADAPT) are optional and they refer to the location and size of the data
affecting the event (e.g., the read offset in the file and the number of bytes of data read for the
read system call event). Subjects represent execution contexts and include mainly threads and
processes. They can be more granular and can represent other execution boundaries such as
functions and blocks if needed. For example, a function within a thread within a process can be
represented as three subjects where the function hasParent thread, and the thread hasParent
process. Here the function subject is an execution boundary that is more granular than the thread
(while we can represent this granularity, as of now it is unclear if and when this will be useful).

An event isGeneratedBy a subject. It may affect other subjects such as when the output of a
system call (event) forks a process (subject). A subject may affect an event as well such as when
the subject is the input to the event as is the case with the kill system call.

An event affects objects and values. These may be the outputs of the event execution. Similarly,
an object or value can affect an event such as when the objects are input arguments to the event.

a. Events as First-Class Entities: In order to understand the rationale behind choosing
events as first class entities, it is worth describing the alternative first. An alternative
model (such as W3C PROV) treats events as binary edges between subjects and objects.
These edges, such as “wasDerivedBy”, are annotated with event types and other
metadata. While this is valid model, we found that treating events as edges creates
unnecessary complexity in the model. This is especially true when events relate more
than two objects and/or subjects. In this case, simulating this n-ary relationship using
binary relationships complicates things. Instead, n-ary relationships may be natively
supported in the Common Data Model since events are vertices in the graph and they can
be related to an arbitrary number of subjects and objects. It is important to note that it is
straightforward to map this event-based model to a W3C PROV model if a TA2 should
wish to do so: each event would be decomposed into a subset of the predefined PROV-
DM relations. This mapping may or may not be lossy depending on how accurately the
PROV-DM model would be able to capture the rich and complex semantics of system
events. To avoid this mapping, we found it more natural and intuitive to use a more
native event-based view.

b. Sensor Blindness: An interesting discussion point raised by the ADAPT team was sensor
blindness i.e., what happens when we don’t have events (say with black boxes) but a TA1
technology is still able to capture the information flow into and out of the black box. We
discussed two options here. In the first option, we can add edges directly between objects
and between objects and subjects to represent this information flow. The other option that
is more consistent without event-based model is to create a special event type for “blind”
events that still serves as the main entity for connecting the affected objects and subjects.
We agreed on the latter model; hence, data cannot flow directly between objects or
subjects without going through an event.

MARPLE and ADAPT each identified a superset of events corresponding to system level calls.
Over time, we agreed on these event types and consolidated their definitions.

Finally, a subject in the MARPLE proposal had attributes for “reference ObjInfo representing
executable” and “list of references to libraries”. We think these are already captured in the model
as input objects to the event that created the subject so these were not included.

16

Approved for public release; Distribution is unlimited.

3.3.3. Objects

Objects, in general, represent data sources and sinks which could include sockets, files, memory
and variables, and any data in general that can be an input and/or output to an event. This model
expands the definition of objects to explicitly capture the flow of data inputs and outputs to and
from events. The model also treats event arguments as first class objects (instead of attributes of
the event entity) where each object may have its own provenance again explicitly showing the
flow from inputs to outputs. Syscalls, functions, and instructions have inputs and outputs which
could be objects or subjects.

We identified some key object attributes. The object timestamp is the creation time. The file
URL is its local or remote path/location. Files have version numbers. As files get updated, a new
file object is created with a new version number.

a. Transient data: One of the main discussion points was whether we should model
arguments as Objects or whether we should explicitly distinguish transient data (e.g.,
arguments) from more persistent data (e.g., files). We agreed that it makes more sense to
distinguish the two mainly because they have very different attributes (arguments don’t
have ownership and path attributes and have a value attribute). Just like objects, values
have tags and affect (and are affected by) events.

b. Granularity and types: We discussed representing objects at various granularities.
ADAPT modeled object containment using the isPartOf relationship associated with the
object/artifact. This allows us to represent a set of objects being part of a parent object,
such as when writing buffers (objects with different tags) to a file (parent object). To
explicitly differentiate between different types of objects, we also decided to subclass the
abstract object into Files and Network Flows and Memory objects (and others we shall
identify) instead of modeling those using a type attribute of the object entity. This is
mainly to keep the model clean given the difference in attribute sets among the object
types. Finally, we also discussed whether we should model mobile phone sensors (GPS,
camera, gyro, etc.) as a separate entity from Object, called Resource (as proposed in
ADAPT). One observation here is that the sensing subsystem in Android for example
might have enough differences to warrant this distinction. The counter argument is that
Android uses Linux underneath and one might be able to get away with an Object
abstraction for all such data devices. For now, we decided not to make the distinction and
keep it for future consideration.

c. Provenance: As discussed earlier, we explicitly model the relations between events and
objects and subjects using the affects relationship which is intended to identify the nature
and semantics of the relation. The explicit relations between objects and events represents
direct data flow (top part of Figure 6 in blue). ADAPT defined a location attribute for the
objects. This model made location an attribute of the event instead since it is specific to
the event (such as the location in a file where the read or write event happens). The
location may be the offset being read from a file or socket. We similarly added size as an
optional attribute of the event.

3.3.4. Tags

The tag design was primarily fleshed out by the MARPLE team. The primary motivation for tags
is the ability to capture flows at a finer granularity and with increased precision. Specifically,
tags can capture:

17

Approved for public release; Distribution is unlimited.

 Increased precision: Tags should be able to capture information flow from a (strict)
subset of inputs represented in a causality graph. For instance, a subject may read from
100 files, and then write one file. Rather than reporting that the output depends on these
100 inputs, a TA1 system can indicate that it depends only on 10th and 97th input files.

 Nature of dependence: The behavior of the system can be understood in terms of a series
of operations on inputs to produce outputs. Fine-grained tracking can identify the effect
of these operations on data flows. These effects can be described using tag operations,
which can capture:

o common operations on data such as concatenation, mixing, compression, and so
on,

o declassification and endorsement, the central operations used in information flow
control literature, and

o strength of dependence, e.g., control dependence or implicit dependence.
 Flows involving internal (unreported) objects: Especially for in-memory objects, not all

updates and flows may be reported by a TA1 system. A TA1 system will internally keep
track of these updates, and can then make the information available at the time when
these objects contribute to an event argument.

Tag are associated with subjects, objects, and values.

We identified three types of tags: (i) provenance (source dependence), (ii) confidentiality, and
(iii) integrity tags, all of which can exist in parallel. One can think of these tags forming three
parallel planes each capturing a different aspect of data flow. The integrity (respectively,
confidentiality) tag may be used to specify the initial integrity (respectively, confidentiality) of
an entity, or to endorse (respectively, declassify) its content after performing appropriate
checking/sanitization.

a. Provenance tags: Defines specific data sources (inputs). A tag identifier (an integer) is
bound to a source and used by the tracking system to capture dependence on this source
input. We sought a simple representation that was expressive enough to capture all TA1
data but not too complicated.

b. Integrity tags: Integrity tags can have values untrusted, benign, or invulnerable. The
integrity tag untrusted indicates that the content is potentially malicious, while the tag
benign indicates that it is from a source that is non-malicious. The tag invulnerable is
applied only to programs, and indicates that the program is trusted to be free of
vulnerabilities.

c. Confidentiality tags: Confidentiality tags can take values secret, sensitive, private, or
public. The label secret is meant for entities such as passwords. The label sensitive is
used for all confidential data that needs to be protected, while the public tag is reserved
for information that can be freely shared with the world. Non-public (but not
confidential) data is designated private.

3.3.5. Extensibility Points

As part of the initial definition, every participant agreed that creating a complete and concise
model on paper only is very difficult and that we would have to include extensibility points to
support the evolution of the model based on experimental results.

18

Approved for public release; Distribution is unlimited.

3.3.6. Typed Schema Definition

TA3 is developed a versioned and typed schema that codifies the above conceptual model. The
actual data model did evolve based on TA1-TA2 discussions over the course of the program. The
schema definition was maintained in parallel to match the latest version of the data model.

The schema is specified using the Apache Avro Interface Description Language (IDL) language.
Avro IDL is a high-level language for authoring Avro schemata. It provides a familiar feel for
developers in that it is similar to common programming languages like Java, C++, and Python.
Also, it is similar to IDLs in other serialization frameworks such as Thrift and Protocol Buffers.
Avro provides a tool to convert the Avro IDL specification into an Avro schema in JSON format,
which is used by Avro serialization frameworks for automatic serialization and deserialization of
objects that conform to the schema. Avro (and the TA3 APIs) additionally provide the tools for
automatic syntax checking to verify the data conforms to the typed schema.

Appendix A is an excerpt of the typed schema based the common data model of Figure 6. This
excerpt includes Subject, Event, Object (and subclasses), and Value entities, and all edges
between them.

3.3.7. CDM Evolution

Since the first implemented version (0.5), the CDM has had 15 subsequent versions as we
learned from our shared experience preparing for and during the engagements. Some changes
made to the schema included:

 The Value entity was ‘demoted’ from a first class entity to an attribute of an Event
 We added a SensorObject to represent Android sensors, genericized that to SourceObject,

and finally to SrcSinkObject
 Instead of depending solely on a Host UUID and Stream ID in a single StartMarker

record at the beginning of a stream, these two values are now included in every record to
assist TA2s with associating event records with each other.

 Engagements

The TC program used a series of five engagements providing a structured series of increasingly
difficult scenarios to validate the design and implementation of each of the components provided
by the TA1 and TA2 performers, the infrastructure provided by BBN as the TA3 performer, and
the procedures and processes used by all performers as a group. Table 3 provides the dates for
each of the engagements.

Table 3. TC Engagement Dates

Engagement Date

1 Sep 6 – 9 2016

2 May 1 - 27 2017

3 April 2 – 13 2018

4 November 9 - 21 2018

5 May 7 - 17 2019

19

Approved for public release; Distribution is unlimited.

3.4.1. Engagement #1

 Goals

Engagement #1 was mostly aimed at creating a steel thread for the initial versions of the TC
technologies. We wanted to exercise the system to make sure that information could flow from
TA1s through to TA2s, and that attacks could be performed at detected at some level. For this
engagement, the red team was carrying out two different "scenarios". Bovia and Pandex were
supposed to represent different enterprises being targeted by different actors carrying out
different campaigns. These scenarios were developed by TA4 and were used as input into
TA5.1's attack planning.

 Network

In the lead up to Engagement #1, the network evolved while we determined how to create a
design that would best integrate with the Lincoln Adaptable Real-time Information Assurance
Testbed (LARIAT) [10] . LARIAT was used to create a realistic, but controllable image of the
internet to support testing and malware injection. Initially, the plan was to set up an entirely
closed network with LARIAT providing a simulated Internet backend. As we received feedback,
we decided it would be good if the hosts in the test range had the ability to reach out to resources
on the real Internet for development purposes (e.g. pushing and pulling code to and from external
repositories). After this, we decided that TA3 would run a router which would act as the default
gateway for all TA1 target hosts in the test range, and the routes could be switched to point at
either the real Internet or the simulated Internet backend on demand. This approach was both
coarse grained (at least without some type of source-based routing), potentially bandwidth
limiting, and difficult to implement due to specific restrictions imposed by LARIAT.
Specifically, LARIAT provides a router that either needs to be the first hop, or else it needs to be
set up to perform Border Gateway Protocol (BGP) transactions, which is something we did not
want to set up. Finally, we decided to set up a system where the hosts would switch their default
gateways in order to switch networks. In addition to this change, we also needed to change the
Domain Name Service (DNS) name servers used by each host in addition to flushing old entries
from the cache. Changes between Internets were performed manually by TA3 on request. More
details on the system that performed this can be found in the Infrastructure section.

After sorting out how to connect to LARIAT and the real Internet, we ended up with four
VLANs, as can be seen in Figure 7.

20

Approved for public release; Distribution is unlimited.

The primary concepts incorporated in the Engagement #1 test network design were:

 A test management VLAN, which was the only VLAN which could reach the Internet
 An experimental data plane VLAN for the Pandex scenario
 An experimental data plane VLAN for the Bovia scenario
 A LARIAT control plane VLAN for driving the LARIAT agent on Windows hosts

Over the course of the first engagement, we found that the LARIAT agent was disruptive to
attempting to perform attacks, and therefore the agent was ultimately dropped, as was the control
plane VLAN for LARIAT.

 Hosts

In Engagement #1, there were two scenarios, and the test range was set up in a way where both
scenarios were set up separately on different hardware. The idea was to do as much set up as
possible in advance, and to not have to reset anything between running the different scenarios.
As such, there were two instances of each TA1 and two Zookeeper and Kafka clusters. Each
TA2 used a single cluster due to limited hardware.

To set up the TA1 systems, the TA1 teams hand-created images and provided them to TA3. TA3
converted the images to the proper format for KVM to run them and updated the images by hand
to fit into the test range network architecture. A single account was used to log into the systems
for setup, and another account was intended to be the account which was monitored during the
engagements. The images were augmented by hand by TA1 teams and TA5.1 in order to be
ready for the engagement. This led to problems in reproducibility, manifesting itself as conflicts
during setup and mismatches between the two replicated hosts which largely should have been
identical. Furthermore, there was at least one instance where a configuration file was in an
unexpected state and no team which had access to the system claimed responsibility for the
change. These issues demonstrated a need for improved reproducibility and accountability on the
systems.

Figure 7. Network Diagram for Engagement #1

21

Approved for public release; Distribution is unlimited.

3.4.2. Engagement #2

 Goals

Engagement #2 was the first attempt to move beyond simply exercising the system. It increased
the level of attack difficulty while also trying to ensure that problems encountered in
Engagement #1 were addressed. Once again, two scenarios were used.

 Network

In Engagement #2, the LARIAT control plane VLAN was removed and the LARIAT agent was
replaced by custom scripts running on each end host. Kafka traffic from the TA1 hosts was
intended to not be in scope for this engagement, which was an oversight from the previous
engagement, so a new VLAN was introduced for Kafka traffic only. There was still a VLAN per
scenario. Switching between the real Internet and the simulated Internet was automated and
brokered through a web service reservation system. Figure 8 shows the design used for this
engagement.

 Hosts

For host allocation in Engagement #2, an emphasis was placed on fairness of resource allocation
for TA2s. There were TA1 instances, Zookeeper clusters, and Kafka clusters allocated for each
TA2. To prepare for the second scenario, all the hosts had to be updated after the first scenario.

To prepare the TA1 systems, some TA1s delivered images and others worked with images that
TA3 provided and they tried to create more reproducible mechanisms to perform their setup
steps. TA3 tried to create hand-made scripts for each TA1 that would perform basic reproducible
setup of their systems in a way that was compatible with TA5.1 background activity generation
and attacks. This approach was an improvement over the previous approach, but it was very time
consuming and as deadlines approached, it ultimately fell back to manual changes for teams
which were late to meet deadlines. Teams that manually changed their systems once again had
issues with systems not being identical across their three instances. In addition to these changes,
each team was given their own shared accounts which could be used for setup. The goal here was
to introduce some level of improved accountability when things changed on a system.

Figure 8. Network Layout for Engagement #2

22

Approved for public release; Distribution is unlimited.

3.4.3. Engagement #3

 Goals

Engagement #3 introduced cross-host tracking for the analysis teams to follow. In addition, the
Kafka traffic was added to the scope of the analysis team, and outsider attacks were also added to
the scope. The addition of cross-host tracking and in-memory attacks increased the difficulty for
full detection. Engagement #3 still included multiple scenarios, but the infrastructure for each
scenario was converged.

 Network

Engagement #3 was the first engagement that introduced a simplified network approach with
only two VLANs. Figure 9 shows that there was once again a test management VLAN which
could reach the real Internet, but the only other VLAN was a single converged experimental data
plane VLAN. The reasons for this change was that there was no need to split out traffic for the
scenarios into different VLANs, and Kafka traffic was in scope for the engagement.

Figure 9. Network Layout for Engagement #3

23

Approved for public release; Distribution is unlimited.

 Hosts

Engagement #3 tried to maintain a per-TA2
level of fairness, but the number of hosts and
the maintenance burden of separate TA1 and
TA3 deployments per TA2 was too high. In
addition, Engagement #3 targeted the
introduction of a long term data store cluster
per TA2, which is what many of the hosts
were earmarked for. Ultimately, the long term
data stores were not used in the engagement
but this did impact the availability of hosts.
There was ultimately a single Kafka and
Zookeeper cluster, and for most TA1s there
was a single instance of their system. The only
exceptions were that THEIA's replay systems
were replicated to have an instance per TA2
for fairness per TA2, and FAROS systems
were also replicated for TA2s, given their plan
to have TA2s trigger coarse-grained and fine-
grained collection modes.

In order to set up TA1 systems and TA5.2
systems, Continuous Integration (CI) for
image generation was introduced prior to
Engagement #3. TA3 created some canned
images with basic platform requirements
needed by individual TA1s, and those were fed into processes which automatically generated
images which could be deployed. TA3 also revamped the provisioning system to be part of the
tc-salt-services package, which leverages SaltStack for idempotent configuration management.
TA5.1 significantly changed their background activity generation to seem more like realistic user
traffic at a low level. More TA1s delivered their own provisioning scripts, but the process for
TA1 setup was largely still very manual. Engagement #3 was ultimately delayed due to late code
deliveries and problems with testing during deployments.

3.4.4. Engagement #4

 Goals

The goal of Engagement #4 was to focus on depth for each of the individual TA1s. It focused on
isolated attacks on specific days for a pair of hosts running a single TA1, and then a separate
week of isolated attacks on pairs of hosts running pairs of pre-chosen TA1 pairs. The ability of
TA1 technologies to be used for TC self-monitoring was also evaluated.

 Network

The network design was not changed significantly from Engagement #3.

 Hosts

Engagement #4 was a one-off engagement where the focus was on probing on each TA1's depth.
As such, each TA1 was set up with a pair of hosts which could be the focus of an attack within a

Figure 10. Engagement #3 Network

24

Approved for public release; Distribution is unlimited.

single day. The following week, one of those two hosts would be used in a day focused on a pair
of TA1 hosts. For this work, a single Zookeeper and Kafka cluster was used. However, a
secondary Kafka and Zookeeper cluster was set up on top of CADETS hosts to evaluate the
feasibility of TC self-monitoring. The original plan was to set up Kafka in a way where
CADETS hosts were mixed with non-CADETS hosts in a single cluster in a way where each
topic would have a replica on one regular Kafka machine, however it was found that Kafka on
CADETS had significant performance issues and some stability issues, to the point that it had to
be taken out of the critical path for the stability of the engagement. In the secondary setup, Kafka
on CADETS was set up to consume from the primary cluster.

Image generation was once again provided through CI, and both TA1 and TA3 provisioners were
refined and updated for new TA1 features. TA5.1 provided some automation of basic attacks as
well as their background activity generation management through Jenkins.

3.4.5. Engagement #5

 Goals

Engagement #5 focused on scaling up the infrastructure to provide an increased surface area of
hosts for analysis and a larger data flow to analyze in real time. In addition to multiple instances
of each TA1 system, uninstrumented hosts were also introduced into the infrastructure to test the
ability of TA2 teams to detect cross-host activity when an intermediate host provided no data.

 Network

The network design was not changed significantly from Engagement #4.

 Hosts

Engagement #5 was largely about scaling up. Each TA1 team had three instances of their target
hosts all running at the same time. In the case of THEIA, they also had a replayer host per TA2.
A single Zookeeper and Kafka cluster of 6 nodes was used, and was sufficient for the
engagement. It is worth noting that the RIPE team did not participate, which ultimately reduced
the burden placed on the cluster by consumers compared to previous engagements. Attacks were
once again made more difficult, and that included adding in five uninstrumented hosts which
could be used as pivot points for TA5.1 within a multi-host attack.

The engagement ended up running more smoothly than the previous two engagements due in
large part to a much more strict set of rules for meeting the timeline leading into the engagement.
For the most part, the image generation and provisioning process had also been in place for a
while, and thus only needed to be tweaked and refined to accommodate new features. TA5.1 also
continued to improve the automation of their processes.

3.4.6. Challenges with Reproducibility

There were a number of challenges across many of the engagements related to achieving
reproducibility in system provisioning. First of all, some performers had processes as part of
their build and system setup which were very difficult to automate. Those things would typically
be documented and performed by hand, but that could still lead to some amount of inconsistency
across deployed hosts. To a lesser extent, some performers had processes which could be
automated, but they took a very long time to run. Another issue we had was that the split
between the image creation process in Jenkins and the post-install setup provided by the
performer led to confusion about where certain changes should have been put in place. In

25

Approved for public release; Distribution is unlimited.

general, the goal should be to push as many things as possible into the provisioner so it can be
updated after an install with the caveat that things that always take a long time to run should
probably be put into the image creation process to avoid provisioners that take too long to run. In
terms of image creation, we also found that Jenkins may not have been the best tool to use.
While creating images in Jenkins let us create pipelines where we could run unit tests and
integration tests after the image was built, Jenkins made it awkward to track and deploy images
into the test range once they had been generated.

 Policy Enforcement Capability

3.5.1. Overview

The goal of the Policy Enforcement Demonstration is to investigate how well the TA1 CDM data
can be used in real-time to enforce policy, rather than in post-incident forensics. We conducted a
demonstration of this potential capability, rather than a full evaluation with a red team evaluation
of a hardened system. Figure 11 shows the system architecture used in Engagements 4 and 5. A
client accessing a policy protected web server runs on a TA1 monitored host, and the policy
protected web server also runs on a different TA1 monitored host. Later iterations of this
demonstration also included secondary servers, such as a database server, where the main server
issued requests to the database server while handling a request. The Policy Enforcement Module
(PEM) stands in between the client and server, intercepts requests, and sends policy check
queries to a TA2 server. The TA2 server consumes the CDM data produced by the TA1
monitored systems from the TA3 Kafka cluster and analyzes it to answer the PEM generated
policy queries.

3.5.2. Motivating Example

Consider the case where a host on a network is quarantined due to suspected malicious activity.
Also running on this network is a web server that should be keep up and servicing requests
during the investigation of the quarantined host. We want to add a policy that blocks any

Figure 11. Policy Enforcement System Architecture

26

Approved for public release; Distribution is unlimited.

requested web page that was generated using files that originated (at least in part) from the
quarantined host.

Web pages are dynamically created from files on the TA1 instrumented server, and back-end
requests from that server to another TA1 instrumented database server

The policy should block cases where the database process running on the database server host
has read from a file that originated from the quarantined host. As requests are blocked, the
administrators may restart the database, which would allow requests to continue until it reads
from another such file. This policy would be temporary, and could be removed when the
intrusion is fully identified and cleaned.

The calls from the Policy Enforcement Module (PEM) to the TA2 policy server will only
reference the original request from web client to main server. The TA2 will then need to trace
any traffic from the main server to the database server

3.5.3. Policy Enforcement Module Design

For Engagement #3, The PEM operated as a standard forward proxy. Implemented as a separate
application and running on a separate, un-instrumented host, the TA1 client was configured to
access the protected web server by sending requests to the PEM's host and port. The PEM would
then intercept any incoming request, compare the requested URL with a white-list. Any white-
listed URL is then immediately forwarded to the protected web server without any policy
enforcement. For any non-white-listed URL, the PEM blocks the request and begins the TA2
policy check API, depicted in Figure 12.

Figure 12. TA2 Policy Check Transaction

27

Approved for public release; Distribution is unlimited.

After intercepting a policy protected (not white-listed) URL, such as "upload.html" in the Figure
above, the PEM extracts parameters such as the client host, port, and timestamp , along with the
configured policy number and a unique identifier, and generates a checkPolicy request which is
sent to the TA2 server. The policy number is configured at initialization time, and refers to one
the four policies described below. We specifically did not attempt to author a general policy
definition language, since such an effort would have been beyond the scope of this program.
Instead we defined four example policies, and referred to one of the four when issuing a policy
check message.

The policyCheck message is asynchronous, and returns a result immediately that indicates
whether the TA2 was able to understand the request, parse the expected arguments, and is ready
to start working on the answer. Our assumption was that the process of analyzing the CDM data
to compute the result of the policy query could take the TA2 system a few seconds to a minute or
two. In practice, due to a lower rate of data (minimal background traffic), the TA2 system
answered the query in tens of seconds rather than minutes. While the TA2 system is processing
the query, the PEM can check on status periodically by issuing status queries, which the TA2
system responds to immediately with a status of 202 (request in progress), 404 (request not
found), or 500 (internal error). Finally, when the TA2 has completed processing and has an
answer, it sends a POST message to the PEM with the result. When the PEM sees the POST, it
finally responds to the client by either issuing a 400 Bad Request response if the policy check
failed and the request should be blocked, or a 303 Redirect if the request passes the policy check.
This redirect pointed the client to the real web server to get the real requested page. Using a
redirect approach would not work in a real deployed system since a client could determine the
protected web server's host and port from the redirect and use that directly in subsequent requests
to bypass the PEM. We chose to use redirection here, since it was a fast solution that provided
the needed functionality for a demonstration.

3.5.4. Evolution of the Policy Enforcement Demonstration

 Engagement #3

For the first version of the policy enforcement demonstration, we focused on client side policies.
The server was running on a separate TA1 monitored host, however no policy query required
analysis of the server data. We created a background traffic script that ran on the client which

Table 4. Engagement #3 TC Policy Definitions

Policy
ID

Policy Name Description

1 Originating User ID Block if the user originating the process that sent the HTTP
request is NOT in a specific group or not a specific user

2 Block if tainted by a suspect
server

Block if the process that sent the HTTP request ever
communicated with a specific remote server

3 Block automated scripts Block if no portion of the request originated from a definite
User Interface action

4 Block network data uploads Block uploads that contain data downloaded from a network
connection

28

Approved for public release; Distribution is unlimited.

generated periodic traffic to white-listed URLs on the policy protected web server. We created
another script that included a set of 6 requests to the policy protected server, some of which are
expected to be fail the policy check. These policy enforced requests were sent sequentially, we
waited until one request had completed before sending the next. For Engagement #3, we ran each
TA2 separately, resulting 6 runs of the demo for each TA2 (each TA1 as the client), for a total of
18 demo runs.

The demonstration was conducted in two phases. First, we generated forensic data as examples
for the TA2s to evaluate, analyze, and use to implement their solutions. Forensic data was
generated by using a TA3 generated reference implementation of the TA2 server API. This
implementation always returned a PASS result. We ran each scenario with a specific policy
chosen for each TA1, saved the CDM data, and provided it to TA2, along with a description of
the ground truth and the policyCheck messages sent by the PEM to the reference implementation
TA2 stub. The ground truth description indicated for each request, exactly what steps were taken
on the TA1 client to generate the request, and what the expected result was (PASS or BLOCK).

The second phase was a live demonstration, where we ran with a live TA2 server responding to
requests in real time. For this demonstration, we used the same TA1 policy pairings as the
sample data, and ran through the same requests in a random order, with some additional bonus
requests that the TA2s did not see beforehand.

 The TA1 Delay Issue

There are two data pathways in this policy enforcement architecture. After an outgoing message
is sent from the TA1 system to the Policy Enforcement Module (PEM), the PEM receives the
message with only a tiny network stack delay, and can nearly immediately send the TA2 system
a policy query. The TA2 system will then have a query to respond to, but may not yet have the
data necessary to answer the query. Simultaneously, the outgoing network message on the TA1
system has to be processed by the TA1 infrastructure, converted to CDM, published to the TA3
Kafka cluster, and then consumed and processed by the TA2 system. This second pathway will
take longer than the first, since there are more steps and more complex processing taking place.
The largest component of this pathway, is the initial step where the event has to be processed by
the TA1 and converted to CDM. This step dominates the time required so much that the other
processing delays in publishing and consuming from Kafka are unimportant. Therefore, the TA2
server has to wait before attempting to answer the policy query, to ensure that enough time has
passed for the relevant CDM data to be ingested.

In the initial Engagement #3 policy demonstration, we analyzed the CDM delay by using a TA3
generated reference implementation of the TA2 server API that consumed the Kafka CDM data
and recorded when NetFlow records were processed. We computed the delay between when an
outgoing message from the TA1 was received by the PEM (first pathway) and when the
matching CDM NetFlow Record was consumed by the TA2 implementation (second pathway).
The rough average delays for Engagement #3 are shown in the table below. For the live
demonstration, we configured the PEM to wait twice as long as these times before forwarding
the policy query to the TA2 (first pathway). For TRACE, the NetFlow delay was heavily
dependent on the amount of background traffic, since TRACE has an internal queuing system
that collects events and translates and publishes them in batches. We were able to modify the
parameters of this queuing system, along with generating additional traffic with some scripts
running on the TA1 system, to get the delay down to around 7 seconds. Further reduction would

29

Approved for public release; Distribution is unlimited.

be possible with more configuration, but the timing was considered sufficient for policy
enforcement.

