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FOREWORD

The interaction of electrons and phonons with the properties of semiconducting crys-

tals continues to be a fascinating and highly fruitful field of study. This dissertation

addresses two research problems under the general heading of electron and phonon

effects on the optical properties of indirect gap semiconductors. The first problem

addresses nonlinear (multi-photon) absorption in germanium crystals, a topic of in-

terest for the telecommunications industry as well as to the basic scientist. As will

be shown, a straightforward analysis of transmission measurements is rapidly compli-

cated by the effects of photo-excited electrons, requiring numerical approaches. The

second problem concerns the optical characteristics of ion-bombarded diamond crys-

tals, which is a swiftly developing field due to diamond’s current status as the material

of choice for hosting photonic and quantum information devices. This study employs

phonon effects, specifically an ultrafast optical technique called coherent acoustic

phonon interferometry, to measure the implantation-induced optical modifications.

A quantitative model for those modifications is then developed using numerical sim-

ulations.

Summary of Contents

Part one of this work, Multiphoton Absorption in Germanium, consists of the fol-

lowing: Chapter I (Introduction) introduces nonlinear absorption phenomena and

xii



describes their importance, Chapter II (Literature Review) gives an overview of ex-

perimental and theoretical approaches to measuring and predicting nonlinear absorp-

tion, Chapter III (Experiment and Simulation) presents the results of experimental

studies of germanium multiphoton absorption, and the numerical simulations used to

interpret them.

The contents of the second part of this dissertation, Coherent Acoustic Phonon In-

terferometry of Ion Implantation Defects in Diamond Crystals, are as follows: Chap-

ter IV (Introduction) motivates the study of the optical properties of diamond, and

describes the research problem. Chapter V (Literature Review) provides an overview

of the current state of knowledge with respect to the optical properties of diamond,

ion implantation in diamond, and the CAP technique. Chapter VI (Experiment) will

detail the experimental methods used in these studies and discuss the results of the

CAP experiments, along with a comparison to TEM. The numerical simulations and

the quantitative model will be discussed in Chapter VII (Phenomenological Model).

Finally, a brief Conclusions chapter summarizes the scientific results from both

parts of this dissertation.
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PART ONE:

MULTIPHOTON ABSORPTION

IN GERMANIUM



CHAPTER I

INTRODUCTION

This introductory chapter provides a brief overview of nonlinear absorption phenom-

ena and introduces some of the factors which can complicate an otherwise straight-

forward analysis of multiphoton absorption in germanium, particularly the role of

photo-excited electrons. Following that is a statement of work describing the research

project, and a discussion of the scope and limitations of the project.

I.1 Research Problem

I.1.1 Linear Absorption

Ordinary linear absorption in semiconductors may be described as a one-step pro-

cess whereby an electron is photo-excited from the valence band to the conduction

band, absorbing one photon of energy ~ω. (See Figure 1a.) From the macroscopic

standpoint of an optical pulse propagating through a linearly absorbing region, the

absorption is described by an absorption coefficient α, such that

∂I

∂z
= −αI, (1)
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where I is the optical intensity (power per unit area) of the pulse and z is sample

depth. This equation leads directly to the Beer-Lambert law for a pulse of initial

intensity I0 traveling a distance z through a linearly absorbing region:

I(z) = I0e
−αz. (2)

The optical transmittance T (or often, ‘transmission’) of an absorbing region of thick-

ness L is defined as the ratio of incoming and outgoing intensities, T = I/I0. Thus,

T = e−αL. (3)

Linear transmittance therefore depends on the thickness of the region under study,

but has no dependence on the initial intensity of the incident light.

(a) One-photon (b) Two-photon direct (c) Two-photon indirect

Figure 1: Various types of optical absorption, each resulting in the creation of a single
electron-hole pair. Two-photon indirect absorption (1c) in the bulk is assisted by the
creation or annihilation of a phonon with momentum ~q.
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I.1.2 Nonlinear Absorption

The widespread availability of lasers in the last several decades has allowed the ob-

servation of nonlinear absorption and refraction effects. Such processes have been

used to demonstrate the generation of low, evenly-distributed carrier densities, [1]

optical limiting, [2,3] optical switching, [4] holography, [5] and laser frequency tuning

by optical parametric oscillation. [6]

In semiconductor multiphoton absorption processes, a valence band electron at-

tains to the conduction band by simultaneously absorbing two or more photons. Any

or all of these photons may have sub-band-gap energies (see Figure 1b). Such cases

are usually understood using the concept of virtual states, [7] with uncertainty rela-

tionships restricting virtual state lifetimes to the order of 10−15 s. Such short lifetimes

impose an upper limit on the time in which the absorption of multiple photons must

occur, therefore very high photon densities (i.e., I > 106 W/cm2, as may be produced

using lasers) are required. The necessary intensity to observe an n-photon absorption

process increases roughly as In.

The more general form of Equation 1, including multiphoton transitions, is

∂I

∂z
= −αI − βI2 − γI3 . . . , (4)

where the coefficient β (usually in cm/GW) describes two-photon absorption, γ

(cm3/GW2) describes three-photon absorption, and so on for higher-order processes.

All of these coefficients are functions of the energies of the absorbed photons. Thus,

in the general case, β = β(ω1, ω2), γ = γ(ω1, ω2, ω3), etc. If all of the absorbed

photons have the same frequency (ω1 = ω2 = . . . = ω), the process is referred to as

degenerate.

Typically, absorption phenomena are dominated by the lowest-order allowed pro-

cess. For instance, in the case where ~ω < Eg < 2~ω, one-photon absorption is
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forbidden (i.e., α(ω) → 0), and three-photon absorption is usually relatively weak

(γI � β). Thus, the two-photon transition dominates. In any case where two or more

orders of transition are allowed, one may define a critical intensity Ic = k(n)/k(n+1),

where k(n) is the absorption coefficient of an n-th order transition. For incoming

intensities I ∼ Ic, the higher-order transition must be considered. If I � Ic, the

higher-order transition will dominate.

In the intensity and wavelength regime where two-photon absorption is the only

significant transition process,

∂I

∂z
= −βI2. (5)

Solving this equation analogously to the Beer-Lambert Law and deriving the trans-

mittance yields, for a two-photon absorbing region of thickness L,

T =
1

βLI0 + 1
. (6)

Note that transmittance is now a nonlinear function of incident intensity, as shown

in Figure 2. Generally in multiphoton absorption, the greater the incoming intensity,

the smaller the transmittance.

Experimental techniques for determining nonlinear absorption coefficients are de-

scribed in detail in Section II.1.2. Typically, the transmittance of a beam is measured

as a function of incident intensity and fitted to an equation such as Equation. 6, but

these measurements are usually complicated by the presence of photo-excited carriers,

as described further below.

I.1.3 Germanium

The electronic and optical properties of germanium make it a very interesting material

for the study of multiphoton absorption. Germanium has an indirect band gap of

0.66 eV at the Γ point, and a direct gap only slightly higher at 0.8 eV. Figure 3

5



0.0

0.2

0.4

0.6

0.8

1.0

 0.01  0.1  1  10  100  1000
T

ra
ns

m
it

ta
nc

e

Intensity (GW/cm2)

β (cm/GW)
0.1

1
10

100

Figure 2: Theoretical transmission curves as a function of incoming intensity for
a 1 cm-thick sample with various values of β, based on Equation 6. Reflection at
surfaces is ignored.

shows the detailed band structure of germanium. This band configuration provides

a relatively even distribution of absorption onset wavelengths, as shown in Figure 4.

In general, indirect multiphoton absorption (see Figure 1c) is expected to be much

weaker than the direct case, due to the required participation of an added phonon.

Therefore, if one has a range of available experimental wavelengths similar to that

shown in Figure 4, by scanning up in photon energy it should be possible to observe

the onset of each new type of absorption.

Despite these unique properties, multiphoton absorption in germanium has been

studied relatively little in comparison with other semiconductors. In addition, there

is no strong agreement in the literature on the actual absorption coefficients (see

Section II.2.2), and reported values can vary by several orders of magnitude. At least

one cause for these discrepancies appears to the effect of photogenerated carriers.

Once an electron-hole pair has been created by multiphoton absorption, either of the

two carriers may be subsequently excited to higher energy bands in a single-photon

absorption process. Thus, Equation 5 becomes

∂I

∂z
= −βI2 − σeNeI − σhNhI, (7)
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where Ne and Nh are the electron and hole densities, and σe and σh are the respective

absorption cross sections. These cross sections are likely to be dependent on the

energy states of these particles, which may not reach equilibrium on the ultrafast time

scales of current laser pulses. Generated carriers can modulate the optical properties

of the sample, causing enhanced reflection, absorption saturation, and beam deflection

due to changes in refractive index. In addition, the carrier densities will vary with

time and space in the sample so that diffusion, recombination, self-thermalization,

intervalley scattering, stimulated emission, and lattice thermalization may all become

important. In these cases, analytical solutions to the underlying differential equations

are generally unavailable, and numerical methods must be used. Though some efforts

have been made to address these issues (see Section II.2.1), much more work is needed

to develop a clear understanding of the complex interactions involved, and to develop

the tools for accurate analysis of experimental data.

I.2 Statement of Work

In this study, the question of multiphoton absorption in germanium is addressed us-

ing a two-pronged approach consisting of experiment and numerical calculations. The

experimental work makes use of the Vanderbilt Free Electron Laser, a source uniquely

suited for these studies, and the numerical calculations allow for the consideration of

excited carrier effects. Using this combination of experimental and simulation tech-

niques, multiphoton absorption coefficients are derived in the 2.8 µm–5.2 µm wave-

length range, which accesses direct and indirect absorption regimes for both two- and

three-photon absorption. The experimental and numerical techniques are described

in detail in the chapters that follow, as well the limitations of those techniques, and

how those limitations may influence the derived quantities.
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I.3 Scope and Limitations

A clear understanding of carrier dynamics in germanium is required in the develop-

ment of accurate computer simulations of multiphoton absorption phenomena. Like-

wise, nonlinear refraction must be considered to some extent as a possible beam

modulation mechanism, and is developing into a significant field of study. [3, 10–13]

However, the primary focus of this work is intended to be multiphoton absorption,

and these areas will only be addressed to the extent necessary to correctly describe

the observed absorption-related phenomena.
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CHAPTER II

LITERATURE REVIEW

In this chapter the theoretical and experimental techniques for the study of multi-

photon absorption in semiconductors are generally described, followed by the results

of particular applications of both theory and experiment to germanium. After that

is a brief description of experiments studying free carrier dynamics in germanium.

II.1 Nonlinear Absorption in Semiconductors

Two thorough reviews of nonlinear optical phenomena in semiconductors have been

written by Nathan [1] and Garmine. [5] The material presented here includes many

works cited in these articles, as well as some more recent reports.

II.1.1 Theory

Multiphoton absorption processes were first explored theoretically by Maria Göppert-

Mayer in 1931. [14] She predicted both multiphoton absorption and multiphoton

emission. However, such effects were not observed experimentally until after the

advent of the laser, [15, 16] and theoretical models had no basis of comparison until

that time. [17] Since then, two distinct branches of theory on multiphoton absorption

10



have developed, one based on higher-order perturbation theory, and the other using

a model introduced by Keldysh.

Higher-order Perturbation Theory

The first branch is based on time-dependent perturbation theory, as initially stated by

Göppert-Mayer and developed by many authors since. In this method, the probability

for an n-photon direct electron transition from an initial valence band v to a final

conduction band c is, according to Fermi’s golden rule: [1]

Wn =
2π

~

∫ ∣∣∣∣∣∑
m

∑
l

· · ·
∑
j

∑
i

〈Ψc|H|Ψm〉 〈Ψm|H|Ψl〉
[Em − El − (n− 1)~ω]

· · · 〈Ψj|H|Ψi〉
(Ej − Ei − 2~ω)

〈Ψi|H|Ψv〉
(Ei − Ev − ~ω)

∣∣∣∣2
× δ [Ec(k)− Ev(k)− n~ω]

d3k

(2π)3
(8)

where j . . .m are intermediate states with energies Ej . . . Em and the integration is

over all of k-space. At this point various simplifications are applied, depending on the

properties of the system being studied. Recent work has been able to use sophisticated

band models, yielding good agreement with experimental results. [18, 19]

For two-photon absorption (n = 2), Equation. 8 is simplified to:

W2 =
2π

~

∫ ∣∣∣∣∣∣∣∣
∑
i

〈Ψc|H|Ψi〉 〈Ψi|H|Ψv〉

(Ei − Ev − ~ω)

∣∣∣∣∣∣∣∣
2

× δ [Ec(k)− Ev(k)− 2~ω]
d3k

(2π)3
(9)

The two-photon absorption coefficient β is related to W2 by:

β =
2W2(2~ω)

I2
. (10)
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In 1984, Wherrett [20] used perturbation theory to derive a formula for direct-gap

multiphoton absorption coefficients based on a simplified band model. The strength

of the Wherrett equation is not in the prediction of absolute values for the coefficients,

but in providing a universal gap dependence, which enables one to estimate absorption

coefficients for a given material based on the known coefficients of another material.

Wherrett’s scaling rule for two-photon absorption may be expressed as:

β ∝ 1

Eg
3

(2~ω/Eg − 1)3/2

(2~ω/Eg)5
(11)

This rule was later verified experimentally by Van Stryland, et al. [21]

Keldysh Model

The second branch of theory is based on a method initially proposed by Keldysh in

1965. [22] The Keldysh model treats multiphoton absorption as one aspect of a wider

range of phenomena concerning electrons in oscillating electric fields. Keldysh used

a parameter

γ =
ω

eE0

√
2meEg (12)

to determine which of two processes would be the dominant observed effect. (Here

E0 is the magnitude of the peak electric field of the incident radiation oscillating

at frequency ω). If γ � 1, multiphoton absorption dominates. If γ � 1, strong

band-bending may allow electrons to tunnel directly across the forbidden gap.

In the multiphoton absorption limit, the Keldysh method allows for analytical

solutions using first-order perturbation theory. As later developed by Brandi, [23]

the two-photon absorption coefficient is given as:

β =
211/2πe4

3c2

(
pvc

2

m2

(m∗)5/2

m1
2n2

1

Eg
7/2

)
f2

(
~ω
Eg

)
, f2(ζ) ≡

(
2ζ − 1

ζ5

)3/2

(13)
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where pvc is the momentum matrix element, m∗ is the reduced effective mass, and m1

is the effective mass in the conduction band.

