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All Technical Leads reported the results of their research to the Principal 
Investigator, David Luzzi, who possessed the overall responsibility for the management 
of this program, coordination of reporting, and submission of final reports to the Office of Naval 
Research. 

Program Overview 
The challenge of cybersecurity where the nation's Marines and Army Soldiers are in close 
proximity and contact with adversaries, is a growing and important threat and 
opportunity. Research and development in cybersecurity against these threats, and in 
systems and software with which to exploit and disrupt adversaries’ command, control, 
communications and computer (C4) systems, is necessary if the DoD is to address the growing 
cyber challenge to our expeditionary forces. This cyber domain at the tactical edge is termed 
Expeditionary Cyber; as a newly considered domain, the scope and definition of Expeditionary 
Cyber will evolve, yet it will remain the cyber domain with the closest direct connection to 
saving American lives, improving mission outcomes, and minimizing collateral damage 
including innocent civilian casualties. 

This three-year research program is the start to address the Expeditionary Cyber 
challenge. Seven projects will be executed on research into important enabling science and 
engineering that could yield valuable technological capabilities for Expeditionary Cyber. These 
projects bridge cyber space and physical space. Indeed, this is a hallmark of Expeditionary 
Cyber, the interlinking of these two spaces, and is juxtaposed to the "Cloud", in which 
physical location is largely irrelevant by design. Projects address research into the physical 
localization of cyber assets, the use of visible light networks, sensing, computation and 
communication within networks of unmanned aerial system, elastic and software-defined 
networks and power efficient hardware, a key challenge for success in the Expeditionary 
Cyber realm. 

Research Project Titles and Technical Leads 

1. Elastic Networks for Resilient and Secure Multi-Radio Mobile Systems 
Technical Lead - Guevara Noubir 

2. Software-Defined Infrastructure-less Wireless Networking with Distributed Control 
Technical Lead - Tommaso Melodia 

3. Domain-specific Power-efficient Processing for Expeditionary Cyber Missions 
Technical Lead - Gunar Schirner 
4. Robust Localization and Time Synchronization 
Technical Lead - Guevara Noubir 

5. LANET: Visible-Light Infrastructure-less Wireless Networks for Expeditionary Cyber 
Missions Technical Lead - Tommaso Melodia 
6. Sensing, Computation and Communication on the Fly: Connected UAV Mesh Networks 
Technical Lead - Kaushik Chowdhury 
7. Understanding the Representation Power of Graph Neural Networks in Learning Graph 
Topology Technical Lead - Albert-Lazlo Barabasi 
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ONR N00014-17-1-2046 - PROJECT 1 - Elastic Networks for Resilient and Secure 
^ Multi-Radio Mobile Systems 

Technical Lead: Guevara Noubir 

Abstract. A key requirement of expeditionary networks is uninterrupted communication capability 
over intermittent links and highly dynamic infrastructure, even in the presence of intentional 
interference. However, wireless networks are notorious for not degrading gracefully and are 
highly sensitive to cross-layer attack. This is significantly due to a heavy control plane that 
consumes disproportionate spectrum resources in harsh conditions, such as recovery from 
natural disasters where a significant part of the infrastructure is damaged. The effects of 
current networks’ poor elasticity and slow control-loop, amplify at higher layers, and 
results in brittle applications performance. 

Elastic wireless networks address these challenges using communication techniques that have 
ultra-thin control traffic overhead and are opportunistic in exploiting the channel and network 
topology dynamics at the edge. The team made progress on several fronts towards an agile 
and elastic physical/MAC layer that can withstand attacks and degrades gracefully in the 
presence of adversaries. The research activities cover both theoretical and systems aspects. 
[1] agile multi-carrier physical/link layer, (2) analyzing super-position coded communication 
under jamming, (3) a game-theoretic framework for reasoning about cross-layer attacks, the 
existence of Nash-Equilibrium (NE) for communications in adversarial settings, as well as 
explicit analytical mixed-strategies for multi-carrier rate adaptation (modulation/coding) against 
a power adaptive smart-jammer. 

Agile Multi-Carrier Physical/MAC Layer 

We investigated the agility, potential, and limitations of three types of physical layers that can 
provide agility and elasticity, yet provide high spectrum efficiency. The first physical layer we 
considered is an Orthogonal Frequency Domain Multiplexing [OFDM) physical layer, based 
on our SDR implementation of Wi-Fi. While this physical layer can provide compatibility 
with commercial systems (both Wi-Fi & LTE), we demonstrated that OFDM does not degrade 
gracefully when some sub-carriers are interfered with even if such sub-carriers are not currently 
used by the transmitter. This is a fundamental limitation of OFDM (as it requires orthogonality 
from emissions across the whole band. It makes it highly sensitive to smart and power-efficient 
smart-jamming. 
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Figure 1. OFDM sub-carriers can be jammed beyond their effective spectrum usage. 

Due to OFDM limitations, we investigated alternative approaches for agile multi-carrier systems, first 
a basic polyphase filters technique, then a Filter Bank Multi Carrier (FBMC). These physical layers 
provide good elasticity with graceful degradation. The transmitter uses sub-carriers independently, 
therefore mitigating the impact of narrowband jamming with zero-control traffic. The zero-control 
traffic is a key advantage as most cross-layer attacks target such channels (the Achilles' heel of 
wireless systems]. The transmitter also senses the spectrum and re-allocates power and traffic to 
sub-carriers. 

Source Nodes 

Hh 

603 
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FlNjutniylMW) 

Figure 2. (Left) Illustration of three interfering polyphase filter-based multi-carrier systems,(Right) two transmitter with 
different numbers of sub-carriers sharing a 5MHz spectrum. 

Despite its anti-jamming and elasticity potential, the basic polyphase-filters multi-carrier approach 
however comes at the expense of losing spectral efficiency due to the non-overlapping sub-carriers. 
This led us to investigate the design of a Filter Bank Multi-Carrier system that provides agility, 
elasticity and retains the spectrum efficiency of OFDM systems. The goal is to provide agility through 
the use a variable number of ultra-narrow sub-carriers, elasticity through the scheduling of traffic 
independently over sub-carriers and use of error correction codes with cryptographic-interleavers 
across sub-carriers, and finally high spectrum efficiency through the intrinsic characteristics of 
FBMC. 
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OFDM FBMC 

Spectrum efficiency 

1-to-N (downlink) sync 

N-to-1 (uplink) sync 

Inter-Channe! 
Interference/Jamming 

Dynamic access 

Estimation and Equalization 

Implementation complexity 

Computation complexity 

Cyclic prefix needed 

Time domain ✓ 

Complex (e.g., 
coordination required) 

Large 

Complex 

Full spectrum: easy 
Shared spectrum: 
impractical 

Low ✓ 

Low ✓ 

Table 1. OFDM vs. FBMC. 

Cyclic prefix not needed ✓ 

Frequency domain 

Simple ✓ 

Negligible ✓ 

Easy ✓ 

Can be robust, practical, but 
computation intensive ✓ 

High 

High 

We prototyped the FBMC system demonstrating high rejection of interference from out-of-band 
emissions (See Figure 3 for comparison with OFDM), as well as agility capability to operate over sub¬ 
carriers without requiring an explicitly control channel (See Figure 4). The prototype system 
supports Multicarrier transmission techniques (FBMC), modulations: BPSK, QPSK, 16-QAM, 64-QAM, 
error correction codes: convolutional codes with coding rate 1/2, 2/3, 3/4, 5/6, simultaneous 
transmission and reception on adjacent bands, and multicarrier sensing. 
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Figure 3. FBMC provides over 20dB out-of band emissions rejection. 
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Figure 4. Agility in operating over a subset of sub-carriers with out-of-band emissions rejection and without the explicit need 

for negotiation over a control channel. 

A theoretical framework for reasoning about randomization and game-theoretic interaction 
between communicating nodes and adversary 

We developed a theoretical framework and techniques for elasticity to mitigate cross-layer attacks. 
The framework provides a systematic way for generalizing and reasoning about randomization 
(mechanisms hopping} as a defense against smart adversaries. The framework is rooted in game 
theory and aims at deriving strategies for a variety of utility functions including deception (both as a 
defense and attack approach). 

Aiscu State:End-To-End Connection (Congestion. RTT) 
Executes.Transport Protocol (TCP like, FEC based) 

Assess State: Network (Topology, Density) 
Executes: Forwarding Strategy (Diffusion, Universal, RADSR. AODV1 

Assess State: Medium (Congestion, Delay. Jamming) 
Executes: MAC Algorithm (aMia,tree walk.CSMAJ.ARQ/HARQ 

Assess State. Channel (SlNR BEfi.Noise. Interference, Jamming) 

Execules:Modutatian/Spreading/lnterleaving/Coding/PDwer 

-^^Adversary's attacks have a low probabiliity of targetting the right mechanism 

Combination of multilayer mechanisms currently in use 

Figure 5. Came Theory for strategic randomization to defend against smart cross-layer attacks. 

Within this framework, we investigated how to defend against a power-adaptive adversary. While 
we can vary our rates to be more (lower rates) or less (higher rates) resilient to a given jamming 
power, lower rates reduce throughput. To prevent an adversary from forcing the communicating 
nodes to operate at lower rates, the communicating nodes can randomize their rates making it 
difficult for the adversary to select the jamming power that can successfully interfere with a packet. 
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In this work, we analytically derived Nash-Equilibrium strategies for randomizing the rates to 
mitigate jamming. We consider both randomization of power as well as randomization of power 
across multiple sub-carriers/bands. Some of our findings include, the analytical derivation of optimal 
mixed strategies for the fixed power rate adaptive transmitter, bounded average/peak power 
jammer, these strategies can be approximated by semi-uniform distribution and integrated within a 
multi-carrier communications system. We are currently investigating how to design practical and 
optimal RAA in a networked setup. 

Analysis of Super-Position Coded Communications 

We developed a theoretical framework for reasoning about jamming super-position coded 
communications. In this scheme, the transmitter can superpose multiple streams of data. The lowest 
layers are more robust to interference while the highest layers are more fragile. This scheme also 
enables elasticity and graceful degradation. In the absence of interference all layers are decodable, 
while in the presence of a jammer only the lower layers are recoverable. This elasticity does not 
require any feedback loop or control traffic. Within this context, we derived a lower and upper-bound 
on the achievable rates for various allocations of power to the coded layers. We are working on the 
integration within the game-theoretic framework. 

Testbed 

We built a small testbed of 4 x USRP X310 (that can operate up to 6GHz Rx/Tx on a 160 MHz 
bandwidth with a 2x2 M1M0 capability). This testbed is used for some ofthe evaluation of our system 
performance and is shared with the secure localization and synchronization project. 

Future Activities 

We plan to continue our research activities towards extending the theoretical framework to analyze 
the connections between Elasticity & Game Theory, analyzing combinations of cross-layer techniques 
for elasticity, in particular the integration with higher layers such as back-pressure, MultiPath TCP. 
Another promising avenue of research that we already started focusses on the benefits of RF-centric 
machine learning models towards developing RF situational awareness (classifying emissions, their 
nature, and patterns). 
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ONR N00014-17-1-2046 - PROJECT 2 - Software-Defined Infrastructure-less 
Wireless Networking With Distributed Control 
Technical Lead: Tommaso Melodia 

Institute for the Wireless Internet of Things 
Northeastern University, Boston, MA 02115 

Email: melodia@ece.neu.edu 

1 Research Goal 
The goal of this project is to study new techniques for software-defined, cross-layer controlled, 
infrastructure-less wireless networks (SoDiNet). SoDiNet will provide the network designer with 
abstractions hiding the low-level details of the network operations through a network virtualization plane. 
SoDiNet will virtualize the details of the distributed implementation of the network control operations, 
and provide the network designer with a centralized view abstracting the network functionalities at a high 
level. The SoDiNet control plane will take network control programs written on a centralized, high-level 
view of the network and auto-matically generate distributed cross-layer control programs based on 
distributed optimization theory that are executed at the network edge by each individual network element on 
an abstract, common representation of the radio hardware. 

2 Accomplishments 
The following outlines the main accomplishments towards this research goal. 

SoDiNet Architecture and Virtualization Principle Design. At a high level, SoDiNet comprises three 
key components: Network Virtualization, Automated Problem Decomposition, and Programmable Proto¬ 
col Stack (PPS). Network virtualization is the interface through which the network designers define their 
network control problems and hence to control the networks to achieve certain application-specific objec¬ 
tives. The user-defined centralized network control problems are decomposed into a set of distributed sub¬ 
problems, each of which characterizes the local behavior of a single session or single node. The resulting 
distributed algorithms are then used to define control actions online based on an abstract representation of 
the radio hardware and of the protocol stack. We have studied the design principle of SoDiNet virtualization 
and then proposed a new abstraction approach based on the design principle. 

Testbed Development. A newly-designed general purpose testbed has been developed based on 
software-defined radio devices (USRP N210) to verify effectiveness of the SoDiNet design p rinciple. 
The testbed supports multi-hop end-to-end application data streaming and features a brand new 
programmable protocol stack that covers physical layer, link layer, network layer, transport layer and 
application layer. The testbed features a scalable out-of-band (OOB) control channel (UDP socket based), 
which supports multi-layer ac-knowledgments, signaling, and control information among others. This 
infrastructure will be instrumental in testing the effectiveness of the designed architecture by demonstrating 
joint distributed control of transport-layer transmission rate and power adaptation at physical layer in multi¬ 
hop multi-session ad hoc networks. SoDiNet has been implemented following a hierarchical architecture 
with three tiers, i.e., SoDiNet control host, SDR control host and SDR front-end. 

At the top tier of the hierarchical architecture is the SoDiNet control host, based on which one can specify 
the network control objective using the provided network abstract framework WiNAR. The output of this 
tier is a set of automatically generated distributed solution algorithms, which will be sent to each of the SDR 
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control hosts. At the second tier, the programmable protocol stack (PPS) is installed on each of the SDR 
control hosts. The distributed optimization algorithms received from the SoDiNet control host are stored at 
the decision plane of the PPS. At run time, the PPS will be compiled to generate operational code to control 
the SDR front-ends of the third tier. Finally, each of the SDR front-ends (i.e., USRP) receives the baseband 
samples from its control host via Gigabit Ethernet (GigE) interface and then sends them over the air with 
transmission parameters dynamically specified in the control commands from the SDR control hosts. 

The primary benefit of prototyping SoDiNet based on an hierarchical architecture i s to enable scalable 
network deployment. Specifically, the tier-1 SoDiNet control host is connected to all tier-2 SDR control 
hosts via wireless interfaces (which is Wi-Fi in current prototype), through which the generated distributed 
algorithms can be automatically pushed to and installed at each of the SDR control hosts. Hence, one needs 
to create a single piece of code only in order to control all the 21 USRPs. 

On the SoDiNet control host, which is a Dell OPTIPLEX 9020 desktop running Ubuntu 16.04, four key 
SoDiNet functions have been implemented using a combination of Python 3.0 and CogApp 2.5.1, including 
the wireless network abstraction framework WiNAR, disciplined instantiation, automated decomposition as 
well as automated numerical solution algorithm generation. We base our development on Python to take 
advantage of its high programming efficiency and high-level expressiveness and the flexible, open-source 
programming interfaces to GNU Radio for controlling USRPs. CogApp is an open-source software written 
in Python for template programming, a programming technique based on which the automated numerical 
solution algorithm generation has been implemented in the current prototype. 

SoDiNet PPS Design. The SoDiNet PPS has been developed in Python on top of GNU Radio to provide 
seamless controls of USRPs. The PPS covers all the protocol layers. The application layer opens end- 
to-end sessions for transferring custom data such as files, binary blobs, as well as random generated data, 
among others. A session can be established between any two network entities and multiple sessions can be 
established at the same time. Programmable parameters include the number of sessions and the number of 
hops in each session, as well as the desired behavior of each session, e.g,, maximum/minimum rate, power 
budget of the nodes, among others. 