For the FAROS TA1 system [11], we attempted to create a workaround for the fact that it only
processed events in batches at 5 minute intervals. A newly generated event is added to the
current 5 minute batch, and published at least 5 minutes later. Since the TA2 performers were
unable to derive any policy relevant information from the FAROS PSA data, we didn't attempt to
further reduce the delay for this pathway.

 Engagement #4

For Engagement #4, we expanded the scope of the policy demo in five ways.

1. We expanded the policies to include analysis on the server, in addition to client side only
policies. Similar to client policies, server side policy enforcement were separate API calls
from the Policy Enforcement Module (PEM). TA2s are required to consume either the
client CDM data (for client policies) or server CDM data (for server policies)

2. Fine grained policies: Instead of returning a boolean (either pass or block), the policy
checks asked more detailed questions, such as "Which user initiated the request", rather
than "Did the 'admin' user initiate the request. The response was then processed in the
PEM with some hardcoded logic to determine pass or block (block if the user that
initiated the request was not 'admin'). This change increased confidence that the TA2
server was returning the proper response, instead of just getting lucky with a boolean
flag.

3. Multiple server hosts. The main policy server may fulfill a request by accessing a
database server and/or an image server running on another TA1 instrumented host. This
will require cross host tracking. The initial check policy API call from the PEM will
contain NetFlow information for the initial client A -> server B. TA2s will need to follow
NetFlows from server B to server C, if they exist. Server policies will be for any host
involved (B or C) (e.g. Which external hosts were contacted by any server?)

4. All TA1s must handle the client side UI policy. CADETS was handled slightly
differently, due to the lack of a direct UI. We instead used the serial console and had the
policy differentiate between requests that are triggered via the remote shell versus the
serial console. Effectively, use of the serial console was considered to be a "UI
Interaction".

5. The PEM can work with multiple TA2s simultaneously. PEM will send check policy API
messages independently to multiple TA2 servers and record results separately, and
compute pass/block decision based on TA2 results separately. A voting mechanism will
be used to determine the final pass/block. This allows us to run a live demo once, so we
can run more cases, and potentially run longer scenarios.

Table 5. CDM NetFlow Delays for TA1

TA1 Client Policy CDM NetFlow Delay
CADETS 1 (User) ~ 1 Minute
TRACE 4 (Net Data) ~ 7 seconds
AIA 4 (Net Data) ~ 1 second
FAROS 2 (Communication) 15 minutes
THEIA 2 (Communication) ~ 5 seconds
CLEARSCOPE 3 (UI Actions) ~ 1 second

30

Approved for public release; Distribution is unlimited.

In addition to the policy demonstration scope changes, we switched the protected server to use a
more realistic application, a sample App Store implemented in PHP with a MySQL database.
This App Store application was developed by MIT Lincoln Laboratory for the DARPA CRASH
program as an example for a Capture the Flag experiment. This application has built in
vulnerabilities such as operation system command injection, SQL injection, and directory
traversal that enabled us to use some more realistic requests, such as the example shown in
Figure 13.

In this example, the client sends a request to the protected web server (through the PEM), which
is handled by an apache2 root process on Server 1. This apache root process hands off the
request to a child process, which then directly calls PHP. For Engagement #4, we configured
apache to call PHP directly using mod_php, so this call wasn't an inter process communication
event. That PHP processing results in a cross host call to a MySQL database running on Server 2
(in purple). The mysql call reads statements in a file called "upload.php" into a table. Upload.php
was earlier downloaded from a remote host (files.tc.bbn.com) via a wget command executed
directly on Server 2. That downloaded file was then moved into another directory where the
MySQL process could read it, through an mv command. This is an example of a SQL injection
attack, since loading this file was not intended functionality and was in fact an extra SQL
command delivered through a vulnerability in the PHP code (improperly sanitized inputs). For a
policy 4 check (File Origination), we expected the TA2 server to trace the cross host traffic from
Server 1 to Server 2, note a read event executed by the MySQL process, trace the read file to
"upload.csv", trace the provenance of "upload.csv" through the mv command to the wget
command, and finally trace the NetFlow traffic from the wget command to the remote
originating host.

Figure 13. App Store Processing Flow

31

Approved for public release; Distribution is unlimited.

 Engagement #4 Policy Enforcement Demonstration Scenarios

For Engagement #4, we chose the scenarios/combinations outlined in Table 7. We wanted to
demonstrate each policy and also to show how a single policy would work across all the TA1
clients.

 Policy Enforcement Module Update (Engagement #4)

In order to handle server policies, we had to redesign the Policy Enforcement Module (PEM) for
Engagement #4. First, since we used a more sophisticated server application, a simple redirect
was problematic, since we would need to rewrite each page to ensure follow up links or page

Table 6. Engagement #4 TC Policy Definitions

Policy
ID

Policy Name Description

1 Originating User ID Block if the originating user of any involved process was not
admin (Server side policy for Engagement #4). The policy
check query asked the TA2 to return the originating user for
ALL processes involved in responding to the request (main
web server process and any additional processes such as
PHP, a database, or a second image server)

2 Block if tainted by a suspect
server

Block if any process communicated with restricted host or
CIDR. Policy check query asked the TA2 to return the list of
all hosts the processes involved in the request communicated
with.

3 Block automated scripts Block if there was no user interface action on the client.
Client side policy, policy check is still a PASS or BLOCK
boolean, however we asked the TA2s to also include a CDM
record that indicated UI interaction for any PASS response.

4 Block network data uploads Block if there was no user interface action on the client.
Client side policy, policy check is still a PASS or BLOCK
boolean, however we asked the TA2s to also include a CDM
record that indicated UI interaction for any PASS response.

Table 7. Policy Enforcement Demos for Engagement #4
Client Main Server Secondary Server Policy

Untracked TRACE MARPLE TA1 1 (Originating User)
Untracked MARPLE TA1 THEIA 2 (Communication)
Untracked THEIA FiveDirections 1 (Originating User)
Untracked FiveDirections Clearscope 4 (File Origination)
Untracked Clearscope FiveDirections 2 (Communication)
Untracked CADETS TRACE 4 (File Origination)
TRACE Untracked Untracked 3 (UI Interaction)
MARPLE TA1 Untracked Untracked 3 (UI Interaction)
THEIA Untracked Untracked 3 (UI Interaction)
FiveDirections Untracked Untracked 3 (UI Interaction)
Clearscope Untracked Untracked 3 (UI Interaction)
CADETS Untracked Untracked 3 (UI Interaction)

32

Approved for public release; Distribution is unlimited.

reloads also went through the PEM. Second, we needed the PEM to intercept the response going
back to the client and impose a policy check. A redirect approach would have caused the server
to generate the page twice, once before the PEM policy check, then the result would be discarded
either way, and the page would have been generated again after the client followed the redirect.

The Engagement #4 Policy Enforcement Module was redesigned so it functions as a reverse
proxy as depicted in Figure 11. Incoming requests from the client go directly to the PEM via the
PEM host/port. The PEM first does a client policy check, if the requested page was not white
listed, and there is a client policy defined. If this passes, the PEM sends the request to the server
and intercepts the response. When the response is received fully, the PEM does a server policy
check, if the requested page was not white listed, and there is a server policy defined. If the
server policy check passes (or there was no server policy check), the response is then forwarded
back to the client. The client is therefore unaware that the PEM is enforcing policies, and simply
treats the entire PEM, T2 Server, and real content server combination as the single server it
communicates with.

 Engagement #5

For Engagement #5, we kept the same structure, policies, server application, and Policy
Enforcement Module. As shown in Table 8, we reduced the number of scenarios from 12 to 8,
and allowed for more requests per scenario. This let us explore each policy in some more detail.
We used the expanded number of requests to simulate regular web site usage to test the false
positive rate of the policy enforcement. In addition, we reconfigured the web server to run in
FastCGI mode, which is a normal operating mode for web sites of this type. In FastCGI mode,
the PHP process is a long lived process that handles the PHP processing separate from the main
apache or nginx web server process. This introduced more inter-process communication for the
TA2s to track.

 Infrastructure

3.6.1. Goals

The primary goal of the TA3 team in the Transparent Computing project was to support the
greatest breadth of TC technologies possible, and this same goal extended to the infrastructure
design and deployment. We attempted to provide a fair set of resources to all teams, but in
specific cases we granted exceptions to allow for individual performers to try to further their
research. Throughout the program, TA3 also tried to provide some amount of performance
isolation at varying parts of the program to avoid giving any team a chance at an unfair
advantage. To the extent possible, we tried to minimize the burden of experimental artifacts on
TA1 and TA2 performers while also enforcing some boundaries intended to help with integration

Table 8. Policy Enforcement Scenarios for Engagement #5
Client TA1 Web Server TA1 Database TA1 Policy
Clearscope Untracked Untracked 3 (UI Interaction)
TRACE Untracked Untracked 1 (User Origination)
MARPLE Untracked Untracked 1 (User Origination)
THEIA Untracked Untracked 3 (UI Interaction)
Untracked TRACE MARPLE TA1 4 (File Origination)
Untracked FiveDirections TRACE 2 (Remote Communication)
Untracked FiveDirections CADETS 3 (File Origination)
Untracked CADETS THEIA 2 (Remote Communication)

33

Approved for public release; Distribution is unlimited.

and reproducibility. We also tried to make sure that TA3 both as an integrator and as a service
provider in the TC architecture remained a resource for all the other performers to assist with
issues rather than act as a bottleneck which slowed things down.

3.6.2. Project Evolution

 Base Infrastructure

 Description

The general layout of the base infrastructure is shown in Figure 14.The bulk of the initial base
infrastructure was comprised of 34 standard 1U servers interconnected through two networks.
These servers were equipped with 32 GB of RAM, and in general, at least 5 TB of storage across
two disks. The two networks were a 100 Mbps management network and a 1 Gbps experimental
network. There were also four high-end chassis-based servers (Dell C6000s), each holding four
blade servers, connected to a 10 Gbps experimental network. All experimental switch
interconnections ran at 1 Gbps. The C6000 servers were primarily used for TA2 analysis servers,
as they were equipped with 192 GB of memory per blade. These servers were also equipped with
a hardware RAID, which we thought would be useful to use data replication on in case the TA2
precomputed views required significant time or manual effort to generate. Each RAID was
initially configured as a RAID 5, resulting in a single 4 TB disk being presented to the bare metal
OS. The disks which were used for these C6000 servers were a non-standard form factor which
were designed to be hot-swappable. An inventory of the test range used for engagements 1-4 is
provided as APPENDIX E .

For Engagement #5 we added an additional 50 hosts to support a total of no less than three
engagement endpoints per TA1 performer, additional support for integration and system testing,
and to support the needs of several performers who needed to run their systems on ‘bare metal’
rather than in a virtual machine. The Engagement #5 range inventory and assignments is
provided as APPENDIX F .

 Separation of Privileges

Initially, the TC network was designed to be fully closed other than a few open ports for services
such as GitLab and a file server. Over time, more ports opened up for more services such as
monitoring and Jenkins, but the network was still largely accessed through ssh access through a
gateway (bastion) host. In addition, the base infrastructure, including the bastion host, had a
much more strict privilege model compared to the full access given on the experimental systems,
typically with only TA3 members having full administrative privileges to the bare metal systems,
infrastructure VMs, and similar systems. The bastion host exclusively supported public key-

Figure 14. STARC Basic Topology

34

Approved for public release; Distribution is unlimited.

based authentication, and it was governed by a policy that each user needed their own account.
This use of a bastion host coupled with standard separation of privileges led to practical defense
in depth. Defense in depth was demonstrated when a security incident occurred due to a violation
of policy for each user having their own account. A shared account had been compromised by an
external entity, and they used it to access our bastion host. Due to the limited privileges of the
compromised account on the bastion host, the external entity was not able to exfiltrate any
sensitive information before the infiltration was identified and the compromised account was
disabled.

 Separation of Base and Experimental Infrastructure

As mentioned before, the security model of the base infrastructure was different from that of the
experimental infrastructure. In fact, the experimental infrastructure was decoupled from the base
infrastructure as much as possible not only for security reasons, but also for increased
convenience and flexibility. Most performers had their systems run in VMs on top of a KVM
hypervisor managed by tools in libvirt. This was the mechanism to decouple the base and
experimental infrastructures, allowing us to have different security models for the different
realms. Experimenters were given full administrative privileges of these systems to help speed
up development and testing efforts, and they were also given Internet access from their VMs (via
a firewall providing Network Address Translation (NAT) services) to ease development and
deployment. This also led to operational flexibility in that if we had suspicion of a specific
machine having hardware problems, migrating the experimental infrastructure to another system
was simple. It is worth noting that certain performers at specific points of the project ultimately
operated on the bare metal infrastructure. This was ultimately allowed when it was deemed
necessary for proper experimentation. For example, TRACE ended up moving to bare metal for
demonstrated performance reasons. When running in a VM, they found that they were losing
records in their auditing system, and testing on bare metal did not have the same issue. The
Clearscope team attempted to run an ingester process connecting to the phones via ADB over
USB through VMs, but the hypervisor layer consistently showed stability issues during long
running tests, so they ended up moving to managing containers directly on a bare metal system.
Finally, in the last engagement, the CADETS team moved to bare metal as they wanted to run
the FreeBSD-based hypervisor bhyve to collect additional data as part of their efforts, and there
was concern about trying to run that on top of a KVM-based infrastructure. Fortunately, none of
those teams had hardware issues during the engagements.

 Management of Experimental Infrastructure

Early in the project, the TA3 team evaluated using OpenStack, a full-fledged cloud management
solution, in order to manage the experimental infrastructure for the project. We created a basic
demo of running OpenStack in our base infrastructure and evaluated it to see if it met our needs.
We ultimately decided against using OpenStack, as it seemed complex to maintain, and it solved
a number of problems that we did not experience on the smaller scale TC program. For example,
for the TC project we felt that we were better off just running a single VM per host for
performance reasons, and that seemed like it would be simple to do with standard libvirt tooling.
We also had enough hardware to provide a unique host for each TA1, TA2, and the TA3
infrastructure, eliminating the need to share hosts and turn VMs on or off based on what hosts
are available. Even when we expanded the scope of the engagements to include three copies of
each TA1 host for Engagement #5, we predicted that the cost of buying additional hardware was

35

Approved for public release; Distribution is unlimited.

less than the system administration costs would be at that time for retooling the range, installing,
and maintaining OpenStack would have been.

One of the main problems solved by a tool like OpenStack is sharing of hardware resources
between shorter lived experiments. Instead, we used libvirt tools, including command line tools
to create, destroy, and augment VMs, and tools to open local consoles to the VMs. For systems
where bare metal installation was required for the performer, much more manual effort was
needed to get the system to a working state, and reinstalls were only performed occasionally.

The trade-off analysis between a home-grown libvirt-based system and OpenStack was
performed early in the project and while it was revisited at least once later in the program, a
retooling of the range infrastructure was never seriously reconsidered. Over time, new cloud
frameworks have arisen and many improvements to OpenStack itself and the surrounding
support tools have been made. We also faced internal pressures for changes from security and IT
staff who were attempting to implement measures required by the NIST 800-171 compliance
program over the last half of the program. Finally, we found that many issues encountered during
the engagements were caused by integration problems and differing environments between the
TA performer’s home development environments and the test environment. To that end, we
revisited the ‘build or buy’ decision one last time, taking advantage of the lessons learned during
the engagements and while supporting OpTC testing, and documented our results in a report
incorporated in APPENDIX B below.

 Managing Standard Base Systems

To manage most base systems, we installed an LTS variant of Ubuntu and used salt to deploy
systems to specific configurations. To manage user accounts, we used OpenLDAP with the
ground truth of which accounts to be set up defined in our salt deployment. This worked quite
well for the most part, although over the lifetime of the project, salt integration with LDAP
broke, which would put our systems into broken states where no one could log in using standard
accounts. This led to several instances where we had to pin installed versions of salt to older
versions and tracking salt bugs and releases, but we ultimately worked through these issues.

Over the life of the project it was necessary to reinstall the OSes multiple times on the bare metal
machines. As the fleet of machines grew and it became clear that reinstalls would be fairly
common, a PXE server was ultimately set up to reduce the amount of time and effort needed to
install each machine. This saved significant time on some of the batch reinstalls that were
performed between engagements.

 Performance Tuning

For the most part, the 1U servers did not cause many issues. The C6000 servers, however, caused
some issues during the course of the project. The initial issue reported after Engagement #1 was
that disk IO appeared to be slow at times. We explored moving from a virtio qcow-backed disk
image with the default KVM caching to a raw disk image with no caching enabled. This did
seem to result in generally better performance, so we used this approach for Engagement #2.

During Engagement #3, there were a litany of issues with TA2 systems on the C6000 machines
which were all in some way attributable to disk IO. The first issue is that while we had not
overcommitted memory on any of the underlying C6000 machines, we had not left enough
memory in the base OS to prevent it from going over Linux's default swapping thresholds.
Specifically, the VMs running on the bare metal hosts had heavy write workloads that were

36

Approved for public release; Distribution is unlimited.

filling up a cache in the OS, which ultimately resulted in used memory for the VM process on
the bare metal OS. The guests may start swapping or freeing up the disk cache space, but in the
hypervisor, this memory is not freed from the VM process. At the same time, the hypervisor may
start proactively swapping on its own due to the significant memory usage, even though the
memory is not fully used. The two fixes to this problem were to reduce the Linux swappiness
parameter to make this proactive swapping less aggressive, and to reserve more memory at the
hypervisor under the assumption that proactive swapping occurs not in terms of absolute
remaining memory, but in terms of percentage of remaining memory. The next issue was that
under the circumstances listed above, some of the processes in the VMs were dying. The way to
fix this was to increase the swap partition size up to floor(sqrt(MEMORY)) for each VM,
where MEMORY is the amount of memory allocated to the VM. Both of these changes seemed
to help in Engagements #4 and #5.

The final issue is that the TA2s complained that the disk writes were too slow. We discussed
multiple ways of trying to address this. One option was to procure SSDs for the C6000s. This
option was decided against both because the custom form factor of these disks made that option
too expensive, and it also had the downside that it would make TC deployment more expensive.
Another option was to change the hardware RAID from a RAID 5 (which has slow writes
partially due to replication) to RAID 0 (striped data with no replication). This put the TA2s at
risk of losing a single disk corrupting data, but it resulted in better write throughput. Ultimately,
there were no data loss issues, but using the RAID 0 did come with significant risk during the
engagements as we did have multiple C6000 disks fail during the earlier parts of the program.

 Services

Multiple infrastructure services were set up during the program. From the beginning, we had a
GitLab deployment available to all performers to host repositories. This is also where we hosted
a lot of our APIs and documentation that was used by the other performers. After Engagement
#1, we also set up a monitoring system in order to keep an eye on the operational health of the
systems. This was set up using services known as Prometheus and Grafana. External users were
able to log into Grafana's web interface and view custom dashboards that we had set up in order
to monitor things like publishing rates. As time went on, more metrics were added, such as
publishing delay monitoring, NTP drift checking, and standard system level checks (including
memory, CPU, network, and disk) for both the base and the experimental infrastructure. Alerting
was also used to catch operational events of interest without needing to have someone monitor
the dashboards constantly. A chat server for TC users was set up at the beginning of the program,
and this service saw significant use during engagements, both for resolving operational issues in
real time and also for TA2 performers reporting engagement results in real time. A file server
was used to host TC data sets in an easy-to-download archive format for offline use. Finally, a
Jenkins server was set up both for the purpose of image generation as well as automated testing
of TA1 systems.

3.6.2.1.7.1. Monitoring Infrastructure

We implemented a monitoring system to let us and external participants view the state of the
system during testing and the engagements. This is a critical infrastructure component since our
engagements ran for up to two weeks with a live red team evaluating real time performance of
the TA2 analysis systems. If any components of the infrastructure or TA1 systems suffered
crashed or degraded performance, we needed to know as soon as possible so we can apply the
appropriate fixes and return the systems to full operation. In addition, the TA2 analysis depended

37

Approved for public release; Distribution is unlimited.

on previous events from the TA1 hosts, so we needed to ensure that the TA1 components were
up, running, publishing, and performing as expected continuously, or important events could be
lost, which could cause the TA2 analysis to fail.

For Engagement #1, we used the open source kafkamonitor tool, which is a web server that
could be used to check the current state of the Kafka cluster. We updated and configured this
web server to allow us to see current data rate for each TA1 topic, along with Kafka
infrastructure state. The current data rate could be used to tell whether a TA1 system was up and
publishing, however this was insufficient to go back in time and tell us when a TA1 stopped and
how long it was down for. We implemented a tool to check periodically and store historical data
rates during the engagement. Additional issues with this simple system were:

1. it relied on someone noticing an error rather than pushing alerts and notifying us when an
error was detected,

2. it only showed broker status, not detailed information that could tell us if a broker was
under-performing,

3. the TA1 data rate only shows if they're publishing currently, not if they're running behind
real time or dropping records, and

4. it failed to gather historical information that could tell us how long ago a detected
problem occurred or allow us to predict future problems, requiring us to develop
additional one-off tools.

Therefore, we redesigned the STARC monitoring infrastructure as depicted in Figure 15 below.
The core of this system is a Prometheus open source monitoring database and scraper tool that
periodically scrapes metric data from metric gathering client programs. These metric gatherers
can run anywhere, on hosts, VMs, or inside specific applications. The metric gatherers return
simple metrics (key, value, timestamp) to the database when they are scraped by Prometheus.
The metric data in the database can then be queried by a web browser. In addition, we added a
Grafana dashboard server that performs these queries directly and makes the results available
through a web interface as a set of tables, graphs, pie charts, and single value panels.

Figure 15. TC Range Monitoring Infrastructure

38

Approved for public release; Distribution is unlimited.

For Engagement #2, we ran metric clients on the TA3 VMs and inside the Kafka broker
processes. These metric gatherers provided detailed monitoring showing disk space, CPU, and
memory usage that notified us of potential errors such as a disk filling up slowly, before they
became catastrophic failures. The internal Kafka monitoring clients provided information such as
which TA1s are currently publishing, how many records they've published, average record size,
and total record size, as well as providing a graph of these metrics over time, allowing us to see
exactly when a TA1 stopped or slowed down or experienced a burst of records. The dashboards
were made accessible to all performers and the government through a web server on our
development machine. An example of the Engagement #2 dashboard is shown in Figure 16.

For Engagement #3, we added monitoring clients embedded in the TA1 publishing API that let
us gather metrics on the TA1 side before records were published to the TA3 infrastructure. This
was used for ruling out any infrastructure errors when debugging TA1 performance. In addition
we added an optional metric gathering client on the TA1 VMs that gathered host level
information such as disk usage, CPU usage, and memory. We made this optional for
Engagement #3, since TA2 analysis would need to account for it and treat it as background
traffic, though we did end up running the monitoring client on most TA1 systems. We also added
alerts that sent an email to the engagement email list whenever a TA1 stopped publishing during
the engagement.

We refined the dashboards for Engagement #4, collecting additional data, and adding additional
alerts for things like disk space filling up. For Engagement #5, we developed an additional
metric gatherer called the Publishing Delay Checker. This gather periodically consumed the
latest Event record from each TA1 topic and checked the timestamp of the CDM record with
wall clock time. The delta between wall clock and CDM time was the publishing delay metric
and showed us whether a TA1 was slowly slipping behind real-time. This publishing delay
helped us discover multiple issues with TA1 configuration and design ahead of the engagement,
and allowed us to inform TA2 and TA5.1 if a TA1 was experiencing delays significant enough to
warrant further investigation and potentially a restart. In different cases we found TA1
configuration errors, TA1 bugs, and TA5.1 background traffic script errors, all of which we
could resolve before they caused significant Engagement delays. Finally, for Engagement #5 we

Figure 16. Engagement #2 Dashboard

39

Approved for public release; Distribution is unlimited.

enhanced the TA1 host metric gatherer dashboards to allow us to calculate overhead statistics,
which will be discussed later in the Results section.

 Experimental Infrastructure

 Network

As can be seen in Figure 17, all hosts in the infrastructure were attached to two physical
networks. One network was for management, and that is where we ran configuration
management for bare metal systems. The management network was also closed off from the rest
of the Internet. It was connected to the bastion host and the development host, but the subnet was
not routable outside the internal network and not attached to any NAT on those hosts.

The experimental network was broken into multiple VLANs for different purposes. Those
VLANs evolved throughout the different engagements, but there was always at least one
experimental management network which was NATed to the real Internet, and at least one
experimental data plane VLAN which could reach the simulated Internet for both background
traffic and attack traffic generated from a remote subnet. Figure 18 shows an example of the
VLANs provisioned for Engagement #1. More information on each engagement can be found in
the engagements section.

Figure 17. Physical Network Layout

40

Approved for public release; Distribution is unlimited.

There were specific challenges encountered with integration of performers into this basic model.
One of the first challenges was coming up with a way for TA1 systems to be able to reach out to
the Internet during deployment and development while also being able to reach the simulated
Internet backend during engagements. The original plan put forward by TA3 was to insert a
router and have all TA1 systems use that as their default route. Then, when there was a need to
switch between the real and simulated Internet, we could update the routing table. While this
could have provided the ability to switch individual hosts between the different networks if we
installed a large number of routes, it ended up being insufficient and incompatible with how
LARIAT expected to work. It was insufficient in that this approach would still leave a host
pointing at an incorrect DNS server which would properly work for the real Internet, but would
result in incorrect IPs returned for the simulated Internet's hostnames. It was incompatible with
LARIAT in that if LARIAT is not the default gateway, then we would have needed to set up a
BGP service (as opposed to some type of basic static routes) between the LARIAT gateway and
our router, and that sounded more complicated and manpower intensive than what we had hoped
for.

Instead, we opted to update the default route and the DNS name server on the end hosts through
the Dynamic Host Configuration Protocol (DHCP) server. On a request to cut a given host over,
TA3 changed the values in the DHCP server configuration for that host's default route and name
server to the selected one, then we restarted the DHCP server. After that, we would reboot the
host which would both obtain a new DHCP lease and flush the DNS cache for the host. For
Engagement #1, this process was entirely manual, which made having a TA3 person around a
blocker for doing this. For Engagement #2, we wanted to automate the process, but we realized
that different teams sometimes wanted to use the same host and do testing which might require a
specific network. To deal with this, we created a web interface which allowed users to make
reservations for specific hosts, and that reservation system was tied into a backend process that
would automatically cut a host over using the above described process assuming that there was
no conflicting reservation. This seemed to work out well.

The other minor challenge with the experimental networking infrastructure was getting a
wireless network set up for Clearscope. The first problem we had was that we used wireless
home gateway devices which we had on hand, but those ended up introducing issues such as

Figure 18. VLANS Configured for Engagement #1

41

Approved for public release; Distribution is unlimited.

serving DHCP addresses and providing NAT services. For later engagements, we purchased
wireless access points which could specifically be configured as a pass-through device, only
converting a wireless network to wired. This generally worked, but in certain operational cases,
such as when the access point was rebooted while its upstream switch was down, the access
point would fall back to performing DHCP when something connected to it, resulting in very
confusing results. Once identified, we were able to watch out for this sort of issue. Finally, the
Clearscope team had a requirement for their CI setup that the phone be able to reach the public
Internet through its wireless connection. This was a challenge because it required setting up a
wireless network which could reach the outside, which had many more policy constraints than
the other wireless networks we had set up. We were able to work through this and come up with
a reasonable plan to allow for this connectivity without overburdening TA3 operators.

