

REV-03.18.2016.0

Integrability

Rick Kazman

Phil Bianco

James Ivers

John Klein

December 2019

TECHNICAL REPORT

CMU/SEI-2019-TR-010

Software Solutions Division

[Distribution Statement A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a

federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-

strued as an official Government position, policy, or decision, unless designated by other documentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA

01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT

NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT

MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-

tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-

ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions

and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM20-0094

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

[Distribution Statement A] Approved for public release and unlimited distribution.

Table of Contents

Abstract iv

1 Goals of This Document 1

2 On Integrability 3

3 Evaluating the Integrability of an Architecture 6
3.1 Measuring Integrability 7
3.2 Operationalizing the Analysis of Integrability 9

4 Integrability Scenarios 11
4.1 General Scenario for Integrability 12
4.2 Example Scenarios for Integrability 13

4.2.1 Example Scenario 1: New Software Component 13
4.2.2 Example Scenario 2: Modified Software Component 14
4.2.3 Example Scenario 3: Using Existing Components to Meet New Needs 15
4.2.4 Example Scenario 4: Integrating Version of Existing Component with New

States/Modes 15

5 Mechanisms for Achieving Integrability 17
5.1 Tactics 17
5.2 Patterns 23

5.2.1 Service-Oriented Architecture 25
5.2.2 Broker 27
5.2.3 Publish-Subscribe 27
5.2.4 Adapters 28
5.2.5 Analyzing Patterns 29

6 Analyzing for Integrability 30
6.1 Tactics-Based Questionnaires 31
6.2 Architecture Analysis Checklist for Integrability 33
6.3 Coupling Metrics 35

7 Playbook for an Architecture Analysis on Integrability 39
7.1 Step 1–Collect artifacts 39
7.2 Step 2–Identify the mechanisms used to satisfy the requirement 40
7.3 Step 3–Locate the mechanisms in the architecture 41
7.4 Step 4–Identify derived decisions and special cases 42
7.5 Step 5–Assess requirement satisfaction 44
7.6 Step 6–Assess impact on other quality attribute requirements 46
7.7 Step 7–Assess the cost/benefit of the architecture approach 46

8 Summary 48

9 Further Reading 49

Bibliography 50

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

[Distribution Statement A] Approved for public release and unlimited distribution.

List of Figures

Figure 1: Abstract Representation of the Integration Problem 4

Figure 2: Architecture Analysis Process 9

Figure 3: Six Parts of a Scenario 12

Figure 4: Integrability Tactics 17

Figure 5: High-Level SOA Notional View [Bianco 2011] 25

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

[Distribution Statement A] Approved for public release and unlimited distribution.

List of Tables

Table 1: Summary of Integrability Tactics and How They Address the Principles of Size and
Distance That Present Integrability Challenges 18

Table 2: Integrability Tactics Mapped to Four Common Patterns 24

Table 3: Lifecycle Phases and Possible Analyses for Integrability 30

Table 4: Example Tactics-Based Integrability Questions 31

Table 5: Phases and Steps to Analyze an Architecture 39

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

[Distribution Statement A] Approved for public release and unlimited distribution.

Abstract

This report summarizes how to systematically analyze a software architecture with respect to a

quality attribute requirement for integrability. The report introduces integrability and common

forms of integrability requirements for software architecture. It provides a set of definitions, core

concepts, and a framework for reasoning about integrability and satisfaction (or not) of integrabil-

ity requirements by an architecture and, eventually, a system. It describes a set of mechanisms,

such as patterns and tactics, that are commonly used to satisfy integrability requirements. It also

provides a method by which an analyst can determine whether an architecture documentation

package provides enough information to support analysis and, if so, to determine whether the ar-

chitectural decisions made contain serious risks relative to integrability requirements. An analyst

can use this method to determine whether those requirements, represented as a set of scenarios,

have been sufficiently well specified to support the needs of analysis. The reasoning around this

quality attribute should allow an analyst, armed with appropriate architectural documentation, to

assess the risks inherent in today’s architectural decisions, in light of tomorrow’s anticipated

needs.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[Distribution Statement A] Approved for public release and unlimited distribution.

1 Goals of This Document

This document serves several purposes. It is

 an introduction to integrability and common forms of integrability requirements

 a description of a set of mechanisms, such as patterns and tactics, that are commonly used to

satisfy integrability requirements

 a means for an analyst to determine whether an architecture documentation package provides

enough information to support analysis and, if so, to determine whether the architectural de-

cisions made contain serious risks relative to integrability requirements

 a means for an analyst to determine whether those integrability requirements, represented as

a set of scenarios, have been sufficiently well specified to support the needs of analysis

This document is part of a series of documents that, collectively, represent our best understanding

of how to systematically analyze an architecture with respect to a set of well-specified quality at-

tribute requirements. The purpose of this document, as with all of the documents in this series, is

to provide a workable set of definitions, core concepts, and a framework for reasoning about qual-

ity attribute requirements and their satisfaction (or not) by an architecture and, eventually, a sys-

tem. In this case the quality attribute under scrutiny is integrability. The reasoning around this

quality should allow an analyst, armed with appropriate architectural documentation, to assess the

risks inherent in today’s architectural decisions in light of tomorrow’s anticipated tasks.

There are several commonly used and documented views of software and system architectures

[Clements 2010]. The Comprehensive Architecture Strategy [Padilla 2019], for example, proposes

four levels of architecture, each of which may be documented in terms of one or more views:

1. functional architecture: The Functional Architecture provides a method to document the

functions or capabilities in a domain by what they do, the data they require or produce and

the behavior of the data needed to perform the function.

2. hardware architecture: A Hardware Architecture specification describes the interconnection,

interaction and relationship of computing hardware components to support specific business

or technical objectives.

3. software architecture: A Software Architecture describes the relationship of software compo-

nents and the way they interact to achieve specific business or technical objectives.

4. data architecture: A Data Architecture provides the language and tools necessary to create,

edit and verify Data Models. A Data Model captures the semantic content of the information

exchanged.

The focus of this document is almost entirely on the analysis of software architectures because a

software architecture is the major carrier and enabler of a system’s driving quality attributes. And

since software typically changes much more frequently than hardware, it is often the focus of inte-

gration efforts. There will, however, be implications of architectural decisions made on each of

the other views.

In addition, other important decisions within a project will impact integrability—or any other

quality attribute, for that matter. Even the best architecture will not ensure success if a project’s

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[Distribution Statement A] Approved for public release and unlimited distribution.

governance is not well thought out and disciplined; if the developers are not properly trained; if

quality assurance is not well executed; and if policies, procedures, and methods are not followed.

Thus we do not see architecture as a panacea but rather as a necessary precondition to success,

and one that depends on many other aspects of a project being well executed.

As a preview to the remainder of this document, we wish to stress that there is not one single way

or one single time to analyze for integrability. One can (and should) analyze for integrability at

different points in the software development lifecycle and at each stage in the lifecycle. This anal-

ysis will take different forms and produce results accompanied by varying levels of confidence.

For example, if there are documented architecture views but no implementation, the analysis will

be less detailed and there will be less confidence in the results than if there were an existing im-

plementation that could be tested and measured. We will return to this issue of types of analysis

and confidence in their outputs several times in this document.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[Distribution Statement A] Approved for public release and unlimited distribution.

2 On Integrability

According to the Merriam-Webster dictionary, the adjective integrable means “capable of being

integrated.” Many definitions of integrability can be found in the software and system engineering

literature. But they all follow similar wording and logic. For example, Henttonen [2007] defines it

as follows: “Integrability means an ability to make separately developed components of a system

to work correctly together.”

For practical software systems, software architects need to be concerned about more than just the

“ability to make separately developed components” cooperate; they are concerned with the costs

and technical risks of anticipated and (to varying degrees) unanticipated future integration tasks.

These risks may be related to schedule, performance, or technology. A general, abstract represen-

tation of the integration problem is that a project needs to integrate a unit of software1 C, or a set

of units C1, C2, … Cn, into a system S, as depicted in Figure 1. Note that S might be a platform,

into which we integrate {Ci}, or it might be an existing system that already contains {C1, C2, …,

Cn} and our task is to analyze the costs and technical risks of integrating {Cn+1, … Cm}.

When we consider and analyze for integrability, we are attempting to predict the amount of effort

and the amount of risk that would be involved in integrating {Ci} with system S (specifically tak-

ing into account the integrability mechanisms designed into S). Thus, our objective in analyzing

architectures is to estimate the costs and risks of a set of anticipated or postulated integration tasks

as precisely as we can, given the available information. The identified costs and risks can then be

used as a justification for adopting the architectural decisions as is or for changing some of those

decisions to mitigate the predicted risks.

We approach the topic of integrability from two perspectives: integrability as an architectural

property and integration as a task. Integrability is about the degree to which an architect has antic-

ipated and designed for integration tasks that the system may undergo. An integrability analysis of

an architecture is predictive in nature. We are trying to predict the costs and risks of integrating

some software unit at some future point in time. In an integrability analysis, we assume the fol-

lowing:

 We know what S is, as we have some representation of its architecture. S is, after all, the pri-

mary focus of our analysis and is typically the artifact over which a system has the greatest

engineering control. (Note also that while this representation will evolve over time, at any

given moment we must choose a snapshot of S to analyze.)

 We have some idea of each Ci, but our level of understanding of each Ci may vary. The

clearer our understanding of Ci, the more accurate the analysis will be. The level of

knowledge about each Ci may vary due to our level of familiarity with each Ci, due to the

fact that each Ci will evolve as time passes, or due to license reasons (for example, we might

have the source code for one Ci but not for another).

1 Different organizations may use different terms for a unit of software or refer to a library, module, component, or

CSCI (computer software configuration item). In practice many of these terms are used imprecisely, despite
some of them (e.g., module and component) having clearly distinct meanings in the software architecture com-
munity.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[Distribution Statement A] Approved for public release and unlimited distribution.

We don’t know what integration decisions will be made in the future—for example, what assump-

tions, protocols, or middleware S and Ci will employ—but we can analyze to predict the costs and

risks associated with integrating {Ci} into S as currently architected.

Figure 1: Abstract Representation of the Integration Problem

Integration, on the other hand, is a specific instance of a task in which two or more entities are be-

ing made to work together. The degree to which an integration task can be accomplished at ac-

ceptable levels of costs and risks depends, to a large extent, on the degree to which the architect of

S appropriately designed integrability mechanisms into S’s architecture. In contrast to integrabil-

ity, integration is not predictive; it is done in the context of implementations and can rely on

stronger assumptions:

 We know the specifics of both S and {Ci}. We have implementations of both, so we have a

great deal more knowledge of the semantics of each.

 During integration, we may make changes to S and {Ci}. That is, we may change S to ease

the integration of {Ci}, we may change {Ci} to match the assumptions of S, we may change

both, or we may insert something in between S and {Ci} so that neither has to change.

Thus, an integrability analysis is an attempt to predict which changes to S or {Ci} will have to be

made during a future integration task, based on how far apart S and {Ci} are. In practical terms,

however, if changes are required to satisfy an integration scenario, then changes to S are typically

more likely than changes to {Ci}. This is based on the assumption that the architect of S typically

has full control over S but only limited or no control over {Ci}, as these may include third-party

and commercial components.

One consequence of this process, however, is that after each change to S, we now have S′, and all

prior (and future) analyses of integrability may need to be revisited to determine if the costs and

technical risks of integrating {Ci} into S′ are acceptable. Thus S is not static but will evolve, and

this evolution may require reanalysis. Integrability (like other quality attributes such as maintaina-

bility) is challenging to analyze because it is about planning for a future with incomplete infor-

mation. Simply put, some integrations will be simpler than others because they have been

anticipated and accommodated in the architecture (or the architecture’s build process) whereas

others will be more complex because they have not been.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[Distribution Statement A] Approved for public release and unlimited distribution.

Consider a simple analogy: to plug a North American plug (an example of a Ci) into a North

American socket (an interface provided by the electrical system S), the “integration” is trivial.

However, integrating a North American plug into a British socket will require an adapter. And the

device with the North American plug may only run on 110-volt power, requiring further adapta-

tion before it will work in a British 220-volt socket. Furthermore, if the component was designed

to run at 60 Hz and the system provides 50 Hz, the component may not operate as intended. From

this example we can see that cost and risk are related to the effort involved in performing an inte-

gration. The architectural decisions made by the creator of S—for example, to provide plug adapt-

ers or voltage adapters, or to make the component operate identically at different frequencies—

will affect this cost and risk. We refer to these decisions in Section 5 as “mechanisms.” That is,

the architect chooses a set of mechanisms to ease the costs and risks of anticipated integration

tasks.

Integration difficulty—the costs and the technical risks—can be thought of as a function of the

size of and the “distance” between the interfaces of {Ci} and S:

 Size is the number of potential dependencies between {Ci} and S.

 Distance is the difficulty of resolving differences at each of the dependencies.

