# OCTAVE: FORTE Process Training

Step 3: Identify Resilience Requirements of Assets



Carnegie Mellon University Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual study.

Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.

Although the rights granted by contract do not require course attendance to use this material for U.S. Government purposes, the SEI recommends attendance to ensure proper understanding.

Carnegie Mellon<sup>®</sup>, CERT<sup>®</sup> and OCTAVE<sup>®</sup> are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0477



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

### Resilience Requirements of Assets Determining Requirements

**Operational resilience**: How well a system can maintain continuity of critical services in the presence of disruptive events

Think about the services your organization provides that are most critical to its survival and success

How and when would those services be restored if disrupted?



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

### Develop Resilience Requirements Based on Asset Support of Services

Derive resilience requirements from previous/current information security risk assessments and business impact analyses

Identify and document High Value Services (HVSs) critical to organizational mission, then map them to the assets (HVAs) that support them

Base resilience requirements on the asset's contribution to the support of those services

Document CIA requirements for each asset supporting a critical service

![](_page_4_Picture_5.jpeg)

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

### Some Examples of Resilience Requirements

- Budget
- Maximum Allowable Downtime (MAD)
- System performance
- Outage coverage
- Recovery Time Objective / Recovery Point Objective (RTO / RPO)
- Automated OR manual switchover / failover
- Number of & access to backups

- Distance requirements
  - For remote employees
  - For backup & hot sites
- Business strategies

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

### Developing Asset Requirements Asset Requirements CIA Matrix (Riesgo Example)

| Asset Name             | Confidentiality                                                                                         | Integrity                                                                          | Availability                                                                                         |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Manufacturing Facility | Access to facilities<br>must be limited to<br>employees and<br>permitted guests only                    | The site must be<br>monitored for any<br>unwanted changes to<br>data               | Backup site plans<br>must be in place and<br>facility upkeep must<br>be regulated                    |  |  |
| Employees              | Employee information<br>must be secure and<br>releasing of company<br>information must be<br>prohibited | EAP in place to support employees                                                  | Employee succession<br>plan must be up to<br>date, points of contact<br>must be established          |  |  |
| Customer Data          | Customer database<br>requires firewalls,<br>access controls,<br>encryption, and IDS                     | Checks on data must<br>be ran periodically,<br>audit trail of data must<br>be used | Data must be stored<br>on secondary external<br>backup server for<br>emergencies or high<br>activity |  |  |

OCTAVE FORTE © 2019 Carnegie Mellon University

#### Resilience Requirements of Assets Who determines requirements?

Service owners & custodians, asset owners & custodians

Asset owners have ultimate responsibility for identifying, establishing, and communicating the requirements of assets

Requirements must be understood and agreed upon by custodians

- Owners develop and monitor the requirements
- Custodians implement requirements

Revisit asset requirements through periodical security risk assessment, business impact analysis, and asset owner interviews

Validate that asset requirements serve the goals of organizational drivers

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

### Resilience Requirements of Assets Managing Changes

There are constant changes to asset status & importance Organizations should revisit resilience requirements regularly Some grounds for a resilience requirements review may be:

- Staff changes (hiring/firing of employees, promotions, etc.)
- Information changes (Creation, alteration, or deletion of data or files)
- Technology changes (Adding new components, retirement of old tech)
- Facility changes (Adding, altering, or retiring of facilities)
- Vendor & vendor contract changes
- The creation of a new, related asset review asset dependencies to document & attempt to resolve conflicting requirements

#### **Discussion:** How often should resilience requirements be revisited?

© 2019 Carnegie Mellon University

### Resilience Requirements of Assets Managing Changes (cont.)

Recommendations for managing requirement changes include:

- Document asset changes in the asset inventory
- Document requirement change history with rationale for changes
- Evaluate impact of asset changes on existing resilience requirements
- Establish communication channels to ensure consensus on requirements between owners and custodians
- Consider the factors: strategic objectives, risk appetite, and operational constraints of the organization