The transport layer implements segmentation, flow control, congestion control as well as addressing. This 
layer supports end-to-end, connection-oriented and reliable data transfer. To accomplish this, a Go-Back- 
N sliding window protocol is implemented for flow control andcongestion c ontrol, and transport layer 
acknowledgments are used to estimate the end-to-end Round Trip Time (RTT), which serves as an estimate 
of network congestion. Programmable parameters at this layer include transmission rate, sliding window 
size and packet size, among others. 

The network layer implements host addressing and identification, as well as packet routing. The network 
layer is not only agnostic to data structures at the transport layer, but it also does not distinguish between 
operations of the various transport layer protocols. Routing strategies can be programmed at this layer. 

At datalink layer the core functionalities include fragmentation/defragmentation, encapsulation, network 
to physical address translation, padding, reliable point-to-point frame delivery, Logical Link Control (LLC) 
and Medium Access Control (MAC) among others. In particular, the reliable frame delivery employs an 
hybrid LLC’s Stop and Wait ARQ protocol and Forward Error Correction (FEC) mechanism (Reed-Solomon 
coding), such that frames are padded with FEC code and retransmissions are performed when the link is too 
noisy. The FEC is dynamic, reprogrammable, and can automatically adapt to the wireless link conditions 
at fine granularity, by increasing or decreasing the channel coding rate based on the observed packet error 
rate. Programmable parameters at this layer include channel coding rate, maximum retransmission times, 
and target residual link-level packet error rate, among others. 

Finally, the physical layer features both CDMA and OFDM access schemes, yet with a wide set of mod¬ 
ulation schemes supported, including Binary phase-shift keying (BPSK), Quadrature phase-shift keying 
(QPSK), Gaussian Minimum Shift Keying (GMSK) among others. Programmable parameters at the physi¬ 
cal layer include modulation schemes, transmission power, and receiver gain, among others. 
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Experimental Evaluation. We test SoDiNet on the designed SDR testbed in five different networking 
scenarios. Scenarios 1-3 deploy six nodes and two traffic sessions; while Scenario 4 considers nine nodes 
and three traffic s essions, w ith e ach s ession s panning o ver t wo h ops. I n S cenario 5 , t hree s essions are 
deployed over 21 nodes, with six hops for each session. Six spectrum bands in the ISM bands are shared 
by the 21 USRPs, with bandwidth of 200 kHz for each spectrum band. At each USRP, the data bits are first 
modulated using GMSK and then sampled at sampling rate of configured 800 k Hz. Reed-solomon (RS) 
code is used for forward error coding (FEC) with coding rate ranging from 0.1 to 0.4 at a step of 0.1. 

Through the experiments, we seek to demonstrate the following properties; i) Effectiveness. Through 
experiments in Scenarios 1-3, we show that SoDiNet-based network optimization outperforms non-optimal 
or purely locally optimal (greedy) network control: ii) Flexibility. Through experiments in Scenarios 4 and 
5. we showcase the flexibility of SoDiNet in modifying the global network behavior by changing control 
objectives and constraints, iii) Scalability. In Scenario 5 we show the scalability of SoDiNet by deploying 
code over a large-scale network. 

Cooperative Anti-jamming for Massive MIMO Expeditionary Cyber Networks. We have devel¬ 
oped techniques for software-defined cooperative anti-jamming in expeditionary cyber networks (EC) with 
massive MIMO-enabled hotspots. Our objective is to develop countermeasures to jamming based on coop¬ 
eration among hotspots to defend legitimate users against jamming attacks. The proposed techniques jointly 
determine the pilot sequence allocation and power control to maximize the throughput of the legitimate 
users. Two scenarios are considered: i) infrastructure-less EC networks with distributed hotspots, and ii) 
infrastructure-based EC networks with hotspots connected using high-speed links. Distributed anti jamming 
strategies have been designed for both cases, and a centralized but globally optimal solution algorithm was 
also designed to provide a performance benchmark for the distributed algorithms. 

Cooperative-beamforming-based Coexistence. In topic, we focused on EC networks where heteroge¬ 
neous wireless technologies coexist on the same spectrum bands. We considered coexistence of cellular 
(e.g., LTE/LTE-A) and non-cellularfe.g., Wi-Fi, Bluetooth) technologies and designed coexistence schemes 
based on cooperative beamforming. With the new coexistence scheme, cellular networks cooperate to ex¬ 
ploit spatial multiplexing and finally achieve successful downlink LTE transmissions while guaranteeing 
no interference towards other coexisting non-cellular networks. Three contributions have been made, i.e., 
CoBeam framework design, prototype development, and experimental performance evaluation. 

CoBeam Framework Design. We propose for the first time C oBeam, a n ew, cognitive-beamforming- 
based spectrum sharing approach for 5G-and-beyond wireless networks. We discuss the design of the main 
components of the CoBeam framework, including programmable physical layer driver, cognitive sensing 
engine, beamforming engine, and scheduling engine. 

Prototype Development. To demonstrate the effectiveness of the proposed framework, we present a proto¬ 
type of CoBeam by considering a specific problem in 5G wireless networks, i.e., spectrum sharing between 
coexisting Wi-Fi and LTE in the same unlicensed spectrum bands. 

Experimental Performance Evaluation. We extensively evaluate the performance of CoBeam on a large- 
scale office-space i ndoor t estbed b ased o n s oft ware-defined ra dios. Th rough ex tensive ex periments, we 
show that an average of 169% throughput gain can be achieved for the resulting coexisting Wi-Fi/U-LTE 
networks with guaranteed cross-technology fairness. 

Distributed Wireless Network Slicing. We considered the problem of network slicing in wireless sce¬ 
narios, where the wireless infrastructure is composed of multiple Remote Radio Heads (RRHs) owned by 
one (or possibly more) entities. Mobile Virtual Network commanders (MVNs) can create their own virtual 
radio access network (RAN) through network slicing. Accordingly, the network owner leases slices of the 
RAN to the MVNs. We showed that the network slicing problem can be modeled as an atomic weighted 
congestion game with splittable flows, and then proposed a distributed iterative algorithm which provably 
converges to the unique Nash Equilibrium and does not require disclosure of privacy sensitive parameters 
from the MVNOs. 
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ONR N00014-17-1-2046 - PROJECT 3 - Domain-specific Power-efficient 
Processing for Expeditionary Cyber Missions 
Technical Leads: Gunar Schirner & Hamed Tabkhi 

Abstract—As human perception is often insufficient to rapidly 
assess any situation, enhanced cyber cognitive abilities arc needed 
to automatically evaluate the vast sensory influx (video, radar, 
RF analysis, laser-based, and a myriad of scalar sensors). 
For example, machine vision is used for understanding scene 
structure, object classification and analysis for stationary (e,g. 
sensor network) or autonomous (on vehicle, robot) operations. 
Deep Convolution Neural Networks (DCNNs) are one of the most 
demanding advanced algorithms, offering unsupervised data 
analysis and pattern detection and making them ideal for vision, 
data mining and aggregation. To tame the overall computation 
for real-time scene understanding and not overwhelm the often 
scarce communication bandwidth, DCNNs processing close to the 
sensor becomes paramount. The challenge is that DCNNs are 
very computationally intense, with tens of Ciga Operations per 
Second (GOPS) needing multi-Gigabytcs (GB)/s of data traftic, 
resulting in 10()s of watts of power usage on desktops. Deployment 
in expeditionary cyber missions, in contrast, demands reliable, 
real-time performance under extremely scarce resources which is 
far beyond the capabilities of state-of-the-art platforms (even on 
high-performance Digital Signal Processors (DSPs) and Graphics 
Processing Units (GPUs)). The myriad of desired sensors (and 
sensing modalities), each with individual analysis, shockingly 
amplify the challenges. This requires novel, high-performance, 
power-efficient processing to provide nimble, transparent com¬ 
puting capabilities for real-time DCNNs processing close to the 
sensors. 

To address the need this project lays the foundation for a 
modular implementation of streaming processors focusing on 
a deep neural network application. In addition, this project 
investigated into a domain specific language for composing data- 
ccntric applications. 

Index Terms—Design Space Exploration, Platform Allocation, 
ACC-Rich Platform, Streaming Applications. 

I. Overview 

Addressing the vast challenges set out for domain-specific 
processing requires a holistic view across the entire stack from 
design, user application, system software, operating system 
extensions, hardware/software interfaces down to micro ar¬ 
chitectural innovations. This project moves toward providing 
solutions by addressing these challenges from two different 
angles. In a top-down view, we are looking at how design 
automation can help reasoning about domain processors and 
aim to decide which components to place into the processors, 
as well as how to efficiently scale a highly heterogeneous 
system composed of a dense set of accelerators. Conversely, 

G. Schirner is wish the Department of Electrical anti Computer Engineering, 
Northeastern University, MA, 02115, USA. 

H. Tabkhi is will] the Department of Electrical and Computer Engineering, 
University of North Carolina Charlotte (UNCC), NC, 28223, USA. 

at a bottom-up perspective, this project has investigated into 
micro-architectural approaches with a focus on Deep Neural 
Network processing. 

II. Top-Down Design Automation 

A. DS-DSE: Domain-Specific Design Space Exploration for 
Streaming Applications [I] 

Domain-specific computing is promising for high- 
performance low-power execution of applications with 
similar functionality. In particular, streaming applications 
with significant functional and structural similarities can 
tremendously benefit. However, current Design Space 
Exploration (DSE) focuses on individual applications 
in isolation. Hence, much of the domain optimization 
opportunities are missed. DSE methodologies need to 
broaden the scope from individual applications in isolation to 
optimizing across applications within a domain. 

We introduce a novel Domain-Specific DSE (DS-DSE) 
approach for domain-specific computing with a focus on 
streaming applications. Our key contributions are: (I) a for¬ 
malized method to extract the functional and structural sim¬ 
ilarities of domain applications, (2) a novel algorithm for 
hardware/software partitioning of a domain-specific platform 
to maximize the throughput across domain applications (under 
certain constraints) and (3) a methodology to evaluate a 
domain platform. 

Fig. 1: Penalty of Application Scope 

To gain an intuitive view of the domain concept. Fig. 1 
illustrates the lost opportunities due to the limited DSE scope 
for a domain with two apps. Fig. la and lb select ACCs 

11 



with application scope (A,B and C,D respectively) yielding 
efficient execution on the own platform. However, executing 
an app on the foreign platform (i.e. appl on plat2, app2 on 

results in significant penalties as either ACC A or .D is 
not used. In result, the overall domain performance (all apps 
execute on same platform) is low, 

Domain DSE can dramatically improve domain perfor¬ 
mance. Its aim is to detect and exploit common used kernels 
(e.g. function B and C) and composition (e.g. B-C in Fig. 1) 
across apps. When analyzing both applications, the common 
domain architecture (Fig. 1c) executes both applications effi¬ 
ciently. 

Our work lays the foundations by defining a domain and 
quantifiable features (metrics) that can guide exploration. 
The features take both behavioral (processing) and structural 
(communication) aspects into account, as well as consider 
the distribution over the domain. Based on these defini¬ 
tions, the paper has introduced the Dynamic Score Selection 
(DSS) algorithm for domain exploration. The DSE maximizes 
throughput across the whole domain and creates a domain- 
specific architecture that has more flexibility to execute do¬ 
main applications. Our results on 4 domains (OpenVX and 3 
synthetic domains) demonstrate a significant performance im¬ 
provement (36.8%-50.7%) executing on the respective domain 
architecture compared to application-specific architectures. 

B. Alleviating Scalability Limitation of Accelerator-based 
Platforms 12/ 

Accelerator-based Chip Multi-Processors (ACMPs), which 
combine application-specific HW Accelerators (ACCs) with 
host processor core(s), are promising architectures for 
high-performance and power-efficient computing. However, 
ACMPs with many ACCs have scalability limitations. The 
ACCs’ performance benefits can be overshadowed by bottle¬ 
necks on shared resources of processor core(s), communication 
fabric/DMA, and on-chip memory. Primarily, this is rooted 
in the ACCs' data access and the orchestration dependency. 
Due to very loosely defined ACC communication semantics, 
and relying on general architectures, the resources bottlenecks 
hamper performance. 

Current ACMP architectures have a processor-centric view 
as they were built upon the assumption of sparse integration 
of ACCs. ACCs are slaves devices requiring many shared 
resources (communication fabric, DMA, shared memory, and 
processor for coordination) for their transactions. However, 
power and performance efficient computing calls for more 
ACCs on a chip, which is not effectively supported by 
processor-centric architectures. Processor-centric architectures 
suffer from scalability limitations that restrict ACCs benefits. 
With integrating more ACCs, the burden on shared resources 
increases dramatically even though some ACCs logically com¬ 
municate directly with each other. Therefore, there is a need 
for scalable architectures giving ACCs more autonomy. 

To lay the foundations for improving the efficiency of ACC 
integration, we first identified the semantics of ACC commu¬ 
nication. Then, we analyzed the impact of semantics aspects 
realization on ACCs’ benefits to efficiently design our Trans¬ 
parent Self-Synchronizing Accelerators (TSS) architecture that 

reduces the load of ACC communication on shared resources. 
TSS gives autonomy to ACCs to self-synchronize and self- 
orchestrate each other independent of the processor, thereby 
enabling finest data granularity to reduce the pressure on the 
shared memory. TSS also exploits a local and reconfigurable 
interconnect for direct data transfer among ACCs without 
occupying DMA and communication fabric. 

Fig. 2 shows a high-level overview of our architecture and 
its integration to the host processor through the shared memory 
and communication fabric, it contains a set of accelerators 
that communicate and synchronize directly with each other 
without the need for the processor intervention. The TSS 
is practically only visible through its gateway interface. The 
gateway receives the configuration information once from the 
processor(s), through the control bus, and sets up the intercon¬ 
nect at the beginning. During the application execution, the 
gateway reads large input data from shared memory, breaks it 
into smaller jobs to feed the chains. Conversely, it collects 
small resultant data from the chains, and writes a larger 
resultant data to shared memory. 

Fig. 2: TSS system integration 

We used automatically generated virtual platforms to com¬ 
pare TSS and processor-centric architectures when running 
five streaming applications. With the same set of ACCs and 
same mapping, TSS improves throughput up to 1.6x at 20% 
ACC computation coverage and up to 130x at 100% ACC 
computation coverage. These benefits are achieved by natively 
realizing ACC-to-ACC communication in TSS, which reduces 
the load on shared resources by 6.57x and 328x, respectively. 
With ACC computation coverage and number of ACC-to- 
ACC connections increasing, the TSS benefits become more 
pronounced. 

Overall, self-synchronizing architectures, such as the TSS 
are very promising to allow heterogeneous scaling and the 
proliferation of dense acceleration. Instead of exposing every 
single accelerator to the host CPU, only each concurrent 
stream (potentially being processed by many many acceler¬ 
ators) is exposed to the processor. This dramatically lowers 
the orchestration overhead and allows to create more efficient, 
powerful systems. 

III. Bottom-Up Micro-Architecture 

A. Background 

To give a background on our motivation for specialized 
CNN implementation, we briefly overview data access types 
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in CNN, and the differences between General Matrix Multi¬ 
plication (GEMM) and direct convolution. We conclude with 
the motivation to focus on the first two layers of the CNN. 

1) Data Access Types: Convolutions Neural Networks 
(CNN) are both memory and compute-intensive applications, 
often reusing intermediate data and while consistently do¬ 
ing millions of parallel operations. Furthermore, the inherent 
memory intensive aspects of the algorithm are further exagger¬ 
ated due to complex multi-dimensional data accesses. In this 
regard, we consider two major types of data when performing 
CNN. 

1) 2D Weight: The first type is 2D weight matrices. These 
weight matrices each correspond to a single channel 
and these channels weight matrices group together to 
construct the entire kernel. Multiple kernels form a layer, 
and multiple layers create a network topology. 