“Interfaces” here are much more than simply application programming interfaces (APIs) [Clem-

ents 2010]. Interfaces between {Ci} and S include the semantics of how they interact, the interpre-

tation of the data that they exchange, and the assumptions or resources that they share. These

unstated, implicit interfaces often add time and complexity to integration tasks (and modification

and debugging tasks), as we will discuss in Section 7.

To employ another analogy from physical interfaces, consider the ubiquitous Universal Serial Bus

(USB) standard. The USB standard was initially created to simplify the integration of external de-

vices with personal computers. As such, it is much more than a cabling protocol. It also consists

of a number of communication protocols, which standardize how external devices (components)

can exchange information with a computer (systems). USB created a universal integrability mech-

anism for specific classes of devices—storage, modems, pointers, displays, etc.—by reducing the

size and distance of the interfaces between {Ci} and S.

While any integration task has a near-term cost, the accumulation of integration tasks will impose

long-term costs on the system. The trajectory of these costs is one of the concerns that an analyst

must consider when analyzing a system S with respect to integrability.2 Thus we distinguish, in

this document, between “integration”—a specific task—and integrability—a quality of an archi-

tecture that can be designed in and analyzed in the context of specific integration scenarios.

2 By “trajectory” we mean an anticipated series of future integrations. And, of course, some trajectories will pose

a risk to system success.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[Distribution Statement A] Approved for public release and unlimited distribution.

3 Evaluating the Integrability of an Architecture

To evaluate the integrability of an architecture, we need to measure the potential dependencies be-

tween S and {Ci}. A dependency is a kind of coupling, which is defined as

 “a measure of the interdependence among modules in a computer program” [SWEBOK

2014]

 “1. manner and degree of interdependence between software modules 2. strength of the rela-

tionships between modules. 3. measure of how closely connected two routines or modules

are” [ISO 2017]

While those definitions use the generic term “modules” to describe units of software, the concepts

apply identically to the potential dependency between S and any {Ci}. When analyzing and evalu-

ating an architecture’s support for integrability, we would like to know that the potential depend-

encies between S and {Ci} are low. We assume that we, as analysts, already know S—we have

some appropriate architectural documentation describing S—and we enumerate the potential {Ci},

along with any desired response measures via scenarios. Our architectural analysis will then at-

tempt to predict whether the dependency between S and {Ci} will be appropriate, which is to say

that it will allow us to meet our desired response measures.

For example, if S offers a mechanism that implements a standard that many organizations use,

then any Ci that conforms to that standard will be more integrable because there are fewer integra-

tion decisions to make and validate. A standard helps achieve this because it predetermines some

of the syntax and semantics of dependencies. Or, to take another example, if the architecture of S

provides a publish-subscribe mechanism and the {Ci} adhere to this protocol, publishing and sub-

scribing to “topics,” then integration is eased because there it reduces the dependencies between S

and {Ci}. In each of these examples, the “distance” between S and {Ci} is being reduced. We will

discuss the notion of distance in more detail shortly.

Dependencies have traditionally been measured syntactically. For example, we say that module A

is dependent on component B if A calls B, if A inherits from B, or if A uses B. But while syntac-

tic dependency is important, and will continue to be important in the future, dependency can occur

in forms that are not detectable by any syntactic relation. Two components might be coupled tem-

porally or through resources because they share and compete for a finite resource at runtime (e.g.,

memory, bandwidth, CPU), share control of an external device, or have a timing dependency. Or

they might be coupled semantically because they share knowledge of the same protocol, file for-

mat, unit of measure, metadata, or some other implementation detail. The reason that these dis-

tinctions are important is that dynamic and semantic dependencies are seldom well understood,

explicitly acknowledged, or properly documented. And implicit knowledge is always a risk for a

large, long-lived project as this knowledge only lives in the heads of a few key people. Implicit

knowledge will inevitably increase the costs and risks of integration and integration testing.

Consider the trend toward services, and microservices, in computation today. This approach is

fundamentally about reducing dependencies. Services only “know” each other via their published

interfaces and, if that interface is an appropriate abstraction, changes to one service have less

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[Distribution Statement A] Approved for public release and unlimited distribution.

chance to ripple to other services in the system. Services (and microservices and publish-sub-

scribe) are examples of an industry-wide trend to decouple components in a system that has been

going on for decades. Note, however, that service orientation, by itself, only addresses (that is, re-

duces) the syntactic aspects of dependency. It does not address the dynamic or semantic aspects.

If a developer uses publish-subscribe or services but the supposedly decoupled components have

detailed knowledge of each other and make assumptions about each other, then they are in fact

tightly coupled and changing the details of their integration will be costly.

Thus, there is no silver bullet for integrability. Whether we are building traditional monolithic ap-

plications or service-based applications, we need ways to plan for the appropriate level of depend-

ency—all forms of dependency—and to explicitly measure and monitor these dependencies. If we

aim to exercise engineering control over the quality attribute (QA) of integrability over the life-

time of a system, then we must measure and manage dependency. This is now where we turn our

attention.

3.1 Measuring Integrability

Integration difficulty—the cost and the risk—can be thought of as a function of the “size” of and

“distance” between the interfaces of {Ci} and S, where

 size is the number of potential dependencies between {Ci} and S

 distance is the difficulty of resolving differences at each of the dependencies

Before we continue, we need to make two additional points clear:

1. Size is a way of inventorying the set of things that we need to be concerned about. It is an

enumeration of the potential sources of costs and risks. It is not to be taken as a basis for

analysis by itself. The heart of the analysis is in estimating the distances between the inter-

faces of {Ci} and S.

2. “Interfaces” must be understood as much more than simply APIs, as we stated in Section 2.

Interfaces between {Ci} and S include the semantics of how they interact, the interpretation

of the data that they exchange, and the assumptions of resources that they share. These in-

clude assumptions and constraints that do not typically get mentioned in a programming lan-

guage interface description, such as “component A and B are both allocated to processor X

so they need to share memory and CPU budget appropriately,” “component A needs to run

50 ms before component B,” “component A opens the device interface and component B ex-

pects it to be in that open state,” or “component A and B both depend on some magic num-

ber that represents the max key length.” These unstated, implicit interfaces often add time

and complexity to integration tasks (and modification and debugging tasks).

We define the complexity of integrability with respect to pairs of cooperating components (x,y),

where x and y are instances of integration points in S and {Ci}, respectively. The complexity of

integrability is notionally defined by the following formula:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = ∑ 𝑓(𝑠𝑖𝑧𝑒(𝑥, 𝑦) × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦)𝑥,𝑦)

where size is the number of information elements shared between x and y (for example, parame-

ters in an API) and distance is a measure of the differences in assumptions between x and y. This

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[Distribution Statement A] Approved for public release and unlimited distribution.

formula is not meant to be interpreted as a validated metric. Certainly there will be a positive cor-

relation between integrability complexity—which we gauge using size and distance—and the cost

or risk of actually completing required integration tasks. But we do not claim that, for example,

doubling the value of this integrability complexity will double the integration cost or risk. The

purpose of the formula is to illustrate the kinds of information that goes into assessing the costs

and risks of integration.

As mentioned above, measuring distance is the greater challenge for the analyst. This is because

distance may be measured along multiple dimensions. Let us now examine each of these dimen-

sions in detail:

 Syntactic distance: The elements have different data types. For example, one element is an

integer and the other is a floating point, or perhaps the bits within a data field are interpreted

differently. Differences in data types are typically very easy to observe and predict. For ex-

ample, such type mismatches could be caught by a compiler. Differences in bit masks, while

similar in nature, are often harder to detect, and the analyst may need to rely on documenta-

tion or even scrutiny of the code.

 Data semantic distance: The elements have different data semantics; that is, even if they

share the same data type, the values are interpreted differently. For example, one data value

represents distance in meters and the other represents it in centimeters. This is typically diffi-

cult to observe and predict, although the analyst’s life is improved somewhat if the elements

involved employ metadata. Mismatches in data semantics may be discovered by comparing

interface documentation or metadata descriptions, if available, or by checking the code, if

available.

 Behavioral semantic distance: The elements behave differently, particularly with respect to

different states and modes of the system. For example, a data element may be interpreted dif-

ferently in system startup, shutdown, or recovery mode. Such states and modes may, in some

cases, be explicitly captured in protocols. As another example, x and y may make different

assumptions regarding control, such as each expecting the other to initiate interactions.

 Temporal distance: The elements may embody different assumptions about time. For exam-

ple, they may operate at different rates (e.g., one element emits values at a rate of 10 Hz and

the other expects values at 60 Hz) or different timing assumptions (e.g., one element expects

event A to follow event B and the other element expects event A to follow event B with no

more than 50 ms latency). While this might be considered to be a subcase of behavioral se-

mantics, it is so important (and often subtle) that we call it out explicitly.

 Resource distance: The elements may embody different assumptions with respect to shared

resources such as devices (e.g., one element requires exclusive access to a device whereas

the other expects shared access) or computational resources (e.g., one element needs 12 GB

of memory to run optimally and the other needs 10 GB, but the target CPU has only 16 GB

of physical memory, or three elements are simultaneously producing data at 2 Mbps each,

but the communication channel offers a peak capacity of just 5 Mbps). Again, this distance

may be seen as related to behavioral distance, but it should be consciously analyzed.

In any of the above dimensions, an analyst may have varying states of knowledge. The confidence

in any analysis that an analyst performs will be contingent on having accurate knowledge.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

[Distribution Statement A] Approved for public release and unlimited distribution.

Integrability is thus really about the distance between the elements of each potential depend-

ency—the amount of work needed to resolve differences at each potential dependency. For exam-

ple, one component expects to push data and the other one expects to request data when it needs

it, or one component sends batches of data and another component expects data to arrive record

by record or field by field. These two components will have a mismatch; they will not be (easily)

compatible and some work will be needed to bridge their differing expectations. These kinds of

incompatibilities are well known in object-relational implementations, where they are called “im-

pedance mismatches.” In the software architecture research literature, such problems have been

referred to as “architectural mismatches” [Garlan 1995]. Let us now more carefully understand

this concept.

3.2 Operationalizing the Analysis of Integrability

So what does it mean to measure the integrability of an architecture? This question, like all ques-

tions surrounding the quality attribute properties of an architecture, can only be assessed in a

given context, and we specify that context using scenarios [Bass 2012]. That is, there is no global

integrability number that matches any conceivable future integration. Instead, we focus each inte-

grability analysis on the predicted costs and risks associated with a scenario that characterizes

some likely future integration, and we ground this analysis in explicit assumptions and a clear

scope. At the highest level, our process for analyzing for integrability (or for any other quality at-

tribute, for that matter) involves three phases: preparation, orientation, and evaluation, as shown

in Figure 2. In the first phase, the analyst collects the artifacts to analyze—primarily scenarios and

architectural documentation. In the second phase, the analyst identifies the architectural mecha-

nisms relevant to the satisfaction of the scenarios and locates these mechanisms in the architec-

ture. In the third phase, the scenarios are mapped onto the architectural description to determine

whether they can be satisfied and to determine the costs, risks, and tradeoffs of this satisfaction.

Figure 2: Architecture Analysis Process

The process relies critically on the collection of scenarios in Phase 1. An integrability scenario

specifies a set of components {Ci} and a system S, along with some response measures—

measures of cost, duration, effort, and risk. And these measures are derived from an analysis of

the size and distance of the predicted interfaces between {Ci} and S. It follows naturally then, that

for a given S, the integrability costs and risks to satisfy some scenarios will be greater than for

other scenarios due to the characteristics of S—that is, the mechanisms that the architect built into

S.

To return to our analogy, creating an adapter that allows a North American plug to be plugged

into a British socket will cost something. Enhancing that adapter to convert from 220 to 110 volts

will add cost to the adapter. Both British and American plugs have a positive terminal, a negative

terminal, and a ground terminal. Thus their interfaces are the same “size” according to a simple

syntactic measure. But the semantics of the electrical system introduces additional distance in the

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

[Distribution Statement A] Approved for public release and unlimited distribution.

integration tasks. Furthermore, the cost and risk of a syntax adapter are much less than the cost

and risk of a semantic adapter, and some semantics (e.g., 50/60 Hz or AC versus DC) may be

cost-prohibitive to adapt. As analysts it is our job to assess these costs and their attendant risks.

We now turn our attention to crafting appropriate integrability scenarios, as these will be the ar-

chitectural test cases that an analyst will need to consider.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[Distribution Statement A] Approved for public release and unlimited distribution.

4 Integrability Scenarios

As stated in Software Architecture in Practice, quality attribute names themselves are of little use,

as they are vague and subject to interpretation. The antidote to this vagueness is to specify quality

attribute requirements as scenarios [Bass 2012]. A quality attribute scenario is simply a brief de-

scription of how a system should respond to some stimulus. Quality attribute scenarios are not use

cases—they are architectural test cases. Quality attribute scenarios are useful for more than cap-

turing requirements, such as expressing growth and exploratory scenarios, but they have proven to

be an effective way to define quality attribute requirements more precisely than the usual free text

seen in practice.