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

10

# OCTAVE: FORTE Process Training

Step 4: Measure Current Capabilities

Carnegie Mellon University Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

![](_page_11_Figure_0.jpeg)

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

### What Measures Are in Place to Keep Assets Resilient? Controlling Resilience

**Controls** can be defined as the measures instituted to guide or regulate the activities or operations of a machine, person, or system

Controls are put in place to enhance the security and resilience of assets, either to adhere to legal requirements or for personal security

The effectiveness of controls therefore directly determines whether or not resilience requirements are being met

![](_page_12_Picture_4.jpeg)

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

### **Assessing Current Resilience Capabilities**

**Objective:** Create a register of risk management controls, procedures, and plans and gather data to assess their effectiveness

Start by establishing control objectives

- Set targets for performance based on strategic objectives, risk tolerance, service/asset resilience requirements, etc.
  - Setting performance objectives assists in establishing appropriate levels of controls
- Prioritize control objectives
  - Are controls meeting the crucial objectives you have set for them?
- Identify activities that enable or enhance the achievement of objectives

![](_page_13_Picture_8.jpeg)

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

# **Control Types**

Multiple ways to categorize controls: preventative, detective, and corrective **or** administrative, technical, and physical, but can also be broken down into:

**Standard Controls:** Common sense controls that any successful organization should have

Access controls, passwords, locks, etc.

**Compliance required:** Controls required by law

• SOX requirements, FISMA, sprinkler system, etc.

**Best Practice:** Controls that are generally accepted as being most effective in the industry, but may be out of reach for smaller companies

Security cameras, antivirus software, intrusion detection system

Want to haves: Controls that are desired to increase security or resilience that are out of reach or potentially excessive

• Biometric access control, multi-factor authentication, etc.

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

### Assessing Controls Questions To Ask

- Most importantly, are all applicable compliance requirements handled sufficiently by controls?
  - If not, can current controls be modified to?
- Are the controls currently in place satisfying the crucial objectives set for them? If not, does risk appetite justify overlooking the gap?
- Are there any gaps where a service objective is not adequately satisfied by any controls?
  - If so, can current controls be modified? What is the most cost effective option to adequately satisfy our objectives?

Discussion: What are some "want to have" controls for your company? How would their addition enhance realization of control objectives? Do its benefits outweigh the costs?

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

# Managing Compliance Obligations

Most companies have some form of regulations that must be complied to, whether mandated by government, their industry, or internally

Having a compliance plan in place assists in making effective and efficient decisions for satisfying requirements

- Establish guidelines / standards
- Inventory obligations
- Analyze obligations
- Establish ownership for obligations
- Monitor / measure compliance

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

Measuring Current Resilience Leveraging Resilience Maturity Assessments

**CERT Cyber Resilience Review**: Free, internal assessment of your organization's resilience capabilities

Provides gap analysis to give recommendations for improvement

Guides in the 10 following areas:

- Asset management
- Controls management
- Configuration and change management
- Vulnerability management
- Incident management

- Service management
- Risk management
- External dependencies
  management
- Training and awareness
- Situational awareness

#### CERT CRR

© 2019 Carnegie Mellon University

# OCTAVE: FORTE Process Training

Step 5: Identify Risks, Threats, and Vulnerabilities to Assets

Carnegie Mellon University Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

![](_page_19_Figure_0.jpeg)

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

### Risk Identification Many Tools & Techniques are Available

Given an understanding of HVSs and HVAs, identify risks using:

- Interviews with key stakeholders
- Scenario planning
- Affinity Diagrams
  - Brainstorm, discuss ideas, categorize into groups and subgroups
- Penetration testing
- Review of registers from other parts of organization
- Assumption analysis
- Nominal group technique
- Threatcasting: technique in which future threat concepts are forecasted and plans are created in advance on how to deal with them
- FMEA Failure Mode and Effects Analysis