2) Frame Pixels: The streaming pixels which are the input 
to the CNN processing. Just like the weight matrices 
these are 2D matrices, with multiple channels. This is 
the data that flows through the network topology. 

2) GEMM vs Direct Convolution: Direct convolution is 
the point-wise Multiply and Accumulation (MAC) operation 
across the 2D weight Matrices and frame pixels. In direct 
convolution, similar to the algorithmic level definition, the 
weight Matrices are used to perform multiple multiply and 
then accumulation operations directly on the 2D window of 
input pixels. The direct convolution performs in a sliding 
window fashion with respect to a stride parameter that varies 
layer to layer in network topologies. Fig. 3 exemplifies direct 
convolution operation, for a 3 by 3 convolution window over 
a frame with 5 by 5 pixels. 

multiplication. For this example, the pixels will be 9 by 9 
compared to original frame size which is 5 by 5. 

Fig. 4: General Matrix Multiplication (GEMM) 

5) CNN Execution Bottlenecks: An initial focus for ac¬ 
celeration can be the first two layers of CNN as the major 
execution bottlenecks. We specifically target SqueezeNet, a 
DCNN design with memory efficiency in mind. To motivate 
our argument, we have estimated the computation demands 
across the CNN layers for the example of . Fig. 5 shows 
the computation distribution across the SqueezeNet layers. 
Overall, SqueezeNet contains 10 layers. The first and last 
layers are traditional convolution layers (convO and conv9). 
The intermediate layers are squeeze (s) and expand (e) con¬ 
volutional layers. 

<=7 s7 

Fig. 5: Computation distribution across the SqueezeNet layers 
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Fig. 3: Direct convolution 

Traditionally, GPUs have seen much success in the cloud 
by using a linear algebra transformation called General Matrix 
Multiplication (GEMM) to lower the dimensions of convolu¬ 
tion to regular matrix multiplication. GEMM transforms all 
the temporal parallelism into spatial parallelism. This helps 
GPUs to achieve a high throughput assuming the large data 
batches are available. However, this comes at a significant 
memory cost. The transformation is done by rearrangement 
with redundant copies of input image pixels. Our estimation 
reveals that the rearrangement results in 1IX data duplication 
only for the first layer of any CNN network. This translates 
to significant power and energy overhead for accessing the 
redundant pixel data throughout memory hierarchy. Fig. 4 
exemplifies GEMM operation, for the same example illustrated 
in Fig. 3. As we observe, redundancy of frame pixels is 
required to transfer the convolution operation to a large matrix 

The squeeze layers combine the feature maps to make 
the network more efficient and expand layers expand the 
feature map. As we observe, the first layer (convO) has the 
highest computation demand with 21% contribution to overall 
computation demand. The first layer also generates the largest 
size of feature map across all layers which can lead to 
significant communication and memory traffic. Fig. 6 presents 
the contribution of layers on feature map. To minimize the 
memory access and communication demand, it would be 
beneficial to accelerate the second layer (si, el) along with 
the first layer. In this way, much smaller feature maps will be 
transferred to the edge server for processing of the remaining 
layers. 

Direct convolutions have clear benefits, albeit they are less 
explored in current heterogeneous implementations. The next 
two subsections focus on two acceleration approaches for ID 
and 2D. 
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Fig. 6: Feature map distribution 
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Fig. 7: Full first layer architecture 

B. A Novel 1 D-Convolution Accelerator for Low-Power Real¬ 
time CNN processing on the Edge 13 j 

With the rise of deep learning, the demand for real-time 
edge intelligence is greater than ever. Current algorithm and 
hardware realizations often focus on the cloud paradigm 
and maintain the assumption that the entire frames data is 
available in large batches. As a result, obtaining real-time AI 
inference at the edge has been a tough goal due to tight-latency 
awareness as well as streaming nature of the data. There is an 
inherent need for novel architectures that can realize latency- 
aware agile deep learning algorithms at the edge. 

In this part of our work, we introduce a novel joint algorithm 
architecture approach to enable real-time low-power Convo¬ 
lutional Neural Network (CNN) processing on edge devices. 
The core of the proposed approach is utilizing ID dimensional 
convolution with an architecture that can truly benefit from the 
algorithm optimization. On the algorithm side, we present a 
novel training and inference based on ID convolution. On the 
architecture side, we present a novel data flow architecture 
with the capability of performing on-the-fly ID convolution 
over the pixel stream. 

1) ID Convolution Algorithm Optimization: To dramati¬ 
cally reduce the computation and memory demand, we modify 
the first layer of convolution (which is the most compute¬ 
intensive layer) to utilize ID convolution kernels, and con¬ 
sequently retrain these ID kernels at the training stage. We 
used Caffe to train our ID convolutions on an Nvidia Tesla 
P100. We simply changed the first layer to utilize ID kernels 
and trained the rest of the network in conjunction with the 
new ID layer. Once we got the new ID-Squeeznet topology 
to converge, we then made an architecture for the inference 
stage that took advantage of our optimization and would run 
the trained weights. 

Fig. 7 presents our ID convolution optimization in detail. 
We propose separate filters for the X and Y dimensions. We 

then combine the results by concatenating the feature maps 
produced by vertical and horizontal convolutions (X and Y 
convolutions). As a result, there are M/2 parallel NX1 and 
1XN filters. This is different from other works doing separable 
convolution, in which they are transforming a single 2D kernel 
into two equivalent ID kernels. In this work we completely 
replace every 2D kernel with a singular ID kernel. While we 
do expect accuracy loss (even with the network being trained 
with this optimization), this technique offers memory and 
computation reductions essential for real time edge execution. 

2) ID Convolution Architecture: We designed an 
algorithm-aware streaming architecture. We configure 
our architecture based on the natural parallelism of CNNs, 
with this work focusing on Kernel parallelism. Finally, this 
architecture can be reconfigured to map to any network 
topology. These novel contributions of our architecture, allow 
us to handle the first layers high FM data size and intensive 
computation, in an efficient manner. The proposed hardware 
accelerator designed to do inference analytics at the edge 
has three main parts: (I) Convolutional Processing Element 
(CPE) to perform convolution on weights and image pixels. 
(2) Aggregation Processing Element (APE) to sum outputs 
of convolution of Red/Green/Blue channels and convert 
negative values to zeros. (3) Pooling Processing Element 
(PPE) that performs max-pooling on the output of APE. In 
this subsection we will discuss these parts in the context of 
ID convolution. 

To implement the first layer with our architecture for 
SqueezeNet, there should be one CPE per each input channel 
i.e. 3 CPEs in total. According to SqueezeNet topology there 
are 96 kernels in the first layer, which means each CPE should 
have 96 MACs each one with its own output(48 for horiz.ontal 
48 for vertical convolution). This is necessary to implement 
kernel parallelism (where all the kernels are used at the same 
time). Each of these CPEs outputs are added together in APEs. 
There should be one APE per kernel which makes 96 APEs in 
total. Outputs of these 96 APEs go to 96 independent PPEs, 
which are located right after APEs. Fig. 8 shows a detailed 
illustration of the proposed architecture for the first layer of 
SqueezeNet topology (lacking the extra information provided 
in the vertical and horizontal component figures). 

Overall, one dimensional-training and inference can lead to 
significant theoretical reductions in the memory and compu¬ 
tation demand of CNN layers. In the case of SqueezeNet, 96 
convolutions of 7X7 filters are replaced with 48 sets of 7X1 
and 48 sets of 1X7 filters, which finally output 96 concatenated 
feature maps. This reduces the number of parameters in the 
first layer by 7x. The algorithm optimization translates to a 7 
times smaller kernel memory (2016 bytes). The total memory 
we need to store pixels before convolution is 1253 bytes, 
reducing the buffer size by almost half, and the operation 
frequency that drives the computation of our architecture is 
7 times smaller due to the reduced number of operations per 
convolution. 

We have implemented a hardware/software co-design solu¬ 
tion on a Xilinx Zynq-7000 FPGA. Our results demonstrate 
that when the ID algorithm optimization is adapted to our 
algorithm-aware architecture we only consume 16mW of 
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Fig. 8: Full first layer architecture using ID convolutions 

dynamic power (custom logic alone, not the entire system), 
a 7.3X power reduction compared to the original 2D design. 
When comparing the full system implementation to a GPU 
Implementation we achieve a low power consumption of only 
1.73W, resulting 4.3x the power savings. Finally in both 
designs our architecture is able to support 60 FPS, while the 
Mobile GPU is unable to do so. 

C. A Reconfigumble Streaming Processor for Real-Time Low- 
Power Execution of Convolutional Neural Networks at the 
Edge 141 

With the recent advances in machine learning and the deep 
learning paradigm, there is a huge demand to push the data an¬ 
alytics and cognitive inference to the edge of the network near 
the data producers and sensors. Edge analytics are essential for 
real-time video analytics and situational awareness; which is 
required for the wide range of cyber-physical applications such 
as smart transportation, smart cities, and smart health. To this 
end, novel architectures and platforms are required to enable 
real-time low-power deep learning execution at the edge. This 
paper introduces a novel reconfigurable architecture for real¬ 
time execution of deep learning and in particular convolu¬ 
tional Neural Networks (CNNs) at the edge of the network, 
close to the video camera. The proposed architecture offers 
a set of coarse-grain function blocks required for realizing 
CNN algorithms. The macro-pipelined datapath is created by 
chaining the function blocks with respect to the topology 
of the target network. The function blocks operate over the 
streaming pixels (directly fed from the camera interface) in a 
producer/consumer fashion. At the same time, function blocks 
offer enough flexibility to adjust the processing with respect 
to area, power, and performance requirements. This paper 
primarily focuses on the two first layers of CNNs as the two 
most compute-intensive layers of CNN network. 

This section introduces our proposed architecture template, 
for real-time execution of CNN isiference on the edge. The 
proposed template targets FPGA devices, as they offer both 
efficient execution and sufficient reconfigurability to cope 
with continuously growing CNN topologies. Furthermore, by 
targeting the FPGAs, we are able to generate a customized 

datapath per each CNN network as such to best fit the 
processing requirements. The major premise of our proposed 
architecture is to remove the gap between the algorithm 
execution semantic and architecture realization. Therefore, 
our proposed architecture is primarily a data flow machine 
working on streaming data based on direct convolution. It 
consists of three main function blocks for realizing the wide 
range of CNN inference topological structure. The blocks 
are Convolutional Processing Element (CPE), Aggregation 
Processing Element (APE), and Pooling Processing Element 
(PPE). The blocks will be configured and connected with 
respect to target network topology, creating a macro-pipeline 
datapath. Fig, 9 presents overall architecture realization from 
logical domain (algorithm) to physical domain (architecture). 

Our architecture is designed based on the natural dataflow 
of CNNs. It is able to exploit both spatial parallelism across 
the convolutions within the same layer, as well as temporal 
parallelism between the blocks across the layers, The blocks 
are configurable with respect to network parameters such as 
size of convolution and stride. This gives us the possibility 
of easily adapting the architecture to any desired network 
topology. 

While our proposed architecture template is extensible and 
can support the entire CNN topology, the primary limitation is 
available hardware resources on FPGAs of the edge devices. 
At this moment, we are targeting smaller FPGAs, e.g. Xilinx 
Zynq, with small reconfigurable fabric. However, by acceler¬ 
ating the first two layers on the edge node, we will able to 
relax the computation demands on the edge server. The edge 
node will perform the heavy computation of the first layer. 
Furthermore, it runs the second layer to significantly shrink 
the feature map. Then it sends the feature maps to the edge 
server for the remaining layers to do the processing. 

The proposed novel architecture template for real-time low- 
power execution of Convolutional Neural Networks at the edge 
is primarily targeted for FPGAs, and is able to offer config¬ 
urable macro-pipeline datapath for scalable direct convolutions 
over streaming pixels. The proposed architecture is an example 
of a hybrid solution across edge nodes and edge servers for 
realizing compute-intensive deep learning applications. It is 
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also able to reduce the network traffic and execution time of 
the overall application. At the same time, it maintains the 
flexibility to map to any standard CNN network topology. 
Future work includes supporting full network topology accel¬ 
eration on edge and supporting nonstandard CNN, as well as 
a workflow for mapping them efficiently to different FPGAs. 

The implementation has extremely promising results. When 
mapped to a Xilinx Zynq FPGAs, for the first two layers of 
the SqueezeNet Network, shows 315mW power consumption 
when designed at 30 fps, with only a 0.24 ms one-time-latency. 
In contrast, the Nvidia Tegra TX2 GPU is limited to perform 
at 32.2 fps due to the 31.4ms delay, with a much higher power 
consumption (7.5 W). 

IV. Conclusion 

The work performed on this project shows extremely 
promising results for domain-specific computing. Our key 
insight to increase efficiency is to minimize data movements 
at any architecture hierarchy level, exploit parallelism (spatial 
and temporal) across convolutions, and remove the overhead 
of instruction-level programmability while maintaining enough 
flexibility. We have approached this challenge from a top-down 
design automation perspective, as well as from a bottom-up 
architecture view, 

In a broader perspective, our work introduces a new class 
of processors with efficiency comparable to custom hardware 
accelerators and sufficient flexibility to perform various appli¬ 
cations/configurations within a domain of applications. This 
research opens a path to perform real-time complex stream 
processing near the sensors offering human-like and beyond 
human cyber cognitive abilities. 

The Pis would like to thank ONR for their geneours support 
of our work. 
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Abstract. Localization and time synchronization are key elements of a variety of 

communication, networking, and situational awareness tasks. We consider five objectives, self¬ 

localization, localizing a friendly user [e.g., search and rescue), localizing an adversary [e.g., 

jammer or 1ED operator), localizing an event (e.g., gunshot/sniper), and localizing a user/event in 

the presence of an adversary. In this context, the adversary might be trying to hide its presence 

or location, and/or disturb the localization/time synchronization of legitimate users. There is 

today no solution that satisfactorily addresses this problem by algorithmically and robustly 

integrating signals and information at the edge of the network from and by a distributed set of 

sources. For instance, it is today easy today to make a device believe that it is located at a distance 

location by spoofing radio signals. 

In the highly dynamic and unpredictable environment envisioned for Expeditionary Cyberspace, it is 

critical to opportunistically exploit every single source of information (e.g., GPS, Cellular, Wi-Fi, RBDS, 

sound, crowd-sourced measurements including radio/audio) to improve accuracy, speed, and 

resiliency to injection of malicious information. We have made progress on several fronts: (1) LTE 

sniffer for cellular devices localization and machine learning techniques for devices classification, (2) 

Wi-Fi devices fingerprinting, (3) anti-jamming/spoofing for friendly devices localization, and (4) 

time synchronization using carrier frequency offset estimation. 

LTE Sniffer and Cellular Devices Localization 

We developed a software defined radio sniffer of LTE radio communications (for both the downlink 

and uplink). The sniffer analyzes eNodeB downlink transmissions, extracting unencrypted meta-data 

such as radio block allocation as well as other device specific information. The sniffer can then infer 

the existence of LTE devices as well as other information unique to these devices. This is the basis 

for our LTE devices localization using multiple multi-antenna sniffers. For instance, Figure 5 

illustrates an LTE Downlink Frame (10ms). Subframe 5 contains information about the downlink 

transmission using Radio Network Temporary Identifier (RNTI) 65534 indicating paging of 

devices (it also indicates modulation and coding scheme 0 (QPSK) using 8 (out of 75) resource 

blocks for a total of 104 bits). The paging message provides information about LTE devices. 

This is a lists of TMSI (Temporary Mobile Subscriber Identity) which rarely changes, or 

[MSI (International Mobile Subscriber Identity) in case of unallocated TMSI or network failure). 
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Figure 1. LTE Downlink Frame (10ms) captured using our sniffing tool. Subframe 5 contains the paging information that 

can identify LTE devices 

Further analysis of the LTE Frame enables the continuous tracking of traffic of LTE devices (See Table 

2]. The amount of traffic (both uplink and downlink) enables the fingerprinting of LTE/Mobile 

devices at the application level. For instance, it becomes possible to create a signature for a device 

based on the set of mobile apps and their usage patterns. 