A quality attribute scenario has six parts [Bass 2012]. The two most important parts are a stimulus

and a response. The stimulus is some event that arrives at the system, either during runtime exe-

cution (e.g., an invalid message arrives on a particular interface) or during development (e.g., a

development iteration completes). The response defines how the system should behave when the

stimulus occurs. For example, in response to an invalid message arriving, the system should log

the event and send an error response message. In response to a development iteration completing,

the unit and integration tests should be run and the test results reported.

The stimulus and response form the core of our operational definition by specifying the operation

that we will measure. The third part of a scenario, the response measure, defines how we will

measure the response and the satisfaction criteria. The response measure includes a metric and a

threshold.

The other three parts of the scenario provide more context and details. We specify the source of

the stimulus, to provide context for the scenario. We also specify the environment, which is the

conditions under which the stimulus occurs and the response is measured. Finally, we specify the

artifact, which is the portion of the system to which the requirement applies. Often, the artifact is

the entire system, but in the example above, we might treat invalid messages on external inter-

faces differently than invalid messages on internal interfaces.

During requirements elicitation, we may elicit and specify the parts of a scenario in any order. We

often begin with stimulus and response, as these are typically the parts of a scenario that people

focus on, although the environment, source, or artifact may in fact be the initial trigger for the re-

quirement. In any case, once the scenario is specified, we usually arrange the parts to tell a small

story, as depicted in Figure 3.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 3: Six Parts of a Scenario

The degree to which an analyst can accurately analyze an architecture is directly correlated to the

degree to which the scenarios are accurately specified. Below we provide a general scenario for

integrability and then some example integrability scenarios derived from the general scenario. A

general scenario is a system-independent scenario that allows stakeholders to communicate more

effectively about quality attribute requirements and can assist stakeholders in developing concrete

scenarios.

4.1 General Scenario for Integrability

There is no single scenario that specifies all of the possible measurements that could characterize

a property like integrability. But we do see some common themes. A general scenario maps those

common themes into the parts of a quality attribute scenario, providing a template that we can use

to create concrete scenarios for a particular system. The general scenario defines the type of the

values for each part of the scenario, and a concrete scenario for the integrability of a system is cre-

ated by specifying one or more system-specific values of the selected type for each part of the sce-

nario. (We say “values” because, for example, a scenario might have more than one response

measure.)

Here is the general scenario for integrability:

Scenario Part Possible Type for Each Value

Source One or more of the following:

 mission/system stakeholder

 component marketplace

 component vendor

Stimulus One of the following:

 add new component

 integrate new version of existing component

 integrate existing components together in a new way

Artifact One of the following:

 entire system

 specific set of components

 component metadata

 component configuration

1
2

3
4

Artifact(s)

Response

Response
MeasureEnvironment

Stimulus

Source

1

5

64

2

3

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[Distribution Statement A] Approved for public release and unlimited distribution.

Scenario Part Possible Type for Each Value

Environment One of the following:

 development

 integration

 deployment

 runtime

Response One or more of the following:

 changes are {completed, integrated, tested}

 components in the new configuration are successful in correctly (syntactically and se-

mantically) exchanging information

 components in the new configuration do not violate any resource limits

Response

Measure

One or more of the following:

 Cost, in terms of one or more of the following:

- # components changed

- % code changed

- lines of code changed

- effort

- money

 Calendar time

 Effects on other quality attribute response measures (to capture allowable tradeoffs)

Note that the response measures are not specified in terms of the size and distance between S and

{Ci}. As stated in Section 3.1, there will be a positive correlation between integrability complex-

ity—which we gauge using size and distance—and the cost or risk of actually completing re-

quired integration tasks. Using cost and risk in scenarios keeps the focus on the end goals (e.g.,

business value) instead of technical details.

4.2 Example Scenarios for Integrability

Each of the following example scenarios is constructed by selecting one or more of the types of

values from each of the six parts of the general scenario and specifying a system-specific value.

For each example, we use an easy-to-understand “typical” system. In practice, the analyst should

choose values that are as precise as possible in the context of the system.

 Example Scenario 1: New Software Component

This scenario describes the common situation in which an organization wants to be able to inte-

grate new components that would be valuable additions to an already-deployed system S when

they become available in the marketplace. Each future new component C would need to be inte-

grated into S.

A new data filtering component will become available in the component marketplace.

The new component will be integrated and deployed in 1 month, with no more than 1

person-month of effort. 100% of necessary messages will be correctly processed, and

100% of unnecessary messages will be correctly ignored.

From this description we can map the six parts of the scenario using the categories from the gen-

eral scenario above:

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

[Distribution Statement A] Approved for public release and unlimited distribution.

Stimulus: add new data filtering component C

Source of stimulus: mission need

Artifact: <<specific set of components>>

Environment: system has been deployed

Response: component is fully integrated

Response measure:

- deployed in 1 month with no more than 1 person-month of effort

- 100% of necessary messages are correctly processed, and 100% of unnecessary mes-
sages are correctly ignored

Note that in this scenario—as in many scenarios—multiple response measures are specified. In

this case the response measures specify elapsed time (deployed in 1 month), total effort (no more

than 1 person-month), and correctness (100% of necessary messages are correctly processed, and

100% of unnecessary messages are correctly ignored) criteria. The choice of response measures is

critical because these become tests that an analyst can apply when analyzing the architecture of S.

An analyst would need to determine if the architecture decisions have provided sufficient support

to make it likely that the desired response measures will actually be achieved.

It’s also worth noting that the scoping of C to a data filtering component in the scenario, as op-

posed to a generic component, provides important information for the analyst. An analyst can

make more reasonable assumptions about the number (size) of dependencies between S and a

component that performs data filtering; likewise, the analyst can make more reasonable assump-

tions about the distance measures from Section 3.1 given the typical semantics of data filtering

components. While these assumptions may not be perfect, they increase the confidence of an inte-

grability analysis compared to a generic case in which few, if any, assumptions could be made.

 Example Scenario 2: Modified Software Component

This scenario describes an even more common scenario than Example 1: the situation in which an

organization wants to be able to integrate new releases of an externally maintained component

that is already integrated in S. Because new releases commonly add new features and fix defects

and vulnerabilities, re-integrating a component can be vital to the success of S.

Stimulus: updated version of an existing software component C needs to be integrated

Source of stimulus: vendor/component marketplace

Artifact: S and a specific C

Environment: system has been deployed, and all unit tests have been completed on C

Response: component integration test is completed, and the component is fully integrated

Response measure:

- within 1 person-day of effort

- all integration tests pass, and no resource limits are violated

In this case we specify just two response measures: one for effort and one for correctness. Note

that the correctness response measure includes ensuring that no resource limits are violated by the

newly integrated component. In practice, ensuring this response measure may require prototyping.

Providing more specificity for C in a scenario, such as identifying which component in the system

is expected to evolve independently, furnishes more knowledge for an analyst to work with. For

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

[Distribution Statement A] Approved for public release and unlimited distribution.

example, a real-time operating system and an encryption package may differ significantly in terms

of how tightly coupled they are with S.

 Example Scenario 3: Using Existing Components to Meet New Needs

This scenario describes the case in which an organization wants to be able to rapidly integrate a

set of existing components {Ci} in a novel way in an established S to meet some new use case or

mission need. S is thus the existing architecture, and the analyst’s goal is to determine the degree

to which S supports the achievement of the response goals. In this case, it is expected that such an

integration would be relatively low cost and low risk, as indicated by the response measures.

Stimulus: new use case, mission need

Source of stimulus: stakeholder community

Artifact: S and {Ci}

Environment: assessment has been made that 100% of the new need can be satisfied with existing
components

Response: new use case is fully operational by composing existing components

Response measure:

- within 2 person-days of elapsed time and less than 1 person-day of code changes to S or
{Ci}

- no changes to existing system quality attribute response measures

The first response measure specifies that the cost of the change is expected to be low—just a per-

son-day of effort. The second response measure specifies that this change will cause no collateral

damage to the satisfaction of existing system quality attribute requirements.

 Example Scenario 4: Integrating Version of Existing Component with New

States/Modes

This scenario is similar in intent to the example in Scenario 2. In this case, however, the organiza-

tion wants to support integration of a new release of C that has undergone significant semantic

changes. Specifically, S should accommodate a C′ that includes new states and/or modes.

Stimulus: component C is upgraded to C′ (e.g., a new algorithm) with new states/modes

Source of stimulus: mission need

Artifact: S and C

Environment: system is deployed with a current version of the component, and the new component
C′ is fully unit tested

Response: new component version C′ is integrated

Response measure: within 6 person-months of effort

In this scenario, the response measure would lead the analyst to believe that component C was not

well decoupled from the rest of the system in terms of its behavioral semantics, hence the effort

required to accommodate C′. And there is no additional response measure specifying that this

change will have no ripple effects, and hence require no changes, to other system components.

Scenarios such as this one help test the limits of what was anticipated by the architects of S.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

[Distribution Statement A] Approved for public release and unlimited distribution.

From the analyst’s perspective, however, the analysis is the same. The analyst must look at the

size and distance between S and the anticipated C′ to evaluate the architecture’s integrability for

this scenario; whether the result is expected to be large or small doesn’t affect how the analysis is

performed.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

[Distribution Statement A] Approved for public release and unlimited distribution.

5 Mechanisms for Achieving Integrability

An architect must choose a set of design concepts to construct a solution for any quality attribute

requirement [Cervantes 2016], and the architecture that the analyst is given to examine will in-

clude design decisions about such concepts. Here we generically refer to these design concepts as

“mechanisms.”

But before we delve into a discussion of these mechanisms, we need to reiterate a point that we

made in the introduction to this document: these architectural mechanisms are not, by themselves,

guarantees of system success. They are important preconditions for success—the technical foun-

dations upon which the system is built—but without appropriate project governance and without a

disciplined approach to all aspects of the software development lifecycle, these mechanisms will

accomplish little. Having established that, let us now discuss and provide examples of two im-

portant kinds of architectural design mechanisms: tactics and patterns.

5.1 Tactics

Tactics are the building blocks of design, the raw materials from which patterns, frameworks, and

styles are constructed. Each set of tactics is grouped according to the quality attribute goal that it

addresses. The goals for the integrability tactics found in Figure 4 are to reduce the costs and risks

of adding new components, reintegrating changed components, and integrating sets of compo-

nents together to fulfill evolutionary requirements. The tactics achieve these goals by reducing the

potential dependencies between components or by reducing the expected distance between com-

ponents.

Figure 4: Integrability Tactics

These tactics are known to influence the responses (and hence the costs) in the general scenario

for integrability (e.g., number of components changed, percent of code changed, effort, calendar

time). The tactic descriptions presented below are inspired by and are derived in part from the

third edition of Software Architecture in Practice [Bass 2012]. Table 1 summarizes the tactics

presented in this section and how each relates to the principles of size and distance presented in

Section 3.1.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

[Distribution Statement A] Approved for public release and unlimited distribution.

Table 1: Summary of Integrability Tactics and How They Address the Principles of Size and Distance

That Present Integrability Challenges

Tactic Size Syntactic

Distance

Data

Semantic

Distance

Behavioral

Semantic

Distance

Temporal

Distance

Resource

Distance

Encapsulate + + + +

Use an intermediary * * * * *

Restrict communication

paths

+

Abstract

common services

+

Adhere to

standards

* * * * *

Discover service (static) +

Discover service (dynamic) +

Tailor interface + + *

Configure behavior * * * *

Orchestrate +

Manage resources +

Note: A plus sign indicates that the tactic positively addresses challenges with the principle, while an asterisk indi-

cates that the tactic might positively or negatively address the challenge, depending on the realization of the tactic.

Encapsulate

Encapsulation is the foundation upon which all other integrability tactics are built. It is, therefore,

seldom seen on its own, but its use is implicit in the other tactics described here.

Encapsulation introduces an explicit interface to a module (a kind of component C). This interface

includes an API and its associated responsibilities. Encapsulation is also arguably the most com-

mon modifiability tactic because it reduces the probability that a change to one module propagates

to other modules. Couplings that might have depended on the internals of the modules now go to

the interface for the module. These strengths are, however, reduced because the interface limits

the ways in which external responsibilities can interact with the module (perhaps through a wrap-

per). The external responsibilities can now only directly interact with the module through the ex-

posed interface (indirect interactions, however, such as dependence on quality of service, will

likely remain unchanged). Interfaces designed to increase modifiability should be abstract with

respect to the details of the module that are likely to change—that is, they should hide those de-

tails.

Encapsulation may, for example, be valuable in environments where systems use many sensors of

the same type that are from many different manufacturers, each with their own device drivers.

These sensors may have different accuracy or timing properties needed for different missions. Ar-

chitects also use wrappers or adapters to encapsulate the differences between these devices and

provide the same interface so that the same components can be composed together for different

missions.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

[Distribution Statement A] Approved for public release and unlimited distribution.

Encapsulation may also hide interfaces that are not relevant for a particular integration task. An

example is a library used by a service that can be completely hidden from all consumers and

changed without these changes propagating to the consumers.

Encapsulation, then, can reduce the syntactic and data or behavior semantic distances between C

and S, and it may also effectively reduce the size of the interface between them.