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

### Quantitative Facilitation Fill in the Gaps With the Best Data Available

![](_page_21_Figure_1.jpeg)

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

### Failure Mode and Effects Analysis (FMEA) Structuring Risk Mitigation

- Inductive reasoning that helps identify potential failure modes based on past experience with similar products or processes
  - "How could our process fail, and how can we prevent that?"
- Analyze the causes and effects of different kinds of failures
- Rate severity, occurrence likelihood, detection ability, and risk priority
- Determine actions to mitigate the risk

| Process<br>Step      | Potential<br>Failure Mode                  | Potential<br>Failure<br>Effect                                                      | SEV                                                   | Potential<br>Causes                                | 000                                                          | Current<br>Process<br>Controls                                                                          | DET                                                                              | RPN                                         | Action<br>Recommende<br>d                                                               |
|----------------------|--------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|
| What is<br>the step? | What are ways<br>the step can go<br>wrong? | What is the<br>impact on<br>the customer<br>if failure<br>mode is not<br>prevented? | How<br>severe is<br>the effect<br>on the<br>customer? | What is<br>the cause<br>of the<br>failure<br>mode? | How<br>frequentl<br>y is the<br>cause<br>likely to<br>occur? | What are<br>the existing<br>controls for<br>prevention<br>or<br>detection<br>of the<br>failure<br>mode? | How<br>probable<br>is<br>detection<br>of the<br>failure<br>mode or<br>its cause? | Risk<br>priority<br>(SEV x<br>OCC x<br>DET) | What actions<br>can reduce<br>occurrence of<br>the mode or<br>improve its<br>detection? |

© 2019 Carnegie Mellon University

#### Failure Mode and Effects Analysis (FMEA) Completed Example – Commercial Banking

| Process<br>Step   | Potential<br>Failure Mode                   | Potential<br>Failure Effect                                                                          | SEV'                                                  | Potential<br>Causes                                                                    | OCC3                                                        | Current Process<br>Controls                                                                                                       | DET                                                                        | RPN'                                                           | Action<br>Recommended                                                                                                                                                             |
|-------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the step? | In what ways<br>can the step<br>go wrong?   | What is the<br>impact on the<br>customer if the<br>failure mode is<br>not prevented or<br>corrected? | How<br>severe is<br>the effect<br>on the<br>customer? | What causes the<br>step to go wrong<br>(i.e., how could<br>the failure mode<br>occur)? | How<br>frequently<br>is the<br>cause<br>likely to<br>occur? | What are the exist-<br>ing controls that<br>either prevent the<br>failure mode from<br>occurring or detect<br>it should it occur? | How<br>probable is<br>detection of<br>the failure<br>mode or its<br>cause? | Risk priority<br>number<br>calculated<br>as SEV x<br>OCC x DET | What are the actions for<br>reducing the occurrence of<br>the cause or for improving its<br>detection? Provide actions<br>on all high RPNs and on<br>severity ratings of 9 or 10. |
| ATM Pin           | Unauthorized<br>access                      | Unauthorized<br>cash withdrawal<br>Very dissatisfied<br>customer                                     | 8                                                     | Lost or stolen<br>ATM card                                                             | 3                                                           | Block ATM card<br>after three failed<br>authentication<br>attempts                                                                | 3                                                                          | 72                                                             |                                                                                                                                                                                   |
| Authentication    | Authentication failure                      | Annoyed<br>customer                                                                                  | 3                                                     | Network failure                                                                        | 5                                                           | Install load<br>balancer to<br>distribute work-<br>load across<br>network links                                                   | 5                                                                          | 75                                                             |                                                                                                                                                                                   |
| Dispense<br>Cash  | Cash not<br>disbursed                       | Dissatisfied<br>customer                                                                             | 7                                                     | ATM out of cash                                                                        | 7                                                           | Internal alert of<br>low cash in ATM                                                                                              | 4                                                                          | 196                                                            | Increase minimum<br>cash threshold limit<br>of heavily used ATMs<br>to prevent out-of-cash<br>instances                                                                           |
|                   | Account debited<br>but no cash<br>disbursed | Very dissatisfied customer                                                                           | 8                                                     | Transaction<br>failure  Network issue                                                  | 3                                                           | Install load<br>balancer to<br>distribute work-<br>load across<br>network links                                                   | 4                                                                          | 96                                                             |                                                                                                                                                                                   |
|                   | Extra cash<br>dispensed                     | Bank loses<br>money                                                                                  | 8                                                     | Bills stuck to<br>each other  Bills stacked<br>incorrectly                             | 2                                                           | Verification while<br>loading cash in<br>ATM                                                                                      | 3                                                                          | 48                                                             |                                                                                                                                                                                   |