 Hosts

3.6.2.2.2.1. Deployment

For the bulk of the program, we grappled with controlled ways of deploying and managing TA1
systems, as they needed to have specific configurations specified by the TA1 team, TA3, and
TA5.1. As the program progressed, we took more principled measures to perform this control,
but it was never perfect. The ideal goal was to create a method to automatically provision images
and use them as a baseline for deployment into the test range. Following that, the next step was
to deploy each image and run idempotent provisioners on deployed instance to perform more
evolutionary steps (i.e. updating basic packages and tweaking configuration files). In addition,
two disks were deployed for each VM. One was intended to be a persistent data disk, and the
other was a transient OS disk available to be overwritten if a new image needed to be deployed.
The intent for this procedure was to provide explainability of a system state, reproducibility of
specific images over time, and reproducibility of images across multiple nodes. While this
approach at a high level is reasonable, it was difficult to realize as most teams were unable to
fully automate their deployment procedures. This varied from team to team. The need for this
type of automation was pretty apparent throughout the program though, as there was a clear
correlation between teams who automated things also being the teams that typically delivered on
time and had fewer problems with their systems during the engagement. In the early engagement
in particular, we had numerous problems where one team would report that a system had
seemingly changed without explanation, and this problem essentially went away once we began
using provisioners and limiting access to hosts during engagements.

TA3 attempted this high level approach for all TA3 deployments throughout the program. TA3
images were initially generated using a process that was also used for TC-in-a-box and tools for
translating VirtualBox images to KVM images. Starting with Engagement #3, the procedure for
generating images was largely done by running the TA3 provisioner. The TA3 provisioner was
rolled up in a wrapper around Salt which we call tc-salt-services. Under the hood, a lot of the
code is a combination of Salt states, pillars, and custom modules. The interface into those is a
custom configuration file and a set of shell scripts for automating deployment of Salt
infrastructure to all nodes within a cluster defined in the configuration file. The custom
configuration file set things up on a node such as which infrastructure services should be run,
which hostnames to use, and other parameters which might be placed in service-specific
configuration files. In later engagements, some configuration management of TA1 systems was
also pulled into the TA3 provisioner.

42

Approved for public release; Distribution is unlimited.

The TA2 deployment was largely left to the TA2 teams, with some guidelines provided by TA3
such as limits on total memory to use for VMs on a given host. In some of the later engagements,
TA3 provided additional recommendations based on debugging IO performance issues described
previously.

3.6.2.2.2.2. TA3 Experimental Infrastructure Services

Throughout all engagements, we used a Kafka cluster comprised of 6 nodes with a replication
factor of 2 for all topics. This was paired with a Zookeeper cluster of 3 nodes. For some
engagements, we decided to deploy multiple clusters (i.e. one per TA2 in Engagement #2), but
ultimately we found that a single cluster of 6 Kafka nodes was sufficient. Starting with
Engagement #1 and throughout the program, performance testing was run on the deployed Kafka
cluster to make sure it could keep up with our anticipated data rates based on spot checks of
TA1s and number of systems deployed. We did not have any issues with the Kafka cluster
keeping up for Engagements. For the most part, Kafka and Zookeeper were stable and worked
well throughout the course of the program, only showing issues during major operational events
such as incorrect shutdowns. We created custom workflows for managing both Kafka and
Zookeeper through our provisioners and management tools to manage the distributed
configuration as well as starting and stopping.

We deployed and managed the TA3 cluster using the tc-salt-services provisioner. This tool
allowed us to start, stop, and manage the Kafka, Zookeeper, and Prometheus monitoring services
using a collection of simple salt commands. This provisioner also allowed us to easily migrate a
service to a different host, increase the number of brokers (we experimented with clusters of 1, 3,
4, and 6 brokers), and push configuration changes to all services with a single command.

Starting at Engagement #3, TA3 made a push to include a long term data store into the
architecture for TA2s to use. The idea was that a TA2 could choose whether they wanted to
pursue a Lambda-style or a Kappa-style architecture, but they should choose one. Both Kappa
and Lambda architectures can benefit from a long term data store of some kind. In the case of the
Kappa architecture, the long term data store can be used for horizontal scaling of historical data
while preserving ordering of records within a stream. Kafka's notion of a partition cannot scale
horizontally across multiple nodes, and as such any long term storage requires either vertical
scaling of disk on a single system or very careful assignment of data to partitions within a topic,
which results in loss of ordering of records between partitions. In the case of the Lambda
architecture, the long term data store is necessary for running batch jobs. Ultimately, TA2 teams
split between Lambda and Kappa, which was fine. ADAPT and MARPLE chose to use a Kappa-
style architecture, which effectively meant no major changes needed for their analysis engines
from past engagements, and RIPE chose a Lambda-style architecture, meaning the need to add in
a batch processing architecture. We decided to deploy a long term data store for each TA2 to
avoid contention between TA2 teams on the data store IO. As seen in Figure 19, the way that
different services interacted for each TA2 was dependent on their choice of architecture.

43

Approved for public release; Distribution is unlimited.

TA3 opted to use HDFS for the long term data store due to it being compatible with numerous
processing engines. An initial design of a basic Hadoop stack was prepared, as shown in Figure
20. The data controller and the batch job controller were replicated across multiple hosts for fail-
over, but both services they were co-located on the same host to limit overusing hardware
resources. The data storage nodes, which is where the batch jobs also ultimately run in a Hadoop
cluster, were set up with 4 nodes, and the data controller was set up to replicate the data within
the cluster to avoid data loss. This design ensures that there is no single point of failure in any of
the components and that a single node going down would not result in data loss. It projected to
have enough storage and parallel processing to be used as a starting point of a Hadoop cluster
that a TA2 could use for the TC engagements. The TA3 configuration management suite was
updated to both deploy and manage the long term data store systems and services in this
configuration for all three TA2s, and basic functionality testing was performed to ensure that
data could be read and written, and jobs could be run across the clusters.

Ultimately, the long term data stores were not used in Engagement #3. The four reasons were as
follows:

1. TA3 had not completed robust Kafka/HDFS integration before the TA1 system
integration frenzy began

Figure 19. Data Store Architecture for Engagement #3

44

Approved for public release; Distribution is unlimited.

2. TA2s using the Kappa architecture, namely MARPLE and ADAPT, expressed concern
that the engagement would realistically be the first time we would have a chance to test
replay from a long term data store, and they were more concerned with other problems
that needed to be addressed

3. RIPE, the lone TA2 team using the Lambda architecture, decided that they would not
have time before Engagement #3 to build up any batch jobs or add other frameworks

4. The volume of data generated in the engagements was not enough to fill up a Kafka
cluster since it only had a two-week duration, so data was fully retained in Kafka

At that point, we kept the data stores up, but we chose to run a small artificial test between
Engagements 3 and 4 for verification leading into Engagement #4. This never happened either,
due to continued high effort on TA1 system integration, the restructuring of how Engagement #4
was run (focus on depth of TA1 technologies) and as more emphasis was put on the policy demo,
OpTC efforts, and TC self-monitoring. Ultimately, the RIPE team was the most likely team to
need a long term data store, but they did not participate in Engagement #5. It is still strongly
recommended for any transition efforts of TC technologies to include a long term storage
mechanism other than Kafka, or at least to have a warning about data retention policies if Kafka
is used as the long term storage mechanism.

 Critical Factors Pyramid

One of the requirements laid out in the TC BAA was a methodology "…for evaluating and
selecting among different architectural design choices…" as well as "…architectural thinking

Figure 20. Basic Hadoop Design for Engagement #3

45

Approved for public release; Distribution is unlimited.

that will allow for adaptation to new findings." In order to address this, BBN developed the
Critical Factors Pyramid in order to provide a principled, scientific methodology.

As shown in Figure 21, at the apex of the pyramid was the goal of TC program: detect and
counter APTs using data provenance tracking and exploitation. Supporting this overall goal were
key metrics used to assess the overall value of the TC technologies toward achieving the
program goal. Many of these key metrics were drawn directly from the program metrics in the
BAA (e.g., accuracy, speed of detection, and completeness). Others stemmed from basic
considerations of overall enterprise performance (such as compute and network overhead).
Enforcement granularity was also key to enterprise performance; overly restrictive or coarse
policies might block undesired behaviors at the expense of the critical workflows that support the
mission.

The key metrics were informed by a number of critical architecture factors that BBN intended to
explore to make design choices over the course of the program. Architectural decisions would be
evaluated based on the impacts to the key metrics. Following are examples of the critical design
issues the STARC effort planned to consider:

 TC node distribution and integration with enterprise platforms: The TA2 and
STARC infrastructure software could be deployed to dedicated computing nodes,
could share computing nodes with enterprise applications and TA1 data collectors, or
some combination of the two. Our analysis was deigned to inform this decision,
taking into account the performance properties of the TC technologies and
practicalities such as that SCADA and mobile platforms might only host TA1 nodes.

 TA1 composition and deployment: Given a collection of TA1 tracking technologies
(targeted at specific platforms or specific layers on a platform) and an enterprise
configuration, we needed to determine how best to deploy TA1 collectors to achieve
the most complete situation awareness of sensitive workflows, subject to resource
constraints. The analysis should also have been able to inform TA2 performers of
coverage boundaries due to partial deployment.

 Tag semantics and composition: STARC was required to coordinate the tracking of
causally related events by different TA1 technologies cross-platform or cross-layer.

Figure 21. The Critical Factors Pyramid

46

Approved for public release; Distribution is unlimited.

 Enforcement points: Given new observables provided by TA1, STARC should have
been able to determine where to place enforcement points that can respond to the
policy violations detected by TA2.

Finally, the bottom of the pyramid in Figure 21 shows a collection of attributes for TA1 and TA2
performers, including all the TC program metrics by which TA5.1 evaluated these performers.
These attributes were key inputs that both constrained STARC architectural decisions and were
driven by lessons learned as the program executed.

 Continuous Engagement Process

In order to bring the greatest breadth of technologies together to explore and demonstrate the
capabilities of the TC system and to support overall system design and development, BBN
developed a continuous engagement plan involving close and constant contact with other
performers throughout the program to enable a collaborative design and development effort.

Starting with sidebars at the kickoff meeting and proceeding throughout the program, BBN
engaged the TA1 and TA2 performers in discussions to understand their approaches and
technical requirements, while working with them to converge on common semantic and data
formats usable by all performers. We also ensured that all technology providers are able to
interface with the TC architecture and that the overall system was able to leverage all of their
developments.

Our process started at the program kickoff, where we requested and obtained sanitized proposals
from all TA1 and TA2 performers in order to understand their current technology requirements
as well as their plans moving forward. We coupled this by accompanying the DARPA personnel
on their initial round of site visits in the fall of 2015, allowing us to directly interact with each
team and clarify any issues.

As the program proceeded, BBN used sidebars during Quarterly Program Review (QPR)
meetings to obtain up-to-date information from each team at 6 month intervals. Before each
engagement, BBN hosted weekly calls for the entire collaboration in order to provide up to date
information about test planning and progress as well as review issues. After each of the
engagements, BBN held its own internal lessons learned meeting and then led a collaboration-
wide call in order to obtain feedback and adjust planning for future engagements. Among the
issues revealed in early engagements were problems with communication and recording of
decisions, which led to the better use of the BBN TC GitLab Wiki capabilities as well as the use
of Instant Messaging (IM) capabilities such as Jabber, to allow real-time communications with
the archiving of information.

 TC Range Security

TC system security was envisioned to occur in two stages. In the first, BBN would use standard
mechanisms for authentication and data confidentiality (including forward security) to form an
initial security base. However, since an APT could obtain full control of a target device and
subvert local TC instantiations, further measures would be needed to protect the TC system.

A natural extension of TC capabilities would be to use introspection, wherein TC components
monitor each other for misbehavior. In our proposal, we hypothesized that the activities of TC
components could be tagged and tracked by TA1s and formulated into policies on which TA2s
would be able to alert. In order to do so, one or more TA1s would be redundantly deployed to

47

Approved for public release; Distribution is unlimited.

monitor other TC components, sending the resulting data to multiple TA2s for analysis; this
“fault-tolerant” approach would enable detection of compromises in either TA1s or TA2s.

The first stage of security was enabled starting in Engagement #3, using the capabilities of Kafka
(version 0.9 and higher) which itself relies upon SSL (or SASL) to provide strong cryptographic
assurances of authentication and confidentiality. Hosts on the BBN test range were configured
with centrally generated private/public key pairs and corresponding X.509 certificates. These
were then configured into Kafka and used transparently to provide security assurances.

For Engagement #4, BBN started exploring the concepts required for TC introspection. As the
TC Kafka brokers ran on Ubuntu servers, BBN investigated the possibility of adapting either the
TRACE system from SRI or the CADETS system from BAE to run on the Kafka servers during
the engagement. After initial tests, it was determined that CADETS was the most promising
candidate and BBN engaged with BAE to adapt and configure their system. However, the
CADETS system suffered significant problems during the preparations for Engagement #4 due
to a series of major internal changes in their system architecture. As a result, BBN was unable to
obtain a working version of CADETS in enough time to deploy it on the production Kafka
servers.

For Engagement #5, BBN again tried to load and configure Kafka with CADETS installed. One
half of the servers were configured with Kafka and the other half were left in standard
configuration to ensure that actual TC data would not be lost even if the CADETS system did not
function completely. While the system worked initially, it quickly became obvious that CADETS
was overloading the servers under the nominal background traffic load provided by the Red
Team. As an example, with one TA1 publishing to the Kafka-CADETS cluster, we got an
average data rate of 9.8 Mb/s with high variability, for a single consumer (TA2). On the original
cluster (no CADETS), we were achieving 28Mb/s consistently, with low variance. The high
variance and lower throughput meant that the bottleneck in the processing pipeline was in the
Kafka broker itself, leading us to conclude that the setup would be unusable with more
publishers during a live engagement. There was not enough time and manpower available from
the CADETS side to help BBN experiment with and change the configuration of the servers, so
the CADETS-configured servers were turned off and not used in Engagement #5.

If TC is adapted or transitioned, it would be interesting to see if a light-weight system such as the
one from Five Directions would suffice to allow TC to provide introspection capability.

48

Approved for public release; Distribution is unlimited.

 RESULTS AND DISCUSSION

From the sole viewpoint of TA3, Engagement #5 was a success. There was only one issue related
to architecture or infrastructure that affected the results of the experiment on day three of the
engagement and that was resolved within an hour. The remainder of the issues were due to TA1
components failing or issues with their configuration.

 Critical Factors Pyramid and Architecture

The Critical Factors Pyramid was used throughout the program, and served as a useful guide for
making changes to the architecture and infrastructure, but most of ‘design-build’ iterations ended
up isolated in direct interactions between the TA1 and TA2 performers as opposed to system-
wide changes involving changes to the architecture.

We had planned to implement a shared long-term data store for all the TA2 performers based on
HDFS, however for the reasons stated in 3.2.1.2.1 above we were not able to get agreement for
its use from the other participants and complete the implementation. The primary reason for this
was that the volume of data involved was small by current standards and storage technology. As
shown in Figure 22, the entire three week engagement – involving 24 endpoints –generated less
than 2 TB of CDM data spread over six Kafka servers.

This small data set size allowed the program as a whole to sidestep the issue of maintaining
historical data – the Kafka servers could hold all the data covering the entire engagement easily
and the TA2 performers could merely return to Kafka to obtain raw data. Several TA2
performers incorporated their own databases into their design

While not an issue for the TC program itself, a transition program named Operational
Transparent Computing (OpTC) would have exposed this problem. OpTC planned to run one

Figure 22. CDM Data Accumulation Over Engagement #5

49

Approved for public release; Distribution is unlimited.

pair of TA1 and TA2 technologies – HostAcuity from Five Directions and RIPE from Boston
Fusion – over a much larger set of hosts, with the initial tests to include 200 endpoints. The
eventual goal was to deploy the TC technology into an operational enterprise with thousands of
endpoints. If one uses the data generation rate of 2.5MB/endpoint/day demonstrated by TC
during Engagement #5, retaining data for a six month period for a thousand endpoints would
require more than 425TB of raw data storage, far more than can reasonably be managed and
retrieved by a Kafka cluster alone.

We had proposed a long-term data store based on HDFS. We hadn’t considered using a Time
Series Database (TSDB) implementation at the time, but specialized databases such as InfluxDB
[12], Prometheus [13] and OpenTSDB [14] offer capabilities and features optimized for time
series data storage, querying, retrieval and visualization at the data scales required for such a
system. We believe that an implementation of such a system might have provided advantages
over the local implementations created individually by several of the TA2 participants.

 Infrastructure

The original proposed infrastructure proved to be quite adequate for the TC program, but did
need additional machines to accomplish the goals of Engagement #5, especially with regards to
the needs for additional processing power and disk speeds for the TA2 performers, and the needs
for some performers to run on ‘bare metal’ hosts because of difficulties with specialized I/O
needs (such as USB communications with mobile phones).

4.2.1. Network Performance

We collected network performance metrics during each engagement with the goal of verifying
that the infrastructure was not a bottleneck in the processing pipeline of any of the performers
and to identify where enhancements would be necessary to remove them for future engagements.

In order to accomplish this, we ran experiments before each engagement using the intended
configuration to see if we could identify any such issues.

We established the expected TA1 data rates and record sizes by examining data sets produced by
them, observing that the two rate produces, TRACE and FAROS, produced a maximum of
1.8MB/s and 2.0MB/s of data respectively. Both of these producers used the Java bindings to
connect to the Kafka brokers.

 Engagement #1

The express purpose of Engagement #1 was to "kick the tires" so to speak, and provide a first
overall look at all the parts of the TC system. The base goal for the overall system was to be able
to generate, tag, and process data from end-to-end successfully. Beyond this, successful
detections of APT activities was considered a bonus. For a detailed analysis of actual
performance of the TA2 analysis platforms, see the Engagement 1 Final Report, submitted by
Kudu Dynamics to the program.

For TA3 specifically, our goals were to:

 Validate the overall data handling architecture and verify the performance of the system
and APIs

 Understand the workload and required activities necessary to stand up the run the test
range during an engagement

50

Approved for public release; Distribution is unlimited.

For the first point, see the following subsection with detailed performance test results.

As for the second point, we realized by the end of the test that each technology provider was
unique in some way, thus requiring a set of individualized build, install, and test procedures on
each platform. The approaches used by each team varied greatly and often utilized vastly
different underpinnings, such that lessons on one did not apply to another. At this time, we did
not have a central repository with test and build capabilities, and were still receiving source or
binary dumps from performers the week before the engagement.

 Pre-Engagement Experiments

We established the expected TA1 data rates and record sizes by examining data sets produced by
TA1s on the range and observing the traffic generated by them. TRACE and FAROS, the two
highest rate producers, produced maximum rates of 1.8MB/s and 2.0MB/s respectively. Both of
these producers used the Java bindings to connect to the Kafka brokers.

4.2.1.1.1.1. Producer Performance Experiments

In these experiments, the goal was to establish the maximum production rates for the Kafka
client under three conditions:

1. No Serialization: The publisher performs the minimal amount of local processing
possible, just sending the same set of raw bytes repeatedly. The goal here was to establish
the maximum data rate of the infrastructure.

2. Static Records with serialization: The publisher sends the same set of raw bytes
repeatedly, but serializes them with the Avro library just as a TA1 performer would need
to. Serialization reduces the data size by 50 to 66 percent.

3. Random Records with serialization: In this experiment the publisher is fed a set of
randomly generated records, which the publisher serializes with Avro and sends.

Figure 23 shows the maximum data rates achieved by the producers for the expected record sizes
(in blue) and for very large record sizes (orange) – much larger than those expected in practice.
The result is that the upper limit for producers for records of the sizes expected is shown to be
about 18 MB/s.

We then reran the experiments varying record size, focusing collection within the ranges
expected for our TA1 clients while monitoring CPU, memory and disk to identify any
performance limitations imposed by these resources. The producers in this set of experiments
were bound to a three broker Kafka cluster and published data to a single topic.

51

Approved for public release; Distribution is unlimited.

As can be seen in Figure 24, in
the lower range of record sizes
and within the ranges expected
in production the disk IO rate on
the Kafka servers was found to
be the limiting factor in
performance. As the records
grew in size, the bottleneck
shifted from the server side disk
I/O capacity to the CPU on the
client side. Within the expected
data rate ranges, the overhead of
serialization and the Avro library
were relatively small, but as
record sizes increased well

beyond the expected size, the overhead of the Avro library became significant.

In this initial scenario, we had configured Kafka to flush received data to the disk every 10,000
messages. We decided to retry the experiment while allowing the OS disk I/O system to manage
the memory buffer space. The end result was that more data was stored in memory before being
written to disk, but that overall throughput was more than doubled to closely match the producer
limit (Figure 25). The tradeoff is that the collection system is more vulnerable to a broker failure
during an engagement (or in production), but the use of a backup replica mitigates the risk of
such an event.

Figure 24. Producer Data Rate vs Record Size, Fixed Flushing

Figure 23. Maximum Producer Data Rates

52

Approved for public release; Distribution is unlimited.

4.2.1.1.1.2. Kafka Latency Experiment

The next step in the data processing chain consists of the Kafka brokers themselves. We wanted
to establish the data latency from the point at which a producer publishes data to a Kafka broker
to the point at which a consumer received the data. In order to perform this experiment, we
created the test environment shown in Figure 26.

For this experiment, we created a producer and a consumer on the same host as the Broker itself,
eliminating network overhead and issues related to dealing with clock skews between hosts. The
producer included a timestamp set when each record was created, and the consumer checked that
timestamp against the current time when each record was received.

The Kafka infrastructure shown exhibited latencies of 1-2 ms, which were minimal in relation to
the overall system.

Figure 25. Producer Data Rate vs Record Size, OS-Managed Buffering

Figure 26. Kafka Latency Experiment Setup

53

Approved for public release; Distribution is unlimited.

4.2.1.1.1.3. Consumer Performance Experiments

The final step in the data processing chain is the Kafka to Consumer link. We created a Kafka
topic filled with records of the desired size, then consumed them as quickly as possible using two
scenarios:

1. No Deserialization: Similar to the first test on the producer side, the received records
were consumed as quickly as possible and immediately discarded. This test established
the infrastructure limits using the Java bindings at 86 MB/s.

With Avro Deserialization: Each consumed record was deserialized into a Java data structure, simulating the process
TA2 clients must complete in order to perform any processing on each record.

Figure 27 shows the results of these two experiments over a range of record sizes.

54

Approved for public release; Distribution is unlimited.

As can be seen in the figure, the Avro library imposed a significant performance penalty on
throughput, cutting the throughput to a maximum of 32 MB/s for large records, and closer to 25
MB/s in the expected range of data record sizes.

4.2.1.1.1.4. Results for Other Language Bindings

We repeated the producer experiments using the Python 3 and C++ bindings, the results of which
are shown in Figure 28. As can be seen, the C++ producer performance is adequate given the
maximum expected data rates, but significantly less than those measured with the Java bindings
(15MB/s for C++ vs 20MB/s for Java). The Python Kafka bindings performed significantly
worse, however, achieving only 1.6MB/s on the producer side (random records with
serialization) and 2MB/s on the consumer side (with Avro deserialization). These results were
sufficient to support the anticipated data rates for those TA1s that would be using them, but
identified these implementations as areas to devote resources to before the next engagement.

Figure 27. Java Consumer Throughput

Figure 28. Producer Performance for Engagement #1 C++ and Python Clients

55

Approved for public release; Distribution is unlimited.

4.2.1.1.1.5. Stability Testing

Finally, we ran system stability tests where we investigated reliability, throughput changes over
time, and long duration maintenance issues such as log rotation and disk space usage. Our
sample experiment had five producers publishing simultaneously, some with consistent data
rates, and some with burst traffic where the data rate spiked up occasionally. Additionally, we
had three consumers consuming from each topic continually. After 48 hours of continuous
operation we observed no change in average producer or consumer throughput and no reliability
issues.

Figure 29. Engagement #1 Stability Test - Producer Side

56

Approved for public release; Distribution is unlimited.

The overall result from these experiments was proof of our underlying assumption that the
infrastructure was not going to be the bottleneck for Engagement #1. The expected live TA1
throughput rates were orders of magnitude under the theoretical observed limits. We determined
expected data rates by examining the sample data sets produced by the TA1s and observed data
rates ranging from 1.8 MB/s for TRACE, to 100 Kb/s for THEIA. Since the highest two
producer data rates (TRACE at 1.8 MB/s and FAROS at 2.0 MB/s) were both using the Java
producer bindings, we determined that our infrastructure would not be the bottleneck for
Engagement #1, and likely not for the entire program. The Python bindings limits are much
closer to the expected TA1 throughput rate, however, and could become a bottleneck in future
engagements as the TA1 technologies produce more data.

 Engagement #1 Results

During the conduct of Engagement #1, we used three scenarios – the Bovia and Pandex scenarios
devised by the TA4 participant and a stretch goal scenario devised by TA5.1. The record count
and size statistics gathered during each scenario and the totals are shown in Tables 9 through 12.

The stretch goal scenario was created in response to the fact that the attacks in both the Bovia
and Pandex scenarios were well known to the TA1 and TA2 performers and the program team
wanted to see how their offerings behaved in situations their tools could not be prepared for in
advance. The stretch goal test consisted of the TA5.1 team using attacks not disclosed previously
to the TA1 and TA2 performers.

Figure 30. Engagement #1 Stability Test - Consumer Side

57

Approved for public release; Distribution is unlimited.

Table 9. Engagement #1 Bovia Record Statistics

BOVIA

TA1

CADETS 24448281 2.75 112.48

CLEARSCOPE 59158240 9.27 156.70

FAROS 264279791 37.55 142.08

AIA 14122189 1.16 82.14

THEIA 50426744 4.93 97.77

TRACE 2340926572 175 74.76

SUM 2753361817 230.66

RECORDS SIZE (Gb)

Avg Record

Size

(bytes)

Table 10. Engagement #1 Pandex Record Statistics

PANDEX

TA1

CADETS 23801471 2.68 112.60

CLEARSCOPE 7329057 1.19 162.37

FAROS 248721339 34 136.70

AIA 20496264 1.64 80.01

THEIA 19854503 1.93 97.21

TRACE 1485144886 111 74.74

SUM 1805347520 152.44

RECORDS SIZE (Gb)

Avg Record

Size

(bytes)

Table 11. Engagement #1 Stretch Period Record Statistics

STRETCH

TA1

CADETS 2826453 0.33 116.75

CLEARSCOPE 2657023 0.4 150.54

FAROS 184275823 27 146.52

AIA 508893 0.049 96.29

THEIA 9646664 0.99 102.63

TRACE 168341411 12.58 74.73

SUM 368256267 41.349

RECORDS SIZE (Gb)

Avg Record

Size

(bytes)

58

Approved for public release; Distribution is unlimited.

 Engagement #2

For Engagement #2, the overall program goal was to successfully show APT detections under a
basic set of conditions for typical attacks, with a stretch goal of detecting additional, harder to
find, attacks. For TA3 in particular, our goals were:

 Continue to ensure that system and API performance would keep up with performer
needs

 Support real-time detections and higher accuracy by TA2 performers
 Provide support for evolving technology performer needs and requirements

For performance test results, see the next subsection. For real-time and forensic detection results,
see the Engagement 2 Final Report submitted by Kudu Dynamics to the program. For the last
point, most of the changes among performers were incremental and did not require large
adjustments.

Overall, nearly all performers showed a modest to significant improvement in their readiness for
Engagement #2, with better documentation and support, more mature software, and easier
installation and execution procedures.

 Pre-Engagement Performance Testing and Improvements

Prior to Engagement #2 we were able to develop a simulation based on data captured during
Engagement #1. This simulation allowed us to replay the data stream from each TA1 at either its
original rate or at a maximum rate, the former allowing us to recreate Engagement #1 in real
time, and the latter allowing us to stress test the system. We also added ‘work’ to each producer
and consumer by having them write each data field to a log file, intending to create a more
realistic workload on each system.

As the performance of the Python implementation measured for Engagement #1 was of concern,
we decided to try a new Avro library called quickavro [15]. Instead of being implemented in
Python, QuickAvro is a Python wrapper library around the official C API and has a primary goal
of greatly improving Avro performance. We also updated to a new version of the C Kafka API
and made other improvements to our Python implementation. These changes made substantial
improvements to the performance of the Python Kafka bindings, as shown in Table 13. These

Table 12. Engagement #1 Total Record Statistics

TOTAL

TA1

CADETS 51076205 5.76 112.77

CLEARSCOPE 69144320 10.86 157.06

FAROS 697276953 98.55 141.34

AIA 35127346 2.849 81.10

THEIA 79927911 7.85 98.21

TRACE 3994412869 298.58 74.75

SUM 4926965604 424.449

RECORDS SIZE (Gb)

Avg Record

Size

(bytes)

59

Approved for public release; Distribution is unlimited.

improvements provided a 5x performance improvement over the original Python implementation
and only one-half the performance of the Java implementation.