Use an Intermediary

Intermediaries are used for breaking dependencies between a set of components Ci or between Ci

and the system S. Intermediaries can be used to resolve different types of dependencies. For ex-

ample, intermediaries like a publish-subscribe bus, shared data repository, or dynamic service dis-

covery all reduce dependencies between data producers and consumers by removing any need for

either to know the identity of the other party. Other intermediaries, like data transformers and pro-

tocol translators, resolve forms of syntactic and data semantic distance.

Determining the specific benefits of a particular intermediary requires knowledge of what the in-

termediary actually does. An analyst needs to determine whether the intermediary reduces the size

of dependencies between a component and the system and which dimensions of distance, if any, it

addresses.

Intermediaries are often introduced during integration to resolve specific dependencies, but they

can also be included in an architecture to promote integrability with respect to anticipated scenar-

ios. Including a communication intermediary like a publish-subscribe bus in an architecture, and

restricting communication paths to and from sensors to this bus, is an example of using an inter-

mediary with the goal of promoting integrability of sensors.

Restrict Communication Paths

This tactic restricts the set of modules that a given module can interact with. In practice this tactic

is achieved by restricting a module’s visibility (when developers cannot see an interface, they can-

not employ it) and by authorization (restricting access to only authorized modules). This tactic is

seen in service-oriented architectures (SOAs), in which point-to-point requests are discouraged in

favor of forcing all requests to be routed through an enterprise service bus so that routing and pre-

processing can be done consistently.

This integrability tactic primarily reduces the size of potential dependencies between components

Ci and the system S, essentially reducing the options to those provided by the allowed communi-

cation paths. A common example is to restrict all communication between Ci and S to a specific

path, whose size is fixed. A restricted communication path is often paired with other tactics such

as adherence to standards that also help with dimensions of distance.

Abstract Common Services

Where two modules provide services that are similar but not quite the same, it may be useful to

hide both specific modules behind a common abstraction for a more general service. This abstrac-

tion might be realized as a common interface implemented by both or may involve an intermedi-

ary that translates requests for the abstract service to more specific requests for the modules

hidden behind the abstraction. This is a form of encapsulation that hides the details of the modules

from other components in the system. In terms of integrability, this means that future components

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

[Distribution Statement A] Approved for public release and unlimited distribution.

can be integrated with a single abstraction rather than separately integrated with each of the spe-

cific modules. When the tactic is combined with an intermediary, it can also normalize syntactic

and semantic variations among the specific modules.

Abstracting common services allows for consistency when handling common infrastructure con-

cerns (e.g., translations, security mechanisms, and logging). When these features change, or when

new versions of the components implementing these features change, the changes can be made in

a smaller number of places.

This integrability tactic primarily reduces the size of potential dependencies between components

Ci and the system S, essentially restricting access to the specific modules to occur only through the

abstract service. An abstract service is often paired with an intermediary that may perform pro-

cessing to hide syntactic and data semantic differences among specific modules.

Adhere to Standards

Standardization in system implementations is a primary enabler of integrability and interoperabil-

ity, both across platforms and vendors. Standards vary considerably in scope of what they pre-

scribe. Some focus on defining syntax and data semantics. Others include richer descriptions,

such as those describing protocols that include behavioral and temporal semantics.

Standards similarly vary in their scope of applicability or adoption. For example, standards pub-

lished through widely recognized standards organizations like the Institute of Electrical and Elec-

tronics Engineers (IEEE), the International Organization for Standardization (ISO), and the Object

Management Group (OMG) are more likely to be implemented consistently by different organiza-

tions. Conventions that are local to an organization, particularly if well documented and enforced,

can provide similar benefits as “local standards,” though with less expectation of benefits when

integrating components from outside the local standard’s sphere of adoption.

Adopting (or even defining) a standard can be an effective integrability tactic, though its effec-

tiveness is limited to benefits in the dimensions of difference addressed in the standard and how

likely it is that future component suppliers will conform to the standard. Restricting communica-

tion with a system S to require use of the standard often reduces the size of potential dependen-

cies. Depending on what is defined in a standard, it may also address syntactic, data semantic,

behavioral semantic, and temporal dimensions of distance.

Discover Service (Static)

Locate a service through searching a known directory service. The service can be located by type

of service, name, location, quality-of-service description (e.g., timing performance or availabil-

ity), or some other attribute.

This tactic is often implemented using a database or a wiki that describes the service, provides its

location, and describes the service’s API. The advantage of static service discovery is that there is

a relatively low cost to set one up in environments that do not change often. This approach does

not work well in environments where the locations of services need to change often (e.g., contain-

ers or virtual machines where Internet Protocols are assigned dynamically). Dynamic environ-

ments require more up-front investment and generally are implemented by commercial off-the-

shelf products that support the indirection needed for load balancing and other runtime needs.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

[Distribution Statement A] Approved for public release and unlimited distribution.

Good descriptions can reduce integration problems when integrating a new component into an ex-

isting system because they expose a repository of facts about different components in the system

or candidate components for integration and they speed information discovery. Including a mech-

anism for static service discovery in an architecture is a governance mechanism that can assist in-

tegrability by setting an expectation of minimal information that will be available for all

components. The specific set of information that is required for the discovery mechanism varies,

with inclusion of syntactic descriptions being common and inclusion of data semantics not being

common.

Using information that is not published, such as the identity of an interacting component or un-

published services, is not guaranteed to work if a different service with the same description

matches in the future. Avoiding unpublished information can reduce the size of potential depend-

encies.

Note that the presence of this mechanism does not reduce the distance along any dimension, so it

does not improve integrability as much as other mechanisms. Hence it should be used in conjunc-

tion with other integrability tactics. It does, however, allow engineers to make future decisions

(e.g., which of three potential components is most compatible with a system) more quickly and

with greater confidence. It also provides more information to help analysts reason about integra-

bility scenarios.

Discover Service (Dynamic)

Dynamic discovery enables the discovery of service providers at runtime and the binding between

a service consumer and a concrete service to occur at runtime. This is similar to the discover ser-

vice (static) tactic, but it defers the discovery and binding.

From an integrability perspective, inclusion of a dynamic discovery capability sets the expectation

that the system S will clearly advertise services available for integration with future components

and the minimal information that will be available for each service. The specific information

available will vary, but as a runtime mechanism, it is typically oriented to data that can be me-

chanically searched during discovery and runtime integration (e.g., identifying a specific version

of an interface standard by string match).

Use of a dynamic discovery capability also sets an expectation that a future component should

only rely on published service descriptions. Using information that is not published, such as iden-

tity of an interacting component or unpublished services, is not guaranteed to work if a different

service with the same description matches in the future. Avoiding unpublished information can

reduce the size of potential dependencies.

This tactic, by itself, does not reduce the distance along any dimension. However, it is commonly

paired with tactics like adherence to standards that do allow future components to choose from a

set option, potentially choosing an option with less distance along one or more of the dimensions

of distance.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

[Distribution Statement A] Approved for public release and unlimited distribution.

Tailor Interface

Tailor interface is a tactic that adds capabilities to, or removes them from, an interface without

changing the API or implementation. Capabilities such as translation, buffering, and data smooth-

ing can be added to an interface. An example of removing capabilities is hiding particular func-

tions or parameters from untrusted users. A common dynamic example of this tactic is

intercepting filters that add functionality such as validating data to help prevent attacks like SQL

injections or translating between data formats. Another example is using techniques from aspect-

oriented programming that weave in functionality for pre- and post-processing at compile time.

This tactic allows functionality that is needed by many services to be added or removed based on

context and managed independently. It also allows services with syntactic differences to interop-

erate without modification to either service.

The tailor interface tactic is typically applied during integration; however, designing an architec-

ture that facilitates interface tailoring can support integrability. Interface tailoring is commonly

used to resolve syntactic and data semantic distance during integration. Interface tailoring can also

be used to resolve some forms of behavioral semantic distance, though it can be more complex to

do (e.g., maintaining complex state to accommodate protocol differences) and is perhaps more ac-

curately categorized as introducing an intermediary.

Configure Behavior

This tactic is used by software components that are implemented to be configurable in prescribed

ways that allow them to more easily interact with a range of different components. Behavior of a

component can be reconfigured during build (recompile with a different flag), during system ini-

tialization (read a configuration file or fetch data from a database), or during runtime (specify a

protocol version as part of your requests). A simple example is configuring a component to sup-

port different versions of a standard on its interfaces. Multiple options provide a greater chance

for a match between the assumptions of S and a future C.

Plug-ins are a common form of configurable behavior. Plug-ins are usually bound during system

initialization or during runtime. Plug-ins typically interact with the rest of the system through an

intermediary, and each plug-in is typically expected to implement an abstract service interface in

addition to any custom services that it provides. Plug-ins can help with integrability by providing

a system with a way to configure which plug-in interacts with a new component based on its com-

patibility.

Building configurable behavior into portions of S is an integrability tactic that allows S to support

a wider range of potential Cs. Determining the specific benefits of configurable behavior requires

knowledge of what aspects of behavior can actually be configured. This tactic can potentially ad-

dress syntactic, data semantic, behavioral semantic, and temporal dimensions of distance.

Orchestrate

Orchestrate is a tactic that uses a control mechanism to coordinate and manage the invocation of

particular services so that they can be unaware of each other.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

[Distribution Statement A] Approved for public release and unlimited distribution.

Workflow engines are a common implementation of the orchestrate tactic. Workflow manage-

ment is fundamentally about the organization of work or activities. A workflow is a set of orga-

nized activities that coordinate software components to complete a business process. A workflow

may consist of other workflows (each of which may themselves consist of aggregated services).

The workflow model encourages reuse and agility, leading to more flexible business processes.

Business processes can be managed under a philosophy of business process management (BPM)

that views processes as a set of competitive assets to be managed. The processes that businesses

seek to manage are typically composed within and executed by a SOA infrastructure. Complex

orchestration can be specified in a language such as BPEL (Business Process Execution Lan-

guage).

Orchestration helps with the integration of a set of loosely coupled reusable services to create a

system that meets a new need. Integrability cost measures are reduced when orchestration is in-

cluded in an architecture in a way that supports the kinds of services that are likely to be inte-

grated in the future. This tactic allows future integration activities to focus on integration with the

orchestration mechanism instead of point-to-point integration with multiple components.

Orchestration primarily reduces the number (size) of dependencies with behavioral semantic and

temporal distances between the system and new components by centralizing those dependencies

at the orchestration mechanism. Syntactic and data semantic distance may also be reduced if the

orchestration mechanism implements tactics like adherence to standards.

Manage Resources

A resource manager is a specific form of intermediary that governs access to computing re-

sources. It is similar to the restrict communication paths tactic. With this tactic, software compo-

nents are not allowed to directly access some computing resources (e.g., threads or blocks of

memory). Instead, they request those resources from a resource manager. Resource managers are

typically responsible for allocating resource access across multiple components in a way that pre-

serves some invariants (e.g., avoiding resource exhaustion or concurrent use), enforces some fair

access policy, or both. Examples of resource managers include transaction mechanisms in data-

bases, use of thread pools in enterprise systems, and use of ARINC 653 for space and time parti-

tioning.

A resource manager is an integrability tactic that primarily reduces the resource distance between

a system S and a component C by clearly exposing resource requirements and managing their

common use.

5.2 Patterns

As stated above, architectural tactics are the fundamental building blocks of design. Hence, they

are the building blocks of architectural patterns. By way of analogy, we say that tactics are atoms

and patterns are molecules. During analysis it is often useful for analysts to break down complex

patterns into their component tactics so that they can better understand the specific set of quality

attribute concerns that patterns address, and how. This approach simplifies and regularizes analy-

sis, and it also provides more confidence in the completeness of the analysis.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

[Distribution Statement A] Approved for public release and unlimited distribution.

Table 2 shows which integrability tactics are used to build each of the patterns described. Then we

provide a brief description of each pattern, explain how the pattern promotes integrability scenar-

ios, and identify other quality attributes whose scenarios are often negatively impacted by these

patterns (tradeoffs).

Note that just because a pattern negatively impacts some other quality attribute, this does not

mean that the levels of that quality attribute will be unacceptable. For example, the use of an inter-

mediary always negatively affects performance (specifically latency). This is inevitable; the inter-

position of an intermediary adds processing and communication steps. However, the resulting

latency of the system may be acceptable. Perhaps the added latency is only a small fraction of

end-to-end latency on the most important use cases. In such cases the tradeoff is a good one,

providing benefits for integrability and modifiability while “costing” only a small amount of la-

tency.

It is also important to note that the tradeoffs described below are general. Other architectural

mechanisms or decisions applied with the pattern may change the impacts. An example would be

lightweight proprietary protocols and standards in place of web services to mitigate the perfor-

mance challenges of using heavier weight standards. The performance challenge could be miti-

gated while other problems are introduced. These are the kinds of assessments that analysts need

to make when assessing the appropriateness of the patterns selected and implemented.