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

#### Toolkit: Risk Tree One Tool to Use for Risk Analysis

Category: Risk Title

Scope Statement: <Typically an "if, then" statement>

![](_page_24_Figure_3.jpeg)

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

### **Risk Tree Example**

#### Category: Risk Title

Scope Statement: If the organization suffers a major interruption in logistical support, then mission and lives could be jeopardized. Opportunistically, if uncertainty is removed from the logistical chain, then resources could be saved and mission success rates could improve.

![](_page_25_Figure_3.jpeg)

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

## **Potential Solution**

#### **Operations: Logistics Resilience**

**Scope Statement:** If the organization suffers a major interruption in logistical support, then mission and lives could be jeopardized. Opportunistically, if uncertainty is removed from the logistical chain, then resources could be saved and mission success rates could improve.

![](_page_26_Figure_3.jpeg)

OCTAVE FORTE © 2019 Carnegie Mellon University

### Exercise: *Risk Tree*

- Choose some risk triggers relative to a risk in your organization
- Under what conditions will those risks be realized?
- What are the consequences of those risks being realized?
- What are some Key Risk Indicators (KRIs) for those risks?

OCTAVE FORTE © 2019 Carnegie Mellon University

### Example of Risk Register Documentation Step Documenting Identified Risks

**Risk Definition (if/then statement):** If the organization suffers a major interruption in logistical support, then mission and lives could be jeopardized. Opportunistically, if uncertainty is removed from the logistical chain, then resources could be saved and mission success rates could improve.

| Trigger Event Description               |                                                                                  |                                              | Add                                                 |        | Remove           |          |                  | Associated | Associated        |                 | Likelihood  |              |           |
|-----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|--------|------------------|----------|------------------|------------|-------------------|-----------------|-------------|--------------|-----------|
|                                         | Title                                                                            |                                              | trigger<br>event                                    |        | Trigger<br>Event | Strategy |                  | KRIs       | Event<br>Response | Weight          | I           | R            |           |
| 1                                       | Unfavorable Contract Term                                                        | avorable Contract Terms Leading to a dispute |                                                     |        |                  |          |                  | a, b A     |                   | Whole           | High medium |              |           |
| Trigger Response ADD<br>Trigge<br>Respo |                                                                                  | ADD<br>Triggor                               |                                                     | REMOVE | Re               | sponse   | Associated       | Budget     |                   | Controllability |             |              |           |
|                                         |                                                                                  |                                              | Response                                            |        | Response         | 0        | ner              | Event      | Allocated         | Spent           | Р           | I            | V         |
| А                                       | A Seek legal review of all contracts prior to submission for final authorization |                                              |                                                     |        |                  |          | gal<br>epartment | 1          | K\$1000           | K\$1            | Y           | R            |           |
| Key Risk Indicators (KRIs)              |                                                                                  |                                              |                                                     |        |                  | Remove   |                  |            |                   | Associated      | Value       |              |           |
|                                         | Title                                                                            |                                              | KRI Definition                                      |        | ADD KKIS         | KRIs     | KRIs             |            |                   | Trigger Event   | Current     | ent Critical |           |
| а                                       | Legal Notice                                                                     |                                              | Customer submission of legal organization           |        |                  |          | ice to the       |            |                   | 1               | Green       | Mor<br>thar  | re<br>n 1 |
| b                                       | Failed Contract Review                                                           |                                              | Contract Review or deliverable rejected by customer |        |                  |          |                  |            |                   | 1               | Green       | Mor<br>thar  | re<br>n 1 |