We also attempted to improve the performance of the C++ API, with less successful results. We
were able to modify the library to reduce the number of copy operations, which produced a large
increase in throughput, however only at record sizes much larger than seen in Engagement #1.
The throughput performance improvement for CDM sized records was under 5%. We further
analyzed the C++ API and discovered a large number of mutex operations. Addressing these
would be a larger effort, and the C++ maximum throughput numbers are still an order of
magnitude higher than the data rates seen in Engagement #1, so we left the C++ API without any
further modification for Engagement #2.

 Results

We collected metrics for both the Bovia and Pandex scenarios and analyzed the results, breaking
them out for each TA1-TA2 pair. The results are shown in Tables 14 and 15.

Table 13. Java vs Python 3 Producer Performance, Engagement #2

Language Experiment Throughput (MB/s)

Java No Avro 70.34

Java Minimal Work 34.23

Java Verbose Output 8.31

Python 3 No Avro 51.88

Python 3 Minimal Work 15.

Python 3 Verbose Output 2.66

Table 14. Engagement #2 Bovia Scenario Data Counts and Record Sizes

Count

(Mil)

Size

(MB)

Avg

(Bytes)

Count

(Mil)

Size

(MB)

Avg

(Bytes)

Count

(Mil)

Size

(MB)

Avg

(Bytes)

CADETS 1.80 363 201 2.23 464 202 1.90 382 201

CLEARSCOPE 16.40 8520 520 19.30 9710 504 16.60 8540 515

AIA 1.58 253 200 1.88 294 193 1.58 254 215

THEIA 28.70 4320 152 15.30 2147 127 13.03 2052 152

TRACE 5.68 698 123 5.79 730 126 15.60 2019 129

SUM 54.17 14154 44.50 13345 48.71 13247

BOVIA

RIPE ADAPT MARPLE

60

Approved for public release; Distribution is unlimited.

Data rate statistics were also of great interest, where we measured both the average rates and
maximum rates for each TA1. These are shown in Table 16.

As can be seen in the table, the highest peak data rates achieved were on the order of 1MB/s and
the average rates fell well under those values. CADETS, FIVE DIRECTIONS, TRACE and
THEIA were very sensitive to background traffic, presenting large spikes in data rates when
specific activity occurred on the host. CLEARSCOPE and FAROS, on the other hand, emitted a
much more consistent rate of data over the course of the engagement. The peak rates were of
particular interest for the TA2 and TA3 performers when planning and configuring the
infrastructure and the TA2 systems for future engagements.

 Data Volume Analysis

Based on the results of Engagement #2, we produced a preliminary prediction of the data storage
and transmission needs of a TC system working in an enterprise scale environment. This was
done to support transition partners with their planning for any eventual deployments and also to
inform future system engineering efforts based on TC technologies.

Table 15. Engagement #2 Pandex Scenario Data Counts and Record Sizes

Count

(Mil)

Size

(MB)

Avg

(Bytes)

Count

(Mil)

Size

(MB)

Avg

(Bytes)

Count

(Mil)

Size

(MB)

Avg

(Bytes)

CADETS 6.39 1302 204 8.98 1832 204 6.51 1328 204

CLEARSCOPE 60.30 30600 507 60.30 30700 509 57.20 29000 507

FAROS 17.70 2666 150 16.90 2540 150 15.90 1395 151

AIA 20.60 3080 149 24.00 3760 156 18.20 2709 149

THEIA 7.52 1141 150 15.70 2273 139 10.37 1624 149

TRACE 220.00 30300 135 157.00 21500 138 166.00 23600 137

SUM 332.51 69089 282.88 62605 274.18 59656

PANDEX

RIPE ADAPT MARPLE

Table 16. Data Rate Statistics for Engagement #2

Avg Rate

(k)

Max Rate

(k)

Avg Rate

(k)

Max Rate

(k)

Avg Rate

(k)

Max Rate

(k)

CADETS 2.8 74.0 4.4 77.0 3.0 82.6

CLEARSCOPE 25.7 39.8 25.8 57.1 26.3 37.2

FAROS 509.0 998.0 457.0 1035.0 471.0 1052.0

AIA 7.8 110.2 4.8 137.6 6.9 107.0

THEIA 14.4 83.8 13.5 78.0 2.2 77.1

TRACE 73.0 1076.0 20.0 337.0 83.0 1076.0

RIPE ADAPT MARPLE
Data Rate

Variation

61

Approved for public release; Distribution is unlimited.

4.2.1.2.3.1. Data Description

Data was taken by selecting a graph of the last two days of the nine-day Pandex data collection
period from the monitoring server. The graphs allow downloading in a csv format, which returns
a set of data points for each graphed line. In our case, this level of granularity in the graph
returned a data point for every four minutes. We extracted data for the total number of records
produced within a topic and the total size of a topic. In addition, we extracted the data from the
graph of the averaged publishing rates over five minutes only to serve as a sanity check on the
calculated values.

Data was fetched from Grafana server as csv files containing the time series data used to
generate existing graphs. The first line of the file was then removed for better compatibility with
existing R csv import functions. For the purposes of this analysis, we chose to use the MARPLE
data set.

To calculate publishing rates, we took the deltas between sequential elements in the topic record
count time series data and divided that by four (the granularity of our data points in minutes).
This gives us an estimate of the number of records per minute. We also extracted the deltas
between sequential elements in the topic size time series data. Finally, we divided the size deltas
by the record deltas for each time step, and this gave us an average record size for each time step.

Unfortunately, the FAROS data could not be included in the data set. For these calculations, we
rely on the incoming publishing rates, but for FAROS those values did not correspond to real
time events on the system. The best we could do for that data was look at the total growth of the
topic and note that the data collection ran for around 75 minutes, which only gave us a single
averaged data point.

4.2.1.2.3.2. Modeling Methodology

To create projections of what a TA1 might publish, we assumed that the data generated during
the time window we analyzed was representative of a real machine in an enterprise environment.
Given that we have a data set for each TA1 (other than FAROS) that includes a set of average
record sizes and average publishing rates, we can model a window of time by sampling from
those data sets at random with replacement. If the data set can be trusted, then this creates a
representative model for each TA1 that is better than a simple average rate for projection. The
tighter the distribution of record sizes and publishing rates, the less variance there will be in each
projection.

4.2.1.2.3.3. Known Issues with this Approach

 The background activity running on the systems may not be representative of actual
workflows we are modeling.

 THEIA data may or may not be representative. While the system was up and running for
the duration of the data sampling window, the data generation rates seem to be fairly low.
This could be an issue with background activity generation, or it may be related to filters
that the THEIA team applied as part of the Pandex scenario.

 The sample size is only over two days due to issues with data retention in our monitoring
setup. A larger sample size would be ideal.

 TRACE data seemed to be artificially high for a roughly 14 hour period of time
overnight. This was likely due to an issue with the system or the background activity
generation. The model for the publishing rate seemed to have a spike in its distribution

62

Approved for public release; Distribution is unlimited.

due to this operational issue. To account for this, we purged that section of the data. This
resulted in a smaller data set, but likely a more realistic set of distributions for publishing
rates and record sizes.

4.2.1.2.3.4. Result – Enterprise Model A

In this model, we created an enterprise mostly made of user end systems with 75 users who were
active during an eight hour period in the day and mostly idle during other hours. Users all had
phones, but we modeled only 10 users at a time using them, with 5 of those users also actively
using their workstations at the same time, and 5 users strictly using their phones. 60 of the users
are running Windows, and 10 are running Linux. We split the Linux users between THEIA and
TRACE. Figure 31 shows the data storage requirements to retain the data over periods from one-
half to five years.

4.2.1.2.3.5. Result – Enterprise Model B

For enterprise model B, we imagined a data center centric model with 50 to 500 servers that are
constantly active 24 hours per day, 7 days per week. Servers are split evenly between the four
performers running server OSes. The data center operators have data retention policies that vary
between 1 and 10 years for forensic analysis. Figure 32shows the resulting data storage
requirements over varying retention periods for a 250 server data center, and Figure 33 shows the
data storage requirements over a five year period for a varying number of server hosts.

Figure 31. Enterprise Model A Storage Requirements Over Time

0

10

20

30

40

50

60

70

80

90

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Si
ze
 (
TB

)

Retention Period (Years)

Data Storage Requirements

63

Approved for public release; Distribution is unlimited.

 Engagement #3

 Pre-Engagement Performance Testing and Improvements

The largest change to the infrastructure for Engagement #3 was the bump-up of the Kafka
version to version 1.0 and the introduction of SSL for the connections to Kafka. Repeating the
consumer and consumer tests, we found that the version change and the addition of SSL to the
connections had minimal impact to the throughput in the record size ranges we encountered in
Engagement #2. This is shown in Tables 17 and 18.

Figure 32. Enterprise Model B Storage Requirements Over Time (250 Servers)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Si
ze
 (
TB

)

Retention Period (Years)

Data Storage Requirements

Figure 33. Enterprise Model B Storage Requirements Over Five Years for Varying
Numbers of Servers

0

200

400

600

800

1000

1200

50 100 150 200 250 300 350 400 450 500

Si
ze
 (
TB

)

Number of Hosts

Data Storage Requirements

64

Approved for public release; Distribution is unlimited.

 TA2 Disk Performance Issues

We encountered an issue during Engagement #3 when TA2 performers reported slowness and
periodic freeze-ups occurring on their VMs. The underlying issue was in how the TA2
applications interacted with the hard disk. Examining the disk and buffer metrics reported by the
performance data collection system, we determined that their workload saturated the disks with
writes. The VMs themselves had too much memory allocated, allowing them to fill up the disk
write cache and causing this memory to never be freed. Eventually the hypervisor started
swapping as it competed for saturated IO, leading to these periodic freezes. This condition wasn't
detected during integration testing, since it only occurred with larger, long running workloads.

We were able to reconfigure the VMs and tune kernel parameters in order to eliminate this issue
prior to Engagement #4.

 Results

 Table 19 shows the TA1 (producer) metrics collected during Engagement #3.

Table 17. Producer Throughput Experiment, SSL vs Plaintext and Kafka 0.11 vs 1.0

Experiment
Size

(bytes)

Kafka 0.11

Plaintext

(MB/s)

Kafka 1.0

Plaintext

(MB/s)

Kafka 0.11

SSL

(MB/s)

Kafka 1.0

SSL

(MB/s)

Avro, Random records 150 12.65 13.78 14.29 14.29

No Avro 150 54.60 56.35 19.87 22.83

Avro, Random Records 300 14.29 14.28 15.66 15.29

No Avro 300 77.20 61.35 24.20 23.45

Avro, Random Records 5000 21.34 21.12 19.67 21.44

No Avro 5000 80.20 63.33 25.70 23.96

Table 18. Consumer Throughput Experiments, SSL vs Plaintext and Kafka 0.11 vs 1.0

No Avro 150 59.9 66.5 25.6 27.91

Avro, Minimal work 150 27.6 20.7 18.6 19.9

Avro, Busy work 150 4.28 4.21 3.80 3.81

No Avro 300 64.8 71.5 30.9 31.02

Avro, Minimal Work 300 31.9 26.77 23 22.4

Avro, Busy work 300 6.22 6.45 5.69 5.17

No Avro 5000 84.4 85.6 36.3 35.09

Avro, Minimal Work 5000 45.9 34.9 27.2 24.8

Avro, Busy Work 5000 22.15 21.31 16.11 16.35

Kafka 0.11

Plaintext

(MB/s)

Kafka 1.0

Plaintext

(MB/s)

Kafka 0.11

SSL

(MB/s)

Kafka 1.0

SSL

(MB/s)

Experiment
Size

(bytes)

65

Approved for public release; Distribution is unlimited.

We had made significant improvements to the Prometheus-based monitoring infrastructure,
which required us to perform some tuning on the Prometheus server on the second day of testing.
We did this maintenance outside of the ‘daily normal working hours’ used by the test, and no
data was lost as a result of the tuning.

We also had to restart several of the TA1 systems due to various issues, none initially related to
the infrastructure. The problems were either outright crashes or that system performance would
slow to a crawl. In one instance the restart process was not assiduously followed by the TA3
team, and this caused subsequent issues with data collection that required an additional restart.
Every TA1 performer experienced at least one issue requiring a restart or dropping functionality
from the test plan.

In some cases, we allowed a TA1 to patch their systems under test. In general, the patches were
not effective and/or the changes made introduced additional instability to their systems.

 Engagement #4

There were a few major changes for Engagement #4 for the purposes of the program:

 Two identical copies of each TA1 were instantiated within the range, allowing the Kudu
red team to pivot from host to host and test whether performers would be able to track
and handle this case

 Instead of testing being spread out among all hosts for two weeks, each TA1 was heavily
tested for a single day or two, in order to provide an in-depth look at capabilities

 The policy enforcement demonstration was expanded from the simple scenario in
Engagement #3 to a full-scale set of tests and scenarios

The policy enforcement demo is discussed in detail in section 4.3.2.

For TA3, the major goals were:

 Install and populate a central build, test, and deployment system as part of TC test range
 Add in support for public/private key pairs and digital signatures, allowing TC hosts to

authenticate themselves to the system
 Perform an initial test of running Kafka servers on a TA1 platform, allowing TC to

perform self-defense and introspection

Table 19. Producer Data Metrics for Engagement #3

TA1
Records

Produced

Data Size

(GB)

Avg

Record

Size

(bytes)

CADETS 44,404,339 11.2 252

CLEARSCOPE 488,027,243 121.0 249

FAROS 58,944,195 6.4 110

AIA 310,748,711 64.1 206

THEIA 118,102,141 17.5 148

TRACE 1,049,370,350 146.0 139

66

Approved for public release; Distribution is unlimited.

 Support two copies of each TA1 system on test range, allowing pivoting (establishing
malware on one host, then using that to attack additional hosts within the network) across
host systems

 Improve monitoring capabilities of the range

Starting in Engagement #4, with the concurrence of the DARPA PM, BBN stood up a Jenkins
build and test system to accompany its existing Git repository and required that all performers
use this continuous integration system to submit and prepare code for the engagement. This was
prompted by multiple regressions in several of the technology performers in Engagement #3
preparation and execution. An advance deadline for submissions was established before the risk
reduction and final evaluation phases to ensure that final versions of software would be tested
and installed with enough time to insure a full test cycle.

BBN also upgraded the version of Kafka to enable native support of host authentication. BBN
instantiated a simple public-key infrastructure with a key/certificate generator to provide unique
identities to each participating TC host, providing security against all outsider and limited insider
attacks. This system worked reasonably well except for one TA1 due to integration issues with
the Kafka client.

For a detailed analysis of running Kafka on a TA1 platform, see the next subsection. Supporting
two copies of each TA1 was an increased support burden that caused more difficulties than we
expected. While planning, we had hoped that the hosts would be able to use nearly identical
configuration and setup processes, but inevitably minor differences would crop up and cause
issues. BBN continued to press for the use of central build and integration systems to alleviate
future problems.

Monitoring capabilities on the test range continued to expand and improve. It was generally
remarked that the monitoring support was greatly appreciated by all participants in the post
engagement lessons learned call.

 Kafka on CADETS

For Engagement #4, we attempted to run the TA3 infrastructure hosts on a TA1 CADETS
enabled system. This would allow the TC infrastructure to also be protected by the TC
technology, and would expand the attack surface presented to TA5.1 to include the TC
infrastructure itself. We designed a hybrid cluster wherein three Kafka brokers would run on the
original Ubuntu VMs (without CADETS), and an additional three brokers would run on
CADETS enabled VMs. The three CADETS-protected brokers would house the leader replica
for each TA1 data stream, with follower replicas housed on the Ubuntu VMs. Finally, the
internal CADETS TA1 CDM data generated by the Kafka broker CADETS VMs would be
published to the Ubuntu VMs only. This setup ensures that one replica of each data topic is
present on an Ubuntu VM Kafka broker, so if the CADETS Kafka brokers had a catastrophic
failure, no data would be lost. This design is shown in Figure 34.

67

Approved for public release; Distribution is unlimited.

The CADETS team, however, made major changes to their internal architecture for Engagement
#4, and thus were not able to provide a working version of CADETS until very late in the
process, too close to the planned start to complete adequate testing. We instead tested a TA3 on
CADETS system using a Kafka mirror cluster. We ran six Kafka brokers on Ubuntu VMs
without CADETS for the main engagement cluster, and then setup a three broker Kafka mirror
cluster on CADETS VMs. We developed and ran a mirror publisher, which consumed some TA1
CDM data topics from the main cluster and published them to the CADETS cluster, and
measured the performance and overhead. In addition, we asked some TA2 performers that had
time and resources to investigate running their analysis by consuming data from the CADETS-
protected cluster.

We found that Kafka Brokers on the CADETS cluster was not able to keep up with engagement
data rates and load. The CADETS cluster was stable (in terms of system load and latency) with
two topics being published at real time data rates, but any large spikes in traffic rate, or any
additional traffic, even including a TA2 consumer, would cause the infrastructure services to
start timing out. The consumer data rates became highly variable and throughput dropped
significantly. This result shows that the then current version of CADETS was unusable for
infrastructure services such as Kafka at live engagement stability and data rates. Services like
Kafka receive many requests per second, and perform many disk writes to the Kafka log
directory. This traffic generates too much CDM data for the Engagement #4 version of CADETS
with a default configuration to process in real-time, leading to delays and instability.

We believe it would be possible to carefully tailor a configuration of CADETS that limits the
type of CDM data being produced, but this would require careful analysis of which events to
summarize, which to discard, and which to publish. This analysis would be a significant
additional workload for the CADETS team.

Figure 34. Proposed Kafka Setup for Engagement #4

68

Approved for public release; Distribution is unlimited.

Error! Reference source not found. below shows the throughput (left) and system load (right)
for the Kafka on CADETS test cluster with two mirror publishers and one consumer running.
The max consumer data rate recorded was 15 MB/s and that was highly variable (blue line) and
decreased over time. In contrast, the data rate for a consumer running on the main Ubuntu Kafka
cluster is shown by the red line, and that throughput rate is limited by the CPU on the consumer
end, not the broker.

 Publishing Delays

We used our CDM semantic checkers to uncover numerous errors in the CDM sample data
provided by TA1s, and in all cases were able to identify the issue, present it in sufficient detail to
the TA1s, and import and test a fixed version. One issue that arose in multiple Engagement #4
TA1 systems that was not a semantic issue was the problem of publishing delays. Our
monitoring prior to Engagement #4 showed publishing rates and throughput, but couldn't tell if a
TA1 publisher was slowly falling behind real-time. Some TA1s were generating more data than
in prior engagements due to increased capabilities, and ran into the condition where the rate of
data being collected was higher than the rate at which they could translate the collected data into
CDM and publish it. In all cases, the slowdown was due to the TA1 translation software.
Determining that this publishing delay was happening required custom investigation over the
published data using manual methods.

We developed publishing delay checkers and monitoring software to eliminate this potential
source of problems for Engagement #5.

 Results

For Engagement #4, we ran each TA1 separately on its own day with two TA1 instrumented
hosts and cross-host traffic going between them. CADETS also uses the TA3 infrastructure to
publish internal intermediate data that is not intended for TA2 to analyze. A CADETS correlator
process would then consume this internal data, correlate cross-host traffic, and publish the final
CDM stream. The numbers provided in the table below are smaller than previous engagements
because these represent only a single day of data collection.

Figure 35. Maximum Data Rates, CADETS vs Normal Kafka Brokers

69

Approved for public release; Distribution is unlimited.

Once we had collected this data, we then paired different TA1 systems with each other to
produce heterogeneous cross-host traffic. The results of this experiment are shown in Table 21.

 Engagement #5

For Engagement #5, the overall goal of the program was to allow each performer to fully
demonstrate their full and unique capabilities and to provide some insight into the operation of a
full TC system. In addition, a revised policy enforcement demonstration was implemented to test
whether an attacker could circumvent the security policies informed by provenance information.
The results of this demonstration are provided in 4.3.3.

For TA3, the specific goals were:

 Expand the test range to three simultaneous copies of each TA1
 Expand monitoring of the test range to collect TC program metrics as well as metrics to

support OpTC transition
 Support differing levels of TA2 participation, due to commitments the participants had to

support the OpTC program

The test range architecture was essentially the same as it was in Engagement #4, with the
addition of additional machines to support the expanded TA1 range. Coordination with TA5.1 to
only perform relevant tests for particular TA2 platforms was straightforward. The Git/Jenkins
infrastructure continued to be used with improved process results in this engagement.

Kafka statistics were gathered along with Prometheus data to allow analysis of data throughput,
delay monitoring, and other statistics. Our results are presented below.

Table 20. Engagement #4 TA1 Publishing Volumes (One Day)

TA1

Records

Generated

(Host A)

(Millions)

Records

Generated

(Host B)

(Millions)

Data Size

(Host A)

(GB)

Data Size

(Host B)

(GB)

Total Records

(Millions)

Total Size

(GB)

Averege

Record

Size

(bytes)

CADETS (CDM) 23.80 24.30 7.30 7.40 48.00 14.70 307.00

CADETS (Internal json) 23.60 24.00 0.53 0.51 47.60 1.00 22.00

CADETS (Internal trace) 0.53 0.54 2.80 2.90 1.06 5.70 5,410.00

ClearScope 32.10 21.90 20.10 14.10 54.00 34.20 642.00

AIA 45.20 49.60 9.60 10.60 94.70 20.20 212.00

MARPLE 91.60 105.00 14.40 16.20 196.60 30.60 155.00

THEIA 29.80 246.00 6.40 53.30 275.80 59.70 214.00

TRACE 39.10 48.90 6.20 8.60 88.00 14.80 158.00

Table 21. Engagement #4 Cross-Host Publishing Volumes (Three Day)

Host A TA1 Host B TA1

Records

Generated

A

(Millions)

Records

Generated

B

(Millions)

Data Size

A

(GB)

Data Size

B

(GB)

CADETS THEIA 53.3 12.8 15.8 2.8

AIA ClearScope 34.6 43.0 7.9 22.5

MARPLE TA1 TRACE 110.8 29.7 16.8 4.6

70

Approved for public release; Distribution is unlimited.

 Publishing Delay Monitoring

We developed a new monitoring feature for Engagement #5 that allowed us to check every
TA1's publishing delay in real time. As in Engagement #4, the publishing delay was defined as
the time between the most recent CDM event published by the TA1 (included in each TA1 CDM
data record), and the current wall clock time from our monitoring client. Therefore, this
publishing delay includes the latency for the CDM record as it propagated through the TA3
infrastructure. An increasing publishing delay indicates that the TA1 is falling behind, which
may be caused by a misconfiguration, an error in the TA5.1 benign traffic scripts, or a failure in
the TA1 VM (likely caused through interaction with the TA1 software). Publishing delays cause
TA2 systems to be unable to detect events in real time, since the data they are ingesting can be
minutes or hours old.

Using this metric, we were able to detect multiple cases where TA1s (CADETS and THEIA) had
configuration errors or needed to be restarted. These issues were caught early and we were able
to reconfigure/restart the TA1 systems and get the publishing delay back to real time. Other
TA1s, such as AIA, had periods of time where their system ran up to 25 minutes behind, but
eventually caught back up without outside intervention. This issue was likely due to increased
traffic on the monitored host and is an issue for future investigation by the TA1 team. The
publishing delay monitor historical data allows us to check what the publishing delay was for an
AIA host at a specific point in time, so when the red team caused an event on the AIA host, we
can more accurately determine the earliest time when the TA2 could have received the necessary
CDM data in order to detect the host. An example of the publishing delay monitor is shown in
the figure below.

The following figure shows the publishing delay experienced by all TA1 systems throughout the
time period of the entire engagement.

Figure 36. Publishing Delay Example Detail

71

Approved for public release; Distribution is unlimited.

The initial (orange) spikes on 5/9 and mid-day 5/10 were due to internal issues with the
CADETS package that caused it to stop publishing data. Once restarted, it required several hours
to ‘catch up’ to real time. The spike later on 5/10 was due to the fact that the THEIA team had
attempted to repair an issue with their system and had stopped their endpoints in order to apply a
patch. The slow growth of delay shown for 5/13 and 5/14 was due to the AIA agents appearing
to suffer from resource exhaustion. We stopped the endpoints for a few hours to allow their
pipeline to catch up and then restarted them. Finally, one Clearscope endpoint froze up on 5/15
and continued to have issues throughout the day. After being rebooted several times, the issue
cleared up and the delay disappeared.

 NTP Time Synchronization Monitoring

We also added monitoring for NTP time synchronization to look for the case where a TA1 host
falls behind due to a clock synchronization error. We saw this case occur as a bug multiple times
during previous engagements and developed the monitor to alert us if it occurred during the
preparations for Engagement #5. The TA1 teams were able to fix the bugs causing this issue, and
we did not see time synchronization errors occur during the engagement.

 Network Overhead Metrics

During Engagement #5, we periodically ran a packet capture on all TA3 hosts to collect all
incoming and outgoing network traffic for a period of two hours. Analysis of this captured data
allows us to characterize the amount of overhead running the full TC system will add to existing
network traffic. We organized this data into three components, TA1 to TA3, TA3 to TA3, and
internal TA3. This collected packet capture data was cross-referenced with our internal
monitoring data to ensure the data collection was comprehensive. For example, if a certain TA1
node published 1 GB of data during the captured two hours, we verified that at least that much
traffic flowed from the TA1 to the proper TA3 Kafka Broker on port 9094.

Figure 37. Publishing Delay Over Time, Engagement #5

72

Approved for public release; Distribution is unlimited.

4.2.1.5.3.1. TA1 to TA3 Traffic

This is the network traffic that the data collector TA1 components produce when writing all of
their outgoing CDM data to the TA3 infrastructure. The actual traffic a deployed TA1 would
generate was dependent on the TA1 configuration and the amount and characteristics of the
activity on the TA1 system occurring during the collection period. The values in Table 22 were
collected when we were running an estimate of "typical" traffic for a desktop computer in a basic
office environment. Specific deployments of a TA1 may produce different traffic characteristics,
and most TA1 systems can be specifically configured to produce more or less traffic, by
whitelisting certain processes or types of records, however, these numbers can serve as a baseline
estimate.

As expected, the primary contributor to the TA1 traffic load is the CDM traffic flowing from the
TA1 to the TA3 Kafka cluster. The additional traffic is due to Kafka and Zookeeper
management, and is negligible. The monitoring traffic is all optional, this allows for our
monitoring infrastructure to gather real-time data about the performance of the hosts in the
Engagement. Monitoring was far lower for Clearscope because we did not place a monitoring
agent on the Clearscope Android phone itself. For the other TA1s, the Windows hosts (AIA and
MARPLE) had larger monitoring overhead due to the fact that the Windows monitoring client
produced more data than the Linux version. This is all configurable, so we could easily gather
less information and create less network overhead. Since the total size of the monitoring network
traffic was dwarfed by the Kafka CDM traffic, this sort of optimization would likely be
irrelevant in operation.

The baseline US Army Cyber Protection Brigade software produced no traffic to our TA3
infrastructure apart from the monitoring clients. Since half were Linux and half were Windows
VMs, the monitoring traffic values shown are an average of the two amounts of data. The TA5.2
systems do write information to their EndGame system, that amount of traffic would need to be
measured separately.

We had to estimate the CADETS traffic from the monitoring data instead of using the packet
capture due to issues with CADETS during the engagement. During the times we ran the packet
capture, the CADETS system was not in normal operation, it was re-publishing previously
captured data to fix observed issues. This meant that CADETS was publishing far more than
normal during that time, in order to catch back up to real-time. In order to adjust for this, we
estimated the network traffic by looking at a different time window in which CADETS was
operating normally. CADETS also had a different network usage structure than the other

Table 22. Representative TA1 → TA3 Traffic

TA1 Network Traffic Total Traffic Kafka Traffic Monitoring Traffic Additional Traffic

Clearscope 237 MB 33.08 KB/s 33.03 KB/s 0.038 KB/s Negligible

AIA 2.91 GB 404 KB/s 403.4 KB/s 0.59 KB/s Negligible

MARPLE TA1 334.8 MB 46.5 KB/s 46.16 KB/s 0.32 KB/s Negligible

THEIA 1.3 GB 185.2 KB/s 184.9 KB/s 0.16 KB/s Negligible

TRACE 2.01 GB 290.7 KB/s 290.64 KB/s 0.16 KB/s Negligible

CADETS* 2.49 GB 346.7 KB/s 346.5 KB/s 0.16 KB/s Negligible

TA 5.2 8.5 MB 0.29 KB/s 0 0.29 KB/s None

73

Approved for public release; Distribution is unlimited.

performers in that the CADETS team took advantage of the TA3 services to support their
internal processing, as shown in Figure 38.