This pattern list is not meant to be exhaustive. The purpose of this section is to illustrate common

integrability patterns—SOA, Publish-Subscribe, Broker, and Adapter—and to show how analysts

can break patterns down into tactics that help them analyze quality attribute scenarios. Table 2

maps the SOA, Publish-Subscribe, Broker, and Adapter patterns to the integrability tactics de-

scribed in Section 5.1. The patterns themselves are described in the following subsections.

Table 2: Integrability Tactics Mapped to Four Common Patterns

Tactic SOA Publish-

Subscribe

Broker Adapter

Encapsulate × × × ×

Use intermediary × × × ×

Restrict communication paths × × × ×

Abstract common services × × × ×

Adhere to standards ×

Discover service (static) ×

Discover service (dynamic) × ×

Tailor interface × × ×

Configure behavior × ×

Orchestrate x

Manage resources ×

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

[Distribution Statement A] Approved for public release and unlimited distribution.

 Service-Oriented Architecture

SOAs are built as loosely coupled systems consisting of infrastructure components and applica-

tions that are orchestrated to provide defined capabilities. Typically, SOAs are designed using

standard components and are tailored to specific mission needs. The key components of a stand-

ard SOA design are services, the enterprise service bus, the service registry and repository, service

orchestration, event manager, and data management. Each of these components is tailored to sup-

port mission-specific requirements. For example, to meet its mission requirements a system may

require unique data and service models or may use unique security services.

Solutions that use a service-oriented approach are intended to satisfy business or mission goals

that include controlling lifetime system costs. Other goals might be easy and flexible integration

with legacy systems (interoperability), streamlined business processes (maintainability), and agil-

ity to handle rapidly changing business processes (modifiability, integrability). Quality attributes

such as interoperability, integrability, modifiability, and maintainability are the primary architec-

tural drivers addressed by SOA adoption, and they are achieved by adhering to a set of design

principles for service-oriented systems that are described below. However, there are other im-

portant quality attributes—such as availability, reliability, security, and performance—whose

goals have to be addressed in a complete system design. In addition, an architectural decision that

promotes scenarios in the first set of quality attributes may negatively impact scenarios in the sec-

ond set of quality attributes. In this section, we discuss how SOA supports integrability scenarios

and the tradeoffs that can negatively impact scenarios for other quality attributes [Bianco 2011,

Josuttis 2007].

It should be noted that SOA has a few important differences from “microservices.” The micro-

service pattern advocates for a bare minimum of centralized management compared to the strong

governance approaches recommended for SOA. SOA services are focused on business reusability

and are generally coarse grained while microservices are finer grained, emphasizing bounded con-

texts.

Figure 5: High-Level SOA Notional View [Bianco 2011]

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

[Distribution Statement A] Approved for public release and unlimited distribution.

The principles listed below apply to the full architecture of a service-oriented system:

 Standardization of data formats, protocols, interface conventions, policies, and constraints

promotes interoperability.

 Loose coupling of service providers and consumers allows implementations to change inde-

pendently.

 Creating services that are self-contained units of functionality allows use in multiple busi-

ness processes (reusability).

 Composability allows business processes to change rapidly when the business environment

changes.

 Discoverability provides an environment in which services are published in a known place

that is accessible to service consumers.

Support for integrability:

 Common services that translate among data formats and protocols provide more options for

integrating future components, increasing the chance of component compatibility with the

system and resolving some forms of syntactic and data semantic differences at runtime.

 A service registry and enterprise service bus defer service binding and restrict communica-

tion to known message content, reducing the size of potential dependencies between a sys-

tem and a new component.

 Service orchestration localizes some temporal and behavioral semantic issues, reducing the

corresponding distances between a system and a new component.

 Decoupling service interfaces and service implementations (abstracting services) allows sys-

tems to configure their behavior to support multiple interfaces or present a simpler interface

to future components. This decoupling also allows different product variants to be deployed,

offering different features or quality of service in different deployments.

 Particularly when used with stateless services, an enterprise service bus can manage the

number of service instances (resource management) to provide solutions that scale to meet

the needs of future components.

Tradeoffs:

 SOA systems can be more complex, which can negatively affect modifiability and maintain-

ability scenarios. The ability to dynamically determine message paths adds layers of pro-

cessing logic and can introduce service compositions that are extremely complex and that

require careful management and constraints in the business rules. Maintaining multiple ver-

sions of services and masking interface changes also increase complexity.

 SOA infrastructure provides a lot of services that can add latency to operations, which can

negatively affect performance in terms of latency and operations / unit time. Dynamically

determining message paths adds overhead. Using a complex set of rules that must be exe-

cuted with common requests may produce significant variation in latency.

 SOA systems vary at runtime, resulting in a large number of configurations to understand.

This can negatively affect testability and reliability scenarios. For example, dynamically de-

termining message paths results in a large set of integrations for testing strategies. Defects

can be injected when rules are written and deployed that affect configurations. An example

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[Distribution Statement A] Approved for public release and unlimited distribution.

would be a rule that routes a request to a service that wraps a low-fidelity analysis engine

when the requesting application needs a higher fidelity analysis.

 Broker

Many systems are constructed from a collection of services distributed across multiple servers.

Implementing these systems is complex because you need to worry about how the systems will

interoperate—how they will connect to each other and how they will exchange information—as

well as the availability of the component services. The Broker pattern structures distributed soft-

ware systems with decoupled components that interact by remote service invocations. A broker

component is responsible for coordinating communication, such as forwarding requests, as well as

for transmitting results and exceptions. The Broker pattern promotes building a complex software

system as a set of decoupled and interoperating components, rather than as a monolithic applica-

tion, and results in greater flexibility, maintainability, and composability.

The Broker architectural pattern comprises six types of participating components: clients, servers,

brokers, bridges, client-side proxies, and server-side proxies [Bachmann 2007, Buschmann 2007].

Support for integrability:

 Components are able to access services provided by others through remote, location-trans-

parent service invocations, thus reducing point-to-point integrations. This reduces coupling

by reducing the size and syntactic distance of the interactions.

 Designers can exchange, add, or remove components at runtime, potentially reducing the

time and effort of integration.

 This pattern hides system- and implementation-specific details from the consumers of com-

ponents and services. This reduces coupling—primarily syntactic and semantic distance—

and makes it less likely that consumers will need to be changed when the components and

services they use are changed.

Tradeoffs:

 The Broker pattern negatively impacts performance (latency) by introducing additional calls

and overhead.

 Publish-Subscribe

Publish-Subscribe is an architectural pattern in which components communicate primarily

through asynchronous messages managed by a publish-subscribe mechanism (usually a bus of

some kind). Publishers have no knowledge of subscribers’ identity and vice versa; each is only

aware of event types. A publish-subscribe mechanism can be implemented in different ways. In

some cases, a distributed infrastructure is used to convey events between publishers and subscrib-

ers across a network; an enterprise service bus provides a publish-subscribe mechanism. In other

cases, a local library can be used to register callbacks and implicitly invoke methods on subscrib-

ers when events arrive. Regardless, the result is extremely loose coupling between publishers and

subscribers in terms of identity [Buschmann 2007]. Publish-Subscribe does not, however, pre-

scribe the events that are permissible; that requires a separate decision process and agreement

among participants.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

[Distribution Statement A] Approved for public release and unlimited distribution.

The Publish-Subscribe pattern is often built on top of a broker. In such cases publishers publish

messages to a message broker (or event bus), and subscribers register their subscriptions with the

broker. The broker is thus only responsible for message forwarding and associated functions such

as filtering or prioritization.

Support for integrability:

 New components do not need to understand the identity of interacting components and can

limit their knowledge to the events being communicated (including all dimensions of dis-

tance).

 New components can be integrated to information flows simply by adding a subscription.

 Existing components are not affected by the need to send information to new components;

this is managed by the publish-subscribe bus.

Tradeoffs:

 Routing communication through a publish-subscribe bus takes time, which can negatively

affect performance scenarios that are sensitive to communication latency. This latency may

not be deterministic, particularly when the number of subscribers varies during operations.

 Reliance on asynchronous communication results in less deterministic behavior, which can

negatively affect testability. Race conditions are a bigger concern in asynchronous systems.

 Reliance on a publish-subscribe bus to mediate obscures the identity of communication

peers, which can negatively affect security. Publishers do not know the identity of their sub-

scribers and vice versa. This can lead to challenges with key management for digital signa-

tures. The publish-subscribe bus would need to store keys for every publisher and subscriber

or use a single key for all. Using a publish-subscribe bus also puts the onus of enforcing au-

thorization and authentication on the bus and removes any possibility for local control by a

publishing component.

 Adapters

An adapter creates an intermediary that wraps an underlying component and presents a new inter-

face to the rest of the system. The adapter usually restricts communication with the component it

wraps such that all interactions go through the adapter. When another component in the system

interacts with the adapter, it transforms this interaction as needed and passes the request on to the

wrapped component.

Adapters can be applied to solve different problems. One use is to create a common abstract ser-

vice (e.g., a common sensor service) and then to use an adapter for each concrete service (e.g., a

specific sensor) that implements the abstract service interface and passes appropriately trans-

formed requests to the concrete service. Another use is to bridge differences between two specific

components. The differences could be syntactic (e.g., calling for an adaptor to translate data), data

semantic (e.g., translating based on different units of measure), or behavioral semantic (e.g.,

wrapping a component that expects to be polled with a thread that polls and broadcasts changes,

making the component appear to implement a push control model).

Support for integrability:

 Adapters are custom things and can be written to resolve many different forms of differences

along the dimensions described in Section 3.1.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

[Distribution Statement A] Approved for public release and unlimited distribution.

 Adaptors for new components can be implemented during integration, allowing late binding

of whatever specific behavior needs to be adapted.

 Adaptors for existing components can be included in an architecture, usually paired with a

service abstraction, to reduce the number of variations (size) that future components may

have to accommodate.

Tradeoffs:

 Adapters add functionality to perform their work, which can negatively affect performance

(latency). The degree of the effect depends on how much work they do and how expensive

that work is.

 Adapters negatively impact performance (latency) by introducing additional calls and over-

head.

 Analyzing Patterns

Note that Publish-Subscribe, Broker, and most other patterns could be used to emulate other

mechanisms. For example, if all publishers in a system “broadcast” messages that were specific to

a single recipient, then all of the power and generality of Publish-Subscribe is lost. Further, if that

recipient then responded back to the originator of the message (and to no other component), then

the publish-subscribe mechanism would merely be replicating a call-return style of component in-

teraction.

Thus, when analyzing the use of a pattern, we must distinguish between the intent of that pattern

and all of its potential instantiations (which might in fact change or even undermine that intent, its

pros and cons, and its tradeoffs). When we discuss patterns here, we focus on the intent of the pat-

tern and not the myriad of ways that the pattern might be misapplied, undermined, or, at the very

least, used in a way that is not consistent with its original intention. In such cases the analysis

must take into consideration the specific instantiation of the pattern.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

[Distribution Statement A] Approved for public release and unlimited distribution.

6 Analyzing for Integrability

An analyst’s job is to judge the appropriateness of the mechanisms built into the architecture of a

system S, in light of the anticipated set of components {Ci} that will need to be integrated in the

future. And as stated previously, “appropriateness” is really a function of the risks and costs of the

anticipated integrations. Analysts can specify these potential or anticipated integrations using sce-

narios, as we exemplified above, and for consistency and repeatability they can guide stakeholders

to derive those scenarios from the Integrability General Scenario.

Analyzing for integrability at different points in the software development lifecycle will take dif-

ferent forms. The different analysis options are sketched in Table 3. If analysts only have a refer-

ence architecture or a functional architecture, for example, then they cannot make detailed

predictions or claims about the level of difficulty associated with the integration of an arbitrary

new component. What the analyst can employ, at that early stage, is a checklist or tactics-based

questionnaire. These analysis techniques will reveal the designer’s intentions with respect to inte-

grability.

On the other hand, if the analysts have received a defined and documented product architecture—

perhaps including views such as functional, hardware, and software architecture—but little or no

coding has been done, they can still employ checklists and tactics-based questionnaires to under-

stand the design intent. But as shown in Table 3, the analysts can also begin to think about em-

ploying metrics to measure the as-designed level of dependency in the system, in chosen subsets

of the system, or between selected parts of the system.

The point is that there are no one-size-fits-all analysis methodology and tools that we can recom-

mend: the analysis team needs to respond appropriately to whatever artifacts have been made

available for analysis. And the analysis team and the product owner need to understand that the

accuracy of the analysis and expected degree of confidence in the analysis results will vary ac-

cording to the quality of the available artifacts.

Table 3: Lifecycle Phases and Possible Analyses for Integrability

Lifecycle Phase Typical Available Artifacts Possible Analyses

Early Design Set of selected mechanisms/tactics/patterns Checklist

Tactics-based questionnaire

Software Architecture

Defined

Set of containers for functionality (e.g., mod-

ules, services, microservices) and their in-

terfaces

Checklist

Tactics-based questionnaire

Coupling metrics:

 structural

 semantic

Implemented System Set of containers for functionality (e.g., mod-

ules, services, microservices) and their in-

terfaces

Commit history

Issue-tracking history

Runtime profiles/traces

Checklist

Coupling metrics:

 structural

 semantic

 history-based

 dynamic

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

[Distribution Statement A] Approved for public release and unlimited distribution.