# OCTAVE: FORTE Process Training

Step 6: Analyze Risk Against Capabilities

Carnegie Mellon University Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

![](_page_30_Figure_0.jpeg)

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

31

#### Collecting Data Numbers are Crucial

- Controls such as firewalls, intrusion detection systems, intrusion prevention systems, and anti-malware systems hold important data
- Log correlation tools can use activity data to form reports, give warnings, and make suggestions
- Compare the data from your current controls to risk appetite to analyze what solutions are working well and what could be improved

![](_page_31_Picture_4.jpeg)

**Carnegie Mellon University** Software Engineering Institute

OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

32

# Determining Likelihood of a Risk

Risk likelihood can be difficult to be certain about, but there are multiple methods to make sure it is as close to accurate as possible:

#### **Probability of Occurrence:**

- Ideally, a definite number can be determined to estimate how likely the event is, however, this can be difficult
- Can be calculated with prior industry data, control data, or evaluating software

#### **Category Ranking:**

 Classifying risks into categories (e.g. High, medium, low, or always, often, sometimes, rarely, never)

#### **Ordinal Ranking:**

• Listing risks in order of likelihood to occur

#### **Relative Likelihood:**

• Comparing risk likelihood to that of another understood risk

![](_page_33_Figure_0.jpeg)

Software Engineering Institute

© 2019 Carnegie Mellon University

approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

### ERM Software Two examples: RSA Archer and Sword Active

#### **RSA Archer:**

- Enhances risk identification, assessment, controlling, and monitoring
- Can assist in decision making based on your risk appetite
- Integrated risk management to manage full scope of risks

#### **Sword Active Risk Management:**

- Executive dashboards, centralized risk registers, automated alerts, graphic analysis
- Can assist in risk project management and strategic business planning
- Also integrated, addresses risk management needs of entire organization

35

# **Business Impact Analysis**

![](_page_35_Figure_1.jpeg)

© 2019 Carnegie Mellon University
Plotting Risks Using a Heat Map Where can you make the biggest impact?

> Projected Residual Risk Index From Inherent Scores



| Number | Risk                  |  |  |  |
|--------|-----------------------|--|--|--|
| 1      | Cyber Security Breach |  |  |  |
| 2      | Talent Attrition      |  |  |  |
| 3      | Compliance Violation  |  |  |  |
| 4      | Unplanned Outage      |  |  |  |
| 5      | Safety Incident       |  |  |  |
| 6      | Overregulation        |  |  |  |
| 7      | Loss of Customer      |  |  |  |
| 8      | Insider Threat        |  |  |  |

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

## What should we tackle first? Prioritizing Individual Risks

- Risk appetite statements give a sense of the level of the risk
- Better methods for determining the order in which risks are addressed
- Including the grid & arc methods (borrowed from the LUMA Institute)
- Refer to the risk appetite statement after the exercise to see if priorities are largely consistent or change when examined a different way

OCTAVE FORTE © 2019 Carnegie Mellon University

## Prioritizing Risks By Likelihood and Cost LUMA Method

- 1. List risks
- 2. Categorize in order of relative likelihood
- Categorize in order of relative cost 3.
- Grid or arc method to determine where to concentrate efforts 4



#### Risk likelihood high

**OCTAVE FORTE** © 2019 Carnegie Mellon University

# Prioritizing Risks By Likelihood and Cost LUMA Grid Method

- 1. List risks
- 2. Categorize in order of relative likelihood
- 3. Categorize in order of relative cost
- 4. Grid or arc method to determine where to concentrate efforts