Both the Keldysh and higher-order perturbation methods have found good agree-

ment with experimental results. [21,23] The photon-energy dependence of the Brandi

and Wherrett scaling rules are plotted in Figure 5 for comparison. The Keldysh

method has been favored for its relative ease of calculation, but becomes very com-

plex for higher-order transitions. The perturbation method can also become quite

complex when the full band structure and further possibilities for transition routes

are included in the calculation, but as computers have made such work less expensive

in the last few decades, the perturbative approach seems to hold more favor. [18]
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Figure 5: Comparison of the photon energy-dependence of the theoretical two-photon
absorption coefficient β between the Brandi [23] and Wherrett [20] scaling rules. The
two curves have been normalized for comparison.

II.1.2 Experiments

Two-photon absorption in solids was first observed in Europium-doped CaF2 crys-

tals in 1961 by Kaiser and Garrett. [15] Since that time, multiphoton absorption

has been reported in a wide variety of semiconducting materials, [11, 24–33] with
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the most recent interest (both theoretical and experimental) in quantum-confined

structures. [34–38]

Derived absorption coefficients for a given semiconductor can vary dramatically

from study to study, as Van Stryland et al. have shown. [21] The general trend by

year appears to be downward; i.e., later papers generally report smaller values of β.

This trend appears to be due to increasing awareness of the various factors, such as

free carrier absorption and beam instability, which can introduce large errors into

derived values if not properly accounted for.

Photoconductivity

The earliest multiphoton absorption experiments made use of photoconductivity. In

nonlinear photoconductivity experiments [1, 39–42] (see Figure 6), a specimen is ir-

radiated with sub-bandgap photons, which generate free carriers via a multiphoton

absorption process. A voltage bias is applied across the illumination region and the

specimen conductivity is monitored. The generated carriers modulate the specimen

conductance Y , and the fractional change in conductance in the illumination region

is given by: [40]

∆Y

Y
=

1 + b

(P + bN)Z

∫ Z

0

NGdz, b =
µe
µh

(14)

where µe and µh are the electron and hole mobilities, N and P are the electron and

hole concentrations, Z is the thickness of the specimen, and NG is the density of

multiphoton absorption-generated carriers, given by

NG =
β

2hν

∫ τ

0

I(t)2dt. (15)

Here a thin sample approximation is used, and the integration is over the time du-

ration τ of the pulse traveling through the specimen. The determination of β is

therefore indirect.
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Figure 6: A simple photoconductivity experiment for determining absorption coef-
ficients. The conductivity of the DC-biased, illuminated specimen is monitored by
observing the voltage across a resistor in series with the specimen.

One advantage of the photoconductivity technique is that it remains sensitive at

low incident intensities, where photodetectors may not be able to distinguish pulse

energies. However, the analysis requires precise knowledge of the doping and carrier

mobilities in the specimen under study. In addition, it is highly sensitive to impurities.

Direct Transmission

Direct transmission experiments [40, 43, 44] eliminate some of the uncertainty that

is present in the photoconductivity method. Figure 7 shows a diagram of a typical

setup. In the simplest case, the incoming laser beam is sent through a variable

attenuator, then focused on the specimen. The transmitted energy is collected in

a photodetector. The transmittance may be obtained by performing the experiment

both with and without the specimen in place, in order to obtain I and I0, respectively.

Variations in pulse-to-pulse energy are a significant source of error, and may be

accounted for by inserting a beam splitter in front of the specimen and sending this

line to a second detector, as shown in the figure. The transmittance may then be

obtained by means of a calibrated ratio of the two simultaneous detector signals.
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Figure 7: Nonlinear absorption measurement by direct transmission

An alternative to the use of a polarizing attenuator is the z-scan technique, wherein

a specimen is shifted along the beam axis. The variation in beam diameter due to the

focusing effect of the lens will provide a range of incident intensities as a function of

specimen position. Due to the nonlinear nature of the observed absorption, the focal

point of the lens may be found at the specimen position of minimum transmittance.

(See Figure 8).

Figure 8: Z-scan transmittance data in ZnSe, from [30]. The focal point of the beam
(Z = 0 in this plot) is determined from the minimum of the curve.
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Pump-probe

The development of time-resolved pump-probe techniques has enabled many new ex-

periments related to multiphoton absorption, and particularly the dynamics of multi-

photon-generated carriers. [26, 27, 45, 46] In these experiments, a strong pump pulse

perturbs the system under study by some absorption mechanism, and a subsequent

weak probe pulse measures the effect of the pump. By adjusting the time delay

between the pump and probe pulses, time-dependent data may be obtained, with

resolution down to the order of femtoseconds. For instance, Krishnamurthy et al. [26]

used a pump-probe technique to observe the decay of 2PA-generated carriers in InAs

on a nanosecond timescale, as shown in Figure 9.

Figure 9: Pump-probe transmittance in InAs, from [26]. Specimens were pumped at
4.8 µm to generate free carriers by two-photon absorption, then probed at 5.3 µm to
observe the decay of the generated carriers.
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II.2 Nonlinear Absorption in Germanium

II.2.1 Theory

The study of two-photon absorption in indirect semiconductors such as silicon and

germanium is complicated by the fact that at some wavelengths the direct and indirect

two-photon transitions may be competing. In 1972, Bassani and Hassan [47] reported

an analysis of indirect two-photon absorption in semiconductors using third-order

time-dependent perturbation theory. They did not derive a two-photon absorption

coefficient for germanium, but they did employ a detailed analysis of selection rules to

conclude that, for an indirect two-photon transition, the only phonon type that may

participate is longitudinal optical. This result was later confirmed experimentally by

Tuncel et al. [48] (see description on page 20, below).

In a 1982 report, G. W. Bryant et al. [49] performed detailed computer simulations

of the interaction of 2.7-µm photons with electrons and holes in germanium. The

primary objective of these simulations was to investigate the remarkable result of

Danileiko et al. [50] that Ge could not be damaged by intense infrared laser pulses.

They found that the damage process required very high optical intensities to generate

the necessary carriers via two-photon absorption, and therefore that the damage

threshold did not depend solely on total pulse energy.

The model used by Bryant et al. was based on that of Elci et al., [51] but modified

for two-photon absorption. The model accounted for intraband free-carrier absorption

and inter-valence band one-photon absorption, and also considered the carrier and

lattice temperatures, tracking the energy distribution of carriers in several relevant

valleys. The thermalization of the carrier plasma and subsequent phonon-assisted

thermalization with the lattice were also modeled. One aspect that was not considered

was the modulation of the pulse profile as it propagates through the specimen; they

used a thin-sample approximation. In addition, they did not consider the self-focusing
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of the beam brought on by the free carrier generation. Although they mentioned plans

to include such effects in future work, it seems that this work was never carried out.

In a recent theoretical report, [52] Garcia and Avanki have studied the wavelength

dependence of direct and indirect two-photon absorption in germanium. However,

since that report directly utilizes results from the current work, it will be discussed

after the current experimental results are presented in Section III.3.1.

II.2.2 Experiments

Two-photon absorption in germanium was first reported experimentally in 1969 by

Zubov, et al. [53]. Using a wavelength of 2.36 µm in a direct transmission ex-

periment on a 1-cm specimen, they derived a two-photon absorption coefficient of

β = 1000 cm/GW. However, their analysis ignored free carrier absorption effects and

multiple internal reflections of the pulse.

Wenzel et al. [54] reported a similar experiment in 1973. They used a spectral

laser source to produce ∼90-ns pulses containing a range of wavelengths from 2.6–

3.1 µm, and reported a β of 2500 cm/GW. Although they considered multiple internal

reflections in their analysis, they also ignored free carrier effects. At the conclusion

of their paper, they suggest the usefulness of photoconductivity experiments.

Gibson et al. performed both photoconductivity and direct transmission experi-

ments on germanium specimens, as reported in their paper from 1976. [40] They took

into account the free carrier contribution to the absorption, and noted the resulting

change in pulse shape. Their laser was similar to that of Wenzel et al., covering a

range of wavelengths from 2.6–3.0µm, but with a pulse duration of 480 ns. Figure

10(a) shows their intensity-dependent direct transmission results at several differ-

ent specimen thicknesses. From these data they derived a wavelength-averaged β of

160 cm/GW. Figure 10(b) shows the values of β they derived using photoconductiv-

ity. These range from ∼100–700 cm/GW, depending on wavelength. As expected,
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their value for β appears to approach zero as the wavelength approaches 3.07µm,

corresponding to one half the direct gap in germanium.

(a) (b)

Figure 10: Transmittance and photoconductivity results in Ge from Gibson et al. [40]
(a) Adjusted inverse transmission vs. incident intensity from the direct transmission
experiment. The numbers at the end of each line denote specimen thickness, in cm.
(b) Experimental values of β (K2) vs. wavelength, derived from photoconductivity
data.

In conference proceedings from 1978, Danileiko et al., [50] who were primarily

interested in laser-induced damage thresholds, reported in passing a two-photon ab-

sorption coefficient of 75 cm/GW in Ge at 2.76 µm. They used 90-ns pulses from a

pulsed CaF2:Er3+ laser in a photoconductivity experiment, but did not report any

further details.

In 1993 Tuncel et al. [48] used the Vanderbilt Free Electron Laser to study the

wavelength dependence of germanium two-photon absorption in photoconductivity

experiments. Due to the complex nature of the FEL pulse structure (Section III.1.1),
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they did not derive explicit values of β. However, they did observe indirect-gap two-

photon absorption, and estimated the ratio βd/βi to be ∼2000. In addition, they

confirmed the theoretical result of Bassani and Hassan, [47] which stated that this

transition may only be assisted by longitudinal optical phonons (see Figure 11 on

page 21).

Figure 11: Indirect 2PA photoconductivity vs. photon energy in Ge, from [48]. The
onset of absorption occurs at the energy of the indirect gap plus 30.4 meV, which is
the energy of the LO phonon predicted to enable this transition. [47]

Rauscher and Laenen [46] used picosecond pump-probe spectroscopy to study

two-photon absorption in germanium in 1996. They used a tunable mode-locked

laser to produce 2.9µm pulses of length 1–2 ps. Using just the pump pulse in a direct

transmission experiment, they estimated β for germanium to be 80±10 cm/GW. They

included free carrier absorption in their analysis, which they attributed primarily to

the transition of a heavy hole to the split-off band, after Bryant, et al. Following

that, they used the same pump beam and a weaker probe beam tuned to 3.0 µm to

determinate the non-degenerate β(2.9 µm, 3.0 µm) to be 35±10 cm/GW. The results

of this experiment are shown in Figure 12 on page 22. The fast peak is interpreted to
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be the non-degenerate absorption, as evidenced by its intensity-dependence, shown

in the inset.

Figure 12: Nonlinear pump-probe spectroscopy of Ge from [46]. Here, the probe
transmission is plotted vs. time delay with respect to the pump. (An increase on the
y axis indicates decreasing probe transmission.) The fast peak at zero time delay is
attributed to the simultaneous absorption of one pump and one probe photon. The
inset shows the linear pump intensity-dependence of the magnitude of the fast peak
(black squares), suggesting that only one pump photon is contributed to the process.
The hollow circles in the inset show the quadratic intensity dependence of the pump-
only absorption, for comparison. The probe intensity is too weak in this experiment
for significant probe-probe absorption.

T. J. Wagner et al. [55] have recently studied nonlinear absorption in Ge and

GaSb at 2.05 and 2.5 µm using both nanosecond and picosecond sources with an

irradiance-scan approach. They carefully considered several effects that may influence

the measurement, and accounted for free-carrier absorption by simultaneously fitting
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the two-photon and free-carrier absorption coefficients to their experimental data.

They derived a value of 68 cm/GW for the two-photon coefficient, β at 2.5 µm.

Summary

Figure 13 shows the experimentally-derived values of the two-photon absorption coef-

ficient of germanium, by year. Table 1 on page 24 contains the same information, with

the addition of the wavelengths used and notes on each experiment. The reported

value for the current work at will be discussed in Chapter III.
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Figure 13: Reported experimental values for the germanium two-photon absorption
coefficient β near 2.8 µm, by year. The points are keyed as follows: Z = Zubov
et al. [53], We = Wenzel et al. [54], GP = Gibson et al. (photoconductivity) [40],
GT = Gibson et al. (direct transmission), D = Danileiko et al. [50], R = Rauscher
and Laenen [46], Wa = Wagner et al. [55], V = Current work at Vanderbilt [56].

The reported values of β generally trend downward with time. This may be due

to multiple factors:

(i) The inclusion of free carrier effects significantly lowers the value of β derived

from experimental data.
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Table 1: Reported experimental values for the germanium two-photon absorption
coefficient β.

Reference Year Wavelength β Notes

(µm) (cm/GW)

Zubov [53] 1969 2.36 1000 Ignored multiple reflections and
free carrier absorption.

Wenzel [54] 1973 2.6—3.1 2500 Ignored free carrier absorption.

Gibson [40] 1976 2.6—3.0 340 Photoconductivity.

160 Direct transmission. Both
experiments by Gibson included
free carrier absorption in the
analysis.

Danileiko [50] 1978 2.76 75 Little detail available.

Rauscher [46] 1997 2.9 80 Included free carrier absorption.

Wagner [55] 2010 2.5 68 Simultaneous fit of two-photon
and free-carrier absorption
coefficients.

(ii) The shorter pulses available in more recent laser systems decrease free carrier

effects.

(iii) More recent experiments are able to use higher-power lasers, and this may reduce

the measurement of β. (Compare Gibson’s high-intensity transmission data to

the lower-intensity photoconductivity data.)

(iv) Higher-purity specimens of germanium are more readily available as time pro-

gresses.

II.3 Carrier Dynamics in Germanium

Research on two-photon absorption in germanium and other materials has demon-

strated that knowledge of the dynamics of the photogenerated carriers is crucial for
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the accurate evaluation of absorption phenomena. [24, 40] In fact, the dynamics of

hot carriers in germanium has been a topic of interest in its own right for the last

several decades.

In 1972, Müller et al. [57] reported a fast modulation in CO2 laser absorption by

germanium, which they attributed to absorption by hot carriers, with an estimated

cooling time of 1 ps.

Kennedy et al. in 1974 [58] reported the use of 1.06 µm pulses of duration < 5 ps in

a pump-probe experiment to measure the relaxation time of hot carriers. They saw a

fast peak in transmittance at zero time delay, which they attributed to saturation of

excited carrier states, and thus determined that the hot carrier relaxation time was

faster than their pulse width, i.e. < 5 ps.

However, the following year Shank and Auston [59] reinterpreted the zero-time-

delay spike in transmittance as an autocorrelation of the pump and probe beams due

to a transient grating phenomena generated by the interaction of the electric fields

of the two pulses. In addition, in their own pump-probe experiment, which was very

similar to that of Kennedy et al., they observed a slow decay in transmittance (Figure

14 on page 25), which was attributed to carrier diffusion out of the probe beam area.