CADETS TA1 endpoints published internal trace data to
the Kafka infrastructure, then a CADETS correlator
consumed that data, processed it, and published JSON back
to a different Kafka topic. A CADETS translator process
consumed the JSON data, processed it, and published
CDM data needed by TA2 performers to a third topic. This
results in many more TA1 to TA3 writes and reads than
those exhibited by the other performers.

As an example, the following table shows the CADETS
network usage breakdown. This CADETS overhead traffic
could be reduced to just include trace data in one direction
and the final CDM data, with a different (more complex)
architecture. The CADETS team didn't choose this
approach for Engagement 5 since the TA3 infrastructure
was readily available, and easily able to handle the
additional network bandwidth

4.2.1.5.3.2. TA3 to TA2 Traffic

TA3 to TA2 network overhead is more variable, since it is dependent on the analysis being run
on the TA2 system at any given time. In general, a TA2 cluster that is keeping up to date with all
TA1 produced traffic should consume the same amount of data that the TA1s produced,
mirroring the numbers in the previous section. The TA2 data in the table below is an aggregate
for the full 18 hosts of Engagement #5, since it is not possible to pull out exactly which TA1
topics were being consumed at the time the data was collected. In general, MARPLE consumed
everything all the time and RIPE focused on specific TA1s (as instructed). We believe there was
some data missing from the ADAPT numbers, accounting for the lower rate. In general, a TA2
will produce the same amount of network traffic as the sum of all TA1 traffic, since it would
need to consume all of the produced data in order to analyze it in entirety.

Table 23. CADETS-Kafka Internal Traffic Volumes and Rates

CADETS Traffic Direction Traffic Volume Traffic Rate

trace TA1 → TA3 500 MB 69.4 KB/s

trace TA3 → TA1 500 MB 69.4 KB/s

JSON TA1 → TA3 210 MB 29.1 KB/s

JSON TA3 → TA1 210 MB 29.1 KB/s

CDM TA1 → TA3 1.07 GB 149.4 KB/s

TOTAL 2.49 GB 346.7 KB/s

Figure 38. CADETS Data
Flow Showing Internal Use of

Kafka

74

Approved for public release; Distribution is unlimited.

4.2.1.5.3.3. TA3 to TA3 Traffic

TA3 internal traffic occurs between Kafka nodes and is nearly entirely due to keeping data
replicas up to date. For Engagement #3, we used one replica for each CDM topic, so when CDM
traffic arrived from TA1, we sent a copy of it to another Kafka node, incurring additional
network overhead. This overhead is entirely configurable - since we used one replica per topic,
we effectively doubled the TA1 → TA3 traffic.

All of the Kafka VMs were Linux hosts. The higher monitoring overhead (when compared to the
TA1 Linux hosts) was due to the fact that we ran additional monitoring clients for the Kafka
processes, which provided a great deal more data for monitoring and analysis.

 TA1 Performance and Overhead

We computed the individual overhead imposed by each TA1 through the following experiment:

First, we ran the TA1 installed and configured on a host system with both publishing to
the TA3 infrastructure and background traffic generation turned off. This provided a
baseline environment.

Second, we then turned on TA1 publishing to TA3, and left off any additional
background traffic generation.

Third, we turned off publishing and turned on background traffic generation,

Lastly, we ran with both publishing and background traffic enabled, which would be the
standard operational environment.

Background traffic generation consisted of the scripts created by TA 5.1 to mimic regular usage
of a target system. For each condition, we ran the system for at least 1 hour and recorded CPU
usage, active memory, network data transfer, and disk usage metrics. The raw data recorded is
given in the table below.

Comparing the metrics with background traffic on to the baseline gives us a measurement of the
overhead incurred from just running the regular background traffic that we can take into
consideration when analyzing the real operational environment with background traffic and
publishing on. Likewise, comparing the metrics collected with only publishing on to the baseline,
gives us a lower bound for the TA1 overhead, since TA1 clients provide no value without
publishing data.

Table 24. TA3 → TA2 Traffic Rates at Three Points in Time

TA2 Snapshot 1 Snapshot 2 Snapshot 3

ADAPT 66 KB/s 58 KB/s 62 KB/s

MARPLE 2.8 MB/s 1.8 MB/s 3.7 MB/s

RIPE 212 KB/s 132 KB/s 272 MB/s

Table 25. TA3 Internal Traffic over a Two Hour Period

TA3 Internal Traffic Type Total Rate

Kafka Replica 23.5 GB 3.27 MB/s

Monitoring 49 MB 0.35 KB/s

Additional (various) 1.8MB 0.01 KB/s

75

Approved for public release; Distribution is unlimited.

For the four classes of metrics we collected, CPU usage is likely the most straightforward to
understand and report to a system administrator looking to deploy a TA1. For most TA1s there
is a measurable, non-trivial CPU overhead associated with collecting and publishing their CDM
data. Active memory usage is much harder to analyze, since operating system memory
management is complex and it can be difficult to glean much from some aggregate statistics. In
addition, most of the TA1s ran in a VM, which themselves ran on a host operating system, which
further complicates memory management.

In some cases, active memory in use actually decreased from the baseline when publishing and
traffic were enabled. The reasons for this can be complex - our initial analysis showed that the
cached memory usage decreased, likely due to the fact that the operating system didn't need as
much to devote to caching, since the system was far busier (consuming more CPU cycles). In
more idle times, free memory can be allocated by the operating system proactively for things like
caching frequently accessed data from the disk. In general, no TA1 exhibited a memory leak,
which would manifest as steadily increasing usage or frequent garbage collection, and none had
a memory related performance issue during the two week engagement.

The data transfer metrics correlated with our expectations. When publishing was enabled, data
sent increases dramatically due to the TA1 writing out all the CDM traffic to the TA3
infrastructure. The disk usage metrics can again be challenging to analyze due to how the
operating system and its memory management works with the disk controller. In general, there is
a significant increase in disk usage for TA1 systems when publishing is on since many use the
file system to transfer information across the internal components of their system.

76

Approved for public release; Distribution is unlimited.

Table 26. TA1 Metrics Collected Over One Hour - TRACE, THEIA, and CADETS

TA1 Pub BT Min Max Avg Min Max Avg Recv Avg Recv Max Send Avg Send Max Read Avg Read Max Write Avg
Write

Max

TRACE‐1 No No 4 12 5 13.2 GB 15.0 GB 13.3 GB 2.5 KiB 3.98 KiB 648 B 1.24 KiB 3 KiB 285 KiB 695 B 37 KiB

TRACE‐1 Yes No 4 12 9 13.2 GB 17.0 GB 15.7 GB 218 KiB 285 KiB 345 KiB 462 KiB 9 KiB 1.244 MiB 377 KiB 788 KiB

TRACE‐1 No Yes 1 27 5 16.4 GB 18.8 GB 17.4 GB 151 KiB 2.89 MiB 11 KiB 92 KiB 102 KiB 12.1 MiB 921 KiB 6.66 MiB

TRACE‐1 Yes Yes 20 45 27 10.5 GB 14.1 GB 11.3 GB 212 KiB 2.4 MiB 880 KiB 1.776 MiB 271 KiB 8.42 MiB 3.61 MiB 10.74 MiB

THEIA‐1 No No 1 48 8 1.23 GB 1.39 GB 1.25 GB 2 KiB 19 KiB 52 KiB 356 KiB 55 KiB 5.77 MiB 3 KiB 188 KiB

THEIA‐1 No Yes 1 88 32 1.3 GB 4.0 GB 3.6 GB 16.8 KiB 254 KiB 17.4 KiB 39.2 KiB 1.4 MiB 41.8 MiB 2.6 MiB 71 MiB

THEIA‐1 Yes No 1 49 18 248 MiB 260 MiB 255 MiB 2 KiB 4 KiB 110 KiB 310 KiB 4 KiB 250 KiB 233 KiB 706 KiB

THEIA‐1 Yes Yes 1 69 16 3.5 GB 3.85 GB 3.67 GB 4 KiB 287 KiB 87 KiB 479 KiB 29 B 1 KiB 303 KiB 2.61 MiB

THEIA‐Analysis No No 1 1 1 661 MiB 672 MiB 664 MiB 840 B 1.77 KiB 469 B 3.29 KiB 116 B 11.6 KiB 1.4 KiB 49.6 KiB

THEIA‐Analysis No Yes 1 1 1 663 MiB 664 MiB 664 MiB 799 B 1.1 MiB 403 B 770 B 0 0 134 B 4 MiB

THEIA‐Analysis Yes No 1 6 3 655 MiB 3.8 GB 2.3 GB 219 KiB 619 KiB 204 KiB 578 KiB 83 B 819 B 2 MiB 6.0 MiB

THEIA‐Analysis Yes Yes 5 25 12 11.26 GB 13.03 GB 12.23 GB 558 KiB 2.22 MiB 507 KiB 2.44 MiB 0 0 216 KiB 2 MiB

CADETS‐2 No No 1 1 1 49.93 MiB 63.62 MiB 55.66 MiB 1.07 KiB 2.25 KiB 241 B 789 B

CADETS‐2 Yes No 50 100 53 54.3 MiB 89.4 MiB 70.1 MiB 1.8 KiB 8.3 KiB 6.0 KiB 29.9 KiB

CADETS‐2 No Yes 1 22 5 12.2 MiB 32.7 MiB 16.3 MiB 54 KiB 529 KiB 300 KiB 833 KiB

CADETS‐2 Yes Yes 51 99 61 63.2 MiB 138.9 MiB 104.2 MiB 5 KiB 25 KiB 50 KiB 328 KiB

CADETS‐Host No No 1 1 1 502 MiB 646 MiB 628 MiB 4.99 KiB 9.34 KiB 3.02 KiB 5.86 KiB

CADETS‐Host Yes No 13 26 14 787 MiB 855 MiB 824 MiB 115 KiB 459 KiB 129 KiB 644 MiB

CADETS‐Host No Yes 1 7 2 1.99 GB 2.1 GB 2.2 GB 763 KiB 3.15 MiB 1 MiB 3.45 MiB

CADETS‐Host Yes Yes 13 41 18 1 GB 2.19 GB 1.6 GB 679 KiB 4.05 MiB 917 KiB 5.6 MiB

CPU (% non‐idle) Active Memory (Total) Data Transfer (Bytes/Sec) Disk Usage

77

Approved for public release; Distribution is unlimited.

Table 27. TA1 Metrics Collected Over One Hour – MARPLE, AIA and Clearscope

TA1 Pub BT Min Max Avg Min Max Avg Recv Avg Recv Max Send Avg Send Max Read Avg Read Max Write Avg
Write

Max

MARPLE No No 1 2 1 28.1 GB 28.2 GB 28.1 GB 783 B 5.7 K 738 B 1.6 K 17 Kb 757 Kb 6 Kb 189 Kb

MARPLE Yes No 2 20 8 28.0 GB 28.1 GB 28.1 GB 1.0 Kb 2.8 K 6.6K 91.9K 4.7 Kb 213 Kb 8.9 Kb 64.7 Kb

MARPLE No Yes 1 22 4 27.7 GB 28.1 GB 27.8 GB 4.4 Kb 1 MB 3.5 K 202 K 39 Kb 3.5 MB 22 Kb 2.5 Mb

MARPLE Yes Yes 8 26 9 27.8 GB 27.9 GB 27.9 GB 1 K 7 K 10 K 524 K 82 B 6.7 Kb 8.6 Kb 60.2 Kb

AIA Yes No 12 20 14 26.3 Gb 26.5 GB 26.5 GB 5.8 K 775 K 1.27 K 19.6 K 1 kB 34 kB 162 kB 5.7 Mb

AIA Yes Yes 15 98 42 26.0 GB 27.3 GB 26.1 GB 21 K 418 K 209K 1.2 M 2 kB 143 Kb 324 Kb 1.6 Mb

AIA‐Translate Yes No 24 35 28 13.3 GB 23.1 GB 18.3 GB 105 KiB 191 KiB 250 KiB 599 KiB 211 KiB 10.6 MiB 3.58 MiB 17.4 MiB

AIA‐Translate Yes Yes 24 52 32 14.4 GB 21.0 GB 17.1 GB 99 KiB 570 KiB 646 KiB 5.85 MiB 351 KiB 8.2 MiB 16.1 MiB 30.7 MiB

Clearscope Host Yes n/a 1 6 1 14.5 GB 15.6 GB 15.4 GB 72 KiB 208 KiB 115 KiB 376 KiB 0 0 47.3 KiB 121 KiB

Clearscope Host No n/a 1 1 1 15.2 GB 16.2 GB 15.8 GB 4.8 KiB 7.5 KiB 2.08 KiB 3.42 KiB 5 KiB 282 KiB 46 KiB 97 KiB

CPU (% non‐idle) Active Memory (Total) Data Transfer (Bytes/Sec) Disk Usage

78

Approved for public release; Distribution is unlimited.

For TA1 systems that included a target and an off host analysis VM, we recorded the overhead
metrics for both the target and translator/analysis VMs independently (THEIA, CADETS, AIA).
In general, the off host translator or analysis machine is less important for overhead calculations,
since it is a single purpose VM that won't affect operational users.

CADETS is a different case, since the CADETS host functions as the hypervisor for the
CADETS VMs, so an overloaded host could affect the performance of its guest VMs. CADETS
did exhibit the largest overhead, with the target VMs using 50% of the CPU on average, spiking
up to 100% at times. This would cause a noticeable effect to any user of the target system.
CADETS may benefit from better hardware, but likely needs to be configured, analyzed, and
potentially re-engineered.

TRACE showed a noticeable CPU overhead of around 22% over the baseline, which should still
leave the target system quite usable and may be unnoticed by a user. THEIA was similar, with a
smaller average CPU overhead, but a much higher maximum spike, which could be more
problematic, depending on how often the spikes occur. In general, these CPU spikes correlate
heavily to the type and amount of background traffic, so it is hard to give a general impression,
and the system would need to be evaluated with the type of traffic and usage patterns for a given
deployment.

MARPLE TA1 exhibited the lowest amount of CPU overhead, small enough that it should go
unnoticed by a user. AIA is a special case, since AIA is never not publishing data to its off host
translator. The AIA system was designed to be "tamper proof", so it can't be set to not publish.
Therefore, there were no “publishing off” cases to compare with. This makes it more difficult to
compare, and the AIA overhead is highly dependent on the amount and type of background
traffic.

Finally, for Clearscope, we did not collect any metrics on the Android phones themselves, and
will need to refer to MIT's own evaluation for overhead numbers for the phones themselves. The
Clearscope off host translators were never stressed in terms of CPU usage, memory, network, or
disk usage.

Table 28. Engagement #5 TA1 Data Production Results

TA1 Record
Count

A
(Mil)

Record
Count
B (Mil)

Record
Count

C
(Mil)

Total
Size
A

(GB)

Total
Size

B
(GB)

Total
Size
C

(GB)

Total
Records

(Mil)

Total
Size
(GB)

Average
Record

Size

CADETS

1274 325 255.10
CADETS
Internal

7.8 6.3 12.8 32 25 46 26.9 103 3,829.00

Clearscope 361 340 130 200.5 180.3 73 831 453.8 546.09
AIA 1220 1013 1110 257 227.7 237.6 3343 722.3 216.06
MARPLE 163 135 233 25.9 20.5 39.6 531 86 161.96
THEIA 414.6 446.2 319.6 84.2 89.8 65.6 1180.4 239.6 202.98
TRACE 1848 1909 1781 259 267 242.9 5538 768.9 138.84
Total

12724.3 2698.6

79

Approved for public release; Distribution is unlimited.

4.2.2. Issues with Mobile Handsets

The Android mobile handsets used in the test
range failed due to battery aging. We used
simple low-cost powered USB hubs to connect
the handsets to the servers that controlled them
and were unable to monitor battery charge level
or control the power supply to the handsets. As
a result, the batteries were always charged to
100%, drastically shortening their lifespan. In
addition, because of space and clearance
limitations in our data center we had built our
‘mobile phone test rigs’ inside our equipment
racks towards the top – where the heated
airflow from the other systems in the rack
would encounter them as it exited the rack (see
Figure 39). We neglected to consider the effect
of the elevated temperatures on the batteries,
which also had a negative effect on them.

Should we have to support handsets in a future deployment, we should consider using more
expensive industrial grade USB hubs that allow for power monitoring and control, allowing us to
keep the batteries between a 50% and 80% charge level and extending their lives.

 Policy Enforcement Demonstrations

As mentioned in 3.5.4.1, we proposed to create a demonstration that illustrated how the trace
data created by the TA1 clients could be used to enforce security policies on the network. We
developed a set of policies we wanted to enforce, worked with the TA1 and TA2 participants to
identify the events leading up to the critical decision for each policy, then added a Policy
Enforcement Service that queries the TA2 services to determine if an operation should be
permitted or not.

This demonstration evolved over engagements 3, 4 & 5. In the first, a simple set of policies were
defined and we were able to demonstrate the basic functionality and identify the importance of
the “TA1 delay” and its effect on the overall system. In Engagement #4, we added scenarios, we
expanded the policies to require the involvement of multiple TA2s, cross-host parameters, and
additional query parameters. For Engagement #5, we kept the same structure, policies, server
application, and Policy Enforcement Module as we had in Engagement #4, reduced the number
of scenarios from 12 to 8, and allowed for more requests per scenario.

4.3.1. Engagement #3

We ran 7 requests for each scenario, for each TA2. Each request was either blocked or allowed,
and we recorded whether the TA2 took the appropriate action.

Ground truth (explanations of how we generated each request, and whether it should be blocked
or allowed) is provided in 0 below.

Figure 39. Mobile Phone Harness with
Handset and WebCam

80

Approved for public release; Distribution is unlimited.

 MARPLE

MARPLE provided very detailed analysis of the CDM for the AIA and THEIA errors, showing
exactly what their system extracted from the CDM. The errors for AIA and THEIA appear to be
a TA1 issue, where the proper linkage is missing from the TA1 data. The policy demonstration
request exercises a different portion of the space of CDM records and linkages, so issues like this
were uncovered only in the policy demonstration results and not in the main Engagement results.

MARPLE had multiple modules in their TA2 server for some policies and a voting mechanism
for the final result. If any one out of two modules returns BLOCK, then the final result was a
BLOCK, else PASS. They included optional explanations for BLOCK actions that linked the
CDM record at the end of the casual chain, and expect to be able to provide entire causal chain if
desired.

For FAROS, it appeared to be technically possible to get the right answer with FAROS PSA, but
would require custom code just for this purpose. FAROS PSA data was a new form of data that
was not used in the main engagement and was provided very late, due to being a late addition to
FAROS. The main issue was that there were no EVENTs to link objects, requiring very different
analysis methods, since the information needed to link objects was present only in the properties
map.

Figure 40 below is an example of the type of analysis the MARPLE TA2 system performs to
track a file upload (Policy 4). This example was from AIA, Policy 4, request # 4 where the file
"haxx.php" was downloaded from a remote server onto the AIA host, then a series of file
operations were completed in an attempt to hide the file (zip, rename, unzip, etc.). This graph
from MARPLE shows how they were able to link the curl command that sent the file upload
request to the policy protected server to the original haxx.php file download event from earlier,
through all of the file operations.

Table 29. MARPLE Engagement #3 Policy Demonstration Results

TA1 Client Policy Expected Results
CADETS (1) Originating User All Correct
TRACE (4) Net Data All Correct
5D (4) Net Data Three errors appear to be data/linkages missing

from TA1 CDM
FAROS (PSA) (2) Communication No block, unable to link PSA records
THEIA (2) Communication Two errors appear to be TA1 CDM data/linkage

errors
Clearscope (3) UI All Correct

81

Approved for public release; Distribution is unlimited.

Figure 40. MARPLE Event Flow Graph

82

Approved for public release; Distribution is unlimited.

 ADAPT

ADAPT requested the filename be provided by the PEM for Policy 4, which we offered as an
option for this first iteration of the policy demonstration. The CDM data linkage errors for AIA
were the same TA1 issues that MARPLE found, where the TA1 CDM data didn't link events
properly. The differences in the THEIA results were due to how ADAPT interpreted the policy,
specifically how to handle subprocesses. They were able to see the call chain and just interpreted
the policy differently. If interpreted the same way, ADAPT would have likely encountered the
same linkage issues as MARPLE for 2 of the 3 tests. ADAPT was also not able to process
anything from FAROS data, since it was provided so late and was so differently structured than
any other CDM data.

ADAPT provided English explanations for their policy BLOCKs, some examples are provided
below:

 “No network source data for the file: newupload.txt”
 128.55.12.71:8080. This is the IP/Port of a NetFlow that violated the restricted server

policy
 username used to make the request was: root. This query was testing for: admin

This graph below depicts the type of analysis that ADAPT performed. This shows them tracing a
received NetFlow object back to the parent process that generated it, and to its subprocesses.
These subprocesses then link to other earlier NetFlows, showing which other remote servers this
process has communicated with in the past (bottom right of the figure). This analysis and
traversal of this graph allowed ADAPT to answer the remote communication policy checks. If
they interpreted the policy with regards to subprocesses in the intended way, this graph shows
that they had the correct information traced and could have returned the expected result.

Table 30. ADAPT Engagement #3 Policy Demonstration Results

TA1 Client Policy Expected Results
CADETS (1) Originating User All Correct
TRACE (4) Net Data All Correct
AIA (4) Net Data Three errors appear to be data/linkages

missing from TA1 CDM
FAROS (PSA) (2) Communication No block, unable to do anything with PSA
THEIA (2) Communication Three differences due to interpreting the

policy
Clearscope (3) UI All Correct

83

Approved for public release; Distribution is unlimited.

Figure 41. ADEPT Event Flow Graph

84

Approved for public release; Distribution is unlimited.

 RIPE

RIPE encountered similar issues with missing data linkages from the TA1 CDM (AIA) and
differences in interpreting policy details. In addition, RIPE (like the other TA2s) required custom
code to handle some of the TA1 data, since the policy demonstration exercised different aspects
of the TA1 data from those used in normal event processing. They ran out of time to analyze the
TA1 sample data and implement much of the custom methods (e.g. FAROS, Clearscope).

 CADETS: Requests involving a C program using the setuid system call were not
handled correctly, RIPE needs to update code to handle this condition

 TRACE: Two expected block were allowed, RIPE needs to investigate further
 AIA: Same issue as other TA2s, missing linkages in the AIA data, confirmed as

something that needs to be fixed by Five Directions
 THEIA: As with ADAPT, requests involving child processes were interpreted differently

(ignoring parent process communication with the restricted host). The policy was
ambiguous.

 FAROS: Analysis of CDM determined that new code would be required that they didn’t
have time to implement

 CLEARSCOPE: Ran out of time to implement.

 Engagement #3 Results

We showed that the Transparent Computing infrastructure, including TA1, TA2s and the TA3
services, could be used to enforce policies in real time. Proper implementation of a policy
enforcing TA2 server requires careful analysis of the TA1 data stream, and can require different
analysis routines that look at different aspects of the TA1 data. Thus, time and engineering effort
is needed to implement a new policy and tailor it to the specific TA1 providing the data. For
future experiments, we planned to gather sample TA1 data as early as possible. This became a
consistent challenge in the program since TA1s were constantly updating their software,
invalidating the old sample data and requiring new sample data to be generated. TA2s needed to
example and work with the latest TA1 sample data in order to automate their analysis.
Automation is necessary here to be able to return a policy check result in real time. However,
with enough engineering effort, we were able to produce correct policy check results with an
overall latency in the seconds to tens of seconds range. This can be sufficient to implement a
provenance policy protected server application, provided that the policy check is only triggered
occasionally on specific requests. A multi-second latency can work on a highly protected
application, for certain types of occasional requests, such as file uploading or downloading from
a secure server.

4.3.2. Engagement #4

For Engagement #4, the policy demo was substantially increased in scope and complexity, with
server side policies being tested as well as client side policies. The server side policies were
more complex due to having multiple processes involved (web server with multiple threads and a
PHP interpreter) as well as having cross host traffic from the web server to a data base server.
The database server was run on a separate different TA1, forcing the TA2 analysis to first trace
the NetFlows to the second server and second cross-reference data between two different TA1
CDM streams. In addition, we ran client side policies for each TA1 separately. This resulted in

85

Approved for public release; Distribution is unlimited.

12 scenarios (6 client side policies, and 6 server side policies, with each TA1 performing each
role). This increased complexity, combined with TA1s being delivered late and with bugs that
needed to be fixed (and therefore sample data that needed to be regenerated) resulted in a
shortened time for TA2s to analyze the policy demo sample data. Regardless of this added
complexity and challenges, at least one TA2 was able to properly respond to policy requests for
each condition, with few exceptions.

We provided sample data with ground truth to all TA2s for each scenario months to weeks in
advance, depending on the TA1s involved and when they were ready. This sample data had to be
regenerated multiple times as TA1s fixed bugs, leading to some of the original data being less
useful overall due to TA1 changes. For Clearscope, we designed custom Android server
applications. We configure an existing app store web application for each TA1 environment,
requiring us to port the web application to Apache2, nginx, php and postgres, on Windows,
Linux, and FreeBSD environments. We designed request scripts that challenge TA2 analysis
procedures by mimicking attacker attempts to bypass a provenance based policy.

For the live policy demonstration, we generated fresh CDM data sets from running the TA1s,
web applications, and requests live. Our policy enforcement module sent requests to TA2 servers
in real-time. We waited on average 20 seconds for the CDM data to propagate through the
system before sending the requests to the TA2 server. This delay could be significantly reduced
with more engineering time, we expect to be able to get this delay to around 5 seconds or so. The
TA2 systems answered the query in ~1-30 seconds, depending on the complexity of the
application, policy, and TA1 system. For the live demonstration, we generated similar requests to
the sample data, varying order and timing. In addition, we generated bonus requests not in the
sample data if the sample requests were handled correctly.

 MARPLE

Table 31. MARPLE Engagement #4 Policy Enforcement Results
TA1 A TA1 B Policy #

Correct
Notes

TRACE

UI 3/4 Incorrectly blocked one UI request. Regenerated sample
data often before the demo, updating the service startup
sequence

MARPLE

UI 2/4 TA2 internal error on UI requests

AIA

UI 5/5 Bonus request completed correctly

THEIA

UI 2/4 All blocked, no UI events found

CADETS

UI SKIP TA2 Not ready to process

CLEARSCOPE

UI SKIP TA2 Not ready to process

TRACE MARPLE User 6/6 All correct, plus bonus

MARPLE THEIA Comms 3/5 Cross host tracking failed, no database server results
returned. Perfect results for MARPLE server

THEIA AIA User 3/5 Backtracking broken for AIA (TA2 issue), cross host links
found, but unable to return results.

AIA CLEARSCOPE Files SKIP TA2 Not ready to process

CLEARSCOPE AIA Comms 5/5 All correct

l d

86

Approved for public release; Distribution is unlimited.

 RIPE

 ADAPT

 Engagement #4 Results

As expected, we observed a strong correlation between data being ready early and good results.
The TRACE/MARPLE pair and AIA data were ready the earliest, so the TA2 performers had
longer to analyze and engineer their servers to process this data. CADETS, on the other hand,
was not ready to produce data until very late, leading to most TA2s being not ready to properly
analyze it.

Table 32. RIPE Engagement #4 Policy Enforcement Results
TA1 A TA1 B Policy #

Correct
Notes

AIA

UI SKIP TA2 Not ready to process

CADETS

UI SKIP TA2 Not ready to process

CLEARSCOPE

UI SKIP TA2 Not ready to process

AIA CLEARSCOPE Files 0/4 Can’t do cross‐host tracking in real‐time, only analyze
Server 1.
Expected FILE_READ events, only found FILE_OPEN events

CLEARSCOPE AIA Comms 3/5 IP Addresses encoded differently in CS data, had to
manually modify PEM to TA2 request.
Tried additional Policy One (User) request, which was also
correct.

CADETS TRACE User 3/5 Failed to trace back to the originating user, always returned
the admin user. TA2 needed more time with the CADETS
data.