**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

# Prioritizing Risks By Likelihood and Cost LUMA Arc Method

- 1. List risks
- 2. Categorize in order of relative likelihood
- 3. Categorize in order of relative cost
- 4. Grid or arc method to determine where to concentrate efforts



**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

# OCTAVE: FORTE Process Training

Step 7: Plan For Improvement

Carnegie Mellon University Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

## Next Step Beyond Assessment Make a Business Case to Manage Risk

Two types of response planning

- Eliminate or mitigate triggers
- Prepare for a day that may never come

At a high level, balance options are

- Accept
- Enhance

Avoid

Exploit

Mitigate

Share

• Transfer

It is impossible to have 100% security, some **residual risk** will always remain



**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Goals Setting SMART goals

Knowing now how current controls stack up against risks, you now beginning planning for improvement

Goal setting is a great first step to brainstorm potential improvement plans, and later assists in evaluating success

Always try to make goals SMART:

Specific Measurable Attainable Relevant Timely

- clearly stated
  - by clear, objective measurement
    - can it truly be achieved?
    - will this benefit us?
  - what is the timeframe for achievement?

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

## Setting SMART goals Effective Goal Setting Example

| S<br>Specific           | M<br>Measurable     | A<br>Attainable          | R<br>Relevant      | T<br>Timely      |
|-------------------------|---------------------|--------------------------|--------------------|------------------|
| In the next<br>year, we | We will continue to | Employee<br>training can | Providing adequate | All<br>employees |
| want to train           | collect data        | be mandated              | training will      | will be          |
| employees               | on instances        |                          | show               | required to      |
| engineering             | attacks and         |                          | results for        | training in      |
| tactics and             | response to         |                          | our company        | the next 3       |
| lower our               | in-house            |                          |                    | months           |
| phishing                | phishing            |                          |                    |                  |
| exposure                | campaigns           |                          |                    |                  |

#### Discussion: What goals does your organization have to improve resilience?

OCTAVE FORTE © 2019 Carnegie Mellon University

## Selecting Risks to Respond to Utilizing Decision Matrices

We can't respond to all of them; How should we prioritize and select risks to respond too?

Decision making method in which risks are compared to weighted criteria, resulting in a priority number

List risks in rows and weighted criteria in columns

Base criteria on ways the actualized risk can affect your organization and the complexity of a response

| Criteria -                      | Customer<br>pain<br>5                                                | Ease to<br>solve<br>2                                   | Effect on<br>other systems<br>1                                                    | Speed to<br>solve<br>2                                                      |    |
|---------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----|
| Customers<br>wait for<br>host   | High—Nothing<br>else for<br>customer<br>to do<br>3 × 5 = 15          | Medium—<br>Involves host<br>and bussers<br>2 × 2 = 4    | High—Gets<br>customer<br>off to bad<br>start<br>3 × 1 = 3                          | High—Obser-<br>vations show<br>adequate<br>empty tables<br>$3 \times 2 = 6$ | 28 |
| Customers<br>wait for<br>waiter | Medium—<br>Customers<br>can eat<br>breadsticks<br>2 × 5 = 10         | Medium—<br>Involves host<br>and waiters<br>2 × 2 = 4    | Medium—<br>Customer<br>still feels<br>unattended<br>2 × 1 = 2                      | Low— Waiters<br>involved in<br>many<br>activities<br>1 × 2 = 2              | 18 |
| Customers<br>wait for<br>food   | Medium—<br>Ambiance is<br>nice<br>2 × 5 = 10                         | Low—Involves<br>waiters and<br>kitchen<br>1 × 2 = 2     | Medium—<br>Might result in<br>extra trips to<br>kitchen for<br>waiter<br>2 × 1 = 2 | Low-Kitchen<br>is design/space<br>limited                                   | 16 |
| Customers<br>wait for<br>check  | Low—<br>Customers<br>can relax<br>over coffee,<br>mints<br>1 × 5 = 5 | Medium—<br>Involves<br>waiters and<br>host<br>2 × 2 = 4 | Medium—<br>Customers<br>waiting for<br>tables might<br>notice<br>2 × 1 = 2         | Low-<br>Computerized<br>ticket system<br>is needed<br>1 × 2 = 2             | 13 |