Time RNTI Info MCS RBn TBS 

120 3 6681 0 11 1 144 

120 5 65535 1 0 8 208 

120 6 6681 0 12 4 776 

120 9 10451 1 12 8 1608 

120 9 10451 0 22 5 2344 

121 0 10451 1 15 63 18336 

121 1 10451 1 14 51 12960 

121 1 8094 1 11 4 1904 

121 2 10451 1 15 75 21384 

121 3 10451 1 15 56 15840 

121 4 10451 1 15 72 20616 

121 7 10451 1 15 72 20616 

121 8 10451 1 15 63 18336 

121 9 10451 1 14 51 12960 

122 0 10451 1 15 40 11448 

122 1 10451 1 15 75 21384 

122 2 10451 1 15 56 15840 

122 2 6681 1 0 4 88 

122 3 10451 1 15 72 20616 

Frequency |MHr! 

Table 1. Analysis of an LTE Frame enables the identification of traffic of devicesand therefore application level 

fingerprinting. 
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We developed a set of techniques that can fingerprint a mobile device based on the applications 
running on the phone. This fingerprinting is entirely based on the passively sniffed radio traffic. We 
initially focused on the passive activity of the apps on the phone as such patterns are easier to classify. 
Figure 7 illustrates the amount of traffic between an LTE eNodeB (base station] and UE (mobile] 
measured on our private testbed. 
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V 

Figure 2. Sniffed traffic (uplink & downlink). 

It then becomes possible to use the RF trace to isolate communication patterns that are specific to a 
phone. The developed techniques include clustering traffic, and processing (e.g., PCA] the sniffed 
traffic unencrypted meta-information to facilitate the training and learning on aggregate traffic. 

Our initial results indicate the potential for achieving high accuracy in identifying a mobile device by 
the set of installed applications relying only of passive sniffing of radio emissions. 

Wi-Fi Fingerprinting 

We developed techniques for fingerprinting Wi-Fi radio interfaces which include carrier frequency 
offset (CFO], sampling frequency offset (SFO), Wi-Fi scrambling seed, and RF front end ramp- 
up/down signatures. The project goal is to first develop radio interface unique 
fingerprinting/localization techniques and then combine cellular and Wi-Fi fingerprinting and 
localization to robustly locate wireless devices. 
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Figure 3. RF Front End transients are fairly unique and allow the fingerprinting of a radios. 

The developed techniques are a combination of machine learning, clustering based on Kullbak- 
Liebler divergence between distributions of CFO/SFO. Our evaluation in the wild of 100 Wi-Fi 
interfaces resulted in 65% to uniquely identify a device (out of 93 devices) and 93% to distinguish 
one of 5 interfaces. 

Robust friendly localization and time synchronization 

On the theoretical side, we are integrating cryptographic techniques to mitigate timing and 
localization spoofing (TESLA) and mitigate jamming (keyless spread spectrum) in the protocols 
design of new time synchronization and localization techniques designed from the ground-up. The 
proposed technique recursively refines timing and location inference combining both the keyless 
spread spectrum with TESLA authenticated broadcast technique. 

We developed a synchronization, localization, and mobility (velocity) estimation technique based on 
carrier frequency offset between devices. The technique was implemented within the USRP X310 
FPGA. Preliminary evaluation indicates that the developed technique has the potential to achieve a 
time synchronization accuracy of few nanoseconds. 

Future Activities 

We plan to extend the synchronization and localization to a network of devices to develop an efficient 
secure broadcast localization scheme for both cooperating devices and RF sources. We also plan to 
integrate the TESLA broadcast authentication techniques to defend against spoofing from insider 
threats (compromised devices). 
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ONR N00014-17-1-2046 - PROJECT 5 - LANET: Visible-Light Infrastructure- 
less Wireless Networks for Expeditionary Cyber Missions 
Technical Lead: Tommaso Melodia 

Dept, of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 

1 Research Goal 

The LANET project aims at investigating fundamental principles underlying the design of infrastructure¬ 

less ad hoc networking based on Visible Light Communications (VLC). LANET will provide the network 

researchers with a real-time software-defined programmable protocol s t ack. LANET w ill adapt to diverse 

networking environments (e.g., air/ground/underwater) by seamlessly switching among different front-end 

transceivers. To achieve this objective, the project will (1) study and develop new resource allocation al¬ 

gorithms and protocols for visible-light ad hoc networking; (2) design the LANET algorithmic and archi¬ 

tectural framework encompassing all layers of the networking protocol stack and (3) develop a wavelength- 

agile software-defined experimental prototype, including an intelligent control system that can leverage the 

hybrid visible light, ultraviolet and RE transceivers to maximize system reliability and security. 

2 Accomplishments 

Toward this goal, our team has so far the following accomplishments. 

LANET Architecture Design. At a high level, the LANET framework consists of two main components: 

the LANET hardware and a LANET programmable protocol slack. The LANET hardware is designed to en¬ 

able wavelength-agile (RF/VLC/UV) signal processing and is built off of high performance software-defined 

radios (i.e., USRP X310) that includes a Large customizable Xilinx Kintex-7 FPGA and supports two- 

channel processing concurrently. The LANET software framework implements newly-designed LANET 

networking functionalities across multiple layers of the protocol stack in a software-defined fashion to en¬ 

able real-time intelligent adaptation to the operational environment. The protocol stack has a modular struc¬ 

ture, where different functional blocks, such as timing functionalities, medium access control, routing, and 

application adaption (air/underwater/ground), among others, can be designed and upgraded independently 

and in a modular fashion. 

VL-MAC: Channel-aware VLC MAC design. Because of the unique characteristics of visible light 

wireless links, i.e., directionality (different LEDs have different fields of v i ew), low penetration (which 

results in more frequent blockage), as well as strict Tx-Rx alignment requirements, networking protocol 

21 



stacks for visible light communications cannot be blindly drawn from their RF counterparts. To address 

these challenges, we designed what is, to the best of our knowledge, the first medium access control (MAC) 

protocol uniquely designed for LANETs. The proposed utility-based MAC is based on a new sector-based 

neighbor discovery mechanism suitable for LANETs and relies on synchronization and opportunistic link 

establishment. The proposed synchronization algorithm enables nodes to know when an idle neighbor will 

become available, thereby overcoming the problem of deafness. A utility based opportunistic three-way 

handshake is employed to efficiently negotiate medium a ccess. S pecifically, a node chooses the optimal 

transmission sector to maximize the probability of establishing a link when a fraction of the neighbors are 

affected by blockage or deafness. Simulation results have demonstrated up to 48% increase in throughput 

compared to state-of-the-art techniques. 

VL-ROUTE: A Cross-Layer Routing Protocol for Visible Light Ad Hoc Network. To overcome the 

unique challenges like blockage and deafness that render routes in LANETs highly unstable, we propose 

a cross-layer optimized routing protocol (VL-ROUTE) that interacts closely with the MAC layer to maxi¬ 

mize the throughput of the network by taking into account the reliability of routes. To accomplish this in a 

distributed manner, we carefully formulate a Route Reliability Score (RRS) that can be computed by each 

node in the network using just the information gathered from its immediate neighbors. Each node computes 

an RRS for every known sink in the network. RRS of a given node can be considered as an estimate of 

the probability of reaching a given sink via that node. The RRS value is then integrated to the utility based 

three-way handshake process used by the MAC protocol (VL-MAC) to mitigate the effects of deafness, 

blockage, hidden node, and maximize the probability of establishing full-duplex links. All these factors 

contribute towards maximizing the network throughput. Simulation of VL-ROUTE shows 124% improve¬ 

ment in network throughput over a network that uses Carrier Sense Multiple Access/Collision Avoidance 

(CSMA/CA) along with shortest path routing. Additionaly, VL-ROUTE also showed up to 21% improve¬ 

ment in throughput over the network that uses VL-MAC along with a geographic routing. 

LiBeam: Cooperative Beamforming for Visible Light Networks. Current research has revealed that 

Tx-Rx dis-alignment in highly directional VLC links can result in up to 10 dB of signal-to-noise-ratio (SNR) 

variation, which in turn has a significant impact on the link reliability in terms of packet error rate (PER). 

Therefore, how to ensure robust and reliable communication between the VLC transmitter and receiver under 

visible light link dynamics (e.g., intermittent blockage, mobility, device misalignment) becomes critical. 

We proposed LiBeam, a new cooperative beamforming scheme to maximize the system throughput, based 

on forming multiple LED clusters. Each cluster then collaboratively serve the same set of users by jointly 

determining the user-LED association strategies and the beamforming vectors of the LEDs thus reducing the 

interference among adjacent users hence enhancing the quality of the visible light links. We first propose a 

mathematical model of the cooperative beamforming problem, presented as maximizing the sum throughput 

of all VLC users. Then, we solve the resulting mixed integer nonlinear nonconvex programming problem 

by designing a globally optimal solution algorithm based on a combination of branch and bound framework 

as well as convex relaxation techniques. Performance evaluation results show that over 95% utility gain can 

be achieved compared to suboptimal network control strategics. 
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Testbed Development. A newly designed general purpose LANET testbed has beend developed based 

on high performance software-defined radio devices (USRP X 310). The testbed supports multihop end- 

to-end dual-band RF/VLC data transmission and features a brand new programmable protocol stack that 

covers physical layers, link layer, network layer, transport layer and application layer. The testbed features 

a scalable out-of-band control channel (UDP socket based), which provides multi-layer acknowledgements, 

signaling, and control information (e.g., neighbor discovery, routing table setup and exchanges), among 

others. So far, the following functionalities have been implemented on the LANET testbed. 

Automatic Routing Set-up: Routing at the network layer plays a significant role on the performance of 

LANET and have a major influence on the overall network t hroughput. The multi-hop routing design for 

visible-light ad-hoc networking is challenging due to the intermittent links. We first implemented a simple 

reactive routing protocols in 2-hop LANET testbed to investigate the link characteristics of visible-light ad 

hoc networks. The filed of views of the transceivers are limited which slows down the progress of neighbor 

discovery and routing set-up. An omni-directional transceivers have been proposed to overcome the above- 

mentioned issue. 

Intelligent Switching in Heterogeneous Radio and Visible-Light Ad Hoc Networks: Visible light com¬ 

munication can provide very high aggregate capacity; however, VLC is challenged to accommodate highly 

dynamic environments. Specifically, the VLC channel is susceptible to blockage and the smaller coverage 

region implies that devices with high mobility will change connections frequently. In order to mitigate the 

impact of these limitations, heterogeneous networks (RF/VLC/UV) has been proposed and developed in our 

LANET project, which combines the aggregate capacity gains of VLC/UV with the coverage and reliabil¬ 

ity of RF. We developed an intelligent switching algorithm based on three-way handshake process when 

no routes available in the VLC domain after a predefined time window, a switching request to RF will be 

initiated, or otherwise. 

Cooperative Transmission: To test the proposed LiBeam on LANET testbed, we implemented the coop¬ 

erative transmission functionality among multi VLC users on LANET. The number of cooperative trans¬ 

mitters can be configured through program in a real-time fashion, where the OctoClock CDA-2990 is used 

to synchronize a system of USRP X310s for coherent operation, like cooperative beamforming in LiBeam. 

The functionality will be useful for many other applications such as diversity combining, or VLC MIMO 

transceiver design. 

The testbed has been used to validate the effectiveness of the proposed cooperative beamforming scheme, 

LiBeam. It will also allow us to test the effectiveness of the designed LANET architecture by demonstrating 

VL-MAC, VL-ROUTE, self-routing and intelligent switching functionalities in multihop ad hoc networks. 

Currently, our testbed can support transmission distance upto 4 m with data rale 1 Mbps. 

23 



3 Publications 
1. N. Cen, J. Jithin, M. Simone, Z. Guan, T. Melodia, “LANET: Visible Light Ad Hoc Networks,” Ad 

Hoc Networks (Elsevier), 2019. 

2. J. Jagannath, T. Melodia, ’’VL-ROUTE: A Cross-Layer Routing Protocol for Visible Light Ad Hoc 

Network,” in Proc. of IEEE Symp. on a World of Wireless, Mobile, and Multimedia Networks 

(WoWMoM), Washington D.C., USA, June 2019. 

3. N. Cen, N. Dave, E. Demirors, Z. Guan, T. Melodia, ’’LiBeam: Throughput-Optimal Cooperative 

Beamforming for Indoor Visible Light Networks,” in Proc. of IEEE Computer Communications (IN- 

FOCOM), Paris, France, April 2019. 

4. J. Jithin, T. Melodia, “An Opportunistic Medium Access Control Protocol for Visible Light Ad Hoc 

Networks,” in Proc. of International Conference on Computing, Networking and Communications 

(ICNC)„ Maui, Hawaii, USA, March 2018. 

24 



ONR N00014-17-1-2046 - PROJECT 6 - Sensing, Computation and 
^ Communication on the Fly: Connected UAV Mesh Networks 

Technical Lead: Kaushik R. Chowdhury 

Electrical and Computer Engineering Department, Northeastern University, Boston, MA, USA 

Abstract 

Unmanned aerial systems (UASs) allow easy deployment, three-dimensional maneuverability and high reconfigurability, as they 
sustain communication network in the absence of pre-installed infrastructure. The proposed FOg Computing in UAS Software-defined mesh 
network (FOCUS) paradigm aims to realize an implementable network design that considers practical issues of aerial connectivity and 
computation. It allocates UASs to the tasks of data forwarding and in-network fog computing while maximizing number of ground-users in 
UAS coverage. FOCUS improves efficient utilization of network resources by introducing on-board computation and innovates on top of 
software-defined networking stack by integrating the capabilities of network and ground controllers to enable simultaneous orchestration of 
both UASs and communication flows. There are three main contributions through this project: First, an SDN-based architecture is designed 
enabling autonomous configuration of computation and communication as well as managing multi-hop aerial links. Second, a global 
optimization problem to achieve optimal forwarding and computational allocation is formulated using Open Jackson Network model and 
solved via a heuristic approach with well defined complexity. Third, FOCUS framework is implemented on a small-scale testbed of 
Intel® Aero UASs performing image analysis with a full software stack. Experiments reveal at least 32% latency improvement in 
computation service time compared to traditional centralized computation at the end-server or greedy task allocation schemes within the 
network. 

I. Introduction 

Unmanned aerial system (UAS) applications have grown exponentially over the last five years, presently driving 
business close to I billion USD already within the USA, with an upwards growth targeted to reach 46 billion USD by 2025 
[1J. Thus, it is foreseen that they will be one of the key enablers toward smart cities with their applications range from 
construction to communication and to surveillance. However, most of the existing deployments consider UAS as a mobile 
wireless sensor, with data processing offloaded to a computational cloud. At the same time, the enhancements in UAS 
control and communication hardware and mass production at economical price-points are paving the way towards 
Unmanned Aerial Networks (UANs), composed of swarms of UASs connected to the Internet, capable of limited on-board 
computation, but also being integrated with the cloud jl]. 

Different from traditional ad hoc and mobile networks, the design of a UAN poses unique challenges, such as highly dynamic 
topology, 3D mobility and high energy consumption per unit time [2], Piloting commercial off the shelf (COTS) UASs requires 
manual skills, but UAN applications that have rigid objectives and performance constraints amplify the above challenges when 
they operate in groups. In this project, we envision the UAN as a mixed sensing, information relaying and computing platform, 
taking advantage of the entirety of its on-board capabilities. Towards this goal, we wish to adopt the flexibility and structured 
approach of classical software defined networking (SDN), building on the OpenDayLight [3] architecture that has proven to 
be successful in the wired networking domain. Thus, each UAS within the larger UAN becomes a network switch that directs 
data traffic towards the remote cloud as well as towards peer-nodes for in-network processing. To our best knowledge, while 
many works have pointed towards the trend in COTS UAN to gain increasingly greater computational power and ability to 
support popular operating systems and processing packages [4], a transformative design that allows the UAN to become a fully 
capable, aerial SDN has not been implemented in actual systems. 