Table 33. ADAPT Engagement #4 Policy Enforcement Results
TA1 A TA1 B Policy #

Correct
Notes

TRACE

UI 5/5 Treat anything that can be traced back to xvnc as a UI action

MARPLE

UI 4/4 All correct

5D

UI 5/5 Bonus request completed correctly

THEIA

UI 2/4 All blocked, insufficient data result returned from ADAPT

CADETS

UI 3/4 One UI request was blocked, unclear why, offline debugging
needed

CS

UI 2/4 All blocked, no UI data found. Timestamp issue, offline forensic
analysis found the expected UI data

TRACE MARPLE User 2.5/5 Netcat process not found for Request Three, Wrong user
returned for requests Four and Five (user currently running the
process, not user that started it)

MARPLE THEIA Comms SKIP Ran out of time

THEIA AIA User 2.5/5 Netcat process not found, wrong user returned

AIA Clearscope Files 1/3 Trouble finding files read due to timestamp mismatch, queried
for file origination directly, failed to find network origination

Clearscope AIA Comms 3/5 Unable to find cross host traffic due to IP address formatting

CADETS TRACE Files 3/5 TA2 Internal server errors, re‐ran forensically afterwards. Didn’t
find network origination for one request, didn’t find SQL
i j ti l d d fil f th

87

Approved for public release; Distribution is unlimited.

All TA2s were able to answer some queries in real-time, depending on which policies and TA1s
they focused their effort on. RIPE, for example, has a nice web service interface to their TA2
server that lets the experimenter see what they’re tracking. In general, most TA2s were too busy
with engagement preparation to devote the necessary time to analyze all 12 scenarios. The
complexity of the policy demonstration resulted in a larger engineering challenge for TA2s due
to the necessity for full automation to handle the real-time requests. TA2 analysts were not able
to fall back to manual or forensic analysis if something went wrong. In general, the TA2s needed
more time to study the data and implement different analysis routines than what was needed for
Engagement #4.

4.3.3. Engagement #5

We only had a single TA2 participant who could support the policy enforcement demonstration
for Engagement #5, the MARPLE team.

For Engagement #5, we switched the web server to FastCGI mode where the PHP interpreter ran
as a separate, long lived process. This meant that TA2s would need to track the php-cgi process
and trace inter-process communications between it and the web server. In previous engagements,
with FastCGI mode off this wasn't necessary, and they could simply follow the chain of process
creation to see the server fork-exec the PHP process. This FastCGI inter-process communication
caused problems for many TA1s since they didn't have the proper provenance tags on
interprocess communication events.

Figures 42 through 44 showing the internal representation of MARPLEs analysis. These graphs
show that MARPLE can see many inter-process communication calls between httpd and php-
fpm, but lacks the necessary provenance tags to trace an individual request from httpd to php-
fpm, then from php-fpm cross-host to the database server, and then all the way back. Because
the provenance information was not available in the TA1 data, MARPLE could not disambiguate
between the separate calls. The only TA1 that potentially provided the proper provenance tags
was Clearscope, but because Clearscope runs on a mobile handset and was not designed to run as
a remotely accessible server it would have required significant additional development to make it
useful for this purpose.

88

Approved for public release; Distribution is unlimited.

Figure 42. Event/Flows for Policy Demo Showing Missing IPC Provenance Data for AIA
and TRACE

Figure 43. Event/Flows for Policy Demo Showing Missing IPC Provenance Data for
CADETS and THEIA

89

Approved for public release; Distribution is unlimited.

For requests where this interprocess tracking was not necessary, MARPLE returned the expected
result with no false positives. However, most of the requests did require this sort of tracking.
These graphs show how MARPLE was able to analyze what happened and that the issue was a
lack of necessary information in the TA1 data. Since this demonstration and analysis occurred at
the end of the program, there was no time to iterate with the TA1s, leaving providing this level of
provenance tagging in the TA1 data an open area of research.

Figure 44. Event/Flows for Policy Demo Showing Missing IPC Provenance Data for
TRACE and MARPLE

90

Approved for public release; Distribution is unlimited.

 CONCLUSIONS

 Architecture

The core goals of the TC architecture were to:

 Provide for a multi-layer data collection architecture;
 Support overall system design and development, including security, APIs, and data

format specifications; and
 Allow for adaptation to new findings as the program progressed

Based on the extensive performance testing that BBN conducted before each engagement,
combined with the results from each engagement, our conclusion is that the collection
architecture successfully met the program goals. The Kafka system provided sufficient
throughput for TA2 needs and 100% data reliability for all data collected in all five engagements.

Security was addressed primarily via Kafka support for encryption and authentication. Attempts
to run Kafka on TC instrumented systems such as CADETS were not successful, however, due
to the level of overhead imposed on the target system.

The APIs and data format specification as captured in the CDM were sufficient to allow accurate
event reconstruction and APT detection across multiple platforms. However, full semantic
integration was never truly achieved due to underlying native platforms differences and differing
priorities among TA1 and TA2 performers.

As can be seen from the architecture diagrams from each engagement in section 3.4, the
architecture did evolve over time as subsequent engagements revealed new requirements or
issues. The flexibility of the architecture was critical to the success of this effort overall.

 Common Data Model

The CDM was a core component of the TA3 effort and probably the most visible element of
BBN's work across the collaboration. While CDM development continued throughout the
program, the bulk of the development was completed by Engagement #3 with the release of
v0.19. At that point, the CDM was sufficient to provide a common format for all relevant
provenance data across the TC platforms (Linux, OpenBSD, Windows 7/10, and Android).

The main limitation of CDM was always the relative inefficiency of the format. Due to the
limited scale of TC testing and evaluations, this inefficiency was never a limiting factor and the
format allowed easier debugging and testing than a fully optimized and packed binary format.
However, as was apparent in the first phase of the OpTC effort, the CDM would require an
optimization rewrite to allow TC to scale to thousands or more hosts. BBN's conclusion is that
the CDM served the DARPA development phase adequately, and a transition CDM or equivalent
would likely be needed when scaling and application to a real domain were required.

In addition, TA2 performers generally felt that the CDM semantics were never truly converged
among the TA1 performers, requiring them to create separate input handling routines for each
TA1 regardless of the CDM standard. BBN's conclusion is that a tighter process on semantic
agreement among teams and platforms starting in Phase One would have benefited the overall
collaboration greatly, although it would have required more work on the part of TA1s to pay
attention to the CDM standard development process details.

91

Approved for public release; Distribution is unlimited.

 Infrastructure

The BBN test infrastructure proved to be sufficient to provide the necessary capabilities
(processing, throughput, storage) for TC integration and evaluations. As BBN was able to utilize
a combination of its own equipment plus some GFE (primarily for TA2 high capacity
processing), we had the convenience of being able to run the test range as much as we desired
over the course of the program, without worrying about cloud computing overhead costs. We did
not evaluate the comparative cost of such an infrastructure against a cloud-based setup to provide
us the same capabilities; see the section on the ORange process and evaluation to see an
examination of feasibility and capabilities for a cloud-based alternative to the TC infrastructure.

 Engagements

The main conclusion that BBN derived from the five TC engagements was the necessity for
creating a strong and well defined process to provide repository, build, test, and installation
functionality that all performers are required to use. In addition, good software practices such as
unit tests and true code freezes providing adequate time for both risk reduction and engagements
are a necessity to allow proper evaluation of technology strengths and capabilities without
requiring heroic effort on the part of all parties. Direct communications such as live chat and
blogs provide essential communications between geographically separated parties participating
in test run up and live test periods. Finally, post-test lessons learned for all involved parties are
very useful for evaluating issues and improving processes for future iterations.

 Policy Enforcement Demonstration

The Policy Enforcement Demonstration was an interesting alternative to incorporate policy
enforcement directly within the TC engagement scenarios, which seemed to be the initial intent
expressed in the BAA. This method of testing enforcement meant that blocking actions would
not impact engagement scenarios, allowing those events to continue without interruption and
potentially time-consuming resets of mechanisms and policies. However, the separate
demonstration did require separate preparation, especially among TA2 performers, who needed
to examine very different data sets after the main engagement ended.

Overall, the Policy Enforcement Demonstration did allow a focused examination of security
enforcement processes and mechanisms that could be enabled via TC-enabled systems. This
focus could have been lost or missed due to conflation with missed detections and other issues
that cropped up during the actual engagements, so the isolation of variables certainly helped
create a more clear and interpretable situation with regards to true effectiveness of the
mechanisms under test.

92

Approved for public release; Distribution is unlimited.

 RECOMMENDATIONS

Overall, the base TC architecture worked well. We would recommend examination of the Kappa
and Lambda architecture patterns as well as any updated work in this area for future use in any
program of this type.

CDM exhibited a great deal of value in that it enabled a set of different analysis tools sourced
from different vendors to identify and detect behaviors in a heterogeneous operating
environment. The single model allows for more than just malware detection, but other types of
failures as well. The existence of such a capability in both military and commercial environments
would greatly enhance the ability to create heterogeneous system monitoring and administration
tools in such environments.

While the CDM fulfilled its purpose for TC, the process used for its development and results
could have been improved. We have two main recommendations if CDM itself or a CDM-like
product is created again:

 Force teams to agree much earlier about semantics for items in a CDM
 Support development by both client and analysis tool vendors by developing searchable

and comprehensive documentation on the meaning of events and how they should be
represented in CDM

 Be prepared to create/use a much more efficient version of a CDM if transition is
envisioned/needed soon after the program ends

TC worked well in a stable networked environment, but the need to configure each client to
connect to a fixed address Kafka server would not work well in a more dynamic networking
situation. It could be worthwhile to take a page from the ‘Smart Cities’ and Internet of Things
initiatives where a CDM source could be envisioned as a data stream source, and use a more
dynamic networking infrastructure such as the Distributed Data Service (DDS) for a least the
first link in the collection of CDM data from endpoint hosts. DDS offers a minimal
configuration, self-adapting data transmission subsystem designed and developed for real-time
data exchange in dynamic environments.

Tasks like the Policy Enforcement Demonstration, where a separable element/environment/goal
set based on the mechanisms under development are established, should be incorporated into
future programs in this area of study to allow greater isolation of variables and more focused
examination and consideration of results. Such tasks serve to explore and demonstrate
capabilities and features not normally associated with those immediately obvious to those
focusing on the primary program goals and metrics.

For engagement management, our chief recommendation here is to require the integrator to
create adequate and easily accessible code submission and testing facilities. The current industry
term for such capabilities is “Development Operations” (DevOps) and/or “Continuous
Integration” (CI). Performers should be encouraged to incorporate the DevOps system into their
development process, and submission to the test range should require the use of the DevOps
system. If possible, the DevOps system should be containerized so that it can be replicated to
some degree at each performer site to support local development and pre-testing before
submission to the shared repository.

93

Approved for public release; Distribution is unlimited.

The integrator should also aggressively enforce a code submission/freeze schedule for
performers to ensure that their code is working on the test/integration/evaluation range ahead of
time. A code freeze of one month before integration is not excessive in a 4 year program with 5
engagements as inevitable problems will arise and require time to address.

Due to the potential issues of running APTs or software with APT-like behaviors within a
commercial cloud infrastructure, we recommend that DARPA continue funding GFE for local
test clusters that can be run in isolation and without potential legal complications of employing
commercial or operational cloud resources.

Given that, our recommendations for a potential infrastructure setup are contained in B.5.

94

Approved for public release; Distribution is unlimited.

 REFERENCES

[1
]

N. H. M. e. a. Marz, "Lambda Architecture," 2017. [Online]. Available: http://www.lambda-
architecture.net.

[2
]

W3C, "PROV-DM: The PROV Data Model: W3C Recommendation 30 April 2013," 30
April 2013. [Online]. Available: https://www.w3.org/TR/prov-dm/.

[3
]

N. Marz and J. Warren, Big Data: Principles and best practices of scalable realtime data
systems, Greenwich, CT: Manning Publications Co., 2015.

[4
]

L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker and S. A. Haghighat, "Practical
domain and type enforcement for unix," Proceedings of the IEEE Symposium on Security
and Privacy, pp. 66-77, 1995.

[5
]

A. Keromytis, "Transparent Computing," 5 December 2014. [Online]. Available:
https://beta.sam.gov/api/prod/opps/v3/opportunities/resources/files/9fe73ed863c590d63b0a5
03e21bee06d/download?api_key=undefined&status=archived&token=. [Accessed 19
December 2019].

[6
]

S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang and D. Xu, "MPI: Multiple Perspective Attack
Investigation with Semantics Aware Execution Partitioning," in Proceedings of the 26th
USENIX Security Symposium, Vancouver, 2017.

[7
]

Y. Kwon , F. Wang , W. Wang , K. H. Lee , W.-C. Lee , S. Ma, X. Zhang, D. Xu, S. Jha, G.
F. Cretu-Ciocarlie, A. Gehani and V. Yegneswaran, "MCI : Modeling-based Causality
Inference in Audit Logging for Attack Investigation," in NDSS, San Diego, 2018.

[8
]

W. Enck, P. Gilbert, B.-g. Chun, L. P. Cox, J. Jung, P. McDaniel and A. N. Sheth,
"TaintDroid: An Information-Flow Tracking System for Realtime PrivacyMonitoring on
Smartphones," in OSDI 10, Vancouver, 2010.

[9
]

H. Yin, D. Song, M. Egele, C. Kruegel and E. Kirda, "Panorama: Capturing System-wide
Information Flow forMalware Detection and Analysis," in CCS 07, Alexandria, 2007.

[1
0]

L. M. Rossey, R. Cunningham, D. J. Fried, J. C. Rabek, R. P. Lippmann, J. W. Haines and
M. A. Zissman, "LARIAT: Lincoln adaptable real-time information assurance testbed," in
Proceedings, IEEE Aerospace Conference, Big Sky, 2001.

[1
1]

M. Navaki Arefi, G. Alexander, H. Rokham, A. Chen, M. Faloutsos, X. Wei, D. S. Oliveira
and J. R. Crandall, "FAROS: Illuminating In-memory Injection Attacks via Provenance-
Based Whole-System Dynamic Information Flow Tracking," in 2018 48th Annual

95

Approved for public release; Distribution is unlimited.

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
Luxembourg City, 2018.

[1
2]

influxData, Inc, "InfluxDB: Purpose-Built Open Source Time Series Database | InfluxData,"
06 01 2020. [Online]. Available: https://www.influxdata.com/. [Accessed 06 01 2020].

[1
3]

Prometheus.io, "Prometheus - Monitoring system & time series database," 06 01 2020.
[Online]. Available: https://prometheus.io/. [Accessed 03 01 2020].

[1
4]

The OpenTDSB Authors, "OpenTSDB - A Distributed, Scalable Monitoring System," 03 01
2020. [Online]. Available: http://opentsdb.net/. [Accessed 03 01 2020].

[1
5]

"quickavro ꞏ PyPI," 11 01 2020. [Online]. Available: https://pypi.org/project/quickavro/.
[Accessed 11 01 2020].

96

Approved for public release; Distribution is unlimited.

APPENDIX A Common Data Model Version 0.5 Schema Highlights

// fixed field types
fixed bits16(2); // generic 16-bit type
fixed uuid(16); // 128-bit UUID
enum SubjectType {

SUBJECT_PROCESS,
SUBJECT_THREAD,
SUBJECT_FUNCTION,
SUBJECT_BLOCK

}

enum SourceType {

SOURCE_LINUX_AUDIT,
SOURCE_OPEN_BSM
// TODO: add others

}

record Subject {

uuid id;
int pid;
string cmdLine;
string envVars;
SubjectType type;
SourceType source;

}

record HasParent{

Subject child;
Subject parent;

}

record Host {

string ipAddr;
union {null, string} optionalHostname;

}

record RunsOn {

Subject subject;
Host host;

}

record Timestamp {

long sec;
long nsec;

}

enum EventType {

EVENT_ACCEPT,
EVENT_BIND,
EVENT_CHANGE_PRINCIPAL,
EVENT_CHECK_FILE_ATTRIBUTES,
EVENT_CLOSE,
EVENT_CONNECT,
EVENT_CREATE_OBJECT,
EVENT_CREATE_THREAD,
EVENT_EXECUTE,
EVENT_FORK,
EVENT_LINK,
EVENT_MMAP,
EVENT_MODIFY_FILE_ATTRIBUTES,

97

Approved for public release; Distribution is unlimited.

EVENT_MPROTECT,
EVENT_OPEN,
EVENT_READ,
EVENT_SIGNAL,
EVENT_TRUNCATE,
EVENT_UNLINK,
EVENT_WAIT,
EVENT_WRITE

}

record Event {

uuid id;
Timestamp timestamp;
EventType type;
SourceType source;
long sequence;
union {null, long} optionalLocation;
union {null, long} optionalSize;

}

record IsGeneratedBy {

Event event;
Subject subject;

}

record Memory {

long pageNum;
long address;

}

record File {

string url;
long version;
long size;

}

record NetFlow {

Host src;
int srcPort;
Host dest;
int destPort;

}

record Object {

uuid id;
bits16 permission;
Timestamp timestamp;
SourceType source;
union {Memory, File, NetFlow} subclass;

}

record ResidesOn {

Object object;
Host host;

}

record IsPartOf {

Object subObject;
Object superObject;

}

98

Approved for public release; Distribution is unlimited.

record Value {
bytes value;
long size;

}

record EventAffects {

Event event;
union {Subject, Object, Value} entity;

}

record AffectsEvent {

union {Subject, Object, Value} entity;
Event event;

}

99

Approved for public release; Distribution is unlimited.

APPENDIX B ORange – the Infrastructure Framework Decision Revisited

B.1 Preamble

The TC Open Range (ORange) effort was the final of a series of analyses performed by BBN in
its role as integrator (TA3) for the TC project. It is a trade-off analysis between a home-grown
libvirt-based system and toolsets, such as OpenStack, which provide management and oversight
tools for test ranges such as TC's experimental range. Since TC was an active and ongoing effort,
the earlier analyses had to consider not only the value of introducing a new toolset, but also the
disruptive impact of changing tools, procedures, etc., in the context of the ongoing TC
experiments.

Being the final evaluation, the ORange effort ignores the impact of disrupting ongoing
experiments and instead focuses on two questions:

• If one were to implement the TC range in 2019, what approach would be the
approach to take? E.g., home-grown or off the shelf (commercial or open source)
toolset?

• As a result of that analysis, what guidance would the ORange team provide to any
other project seeking to set up a test range today?

The first question considers the same concerns as the earlier analyses, specifically does a toolset
now exist that would be a better choice than TC's home-grown system, but does not consider the
cost of moving from one to the other.

The second question is meant to provide a more general roadmap for any project considering
building in-house range. Its answer should provide information on the toolsets that were
surveyed, pointers and considerations to include should a new toolset arise, which should aid that
team in choosing a toolset. These findings are summarized in the "Getting Started" appendix
(APPENDIX D).

Both assume a fresh start and do not consider the cost of transitioning. Both consider life cycle
costs, e.g., the initial cost of learning the toolset, the cost of introducing new team members to
the toolset, the cost of moving the toolset to its next version, etc.

The following philosophy statement highlights both the TC and general requirements and criteria
that guided the effort.

B.2 Philosophy

The primary goal of the ORange analysis was to select the best toolset for setting up any test
range, using two use cases. One very similar to the TC range and the other a more general test
range. The team assumed that the test range should allow for multiple, concurrent experiments
operating at different access levels, e.g., fundamental research with non-US persons vs. ITAR
research, without allowing leakage between them. The test range can either be in-house, in the
cloud (off-site), or a mix of the two (hybrid cloud). The team was looking for a toolset that had a
vibrant user community and active development/support teams, since it is understood that
complexity and advanced capability often go hand in hand. The team was looking for something
easy for an incoming team that was new-to-range-setup to learn and use.

100

Approved for public release; Distribution is unlimited.

Ongoing ease of use and toolset life-cycle, e.g., ease of adding new capabilities or ease of
updating to a new toolset version, were also considered. The overall assumption is that there is
no team dedicated to designing, setting up, and running the test range, so the toolset should
minimized those costs (and learning curve), so the team has more time available for their primary
responsibilities.

Since there are many options for building a test range hosted off-site by an off the shelf vendor
(i.e., in the cloud), why even consider building the in-house capability? This analysis of in-house
tools is driven by the belief that several aspects of our research necessitate an in-house solution,
even if it, in part, interacts with pieces in the cloud (off-site), i.e., a hybrid solution.

Opting for an in-house solution may be a result of aspects of running the experiment that would
violate the cloud's terms of service (TOS), i.e., running malware (even if "defanged"), or running
software that is too sensitive to risk pushing outside of the enterprise, i.e., ITAR software.

An oft-cited special capability, such as guaranteed separation of experiments due to IP or ITAR
considerations, is easily addressed by off the shelf solutions that currently can guarantee
separation or even specific locations for hosts, The in-house solution comes into play when the
incremental cost of those guarantees exceed the budget.

While cost and ease of use are often cited as reasons for in-house solutions, these arguments are
of diminishing strength due to free tier pricing or when considering the true cost of in-house set
up.

See the Experimentation and Results section of this appendix for more details. The team did
much of its experimentation within the design and architecture of the existing TC test range,
which limited some of the experiments the team was able to perform.

B.3 Requirements

While the requirements provide the goal, answering the "recreating the TC range" question
should be constrained by only considering solutions that would work for the systems, resources,
and limitations that were in place when TC started and should highlight issues and constraints
faced in the initial range implementation. Alongside the cognizance of what technology was
available at the time of the proposal submission (2015), implementation requirements served as
the reason for selecting one software or architecture over another. This section will explore those
constraints as based on their impacts in hardware, software, networking, ease of use, experiment
isolation, and logistical objectives.

B.3.1. Range Management Software

Ideally, range management software allows the range owner free reign in setting up an
experiment and then turning that experiment over to the performers who can run it with minimal
or no impact from the management artifacts. In most cases, this results in test machines with at
least two network interfaces, one for management, the rest to serve the experiment. Management
software can be agent-based or agentless. Agent-based solutions have an agent on each test host,
either directly on the host or in a hypervisor (or other overlay) which allows management of the
host without impacting the experiment. Examples would be hypervisors, PXE-based controllers,
and agents embedded in the OS under test. Agents are usually quite feature-full. Agentless

101

Approved for public release; Distribution is unlimited.

solutions are based on very lightweight presence on the system under test, sometimes as light as
an available ssh port.

Ideally, the range management should allow for multiple, concurrent experiments, which are
isolated from one another.

The requirements of a software and hardware coupling required to service the TC range are
outlined in the goals of the TC program. In serving as TA3 performer on the program,
responsibilities largely included the facilitation of cross-TA collaboration. The TA3 performer
also had the responsibility of managing individual TA experiments and providing access to
relevant information required for evaluating TA1 and TA2 software. As a result, software
selected for the TC range must support the ability to work with a virtual machine hypervisor, or
other agent, for managing performer hosts and running experiments. Additionally, a system
configuration management tool for managing a number of running hosted systems with specific
software and data is necessary. A way of configuring the network topology dynamically to adapt
to a changing number of hosts with specific network access requirements will enable networking
and connectivity, which is discussed in a later section.

In the original TC range implementation, hosts were provisioned using the SaltStack (Salt)
platform, a Python-based open source configuration management and remote execution
application. The procedure for executing code and thus configuring the range is a multi-step
process. It consists of defining an ‘experiment’ file from the Salt “Master” with a set of machines
to operate on, and then executing a script on the "Master" which runs code on each system
(called a Salt “Minion”).

This approach required that each host run the Salt Minion agent software, such that the system is
provisioned to receive instructions from the Salt Master. This adds a level of complexity in
managing hosts, as it requires all hosts to have a working Salt Minion agent software installed.
This worked well for our “base case” of a specific system or host, but introduced challenges
when provisioning additional systems or platforms. Salt was the ideal tool for configuration
management and remote execution at scale, but only shows its strength in purpose built systems
and workflows.

In TC’s use of Salt, a number of different hosts were running scripts determined by the Master.
This meant that on occasion, the resulting behavior would differ from Minion to Minion. This
required attention to each run of Master scripts, so as to catch any errors and output for
debugging runtime errors.

B.3.2. Range Hardware

As proposed, the TC architecture necessitated the ability to install hosts on both virtualized hosts
and “bare metal” hardware – a distinct, single piece of computing equipment. Performers on the
program presented work on Linux-based, Windows, and even mobile operating systems. Some
of the hosts could run in a virtualized environment via the KVM virtualization technology.
Others, like one performer’s Android OS, required that the software run directly on the target
device without virtualization. Across multiple engagements, a performer might need to have
access to many different hosts – or just a few.

102

Approved for public release; Distribution is unlimited.

In order to provide access to both virtualized and physical hosts, two separate networks were
configured for controlling and for running experiment hosts. Using libvirt and KVM, the
performers’ experimental hosts were able to be run on the TC systems as virtual hosts. The key
advantage of this functionality is that it allowed BBN to maintain control of the hardware while
allowing individuals to manage hosts as needed.

The ranges consisted of several types of components:

• The bulk of the range consisted of commodity rackmount Dell R210 or R230 servers
with 32GB memory, up to 5TB (4+1) HDD, and 2 or 3 network interfaces; these
served as TA1 and TA3 (Kafka and test servers) hosts;

• A few Dell 620 or 710 servers; these served as build and service hosts, such storage,
git/wiki, and Jenkins;

• Four Dell C6000 servers, each with 4 internal blades; these served as TA2 hosts and
occasionally as TA1 hosts when desired by TA1 performers for higher performance
platforms;

• A few Cisco routers and switches; these handled the necessary internal routing
architecture.

In addition to the above, Kudu Dynamics (TA5.2) provided a complete LARIAT setup to
provide traffic generation. This setup consisted of several machines plus routers. As TA5.2
configured and operated LARIAT, that portion of the test network was treated as a black box by
BBN.

B.3.3. Network

From the point of a DARPA experiment and in particular from TC, there were a few
requirements that the network needed to support. First, the range needed to support separation
(physical or logical or both) between range control and experimental data collection, i.e., these
two streams could not interfere with each other. While TC used VLANs to separate control from
experimental data, the two streams did use the same physical switch, and this possibly ran the
risk of having large loads cause non-purely experimental overload effects on the hardware. The
overall load in TC did not approach this level, so it was not deemed necessary to provide
complete physical separation of flows, but in some experiments, this may be a concern.

Second, the network needed to be able to isolate portions of itself for TOS or safety reasons. In
the case of TC, the TA5.2 performer ran artificial (in that the ‘exploits’ used as the initial entry
vector were old, known vulnerabilities fixed in current versions of the software or vulnerabilities
intentionally added to existing software) attacks upon the target systems, but other DARPA
experiments could easily require attacks or activities that would be imprudent to run on a
network connected live to the Internet or would violate the terms of service of the portion of a
hybrid cloud setup. Isolation could allow such experiments to be conducted in greater safety and
adherence to usage agreements.

Finally, the TC network in particular provided a simulated Internet with local copies of well-
known sites (such as Google or YouTube) in order to provide realistic appearing network traffic
without having to impact or reveal the experiment to the actual real-world sites. In order to do
this, the network was configured to be able to switch from a local DNS server with the default
route pointing to the LARIAT gateway server (for experiments) over to the actual Internet during

103

Approved for public release; Distribution is unlimited.

setup and configuration time, allowing external performers to be able to access and test on the
range from their remote sites and also access public repositories and software sites and vice
versa. This sort of flexibility greatly increased the usability of the range for program
collaborators.

B.3.4. Ease of Use

A major consideration of any tool set/system choice is the set of life cycle costs, including the
initial cost of learning the toolset, the cost of introducing new team members to the toolset, the
cost of moving the toolset to its next version, etc. Some costs may be more important than others
due to local conditions (e.g., a rapid initial setup may be required due program schedule), but
otherwise, the cost of ownership – including the operations and maintenance phase - is likely to
be the driver for this factor.

Designing, setting up, managing, and updating the test range should be accessible to most
engineers with minimal training. Having only a few or even one engineer with the required
background and knowledge can be a major blow to a project if a disaster strikes. As a corollary,
the toolset should include resources (FAQ, user community, etc.) to handle both initial and more
complex questions, as well as reference resources for all phases of setup and usage. A toolset that
has a vibrant user community and active development/support teams is highly desirable, as
development tasks can be shared with that community rather than all falling to the in-house team.