Decision Matrix: Long Wait Time

## Selecting Risks to Respond to Utilizing a Decision Tree

Similar decision making method in which future pros and cons are forecasted to compare the possible outcomes of multiple options

Typically utilized to predict monetary expenditure and return

Probability of events is also taken into consideration to give expected values



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

## Building the Response Plan Work for a Solution

Response plans can vary:

Projects or Just Do Its

- Capital investment
- Training
- Communication
- Policy change
- Contingency planning
- Organizational change
- Asset procurement



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

## Gathering governance support Defining "Executive"

"An executive is defined as a person responsible for the administration of a business or department. [...] An executive who is focused on the business operations and processes associated with the [project] would be a likely candidate to act for project success. Ideally, this executive is positioned close enough to the project to have a genuine impact on it."

-Project Management Institute

Effective executives ask questions

- How can I help?
- What is the plan/ the status compared to the plan?
- Are resources being allocated effectively?

© 2019 Carnegie Mellon University

# Gather Governance Support

Remember the risk committees and subcommittees structure Executives should already be a part of the plan, but if they're not... Use the Executive Support for Projects Model to determine how to approach an executive for project support



OCTAVE FORTE © 2019 Carnegie Mellon University

# **Classifying Executives' Support**

**Executive Attitude Axis:** how willing is the exec to take action for the project's success?

**Executive Ability Axis:** The executive's project management ability



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

## How should I work with my executive? *Proactive Executives*

Initiator: Attitude: Proactive | Ability: Organizational

- Concern for taking actions, knowledgeable of org-specific project management
- Benefit by using full and open communications

Inelegant: Attitude: Proactive | Ability: Non-project management

- Takes action, but poor understanding of project management
- Well-intentioned actions may be ineffective
- Benefit by taking the lead, identifying the actions for the executive to take, and helping the executive take these actions

OCTAVE FORTE © 2019 Carnegie Mellon University

# How should I work with my executive? *Counteractive executives*

Competitor: Attitude: Counteractive | Ability: Project management skills

- Concern for agendas counter to project success, thorough knowledge of good project management at the organization
- May subjugate your project for the betterment of a competing one
- Benefit from keeping well informed of the executive actions and by looking for a common ground in reducing the level of competition

#### Obstacle: Attitude: Counteractive | Ability: Non-project management

- Concern for agendas counter to project success, little understanding needed for project management
- Likelihood of unpredictable behavior and impact on project success
- Benefit from some insulation from and resilience to the executive, by striking an alliance with a more supportive executive, and from efforts to raise the executive's project management knowledge level

OCTAVE FORTE © 2019 Carnegie Mellon University

# OCTAVE: FORTE Process Training

Step 8: Implement Improvement Plan

Carnegie Mellon University Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University



**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

## Where do we go from here?

Once accepted by the governance structure, owners should

- Establish a chartered project
- Use metrics to measure project delivery
- Establish and measure success criteria
- Set milestones towards project completion



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

## Setting Project Priorities The Triple Constraint

- All projects are bound by a concept known as the "Triple Constraint"
  - Scope, Schedule, and Budget
- It is nearly impossible to alter one of these constraints without affecting another.