Figure 14: Time-resolved pump-probe transmission of 1.06µm photons in germanium,
from Shank and Auston. [59] The horizontal axis is pump-probe time delay, in ps.

25



In Reference [60] from the next year, the authors of the original 1974 paper by

Kennedy et al. [58] responded in agreement with the interpretation of Shank and Aus-

ton, and presented new temperature-dependent pump-probe results, which showed a

greater rise in probe transmission saturation for low temperatures, as depicted in

Figure 15(a). Following the initial rise in probe transmittance, there is a slow decay,

shown in Figure 15(b). The authors suggest the following interpretation: the pump

pulse excites photogenerated carriers into high energy states. These carriers subse-

quently cool toward the band edge via phonon emission. The 1.06µm probe photons

in this experiment effect a transition above the germanium band edge, but below

the energy of the hot carriers. As the pump-excited carriers cool to the probe exci-

tation point, they fill available probe excitation states, and the probe transmission

increases. At later time delays, after the pump-generated carriers have decayed down

to the conduction band minimum, the probe transmission decreases again.

In 1989, A. Othonos et al. [61] reported results of picosecond Raman scattering

and transient absorption experiments on germanium specimens using 4-ps pulses at

575 nm. From the Raman scattering experiment, they demonstrated the existence of

a non-equilibrium population of optical phonons, which are generated as hot carriers

in the L valley thermalize with the lattice. The lifetime of these phonons suggests that

the plasma-lattice thermalization occurs on the order of tens of ps. They theoretically

predicted the optical phonon occupation number as a function of time within a factor

of two of the experimental data. They also found from the reflectivity experiment

that the hot carriers diffuse quickly into the specimen at an enhanced temperature-

dependent ambipolar diffusion coefficient, and that this effect must be considered to

accurately model the experimental data.

Zhou et al. [62] in 1994 reported femtosecond pump-probe transmission and pho-

toluminescence measurements demonstrating that photo-excited electrons in the Γ

valley scatter to the L valley with a time constant of 230±25 fs at room temperature.
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(See Figure 16). They estimated a similar time-scale for scattering to the X valley.

In fact, their data suggests that carrier thermalization, intervalley scattering, and

cooling all occur on a sub-picosecond timescale. With regard to the previous experi-

ments in this area, the authors suggest that the faster timescales reported in the work

are due to the femtosecond laser source they used. In a follow-up experiment from

1995, Mak and Rüle [63] found that the thermalization time for excited carriers in

germanium scales with the excited carrier density N as N−0.55.

Summary

To summarize the recent results of carrier dynamics in Ge, it is believed that photo-

generated electrons in the Γ valley undergo the following processes:

(i) Equilibration in momentum space without energy loss, on the order of 10 fs.

(Although this is not explicitly mentioned in the literature reported here, it is

generally understood.)

(ii) Carrier-carrier thermalization due to Coulomb interactions within the plasma,

of order 100 fs.

(iii) Electron-phonon scattering from the Γ valley to the X and L valleys, of order

100 fs.

(iv) Phonon-assisted relaxation down to the band edge, on a timescale of hundreds

of fs. According to Mak and Rüle, [63] this transition is forbidden near the

bottom of the Γ valley.

(v) Recombination with holes. The lifetime for generated carriers is on the order of

hundreds of µs, depending on doping. [64]

An accurate evaluation of the importance of these effects will be critical in the exper-

imental analysis and simulation of multiphoton absorption.
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(a) (b)

Figure 15: Temperature-dependent pump-probe transmittance in Ge, from [60]. (a)
Temperature dependence of the initial rise in transmittance, along with theoretical
curves calculated by the authors. (b) Low-temperature rise and decay of probe trans-
mittance at different ratios of pump and probe intensity. The displayed error bars
are typical of all data points.

Figure 16: Time-resolved probe transmission in germanium, from [62]. Carriers are
pumped near the band edge, thus the decay in transmission is attributed to the
scattering of pumped carriers from the Γ valley to the L valley, with a time constant
of 230±25 fs.
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CHAPTER III

EXPERIMENT AND

SIMULATION

This chapter begins by describing in detail the experimental techniques used in these

studies, including the determination of the critical quantities of the beam diameter

and free carrier absorption coefficients. Then the results of the transmission exper-

iments are presented, along with the simulation code that was used to extract the

multiphoton absorption coefficients. Finally, the significance of the coefficients and

their ratios are discussed, and comparison is made to other experimental and theo-

retical works.

III.1 Methodology

III.1.1 Vanderbilt Free Electron Laser

The Vanderbilt University Free Electron Laser (FEL) provides a high-power beam

in the mid-IR with wavelength selectivity from 2 to 9 µm. [65] The beam consists

of a 30-Hz train of 5 µs macropulses, each containing approximately 14,000 one-ps

micropulses with 350 ps separation. These pulse structures are shown schematically in
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Figure 17. The macropulse-to-macropulse energy fluctuations are a source of random

error, typically ±5%, and the error becomes smaller as higher macropulse energies are

used. For example, 1± 0.05 mJ and 10± 0.2 mJ have been observed. Micropulse-to-

micropulse fluctuations are less than 10%. [66] The micropulses are nearly transform-

limited as measured by autocorrelation, and are assumed to have a Gaussian temporal

profile. Although individual micropulse chirping is minimal, the wavelength of the

micropulses could vary over the course of the macropulse by as much as 50 nm for

the shorter wavelengths studied and as much as 100 nm for the longer wavelengths.

Spatially, the FEL beam profile is very near to Gaussian.
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Figure 17: Vanderbilt FEL temporal pulse structure.

III.1.2 Transmission Measurement

Double-side polished, 0.5 mm-thick near-intrinsic n-type Ge(100) specimens were used

in these studies. The specimens had a resistivity of ∼ 50 Ω·cm, corresponding to a

free carrier concentration in the range of 1013—1014 cm−3. All experiments were

performed in air at room temperature.

The linearly polarized FEL output energy was adjusted using a rotating Brewster’s

angle Ge attenuator, and the radiation was focused onto the Ge specimen using a ZnSe

lens with 250 mm focal length. (In polarization experiments with this apparatus, the

absorption showed no measurable dependence on incident polarization). Incident
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and transmitted laser energies were measured using a power meter, as depicted in

Figure 18.

Figure 18: Experimental setup for measuring multiphoton absorption in germanium.

For all wavelengths studied, strong nonlinear absorption and material removal

(ablation) were observed whenever the specimen was placed at the focal point, even

at low macropulse energies (EM < 3 mJ). [67] Therefore, for all wavelengths the

transmittance was measured with the specimen at a fixed distance from the lens of

24 cm, not at the focal point, permitting the use of higher macropulse energies (up

to 30 mJ) and increasing the range of incident intensities in the experiment.

III.1.3 Beam Diameter

The beam diameter at the specimen and the free carrier absorption coefficients are

critical values for the characterization of nonlinear interactions between the specimens

and the FEL beam. To calibrate the beam diameter, a z-scan technique was used to

determine the focal point of the lens at different wavelengths, as shown in Figure 19.

The focal length was found to increase linearly with increasing wavelength. Since the

FEL beam diameter does not vary significantly with wavelength, a linear relationship

between the beam wavelength and the beam diameter at the fixed specimen position

was assumed. FWHM beam diameters at the specimen position for 2.8 µm and 5.2 µm

were determined by setting the incident beam fluence to twice the damage threshold
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for those wavelengths and measuring the diameters of the resultant damage spots

(see Figure 20). The beam diameters for the intermediate wavelengths were then

interpolated linearly. This ‘damage spot’ method was found to be in agreement with

the knife-edge method in a comparison of the two at the focal point.

Figure 19: Z-scan measurements for 2.8 µm, 4.0 µm, and 6.0 µm, revealing a linear
relationship between FEL wavelength and focal point location. Actual transmission
measurements for all wavelengths were performed at the fixed specimen position of
24 cm from the lens, as indicated by the solid vertical line.

III.1.4 Free Carrier Absorption Coefficients

To determine the wavelength-dependent free carrier absorption coefficients σn (elec-

trons) and σp (holes), the FTIR spectra of heavily doped n-type (Nn ∼ 7×1017 cm−3)

and p-type (Np ∼ 2.5 × 1016 cm−3) Ge specimens were measured and compared to

the spectrum for the near-intrinsic specimen. The results are summarized in Table 2.

The values at 2.8 µm are comparable to previously reported measurements. [68] Since
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(a) 2.8 µm (b) 5.2 µm

Figure 20: Optical microscopy images of FEL-ablated germanium, for determination
of the FEL beam diameter. Measured beam diameters are marked by the dotted
circles. Irregularities in the spots may be attributed to damage nucleation mechanisms
in addition to irregularities in the FEL beam.

the majority of free carriers encountered by the photons in the FEL beam will al-

ready have relaxed to the band edge, [62] this method is believed to provide realistic

absorption coefficients for this experiment.

Table 2: Absorption cross-sections in Ge for electrons (σn) and holes (σp) as measured
by low-intensity FTIR.

λ σn σp
(µm) (10−17 cm2) (10−16 cm2)

2.8 0.72 1.4
3.2 0.78 1.5
3.6 0.87 1.3
4.0 0.95 0.95
4.4 1.06 0.8
4.8 1.17 1.0
5.2 1.32 0.7

During the 350 ps between FEL micropulses, it is expected that photo-generated

carriers will have sufficient time to relax to the lowest level excited states, including

the relaxation of Γ valley electrons to the L valley, but not enough time to undergo

any substantial recombination, even at the very high concentrations generated. The
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Figure 21: Transmittance as a function of incident micropulse peak intensity for the
seven wavelengths studied. FTIR on the Ge sample shows a transmittance of 0.47 at
low power (black arrow, upper left).

33 ms between macropulses is sufficient for the entire electronic system to recover to

the ground state via recombination, with essentially no excited carriers remaining.

III.2 Results

III.2.1 FEL Transmittance in Germanium

Figure 21 shows transmittance as a function of incident micropulse peak intensity

for wavelengths ranging from 2.8 µm to 5.2 µm, at 0.4 µm intervals. The measured

incident macropulse energy EM was converted into the micropulse peak intensity Iµ

according to the following equation:

Iµ =
EM/14000

π3/2r20t0
(16)
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Figure 22: Transmittance cross-sections at two incident peak intensities, showing
wavelength dependence, along with the low-intensity FTIR transmittance. The at-
tributed absorption regimes (direct 2PA, etc.) are noted at the top of the plot.

where r0 is the HWe−1M beam radius and t0 is the HWe−1M micropulse length

(HWe−1M = FWHM / 1.66511). Fourier transform infrared (FTIR) measurements

were also performed to establish the low-power transmittance of the specimens at the

wavelengths studied. At 4.0 µm, the low-intensity limit did not approach the FTIR

transmittance as expected, rendering suspect the result at that wavelength. This

anomaly is believed to be due to instability in the FEL beam during measurement.

The data separate into four groups at high intensity, with a general trend of

decreased absorption for higher-order processes. The fast transmittance decrease

at 2.8 µm (0.44 eV) as a function of incident intensity is attributed to two-photon

absorption across the direct band gap (∼0.8 eV). The intermediate decrease at 3.2 µm

(0.39 eV) and 3.6 µm (0.34 eV) is attributed to 2PA across the indirect band gap

(0.66 eV). We attribute the relatively slow transmittance decrease at 4.0 µm (0.31 eV)

and 4.4 µm (0.28 eV) to direct three-photon absorption (3PA), and the small decrease

in transmittance observed at 4.8 µm (0.26 eV) and 5.2 µm (0.24 eV) to indirect 3PA.
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Figure 22 shows the same data as a function of wavelength at two different inten-

sities, highlighting the dramatic change in transmittance between the various absorp-

tion regimes. These differences are especially clear in the high-intensity (1.23 cm/GW)

curve. The low-intensity FTIR transmittance is also shown, for comparison.

III.2.2 Simulation

The transmission curves shown above were analyzed using the following theoretical

model. The nonlinear absorption of optical pulses at sub-band-gap wavelengths may

be described by the equation:

∂I

∂z
= −βI2 − γI3 − (σn + σp)NI, (17)

where I is the intensity of the pulse as a function of space and time, β is the two-

photon absorption coefficient (units cm/GW), γ is the 3PA coefficient (cm3/GW2),

and the last term describes free carrier absorption. The time evolution of the local

free carrier concentration N is described as:

∂N

∂t
=
βI2

2~ω
+
γI2

3~ω
+D

∂2N

∂z2
− N

τ
− AN3. (18)

Here the first and second terms refer to two- and three-photon absorption, respec-

tively, with ~ω as the energy of the absorbed photons. The third term refers to free

carrier diffusion with ambipolar diffusion coefficient D = 67 cm2/s, [69] the fourth

term to radiative recombination with lifetime τ = 100 µs, [70] and the final term to

Auger recombination with Auger coefficient A = 2× 1031 cm6/s. [71, 72]

This pair of coupled differential equations was solved numerically using a time- and

space-discreet pulse propagation simulation, with consideration given to the spatial

and temporal profiles of the micropulses (assumed to be Gaussian in both cases),

multiple reflections inside the sample using the usual Fresnel coefficients, and to
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the accumulation of carriers between micropulses. The simulation code was verified

for accuracy by comparison with simpler analytical models. The possible effects of

surface recombination, temperature rise due to carrier relaxation, and bleaching due

to relaxed state filling were all considered and found to be negligible.

Using the two- and three-photon absorption coefficients as parameters, the output

of the simulation code was fit to the experimental results from Figure 21. Excellent

agreement was found between fit parameters and the experimental data in all cases

except the 4.0 µm case, where, as noted before, the low-intensity transmittance does

not approach the FTIR result. Figure 23 shows the typical agreement using the

representative cases of 2.8 µm and 4.4 µm.
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Figure 23: Fitting agreement between the simulation code and the experimental
results for the representative cases of 2.8 µm and 4.4 µm.
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III.2.3 Beam Propagation and Carrier Concentrations

The simulations provide information about pulse intensity and carrier concentration

throughout the sample depth. For instance, when the absorption was low, which

occurred at low incident intensities for the shorter wavelengths and at all intensities

for the longer wavelengths, a relatively even carrier distribution was produced. In

these cases, the micropulses tended to lose their energy gradually as they traversed

the sample. At the weakest intensity for 2.8 µm, for example, after the complete

macropulse had traversed the sample, the carrier concentration near the front surface

was 1.1× 1018 cm−3 and decayed exponentially toward the back surface, where it was

2× 1017 cm−3.