6.1 Tactics-Based Questionnaires

Architectural tactics have been presented thus far as design primitives, following Bass [2012] and

Cervantes [2016]. However, since tactics are meant to cover the entire space of architectural de-

sign possibilities for a quality attribute, we can use them in analysis as well. Each tactic is a de-

sign option for the architect at design time. But used in hindsight, they represent a taxonomy of

the entire design space for integrability.

Specifically, we have found these tactics to be very useful guides for interviews with the architec-

ture team. These interviews help analysts gain rapid insight into the design approaches taken, or

not taken, by the architect and the risks therein.

For example, consider the list of questions inspired by integrability tactics presented in Table 4.

The analyst asks each question and records the answers in the table.

Table 4: Example Tactics-Based Integrability Questions

Tactics

Group

Tactics Question Supported?

(Y/N)

Risk

Design Decisions

and Location

Rationale and

Assumptions

Limit Depend-

encies

Does the system provide a

means to encapsulate in-

terfaces, that is, introduce

an explicit interface (an

API and its associated re-

sponsibilities) that wraps

and potentially adapts a

component?

 Does the system use inter-

mediaries for breaking de-

pendencies between

components, for example,

removing a data pro-

ducer’s knowledge of its

consumers?

 Does the system abstract

common services, provid-

ing a general, abstract in-

terface for similar

services?

 Does the system provide a

means to restrict communi-

cation paths between com-

ponents?

 Does the system adhere to

standards in terms of how

components interact and

share information with

each other?

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

[Distribution Statement A] Approved for public release and unlimited distribution.

Tactics

Group

Tactics Question Supported?

(Y/N)

Risk

Design Decisions

and Location

Rationale and

Assumptions

Adapt Does the system provide

the ability to statically (i.e.,

at compile time) tailor inter-

faces, that is, the ability to

add or remove capabilities

of a component’s interface

without changing its API or

implementation?

 Does the system provide a

dynamic discovery service,

enabling the binding be-

tween a service consumer

and a service at runtime?

 Does the system have a

known (static) discovery

service that describes

components (services) and

provides their locations

and their APIs?

 Does the system provide a

means to configure the be-

havior of components at

build, initialization, or

runtime?

Coordinate Does the system provide a

resource manager that

governs access to compu-

ting resources?

 Does the system include

an orchestration mecha-

nism that coordinates and

manages the invocation of

components so they can

be ignorant of each other?

When using this set of questions in an interview, the analyst records whether or not each tactic is

supported by the system’s architecture, according to the opinions of the architect. When analyzing

an existing system, the analyst can additionally investigate

 whether there are any obvious risks in the use (or non-use) of this tactic. If the tactic has

been used, record how it is realized in the system (e.g., via custom code, generic frame-

works, or externally produced components).

 the specific design decisions made to realize the tactic and where in the codebase the imple-

mentation (realization) may be found. This is useful for auditing and architecture reconstruc-

tion purposes.

 any rationale or assumptions made in the realization of this tactic.

These questionnaires can be used by an analyst who poses each question, in turn, to the architect

and records the responses, as a means of conducting an architecture analysis. To use these ques-

tionnaires, simply follow these four steps:

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

[Distribution Statement A] Approved for public release and unlimited distribution.

1. For each tactics question, fill the “Supported” column with Y if the tactic is supported in the

architecture and with N otherwise. The tactic name in the “Tactics Question” column is itali-

cized.

2. If the answer in the Supported column is Y, then in the “Design Decisions and Location”

column describe the specific design decisions made to support the tactic and enumerate

where these decisions are manifested (located) in the architecture. For example, indicate

which code modules, frameworks, or packages implement this tactic.

3. In the “Risk” column, indicate the anticipated/experienced difficulty or risk of implementing

the tactic using a {H = high, M = medium, L = low} scale. For example, a tactic that was of

medium difficulty or risk to implement (or that is anticipated to be of medium difficulty, if it

has not yet been implemented) would be labeled M.

4. In the “Rationale” column, describe the rationale for the design decisions (including a deci-

sion to not use a tactic). Briefly explain the implications of this decision. For example, ex-

plain the rationale and implications of the decision in terms of the effort on cost, schedule,

evolution, and so forth.

While this interview-based approach might sound simplistic, it can actually be very powerful and

insightful. In architects’ daily activities, they likely do not take the time to step back and consider

the bigger picture. A set of interview questions such as those shown in Table 4 forces the architect

to do just that. And this process can be quite efficient: a typical interview for a single quality at-

tribute takes between 30 and 90 minutes.

6.2 Architecture Analysis Checklist for Integrability

As presented in Bass [2012], one can view an architecture design as the result of applying a col-

lection of design decisions. We view architecture design and analysis as two sides of the same

coin [Cervantes 2016]: any design decision made by an architect should be analyzed. Design and

analysis are not distinct activities—they are intimately related. Below we present a systematic cat-

egorization of these decisions so that an architect or analyst can focus attention on those design

dimensions likely to be most troublesome.

An architect faces seven major categories of design decisions. These decisions will affect both

software and, to a lesser extent, hardware architectures. They are

1. Allocation of Responsibilities

2. Coordination Model

3. Data Model

4. Resource Management

5. Mapping Among Architectural Elements

6. Binding Time

7. Choice of Technology

These categories are not the only way to classify architectural design decisions, but they do pro-

vide a rational (and exhaustive) division of concerns. The concerns addressed in these categories

might overlap, but it’s alright if a particular decision exists in two different categories because the

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[Distribution Statement A] Approved for public release and unlimited distribution.

duty of the architect and of the analyst is to assess whether every important decision has been con-

sidered.

Some of these design decisions might be trivial or highly constrained. For example, an architect

may have no choice of technology decisions to make if he is required to implement the software

on a prespecified platform over which he has little or no control. Or for some applications, the

data model might be trivial. But for other categories of design decisions, the architect might have

considerable latitude.

For each quality attribute, we enumerate a set of questions—a checklist—that will lead an analyst

to question the decisions made, or not made, by the architect, and for some of these decisions to

refine the questions into a deeper analysis. The checklist for integrability is presented below.

Category Checklist

Allocation of

Responsibilities

Consider which integrations are likely to occur through potential changes in technical,

legal, and mission forces. Do the following for each potential integration:

 Consider the responsibilities that would need to be integrated, modified, or deleted

to make the change.

 Consider what other responsibilities are impacted by the change.

 Assess whether the allocation of responsibilities to modules places, as much as

possible, responsibilities that will be changed (or impacted by the change) together

in the same module and places responsibilities that will be changed at different

times in separate modules.

Coordination Model Consider whether the coordination models of S and {Ci} are compatible and, if they are

incompatible, how much work is required to bridge the differences.

Consider which parts of S—devices, protocols, and communication paths—used for co-

ordination are likely to change. For those devices, protocols, and communication paths,

assess the impact of changes (ideally limited to a small set of modules).

For those elements for which future modifications are likely, assess whether the coordi-

nation model, such as publish-subscribe, reduces coupling; defers bindings such as en-

terprise service bus; or restricts dependencies such as layering.

Data Model Consider which changes (or categories of changes) to the data abstractions, their oper-

ations, or their properties are likely to occur as a result of an integration. Also consider

which changes or categories of changes to these data abstractions will involve their cre-

ation, initialization, persistence, manipulation, translation, or destruction.

For each change or category of change, consider if the changes will be made by an end

user, a system administrator, or a developer. For those changes to be made by an end

user or system administrator, assess whether the necessary attributes are visible to that

user and that the user has the correct privileges to modify the data, its operations, or its

properties.

Do the following for each potential change or category of change:

 Consider which data abstractions would need to be added, modified, or deleted to

make the change.

 Consider whether there would be any changes to the creation, initialization, persis-

tence, manipulation, translation, or destruction of these data abstractions.

 Consider which other data abstractions are impacted by the change. For these ad-

ditional data abstractions, consider whether the impact would be on the operations,

their properties, or their creation, initialization, persistence, manipulation, transla-

tion, or destruction.

 Assess whether the data model was designed so that items allocated to each ele-

ment of the data model are likely to change together.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[Distribution Statement A] Approved for public release and unlimited distribution.

Mapping Among

Architectural

Elements

Consider if it is desirable to change the way in which functionality is mapped to compu-

tational elements (e.g., processes, threads, processors) at runtime, compile time, design

time, or build time.

Consider the extent of modifications necessary to accommodate an integration. This

might involve a determination of the following, for example:

 execution dependencies

 assignment of data to databases

 assignment of runtime elements to processes, threads, or processors

Assess whether changes are performed with mechanisms that utilize deferred binding of

mapping decisions.

Resource

Management

Consider how the integration, removal, or modification of a responsibility caused by the

integration will affect resource usage. This involves the following example activities:

 Consider what changes might introduce new resources, remove old ones, or affect

existing resource usage.

 Consider what resource limits will change and how.

 Assess whether the resources after the integration are sufficient to meet the sys-

tem requirements.

Binding Time Do the following for each change or category of change:

 Consider the latest time at which the integration will need to be made.

 Assess whether the defer-binding mechanism will deliver the appropriate capability

at the time chosen.

 Consider the cost of introducing the mechanism and the cost of making changes

using the chosen mechanism.

 Assess whether the design does not introduce so many binding choices that

change is impeded because the dependencies among the choices are complex

and unknown.

Choice of

Technology

Consider what integrations are made easier or harder by the technology choices.

Will the technology choices help to make, test, and deploy integrations?

How easy is it to modify the choice of technologies (in case some of these technologies

change or become obsolete)?

Assess whether the chosen technologies support the most likely anticipated integra-

tions. For example, an enterprise service bus makes it easier to change how elements

are connected but may introduce vendor lock-in.

6.3 Coupling Metrics

Coupling metrics can be used to analyze the strength of dependencies between two entities. While

they have traditionally been used to measure the strengths of dependencies between modules of

source code, the concept of coupling applies equally well to design concepts, hardware, people,

and so forth. Essentially, coupling tells you how tightly bound together two things are, and this is

correlated with how easy it is to change just one of those things and not have that change ripple to

the other thing. This is important as higher coupling tends to correlate strongly with higher costs

of integration, modification, and testing.

We can, therefore, measure the coupling among elements in a design. This is a good thing: it

means that even before we have implemented the system we can begin to understand the charac-

teristics of that system. This is why we create and analyze models. If we have a system that has

already been implemented and for which we have access to the source code, executables, revision

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

[Distribution Statement A] Approved for public release and unlimited distribution.

history, or adequate documentation, the analyst can consider several additional options for inte-

grability analysis:

1. Analyze the system with respect to system-wide coupling metrics. Such a metric provides a

single number that represents how tightly (or loosely) coupled the system is overall. While

this number is useful—for example, to compare systems or to see how a system is evolving

over time—it does not offer insight into the specific challenges of integrating a single com-

ponent. On the positive side, a metric can be tracked over time, to give management insight

into the overall level of coupling in a system, whether it is increasing or decreasing, and

whether it crosses a threshold that represents a risk. To employ a medical analogy, this is

similar to how a doctor monitors a patient’s blood pressure or cholesterol level over time,

and when it exceeds some threshold a medical intervention is indicated. Furthermore, this

kind of application of a metric can be used with any nontrivial subsystem, giving finer-

grained insights.

2. Analyze a specific target component with respect to how tightly it is coupled to the rest of

the system. This gives insight into the level of difficulty of changing this coupling (e.g., re-

placing this target component with a new one that performs approximately the same func-

tion). Assess a target component’s level of coupling with the rest of the system in three

ways: structural coupling, historical coupling, or dynamic coupling.

a. To assess syntactic (structural) coupling, examine the software architecture artifacts (or

reverse-engineer the system’s source code if the architecture document does not exist or

is not up to date) to count the number of connections from the target component to

other system components. This gives a purely syntactic measure of coupling where,

presumably, a higher number is worse. In addition, consider the strength of the coupling

(for example, counting the number of parameters in an API or counting how many

methods/messages or data types are passed).

b. To assess historical coupling, review a project’s revision history, tracking all co-com-

mits (commits where two or more components are committed together). Each of those

co-commits is a clue pointing toward some dependency between pairs of components.

Low numbers of co-commits are typically uninteresting, but if two components change

together frequently, this indicates that they are somehow coupled. If such pairs of com-

ponents also share some syntactic relation (for example, component A calls component

B, or component A inherits from component B), then this co-commit behavior is unre-

markable. However, if a pair of highly co-committed components does not share any

syntactic relationship, then their coupling must be dynamic or semantic (data or behav-

ioral).

c. To assess dynamic coupling, either run the system with a monitoring tool that reports

calling behavior between system components or instrument the system to report such

dynamic relationships. For example, if a pair of components are coupled together be-

cause one publishes an intent and the other subscribes to that intent, this dependency

will not be detectable via a syntactic analysis such as that achieved from reverse-engi-

neering the code. To perceive this dependency, the analyst will likely need to instru-

ment the code.