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

## Response Plan Implementation Project Management

Manage each effort as a distinct project

- Scope
- Schedule
- Budget

Regular project reviews with risk owners are crucial

• Frequency of the reviews depend upon complexity and scope

Earned value metrics may be useful



OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

## Response Effectiveness Metrics You Get What You Measure

Measurement may not be immediately intuitive

Some metrics may focus upon

- Dollars invested
- Change in likelihood of risk
- Change in impact
- · Change in risk velocity

Some metrics may examine implementation

- Schedule Performance Index (SPI)
- Cost Performance Index (CPI)



OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

# OCTAVE: FORTE Process Training

Step 9: Monitor and Measure Effectiveness

Carnegie Mellon University Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University



**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

## GQIM: Goal Question Indicator Metric A Method for Developing Metrics

Quantifying the capability of a process to build operational resilience

- 1. Identify the business objectives that require improved resilience
- 2. Develop goals for each objective
- 3. Develop *quantifiable* questions whose answers determine the extent to which goals are met
- 4. Identify information required to answer questions
- 5. Find metrics that will use selected indicators to answer the questions

OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Asking Quantifiable Questions About Your Goals How Can We Measure Progress Towards Goals

Question what improvements and progress can be measured

- What percent of employees are responding to our test phishing campaigns?
- What percent of employees are entering credentials?
- What percent of employees are reporting our test phishing emails to IT security and following standard procedure from the IT security policy?

OCTAVE FORTE © 2019 Carnegie Mellon University

## Metrics How do you measure process improvement?

From our previous example:

Number of employees involved in phishing campaign test

Number of employees that opened/clicked on the suspicious email

Number of employees that were "phished" i.e. entered their credentials on the credential-stealing site

Number of employees that reported the suspicious email

Number of employees that responded in round 2, after retraining

Derived metrics: % of each of the above



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

## GQIM Template From The Chicago Software Process Improvement Network



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

## GQIM Example Courtesy of The <u>IASTED Conference</u>



OCTAVE FORTE © 2019 Carnegie Mellon University

## Now it's your turn... Create a GQIM Model for Your Program as a Class



**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

## **Determining Risk Management Maturity**

ITIL Service Management Process Maturity Framework



Copyright 2008, Integrated Solutions Management



**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University

# OCTAVE: FORTE Process Training

Step 10: Review, Update, & Repeat

Carnegie Mellon University Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University



**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

## Reviewing Project Effectiveness The end of the project lifecycle

- Meet with stakeholders and asset managers to ensure the project goals have been met
- Discuss with team members what went well, what didn't, and lessons learned

 Consider what would have been done differently and further improvements

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
## Measuring Performance Balanced Scorecard Template



Figure 1: BSC Model for Information Security

OCTAVE FORTE © 2019 Carnegie Mellon University

# Determining Maturity How do you know you are doing the right things?

Evolution may follow a maturity model approach

- SEI has a number of resources and tools for measuring capability maturity – RMM, Maturity Indicator Level Scale, etc.
- RIMS maturity assessment



| CERT-RMM<br>Capability Level | MIL                                              |
|------------------------------|--------------------------------------------------|
| Level 0: Incomplete          | MILO: Incomplete                                 |
| Level 1: Performed           | MIL1: Performed                                  |
| Level 2: Managed             | MIL2: Planned<br>MIL3: Managed<br>MIL4: Measured |
| Level 3: Defined             | MIL5: Defined                                    |
|                              | MIL6: Shared                                     |

**Carnegie Mellon University** Software Engineering Institute © 2019 Carnegie Mellon University

### Repeat! Risk Management Doesn't End

You've now made it through the cycle once, but you should already be considering what future improvements may be necessary.

To stay on top of constantly changing risks and their impact to your organization, the cycle should be revisited periodically.

#### Discussion: How often should the cycle be revisited?

**Carnegie Mellon University** Software Engineering Institute OCTAVE FORTE © 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

# **Contact Information**

#### **Presenter / Point of Contact**

Brett Tucker Technical Manager Cyber Risk Management Telephone: +1 412.268.6682 Email: <u>batucker@sei.cmu.edu</u>