When the absorption was high, as in the high-intensity, shorter-wavelength case,

the micropulses tended to lose most of their energy quickly upon entering the sample,

resulting in greater carrier concentrations near the front surface. For example, after

the highest-intensity 2.8 µm macropulse had traversed the sample, the front surface

carrier concentration was 6× 1018 cm−3, and decayed exponentially to a back surface

carrier concentration of 2× 1017 cm−3, as in the low-absorption case.

In either case, for a given FEL macropulse, the carrier concentrations increased

steadily with each micropulse until competition with recombination processes caused

the system to approach a quasi-steady state. In the high-absorption regime, this state

was reached after a few hundred micropulses. In the low-absorption regime, several

thousand were required to reach it, or it was not reached at all. For instance, at the

highest intensity studied for 4.8 µm, the carrier concentration never reached steady

state, and was ∼ 2× 1016 cm−3 throughout the entire sample depth at the end of the

macropulse.
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III.2.4 Fitted Absorption Coefficients

Tables 3 and 4 list the fitted absorption coefficients β and γ for the wavelengths

studied. The same coefficients are plotted in Figure 24. In the 2PA data, there is a

distinct change in the absorption coefficients between the direct and indirect regimes.

In the 3PA data, this difference is not so pronounced. The decreased absorption

in the indirect regimes is reasonable considering the need for phonon assistance in

exciting carriers to the indirect valley. In addition, the less pronounced difference

in the 3PA data may be attributed to the greater number of absorption pathways

generally available in 3PA, as recently shown by Cirloganu et al. [18]

Table 3: Fitted two-photon absorption coefficients for the transmission data shown
in Figure 21. Here, x = 2~ω/Eg, where Eg may refer to either the direct (0.8 eV) or
indirect (0.67 eV) gap.

λ (µm) Absorption Type x Fitted β (cm/GW)

2.8 Direct 1.11 30.
3.2 Indirect 1.17 0.16
3.6 Indirect 1.04 0.090

Table 4: Fitted three-photon absorption coefficients for the transmission data shown
in Figure 21. Here, x = 3~ω/Eg, where Eg may refer to either the direct (0.8 eV) or
indirect (0.67 eV) gap.

λ (µm) Absorption Type x Fitted γ (cm3/GW2)

4.0 Direct 1.16 0.27
4.4 Direct 1.06 0.067
4.8 Indirect 1.16 0.0050
5.2 Indirect 1.07 0.013
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Figure 24: Fitted absorption coefficients for the transmission data shown in Fig-
ure 21. The triangles are 2PA coefficients (left vertical axis) and the circles are 3PA
coefficients (right vertical axis).

III.3 Analysis

III.3.1 Comparison to Literature

Previous works have reported the 2PA coefficient in Ge near 2.8 µm. These are listed

in Table 5. The derived value of β at 2.8 µm in the present work (30 cm/GW) is a

factor of five less than the earliest observations at similar wavelengths, [40] and is a

factor of two less than the more recent measurements. [46,55] The current result has

also been compared to predictions based on Wherrett’s scaling rule, [20] which has

been remarkably successful in predicting the nonlinear behavior of a variety of direct-

gap materials. [21] At 2.8 µm, Wherrett scaling predicts β = 40.9 cm/GW, which is

consistent with current result, and is evidence that multiphoton absorption theory

for direct-gap materials is applicable to direct transitions in indirect-gap materials.

For the direct 3PA wavelengths, the Wherrett scaling overestimates the coefficients

by factors of 40 for 4.0 µm and 225 for 4.4 µm. However, theoretical studies [73] have

shown that more complex models are necessary to accurately describe 3PA behavior.
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Table 5: Selected literature values for β in Ge near 2.8 µm, along with the result of
the current work.

Work Year λ (µm) β (cm/GW)

Gibson [40] 1976 2.6—3.0 160
Rauscher [46] 1997 2.9 80
Wagner [55] 2010 2.4—2.51 68
This Work 2011 2.8 30

In a recent theoretical work, Garcia and Avanki [52] have applied direct and

indirect gap two-photon absorption calculations to Ge using the experimental results

from the current work. [56] Their approach employs a single fitting parameter, f(θ, φ).

When their model is applied to the current experimental result, they find f(θ, φ) =

0.124 for the direct case and f(θ, φ) = 0.11 for the indirect case. The fact that these

two independent fitting parameters are in such good agreement is seen as a validation

of the current result. Figure 25 shows the theoretical wavelength-dependence of β in

Ge for both the direct and indirect cases, with f(θ, φ) = 0.117, the mean value of the

direct and indirect results.

(a) Direct 2PA (b) Indirect 2PA

Figure 25: Theoretical wavelength dependence for direct and indirect 2PA in germa-
nium, from [52]. The blue curves show the theoretical value for β, with the single
fitting parameter f(θ, φ) = 0.117, and the red dots are the experimental results from
this work.
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III.3.2 Limitations in the Derived Coefficients

The coefficients listed in Tables 3 and 4 are subject to a few caveats. One is due to

the uncertainty in the beam area at the sample. Interpolated values for the beam

diameter were used in this work, as described in Section III.1. Errors in beam diameter

measurement affect the incident pulse intensity by Equation 16, with the result that

the data in Figure 21 may be scaled horizontally along the intensity axis. In addition,

the fitting simulations used a Gaussian spatial profile, but the FEL beam has some

spatial irregularities. It is found that a 10% variation in the beam diameter can result

in a 50% variation in the derived coefficients.

The second major caveat is due to uncertainty in the free carrier absorption cross-

sections. Free carriers generated by multiphoton absorption can be excited further by

single-photon absorption, either due to subsequent photons in the same micropulse

or in latter micropulses. Ignoring free carrier absorption effects can cause derived

multiphoton absorption coefficients to be off by orders of magnitude. [40, 54] While

in other works the 2PA/3PA coefficients and free carrier cross-sections are fitted

simultaneously, [24] in this work an approach employing FTIR of doped samples was

used to measure these values directly, as described in Section III.1. Still, these cross-

sections may be influenced by a variety of factors, particularly the energy state of the

photo-excited carrier undergoing absorption, though as discussed earlier the unique

pulse structure of the FEL should allow sufficient time for carrier relaxation, more

than other laser sources. Nevertheless, it is noted that a 10% variation in the free

carrier absorption cross-sections σn and σp can result in a 15% variation in the derived

multiphoton absorption coefficients.

III.3.3 Ratios of Absorption Coefficients

Although the caveats listed above, which are common to nonlinear absorption exper-

iments, cast some uncertainty on the reported absolute absorption coefficients, the

42



ratios of these coefficients across the direct-to-indirect transitions for 2PA and 3PA

are found to be invariant to systematic changes of at least 20% in both beam diameter

and free carrier absorption coefficients. Essentially all theoretical treatments of non-

linear absorption consider a multiplicative factor f(x) ≥ 0 that reflects the multiple

ways that two or three photons can add to give multiphoton absorption. For 2PA,

x = 2~ω/Eg, and for 3PA, x = 3~ω/Eg. (Here, Eg may refer to the direct (0.8 eV)

or indirect (0.67 eV) gap, depending on the absorption regime.) Ideally, comparisons

of ratios across the direct/indirect transitions should be made using the same value

of x. Here, for the 2PA ratio, 2.8 µm (x = 1.11) and 3.2 µm (x = 1.17) are used, and

for 3PA, 4.4 µm (x = 1.06) and 5.2 µm (x = 1.07) are used. For the transition from

2.8 µm to 3.2 µm, the ratio in β is 175. In a previous work this ratio was estimated

as 2,000. [48] For the transition from 4.4 µm to 5.2 µm, the ratio in γ is 5. These

ratios should prove valuable in the continued development of the theoretical models

for indirect 2PA and 3PA. A comparison of two separate experiments in silicon [74,75]

shows a ratio of 17 across the 2PA direct/indirect transition. The advantage in this

work lies in the use of a single laser source and experimental setup for all wavelengths.

The quantity β/(γI) provides a measure of the relative importance of 2PA to

3PA at a given intensity I. Assuming that the direct 3PA remains on the order of

0.05 cm3/GW2 in the wavelength regimes were 2PA is allowed, at 2.8 µm 3PA will

dominate at intensities greater than 300 GW/cm2. For 3.2 µm and 3.6 µm, 3PA will

dominate above 2.5 GW/cm2.

The theoretical work of Garcia and Kalyanaraman on indirect 2PA in silicon [76]

predicts the relative indirect absorption coefficients at different wavelengths. Al-

though their work dealt with silicon, the general shape of the curve as a function of

x should hold for other materials. At 3.2 µm and 3.6 µm, the Garcia theory predicts

that the allowed-allowed transition dominates and calculates a ratio of 10 between

the coefficients at these wavelengths. In this work, ratio is found to be 2.
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III.4 Potential Expansion Studies

There are multiple ways in which the study reported in this chapter could be ex-

tended. For instance, more detailed knowledge about the energy states occupied by

the photoexcited electrons and holes would enable a more sophisticated modeling ap-

proach, which could account for carrier dynamic effects that have not been considered

here. A two-color pump-probe transmission study, which would be able to determine

free-carrier absorption cross-sections directly, and to distinguish electron cross sec-

tions between the L and Γ valleys, would be particularly useful in this regard. Such

a study could also measure the predicted onset of hole absorption due to electron

excitation from the split-off band to the valence band. [49]

In addition, a new method for measuring multiphoton absorption coefficients is

suggested by the technique known as coherent acoustic phonon interferometry, which

has already been used to measure linear absorption coefficients. Such a technique

would be particularly well suited to measure the nonlinear absorption properties of

multilayered heterostructures, for which transmission measurements would only pro-

vide averaged information on the full specimen. The CAP technique is described in

detail in Section V.2.1.
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CHAPTER IV

INTRODUCTION

This chapter introduces and motivates the study of ion-bombarded diamond using

coherent phonon effects. Following that is a statement of work describing the planned

experiments, and a discussion of the scope and limitations of this project.

IV.1 Research Problem

Diamond is an indirect wide band-gap semiconductor that has long been known for

its superlative mechanical, electronic, thermal, and tribological properties. [77] Most

recently, diamond’s optical properties, specifically its many optically active defect

complexes, have generated considerable interest for photonic and quantum computing

applications. Of these complexes, the NV− color center is by far the most studied,

[78–80] (see Figure 26) but there are several complexes of interest. [81] Centers such

as the NV− provide bright, stable, room-temperature sources for single photons, [82]

exhibit spin coherence lifetimes on the order of a millisecond, [83] and have electronic

spin states that can be controlled and read optically. [84] These qualities make optical

centers in diamond ideal candidates for quantum computing devices, and diamond-

based qubits and coupled multi-qubits have been demonstrated. [85,86]
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Figure 26: Scanning confocal fluorescence micrographs of single fluorescent NV− cen-
ters in type Ib diamond, from [87]. The cross-sectional scan indicated by the dotted
line in the 5 µm image is shown at the bottom.
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NV− centers occur in natural diamonds, and they can be introduced into device-

quality crystals in a controlled way by means of ion implantation followed by annealing

above 700 ◦C. [88] Targeted implantation of single NV− defects by means of a focused

nitrogen beam has also been demonstrated. [89] NV− centers can also be incorporated

during chemical vapor deposition (CVD) crystal growth by incorporating appropriate

nitrogen precursors into the growth chamber. This method exhibits decreased spatial

control, but allows for preferential orientation of the NV− axis. [90]

Recently, an ion implantation and lift-out technique in diamond has been reported

for the fabrication of single-crystal nanoscale photonic devices. [91] In this technique,

light ions such as helium are implanted at energies from 0.5 to 2.0 eV into diamond sin-

gle crystals to create a sacrificial buried layer of implantation damage (see Figure 27).

High-temperature annealing repairs the implantation damage up to a certain thresh-

old, thereby sharpening the interface between the damaged and undamaged layers of

the specimen. At this point, focused ion beam milling may be used to pattern the

desired features. Finally, the damaged layer is removed using a chemical etch, leaving

a free-standing structure. Thin monolithic diamond structures, such as those shown

in Figure 28, can be used to collect and guide the light to and from qubits in quantum

information devices, or as interconnects in photonic computers.

To summarize, in the burgeoning fields of quantum information processing and

photonics, diamond is a prime candidate for a host material. In addition, these fields

are likely to employ ion implantation as a principal technique for scalable device

fabrication. However, ion implantation introduces defects into the lattice that modify

local electronic wave functions, and thereby modulate the opto-electronic properties

of the material. In addition, ion implantation in diamond can transform the bonding

characteristics of the lattice atoms, introducing significant strain in implanted crystals

and causing surface swelling or even the total amorphization of the lattice. [92–94]
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1. Ion Implantation 2. Annealing

3. Patterning 4. Chemical Etch 5. Lift-Out

Figure 27: Implantation and lift-out technique for photonic device fabrication in
diamond crystals.

Figure 28: Single-crystal diamond nanostructures generated using the ion implanta-
tion and lift-out technique, taken from [91]. a) Micrometer-scale ring, a prototype for
a whispering gallery mode resonator, fabricated in a 330 nm layer of single-crystal di-
amond. b) Nano-cantilevers 110 nm wide, ∼3 µm long, in a 330 nm layer. c) Concept
cavity with 1.9 µm inner diameter and 2.2 µm outer diameter. d) High-magnification
view of the diamond bridge from c), 130 nm wide.
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Clearly, reliable fabrication of single-photon emitting centers and photonic devices

in diamond using ion implantation techniques will require a detailed understanding of

the associated defects created within the lattice during the implantation process, and

how those defects modify the optical properties of diamond. Despite decades of work

[95,96] on ion implantation in diamond and the optical properties of diamond defects,

many questions remain concerning the specific relationships between the structural

modifications of the diamond lattice and the resulting modulation of local optical

properties.

IV.2 Statement of Work

In this study, coherent acoustic phonon (CAP) interferometry is applied to ion-

implanted diamond crystals to determine the nature of the implantation-induced mod-

ulation of diamond’s optical characteristics. CAP interferometry is a depth-resolved,

non-destructive ultrafast optical pump-probe technique employing the reflectivity of

phonon waves, and is sensitive to local modulations in the optical properties of ma-

terials with a spatial resolution of ∼10 nm. Recent experiments on implanted GaAs

crystals (see Section V.2.2) using CAP interferometry have shown that the CAP

technique is sensitive to damage-induced modulations of optical structure over sev-

eral orders of magnitude in fluence, and in particular at very low fluences. This

work will show that CAP interferometry is also sensitive to implantation damage

in diamond crystals, and that ion implantation can significantly modify the optical

properties of diamond, specifically the complex refractive index and its first derivative

with strain. The CAP results are compared to cross-sectional transmission electron

microscopy (TEM), and numerical simulations of the CAP experiments are applied

to derive quantitative relationships between implantation-induced lattice damage and

the resulting optical modification.
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IV.3 Scope and Limitations

There are a number of interesting questions and experiments suggested by this re-

search topic. For instance, what sorts of defect species are created in diamond by

ion bombardment? Can certain modulations in the optical characteristics of the di-

amond lattice be associated with specific defect types? Can tuning the wavelength

of the optical probe in a CAP experiment isolate the NV− center or other defect

species? Ion-bombarded diamond lattices are well-known to heal under annealing

conditions, so long as the damage is below a particular threshold. [97–99] Could the

CAP technique measure this self-healing process, and the accompanying sharpen-

ing of the interface between specimen regions above and below the critical damage

threshold?