A. Problem and Solution Overview 

We consider a scenario where ground sources may generate rich sensing data (e.g. videos, terrain maps, RF spectrum 
surveys) that needs to be transmitted to the cloud for purposes such as storage, aggregation and analytics as seen in Fig. 
1. This generic environment covers several real-world use-cases related to post-disaster recovery, rural broadband access and 
military operations. In many of these cases, the cloud is not reachable via a direct link, and hence, instead of a single UAS, 
we envision that a UAN is deployed for data forwarding to the cloud server. We note that several distributed mobility-aware 
routing and communication-aware mobility control schemes for UASs have been proposed in the literature that address only 
a subset of factors affecting the UAN deployment [2] [5], In this project, we focus on an architecture that leverages SDN, 
given that it effectively decouples contra! and user data plane, and has shown great potential in management of wired/wireless 
networks. 
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A conceptual view of SDN controllers to compute the UAN topology and routing based on actual link load estimations have 
been proposed in [6| [7], In addition, given the highly dynamic network topologies in such networks, there is likelihood of a 
temporal drift between the actual network state and the virtual state information available at the controller. In such situations, 
shifting the entire burden of the scenario analysis to the cloud becomes risky; few incorrect or outdated decisions taken by the 
controller can result in major end-to-end latencies in the mission [8], Our approach addresses these challenges by considering, 
in a single theoretical formulation, the optimized assignment of the individual UASs to function as forwarding nodes that 
relay data towards the sink or to alternate intermediate-UASs that may perform computational tasks closer to the source. This 
results in significantly lowering the volume of data to be transmitted through the UAN. We look at the problem not only from 
a theoretical viewpoint but also from that of practical implementation, by (t) implementing a robust mesh network formation 
and routing protocol, (ii) defining and architecting the SDN control interfaces, and (Hi) showing the benefits of intelligently 
assigning computation tasks to selected UASs in the network. 

B. Main Contributions 

We make three main contributions in this project: 
• We present the architecture and design of FOCUS, a framework for the deployment of a practical UAN. It autonomously 

sets up the UAN configuration in terms of network topology (i.e. routing table), and computation (i.e. task allocation over 
cloud or intra-UAN nodes, also called as fog nodes), based on QoS requirements. This is performed via an SDN architecture 
that handles both computation and communication in multi-hop aerial environments. 

» We formulate the problem of joint routing and computation assignment over UAN via an analytical model. Being NP- 
hard, we decompose it into two sequential tasks, with heuristic solutions for each. We also provide rigorous bounds on the 
computational complexity. 

• We implement the system on a limited testbed of Intel Aero UASs performing data processing of image-data. We also 
validate FOCUS experimentally and through simulation, starting from the data generation on the ground to the final logging 
of processed results in a database. 

The rest of this report is structured as follows. In Section II, we review the existing literature on the application of SDN 
and cloud computing on UAN. Preliminary results supporting the motivation of our work are provided in III. The joint 
routing-computation problem and algorithms are formally described in IV. FOCUS architecture and implementation details are 
explained in V. Experimental and simulation results are reported in Section VI. Finally, we conclude in Section VII. 

II. RiiLATiiD Work 

Recent works have attempted to address UAS requirements of dynamic topology and variable network load [2], Moving 
some of these important problems from the physical device plane to the controller of an SDN has gained traction [9], where 
link status and flight statistics are collected from each UAS and used to compute the routing tables. The core functionality 
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of packet routing is enhanced in [10] by incorporating a centralized energy- and load-aware routing scheme. [6] maps these 
approaches in context of video-surveillance, while [7] exploits the closely related Network Function Virtualization (NFV) 
functionalities for telemetry monitoring and anomaly detection. [8] uses SDN controller for motion and location prediction, 
by utilizing knowledge of the current physical position and trajectory of each UAS to envision how the network may evolve 
ahead. 

Different from these works, FOCUS SDN-enabled architecture jointly performs network routing to both the end cloud as 
well as in-network computational resources while taking the network topology and the network load requests into consideration. 
The latter concept, commonly known as fog computing is still in a nascent stage. Several papers have investigated the dual 
problem, i.e., how to offload the compulation from the UASs to an edge-server or to a remote server in the cloud [11]. [12] 
and [13] describe video-surveillance applications, where data are gathered by UASs, and processed on edge nodes through 
computational expensive vision algorithms. Instead, in FOCUS, we envision UAS themselves as computationally capable 
devices. The Intel Aero drones we use have Intel Atom® x7-Z8750 processor, 4 GB LPDDR3-1600 RAM, Intel® Dual Band 
Wireless-AC 8260, 32 GB eMMC, Altera® Max® 10 FPGA and Ubuntu 16.04 LTS. 
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TABLE I: Comparison with the literature 

Similar to the notion of delegating computational workload to UASs, following studies proposed to utilize vehicles as 
computational nodes or relays in vehicular ad-hoc networks to improve overall performance of cloud systems [14]-[16], 
[14] proposed semi-markov decision process based resource allocation scheme for vehicular clouds, where vehicles in the 
network increases cloud resource pool via sharing their own computational resources. In [15], the authors developed content 
dissemination framework by integrating edge computing with vehicular networks where vehicles act as relays to deliver contents 
efficiently. In addition, an approximation scheme for job completion time in vehicular cloud is proposed in [16]. However, 
Ihese studies neither considered UAS-specific challenges such as limited on-board resources, 3D mobility and unreliable ad-hoc 
links while devising their frameworks, nor provided any real-world implementation. 

We describe next the works that come closest towards joint consideration of UAS capabilities, including computation, [19] 
estimates the execution time of different tasks when executed locally on ground robot units and remotely in the fog/cloud 
servers, and defines offloading strategies to optimize the service time. [20] approaches the same problem through game theory. 
General architectures employing UASs as fog nodes are proposed in [18] and [17], In the former case, the UASs serve as 
mobile base stations providing connectivity to the ground units. In the second case, the UASs offer computation offloading 
opportunities to mobile ground units. However, the goal of this work is on enhancing the uplink/downlink communications 
and the path planning of the UASs. Table I showcases the differences of FOCUS with the existing studies in the literature 
where these studies are grouped under three sub-categories based on their scope and are investigated by four different aspects 
such as network, computation, target domain and test-bed implementation. Moreover, the work that we present in this paper 
does not explore the limited energy problem of the UASs that is indeed quite important when analysing aerial vehicles. 
However, several work can be found in literature that proposed solutions for this problem [21] [22] that can be used to obtain 
continuous operability. FOCUS pushes the envelope further by a joint analytical and systems approach, while opening up for 

27 



the community the software tools and code to build and deploy aerial SDNs. 

III. Preliminary Study on Computation on UASs 

We conduct two different sets of experiments motivating the use of a UAN as an aerial computing platform: the first 
one stressing the communication/computing tradeoff on a simple linear topology, the second one showcasing the impact of 
processing on the UAS battery/fiight time. To better understand the advantages of data processing on fog nodes within an UAN 
as opposed to centralized cloud, we set up a mesh UAN in a linear topology consisting of 3 Intel Aero Ready-To-Fly UASs, 
as seen in Fig. 2a. Two ground laptops are placed at the two ends of the mesh, one acting as a ground control station (GCS) 
and application server, and the other as the source. The GCS containing 16GB DDR3 RAM, 7th generation Intel processor 
and NVIDIA1^ GTX 1060 graphic card doubles as the centralized cloud entity along with being the controller. The source 
generates network data as UDP packets and static images for processing. The target location for the processing may vary over 
time via computational requests. Since, we use same workload generation and image processing algorithms during evaluation, 
further details are explained in Section VI. 
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Fig. 2: (a) Linear UAN topology; computation response time w.r.t. (b) algorithm iteration number, (c) network load and; (d) 
UAS flight time w.r.t. processing complexity 

Consider four scenarios where: computational requests are handled by UAS in inter-mediate hops, i.e., UAS I, UAS2, UAS3 
and when the images reach the GCS/application server. The network load is gradually increased from 0 to 1Mbps and finally to 
the upper limit ol 2Mbps. Under non-loaded network conditions, understandably, it is beneficial to execute the dala processing 
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n?° 

ft) Tt 
r(0 

r(t> o 

F, C 

br,bp 

Number of UASs. 
Number of ground units. 
Adjacency matrix for UAS network. 
Air-to-Ground connection matrix. 

Service capacity for the traffic type Pat UASi. 

Bandwidth request of ground unit i belonging the traffic 
type f. 

Sum of arrival rates from ground units assigned to UASt. 

Arrival rate for the traffic type l at UASi. 

Expected number of packets in the queue at UASi. 

Average waiting time of type t packet in the queue at UASi. 

Bandwidth request of ground unit j. 

Routing matrix. 

Element of defining the ratio of the packets routed 
from UASi to UASj. 
Auxiliary matrices used in the heuristics to hold pointers 
to father (F) and child (C) nodes on network flows. 
Bipartite graphs holding computational requests (R) and 
available slots (P) 

TABLE II: List of important notations 
1 t € {n,c}, where n states non-computalion/network and c states 

cumputation traffic. If a symbol does not contain a superscript, it means 
there is not any traffic type distinction for that parameter. 

at the remote CCS, as seen in Fig. 2c. However, when the network load begins to increase, the amount of time spent on 
forwarding information in the network indicates the benefit of processing the image on a fog entity, i.e., the UAS as opposed 
to tire GCS, despite having weaker computational power. As seen for the cases of 1 and 2 Mbps network traffic, processing 
images on the UAS improves the response time. 

As algorithms may vary in processing requirements (for e.g., genetic algorithms and particle swarm optimization run multiple 
iterations), we define an iteration variable that increases the effort involved in completing the image processing task. F^ch 
iteration re-analyzes the image, with the goal being to identify the break-even points for switching the processing from fog 
nodes to the GCS. As seen in Fig. 2b for a constant network load of 1Mbps, algorithms with fewer iterations to completion 
are more suited for the fog nodes, though every additional forwarding hop impacts the difference from the ground server to a 
greater extent. These studies indicate practical handover points that we use in our optimization approach. 

Computation and data relaying both incur energy costs. To study their inter-dependence, we flew a UAS equipped with the 
standard 4S, 4500mAh battery, under different CPU utilization scenarios, as shown in Fig. 2d, recording the flight time for 
each setting. These scenarios are defined by Ihe number of CPU cores fully utilized during the entire flight starting with 0 and 
continue with 1, 2 and 4 cores. During the (lights, we use a simple workload generator [23] to fully utilize individual CPU 
cores on UASs. Increasing CPU utilization drains negligible battery power when compared to the power drawn by the UAS 
propeller motors. This further motivates us to fully leverage fog nodes for processing within the network. Fig. 2d shows high 
variations in the upper and lower bounds in the flight time due to uncontrollable flight dynamics (altitude deviation, pitch, 
yaw, roll) caused by wind, which again impacts the UAS battery consumption rate more than internal data processing. We run 
the experiment ten times for each scenario with a fully charged battery, and record the flight time until its remaining battery 
capacity hits a critical level (which is 15%). 

IV. Problem Formulation and Optimization Framework 

In the following, we formulate the problem of joint assignment of network flows and computational tasks by modeling UAN 
as a network of queues. Then we describe two-phase solution to this problem, where network flow and computational flow 
optimizations arc solved consecutively. Table II defines the variables and symbols used in the process. 

A. System Model 

We assume a scenario with N flying UASs, M ground units and one ground control server (GCS). The ground units produce 
two classes of network traffic: (i) generic network traffic (denoted by the n apex), i.e. sensor data that must be delivered to 
the GCS, and (ii) computational traffic (denoted by the c apex), i.e. data that must be processed on the cloud or on fog nodes. 
We introduce the following variables: 
• U = {u1,ti2,... ,un} is the set of available UASs; 
• G = {gi,<72, • - ■ ,.9Ar} is the set of the ground units; 
• T(c) = {//j ,/4e), ■ - ■,is the computational capacity (in Kbps) for each UAS tt, €f/ and for the GCS (defined 

by mV+i); 
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Fig. 3: Two-layer Open Jackson Network 

• r = 7ii72j • • ■ tTjw is the set of bandwidth requests (in Kbps) for each ground unit gj £ G, where 7, = 7t- + 7]^, i.e. it 
includes both generic and computational data; 

• Ejvx(AtH-i) is UAN adjacency matrix, where Cij —)■ {0,1} indicates whether there is an active link between the UASs u*, Uj £ U, 
where also index A^+l represents the GCS; 

• &NxM is Air-to-Ground (A2G) connection matrix, where {0,1} indicates whether there is an active connection 
between UAS Ui£U and ground unit gk€G. 

E;vx(jv+i) and A-nxm matrices are assumed to be pre-computed based on the position of the ground units. The UAN is 
modeled as an Open Jackson Network [24], and each UAS node is represented with two consecutive M/M/1 queues as shown 
in Fig. 3. On the left, we depict the network queues used for both traffic types (n and c). On the right, we depict the process 
queue corresponding to the computational traffic (c), for both the UASs and the GCS. The output of the queues are determined 
by the routing policies. These latter are formally modeled via the matrices R (n) 

Nx{N+2) and R (c) 
Nx(N+2) respectively for the n, c 

traffic classes; r'JJ indicates the ratio of traffic of tij routed to uj for traffic type t £ {n,c}. In addition, r\n^ and denotes 

ratio of the packets left the network and, ratio of packets processed locally at it*. Similarly, let f ■c()w+1) be the ratio of the 
computational packets that ut forwards to GCS, to be processed on the cloud. The overall packet arrival rate (A,) to Uj is 
defined as A* = A-'1^ + , Assuming that, the ground units generate requests with the average 1/7 time difference, we use 
Markovian queues to obtain closed-form equations for the upper-bounds of the response times in the model. 

For each traffic type (Vf £ {c, n}), the A;1'' term can be modeled as A':f) 
At) ■ 

n it)+ttxr^ j,i xf}’where = zZLi ai,k-7k 
U) 

.{*) 

and the variable 7} J is the arrival rate of the e and n traffic from the kth ground unit and G}*1 is the sum of the arrival rates 
over all ground units assigned to UAS i. 