B.3.5. Experiment Isolation

While TC was classified as fundamental research, thus allowing relatively unfettered access for
non-US persons from TC collaborators to access the range with only minimal hindrances and
requiring no isolation, it is likely that future types of these experiments may have EAR or ITAR
restrictions placed upon some or all of the software or components. Thus, the test range should
allow for multiple, concurrent experiments, operating at different access levels without allowing
leakage between them.

The operation of a multilevel classified network is beyond the scope of this work as the tools and
requirements are circumscribed by a different set of security processes and authorities, so the
only consideration for the purposes of this work are restrictions on EAR and ITAR separation.
Thus, the particular separation mechanisms may need to be documented and certified in some
respect, they do not necessarily adhere to the high levels of assurance in classified settings.

B.3.6. Experiment Logistics

As was seen in TC, experiment logistics are important to experiment-based testing with required
metrics. Luckily, however, provision of tools and mechanisms to test ranges is a relatively well-
known and solved problem. Among these requirements are:

• Mechanisms for range users to reserve subsets or the entire range for independent
testing; this may involve changing from test to development mode as well;

• Control and management of logs and logging parameters, including downloads, log
rotation and purging;

• Monitoring and management of host and range infrastructure components, including
live performance data as well as records for post-test analysis.

104

Approved for public release; Distribution is unlimited.

B.4 Research and Experimentation Results

The ORange effort started with the list of TC-focused requirements for the range, as well as a
more general set of requirements, captured in the "Requirements" section of this appendix. The
team then surveyed Internet for the existing toolsets, and chose the most promising to experiment
with.

B.4.1. Preparations and Toolset Selection

After researching a wide range of toolsets, the team chose to focus on tools that provide
Infrastructure as a Service (IaaS)1 , as they seemed most suited for creating general purpose in-
house ranges.

To start, the team started with the following characteristics of ideal IaaS toolset:

• High-level APIs dereference low-level details of machine networking and
infrastructure

• Configurable network topology with management plane for starting, stopping, logs,
etc.

• A hypervisor runs virtual machines as guests
• Alternatively, services are containerized eliminating overhead of a hypervisor
• Capacity of a container scales with computing load
• Capability for bare metal host while preserving access by the management plane
• Provides additional services such as

o Virtual-machine disk image library
o File or object storage
o Software bundles

• A vibrant user community and active development/support teams
• Easy to learn; easy to maintain; (if not home-grown) easy to upgrade when the

product evolved

The team also looked at the components of TC's home-grown libvirt- and Salt-based solution.
While Salt provides the configuration management tools to create simple cloud quickly, it lacks
the tools and capabilities to orchestrate the individually configured hosts into a homogeneous
single cloud. That responsibility fell to the home-grown scripts. Every new feature required
extensive work to integrate it into the existing tool suite. It lacked the polish and consistency of a
more holistically designed and implemented suite.

After a brief survey the team chose three promising suites to experiment with: OpenStack,
CloudStack, and OpenNebula. We quickly ran into issues with OpenNebula, however and
stopped working on it due to time and resource constraints. This was not surprising since
OpenNebula is the least mature of the three technologies.

1 NIST defines IaaS as “where the consumer is able to deploy and run arbitrary software, which can include
operating systems and applications. The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, and deployed applications; and possibly
limited control of select networking components (e.g., host firewalls).”

105

Approved for public release; Distribution is unlimited.

The experimentation approach was straightforward. For each toolset, we performed the
following operations:

• Install the minimum toolset required for experimentation.
• Recreate the TC CADETS experiments using the toolset. CADETS is a single host

experiment, but required a bare metal install.
• Recreate the TC TRACE experiments using the toolset. TRACE requires a

complicated host setup, in multiple steps, for its execution.
• Document everything.

For the sake of expediency, the team chose to stick with TC's existing hypervisor/guest OS
model, rather than redesign and rewire the range. The primary issue was how the interfaces were
configured in the range and the inability of the existing management tools to accommodate any
changes. In the TC range, the management interface was connected to the hypervisor and the test
range interface was connected to guest OS. While many of the IDRAC interfaces were wired up,
they were not used.

The next sections provide an overview of the experimentation with each solution and describe
the results of the research and experimentation process anecdotally for each of the solutions. The
final section provides a summary and recommendations.

B.4.2. OpenStack

Introduction

OpenStack (https://www.openstack.org/) is an open-source software platform for cloud
computing, offering a broad suite of modular service components covering compute, storage,
network and management functions:

• Bare metal, virtual machine, containerized and lambda compute resources, plus
elastic map reduce

• Physical, VLAN, and virtualized network segments, virtual or (some models of)
physical switches and routers plus DNS

• Block, image, object and file storage plus database
• Management dashboard, telemetry/usage metering, user identity, key management. A

dashboard is also available to the users of the range.
• Messaging, workflow, application and container orchestration, alarm/event analysis

and rule-based actions
• Drivers to manage Amazon EC2 resources (instances, images, volumes and networks)

for building hybrid cloud environments
• Plugins to integrate other services with the OpenStack compute, networking and

storage services, such as VMware and Hadoop

Unlike the other candidates, OpenStack is a federation of separately developed components,
sharing common services and capabilities. This would allow selecting a subset of components,
then pick up others as requirements change. OpenStack releases are coordinated across the
components, in the hopes of eliminating most integration issues in the field. Figure B-1 shows
the main components and each name (e.g., Heat, Nova, Cinder, and Keystone) is a component
maintained by its own development team.

106

Approved for public release; Distribution is unlimited.

Figure B-2 shows a more complete set of components, circa 2019, showing the wide range of
management capabilities available.

In addition, several different toolsets are available for orchestrating deployment of an OpenStack
range onto new hardware. These are termed "deployment tools" and often include a means to

Source: Conan at English Wikipedia, downloaded from https://en.wikipedia.org/wiki/OpenStack

Figure B-1. OpenStack Main Components

Source: https://www.openstack.org/software/ Accessed 30 January 2020

Figure B-2. A Feature-full OpenStack Instance

107

Approved for public release; Distribution is unlimited.

describe the desired range. These would be used to setup the initial OpenStack management tools
and could be used to replicate the existing OpenStack and range to a new set of hardware.

OpenStack launched in 2010 and is under active development.

Initial impressions

OpenStack's main advantage, as of late 2019, as a range management toolset is that the
components cover a wide range of cloud environment functionality that includes functions that
were specified as requirements of the TC range at the outset of the program, functions that
emerged during the course of the program, and functions that could prove useful in the future. In
particular, OpenStack services include:

• Common mechanisms for managing the software delivered by performers whether the
delivery is bare metal machine images, virtual machine images, or containers

• Dynamic network configuration, management and virtualization
• Granting performers privileges to reinstall or restart their services through a common

dashboard
• Range-wide management and telemetry

The requirements for managing a range for all of the TC performers, with their different
timetables, requirements and development methodologies, meant that the management scripts
BBN wrote had to be augmented and modified throughout the program. With the benefit of
hindsight, much of that work appears to have been implemented in OpenStack in the last five
years, and so the decision of which platform to choose will likely be different from that made at
the outset of the TC program.

OpenStack's main disadvantages are a consequence of that wide coverage and flexibility.
Common mechanisms are used for configuration and management of each service, and
components make use of services provided by other components. However, with such a diverse
set of partially optional services that can be separately configured, the range maintenance staff
will have a great deal of material to absorb, and to keep current on as the project evolves. Given
OpenStack's development history, each release is maintained for 18 months, so plans to
incorporate regular updates to the platform and tools into the range would be an important aspect
to consider when planning the project and the engagements.

Vision

Here is a concept of how an experimentation range shared by multiple performers could make
use of OpenStack.

• The test range administrators install OpenStack on the range and assign machine
roles, comprising a management host, a large number of compute hosts, one or more
storage service hosts, and several switches. Few manual steps are involved at machine
consoles.

• The test range administrators create users and permissions, assign keying, and
establish resource policies and limits. They configure the overall network including
access to the outside internet.

• Each performer is given access to a slice of the range: a number of compute hosts, a
number of virtual network segments, and a slice of block storage. Each performer

108

Approved for public release; Distribution is unlimited.

receives pointers to appropriate OpenStack documents and forums, which augment
the test range administrator’s support.

• Performers are able to allocate virtual and bare metal hosts, machine images, virtual
disks, and assign network addresses within their allocated spaces. They can connect
to the overall network and also have private network segments. Permissions prevent
performers from altering resources allocated to other performers.

• When the time comes for an engagement, the test team ensures that the systems under
test are properly configured, installed with specified images from the image storage
service, and are accessible on the network. OpenStack telemetry services can provide
range-wide metrics about machine and network usage.

• Test performers can also use the same configuration files as the shared range to create
their own matching OpenStack test ranges at their facilities.

Experiments

We conducted a series of experiments installing OpenStack to test our assumptions about its
suitability.

DevStack

The initial approach for installing OpenStack was to use the DevStack2 deployment or
bootstrapping toolkit. We decided to use this toolkit after an initial survey for OpenStack
bootstrapping solutions. DevStack development started in 2011 and is considered feature rich,
robust, and mature. We deployed OpenStack via DevStack on a newly installed Ubuntu VM
(which was a guest VM of an existing hypervisor). Using DevStack to install OpenStack was
very simple. We first cloned the GitHub repo and ran the main script (per the README). Once
the script finished running, we were able to navigate to the Horizon UI.

Neither OpenStack nor DevStack provided "create a cloud" wizard, so we returned to the
OpenStack pages to find it.

With rudimentary training, we tried probing the network to discover other hosts. Unfortunately,
this is where progress stopped. The main issue was the the DevStack install was not able to probe
the network for additional assets such as switches, iDRAC's, or even other reachable servers.

Returning to the OpenStack pages, we discovered that DevStack is more of an install acid test
than a deployment tool. The network discovery problem coupled with the fact that DevStack is
not mentioned in the list of deployment tools helped us reach the conclusion that another
deployment tool set should be used.

Deployment and Lifecycle Management Tools

OpenStack hosts a variety of deployment tools3 for deploying OpenStack onto fresh hardware
and managing the deployment. Using such a framework, redeploying onto a fresh range or
adding and deleting hosts can be automated. Different groups have assembled these frameworks
based on existing tools they were familiar with such as Ansible, Chef or Helm.

2 https://docs.openstack.org/devstack/latest/
3 https://www.openstack.org/software/project-navigator/deployment-tools

109

Approved for public release; Distribution is unlimited.

Surveying the list of tools, the two we examined more closely were TripleO and Kayobe.

TripleO

TripleO4 (or OpenStack On OpenStack) installs a minimal OpenStack configuration and uses
that to deploy and manage the full desired OpenStack deployment of machines and other
resources that users will see. These two configurations are independent of one another.

The main advantage we see of this approach is that that minimal management cloud uses the
same scripting languages and configuration options as the full OpenStack deployment, which
could reduce the learning curve for initial deployment.

Kayobe

Kayobe5 offers deployment of a containerized OpenStack service onto bare metal hosts. In
contrast with TripleO's use of a complete, minimal OpenStack cloud as a deployment tool,
Kayobe uses a small selection of OpenStack components for its deployment environment.
Specifically, OpenStack bifrost discovers and provisions the cloud, OpenStack kolla builds
container images for OpenStack services, and OpenStack kolla-ansible provides the deployment
and upgrade of containerized OpenStack services. This dependence on Kolla and Bifrost is the
basis for the tool's name.

All configuration takes place in a small tree of files for the Ansible agentless management tool.
These files describe the initial Kayobe deployment machines, the initial physical and virtual
network configurations, the broad categories of machines that Kayobe will install onto, and host
discovery.

The main advantages we saw of this approach are that there are fewer OpenStack services
installed as the deployment tool, potentially requiring less overhead and providing more
flexibility.

Bare Metal

The step-by-step walkthrough6 for installing Kayobe indicated that it would work best as a bare
metal install rather than inside a VM. Late in our experimentation, the team performed a bare
metal OpenStack instance with about a half of day extra engineering to get network access for
the installation and again for the OpenStack instance. We attempted an initial experiment of
installing the seed VM directly onto one of the hosts inside the TC range. However, configuring
the network interfaces of the bare host to match the VLAN configurations used by the rest of the
TC range was challenging, and it was decided that to make changing environments easier as we
tested it would be best to switch to a virtualized installation.

While the bare metal OpenStack installation was successful, we backed away from the bare
metal approach to avoid additional networking surprises.

4 https://docs.openstack.org/tripleo-docs/latest/
5 https://docs.openstack.org/kayobe/latest/
6 https://github.com/stackhpc/a-universe-from-nothing/

110

Approved for public release; Distribution is unlimited.

In VM

After restoring the TC range machine under test to its default, VM host configuration and
reinstalling the stock virtual machine, we went through the steps to install Kayobe on this virtual
host. The initial step of installing the seed went smoothly. At that point our task was to specify
the range configuration we wanted, enumerating the hosts or initiating a hardware discovery
stage making use of the OpenStack Ironic service. At this step, two factors presented challenges:
attempting to automatically discover the TC VMs running on other TC hosts, and specifying the
existing TC network configuration rather than giving control of the network to Kayobe. Both of
these would likely be smoother in a case where the Kayobe seed host had direct access to the
physical network interfaces and managed DHCP network address assignments on the test range
itself.

At this point we decided that we had learned enough about how deployment tools worked
through reading and inspection to describe how another project starting fresh might use them.

Return to DevStack

We returned to the DevStack toolkit and installed and manually configured it on four Ubuntu
virtual hosts on the TC range.

We were able to use the Horizon dashboard to start and run multiple virtual machines hosted by
OpenStack's Nova compute service. (Note that the virtualization service KVM used by
OpenStack and other tools supports management of nested virtual machines without additional
overhead: see Nested Guests7)

We were also able to take advantage of the Neutron networking service to configure multiple
VXLAN8 segments over the virtual machines' VLAN-attached virtual network interfaces. One
complication was that configuring the same interface for both the external gateway for the
OpenStack-host environments and for the Ubuntu virtual host that DevStack ran the management
services on meant that we needed to configure two IP addresses on the same interface. While
OpenStack supported this, the TC range management environment did not support that
configuration directly, and so manually entering the second IP address into the ARP cache on the
TC range gateway host was necessary to forward external traffic back to the OpenStack
environment.

Finally, we were able to create multiple users with different permissions for the Nova and
Neutron services, verifying that we could give different levels of access to different users of the
OpenStack range.

DevStack is intended for initial experimentation. Any changes to the host or network
configuration of a range require uninstalling and reinstalling the software on all of the hosts.
While this does not take much time, it would not be appropriate for a large, shared test range
used by multiple performers for extended tests. For this reason, we explored the more complex
deployment methods described in the previous section.

7 https://www.linux-kvm.org/page/Nested_Guests
8 https://tools.ietf.org/html/rfc7348

111

Approved for public release; Distribution is unlimited.

Conclusions

OpenStack is a featureful and useful environment for creating and managing a test range, with
great potential for cleanly handling the challenges of a large shared test environment with
evolving requirements. We were able to demonstrate multiple services such as creating users,
setting permissions, defining virtual and physical networks and running VMs within it.

OpenStack is also complex and layered, and it will require substantial training and set up time to
create a test range useful for a TC follow-on project. The effort to create a durable and repeatable
range will need to be put in at the beginning of a project, with a certain amount of learning and
testing for any new feature and some overhead for keeping the range current as OpenStack
evolves.

The good news is that resources exist which reduce this effort. No only OpenStack's online
documentation and tutorials, but also O'Reilly such as "Learning OpenStack", Alok Shrivastwa,
Sunil Sarat, Packt Publishing, 2015.

Overall, OpenStack could be more flexible and powerful at lower overall cost than project-
created scripts for a project requiring a multiple-access test range over several engagements over
several years.

B.4.3. CloudStack

Apache CloudStack is a self-contained Infrastructure-as-a-Service (IaaS) offering from Apache.
CloudStack can be used to turn virtual infrastructure into hosts, networks, and other components
that can be managed on-demand through the IaaS's interface. Frequently compared to (and not to
be confused with) OpenStack, CloudStack is distinct for its fixed set of functionalities. Rather
than do many different things with varying levels of performance, CloudStack aims to do just a
few things for its users - and do them well.

Initial Impressions

CloudStack has a few features and traits that made it an attractive option for looking at how one
would manage the TC range with the technologies available today. First released as a stable
software in 2013, CloudStack is considered mature and fully functioned for its intended use case
of enabling users to host a private managed cloud. Development of CloudStack is maintained by
the Apache Software Foundation. CloudStack offers straightforward services for managing
virtualized hosts, orchestrating network topologies, allocating resources, managing users, and
even billing for the amount of time and resources used. The web-based UI is a nice consideration
for ease-of-use without the technical learning curves of running specific scripts or executables in
a CLI. An attractive and noteworthy feature of CloudStack is its support of multiple hypervisor
technologies - meaning that not all hosts in the CloudStack range need to be running KVM.

As shown in Figure B-3, the CloudStack instance can be implemented in such a way that is both
simple and has a minimized host requirement.

112

Approved for public release; Distribution is unlimited.

Getting CloudStack setup seemed straightforward, as all necessary software - the CloudStack
Management Server, Hypervisor, and CloudStack agent - can be installed on a single host in a
basic deployment. We took this approach for our experiment with setting up and using
CloudStack on the TC range. A Feature-full OpenStack Instance

Setup Process

The CloudStack documentation offers a quick installation guide that walks through the process
to initialize two main components - the CloudStack Management Server and the KVM
hypervisor setup. This process is ultimately broken down into the steps of preparing the host
operating system with additional configuration and other environment setup. In evaluating
CloudStack, we attempted to follow the quick install steps and did not have any issues accessing
the web interface.

Barriers

After trying to use the CloudStack user interface to begin testing with the range, it became clear
that CloudStack was intended to be used in a very specific way. In order to use platform, you
must populate a few CloudStack specific elements. This includes creating a zone, pod, and
cluster. In CloudStack infrastructure terminology, a zone is analogous to a single data center. A
pod typically represents a rack or row of racks, and a cluster is one or more hosts paired with
primary storage. Not understanding the conceptual relationship between these elements in a
CloudStack-based range made it difficult to get started with the platform and implementing our
ideal infrastructure setup.

Even while navigating some of the CloudStack-specific language, adding the KVM virtual hosts
still presented a challenge. Error messages presented in the UI were extremely non-descriptive,
and simply indicated some sort of failure occurred in adding a host to be managed. This meant
that debugging on the application level had to take place on both the CloudStack Management
Server and the virtualized host. While errors like these are expected of any first-time deployment
of an application, it was still troubling to try and add the first host and have little context for the
failures that we were experiencing.

Figure B-3. A Basic CloudStack Deployment

113

Approved for public release; Distribution is unlimited.

The failed attempt to integrate CloudStack into the existing TC architecture is a result of both the
aforementioned points. The tightly defined architecture combined with shallow error reporting
added friction to the installation and setup process. In attempting to leverage CloudStack, levels
of reachability from the hosts to the Management Server were limited.

Considerations for Use

A side effect of the simplification introduced by CloudStack is that it requires additional
platform-specific knowledge to properly deploy the cloud. For a researcher charged with the task
of installing and provisioning CloudStack, there is considerable lead time involved to best
understand how one would architect a range to fit the boundaries of CloudStack. Users of the
installation, however, should require less training thanks to the simplified and straightforward
user interface9.

The ability to customize CloudStack's internal functionalities is limited. If a project requires an
especially unique setup for managing and installing hosts, it may be worth looking at a different
IaaS provider which offers the ability to stack custom components together. Thankfully,
however, there is generous support for multiple hypervisor platforms and network topologies -
assuming you are familiar with the language used by CloudStack.

Conclusions

CloudStack fills the niche of an easily deployed IaaS offering that one can "set and forget." This
assumes, however, that the researcher's intended system architecture matches that of
CloudStack's prescribed layering of zones, pods, and clusters. The installation is fairly
lightweight, requiring just one host running the self-contained Management Server application
and the infrastructure itself. Though there is some lead-time required to understand CloudStack,
it will still take less time to understand orchestrate than a platform like OpenStack, where there
are endless available combinations of features. CloudStack does offer an integrated API, which
may prove useful for organizations that are looking to provide custom integrations in the cloud
management tool.

B.5 Conclusion and Recommendations

Overall, our recommendation is that more research and effort is needed, but in general, taking the
leap and starting with an existing toolset seems to be a better way to handle range management
over time. Also, our experience with the as-yet immature OpenNebula echoed earlier issues
evaluating OpenStack. It is important to use current tool instances and current front runners in
any toolset research.

The home-brew setup is always easier than the learning curve of a new toolset, but the ability to
leverage an existing, possibly large, well tested suite of tools will quickly outperform a research
team forced to go outside its comfort zone to write and maintain range management tools.

In a short time, we were able to install the toolset, get a range discovered, and begin running on
the range using two different toolsets. While we did not reach the stage of replicating any TC test

9 After our experiments, we discovered "OpenStack for Architects - Second Edition", Michael Solberg and Ben
Silverman, Packt Publishing, 2018, which may have simplified things still further.

114

Approved for public release; Distribution is unlimited.

setup, we were limited by our self-imposed limits and our lack of knowledge. The experiments
that did succeed leave little doubt that we could have achieved replication of all TC
configurations, as well as some that are beyond TC. For example, bare metal test machine
installation and management, accounting systems, enforceable access control, or side by side
concurrent test ranges.

Even our multiple restarts provided value. While the restarts meant that we didn't progress as far
against our goals, we did increase our knowledge of the toolset under review, which allowed us
to move quickly and effectively after restarting. And since we were working with a somewhat (or
very) mature tool suite, not fresh code, we could focus in on mapping our requirements onto this
tool suite and not contend with bugs and deficiencies in what would otherwise be newly minted
code.

Except for the very simplest or short-lived range needs, considering an existing, mature, and
well-supported toolset seems the better choice. This is also almost always true even if the toolset
is later deprecated or abandoned. Assuming the toolset is up and running at the time of the
deprecation or abandonment, our range remains usable as we look for another. In this scenario, if
bugs arise as we wait, we can address them ourselves, as the source is available. Since we are
part of a large community of teams affected by the abandonment, many people will be facing the
same transition need and posting solutions that we can leverage.

115

Approved for public release; Distribution is unlimited.

APPENDIX C Re-implementing the TC Range, Guide and Instructions

Our preliminary results show that, with more understanding of the tools, either toolset,
OpenStack or CloudStack would at least provide the hypervisor and guest OS approach that TC
used successfully. After designing the approach, additional testing with a bare metal range (with
any of these toolsets) is likely to show this too is possible.

Unanswered questions:

 Do we have a sense of which has the easiest onboarding ramp?
 If you had to pick one, which would it be?

While hand-crafting a solution is at first more accessible that adopting a new toolset, long-term
range management and use require more support than a research-focused team is capable of.
Taking the time to learn a new toolset and use it, is likely to improve the effectiveness of future
TA3 roles as the TA3 team is freed from supporting both the range and the toolset.

C.1 Open Cloud Services and TC requirements

Open cloud suites such as OpenStack and CloudStack provide a wide range of services that can
be individually used for cloud management and operation. For the TC range case, many of these
open cloud services correspond with problems that the TC range designers solved using other
techniques.

A future range management team could consider each of those problems and determine whether
an internally developed solution would be more suitable for the purpose, more extensible, or
faster to deploy than installing and learning the suite service in that area. Moreover, as the needs
for a range evolve, adding new functionality and modifying the behavior of existing tools will
require planning. Determining the tradeoffs between modifying an existing service and
developing a new one will be an ongoing endeavor.

Here are a range of functions that the TC range implemented in tools or performed by hand to
operate the range for testing and engagements:

 Allocating resources on the range: physical machines under test, physical and virtual
machines performing analyses, machines for performer access, VLANs, network
addresses, etc.

 Configuration management: manual steps, manual recordkeeping, Salt scripts
 Allocating services for support of TC data generation and analysis: event logging and

distribution, instantiating the simulated internet
 Managing performer access: account and key distribution
 Managing images: storing and distributing images

Here are the functions of the existing TC infrastructure, as compared to CloudStack and
OpenStack, which provide a subset or a superset of the functions for range operation and
management on the TC range:

116

Approved for public release; Distribution is unlimited.

Range
function

TC solution OpenStack service CloudStack function

Range
resource
tracking

Excel spreadsheet
kept in the GitLab
repository, plus the
contents of scripts.

The OpenStack Placement
service tracks resource
allocations: compute hosts
with available CPUs,
memory, disk storage;
network addresses; and so
forth. Other services check
with Placement to find
available resources and
register allocations as they
occur.

CloudStack provides a
list of all defined
available resources in
the landing page of the
application. In addition
to a graphical display of
available allocations, the
CloudStack Usage
Engine provides user
metering to give a real-
time look at resource
usage.

Compute
instance (VM)
provisioning

Manually with the
Excel spreadsheet
and scripts.

OpenStack Nova provisions
and installs virtual machines
on compute hosts, maps
physical and virtual
peripherals and devices to
VMs, and tracks the state of
virtual machines.

In CloudStack, there is
strong support for VM
templating and ISO
management. Built in to
the platform is the
ability for a user to
select from a number of
pre-configured
templates and system
images. The setup
wizard to add and
provision a VM gives
the user a number of
options when
instantiating a new or
existing VM image.

117

Approved for public release; Distribution is unlimited.

Range
function

TC solution OpenStack service CloudStack function

Network
management

Embedded in scripts
and data files used to
configure the
machines and the
DHCP server, and in
the fixed VLAN IDs
configured within the
scripts. The DHCP
server also has some
components which
are managed by a
web service which is
accessible to all users
of the range.

OpenStack Neutron manages
allocation of network
interfaces and VLANs and
managing DHCP addresses.
It can perform virtual
switching and routing for the
range. It also handles DNS
resolution within the range.

OpenStack cannot configure
the current range's switches,
so they would be managed as
fixed resources by Neutron.

CloudStack natively
provides support for
software-based network
management, as well as
configuring VLANs.
The "direct attached" IP
functionality allows for
further configuration of
specific virtual
architectures as needed.

Bare metal
install
(physical
host)
provisioning

TC range machines
are installed using
PXE boot directly or
by manual
installation from
DVD-ROM.

OpenStack Ironic handles
installing machine images on
bare metal hosts. It wrangles
PXE, DHCP, network
bootstrap, IPMI, TFTP, etc.
to install a fresh image on a
machine and reboot with the
fresh image. Ironic
configuration files can either
specify each machine or can
invoke auto-discovery to
catalog and populate the
nodes.

There exists unofficial
support for manually
provisioning bare metal
hosts. By installing a
PXE server, DHCP
server, and an instance
of the additional
lightweight Linux
system PING, one can
have CloudStack
provision this host. This
is not officially
documented in the
CloudStack manual, but
is referenced in content
from the Linux
Foundation and in the
CloudStack Confluence
site.

118

Approved for public release; Distribution is unlimited.

Range
function

TC solution OpenStack service CloudStack function

Resource
reservation

Physical/VM
allocation is
currently tracked on
an Excel spreadsheet.

OpenStack Blazar provides
users the ability to allocate
current and request future
OpenStack resources.
Currently these are limited to
physical and virtual machines
and floating IP addresses;
plans are to extend that to
Heat stacks, so that all
resources requested by a
particular Heat script are
reserved for when the stack is
run at a specified time.

CloudStack users have
the ability to indicate
use of a system out of
systems available.
Additionally, the usage
metering features of
CloudStack allow for
tracking of an individual
user's time.

Orchestration

TC uses Salt to run
remote scripts and
commands on
physical and virtual
machines, and
resource provisioning
and allocation is
handled by
configuration files
and by referencing
the Excel spreadsheet
that defines the
current state of the
range.

OpenStack Heat orchestrates
actions to take using the
other OpenStack services. A
Heat script defines a "stack"
of resources, pre-existing or
not, that a job needs and
directs the other OpenStack
services to provision, allocate
and invoke them. It can also
invoke shell,
Ansible/Puppet/Salt scripts,
etc. to handle on-machine
configuration. Ansible and
Heat are well integrated.

In the web-based user
interface, CloudStack
administrators can
manage and control
groups of hosts or
individual hosts. There
does not exist a native
scripting or "bulk run"
code execution feature
in CloudStack, but one
can still use traditional
methods of such
configuration such as
with Salt.

119

Approved for public release; Distribution is unlimited.