While these questions are clearly significant and may be explored in future exper-

iments, the present study will be limited to the overall effect of implantation damage

on the optical characteristics of diamond lattices in the mid-gap energy regime. As

such, this study will assist in tailoring implantation conditions toward the fabrication

of diamond-based photonic devices with desirable properties for a given application.
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CHAPTER V

LITERATURE REVIEW

This chapter first summarizes the current state of research in the area of ion implan-

tation in diamond and its effect on diamond’s optical characteristics. Following that

is an introduction to coherent acoustic phonon interferometry as an optical character-

ization technique, and a summary of its prior applications to ion-implanted crystals

and to diamond crystals.

V.1 Ion Implantation in Diamond

The first investigation of the effect of ion irradiation on the properties of diamond

was performed in 1909 by Sir William Crookes, [100] who observed discoloration

in natural diamonds after exposing them to radium. The effects he observed were

later attributed to α particle bombardment. [101] Since then, ion bombardment of

diamond crystals has been a subject of continual interest. Early works (up through the

1960’s) focused on the generation of diamonds with specific spectral characteristics,

or on the use of diamonds as scintillation detectors. Strictly speaking, these works

employed neutron and electron sources, rather than energetic ions. However, these

investigations laid the groundwork for understanding the role of natural and artificial
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structural defects as well as annealing on diamond’s optical properties. Billington

and Crawford [102] provide an excellent review of this era, as does Champion. [103]

Systematic studies of ion implantation in diamond began in the 1960’s, [104–

106] and were primarily concerned with the electrical conductivity of the irradiated

specimens. One notable exception is the work by R. L. Hines, [106] who measured

the optical reflectivity and transmission of implanted diamonds, and discovered that

both the real and imaginary indices increase with implantation fluence and that they

could be restored upon annealing.

Interest intensified from the 1970’s through the 1990’s, and primary areas of

focus included determining the exact nature of the induced electrical conductivity

in implanted layers, [107–112] using ion bombardment to artificially produce semi-

conducting diamonds, [113–118] determining the critical implantation fluence above

which damaged layers could no longer be restored to pristine diamond by anneal-

ing, [99, 119–123] and identifying specific point defect species resulting from implan-

tation and their behavior under annealing conditions. [124–135] The study of the

critical damage level for total amorphization of the diamond lattice continues to this

day, [94,97,136,137] as does the pursuit of semiconducting diamond devices, though

in the latter case, the approach has shifted to dopant incorporation during diamond

film growth. [138]

There are several reviews of the above efforts in the literature, [139–143], the most

recent being a book chapter written in 1998 by Kalish and Prawer. [143] A full book

by Dresselhaus and Kalish [139] and a review article by Prawer and Kalish [142] are

also excellent starting points. The scientific findings relevant to this work may be

summarized as follows: room-temperature implantation in diamond results in the

formation of defect clusters, which below a critical vacancy concentration of about

1022 cm−3 may be removed by annealing. Above a critical damage level, the material

retains its sp3 bonding character but the lattice collapses into amorphous carbon, and
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annealing or further implantation results in graphitization, that is, the conversion of

sp3 bonds to sp2.

V.1.1 Optical Properties of Ion-implanted Diamond

Beginning near the turn of the century, with the rapid growth of quantum information

science [144] and the identification of the NV− center in diamond as a possible stable

photon source [82,87] (see Section IV.1), attention was shifted to the optical properties

of ion implanted diamonds. [137,145–153]

In 1997, Bhatia et al. measured the Raman, FTIR, and visual-ultraviolet spectra

of a diamond specimen irradiated with progressively larger fluences of C+ ions. [145]

In the visual spectrum, they were able to extract information on the real refractive

index and the optical absorption. Their results are shown in Figure 29. Although

they did not observe any clear correlation between the real refractive index and the

ion fluence, there was a clear correlation between ion fluence F and optical absorption

α, with a phenomenological fit at 918 nm of

α = (1.3× 10−4)F 1/2. (19)

Gippius, Khomich, et al. have studied the optical characteristics of heavily-damaged

layers in He+-implanted diamonds that have been annealed to induce graphitization.

Their first report [137] in 2003 relied primarily on visual inspection, but in a second

report [146] they employed spectroscopic ellipsometry to extract the real and imagi-

nary indices of the graphitized layers, as depicted in Figure 30. These results provide

valuable information for optical device fabrication using high-dose implantation and

annealing to produce graphitic layers, but they leave open the question of the optical

characteristics of partially damaged and fully-amorphized diamond lattices prior to

annealing.
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(a) Refractive index vs. photon energy. (b) Optical absorption vs. C+ fluence at 918 nm.

Figure 29: Optical properties of C+-implanted diamond as measured by Bhatia et
al. [145].

(a) Real part of the refractive index. (b) Imaginary part of the refractive index.

Figure 30: Real and imaginary refractive indices vs. wavelength for graphitized im-
planted diamond layers as measured by Khomich et al. [146]
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To date two groups have addressed the problem of implantation-induced optical

modification prior to annealing. The first group, Draganski et al. (P.I. Steven Prawer),

presented preliminary results using spectroscopic ellipsometry in 2008, [154] and a

more full treatment in 2012. [152] They implanted 30 keV Ga+ ions at a range of

fluences, and their primary results after ellipsometric analysis are shown in Figure 31.

For the real part of the refractive index, they observed a decrease at low fluences and

an increase at higher fluences. They suggest that this behavior is unique to heavy-ion

implantations, as previous studies (see the work of the Olivero group, below) using

light ions found only monotonic increases in the refractive index with implantation

fluence. For the imaginary index, they observe an increase at all fluences, but again

the behavior is non-monotonic, as confirmed by conductivity measurements.

Figure 31: Variation in the real and imaginary parts of the refractive index of Ga+-
implanted diamond at multiple implantation fluences, from [152]

The Olivero group is the second to address this problem, beginning with a report

in 2010 [148] wherein they use an interference microscopy technique to measure the

refractive index variation at 632.8 nm (near the wavelength of NV− center emission)
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for 2 and 3 MeV proton-implanted diamonds over a range of fluences. This technique

yields an areal map of the optical path difference for full-thickness traversal of dif-

ferent regions of the specimen, as depicted in Figure 32(a). Figures 32(b)–(c) show

the measured optical path difference as a function of ion fluence, after subtraction of

the specimen swelling contribution. From this data, they extract the following phe-

nomenological relation for the real refractive index variation as a function of vacancy

concentration CV :

n = n0 +
[
(4.3± 0.3)× 10−23

]
× CV . (20)

This linear behavior is relevant to specimens irradiated at lower fluences, where the

lattice has not amorphized and there is no saturation behavior.

In 2011, the same group reported attempts to expand the spectral range of the

above measurement using transmission spectroscopy, [149] but were unable to derive

a single conclusive spectrum. However, as reported in 2012 (Battiato et al. [151]),

using a combination of spectroscopic ellipsometry and transmittance measurements

they were able to extract successfully the spectral behavior of the complex refractive

index (Figures 33(a)–(b)) for diamonds that had been irradiated with 180 keV B+

ions, and to determine phenomenologically that, for the real refractive index,

n = n0 + c[1− exp(−CV /b)], (21)

with b and c as fitting parameters (at 638 nm, b = 1.5 × 1021 cm−3 and c = 0.1, as

depicted in Figure 33(c)). The exponential behavior of this curve accounts for the

saturation effect in the real index change at high doses. For the imaginary component

of the refractive index, the investigators did not derive an expression as a function

of vacancy concentration, but instead derived an expression for the absorption of the

entire specimen thickness as a function of ion fluence.
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(a) Optical path difference map showing a 125 × 125 µm2 region
implanted with 2 MeV protons at a fluence of 7.63× 1016 cm−2.

(b) Optical path difference vs. fluence for 2 MeV
proton implantations.

(c) Optical path difference vs. fluence for 3 MeV
proton implantations.

Figure 32: Optical path difference data for proton-implanted diamonds as measured
by Olivero et al., from [148].
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(a) Real refractive index vs. wavelength at various vacancy
concentrations.

(b) Average imaginary refractive index vs. photon energy
at various implantation fluences.

(c) Real refractive index vs. vacancy concentration at 638 and 1550 nm,
along with linear and exponential fits.

Figure 33: Derived refractive index information for proton-irradiated diamonds as
measured by Battiato et al., from [151].
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(a) Optical path difference between irradiated
and unirradiated regions vs. implantation fluence,
used to determine the behavior of the real refrac-
tive index.

(b) Absorption length difference between irradi-
ated and unirradiated regions vs. implantation
fluence, used to determine the behavior of the
imaginary refractive index.

Figure 34: Optical measurements of proton-implanted diamond specimens by Lago-
marsino et al. [153] The lines show fits based on the linear model from Equation 22.

The full evaluation of the complex refractive index of proton-irradiated diamond

as a function of vacancy concentration came later in 2012 (Lagomarsino et al. [153]).

In this work, the group expanded on their results from [148] by measuring differences

in absorption length between irradiated and unirradiated diamond regions, and by

applying a multi-layer propagation model which accounted for refraction and absorp-

tion using the full complex index. Their results are shown in Figure 34. Since all

of the implantation fluences are below the amorphization limit, they again find good

agreement with the experimental data using a linear model for the dependence of the

complex index ñ at 632.8 nm on local vacancy concentration CV :

ñ = 2.41 +
[
(4.34 + 2.86i)× 10−23

]
× CV . (22)

The above findings will be compared directly with those of the current work in

Chapters VI and VII.
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V.2 Coherent Acoustic Phonon Interferometry

V.2.1 The CAP Technique

Coherent acoustic phonon (CAP) interferometry, also known as picosecond ultra-

sonics, is a well-developed all-optical technique for non-destructive and non-invasive

depth-resolved materials characterization. The CAP method is a subset of the more

general category of ultrafast optical pump-and-probe experiments, wherein a strong

electromagnetic pump pulse perturbs a system in some way that can be measured by

a weak probe pulse a brief time later. This approach to materials characterization has

blossomed in the last few decades due to significant advances in laser technology that

have made available coherent optical sources with ultrafast (∼100 fs) pulse lengths,

high powers, and high repetition rates.

Strain Wave Generation

The defining characteristic of CAP pump-probe experiments is the presence of a

thin transducing layer, either at the specimen surface or embedded within it. This

layer usually consists of metal, but could be any material which strongly absorbs at

the pump frequency. The incidence of the optical pump pulse on this layer results

in the generation of a coherent acoustic phonon pulse, which radiates out from the

location of incidence and traverses the specimen at the longitudinal speed of sound.

As described below, the subsequent optical probe will be partially reflected from this

traveling acoustic pulse, yielding the depth sensitivity of the technique. Figure 35(a)

depicts the pump-induced strain wave generation process.

The generation and detection of laser-induced picosecond acoustic pulses was first

reported in 1984 [155] and elaborated on in 1986 [156] by a group of researchers at

Brown University. They employed a model based on surface heating to describe the
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(a) Strain wave generation

(b) Reflection interference

Figure 35: Schematic views of (a) the pump-induced strain wave generation and (b)
the strain-induced interference effect in the reflected probe beam in a typical reflection
geometry CAP experiment.
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acoustic pulse generation. Briefly, the absorbed optical pump heats up the transduc-

ing layer, introducing thermal stress that is relaxed by means of surface swelling and

the launching of the acoustic strain pulse. They go on to show that, to first order,

the propagating strain pulse has the form of an exponentially decaying sign func-

tion, as depicted in Figure 36. This propagating strain pulse, also referred to as the

CAP wave, has been observed to traverse millimeter-thick specimens with little-to-no

decoherence. [157]

St
ra
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Tensile

Compressive

Propagation Direction

Figure 36: Coherent acoustic phonon strain pulse shape.

Reflection Interference

The propagating strain pulse represents a distortion of the ordinary lattice spacing of

the host material, and modulates the local material properties. For CAP experiments,

the property of interest is the complex index of refraction, ñ = n + iκ, which at a

given point in time is modulated to first order according to:

ñ(z, t) = ñ0 +
dñ

dη
η(z, t), (23)
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where ñ0 is the index of the unperturbed lattice, η is the strain from the propagating

acoustic pulse, and dñ/dη is the photoelastic coefficient of the host material. The

strain-induced modulation of the refractive index produces an optical interface in the

host material that is particularly strong at the sharp transition from compressive to

tensile strain (see Figure 36). In this way, the CAP wave acts as a “moving mirror”

within the specimen.

Upon incidence with the specimen, the electromagnetic probe reflects from both

the surface and from the propagating CAP wave, resulting in self-interference (Fig-

ure 35(b)). The interference can be either constructive or destructive, depending on

the distance between the CAP wave and the specimen surface. This distance may be

selected by varying the time delay between the pump and probe pulses, thus allowing

the CAP wave more or less time to propagate into the specimen before the incidence

of the probe. A systematic variation of the pump-probe time delay results in an

oscillation pattern in the reflectivity signal, as depicted in Figure 37.

Materials Characterization

Analyzing the behavior of the CAP oscillations reveals information about the material

under study, as depicted in Figure 38. For instance, the period of the oscillations, T ,

is determined by the real refractive index and the speed of sound according to:

T =
λ

2nvs
, (24)

where λ is the wavelength of the optical probe. The decay of the oscillations is

associated with the imaginary part of the refractive index, κ, according to:

Decay ∝ exp(−αvst) = exp

[
−
(

4πκ

λ

)
vst

]
. (25)
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Figure 37: CAP-induced interference oscillations in the pump-probe reflectivity signal
of a GaAs specimen with a 20 nm transducing layer of GaSb on the surface, from [158].
The inset shows the same data after subtraction of the thermal pump-probe response,
isolating the phonon-induced oscillations.
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Figure 38: Simulated CAP oscillations for a material with index ñ = 2.4 + 0.05i and
speed of sound vs = 17.52 nm/ps.