30 



(1) 

By Little’s Law, the average response time for packets belonging to traffic lype c (W^) is defined as follows: 
^JV -,(n} ^N + l p(c) 

lAjtc) _ ~r Z^i=l ‘~i 

Zjfc=i 'k 

where c["1 and d'- 1 indicate the expected number of computational packets in the network queue and in the computational queue 
of UAS i respectively. Let ... , //y1} be the average service rate for each UAS Kj £ U, with expressed 
again in Kb/s. Hence, the average number of computational (otype) packets at the first queue is dd = A^/f 

g/(» 
. (n) Ai 

On the other hand, the number of the packets in the second queue is defined as follows dt 

We can hence rewrite as follows: 

M _ xW, 
i ' i,0 . 

wfc^ = 
Ef=i _I V'Af + l A, r.,o 

-A, + 

(c) 
2^k=l Ik 

Similarly, wc compute the average response time for the generic network traffic as follows: 

A<"> 
2^i=i ->y 

=_1L— -Ai 

Zthdk (») 

(2) 

(3) 

The proposed system assumes to have the knowledge of the all data load requests F and the network links quality 
Consequently, also the ANxM and the EAfX(jV+i) matrices are assumed to be known. These indexes represent the ground 
user bandwidth requests and the network links quality, respectively. These two indexes can be known in advances for static 
scenarios and with full knowledge, but this case is very rare. On the other side, for evolving and/or unknown scenarios, these 
indexes can be dynamically estimated by the system using link quality estimation within the SDN networks [25] in order to 
estimate and E^x(jv+i) and continuous monitoring of the ground user requests to estimate F and The effects 
of the convergence of the index estimations and their change over time will be analysed in future works. 
B. Problem Formulation 

Based on this system model, we formally define thc.joint^qjing and computation assignment (RC) problem as follows: 
r(0 ^ 

subject to: ^ a,i( = 1 Vgj 6 G 
Ui€t/ 

dim kernel{Laplacian{Ei)) 1 

Aj < fi (») 

A 

Af+i 

(c) dc) < dc) 7i,0 ^ Pi 

Vuj e U 

Vtr, e u 

X! rid = 1 V«i E U,t € {n,c} 
3-0 
N+l 

3=1 

Vui € U,t e {n, c} 

>V(n) < 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

<<■) x(t) ..(*) -,(() > n Vuf 6 f/,f e {n,c}, 
; ,Ti ~ j e [o,N+1] (12) 

The goal of the optimization problem, defined by (4), is to minimize the average response lime of computational traffic, 
by determining the optimal routing matrices R^l, meeting the following constraints: (5) states that each ground unit must be 
connected to a single UAS; (6) ensures the aerial mesh is connected by analysing dimension of the kernel of the adjacency 
matrix’s Laplaciarr, (7) and (8) guarantee the validity of Open Jackson Network model; (9) and (10) state that all the packets 
leaving a network queue will flow to another network queue or to a computation queue, but only using active links; finally, 
(II) ensures the service time for type n traffic does not exceed a user-defined threshold 

RC multi-objective optimization problem is NP-hard since it is a generalization of the well-known splitlable flow problem 
[26], Therefore, we divide the original problem into two phases: first, we compute the routes for traffic type n toward the CCS. 
Then, based on such allocation, and the estimated network traffic congestion, we compute the routes for the computational 
data flows (type c). Fig. 4 shows the modules implementing each phase. The first module, namely Network Flow Optimization 
(NFO), generates the entries of the R1matrix as output. These values are taken as input by Computation Flow Optimization 
(CFO) module producing as output the final R('3 matrix. 
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Fig. 4: FOCUS optimization framework 

C. Network Flow Optimization (NFO) 

NFO algorithm determines the proper values of with i,j<N, i.e. the routing entries for the class n traffic directed to 
the CCS. Given the complexity of the original problem, we relax the constraint of (11), i.e. we determine the routing entries 
minimizing the average response time W(n). Formally: 

Definition 1. Given the set of available UASs ([/), the connection matrix (E/vxjv), the air-to-ground active links matrix (A.NxM) 
and the network requests set (F), the goal is to compute the network routing matrix R^I(n+2) sucl1 ^at the average response 
time for class n traffic is minimized. 

Algorithm 1: NFO algorithm 
t 
2 
3 

4 

5 

6 
7 
8 
9 
10: 
I 1: return 

NFO ((/, xa^AnxM^T) 
init FAf+lxW + 2 with — l {/^ > 0 is the cost of j being father of i} 
init C/v+i x N + 2 ct,j =: 0 {ci= 1 if j is a child for i} 

init Vi = false, = fl\n\ r\nj = 0, 1 < t, j < iV 

set //v+i,N+2 =0 {N+l is the GCS and Af+ 2 is a dummy node} 
while 3ufc s.L (u* — false)/\{3j s.t. fkj > 0)A{argminfc do 

Vk = true 
call updateUjmbdus(u jn+i ) 
call update Fat hersCost( TV + 2, u /y+i, 0) 
call updatcChildrenfUk) 

12; function updaicLambdas (uk) 
13: Xk 4— fife 
14: for all s.t. ckii = 1 do 
15: if Vi = true then 
16: Afc 4— Afc + ■ update Lamb dust u,) ) 

17: return Afc 

18: function updateFatltersCosl (j, uk, fullcost) 
19: fk,j <— fullcost 
20: for all Ui s.t. = 1 do 

21: updateFathersCostfk, Ui, ^n^(uk)) 

22: function updateChildren (ujt) 
23: for all Ui such that ek,t — 1 with ekfi € E do 
24: if Vi = false then 
25: ckii = 1 
26: for all Ui s.t Cfc » = 1 do 

27: fki^^\uk) 

2g. rM +__ 
Sfmi/j m>D) Ilfiui/j „ ^<Tl' (U“) 

Vj: fi.i > 0 

We address the problem by using a modified version of the Dijkstra algorithm for the Shortest Path Problem (SPP) over 
acyclic weighted graphs. To this purpose, we define the cost function for node u, (l;^(u£)) as a proxy of the average delay 
toward the GCS, computed as follows: 
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Fig. 5: A schematic view for a single step execution of Alg. 1 (lines 8 - 10). Here N=5 and active node in the step is u2. 

1 i r (") 
(n) _ > (n) + hi ' ri,j 

At Ai l<j<(N+2) 
(13) 

Here, the first fraction represents the average queuing delay at node iq, while the second one is the average delay of the path 
toward the GCS. We recall that the Dijkstra algorithm computes the shortest path between a source (or multiple sources) to a 
single destination. Unfortunately, the original algorithm does not fit our problem because: (/) the weight of the nodes/arcs is 
not static, since it may change over time as a specific node is included in the routing path of a flow toward the GCS; (ii) each 
node can have multiple paths towards the GCS, and exploit all of them concurrently. The proposed solution is described by 
Alg, 1. As in Dijkstra’s algorithm, we start building the shortest paths from the destination (the GCS in our case). In addition, 
we keep two auxiliary matrices as: 
1) F matrix keeps track of the network Hows costs. It includes the forward pointers from one node to its fathers, i.e. /(iJ € F 

is greater then zero if Uj is a father for ut towards the GCS and defines the path cost from Uj; 
2) C matrix keeps track of the incoming network flows. It includes the reverse pointers from one node to its subtree, i.e. 

Cij = 1 if node Uj is a child of node Uj, 0 otherwise. 
These two matrices are initialized at the beginning of Alg. I: line 3 for the C matrix and line 2 for the F matrix; here, as 
starting point we defined a father connection from the GCS to a dummy node (having index N+2) whose cost is set to zero 
(line 5).At each iteration, the algorithm performs a greedy selection over the nodes, by adding the one having the minimum 
cost towards the GCS to the solution set (line 6). Then, it updates the AjTl* and the matrices F (lines 8 and 9) and C (lines 
26-28). Finally, the algorithm updates R(,1J by balancing the outgoing traffic towards all the paths to minimize the total cost 
(line 28) equalizing (r,-"Z£(n)(uj)) values, Vj: fiti > O.For space reason, here we omit the check if > 1 in cases, which 
cost cannot be balanced over all the fathers. 

In Fig. 5, we depicted one step execution of Alg. 1. We visualize the three main functions updateLarabdas, updateFathersCost 
and updateChildren in a case where the active node is u2 and Hi is not yet visited. During updateLambdas method, 
the Hows goes from the leaves to the root (GCS) and all the A, are updated accordingly with the tree connections. Then, 
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updateFathersCost function updates the links' cost of each connection starting from Dummy-GCS connection (having 
/jv+3,at+2 = 0) and going down towards the leaves. Finally, the updateChildren function updates the routing values ■rn'1 

for all the children belonging to node U2. Since each node can have multiple paths towards the destination, the output of the 
proposed algorithm is a destination oriented directed acyclic graph rooted at the GCS, formally represented by R-n^ matrix. 

D. Computation Flow Optimization (CFO) 
CFO algorithm allocates tasks to computational resources, represented by the cloud or by UAS fog nodes. Based on the 

model in Section IV-A, this translates into determining the destination and path for class c packets. We model the problem 
as a weighted bipartite graph where (t) BR = {i>f, 6^,... } is the set of computational requests (per unit of time) to be 
executed, with \BH\ = Z]7.er7,-C)’ aild OO B1’ = {&f • • ■ } is the set of computational slots (again, per unit of time) 
available on the fog either on the cloud (\BP\ = V (06T(e) Fi'1)- Let C: x -r K be the weight function, representing 
the benefit of assigning a request in BR to a computational slot in Br. We consider an asymmetric assignment problem where 
the computational resources are strictly greater than the requests (satisfying the requirement of Equation 8), i.e. \BR\< \BP\. 
Let req(bj?) = Ui be the mapping function that returns the UAS generating the request b£; similarly, let pow(bf) — Uj be the 
function which returns to UAS providing computational slot bf, The aim of the assignment problem is to determine an optimal 
assignment set S = {(b^bf) : bR e BR,bp e Bp}, such that the total benefit £/6jt>6p)6SC(6f,if) is maximized, clearly 
subject to the constraints that each request must be assigned to a single slot and each slcit can host at most one computational 
request. 

Algorithm 2: CFO algorithm 
1: CFOf7,p,EWxJV,AJvvA,,r,Tt"),T'c>,S,,,Bp 
2: for attu, € U do 

3: if fl|"' > 0 then 

4: calculate Dijkslrafu;, C7C.S) 

5: update rj^, Vufc 6 U and Vuj in the calculated path 

6: update \jT,\ Vuj in the calculated path 

7: PL(6f) 4- {}. Vhf e 
8: while S doesn’t contains all the assignment for € Bn du 
9: calculate Dijkstra(it,, Vu, , Uj £ U 

10: update C(bf, € S'’ based on DijksL^regthJ*), pou;^)) 

11: execute one forward/reverse step of the auction algorithm 

12: if , 6j5 ^ is a new assignment then 

13: PL(bR) 4— D\}ksira(req(bR), pow(bf)) 

14: else if is removed as an assignment then 

15: PL(bR) 4— {} 

16: update all Ajc) and based on the path lists PL(bR), VbR € BR 

The proposed solution (given in Alg. 2) enhances the basic forward/reverse auction scheme described in [271 for the case of 
weights dynamically changing over time. Indeed, each assignment causes the modification of ( function due to the alteration 
of A.-c^ values for UASs residing on the chosen path (line 10). Hence, the algorithm implements a sequence of forward/reverse 
iterations, where at each iteration a rcqucst-slol assignment can be added/removed from the final result. Let PL(b!^) denote 
the list (line 7, 13, 15) containing the calculated path for each 6f, the benefit function b^) of assigning request bf to 
slot bf is modeled as follows: 

c(b?,0 = 
1 + cost(bp,bp) 

(14) 

where cost(bp: bp) is a proxy for the delay of traffic class c from UAS req(bp) to pow(bp), and can be calculated by 
considerinp the nn7n(shortect nath havino th#* (oi- —Uj) weight defined as: , / More considering the Dijkstra(req(6f),pow(6p)) shortest path having the edge (u* 

precisely, let PL(bp) = {req(bR),... ,pow(bp)} be the path used to reach pow(bp), then: 
-K 

cost(bR,bp) E _ (n) 

^uJce,P£(6ft) l‘k 
+ 

(<0 -(x^l .r(c) \ 
^ potii(bC) \ pow(b^) pow(b^),0J 

(15) 

E. Computational Complexity 
We now analyze Computational Complexity (CC) of FO-CUS where NFO algorithm is followed by CFO algorithm. 

NFO algorithm is based on the Dijkstra algorithm whose complexity is 0{N2) in its basic form. We see this complexity in 
the main while loop in line 6 of Algorithm l where the loop is executed N times and the argmin operator is O(N). Inside 
the loop, the computation is dominated by the functions updateLambdas and updateFathersCost that visit the whole graph to 
update the lambdas and cost variables. In conclusion, the CC of the NFO algorithm is 0(N3). 
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CFO algorithm copes with the asymmetric bipartite graph problem between two asymmetric sets: the computational requests 
set having cardinality \Bh\ and the computational slots set having cardinality The auction algorithm solves a generic 
asymmetric bipartite graph problem in 0(\B,*\\Bp ■ fog(n)), where n is a parametric value [27]. However, in our implemen¬ 
tation, we add an extra execution time for updating the cost matrix delined by the function £(bf, bp) (lines 4 and 5 in Alg. 
2). Dijkstra’s algorithm has a complexity of Q(N2) and the matrix update has complexity 0(|SH||Z3P|). This brings the total 
CCXoO{\BR\\Bp\-log{n)-{\BR\\Bp\ + N2)). 

V. FOCUS SYSTliMS-LEVEL IMPLEMENTATION 

One of the main contributions within FOCUS is the development of the middleware platform transforming the classical 
UAN into a joint sensing, forwarding and fog computing architecture. This middleware interacts with existing software blocks, 
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Fig. 7: Intel Aero Ready-to-Fly drone as an aerial OF switch 

such as those related to coordinating with the ground controller and SDN controller simultaneously. It receives both network 
and UAS information, and implements the necessary control directives originated from heuristic algorithms that centrally solve 
RC problem. As shown in Fig. 6, FOCUS is built on top of the OpenDayLight (ODL) SDN controller and DronecodeSDK 
[28]. The former orchestrates flows in the UAN being controlled by a RKST application programming interface (API) and the 
latter aggregates location information of the UASs and makes this information available to the controller via the telemetry 
adapter. Through these tightly coupled APIs, the network information required by the FOCUS is aggregated and forwarded 
to the sub-modules (NFO, CFO). These modules, residing in the offsite controller, in turn calculate the optimal allocation of 
network and computational Hows in the UAN and define routing matrices (R1"'1 and They then initiate control feedback 
Hows via HTTF requests through REST API back to the UAN. 

In addition to the control plane design, we also utilize Docker [29] and OpenVswitch [30] (OVS) on UASs at the data 
plane. Docker hosts a container with OpenCV library to run image processing as computational load (this can be swapped for 
other applications), while OVS connects to ODL as a traditional Openflow switch. SDNs arc classically installed on reliable 
(often wired) network connections where the control/data planes are not easily impaired. To bring more robustness to the 
UAN, we utilize a distributed 2nd-layer routing, called ‘Better Approach To Mobile Ad-hoc Networking’ (BATMAN) [31], 
It allows control directives and data to flow over through multiple different pathways to target UAS, even when direct link 
to the controller is impaired, albeit with an increased latency. Furthermore, it statistically determines the wireless link quality 
among the nodes and generates numerical values, which are aggregated at the software controller to estimate the throughput 
capacity on the links. This information is forwarded to FOCUS Optimization framework as seen in Fig. 6, for to be used in 
constructing of queue-based network model and in solving the optimization problem. 

VI. Performance Evai-Uation 

In this section, we validate the performance of FOCUS in terms of overall network traffic and computational response time, 
in two separate approaches. We conduct our experiments on a small scale UAN testbed, which consists of 4 UASs. The key 
insights from these experiments then are extended with large-scale simulations consisting of 40 UASs written in C. 

A. Results on small-scale testbed implementation 
We use two laptops as ground units and a high performance server as the control station, on where SDN controller (ODL), 

docker image with OpenCV libraries and dronecode flight controller run. 4 Intel Aero UASs create a mesh network with 4 hops 
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Fig. 8: (a)Testbed with 4 UASs, (b)Average computation time^.r.t. network load, (c)Max. computation capacity of the network 

between (he ground units and the server, as shown in Fig. 8a. The general hardware specifications are similar to Section III. 
During the experiment, UASs are positioned in hovering motion at 3-meter above the ground separated by 10-meter distances 
from each other and from the ground entities in the outdoor drone testing facility at Northeastern University. In our testbed, 
each UAS is equipped with three wireless interface cards (two RALINK WiFi dongles and one on-board Intel WiFi interface) 
as seen in Fig. 7, where each interface uses a non overlapping WiFi channel for different tasks. One of them is dedicated to 
the BATMAN protocol, another is used to create link between UASs and the last one is utilized for the link between ground 
units and UAS, on channels 1, 6, and 11, respectively. The UASs are positioned in such a way that Ground Unit I can only 
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connect with UAS I and Ground Unit 2 can connect with UAS 2, creating a separate data path for each ground unit to reach 
the server. A 780x480 pixels picture of file size 1024 Kilobits is used as payload for image processing. These payloads are 
created and forwarded with 200 msec average inter-generation time at each ground unit. We used Binary Robust Independent 
Elementary Features (BRIEF) [32] algorithm as a feature point descriptor on these images. The network load is emulated by 
creating UDP (lows from each ground unit to the server as shown in Fig. 7. We stress the network by gradually increasing the 
UDP data rate on both flows from 0 to 2Mbps. For comparison, we run other task allocation methods on the central controller: 
. Nearest first, where the computation is allocated to the nearest neighbor node initially. Based on the load conditions on the 

nearest neighbor, the task may be allocated to the next-nearest neighbor, and so on. 
• Local-only, where the computation task is sent only to the UAS, with which the ground unit has an active link. 
• App-Ser\’er only, where the all computation tasks should be done at the server. 