Range
function

TC solution OpenStack service CloudStack function

Metrics and
monitoring

TC uses Apache
Kafka, Prometheus
and Grafana directly
to gather metrics for
analysis.

Openstack Monasca provides
monitoring-as-a-service. It
wraps an instance of Apache
Kafka and Prometheus.
Monasca ties into the
Horizon web UI dashboard
as well as supporting Grafana
integration, and uses agents
deployed on each compute
instance as well as gathering
metrics from other
OpenStack components. A
future range operator could
use the existing metrics
gathered by Monasca and
also plug extra data gathering
routines into the Monasca
agents.

The CloudStack VM
Sync technology
provides notifications
and monitoring of the
state of all VMs. This is
in addition to
CloudStack's Alerts and
Notifications feature set,
which allows for
notifications via the API
or over email.
Notifications can be sent
when certain resource
thresholds are met or if
a machine failure
occurs.

120

Approved for public release; Distribution is unlimited.

Range
function

TC solution OpenStack service CloudStack function

Identity

TC uses access to the
GitLab server and
SSH keys for access
on a per-user basis,
and shared accounts
on the virtual
machines. LDAP was
also used for
credential
management and
access control for
some services.

OpenStack Keystone
provides user identification,
authentication and
authorization. Keystone
allows users and applications
to authenticate to keystone,
and allows privileges to be
delegated. Authentication can
be connected to LDAP or
other single sign-on services.
User identification is used by
the various OpenStack
services to check for
permissions on being able to
see, modify or execute their
various attributes and
functions, and allows
administration of access to
shared resources to be
handled throughout
OpenStack and in client
systems via the OpenStack
Identity APIs.

LDAP integration is
supported for
authentication, in
addition to roles defined
for user access to APIs
and the web interface.
Account-based resource
isolation is offered such
that memory, CPU,
network, and storage
resources are available
and offered to specific
users only.

Key
management

Keys are manually
pushed to services as
needed or as updated
via scripts.

OpenStack Barbican
provides storage,
provisioning and
management of secrets such
as passwords, certificates and
keys. Barbican provides keys
to OpenStack services that
need them for data
encryption, key distribution
to VMs, and data signing and
signature verification.

There is native support
for storing user data
when deploying a new
virtual machine. This
can include adding keys
to a template when
deploying to the cloud.

121

Approved for public release; Distribution is unlimited.

Range
function

TC solution OpenStack service CloudStack function

Network
block storage

VMs do not mount
disks from a central
server.

OpenStack Cinder provides
block storage for guest
instances, allowing them to
mount disks from a central
store if so configured.

A central server can
contain a collection of
VM images which can
then be used to
provision new hosts.
Primary and secondary
storage can be accessed
through the Network
File System (NFS)
protocol.

VM/physical
machine
image storage

GitLab acts as the
software repository.
Images are stored on
the TC development
host. The code for
provisioning base
images is stored in
scripts which are in
the repos.

OpenStack Glance stores
machine images for use by
Nova, Ironic, and other
services, matches requests to
images based on machine
architectures and other
parameters, and verifies
signatures on signed images.
Uploading images to Glance
makes them available to
install throughout the range,
subject to permissions.
Glance can be configured to
store and pull images from
Cinder block storage, Swift
object storage, or a range of
other options including the
Ceph distributed storage
service, HTTP, or local
storage.

Templates are a key
value-add provided by
CloudStack. A template
is a virtual disk image
that includes an
operating system,
optional additional
software, and settings
such as access control.
Users are able to upload
and manage these
templates in a central
location. CloudStack
handles ensuring that
these images are made
available on the server
as needed.

122

Approved for public release; Distribution is unlimited.

Range
function

TC solution OpenStack service CloudStack function

Web
dashboard

Grafana displays the
state of hosts and
services based on
metrics collection by
Prometheus. Range
control is done
through command
line scripts.

OpenStack Horizon provides
a view of the current state of
the OpenStack range and
services, and controls for
altering that state. Horizon
respects permissions and
allows both administrators to
manage the entire range
while users can see and affect
only the sections that the user
has permission to.

The web interface is the
home of all CloudStack
functionalities. Users
can engage and use any
and all of the
CloudStack features
through this portal. An
HTTP API is also
available to perform
many of the same
actions.

C.2 OpenStack Services for functions not provided by TC:

OpenStack
service

Function

Swift Object store

Swift is a highly available, distributed, eventually consistent
object/blob store. Swift storage can be distributed
throughout the OpenStack cloud on any managed machine
with disk space, and Swift will update and synchronize data
as needed between repositories. Provides storage to services
such as Glance (image repository).

Magnum

Container support
(via an
orchestration
engine)

Magnum makes containers available to OpenStack through
container orchestration engines such as Kubernetes or
Docker Swarm. Installs instances of an orchestration engine
on one or more Nova instances, and controls containers
through commands to the orchestration engine.

Zun
Container support
(individually
managed)

Zun runs containers on OpenStack compute nodes directly,
provisioning them on par with VM instances. Magnum and
Zun are different approaches toward the same goal.

123

Approved for public release; Distribution is unlimited.

Tacker
Network function
virtualization

Tacker implements the ETSI standards for NFV, a
technology aimed at mobile network operators for
virtualizing their switching and network management
functions. Use in a test range could start with emulated
network routers and go all the way to a virtual 4G or 5G
mobile network.

Qinling
Lambda function
support

Qinling provides function-as-a-service within OpenStack,
enabling scalable serverless execution of code similar to the
AWS Lambda service.

Octavia Load balancing

Octavia provides automatic provisioning and scaling of
services, allowing a large service or application to be
configured to scale up or down its allocations of virtual
machines and other resources according to the load on the
service.

Congress
Policy
enforcement

Congress provides a policy engine for specifying declarative
rules regarding the correct state of the OpenStack services
and actions to be taken if the system is in violation of those
rules.

Freezer
Backup, restore,
and disaster
recovery

Freezer provides incremental, snapshotted and complete
backup of OpenStack instances. Can be orchestrated to
coordinate backups and restores of groups of machines.

Manila File storage

Manila provides remote file access to instances,
configurable within OpenStack with access control and
snapshots, backed by a wide range of storage backend
options.

124

Approved for public release; Distribution is unlimited.

APPENDIX D Getting Started – A General Guide for a Team Planning to Set Up a
Test Range

The general insights and recommendations to a team getting started closely follow the
conclusions shown in the Conclusions and Recommendations section, Appendix B.5.

Any team starting down this path must start with a careful and objective assessment of their
range requirements, as did the TC team in 2016. Our observations, in hindsight, is that certain
requirements should trigger a very strong bias towards researching and selecting an existing
infrastructure toolset over a home-brew solution. Our recommendation is that except for the very
simplest or short-lived range needs, considering an existing, mature, and well-supported toolset
is the better choice. This is even true if some of the test range will be hosted in-house, as hybrid
range management is part of all of the noteworthy toolsets available today.

Triggers for a strong bias for an existing infrastructure toolset include:

• Range will be up for more than six months
• Range will be used by collaborators from outside BBN
• Range will require per-experiment configuration and there will be three or more such

experiments
• Range will require concurrently isolated experiments

If any of the listed triggers apply to your planned range setup, we recommend taking the leap and
starting with an existing toolset. Do not be swayed by the ease of the first setup using a home-
brew solution. Range management complexity does not arise from the first configuration, but the
switch to the second or third does. Optimizations made for the earlier configurations will almost
always come back to haunt (and restrict) later ones.

Toolset deprecation or abandonment should not be a deterrent, assuming the team selects a
mature, actively used, and well-supported toolset. This implies that the toolset is successfully
managing the range at the time of it abandonment. The range remains usable as you look for
another. If bugs arise as you search for a replacement, fix them. This is no more costly than the
home-brew alternative. Since there were many users at the time of abandonment, yours is not the
only team in this predicament and fixes should appear from others as well.

The home-brew setup always seems easier than the learning curve of a new toolset, but taking
the time to learn an existing toolset quickly returns the ability to leverage an existing, possibly
large, well tested suite of tools that will quickly outperform a research team forced to go outside
its comfort zone to write and maintain range management tools.

Each of toolsets has simple installation procedures and most have tutorials for installing the
toolset and building a range.

In a short time, we were able to install the toolset, get a range discovered, and begin running on
the range using three different toolsets, OpenStack, CloudStack, and OpenNebula. See
APPENDIX B for our experiences and results. We could not have achieved this progress writing
our own home-brew scripts. No doubt similar to your situation, our skills lie in designing,
running, and evaluating experiments, not in building range management software.

Other advantages of choosing an existing toolset include:

125

Approved for public release; Distribution is unlimited.

• Inter-component communication is built into the toolset, using several well-known
packages such as Kafka, Prometheus, and Grafana, as well as REST, etc.

• Support for virtual machine and bare metal installations
• Integrated dashboard for all aspects of range management
• Integrated range configuration (often called orchestration)
• User accounting, user- and role-based access control
• Machine image management system, including mechanisms for managing the

software delivered by performers whether the delivery is bare metal machine images,
virtual machine images, or containers

• Logging, metrics, monitoring, and reporting
• Test machine telemetry
• Dynamic network configuration, management, and virtualization
• Resource reservations
• Support for agent-light and agent-based host management
• Network block storage (so test systems can load remote disks from a central storage

server)

While any of these can eventually be successfully home-brewed (as some were with TC), the
need usually arises when there are experiments to be set up and run.

Another suggestion for future teams is to take full advantage of existing documentation, tutorials,
and resources when considering each candidate toolset. Review the toolset's online
documentation and tutorials. Check O'Reilly and other publishers for similar resources. For
example, we would have had much better success had we started with "Learning OpenStack",
Alok Shrivastwa, Sunil Sarat, Packt Publishing, 2015 or "OpenStack for Architects - Second
Edition", Michael Solberg and Ben Silverman, Packt Publishing, 2018. These resources go a
long way towards reducing what may appear to a daunting learning curve. An existing document
set is another powerful advantage of an off the shelf tool, as the range management team is able
to off-load user training to these documents.

As more teams consider and adopt off the shelf (commercial or open source) toolsets, our
comfort will increase and our abilities to support complex test ranges will improve without
requiring a huge staff to support them.

126

Approved for public release; Distribution is unlimited.

APPENDIX E Engagement #1 Infrastructure

Name HW
Type

Desired
Physical
Memory

Disk Function

devel R710 60 GiB 2 x 1 TB TA3 development
mit-build R710 12 GiB 2 x 1 TB MIT #1 and #2
gw R210 II 4 GiB 1 x 1 TB Gateway
openstack R210 II 8 GiB 1 x 4 TB, 1 x 1 TB OpenStack controller
ch01 R210 II 32 GiB 2 x 4 TB BAE (TA1) #1
ch02 R210 II 32 GiB 2 x 4 TB BAE (TA1) #2
ch03 R210 II 32 GiB 2 x 4 TB SRI #1
ch04 R210 II 32 GiB 2 x 4 TB SRI #2
ch05 R210 II 32 GiB 2 x 4 TB UNM #1
ch06 R210 II 32 GiB 2 x 4 TB UNM #2
ch07 R210 II 32 GiB 2 x 4 TB Five Directions #1
ch08 R210 II 32 GiB 2 x 4 TB Five Directions #2
ch09 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #1
ch10 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #2
ch11 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #3
ch12 R210 II 16 GiB 2 x 4 TB Kafka + Zookeeper #4
ch13 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #5
ch14 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #6
ch15 R210 II 32 GiB 2 x 4 TB Hot spare for TA1s
ch16 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Hot spare for Kafka/ZK
ch17 R210 II 8 GiB 2 x 1 TB

ch18 R210 II 8 GiB 2 x 1 TB

ch19 R210 II 8 GiB 2 x 1 TB Salt-Master
ch20 R210 II 8 GiB 2 x 1 TB Salt-Master
ch21 R210 II 8 GiB 2 x 1 TB Salt-Master
ch22 R210 II 32 GiB 2 x 1 TB THEIA-K #1
ch23 R210 II 32 GiB 2 x 1 TB THEIA-K #2
ch24 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #7
ch25 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #8
ch26 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #9
ch27 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #10
ch28 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #11
ch29 R210 II 16 GiB 1 x 4 TB, 1 x 1 TB Kafka + Zookeeper #12
ch30 R210 II 8 GiB 2 x 1 TB Test Clients
ch31 R210 II 8 GiB 2 x 1 TB Test Clients
ch32 R210 II 8 GiB 2 x 1 TB Test Clients
ch33 R210 II 8 GiB 2 x 1 TB TA3 Services for Testing
ch34 R210 II 8 GiB 2 x 1 TB Test Clients
ch35-38 C6000 4 x 192 GiB TBD GATech #1 and #2
ch39-42 C6000 4 x 192 GiB TBD BAE (TA2)
ch43-46 C6000 4 x 192 GiB TBD Galois
ch47-50 C6000 4 x 192 GiB TBD IBM

127

Approved for public release; Distribution is unlimited.

APPENDIX F Engagement #5 Infrastructure

Name Type Mem Disk Function
Infrastructure Machines

devel R710 58 GiB 2 x 4 TB, 1 x 1 TB TA3 development

devel2 R710 58 GiB 2 x 4 TB Load balance services

gw R210 II 4 GiB 1 x 1 TB Gateway

coverity R210 II 8 GiB 1 x 1 TB Coverity

Production (Engagement) Range

TA1s

CADETS

ch01 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB CADETS #1

ch25 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB CADETS #2

ch56 R230 32 GiB 2 x 4 TB CADETS #3

ch03 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB CADETS hypervisor testing

ch71 R620 16 GiB 1 x 500 GB, 1 x 1.5 TB CADETS PVM

Clearscope

ch64 R230 32 GiB 2 x 4 TB Clearscope #1

ch04 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Clearscope #2

ch58 R230 32 GiB 2 x 4 TB Clearscope #3

webcam1 R200 8 GiB 1 x 1 TB Webcam for phone

FiveDirections

ch05 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB FiveDirections #1

ch06 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB FiveDirections #2

ch59 R230 32 GiB 2 x 4 TB FiveDirections #3

ch08 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB FiveDirections translation

ch73 R230 32 GiB 2 x 4 TB FiveDirections translation #2

MARPLE

ch16 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB MARPLE (TA1) #1

ch17 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB MARPLE (TA1) #2

ch74 R230 32 GiB 2 x 4 TB MARPLE (TA1) #3

THEIA

ch60 R230 32 GiB 2 x 4 TB THEIA Target #1

ch61 R230 32 GiB 2 x 4 TB THEIA Target #2

ch69 R230 32 GiB 2 x 4 TB THEIA Target #3

ch62 R230 32 GiB 2 x 4 TB THEIA Analysis

ch63 R230 32 GiB 2 x 4 TB THEIA Replay ADAPT #1

ch65 R230 32 GiB 2 x 4 TB THEIA Replay MARPLE #1

128

Approved for public release; Distribution is unlimited.

Name Type Mem Disk Function
ch66 R230 32 GiB 2 x 4 TB THEIA Replay RIPE #1

ch35 C6000 192 GiB 1 x 4 TB THEIA Database

TRACE

ch67 R230 32 GiB 2 x 4 TB TRACE #1

ch68 R230 32 GiB 2 x 4 TB TRACE #2

ch76 R230 32 GiB 2 x 4 TB TRACE #3

TA2s

ADAPT

ch43 C6000 192 GiB 1 x 4 TB ADAPT E3 #1 (VM1)

ch44 C6000 192 GiB 1 x 4 TB ADAPT E3 #2 (VM4, VM5)

ch45 C6000 192 GiB 1 x 4 TB ADAPT E3 #3 (VM3, VM5)

ch46 C6000 192 GiB 1 x 4 TB ADAPT E3 #4 (VM2, VM6)

ch77 R230 32 GiB 2 x 4 TB ADAPT #5

ch78 R230 32 GiB 2 x 4 TB ADAPT #6

ch75 R230 32 GiB 2 x 4 TB ADAPT #7 (CADETS demux)

MARPLE

ch47 C6000 192 GiB 1 x 4 TB MARPLE E3 #1

ch48 C6000 192 GiB 1 x 4 TB MARPLE E3 #2

ch49 C6000 192 GiB 1 x 4 TB MARPLE E3 #3

ch50 C6000 192 GiB 1 x 4 TB MARPLE E3 #4

ch82 R230 32 GiB 2 x 4 TB MARPLE #5

ch94 R230 32 GiB 2 x 4 TB MARPLE #6

RIPE

ch39 C6000 192 GiB 1 x 4 TB RIPE E3 #1 (VM1)

ch40 C6000 192 GiB 1 x 4 TB RIPE E3 #2 (VM2, VM7)

ch41 C6000 192 GiB 1 x 4 TB RIPE E3 #3 (VM3, VM4)

ch42 C6000 192 GiB 1 x 4 TB RIPE E3 #4 (VM5, VM6)

TA3

ch02 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA3 E3 dedicated test #1

ch09 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB E3 Kafka+ZK #1

ch10 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB E3 Kafka+ZK #2

ch11 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB E3 Kafka+ZK #3

ch12 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB E3 Kafka+ZK #4

ch13 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB E3 Kafka+ZK #5

ch14 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB E3 Kafka+ZK #6

ch23 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Prometheus #1

ch52 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA3 performance 1

129

Approved for public release; Distribution is unlimited.

Name Type Mem Disk Function
ch54 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA3 performance 2

ch57 R230 32 GiB 2 x 4 TB TA3 performance 3

TA5.1

ch15 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA5.1 Linux mail server

ch72 R620 16 GiB 1 x 500 GB, 1 x 1.5 TB TA5.1 activity generation

ch99 R230 32 GiB 2 x 4 TB Uninstrumented pivot hosts 1, 2, and 3

ch98 R230 32 GiB 2 x 4 TB Uninstrumented pivot hosts 4 and 5

TA5.2

ch26 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA5.2 Windows 10 #1

ch27 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA5.2 Windows 10 #2

ch28 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA5.2 Ubuntu #1

ch29 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA5.2 Ubuntu #2

Testing Range

ch07 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TRACE testing

ch18 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB ADAPT IO testing #1

ch19 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Test cluster Kafka+ZK #1

ch20 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Test cluster Kafka+ZK #2

ch21 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Test cluster Kafka+ZK #3

ch22 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Test cluster Kafka+ZK #4

ch24 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB THEIA target testing

ch30 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Free

ch31 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Five Directions testing

ch32 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB MARPLE TA1 testing

ch33 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA3 internal testing33 VM

ch34 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Five Directions translator testing

ch38 C6000 192 GiB 1 x 4 TB Free

ch51 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB TA3 test cluster client

ch53 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB THEIA analysis testing

ch55 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB CADETS testing

ch70 R620 16 GiB 1 x 500 GB, 1 x 1.5 TB Free

ch79 R230 32 GiB 2 x 4 TB Free

ch80 R230 32 GiB 2 x 4 TB Free

ch81 R230 32 GiB 2 x 4 TB Free

ch95 R230 32 GiB 2 x 4 TB Free

ch96 R230 32 GiB 2 x 4 TB Free

ch97 R230 32 GiB 2 x 4 TB Free

130

Approved for public release; Distribution is unlimited.

Name Type Mem Disk Function
CI Range

ch36 C6000 192 GiB 1 x 4 TB CI Runner

ch37 C6000 192 GiB 1 x 4 TB CI Runner

ch83 R230 32 GiB 2 x 4 TB CI Runner

ch84 R230 32 GiB 2 x 4 TB CI Runner

ch85 R230 32 GiB 2 x 4 TB CI Runner

ch86 R230 32 GiB 2 x 4 TB CI Runner

ch87 R230 32 GiB 2 x 4 TB CI Runner

ch88 R230 32 GiB 2 x 4 TB CI Runner

ch89 R230 32 GiB 2 x 4 TB CI Runner

ch90 R230 32 GiB 2 x 4 TB CI Runner

ch91 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB CI Runner

ch92 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB CI Runner

ci-runner-01 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Gitlab CI

ci-runner-02 R210 II 32 GiB 1 x 4 TB, 1 x 1 TB Gitlab CI

131

Approved for public release; Distribution is unlimited.

APPENDIX G Engagement #3 Policy Demonstration Ground Truth Information

G.1 Policy One Ground Truth

Policy:

ALLOW only requests coming from the "admin" user (UID 1004)

Request One: Expected: PASS

Request generated by the admin user executing a curl call from a bash script

retval=$(curl -s -o /dev/null -w "%{http_code}" $url/upload)

Request Two: Expected: BLOCK

Request generated by the "user" user (UID 1005), executing curl from a bash script (same
command as #1)

Request Three: Expected: BLOCK

"user" user executing a bash script that calls a C program (called 'program3') with the setuid
sticky bit set, so it runs as the "admin" user. The program execs a call to curl to send an http get.

Request Four: Expected: PASS

"admin" user running a curl command through sudo -u user, so it runs as the "user" user. Expect
this to be allowed, since the original user is “admin”.

retval=$(sudo -u user curl -s -o /dev/null -w "%{http_code}" $url/download)

Request Five: Expected: PASS

“admin” running 'program3' via exec from a bash script, this is the same program as in #3 where
it sends an http get via an exec to curl, and has the sticky bit set so it runs as “admin”. Since
“admin” is the original user, this should be allowed

Request Six: Expected: BLOCK

"user" user running 'program1' via exec from a bash script through sudo. This program originally
runs as the superuser but makes a seteuid system call to switch to “admin” (1004). It then
executes the same http get action via an exec of curl.

G.2 Policy Two Ground Truth

Policy:

BLOCK any request from a process where the process previously communicated with a
blacklisted IP address.

Request One: Expected: PASS

Execute a bash script that iterates through a list of URLs, none of which resolve to the unallowed
IP address, then requests a policy protected file (uploads/TCCDMDatum.avsc). Requests are
generated via curl.

retval=$(curl -s -o /dev/null -w "%{http_code}" $url/uploads/TCCDMDatum.avsc)

132

Approved for public release; Distribution is unlimited.

Request Two: Expected: BLOCK

Execute a bash script that iterates through a list of URLs, the second of which resolves to
128.55.12.59:8080:/uploads/haxx.php. The final request is to download TCCDMDatum.avsc
from the policy protected page. This request should block, since the parent calling process (bash
script) communicated with 128.55.12.59.

Request Three: Expected: PASS

Execute a C program that iterates through a list of URLs and generates GET requests via C
socket calls. None of the URLs in the list resolve to 128.55.12.59, so the final policy protected
request should pass.

Request Four: Expected: BLOCK

Execute a C program that iterates through a list of URLs that contains one request to
128.55.12.59:8080:/uploads/haxx.php. The final policy protected request should thus block.

Request Five: Expected: PASS

Execute a C program that iterates through a list of URLs, none of which are policy protected. A
separate process opens a listening UDP socket and eventually receives data from 128.55.12.59.
Since this is a separate process, the C program should be allowed to access the policy protected
page.

Request Six: Expected: PASS

Two separate programs execute at the same time, the first is a bash script that iterates through a
list of URLs, none of which are 128.55.12.59, and finally accesses the policy protected page
(should pass). The second script also is a bash script (separate process) that does communicate
with 128.55.12.59.

Request Seven: Expected: BLOCK

Execute a Java program that spawns a thread to listen on a UDP socket, and a separate thread to
generate a set of GET requests. The UDP socket eventually receives data from 128.55.12.59.
Later, the other thread generates a request to the policy protected page, which should block.

G.3 Policy Two Ground Truth for FAROS

The FAROS solution required a separate procedure to support the Policy Enforcement
Demonstration.

Policy:

BLOCK any request from a process where the process previously communicated with a
blacklisted IP address.

Scenario One Procedure: Expected: PASS

 Open Firefox
 Browse to 128.55.12.70:8080/example
 Browse to www.cnn.com
 Browse to 128.55.12.70:8080/pages/wireshark.html

133

Approved for public release; Distribution is unlimited.

 Browse to 128.55.12.70:8080/download

Scenario Two Procedure: Expected: BLOCKED

Close any open Firefox window.

Open a new Firefox browser, browse to the restricted server, then hit the policy protected page.
Should be blocked.

 Browse to www.e-corp-usa.com
 Browse to 128.55.12.71:8080/uploads/haxx.php (this is the restricted server)
 Browse to www.google.com
 Browse to www.amazon.com/robots.txt
 Policy request to 128.55.12.70:8080/download

G.4 Policy Three Ground Truth

Policy:

Block if no portion of the request originated from a definite User Interface action.

1. Scripted access to unprotected files: Expected: PASS
2. Scripted access to protected file: Expected: BLOCK
3. Manual access to unprotected files: Expected: PASS
4. Manual access to protected file. Expected: PASS

G.5 Policy Four Ground Truth

Policy:

Block uploads that contain data downloaded from a network connection.

Request One: Expected: PASS

Upload oreally.jpg. This file existed on the TA1 client before recording started in the
~ta3/scripts/policy4 directory.

Request Two: Expected: PASS

 On the TA1 client, copy the last 50 lines from dmesg into a new file in the temp
directory, /tmp/newfile.txt

 Upload /tmp/newfile.txt

Request Three: Expected: BLOCK

 Download latency.txt from 128.55.12.71 to /tmp
 Rename latency.txt to TotallyLegitBenignFile.txt
 Upload TotallyLegitBenignFile.txt

Request Four: Expected: BLOCK

 Download haxx.php from 128.55.12.71 to /tmp
 Move haxx.php to /tmp/h/nothaxx.txt
 gzip nothaxx.txt

134

Approved for public release; Distribution is unlimited.

 Copy some other files from /etc/mail into /tmp/h
 tar czvf benign.tar.gz /tmp/h (this should include files from /etc/mail, and

nothaxx.php.gz, which includes haxx.php as nothaxx.txt.
 copy benign.tar.gz to /home/ta3
 tar xzvf benign.tar.gz
 unzip h/nothaxx.gz
 Upload h/nothaxx.txt (which is really haxx.php)

Request Five: Expected: PASS

 Run a Java program that writes some log4j log messages to P4L.log
 Upload P4L.log

Request Six: Expected: BLOCK

 Run a Java program that writes some log4j log messages to P4L.log
 Download latency.txt from 128.55.12.71 to /tmp/latency.txt
 cat /tmp/latency.txt P4.Log >/tmp/p.txt
 Upload /tmp/p.txt

135

Approved for public release; Distribution is unlimited.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ADAPT A Diagnostic Approach for Persistent Threat Detection
ADB Android Debug Bridge
AIA Acuity Intelligence Agent
API Application Programming Interface
APT Advanced Persistent Threat
BAA Broad Agency Announcement
BGP Border Gateway Protocol
CDM Common Data Model
CI Continuous Integration
CIDR classless inter-domain routing, Internet Protocol v4 address
CPT Cyber-Protection team
CPU central Processing Unit
CRASH Clean-Slate Design of Resilient, Adaptive, Secure Hosts
DARPA Defense Advanced Research Projects Agency
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
Gb gigabits
GB gigabytes
Gbps gigabits per second
GPS Global Positioning System
HDFS Hadoop Distributed File System
ID identification, identity
IDL interface definition language
IM instant messaging
IO input output
IT Information Technology
JSON Javascript Object Notation
KVM Kernel-based Virtual Machine
LARIAT Lincoln Adaptable Real-time Information Assurance Testbed
LDAP Lightweight Directory Access Protocol
LTS long-term support
MARPLE Mitigating APT Damage by Reasoning with Provenance in Large Enterprise Networks
NAT Network Address Translation
NIST National Institute of Standards and Technology
NTP Network Time Protocol
OpTC Operational Transparent Computing
OS Operating System
PEM Policy Enforcement Module
PXE Preboot Execution Environment
QPR Quarterly Program Review

136

Approved for public release; Distribution is unlimited.

RAID Redundant Array of Inexpensive Disks
RAM Random Access Memory
RIPE Rapid Identification and Prevention of Exfiltration
SASL Simple Authentication and Security Layer
SQL Structured Query Language
SSL Secure Sockets Layer
STARC Scalable Transparency Architecture for Research Collaboration
TB terabytes
TC Transparent Computing

THEIA
Tagging and Tracking of Multi-Level Host Events for Transparent Computing and
Information Assurance

TRACE Tracking and Analysis of Causality at Enterprise Level

TSDB Time Series Database
UI User Interface
URL Universal Resource Locator
USB Universal Serial Bus
UUID Universal Unique Identifier
VLAN Virtual Local Area Network
VM Virtual Machine

	StmtACover
	NoticePg
	SF298
	final