65



Since the CAP wave propagates at the longitudinal speed of sound vs, the pump-

probe time delay t may be correlated directly with specimen depth, z, according

to:

z = vs t. (26)

This fact is the key to the depth sensitivity of the CAP technique. It should be noted

that in these sorts of experiments, the depths of interest are usually much smaller

than the diameter of the laser spot; thus, a near-field regime is assumed, and the

CAP wave is treated as planar. In the more general far-field case, the CAP wave

radiates spherically from the point of incidence, and information about the depth-

dependent nature of a specimen requires more careful evaluation. Figure 39 shows a

near-field CAP reflectivity measurement on a multilayered system consisting of 1 µm

of molecular-beam epitaxial Ga0.95Mn0.05As above a 300 nm layer of low-temperature

grown GaAs above a GaAs substrate. [159] The multi-layered structure of the material

is apparent in the amplitude of the oscillations, as shown in the inset.

Changes in the amplitude of CAP oscillations that do not follow exponential decay

behavior can be attributed to variations in the photoelastic coefficient, dñ/dη . In

the case of Figure 39, dñ/dη varies with the different material layers. Generally, the

greater the magnitude of dñ/dη , the stronger the reflectivity of the CAP wave and

the larger the CAP oscillations. Like the index ñ, dñ/dη is a function of wavelength,

and has been found in semiconductors to be particularly strong at photon energies

near the band edge. [158] In addition, this quantity is associated with the p12 Pockels

coefficient of the photoelastic tensor, [160] according to:

dñ

dη
= − ñ

3

2
p12. (27)
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Figure 39: CAP reflectivity of a Ga0.95Mn0.05As/LT-GaAs/GaAs heterostructure
grown using molecular beam epitaxy, from [159]. The layered structure of the speci-
men is most clearly visible in the inset, which shows the isolated CAP oscillations.

V.2.2 CAP in Ion-implanted Materials

Only a few experimental studies of the CAP response of ion-implanted crystals have

been reported. In 2009, Steigerwald et al [161] reported CAP experiments on GaAs

crystals implanted with 325 keV He+ ions. As shown in Figure 40, they observed

a decrease in the CAP oscillation amplitude at specimen depths corresponding to

the peak implantation damage. The depth of the amplitude loss was in excellent

agreement with Monte Carlo simulation codes (specifically, the TRIM code [162]),

and by performing implantations at multiple He+ fluences, the investigators were able

to correlate the oscillation amplitude loss directly with local vacancy concentrations,

as depicted in Figure 41.

The oscillation amplitude loss depicted in Figure 40 was attributed to a band

tailing effect brought on by the implantation damage, resulting in a decrease in the

photoelastic coefficient dñ/dη. In 2012, the same group of researchers reported further
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Figure 40: CAP response of a He+-implanted GaAs specimen, from [161]. The im-
plantation fluence was 3.5 × 1013 cm−2. (a) Experimental setup for measuring CAP
reflectivity. (b) Reflectivity response for implanted (black) and unimplanted (red)
GaAs specimens. The inset shows the specimen geometry. (c) Isolated CAP oscilla-
tions from the reflectivity data. The loss of oscillation amplitude in the implanted
specimen (black) is evident at 200 ps.

Figure 41: Comparison between experimentally-derived vacancy concentration profile
from CAP reflectivity data (blue) and TRIM code simulation (black) for He-implanted
GaAs specimens, from [161]. The inset shows the experimental profile before and after
annealing, with evident healing of the implantation damage.
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experimental work, this time implanting GaAs crystals with 400 keV Ne++ ions. [163]

They were able to determine the optical damage cross-section around the Ne++ tracks,

and found that the extent of the optical modification to the crystal was about five

times that of the structural modification. In addition, they found that the CAP

response was highly sensitive to the wavelength of the optical probe in the vicinity

of the band edge, further validating the band tailing interpretation. The also verified

the earlier quantitative measurement of vacancy concentration profiles using CAP

methods by performing ion channeling experiments on the implanted specimens.

Finally, another group (Rossignol et al.) reported in 2012 on the behavior of ion-

implanted TiO2 thin films grown on SrTiO3 substrates under CAP interferometry

measurements. [164] They found that the implantation defects accumulated in the

interfacial SrTiO3 region, and that the speed of sound in that region was reduced

three-fold at the highest implantation fluences.

V.2.3 CAP in Diamond

There are two previous reports of CAP measurements in diamond materials, one

of which was applied to ion-implanted diamond. The first report was published in

2004 by Rossignol et al. [165] They studied polycrystalline diamond films grown on

substrates of Ti alloy using chemical vapor deposition, and were able to evaluate the

relative quality of different films by determining their elastic constants (C33) from the

CAP data. In this case, the Ti alloy substrate itself acted as the transducing layer,

and the CAP wave traveled from the substrate towards the surface. Thus, they were

also able to evaluate the surface roughness of the films by observing the strength of

the reflection of the CAP wave at the surface of each specimen.

69



CAP in Ion-implanted Diamond

In the second work, [166] published in 2011, Klokov et al studied the CAP response of

diamond specimens that had been implanted with 350 keV C+ ions and annealed to

sharpen the internal amorphous-crystalline interface. They used the internal damage

layer for the transducing effect, and were able to extract the thermoelastic response

of those layers. However, the reflectivity response data was extremely noisy, and the

convergence between their experimental results and the calculations was poor.

V.2.4 Summary

All of the aforementioned results show that CAP interferometry is a valuable tool

that has yet to be fully exploited for the study of ion implanted materials, and in

particular for ion-implanted diamond. This study seeks to further the knowledge of

implantation-induced optical modifications in diamond and to broaden the capabili-

ties of the CAP technique.
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CHAPTER VI

EXPERIMENT

This chapter describes in detail the experimental techniques employed in these studies.

The results of the coherent acoustic phonon reflectivity measurements in implanted

diamonds are presented, along with the comparison to TEM. Finally, the observed

features in the reflectivity data are attributed to specific modulations in the optical

characteristics of the diamond lattice. For details concerning the numerical simula-

tions of the CAP experiments, see Chapter VII (Phenomenological Model).

VI.1 Methodology

VI.1.1 Implantation

Single-crystal type IIa CVD diamond specimens were purchased from the Element

Six Corporation. Specimens had (100) crystal orientation on all faces, dimensions

3 × 3 × 0.3 mm, and were polished on both sides. A High-Voltage Engineering AN-

2000 electrostatic Van de Graaff accelerator was used to implant the specimens with

1 MeV He+ ions at currents of approximately 200 nA, with fluences ranging from

1014 to 3 × 1017 cm−2. In some cases more than one crystal was implanted at the

same fluence. Implantations were performed in vacuum at temperatures below 0 ◦C.
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Specimen heating during implantation is assumed to be negligible due to the high

thermal conductivity of diamond and good thermal coupling with the large aluminum

block on which the crystals were mounted.

To model the lattice damage resulting from ion implantation, Monte Carlo sim-

ulations were performed using the Transport of Ions in Matter (TRIM) code. [162]

Model parameters were 3.515 g·cm−3 for the density of diamond and 52 eV for the

displacement energy. [167] The TRIM results were verified by cross-sectional TEM

using a Philips CM200 microscope at Oak Ridge National Laboratory. TEM sample

preparation was performed using a TESCAN dual-beam FIB at the MTSU MIMIC

facility.

VI.1.2 Coherent Acoustic Phonon Interferometry

To form the transducing layer, implanted crystals were coated with ∼10 nm of alu-

minum using an Angstrom Åmod resistive evaporation chamber. Pump-probe reflec-

tivity measurements were taken using a Coherent Mira 900 Ti:Sapphire laser produc-

ing 150 fs pulses at 76 MHz. The experimental setup is shown in Figure 42. The

pump beam was tuned to 800 nm with an average power of 150 mW, and the probe

beam was frequency-doubled to 400 nm (near the middle of the diamond band gap)

with a typical average power of 2.1 mW. Both beams were focused onto the specimen

at the same location with a spot diameter of 100 µm for the pump and 50 µm for

the probe. To reduce interference in the reflectivity signal, the pump beam was mod-

ulated at 50 kHz using an acousto-optical modulator and the reflected probe beam

was monitored using a lock-in amplifier.

Figure 43 shows the typical pump-probe reflectivity response of the implanted

specimens. The oscillations from the CAP wave can be seen superimposed over the

usual peak and decay of the thermal pump-probe response. It is standard in the
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Figure 42: Experimental setup for CAP measurement of ion implanted diamonds.

Figure 43: Typical pump-probe reflectivity responses for implanted (solid) and unim-
planted (dotted) diamonds, vertically offset for clarity. Data are relevant to a sample
implanted at a fluence of 3×1015 cm−2. Inset: CAP experiment configuration showing
strain-wave induced self-interference in the probe reflectivity.
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analysis of CAP experiments for the thermal response to be subtracted out, leaving

only the CAP oscillations.

VI.2 Results

VI.2.1 Coherent Acoustic Phonon Interferometry

The lower six panels of Figure 44 show CAP oscillation signals for diamond specimens

implanted at fluences from 3×1014 cm−2 to 3×1016 cm−2. For clarity, noisy regions of

the CAP response near zero time delay have been removed from the plots for the two

lowest fluences. At He+ fluences below 3×1014 cm−2, no damage-induced modulation

of the CAP signal is apparent, and at fluences above 1017 cm−2, no CAP oscillations

are observed due the strong absorption of the probe pulse in the damaged region.

Three important features of the data are noted here, and will be explored in detail

below. The most striking feature in the oscillations is the ‘pulse’ that increases in

width and shifts toward smaller time delays as the implantation fluence is increased.

Comparison of the implanted curves with the corresponding unimplanted behavior

shows that the regions before and after this pulse feature are essentially in phase with

the unimplanted oscillations, but that the pulse feature itself is 180◦ out of phase

with the unimplanted oscillations. In all cases the direct out-of-phase behavior ceases

beyond the damaged region.

In addition to the above, there is a small phase delay between the implanted

and unimplanted oscillations in the out-of-phase region and the region after it, which

increases with increasing fluence. For the higher fluences, this small phase change is

noticeable well before the strain wave reaches the peak of the implantation damage.

Finally, the amplitude of the oscillations beyond the damaged region decreases

with increasing implantation fluence, and disappears entirely at the highest fluence
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Figure 44: CAP oscillations in the pump-probe reflectivity signal of ion-implanted
diamond specimens at multiple fluences (dark lines). The dotted line behind each
curve is the corresponding response for an unimplanted specimen. Above the CAP
responses is damage-induced vacancy distribution as calculated by the TRIM code.
The vertical bar indicates the full width at half maximum of the TRIM vacancy
profile.
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shown. The time-domain decay toward this decreased persistent amplitude begins in

the out-of-phase region.

Some previous experimental studies of ion-implanted diamond [136,168,169] have

observed surface swelling due to the volume expansion of the amorphized lattice. For

instance, Bosia et al. [136] observed surface swelling of ∼100 nm in a diamond speci-

men implanted with 1.8 MeV He+ ions at a fluence of 4.18×1016 cm−2. Although such

swelling could in principle influence the depth characteristics of the CAP experiment,

the fluences used in this study are below that reported by Bosia et al., and even at

the highest fluences, the oscillations are damped out before reaching the peak of the

implantation damage, where any swelling effects would be most noticeable. In addi-

tion, if there were an appreciable contribution to the CAP measurement from surface

swelling, it would manifest as an increase in the apparent depth of the implanted

layer, i.e., the tail of the out-of-phase pulse feature would appear to shift to the right

with increasing fluence. Since such behavior is not observed in the oscillations in

Figure 44, and in light of the above considerations, the effect of surface swelling in

these studies is taken to be negligible.

VI.2.2 Transmission Electron Microscopy

Since the concept of vacancy concentrations has proven to be such a useful tool for

quantifying damage to implanted materials, the analysis that follows relies on the

implantation-induced vacancy concentration profile as calculated by the TRIM code

(Figure 44, top panel) to describe the damage to the diamond lattice. To verify

the accuracy of the TRIM calculation, cross-sectional lamellae were cut out of the

implanted specimens and studied under transmission electron microscopy, as shown

in Figures 45 and 46. The TEM image in Figure 46 is for the 3×1016 cm−2 specimen,

and shows a thick band of implantation damage at the location of the peak predicted

by the TRIM profile. The damage peak in Figure 45, which depicts the 1015 cm−2
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specimen, is more faint, but is also in excellent agreement with the TRIM prediction.

The use of the TRIM code in the analysis of the CAP oscillations is justified based

on these results. In addition, it is noted that the spatial extent of the implantation

effects in the diamond specimens is much broader in the opto-electronic properties

(as measured by CAP) than in the visible structural changes to the lattice shown by

TEM.
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Figure 45: Comparison of CAP oscillations with cross-sectional TEM for the
1015 cm−2 implantation. TEM image is of bright field two-beam diffraction, with
g = (220). The predicted TRIM vacancy concentration profile is shown at the bot-
tom for reference.
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Figure 46: Comparison of CAP oscillations with cross-sectional TEM for the 3 ×
1016 cm−2 implantation. TEM image is of bright field two-beam diffraction, with
g = (220). The predicted TRIM vacancy concentration profile is shown at the bottom
for reference.
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VI.3 Discussion

The features noted in the reflectivity data are due to a variety of damage-induced

modifications to the optical properties of the diamond lattice. In addition to the

following discussion of these features, a full quantitative treatment is given in Chap-

ter VII.

VI.3.1 Phase Reversal

The time delay of the pump-probe reflectivity signal may be correlated with crystal

depth by simple multiplication with the longitudinal speed of sound, which in diamond

is 17.52 nm·ps−1, as reported in the top axis of Figure 44. This enables the features

in the reflectivity signal to be mapped directly against the damage-induced vacancy

concentration profile as calculated by TRIM. Figure 47(a) shows for each fluence the

TRIM vacancy concentration at the ‘node depth,’ where the onset of the out-of-phase

behavior appears, and at the peak amplitude of the out-of-phase region. The vacancy

concentrations for the node depths in particular are in good agreement across the

range of fluences, with an average concentration of CV -node = (3.9± 0.9)× 1020 cm−3.

The 180◦ out-of-phase behavior in the CAP oscillations and the physical signifi-

cance of the critical vacancy concentration CV -node can be explained within a model

incorporating an empirical dependency of photoelasticity on defect concentration.