Note that none of these three forms of coupling will provide complete, authoritative insight into

(data or behavioral) semantic or temporal coupling, although historical and dynamic coupling

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[Distribution Statement A] Approved for public release and unlimited distribution.

should be strongly correlated with semantic and temporal coupling. Semantic and temporal cou-

pling (and differences) between components are more diverse and often more subtle. These typi-

cally cannot be mechanically assessed. For example,

1. the meaning of data that is passed could differ, such as by using different units of measure-

ment or different terms for the same concepts

2. the interfaces could assume different interaction protocols, such as one assuming that data

will be pushed by a provider while the other assumes data will be pulled by a consumer

3. the interfaces could assume different temporal relations, such as different sampling rates

To overcome these information gaps, the analyst may need to consider if documentation exists for

the involved components and if that documentation adequately addresses such questions. Or fail-

ing that, the components and their interfaces can be reverse engineered. Finally, to answer such

questions, the analyst should contact the component-supplier engineering team to request infor-

mation.

To assess a system’s (or subsystem’s) overall level of integrability, the analyst should employ a

system-wide coupling measure. Examples of such measures are Propagation Cost (PC) [MacCor-

mack 2006] and Decoupling Level (DL) [Mo 2016]. PC measures how tightly the elements of a

system are coupled together: the more tightly coupled, the higher the score. DL measures how

well components in a system are decoupled from each other: the more decoupled, the higher the

score. Intuitively these metrics measure the same phenomena, but with one important difference:

PC is sensitive to the size of the system being measured. The greater the number of files in the

system, the smaller the PC. DL, on the other hand, is size-independent.

The advantage of metrics such as these is that they can be used to analyze architectural representa-

tions. The analyst need not wait for concrete implementation to begin analysis. However, these

metrics, like most measures in software engineering, are “garbage in/garbage out.” In other words,

these metrics can only measure the coupling that a system (or system design) has explicitly

acknowledged and manifested. In the book Documenting Software Architectures: Views and Be-

yond, the notion of “interface” between components was explicitly made broad. In fact, that book

spoke of “relations” between components, rather than interfaces. Relations were seen as much

more than just APIs. If component A depends on or interacts with component B in any way, then

there is a relationship between them. Consider the following examples:

 Two components might share the same processor or memory budget.

 They may collaboratively control a peripheral device; hence a change to one might affect the

other.

 These components might have a timing dependency (A must complete before B can start, for

example).

 They might share knowledge of a file format or key length, but this information is not mani-

fested in any interface.

Such implicit dependencies between these files are relationships but will not show up in any

purely structural analysis of the design. These kinds of relationships—kinds of coupling—are typ-

ically not evident from a structural analysis.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

[Distribution Statement A] Approved for public release and unlimited distribution.

In addition, coupling metrics only measure the potential for changes to ripple. If a set of compo-

nents is very stable and seldom changes, or if the components have been designed so that the ar-

eas of change are completely encapsulated by their chosen abstractions and so the interfaces with

other components never change, then little cost will accrue to this coupling.

So purely structural coupling metrics, while they reveal highly important information about the

ability of a system to withstand changes in general, do miss some important types of dependen-

cies, and they do not reflect the strengths of dependencies. However, there is some help. When

analyzing a system for which the analyst already has some data, in the form of a revision history,

she can conduct additional analyses that will shed light on integrability. If a revision history ex-

ists, the analyst can mine this history to derive a predicted co-change frequency for every pair of

components. This is simply a ratio: the number of times that components A and B changed to-

gether over the number of times that they changed independently. The higher the number, the

more highly coupled A and B are.

Revision history can also reveal implicit dependencies, often called “modularity violations”

[Wong 2011]. Modularity violations are cases where groups of files change together, as consid-

ered from the project’s revision history, but they have no structural relationships. This often high-

lights groups of files with implicit dependencies. Such dependencies deserve to be highlighted

because they represent a form of coupling that project members typically do not understand or

document. And these modularity violations are correlated with increased bug rates, change rates,

and costs of change.

Fortunately, the definitions and implementations of PC and DL have been extended to include im-

plicit coupling, so such forms of coupling can be captured and analyzed mechanically where revi-

sion history information exists.

We have now detailed three opportunities for extracting and analyzing coupling information be-

tween files:

1. at design time, where structural information (potentially annotated and augmented with other

information about dependencies) can be analyzed

2. during maintenance, where the prior structural information can be augmented by information

extracted from the project’s revision history

3. at runtime, where the interaction behavior of components or their behavior with respect to

usage of some shared resource can be tracked

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

[Distribution Statement A] Approved for public release and unlimited distribution.

7 Playbook for an Architecture Analysis on Integrability

This playbook outlines an approach to combine the checklists and questionnaires presented in the

previous sections with information about mechanisms to analyze an architecture to validate the

satisfaction of an integrability requirement. The playbook provides a process, illustrated with a

running example, that will guide experts to perform architecture analysis in a more repeatable

way.

The process has three phases and seven steps. The Preparation phase gathers the artifacts needed

to perform the analysis and evaluation. The Orientation phase uses the information in the artifacts

to understand the architecture approach to satisfying the quality attribute requirement. The process

ends with the Evaluation phase, when the analyst applies his understanding of the requirement and

architecture solution approach to make judgments about that approach. The phases and steps are

summarized in Table 5.

Table 5: Phases and Steps to Analyze an Architecture

Phase Step

Preparation Step 1–Collect artifacts

Orientation

Step 2–Identify the mechanisms used to satisfy the requirement

Step 3–Locate the mechanisms in the architecture

Step 4–Identify derived decisions and special cases

Evaluation

Step 5–Assess requirement satisfaction

Step 6–Assess impact on other quality attribute requirements

Step 7–Assess the cost/benefit of the architecture approach

The analyst might identify missing artifacts during the Preparation phase and missing or incom-

plete information within those artifacts during the Orientation Phase. At the end of each step in

the Preparation and Orientation phases, the analyst must decide whether there is sufficient infor-

mation available to proceed with the process.

This process can be applied at almost any point in the development lifecycle. The quality of the

architecture artifacts—breadth, depth, and completeness—will inform the type of analysis and

evaluation performed in Step 5 and the degree of confidence in the results. Early in the develop-

ment lifecycle, lower confidence may be acceptable and the analyst can work with lower quality

artifacts and simpler analyses, as suggested in Table 3. Later in the lifecycle, the analyst needs

higher confidence and therefore higher quality artifacts and more and deeper analyses.

7.1 Step 1–Collect artifacts

In this step, the analyst collects the artifacts that she will need to perform the analysis. These in-

clude quality attribute requirements and architecture documentation.

The first artifact the analyst needs is the integrability requirement that she wants to validate. The

requirement must be stated so that it is measurable, for example, as a quality attribute scenario as

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

[Distribution Statement A] Approved for public release and unlimited distribution.

discussed above. Let’s use one of the example scenarios from the earlier section, where we have

specified the artifact as “signal processing pipeline”:

Scenario Part Value

Source mission need

Stimulus add new data filtering component

Artifact signal processing pipeline

Environment system has been deployed

Response component is fully integrated

Response measure deployed in 1 month with no more than 1 person-month of effort

100% of necessary messages are correctly processed, and 100% of unnecessary mes-

sages are correctly ignored

Next, the analyst needs the other quality attribute requirements. As noted above, architecture de-

signs embody tradeoffs, and decisions that improve integrability may have a negative impact on

the satisfaction of other quality attribute requirements. In Step 6–Assess impact on other quality

attribute requirements, the analyst will check that the architecture decisions made to satisfy this

requirement do not adversely affect other quality attribute requirements, and more information

about the complete set of quality attribute requirements means greater confidence in the results of

that step.

Finally, the analyst needs architecture documentation. Early in the architecture development

lifecycle, the documentation may be just a list of mechanisms mapped to quality attribute require-

ments, perhaps identifying tradeoffs. As the architecture is refined, partial models or structural di-

agrams become available, accompanied by information about key interfaces, behaviors and

interactions, and rationale that provides a deeper link between the architecture decisions and qual-

ity attribute requirements. When the architecture development iteration is finished, then the docu-

mentation should include complete models or structural diagrams, along with specification of

interfaces, behaviors and interactions, and rationale.

7.2 Step 2–Identify the mechanisms used to satisfy the requirement

To begin the Orientation phase, there are several places to look to identify mechanisms used in the

architecture. If the architecture documentation includes discussion of rationale, that can provide

unambiguous identification of the mechanisms used to satisfy a quality attribute requirement.

Other activities include looking at the structural and behavior diagrams or models and recognizing

architecture patterns. Naming of architecture elements may indicate the mechanism being used.

The analyst may need to use all of these to identify the mechanism or mechanisms that are being

used to satisfy the integrability requirement. Frequently, two or more mechanisms are needed to

satisfy a requirement. If the analyst has access to the architect(s), this is an excellent time to use

the tactics-based questionnaires, as described in Section 6.1. In a short period of time, the analyst

can enumerate all of the relevant mechanisms chosen (and not chosen).

For the example requirement above, “add a new data filtering component,” let’s say that the pro-

ject is part way through the architecture development and the analyst has sketches of structural di-

agrams and an outline of the rationale discussion. The rationale states that a pipe and filter

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

[Distribution Statement A] Approved for public release and unlimited distribution.

mechanism is being used to satisfy this integrability requirement, along with a configuration file

mechanism to define the topology of the Signal Processing Pipeline.

The analyst performs a quick check to determine whether the referenced mechanisms are likely to

contribute to satisfying the integrability requirement. In this case, both mechanisms are listed in

the section above that discusses mechanisms for achieving integrability—one is a pattern and one

is a tactic—so the check passes.

In contrast, if the documented rationale (or the architect) stated that the architecture uses ping-

echo and exception detection to achieve this requirement, this would raise a red flag since those

mechanisms are usually associated with improving availability. The analyst might decide to stop

the architecture analysis at this point and gather more information from the architect. The point of

this quick check is not to analyze the mechanism or decision in detail but simply to assess whether

the architecture analysis is on the right track before devoting more effort to it.

In some cases, appropriateness of a mechanism is less clear. For example, the rationale in this

case might specify that a shared repository mechanism is used. A configuration file can have mul-

tiple readers, so it could be called a shared repository. In cases like this, the analyst should pro-

ceed carefully: the architect may have chosen an inappropriate mechanism, mislabeled the

mechanism used, or used the mechanism in an atypical way that may or may not be appropriate.

7.3 Step 3–Locate the mechanisms in the architecture

Following our example, the analyst needs to use the architecture documentation, or an interview

with the architect(s), to find where these mechanisms are used in the architecture. As seen in the

tactics-based questionnaires, it is important to consider how a tactic or pattern is implemented.

Our scenario is concerned with the Signal Processing Pipeline. The analyst may be able to look at

the documentation and find a structural diagram sketch that includes the Signal Processing Pipe-

line. With this diagram in hand, finding an instance of the pipe and filter mechanism should not be

difficult because it is a major functional capability in the system. The analyst should also be able

to locate the data filtering component in the pipeline.

The analyst should next turn to the configuration file mechanism and find an instance of a config-

uration file in one of the structural diagram sketches. This might be more difficult—it might be a

single element in a larger diagram sketch, and the analyst will need to figure out which sketch that

is. In this search, note the number of configuration files, identified as “Config1,” “Config2,” and

“Config4.”

Finally, the analyst must be able to conceptually put the mechanisms together. The rationale for

satisfying the requirement said that the configuration file defines the topology of the Signal Pro-

cessing Pipeline. This raises a question: When is the Signal Processing Pipeline instantiated? This

is an issue of Binding Time, one of the categories of questions in the Architecture Analysis Check-

list. One answer could be that the configuration file is read during the software build process, and

the pipeline configuration is fixed in the executable image. However, the analyst finds that, in re-

ality, the configuration file is read during system initialization. He finds a component called Pipe-

line Configurator that reads the configuration file and instantiates the pipes and filters that

comprise the Signal Processing Pipeline, and he sees that it reads from configuration file

“PL.conf.”

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

[Distribution Statement A] Approved for public release and unlimited distribution.

Before finishing this step, the analyst should check that the mechanisms are being used in parts of

the architecture that relate to the requirement that he is analyzing. To assess how well a mecha-

nism contributes to satisfying a quality attribute requirement, it is not sufficient to stop after the

quick check in Step 2. That establishes only the presence of the mechanisms, not their suitability

or adequacy for the scenario being considered. The analyst must identify where and how the

mechanism was instantiated in the architecture to assess whether it will have the desired effect.

For example, if he finds a pipe and filter mechanism, but it is used in the Display Overlay section

of the architecture, then the use of that mechanism is not likely to improve the integrability of the

Signal Processing Pipeline. Or if he did not find that one of the configuration files was read and

used to configure the Signal Processing Pipeline topology, then the use of that mechanism is not

likely to improve the integrability of the Signal Processing Pipeline.