From Fig. 8b, we infer that the performance of FOCUS is better than the others under low to medium network load 
conditions, at around 150ms. It slowly begins to approach the computational response time of Nearest first as the network load 
increases to 2Mbps. This happens because with increasing network load, it becomes more beneficial for FOCUS to allocate 
computational tasks on the nodes nearest to the ground station (UAS 1 and 2) to mitigate the negative effects of forwarding 
delay on highly saturated links (e.g., the path from UAS 3 to 4). The Local-only approach performs worse because the task 
allocation is done to only those nodes that are within 1 hop from the ground station. This approach is quite immune to the 
increase in network load. However, the computation response time is higher than FOCUS because the task is not allocated 
to the optimal UAS, based on the global network knowledge. Doing the computing task on the server in the App-Server only 
approach is not scalable, since the computation response time increases exponentially with the network load. 

The maximum number of computational tasks that are handled per minute in the network under increasing network load is 
shown in Fig. 8c. FOCUS and Nearest first provide higher capacity running the most number of computations per minute. 
Local-only and App-server only approaches result in much less capacity in terms of computations per minute, since they are 
localized to certain specific nodes in the network. 

From these experimental results, we see that FOCUS incurs the minimum computation response time while having the 
capability to run the highest number of computations per minute, when compared to other classical methods. 

B, Simulation results 
Next, we evaluate the performance of FOCUS through a numerical simulation to study large scale scenarios. We consider 

a grid topology in which the UASs are placed at equal distances and are connected in a ‘cross formation’, where each UAS 
can have at most four neighbors. We then place the GCS at one corner of the grid using the model described in Section IV. 
We define Pc and Pn as the probability that each UAS will receive S!^1 and oj"' from the ground units, respectively. There 
are 40 UASs and we fix the value for the sets Y(c) and Y*"). Unless specified otherwise, we use these values for the model 
parameters: ^>+1 = l00, /4e) = 5, C^c) = 2, Q<n)=3 (in Mbps) and, P„-0.75, Pc = 0.8 . 

Fig. 9a shows yv(c) value generally increases with the only-network traffic. Here, we also show the Distance-based method 
that corresponds to a greedy algorithm in which a node sends its computation requests to the GCS only if its distance to the 
latter is less then half of the network graph diameter. Else, it shares the requests among its neighbors. The Local-only method 
is not affected by the network traffic; the App-Server only method works well with low traffic load but it is the worst when 
the traffic load become high. The Distance-based method combines both cloud computation and fog computation but as soon 
as the network become congested close to the GCS, the performance drops. Finally, FOCUS is able to cope with different 
traffic loads, slriking a balance between fog and cloud compulation. 

In Fig. 9b, we show how FOCUS distributes the computation requests along the UAN. Here we plot two values for Pn: 
0.25 and 0.75. We see when network traffic is high, the cloud (point 0 in x-axis) is not preferred. However, with lower Pn 
some computation occurs in the cloud. With low network load, the computation is largely contained in the middle section of 
the UAN (as the GCS is at one comer of the grid). At the same time, we have few UASs that are part of the only-network 
path towards the GCS while some others have their network queue empty. If we increase the Pn, we see the computation 
is spread uniformly around the network. This is because of a more uniform distribution of the intra-network bound packets. 
Thus, FOCUS dynamically distributes fog computation tasks around the network based on the traffic conditions. 

VII, Conclusion and Future Work 

We proposed a fog computing architecture, called FOCUS, for UAS software-defined mesh networks. We first showed that 
increasing CPU utilization of UAS has negligible effect on flight time, and characterized the trade-off between computation 
time/location under different network and computation loads. Then, we formulated the joint problem of network and computation 
flow optimization, with heuristics having well defined complexity, along with a systems-level implementation. Experiments 
and simulations validated the approach of allocating computational tasks in a principled manner, revealing over 32% latency 
improvement compared to greedy or end-server only allocation methods. 
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Fig. 9: (a) W^c) varying network-only traffic Pn, (b) Percentage of computation executed w.r.t. the distance from the GCS. 
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Abstract 

To deepen our understanding of graph neural networks, we investigate the repre¬ 
sentation power of Graph Convolutional Networks (GCN) through the looking 
glass of graph moments, a key property of graph topology encoding path of vari¬ 
ous lengths. We find that GCNs are rather restrictive in learning graph moments. 
Without careful design, GCNs can fail miserably even with multiple layers and 
nonlinear activation functions. We analyze theoretically the expressiveness of 
GCNs, concluding that a modular GCN design, using different propagation rules 
with residual connections could significantly improve the performance of GCN. 
We demonstrate that such modular designs are capable of distinguishing graphs 
from different graph generation models for surprisingly small graphs, a notoriously 
difficult problem in network science. Our investigation suggests that, depth is much 
more influential than width, with deeper GCNs being more capable of learning 
higher order graph moments. Additionally, combining GCN modules with different 
propagation rules is critical to the representation power of GCNs. 

1 Introduction 

The surprising effectiveness of graph neural networks [17] has led to an explosion of interests in 
graph representation learning, leading to applications from particle physics [12], to molecular biology 
[37] to robotics [4|. We refer readers to several recent surveys [7, 38, 33, 14] and the references 
therein for a non-exhaustive list of the research. Graph convolution networks (GCNs) are among the 
most popular graph neural network models. In contrast to existing deep learning architectures, GCNs 
are known to contain fewer number of parameters, can handle irregular grids with non-Euclidean 
geometry, and introduce relational inductive bias into data-driven systems. It is therefore commonly 
believed that graph neural networks can leant arbitrary representations of graph data. 

Despite their practical success, most GCNs are deployed as black boxes feature extractors for graph 
data. It is not yet clear to what extent can these models capture different graph features. One 
prominent feature of graph data is node permutation invariance: many graph structures stay the same 
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under relabelling or permutations of the nodes. For instance, people in a friendship network may be 
following a similar pattern for making friends, in similar cultures. To satisfy permutation invariance, 
GCNs assign global parameters to all the nodes by which significantly simplifies learning. But such 
efficiency comes at the cost of expressiveness: GCNs arc not universal function approximators [34], 
We use GCN in a broader sense than in [20], allowing different propagation rules (see below (4)). 

To obtain deeper understanding of graph neural networks, a few recent work have investigated the 
behavior of GCNs including expressiveness and generalizations. For example, [28] showed that 
message passing GCNs can approximate measurable functions in probability. [34, 24, 25] defined 
expressiveness as the capability of learning multi-set functions and proved that GCNs are at most as 
powerful as the Weisfeiler-Lehman test for graph isomorphism, but assuming GCNs with infinite 
number of hidden units and layers. [32] analyzed the generalization and stability of GCNs, which 
suggests that the generalization gap of GCNs depends on the eigenvalues of the graph fillers. However, 
their analysis is limited to a single layer GCN for semi-supervised learning tasks. Up until now, the 
representation power of multi-layer GCNs for learning graph topology remains elusive. 

In this work, we analyze the representation power of GCNs in learning graph topology using graph 
moments, capturing key features of the underlying random process from which a graph is produced. 
We argue that enforcing node permutation invariance is restricting the representation power of GCNs. 
We discover pathological cases for learning graph moments with GCNs. We derive the representation 
power in terms of number of hidden units (width), number of layers (depths), and propagation rules. 
Wc show how a modular design for GCNs with different propagation rules significantly improves 
the representation power of GCN-based architectures. We apply our modular GCNs to distinguish 
different graph topology from small graphs. Our experiments show that depth is much more influential 
than width in learning graph moments and combining different GCN modules can greatly improve 
the representation power of GCNs. 3 

In summary, our contributions in this work include: 

• We reveal the limitations of graph convolutional networks in learning graph topology. For 
learning graph moments, certain designs GCN completely fails, even with multiple layers 
and non-linear activation functions. 

• we provide theoretical guarantees for the representation power of GCN for learning graph 
moments, which suggests a strict dependence on the depth whereas the width plays a weaker 
role in many cases. 

• We take a modular approach in designing GCNs that can learn a large class of node 
permutation invariant function of of the graph, including non-smooth functions. We find 
that having different graph propagation rules with residual connections can dramatically 
increase the representation power of GCNs. 

• We apply our approach to build a “graph stethoscope”: given a graph, classify its generating 
process or topology. We provide experimental evidence to validate our theoretical analysis 
and the benefits of a modular approach. 

Nutation and Definitions A graph is a set of N nodes connected via a set of edges. The adjacency 
matrix of a graph A encodes graph topology, where each element Aij represents an edge from node 
1 to node j. We use AB and A • B (if more than two indices may be present) to denote the matrix 
product of matrices A and B. All multiplications and exponentiations are matrix products, unless 
explicitly stated. Lower indices Aij denote i, jth elements of A, and At means the ith row. Ap 
denotes the pth matrix power of A. We use a(m'> to denote a parameter of the mth layer. 

2 Learning Graph Moments 

Given a collection of graphs, produced by an unknown random graph generation process, learning 
from graphs requires us to accurately infer the characteristics of the underlying generation process. 
Similar to how moments ElX'’] of a random variable X characterize its probability distribution, 
graph moments [5, 23] characterize the random process from which the graph is generated. 

1 All code and hyperparameters are available at https://github.com/nimadehjnainy/ 
Understanding-GCN 
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2.1 Graph moments 

In genera], a pth order graph moment Mp is the ensemble average of an order p polynomial of A 
p 

Mp(A) = l[(AWq + Bq) (1) 
9=1 

with Wq and Bq being N x N matrices. Under the constraint of node permutation invariance, VUrj 
must be either proportional to the identity matrix, or a uniform aggregation matrix. Formally, 

M(,4) = A W + B, Node Permutation Invariance => W,B = cl, or W,B = cllT (2) 

where lisa vector of ones. Graph moments encode topological information of a graph and are useful 
for graph coloring and Hamiltonicity. For instance, graph power Ap- counts the number of paths 
from node i to j of length p. For a graph of size N, A has N eigenvalues. Applying eigenvalue 
decomposition to graph moments, we have = E[(VTAt/)p]) = VTW,[AP]U. Graphs moments 
correspond to the distribution of the eigenvalues A, which are random variables that characterize the 
graph generation process. Graph moments are node permutation invariant, meaning that relabelling 
of the nodes will not change the distribution of degrees, the paths of a given length, or the number of 
triangles, to name a few. The problem of learning graph moments is to learn a functional approximator 
F such that F : A MP{A), while preserving node permutation invariance. 

Different graph generation processes can depend on different orders of graph moments. For example, 
in Barabasi-Albert (BA) model [1], the probability of adding a new edge is proportional to the degree, 
which is a lirst order graph moment. In diffusion processes, however, the stationary distribution 
depends on the normalized adjacency matrix A as well as its symmetrized version As, defined as 
follows: 

Aj = Sij A*k A = n'A A, = D-^2AD-1/2 (3) 
k 

which are not smooth functions of A and have no Taylor expansion in A, because of the inverse D-1. 
Processes involving D~1 and A are common and per (2) D and Tr[A] are the only node permutation 
invariant first order moments of A. Thus, in order to approximate more general node permutation 
invariant F(A), it is crucial for a graph neural network to be able to learn moments of A, A and A, 
simultaneously. In general, non-smooth functions of A can depend on A~l, which may be important 
for inverting a diffusion process. We will only focus on using A, A and As here, but all argument 
hold also if we include A-1, A-1 and Aj1 as well. 

2.2 Learning with Fully Connected Networks 

Consider a toy example of learning the first order moment. Given a collection of graphs with 
= 20 nodes, the inputs are their adjacency matrices A, and the outputs are the node degrees 

Di = E;=1 At For a fully connected (FC) neural network, it is a rather simple task given its 
universal approximation power f!9]. However, aFC network treats the adjacency matrices as vector 
inputs and ignores the underlying graph structures, it needs a large amount of training samples and 
many parameters to leant properly. 

Fig. 1 shows the mean squared error (MSE) of a single layer FC network in learning the first order 
moments. Each curve corresponds to different number of training samples, ranging from 500-10,000. 
The horizontal axis shows the number of hidden units. We can see that even though the network can 
learn the moments properly reaching an MSE of « 10-4, it requires the same order of magnitude 
of hidden units as the number of nodes in the graph, and at least 1,000 samples. Therefore, FC 
networks arc quite inefficient for learning graph moments, which motivates us to took into more 
power alternatives: graph convolution networks. 

2.3 Learning with Graph Convolutional Networks 

We consider the following class of graph convolutional networks. A single layer GCN propagates the 
node attributes h using a function /(A) of the adjacency matrix and has an output given by 

F(A,h) = a(f(A)-h-W + b) (4) 
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Figure i: Learning graph 
moments (Erdos-Renyi graph) 
with a single fully-connected 
layer. Best validation MSE 
w.r.t number of hidden units 
n and the number of samples 
in the training data (curves of 
different colors). 

Figure 2: Learning the degree of nodes in a graph with a single 
layer of GCN. When the GCN layer is designed as a(A ■ h ■ W) 
with linear activation function er(a;) — x, the network easily learns 
the degree (a). However, if the network uses the propagation rule 
as ■ h ■ W), it fails to learn degree, with very high MSE 
loss (b). The training data were instances of Barabasi-Albert 
graphs (preferential attachment) with N = 20 nodes and m = 2 
initial edges. 

where / is called the propagation rule, hi is the attribute of node i, W is the weight matrix and 
6 is the bias. As we are interested in the graph topology, we ignore the node attributes and set 
hi = 1. Note that the weights W are only coupled to the node attributes h but not to the propagation 
rule f(A). The definition in Eqn (4) covers a broad class of GCNs. For example, GCN in [20] 
uses / = D'~l^2AD~1^2. GraphSAGE [16] mean aggregator is equivalent to / = D~1A. These 
architectures are also special cases of Message-Passing Neural Networks [13]. 

We apply a single layer GCN with different propagation rules to learn the node degrees of BA graphs. 
With linear activation a(x) = x, the solution for learning node degrees is f{A) = A, W = 1 and 
6 = 0. For high-order graph moments of the form Mp = a single layer GCN has to 
learn the function f(A) = Ap. As shown in Figure 2, a single layer GCN with f(A) = A can learn 
the degrees perfectly even with as few as 50 training samples for a graph of N = 20 nodes (Fig. 
2a). Note that GCN only requires 1 hidden unit to learn, which is much more efficient than the FC 
networks. However, if we set the learning target as f{A) = D~[A, the same GCN completely fails at 
learning the graph moments regardless of the sample size, as shown in Fig. 2b. This demonstrates the 
limitation of GCNs due to the permutation invariance constraint. Next we analyze this phenomena 
and provide theoretical guarantees for the representation power of GCNs. 

3 Theoretical Analysis 

To learn graph topology, fully connected layers require a large number of hidden units. The following 
theorem characterizes the representation power of fully connected neural network for learning graph 
moments in terms of number of nodes N, order of moments p and number of hidden units n. 
Theorem 1. A fully connected neural network with one hidden layer requires n > 0\ Cj) ~ 
0(p2N2r‘) number of neurons in the best case with 1 < q < 2 to learn a graph moment of order p for 
graphs with N nodes. Additionally, it also needs S > O(nd) ~ O (p2N2q+2) number of samples to 
make the learning tractable. 