The amplitude of the CAP oscillations is proportional to the reflectivity of the CAP

strain wave, which comes from the strain-induced modulation of the real refractive

index of the local lattice. Thus,

RCAP ∝
dn

dη

(
CV (z)

)
× η(z, t), (28)

where RCAP is the strain wave reflectivity, η is the local strain due to the traveling

CAP wave, and dn/dη is related to the p12 component of the photoelastic tensor, [160]
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Figure 47: Variations in CAP oscillation features with He+ implantation fluence.
(a) TRIM vacancy concentrations for the initial node and peak of the out-of-phase
‘pulse’ feature. The lines at 1.6× 1021 cm−3 (dotted) and CV -node = 3.9× 1020 cm−3

(dashed) are the respective average vacancy concentrations for the peaks and nodes.
(b) Cumulative phase shift resulting from the damage-induced increase in the real
index, n. The line is a guide to the eye. (c) Amplitude of the oscillations beyond
the damage layer as a fraction of the oscillation amplitude before the out-of-phase
behavior. The line is a linear fit to the data.
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which in these specimens varies with the implantation-induced vacancy concentration,

CV (z). The dn/dη term in diamond is ordinarily negative at 400 nm, [170] thus if

we imagine for the sake of argument that the strain wave is a simple positive square

pulse, it generates a traveling optical interface with a high-to-low transition in the real

refractive index. (The argument given here is valid regardless of the shape of the CAP

pulse, which in reality is more complex. [156]) As the vacancy concentration increases

toward CV -node, dn/dη increases toward zero and the CAP amplitude diminishes. At

CV = CV -node, dn/dη = 0, and the strain induces no change in the refractive index

of the lattice, thus the CAP oscillations disappear. As CV continues to increase

beyond CV -node, dn/dη becomes positive. Now the CAP wave generates an optical

interface with a low-to-high index transition, and the reflected probe light undergoes

a phase shift of 180◦. This reverses the constructive and destructive interference of the

recombined probe beam at the surface, resulting in the direct out-of-phase behavior

observed in the reflectivity data. This explanation is summarized in Table 6. Since the

amplitude of the CAP oscillations in the phase-inverted region often exceeds that of

the oscillations near the surface, the absolute magnitude of the photoelastic coefficient

in these regions is believed to exceed that for an undisturbed diamond lattice.

VI.3.2 Cumulative Phase Shift

Figure 47(b) shows, at each fluence for which data was available, the phase shift

between the implanted and unimplanted specimens in the oscillations beyond the

damaged region, determined from the data by cross-correlation. The data show a

monotonic increase with He+ implantation fluence. This phase shift is due to a

decrease in the real refractive index of the damaged diamond lattice, which results

in a decreased optical path length for the probe pulse as it traverses the specimen

to the strain wave and back again. Because of this, the phase shift is manifested

cumulatively with time delay as the strain wave traverses more of the specimen’s
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Table 6: Summary of the explanation for the phase reversal behavior in the CAP
oscillations at CV = 3.9× 1020 cm−3.

CV < 3.9× 1020 cm−3 CV = 3.9× 1020 cm−3 CV > 3.9× 1020 cm−3

dn/dη < 0 dn/dη = 0 dn/dη > 0

n1 > n2 n1 = n2 n1 < n2

modified optical path length, and appears most strongly in the region beyond the

implantation damage.

Comparison to Literature

There is currently disagreement in the literature about the effect of ion implanta-

tion on diamond’s refractive index. This study, along with the reports by Khomich

et al. [146] and to a degree Draganski et al. [152], finds a decreasing index after ion

bombardment, in apparent contradiction to other reports [106,148,151–153] that find

an index increase.

The increased index result that some groups have reported is intriguing. In most

crystals, ion implantation damage decreases the atomic density of the lattice by intro-

ducing vacancies, thereby decreasing the refractive index. However, there are other
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potential influences, as shown in the Wei modification to the Lorentz-Lorenz equa-

tion: [171,172]

∆n

n
=

1

6n2

(
n2 − 1

) (
n2 + 2

) [∆N

N
+

∆α

α
+

∆χ

χ

]
. (29)

Here, the ∆ terms refer to implantation-induced modifications to the unperturbed

physical properties, while N is the atomic density, α is the polarizability of the lat-

tice atoms, and χ is a structure factor. As previously mentioned, ∆N is negative

and usually predominates, but the ∆α and ∆χ contributions may be positive or neg-

ative. In diamond, one or both of these terms might overcome the density loss. In

particular, given the strong covalent bonding in the diamond lattice, it is not surpris-

ing that structural modifications can induce large changes in polarizability, especially

when one considers the possibility of changing sp3 bonds to sp2. On the other hand,

the structure factor χ is a correction for crystals that are either non-cubic or non-

amorphous, [172] and thus should be negligible for both pristine and fully-amorphized

diamond specimens, but it may play a role at intermediate levels of damage. However,

if this contribution is responsible for the observed increase in the refractive index, it

is unclear why such an effect would be unique to diamond, and not to other crystals

with diamond-cubic arrangement, such as silicon. Therefore, discrepancies within the

literature and with the current work are most likely due to variations in the relative

modifications to the density and polarizability of the implanted diamond specimens.

There are multiple potential explanations for the current discrepancy among ex-

perimental studies of this subject. Table 7 lists the relevant experimental parameters

from the available literature. Lagomarsino et al. [153] have suggested that the dif-

ference is due to low-fluence vs. high-fluence implantation regimes, but the present

work shows that the index can decrease at low fluences as well.
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The difference between this work and the reports from the Olivero group [148,

151,153] could be explained by choice of wavelength, which for this work was 400 nm

(3.1 eV) and for theirs was 632.8 nm (1.96 eV). If this is the case, the specific roles

of the various optical defect bands introduced by the implantations would have to be

considered.

The implantation ion species is another possible factor, and He is unique to the

studies exhibiting decreased refractive index. However, it is unclear what properties

specific to helium ions might account for the discrepancy, as an increased index has

been observed from both lighter and heavier ions.

Based on previous experimental work, [108] it has been assumed in this study

that the longitudinal speed of sound in the implanted diamonds is unaffected by the

damage to the lattice. However, if this is not the case, the observed phase shift could

be attributed to a decreased speed of sound in the implanted region, which would

compete with the increased refractive index. However, if this were the case, it would

again be expected that the apparent end of the damaged region in the reflectivity

oscillations would shift toward deeper time delays with increasing fluence, and this is

not observed in the experimental data.

Finally, as Table 7 shows, there is a 1–2 order of magnitude difference between the

current work and the H implantations by the Olivero group [148,153], suggesting the

possibility that the discrepancy may be accounted for by dynamic annealing effects,

which can occur at room temperature. [97] (Although data are available, it is difficult

to judge the relevance of ion current density and dynamic annealing to the work

by Hines et al. [106], as their specimens were annealed to high temperatures after

implantation). It is noted that the implantations in the present work were performed

below 0 ◦C specifically to avoid dynamic self-annealing.
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Table 7: Experimental parameters and results from available works studying the
variation in real refractive index of ion irradiated diamond crystals. Here, Eion is the
energy of the implanting ions, I is the ion current, d is the ion beam diameter at the
specimen, J is the ion current density at the specimen, Timpl. is the nominal temper-
ature of the specimen during implantation, and λ are the wavelengths at which the
refractive index was measured. An asterisk (*) next to the implantation temperatures
denotes specimens that were annealed after implantation.

Reference Crystal Type Ion Species Eion (MeV) Fluences (cm−2)

[148,153] CVD IIa H+ 2, 3 1015 – 1017

This work CVD IIa He+ 1 3× 1014 – 3× 1016

[146] Natural He+ 0.35 4.9× 1016

[151] CVD IIa B+ 0.18 1013 – 5× 1014

[106] Natural C+ 0.02 5× 1013 – 2.1× 1015

[145] Natural IIa C+ 0.05–1.5 1.5× 1014 – 1017

[152] HPHT Ib Ga+ 0.03 1013 – 5× 1014

(continued)

Reference I (nA) d (µm) J (A/m2) Timpl. (K)

[148,153] 1 10, 20 3, 12 ∼300
This work 200 1,000 0.25 < 273

[146] - - - 300*
[151] - - - -
[106] 20 500 0.1 300*
[145] - - - 77
[152] - - - -

(continued)

Reference Characterization technique λ (nm) Result

[148,153] Reflection interferometry 632.8 increased n
This work CAP interferometry 400 decreased n

[146] Spectroscopic ellipsometry 350 – 1050 decreased n
[151] Spectroscopic ellipsometry 250 – 1700 increased n
[106] Reflectivity 450 – 650 increased n
[145] Reflectivity / transmission 200 – 2500 inconclusive
[152] Spectroscopic ellipsometry 190 – 2100 both
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VI.3.3 Persistent Amplitude Loss

The final feature of note in the CAP oscillations is the persistent loss of amplitude

in the region beyond the implantation damage. Figure 47(c) shows the ratio of the

amplitude of the CAP oscillations beyond the damage region to the amplitude near

zero time delay at each fluence for which clear amplitudes could be obtained. The

ratio decreases linearly with increasing implantation fluence, up to the point where

oscillations are no longer observed and the ratio is zero. This persistent amplitude

loss is due to depletion of the internally-reflected beam, and can be attributed either

to phonon-defect scattering of the CAP wave in the damaged region of the specimen,

thereby decreasing RCAP , or to defect-induced scattering and absorption of the probe

photons.

To distinguish these two effects, simple optical transmittance experiments (in the

absence of a phonon wave) comparing the implanted and unimplanted regions of the

specimens were performed. The results are shown in Figure 48. As can be seen, the

transmission experiment exhibited the same optical loss in the implanted regions as is

exhibited in the CAP experiments, which suggests that CAP wave decoherence does

not contribute significantly to the observed oscillation amplitude loss. Therefore,

the observed amplitude loss is attributed to an increase in the optical absorption,

specifically the imaginary part of the refractive index, in the damaged regions of the

specimens. This finding is easily verified by the naked eye, as the implanted regions

grow increasingly opaque with implantation fluence, and are completely black at the

highest fluences.
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Figure 48: Comparison between persistent amplitude loss in the CAP oscillations and
the optical transmittance of the implanted specimens at 400 nm.
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CHAPTER VII

PHENOMENOLOGICAL MODEL

This chapter begins by describing the motivation for and limitations associated with

a phenomenological model for the implantation-induced variation in the optical char-

acteristics of diamond. Then a simple analytical approach that yields good agreement

with a limited set of experimental observations is presented, followed by a description

of a more detailed numerical model which allows for the simulation of the full CAP

reflectivity response of the implanted specimens.

VII.1 Objective and Limitations

Since ion implantation is likely to become a key component in the manufacturing

process for diamond-based quantum information devices (see Chapter IV), it is im-

perative to understand the ways in which ion implantation modifies the optical char-

acteristics of diamond crystals. In particular, a quantitative model that can ac-

curately predict damage-induced optical modulations would be a desirable tool for

device design. The purpose of the work described in this chapter is to provide such a

phenomenological model for helium implanted diamonds, based on the experimental

results presented in Chapter VI.
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From a more fundamental point of view, it is also clearly desirable to understand

the underlying physical mechanisms responsible for the observed optical modifica-

tions. However, although the quantitative model presented here may provide valu-

able clues for such an investigation, the question lies beyond the scope of the present

work. One recent report [173] suggests that ab initio calculations based on density

functional theory may be a viable approach for beginning to answer these more fun-

damental questions, particularly with respect to the effect of implantation defects on

the acousto-optical response.

VII.2 Analytical Approach

VII.2.1 Introduction

Three important features of the experimental data were noted in Chapter VI:

1. A ‘pulse’ feature in regions with vacancy concentrations above 3.9× 1020 cm−3,

in which the oscillations from the implanted specimens reversed phase with the

oscillations from the unimplanted specimens. This feature was attributed to a

sign reversal in the p12 component of the photoelastic tensor.

2. A small, cumulative phase delay between the oscillations for implanted and

unimplanted specimens, which increased with increasing ion fluence. This effect

was attributed to a decrease in the real part of the refractive index within the

damaged layer.

3. A loss of oscillation amplitude in the implanted specimens, which persisted into

the specimen at depths beyond the implantation layer, and was attributed to a

damage-induced increase in the imaginary part of the refractive index.

The second and third features, which together represent the damage-induced vari-

ation in the complex refractive index of the lattice, are manifested most clearly in the

89



region beyond the implantation damage, and can be described using a simple analyt-

ical model. The behavior of the first feature requires a more sophisticated approach

and will be addressed later in Section VII.3.

VII.2.2 Relationship to Experimental Observables

It is assumed that the local complex index of the implanted crystal can be represented

solely as a function of the vacancy concentration, i.e.,

ñ(z) = n+ iκ = ñ
(
CV (z)

)
. (30)

In order to evaluate the merit of different analytical models for ñ(CV ), it is first

necessary to establish quantitative relationships between the experimental observables

and the two components n and κ.

Phase Shift

The observed phase shift in the oscillations beyond the damage region is due to the

damage-induced optical path difference experienced by the probe pulse as it traverses

the specimen to the strain wave and back. The one-way difference in the optical path

length between the implanted and unimplanted specimens is:

OPD1-way =

∫ z

0

[
n(z)− n0

]
dz =

∫ z

0

n
(
CV (z)

)
dz − n0z, (31)

where n0 is the real index of the undamaged lattice and the integration is carried out

from the surface to some depth z beyond the implantation damage. The resulting

phase shift in the CAP oscillations (in radians) is:

θ = 2× 2π

(
OPD1-way

Tz

)
=

2πn0

λ

[∫ z

0

n
(
CV (z)

)
dz − n0z,

]
. (32)
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Here, positive θ denotes a shift toward greater time delays, i.e., to the right in Fig-

ure 44, the initial factor of 2 accounts for the double traversal of the implantation

damage by the probe pulse, and Tz = λ/2n0 is the period of the undamaged oscilla-

tions in the depth domain.

Amplitude Loss

The persistent amplitude loss in the oscillations beyond the damaged region can be

related to κ(z) by employing a depth-dependent form of the Beer-Lambert law, which

describes the loss in the intensity of light as it traverses an absorbing medium:

dE

dz
= −α(z)

2
E. (33)

Here α = 4πκ/λ is the linear absorption coefficient, which in the implanted specimens

will vary with depth. The electric field form of the law is presented here rather than

the usual intensity form because it is the electric fields which recombine interfero-

metrically at the specimen surface. Solving this equation yields the amplitude loss

ratio E/E0 in the CAP oscillations beyond the damaged region as compared to the

oscillations in the undamaged specimens:

E

E0

= exp

[
−4π

λ

∫ z

0

κ(z)dz

]
. (34)

The exponential term in Equation 34 has been squared to account for the two passes

of the optical probe through the damaged region.
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VII.2.3 Phenomenological Model

Lagomarsino et al. [153] found good agreement with experimental results by employ-

ing a linear model for the dependence of ñ on vacancy concentration:

ñ(CV ) = ñ0 + c̃ CV . (35)

However, as they point out, this model is valid for a limited range of CV , as at higher

levels of damage approaching the amorphization limit the optical modulation satu-

rates. A simple exponential model which accounts for this saturation was employed

successfully by Battiato et al., [151] and serves as a basis for the current work:

n(CV ) = n0 + (n∞ − n0) [1− exp(−CV /a)] , (36)

κ(CV ) = κ0 + (κ∞ − κ0) [1− exp(−CV /b)] . (37)

Here, n0 and κ0 refer to the characteristics of the undamaged lattice, while n∞ and

κ∞ denote saturation values at high vacancy concentrations. The parameters a and

b give the vacancy concentrations at which the two optical modulations have reached

1− 1/e (or 63%) saturation.

VII.2.4 Calculation and Results

Equations 32 and 34 were evaluated simultaneously at each fluence for which exper-

imental data were available using the above exponential model for ñ(CV ), with n∞,

κ∞, a, and b as fitting parameters. The vacancy concentration profile CV (z) was

provided by the TRIM code, as described in Chapter VI. The invariant parameters

n0 and κ0 were determined by fitting an exponentially decaying sine function to the

oscillations observed in the unimplanted specimens. The real index n0 was found to

be the same for all specimens, with a value of 2.4542, assuming a sound velocity of
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17.52 nm/ps. The imaginary index κ0 varied depending on the specimen, with values

from 0.00133 to 0.00362. For the parameter fit, the average value of 0.002488 was

used.

The fixed parameters and the parameters giving the best fit to the experimental

data are listed in Table 8. Figure 49 shows the variation in the two components

of ñ(CV ) over a range of vacancy concentrations. The comparison to experimental

results is given in Figure 50.

Table 8: Constant and best fit parameters for the exponential model given in Equa-
tions 36 and 37 using the analytical approach.

Parameter Value

n0 2.454 2
n∞ 2.438 7
a 1.78×1020 cm−3

κ0 0.002 488
κ∞ 0.119
b 8.00×1021 cm−3

In general the agreement of the model with experimental results is very good. A

few interesting points are worth noting. The first is that the observed decrease in

the refractive index of 0.0155 (0.63%) is relatively small. For comparison, Battiato et

al. [151] observed an increase of ∼ 0.09 (3.7%) at the saturation limit. In addition, in

[151] it was found that the saturation parameter a was 1.5×1021 cm−3, whereas in the

present work a is found to be 1.78×1020 cm−3, an order of magnitude smaller. Possible

explanations for these discrepancies have been discussed in Section VI.3.2. Finally, it

is interesting to note that the modulation in n occurs in the 1019–1021 cm−3 range of

vacancy concentrations, while the range for the modulation in κ is 1021–2×1022 cm−3.

This suggests that the underlying mechanisms responsible for the damage-induced

modulation of the two components may be different.
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Figure 49: Variation in the real and imaginary components of ñ(CV ) over a range of
vacancy concentrations, using the parameters given in Table 8.
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Figure 50: Comparison of the exponential model given in Equations 36 and 37 using
an analytical approach with the parameters from Table 8, along with experimental
data from Chapter VI.
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VII.3 Numerical Simulation

The convenience of the analytical approach presented above stems from the fact

that the effect of the implantation damage on the complex refractive index could be

easily quantified by considering two separable properties of the reflectivity oscillations

beyond the damage region. However, since the phase reversal effect (pulse feature)

is manifested solely in the damaged region and modulates the oscillation amplitude

and phase in a way that is not easily separable from the variations in n and κ, a

more detailed approach that directly considers the interactions between the damaged

lattice, the probe photons, and the propagating strain wave is required. In this case,

a numerical approach with the goal of fully reproducing the observed time-domain

reflectivity oscillations in the implanted diamond specimens is applied.

VII.3.1 Theory

The photoelastic effect describes the variation in the refractive properties of a material

due to strain. For an isotropic material under uniaxial strain, as is the case in CAP

studies on diamond crystals, it can be shown [160] that the strain-induced variation

in the complex index is

dñ

dη
= − ñ

3

2
p12, (38)

where η is the uniaxial strain and p12 (contracted notation) is one of two unique

components of the real fourth-rank photoelastic tensor. It is noted that the single

quantity p12 determines both dn/dη and dκ/dη.

The first-order calculation of the photo-induced propagating strain pulse has been

provided by Thomsen et al.: [156]

η(z, t) = (1−R)
Qβ

AζC

1 + ν

1− ν

[
e−z/ζ

(
1 + 1

2
e−vst/ζ

)
− 1

2
e−|z−vst|/ζsgn(z − vst)

]
. (39)
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Here Q and A are the pump pulse energy and beam area, respectively, vs is the

longitudinal speed of sound in the host crystal, and R, β, C, ν, and ζ respectively

represent the reflectivity, linear expansion coefficient, volume specific heat capacity,

Poisson ratio, and optical absorption length of the transducing layer.

Using Equations 38 and 39, and provided one has a model for how the optical

characteristics are modulated by the implantation damage, it is possible to calculate

the strain-induced variation in the complex index of an ion-implanted crystal as a

function of crystal depth and time t after the incidence of the pump pulse:

ñ(z, t) = ñ
(
CV (z)

)
− 1

2

[
ñ
(
CV (z)

)]3
p12
(
CV (z)

)
η(z, t). (40)

VII.3.2 Calculation

The time-domain reflectivity of the implanted specimens is calculated using a numer-

ical approach that employs the multiplication of homogeneous characteristic matrices

for a series of discreet layers, [160,174] each with a unique value of ñ as determined by

Equation 40. This approach is computationally inexpensive and fully accounts for any

complex interference effects that may be caused by multiple internal reflections. The

code was tested for accuracy against previous calculations for complex multilayered

dielectric films prior to applying it to the case of CAP reflectivity oscillations.

The exponential model given in Equations 36 and 37 has been employed again in

this analysis, with the addition of three new parameters to describe the behavior of

p12(CV ):

p12(CV ) = p12,0 + (p12,∞ − p12,0) [1− exp(−CV /c)] . (41)

In this case, the fixed model parameters are n0 and κ0, while n∞, κ∞, p12-0, p12-∞, a,

b, and c are varied so as to fit the experimental data. The fitting algorithm was the

Nelder-Mead simplex method [175] provided by the GNU Scientific Library. [176]
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The experimental and simulation-specific parameters that were used for the nu-

merical calculation are listed in Table 9. Due to variations in the transducing layer

deposition as well as fluctuations in laser beam alignment, there was some variation in

the relative amplitudes of the measured CAP oscillations from specimen to specimen.

This was accounted for by using the parameters given in Table 9 for all fluences, but

varying the reflectivity for each specimen based on fits to the unimplanted oscillations.

In addition, as mentioned previously, there were variations in the optical absorption

of the undamaged lattice for the different specimens. Whereas in the previous ana-

lytical approach an average absorption was used at all fluences, here the respective

fitted value for κ0 has been used for each fluence. Finally, the Thomsen model for the

strain wave generation does not account for the time required for the photoexcited

electrons in the transducing layer to couple with the phonon modes in the lattice that

eventually result in the propagating strain pulse. As a result, there is a difference in

time delay of 4.5–5.5 ps between the experiment and the simulation. The variability

of this difference may be attributed to variations in the deposition of the transduc-

ing layer, and has been corrected at each fluence by applying the appropriate time

domain shift to the simulation results to align the phases of the initial oscillations.

The specimen-specific adjustments described above are all listed together in Ta-

ble 10.

VII.3.3 Results and Discussion

The resulting best fit parameters from the fitting procedure are given in Table 11.

The resulting variation in the optical characteristics and the comparison to the ex-

perimental results are shown in Figures 51 and 52, respectively.

As can be seen in Figure 52, the quantitative model is highly successful in repro-

ducing the observed experimental results, with a few minor exceptions. One is in the

oscillations at the 8×1015 cm−2 fluence, for which the underestimated amplitude is
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Table 9: Experimental and simulation parameters used in the numerical simulation
of the CAP reflectivity oscillations. Values for the parameters that vary with fluence
are given in Table 10.

Parameter Symbol Value

Depth sampling resolution 0.1 nm

Crystal
Unperturbed real index n0 2.454 2
Unperturbed imaginary index κ0 (varies)
Sound velocity vs 17.52 nm/ps

Aluminum Transducing Layer
Absorption length ζ 7.6 nm
Specific head capacity C 0.91 J/g-K
Poisson’s ratio ν 0.334
Linear expansion coefficient β 2.3 ×10−5

Reflectivity R (varies)

Laser
Probe wavelength λ 0.400 nm
Pump pulse energy Q 3.95 nJ
Pump spot area A 7.85 ×103

µm2

Table 10: Specimen-specific properties used in the full numerical simulation.

Fluence (cm−2) Reflectivity R κ0 Time delay correction (ps)

3×1014 0.98 0.0013 327 6 5.5
1×1015 0.77 0.0017 699 7 5.5
3×1015 0.80 0.0025 353 2 4.5
8×1015 0.955 0.0020 460 5 5.5
1×1016 0.908 0.0036 221 0 5.5
3×1016 0.905 0.0036 218 8 4.25
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over a range of vacancy concentrations, using the parameters given in Table 11.
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Table 11: Best fit parameters for the exponential model given in Equations 36, 37,
and 41 using the full numerical simulation.

Parameter Value

n0 2.454 2
n∞ 2.438 9
a 3.418×1019 cm−3

κ0 (see Table 10)
κ∞ 0.114
b 2.229×1021 cm−3

p12-0 0.044
p12-∞ -0.101
c 1.177×1021 cm−3

probably due to an excessively high value for the transducing layer reflectivity pa-

rameter R. Another discrepancy can be seen near the node positions for the lower

fluences, where the onset of the out-of-phase behavior occurs. This is the point where

the p12 photoelastic coefficient crosses from positive to negative, thus the oscillation

pattern is highly sensitive to the vacancy concentration at these positions. The most

likely causes for the observed discrepancies are uncertainty in the exact implantation

fluence as well as irregularities in the TRIM calculation, both of which could lead to

incorrect estimates of the vacancy concentration near these points.

Considering the results in Figure 51, it can be seen that the modulation in the real

component of the refractive index n with vacancy concentration occurs from 1018 cm−3

to 1020 cm−3, while for κ and p12 the modulation occurs at higher levels of damage,

namely from 1020 cm−3 to 1022 cm−3. Although the reasons for this difference are not

immediately clear, it once again suggests that the damage-induced modulation in n

may occur via a fundamentally different mechanism than the other two properties.

It is also noted that the critical vacancy concentration at which the p12 coefficient

reverses sign agrees exactly with the value extracted from the experimental data

in Chapter VI. That said, the absolute magnitudes of the derived values for p12-0

and p12-∞ are subject to a heightened degree of uncertainty due to variations in the
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deposition of the transducing layer and fluctuations in the reflectivity signal due to

laser alignment drift, both of which can affect the overall amplitude of the CAP

oscillations. Other potential sources of uncertainty include the possibility of ballistic

conduction of pump-excited electrons into the diamond lattice before they can couple

to phonon modes in the aluminum transducing layer, which would broaden the optical

interface generated by the CAP wave, and partial ablation of the transducing layer due

to prolonged exposure to the focused laser beam. However, the ratio p12-∞/p12-0, the

saturation rate c, and the aforementioned zero crossing point should all be unaffected

by these considerations. In addition, the derived value for p12-0 is found to be in good

agreement with ab initio calculations. [177]

The exponential model presented in this chapter for the damage-induced modu-

lation to the optical characteristics of diamond is simple, has a rational conceptual

basis, and provides good agreement with experimental results for nominal vacancy

concentrations up to ∼ 5 × 1022 cm−3. Thus, it may prove to be a useful predictive

tool for optical device design. However, it is by no means the only quantitative model

that might be applied to this system. In particular, the recent finding by Fairchild

et al. [94] that the diamond lattice rapidly collapses into amorphous carbon at a va-

cancy concentration of 2.8×1022 cm−3 suggests a two-phase model featuring an abrupt

change in optical characteristics at the critical value for CV . Even so, the levels of

damage studied in this work only reach the critical value at the highest fluences, and

then only at the peak of the implantation damage, where the CAP oscillation ampli-

tude has already decayed to essentially zero. Therefore the current work is unable to

speak to the validity of such a model. In order to address the lattice collapse model,

specimens would need to be implanted at high fluences using low energy ions, which

would bring the damage peak closer to the specimen surface and allow for optical

characterization before the probe pulse is totally absorbed.
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VII.4 Potential Expansion Studies

There are numerous opportunities to further the studies presented in this chapter and

Chapter VI. One experiment of potentially high value to the diamond community

would be to anneal the implanted diamond specimens at successive temperatures and

observe the effect on the CAP reflectivity response. Another would be to expand the

wavelength range from 400 nm to the full visible spectrum, with special emphasis

given to the absorption wavelengths of optical centers such as the NV−. In the effort

to solve the current experimental discrepancies regarding the behavior of the real

refractive index under implantation conditions, it may also be fruitful to expand the

implantation parameters to other energies, temperatures, ion species. Finally, density

functional theory may prove to be valuable for comparing the effects of specific defect

species within the diamond lattice on the optical and photoelastic properties of the

material.
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CONCLUSIONS

The characterization of nonlinear optical absorption in semiconductors is of interest

both from a fundamental perspective and from a technological vantage, as nonlinear

absorption processes play a key role in all-optical device switching. In Part I of this

work, by employing a combination of infrared transmittance experiments and numeri-

cal analysis, the two- and three-photon absorption coefficients β and γ for germanium

have been evaluated over the range of wavelengths from 2.8 to 5.2 µm. The ratios of

the coefficients across the direct/indirect gap transitions and between the two- and

three-photon cases, which are less susceptible to experimental uncertainties than the

absolute coefficients, have also been determined. Comparison with theoretical studies

shows excellent agreement.

In Part II, the ultrafast optical technique known as coherent acoustic phonon in-

terferometry has been applied to He+ ion-irradiated diamond crystals for the purpose

of determining the optical modification induced by the implantation damage. This

subject is of critical interest to the field of quantum information systems, as diamond

is a strong contender to become the host material for a room-temperature quantum

computer, and ion implantation is likely to be a critical component of quantum de-

vice fabrication processes. The experimental results provide information about the

variation at 400 nm in the complex refractive index of the implanted specimens as

well as the variation in the photoelastic tensor. Specifically, a decrease in the real

refractive index of the lattice due to the ion implantation has been observed, along
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with an increase in the imaginary component. In addition, the p12 component of

the photoelastic tensor is observed to reverse sign above a vacancy concentration of

3.9×1020 cm−3. Finally, a simple phenomenological model quantitatively describing

the damage-induced optical modification has been developed which accurately pre-

dicts the experimental observations, and may prove to be a useful tool for quantum

device design.
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