Clearly, if a FC network fully parameterizes every element in a iV x JV adjacency matrix A, the 
dimensions of the input would have to be d = N2. If the FC network allows weight sharing among 
nodes, the input dimension would be d = JV. The Fourier transform of a polynomial function of 
order p with 0(1) coefficients will have an Lj norms of Cr ~ 0{p). Using Barron’s result [2] with 
d = Nq, where 1 < <? < 2 and set the O/ ~ 0{p), we can obtain the approximation bound. 

In contrast to fully connected neural networks, graph convolutional networks are more efficient in 
learning graph moments. A graph convolution network layer without bias is of the form: 

F[A,h)=o{f{A)-hW) (5) 

Permutation invariance restricts the weight matrix W to be either proportional to the identity matrix, 
or a uniform aggregation matrix, see Eqn. (2). When W = cl, the resulting graph moment Mp(A) 
has exactly the form of the output of a p layer GCN with linear activation function. 
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Wc first show, via an explicit example, that a n < p layer GCN by stacking layers of the form in Eqn. 
(5) cannot learn pth order graph moments. 

Lemma 1. A graph convolutional network with n < p layers cannot, in general, learn a graph 
moment of order p for a set of random graphs. 

We prove this by showing a counterexample. Consider a directed graph of two nodes with adjacency 

matrix A = Suppose we want to use a single layer GCN to learn the second order moment 

f[A)i = = Ylk AikDk- The node attributes hu are decoupled from the propagation rule 
f(A)i. Their values are set to ones hn = 1, or any values independent of A. The network tries to 
learn the weight matrix Wi^ and has an output of the form 

^7? =<r(A'h* = c ^ ^ A-ij hjiWin (6) 

Lor brevity, define Setting the output to the desired function A ■ D, with 
components = ab, (hence p. can only be 1) and plugging in A, the two components of 
the output become 

& (DiVip) = tr (aVin) = ab = a (£>2 V^) = a = a.b. (7) 

which must be satisfied Va, b. But it's impossible to satisfy a (o.Vj^) = ab for (a, 6) £ M2 with Vi^ 
and a(') independent of 0, fc. □ 
Proposition 1. A graph convolutional network with n layers, and no bias terms, in general, can 
learn f(A)i = (A”)^ only if n = p or n > p if the bias is allowed. 

If we use a two layer GCN to learn a first order moment f(A)i = Yj Aij = Di, for the output of 

the second layer we have 

h.™ = (A • rrW (A h- W^) ■ W™) , h[2j = a™ ^,,0) (bV(^ j = a (8) 

Again, since this must hold for any value of a, b and //, we see that h^J is a function of b through the 
output of the first layer h^l. Thus h[2J = a can only be satisfied if the first layer output is a constant. 
In other words, only if the first layer can be bypassed (e.g. if the bias is large and weights are zero) 
can a two-layer GCN learn (he first order moment. □ 

This result also generalizes to multiple layers and higher order moments in a straightforward fashion. 
For GCN with linear activation, a similar argument shows that when the node attributes h are not 
implicitly a function of A, in order to learn the function Yj we neeclt0 have exactly n = p 
GCN layers, without bias. With bias, a feed-forward GCN with n > p layers can learn single term 
order p moments such as Yj However, since it needs to set the some weights of n - p layers 
to zero, it can fail in learning mixed order moments such as Yj{A'' + Ap)ij. 

To allow GCNs with very few parameters to learn mixed order moments, we introduce residual 
connections 118] by concatenating the output of every layer [fi/1),,,., to the final output of the 
network. This way, by applying an aggregation layer or a FC layer which acts the same way on the 
output for every node, wc can approximate any polynomial function of graph moments. Specifically, 
the final N x d° output of the aggregation layer has the form 

h(finai) =0(^2 , /i(m) = v(A ■ (9) 

where • acts on the output channels of each output layers. The above results lead to the following 
theorem which guarantees the representation power of multi-layer GCNs with respect to learning 
graph moments. 
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Figure 4: Test loss over number of epochs for learning first (top), second (middle) and third (bottom) 
order graph moments Mp(A) = with varying number of layers and different activation 
functions. A multi-layer GCN with residual connections is capable of learning the graph moments 
when the number of layers is at least the target order of the graph moments. The graphs are from our 
synthetic graph dataset described in Sec. 6. 

Theorem 2. With the number of layers n greater or equal to the order p of a graph moment Mp(A), 
graph convolutional networks with residual connections can learn a graph moment Mp with 0(p) 
number of neurons, independent of the size of the graph. 

Theorem 2 suggests that the representation power of GCN has a strong dependence on the number 
of layers (depth) rather than the size of the graph (width). It also highlights the importance of 
residual connections. By introducing residual connections into multiple GCN layers, we can learn 
any polynomial function of graph moments with linear activation. Interestingly, Graph Isomophism 
Network (GIN) proposed in [341 uses the following propagation rule: 

F(A,h) = o([(\+c)I + A]-h-W) (10) 

which is a special case of our GCN with one residual connection between two modules. 

4 Modular GCN Design 

In order to overcome the limitation of the GCNs in learn¬ 
ing graph moments, we take a modular approach to GCN 
design. We treat different GCN propagation rules as 
different “modules” and consider three important GCN 
modules (1) fi = A [22] (2) /2 = D^A [20], and (3) 
/a = D~l^2AD~1^2 [16], Figure 3a) shows the design 
of a single GCN layer where we combine three different 
GCN modules. The output of the modules are concate¬ 
nated and fed into a node-wise FC layer. Note that our 
design is different from the multi-head attention mech¬ 
anism in Graph Attention Network [31] which uses the 
same propagation rule for all the modules. 

However, simply stacking GCN layers on top of each other 
in a feed-forward fashion is quite restrictive, as shown by 
our theoretical analysis for multi-layer GCNs. Different 

a) The Full GCN module b) Residual Architecture 

A.h 

GCN 

.--A 
GCN 

Concatv 

l 
Output 

Figure 3: GCN layer (a), using three dif¬ 
ferent propagation rules and a node-wise 
FC layer. Using residual connections (b) 
allows a n-layer modular GCN to learn 
any polynomial function of order n of its 
constituent operators. 
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propagation rules cannot be written as Taylor expansions of each other, while all of them are important 
in modeling the graph generation process. Hence, no matter how many layers or how non-linear 
the activation function gets, multi-layer GCN stacked in a feed-forward way cannot learn network 
moments whose order is not precisely the number of layers. If we add residual connections from the 
output of every layer to the final aggregation layer, we would be able to approximate any polynomial 
functions of graph moments. Figure 3b) shows the design of a muli-layer GCN with residual 
connections. We stack the modular GCN layer on top of each other and concatenate the residual 
connections from every layer. The final layer aggregates the output from all previous layers, including 
residual connections. 

We measure the representation power of GCN design in learning different orders of graph moments 
MP(A) — Ylj w'th P = 1)2,3. Figure 4 shows the test loss over number of epochs for 
learning first (top), second (middle) and third (bottom) order graph moments. We vary the number of 
layers from 1 to 4 and test with different activation functions including linear, ReLU, sigmoid and 
tanh. Consistent with the theoretical analysis, we observe that whenever the number of layers is at 
least the target order of the graph moments, a multi-layer GCN with residual connections is capable of 
learning the graph moments. Interestingly, Jumping Knowledge (JK) Networks [35] showed similar 
effects of adding residual connections for Message Passing Graph Neural Networks. 

Our modular approach demonstrates the importance of architectural design when using specialized 
neural networks. Due to permutation invariance, feed-forward GCNs are quite limited in their 
representation power and can fail at learning graph topology. However, with careful design including 
different propagation rules and residual connections, it is possible to improve the representation power 
of GCNs in order to capture higher order graph moments while preserving permutation invariance. 

5 Related Work 

Graph Representation Learning There has been increasing interest in deep learning on graphs, 
see e.g. many recent surveys of the field [7, 38, 33]. Graph neural networks [22, 20, 17] can learn 
complex representations of graph data. For example, Hopfield networks [28, 22] propagate the 
hidden slates to a fixed point and use the steady state representation as the embedding for a graph; 
Graph convolution networks [8, 20] generalize the convolutional operation from convolutional neural 
networks to learn from geometric objects beyond regular grids. [211 proposes a deep architecture 
for long-term forecasting of spatiotemporal graphs. [37] learns the representations for generating 
random graphs sequentially using an adversarial loss at each step. Despite practical success, deep 
understanding and theoretical analysis of graph neural networks is still largely lacking. 

Expressiveness of Neural Networks Early results on the expressiveness of neural networks take a 
highly theoretical approach, from using functional analysis to show universal approximation results 
[19], to studying network VC dimension [3]. While these results provided theoretically general 
conclusions, they mostly focus on single layer shallow networks. For deep fully connected networks, 
several recent papers have focused on understanding the benefits of depth for neural networks 
[11, 29, 28, 27]) with specific choice of weights. For graph neural networks, [34, 24, 25] prove 
the equivalence of a graph neural network with Weisfeiler-Lehman graph isomorphism test with 
infinite number of hidden layers. [32] analyzes the generalization and stability of GCNs, which 
depends on eigenvalues of the graph filters. However, their analysis is limited to a single layer GCN 
in the semi-supervised learning setting. Most recently, [10] demonstrates the equivalence between 
infinitely wide multi-layer GNNs and Graph Neural Tangent Kernels, which enjoy polynomial sample 
complexity guarantees. 

Distinguishing Graph Generation Models Understanding random graph generation processes 
has been a long lasting interest of network analysis. Characterizing the similarities and differences of 
generation models has applications in. for example, graph classification: categorizing a collections of 
graphs based on either node attributes or graph topology. Traditional graph classification approaches 
rely heavily on feature engineering and hand designed similarity measures [30, 15]. Several recent 
work propose to leverage deep architecture [6, 36, 9] and learn graph similarities at the representation 
level. In this work, instead of proposing yet another deep architecture for graph classification, we 
provide insights for the representation power of GCNs using well-known generation models. Our 
insights can provide guidance for choosing similarity measures in graph classification. 
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6 Graph Stethoscope: Distinguishing Graph Generation Models 

An important application of learning graph moments is to distinguish different random graph genera¬ 
tion models. For random graph generation processes like the BA model, the asymptotic behavior 
(N —i- oo) is known, such as scale-free. However, when the number of nodes is small, it is generally 
difficult to distinguish collections of graphs with different graph topology if the generation process is 
random. Thus, building an efficient tool that can probe the structure of small graphs of Af < 50 like a 
stethoscope can be highly challenging, especially when all the graphs have the same number of nodes 
and edges. 

BA vs. ER. We consider two tasks for graph stethoscope. In the first setting, we generate 5,000 
graphs with the same number of nodes and vary the number of edges, half of which are from the 
Barabasi-Albert (BA) model and the other half from the Erdos-Renyi (ER) model. In the BA model, 
a new node attaches to m existing nodes with a likelihood proportional to the degree of the existing 
nodes. The 2,500 BA graphs are evenly split with m = I, N/8,7V/4,3AT/8, N/2. To avoid the bias 
from the order of appearance of nodes caused by preferential attachmenl, we shuflle the node labels. 
ER graphs are random undirected graphs with a probability p for generating every edge. We choose 
four values for p uniformly between l/N and Ar/2. All graphs have similar number of edges. 

BA vs. Configuration Model One might argue that distinguishing BA from ER for small graphs 
is easy as BA graphs are known to have a power-law distribution for the node degrees [1], and 
ER graphs have a Poisson degree distribution. Hence, we create a much harder task where 
we compare BA graphs with “fake” BA graphs where the nodes have the same degree but all 
edges are rewired using the Configuration Model [26] (Conlig.). The resulting graphs share ex¬ 
actly the same degree distribution. Wc also find that higher graph moments of the Config BA 
are difficult to distinguish from real BA, despite the Config. model not fixing these moments. 
Distinguishing BA and Config BA is very difficult using stan¬ 
dard methods such as a Kolmogorov-Smimov (KS) test. KS test 
measures the distributional differences of a statistical measure 
between two graphs and uses hypothesis testing to identify the 
graph generation model. Figure 5 shows the KS test values for 
pairs of real-real BA (blue) and pairs of real-fake BA (orange) 
w.r.t different graph moments. The dashed black fines show the 
mean of the KS test values for real-real pairs. We observe that the 
distributions of differences in real-real pairs are almost the same 
as those of real-fake pairs, meaning the variability in different 
graph moments among real BA graphs is almost the same as that 
between real and Config BA graphs. 

Classification Using our GCN Module Wc evaluate the classification accuracy for these two 
settings using the modular GCN design, and analyze the trends of representation power w.r.t network 
depth and width, as well as the number of nodes in the graph. Our architecture consists of layers 
of our GCN module (Fig. 3, linear activation). The output is passed to a fully connected layer 
with softmax activation, yielding and N x c matrix (TV nodes in graph, c label classes). The final 

Table 1: Test accuracy with dif¬ 
ferent modules combinations for 
BA-ER. /i = A, f2 = D^A, 
and f3 = 

Modules Accuracy 

/, 53.5 % 
/3 76.9 % 

h,h 89.4 % 
/i,/2,/3 98.8 % 

Figure 5: Distribution of Kolmogorov-Smimov (KS) test values for differences between graph the 
first four graph moments ‘n tlle dataset, “real-real” shows the distribution of KS test when 
comparing the graph moments of two real instances of the BA. All graphs have TV = 30 nodes, but 
varying number of links. The “real-fake” case does the KS test for one real BA against one fake BA 
created using the configuration model. 
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Unear GCN activation. BA vs Configuration Model, pruned 

Figure 6: Classify graphs of Barabasi-AIbcrt model vs, Erdos-Renyi model (top) and Barabasi- 
Albert model vs. configuration model (bottom). Left: test accuracy with respect to network depth 
for different number of nodes (N) and number of units (U). Right: test accuracy with respect to graph 
size for different number of layers (L) and number of units (U). 

classification is found by mean-pooling over the N outputs. We used mean-pooling to aggregate 
node-level representations, after which a single number is passed to a classification layer. Figure 6 
left column shows the accuracy with increasing number of layers for different number of layers and 
hidden units. We find that depth is more intluential than width: increasing one layer can improve the 
test accuracy by at least 5%, whereas increasing the width has very little effect. The right column is 
an alternative view with increasing size of the graphs. It is clear that smaller networks are harder to 
learn, while for AT > 50 nodes is enough for 100% accuracy in BA-ER case. BA-Config is a much 
harder task, with the highest accuracy of 90%, 

We also conduct ablation study for our modular GCN design. Table 1 shows the change of test 
accuracy when we use different combinations of modules. Note that the number of parameters are 
kept the same for all different design. We can see that a single module is not enough to distinguish 
graph generation models with an accuracy close to random guessing. Having all three modules with 
different propagation rules leads to almost perfect discrimination between BA and ER graphs. This 
demonstrates the benefits of combining GCN modules to improve its representation power. 

7 Conclusion 

We conduct a thorough investigation in understanding what can/cannot be learned by GCNs. We 
focus on graph moments, a key characteristic of graph topology. We found that GCNs are rather 
restrictive in learning graph moments, and multi-layer GCNs cannot learn graph moments even with 
nonlinear activation. Theoretical analysis suggests a modular approach in designing graph neural 
networks while preserving permutation invariance. Modular GCNs are capable of distinguishing 
different graph generative models for surprisingly small graphs. Our investigation suggests that, for 
learning graph moments, depth is much more influential than width. Deeper GCNs are more capable 
of teaming higher order graph moments. Our experiments also highlight the importance of combining 
GCN modules with residual connections in improving the representation power of GCNs. 
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