7.4 Step 4–Identify derived decisions and special cases

Most architecture mechanisms are not simple, one-size-fits-all constructs. The instantiation of a

mechanism requires making a number of decisions, with some of those decisions involving choos-

ing and instantiating other mechanisms. For instance, our example employs a Pipe and Filter pat-

tern (mechanism). One set of decisions about using that mechanism is concerned with when the

pipeline topology is instantiated (refer to the Binding Time category in the Architecture Analysis

Checklist). In this case, alternatives include

 at build time (topology is fixed)

 during software execution (topology is variable)

 at software initialization (topology is fixed after initialization)

 during software execution (topology is dynamic)

 topology changes when system mode changes

 topology changes based on time trigger

 topology changes based on user input

 …

If the architect decided to make the topology dynamic (the last major alternative above), then

there is a set of subsequent derived decisions about whether and how to flush the data stream

when the topology changes. Any of these alternatives leads to decisions about where the topology

is defined; in our example, the architect has specified that the topology is defined using a configu-

ration file mechanism.

To assess how well a mechanism contributes to satisfying a quality attribute requirement, it is not

sufficient to stop after the quick check in Step 2. The analyst must verify that the mechanism

meets the requirement and hence must evaluate how the mechanism was instantiated, which usu-

ally involves tracing the decisions about the mechanism instantiation to the derived decisions and

the selected alternatives that address them.

As the analyst puts the mechanisms together in Step 3, she started to identify derived decisions.

For example, in the decision tree outlined above, the analyst identified that the pipeline topology

is variable, but fixed after initialization.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

[Distribution Statement A] Approved for public release and unlimited distribution.

The analyst’s next derived decision might be “Where does the Pipeline Configurator component

get the information needed to instantiate each pipe or filter in the topology, and how does it in-

stantiate and initialize each pipe or filter?” This is an Allocation of Responsibilities decision in the

Architecture Analysis Checklist. For the integrability requirement that the analyst is validating, a

good answer to these questions is the following:

 All pipes are instantiated using a single, common interface, and all filters are instantiated us-

ing a single, common interface;

 all pipes are initialized using a single, common interface, and all filters are initialized using a

single, common interface; and

 all information needed to instantiate and initialize a pipe or filter is specified in the configu-

ration file.

If these are all true, then the Pipeline Configurator contains no information about any particular

pipe or filter, so our requirement to integrate a new filter component will not necessitate any

change to the Pipeline Configurator. (If the driving quality attribute requirement was, for exam-

ple, reusability of existing independently developed filter components that have a variety of ini-

tialization interfaces, rather than integrability, then the architect might have chosen to make the

Pipeline Configurator responsible for handling each of the reused filter components as a special

case. Changing a filter component might then require changing the Pipeline Configurator, which

would be less integrable.)

Another derived decision is how the Pipeline Configurator identifies the software to instantiate for

a pipe or filter (see the Binding Time and Allocation of Responsibilities categories in the Architec-

ture Analysis Checklist). The software for a pipe or filter could be statically linked, which neces-

sitates rebuilding the software when a new pipe or filter is integrated, or the software for a pipe

and filter could be dynamically linked and loaded at runtime, in which case the software might not

need to be rebuilt. The second approach reduces the time and effort to integrate a new filter com-

ponent. However, it also creates another derived decision: To change a filter component, a devel-

oper would need to change the information in the configuration file, so the analyst becomes

concerned with how the configuration file is linked to the Pipeline Configurator. If a change to the

configuration file triggers a rebuild of the software, then the benefit of dynamically linked pipes

and filters is negated. Thus, the assertion that “the configuration file is dynamically linked, so all

the developer needs to do is change the configuration file” is not correct if the pipes and filters are

statically linked.

Let’s look at one more derived decision: How is the information represented in the configuration

file? This is covered in the Data Model category in the Architecture Analysis Checklist. The ana-

lyst checks that the schema for the configuration file data aligns with the interfaces to instantiate

and initialize the pipe components and filter components. For example, if elements of the initiali-

zation interface of a new filter component cannot be specified using the configuration file schema,

then integrating the new filter element might necessitate a more extensive change, impacting the

satisfaction of our integrability requirement.

These are just a few examples of derived decisions. Other common derived decisions include

 error handling: Does the component that receives and records runtime errors need to change

to integrate with the new filter (included in the Coordination Model category in the Architec-

ture Analysis Checklist)?

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

[Distribution Statement A] Approved for public release and unlimited distribution.

 resource sharing: Does the new filter component consume more shared resources (e.g., pro-

cessor cycles, memory, I/O)? If the architecture does not already address resource manage-

ment, then other software modifications may be necessary (see the Resource Management

category in the Architecture Analysis Checklist).

Finally, some mechanisms have special cases that warrant special attention. For example, adding

a second writer to a shared repository introduces concerns about write conflicts. A distributed

shared repository introduces concerns about replica consistency. Modifications to the top or bot-

tom layers in a layered mechanism introduce concerns about interfaces outside the mechanism.

In our example, analysts should pay attention to changes to the first and last elements in a pipeline

topology, as they introduce concerns about interfaces outside the pipe and filter mechanism. Our

requirement to replace a filter component will be more broadly satisfied by instantiating a pipe

and filter mechanism that does not mix data processing and data interface/interoperation in a sin-

gle filter element.

7.5 Step 5–Assess requirement satisfaction

The analyst has completed preparation and orientation and begins the Evaluation phase. The anal-

ysis performed to assess whether the architecture satisfies the quality attribute requirement will

depend on the nature of the requirement and the mechanism(s) being applied. For example, if the

analyst assesses a quality attribute requirement for portability to a different hardware platform,

and the mechanism used is the Layers pattern with a hardware abstraction layer as the lowest

layer, then the analysis should include checks for layer skipping, which introduces syntactic de-

pendencies. The analysis should also include examining the interface that the hardware abstrac-

tion layer provides to other layers and checking that all those interface services could likely be

constructed on other hardware platforms.

Recall that the requirement in our example is to add a new data filtering component, and our

measures are the effort needed, that necessary messages are correctly processed, and that unneces-

sary messages are ignored. The architecture mechanisms are pipe and filter with the topology es-

tablished at system initialization time based on the contents of a configuration file. In Step 4–

Identify derived decisions and special cases, the analyst identified several derived decisions that

need to be considered in the analysis:

 Where does the Pipeline Configurator component get the information needed to instantiate

each pipe or filter in the topology, and how does it instantiate and initialize each pipe or fil-

ter?

 How does the Pipeline Configurator identify the software to instantiate for a pipe or filter?

 How is the information represented in the configuration file?

The analyst might begin with the last question—a question about the data model—since he needs

to understand the structure of the configuration file to address the other questions. The configura-

tion file schema is not specified in the architecture documentation, but the artifacts include an ex-

cerpt of an example pipeline configuration, and the example looks like it might be using the

YAML3 key-value syntax. All elements that use the configuration file are semantically coupled—

3 See https://yaml.org for more information about YAML Ain’t Markup Language™.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

[Distribution Statement A] Approved for public release and unlimited distribution.

they must all interpret the contents in the same way. The analyst begins recording analysis issues

related to semantic cohesion:

 Issue 1: The configuration file schema is not explicitly specified. If a developer needs to dis-

cover the schema, it increases the effort to add a new filter.

 Issue 2: YAML values are not typed. The configuration file reader (in our case, the Pipeline

Configurator) must include robust error handling for invalid values. If invalid configuration

values are not robustly detected, this could increase the effort to add a new filter.

This analysis thread is based on an observation that the configuration file uses YAML syntax. For

example, if the analyst found that the file had an XML schema, which is strongly typed, then he

might record an issue about whether all the data types necessary to configure the new filter are

available in the schema, since modifying the schema would likely increase the effort to add a new

filter. Note that compared to YAML, writers and readers of a schema-based XML configuration

file have higher syntactic coupling to the file, but they have a lower semantic coupling to each

other because the schema enforces some shared meaning of the data.

Continuing our example, the analyst finds that the pipeline elements are statically linked. This ar-

chitecture decision simplifies some runtime error handling by precluding error conditions such as

a missing dynamic library. On the other hand, it introduces constraints on the software build pro-

cess—there is syntactic coupling between the linker and filter object code files. The analyst rec-

ords an issue:

 Issue 3: The filter object code is syntactically coupled to the linker in the development tool-

chain. This constrains how filters are coded and built. This type of coupling is hard to miti-

gate using integrability mechanisms.

Next, in our simplified analysis example, the analyst investigates how the Pipeline Configurator

instantiates elements and how the pipe and filter mechanism connects elements together to create

the processing pipeline. The architecture documentation states that the Pipeline Configurator re-

quires every pipe or filter element to provide an interface called NewInstance that both creates

and initializes an instance of the element. The pipeline architecture constrains filters to provide a

single DataIn and a single DataOut interface. This analysis triggers two more issues to record:

 Issue 4: There is syntactic coupling between the Pipeline Configurator and the filters. If the

new data filter will reuse an existing implementation, then it will need to be wrapped with an

adapter for the NewInstance, DataIn, and DataOut interfaces. The effort to develop this

adapter will depend on the distance (as discussed in Section 3.1) between the pipeline’s re-

quired interfaces and the existing filter implementation’s provided interfaces.

 Issue 5: The data types for the DataIn and DataOut interfaces are not specified in the archi-

tecture documentation. This is early in the development lifecycle and the artifacts are not

complete, but the architecture documentation and the structural diagrams to date indicate that

the architect is making pipe elements in the pipe and filter pipeline responsible for data trans-

formation to bridge between filter elements. This introduces semantic coupling between the

pipe and filter. If this is the case, then the architect is not applying the mechanism correctly,

since the Pipe and Filter pattern specifies that pipes do not transform data, so there is no se-

mantic coupling between the pipe and filter.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

[Distribution Statement A] Approved for public release and unlimited distribution.

In this simple example, the analyst rapidly identified five issues where architecture decisions im-

pact the ability to achieve the desired response measures in the scenario. Some of the issues, such

as Issue 3 about static linking, are unlikely to change as the details of the architecture are refined.

Other issues, such as Issue 1 about the configuration file schema, may be resolved as the details of

the architecture are refined and are to be expected when analyzing an architecture early in the de-

velopment cycle.

7.6 Step 6–Assess impact on other quality attribute requirements

Architecture decisions rarely affect just one quality attribute requirement. The tradeoffs inherent

in design decisions mean that the mechanisms and decisions that the analyst found adequate to

satisfy the requirement being evaluated in Step 5 may be detrimental to the satisfaction of other

quality attribute requirements.

Typical tradeoffs impact software performance (throughput or latency), testability, maintainabil-

ity, availability, and usability. In Step 1–Collect artifacts, the analyst collected other quality attrib-

ute requirements that were available at this point in the development lifecycle. Now, she will scan

those and select the ones that might be impacted by the architecture mechanisms and decisions an-

alyzed in Step 5–Assess requirement satisfaction. For example, there may be quality attribute re-

quirements that cover concerns such as the following:

 (Performance) Is there a pipeline data processing latency requirement? Is there sufficient

margin in the latency budget to permit a new filter to be added without other modifications

to improve latency?

 (Performance) Is there a latency timeline for pipeline initialization? Is there sufficient margin

in that latency budget to permit a new filter to be instantiated and configured without other

changes?

 (Testability) Does the architecture prescribe the logging behavior and data collection inter-

faces for the new filter element?

 (Maintainability) How will any new wrappers or bridges needed to add the new filter affect

maintainability?

 (Availability) Does the architecture prescribe the fault handling behavior for the new filter?

In this step, the analyst assesses how the mechanisms and decisions that make it easy to add a new

filter impact the satisfaction of scenarios related to these other quality attributes and concerns. For

each requirement, the analysis may be fast (e.g., seeing immediately that there is sufficient latency

margin in the initialization timeline) or more involved (e.g., assessing the maintainability impacts

or even building a prototype to measure latency). In any case, the analyst should expect to find at

least a couple of additional issues.

7.7 Step 7–Assess the cost/benefit of the architecture approach

In carrying out the steps leading up to this point, the analyst has developed a good understanding

of the essential challenges in satisfying the quality attribute requirement, the approaches taken by

the architect (choice of mechanisms, instantiation of the mechanisms, and how derived concerns

are addressed), and the tradeoffs embodied in the approaches.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

[Distribution Statement A] Approved for public release and unlimited distribution.

Any architecture approach adds new elements and interactions, making the solution more compli-

cated. Some approaches add new types of elements and interactions and may make the solution

more complex. There is a level of complexity needed to solve real-world problems—this is una-

voidable. The final step is to judge whether the complexity introduced by this architecture ap-

proach is necessary. In some cases, the answer will be clear: in our example, if the Signal

Processing Pipeline topology has only two filters connected by a single pipe, and this number is

unlikely to grow significantly, then the complexity of the pipe and filter mechanism may not be

warranted. If the pipeline topology is set at build time, then a separate configuration file may not

be needed.

In other cases, the judgment is less clear; however, asking the question of necessity is still worth-

while.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

[Distribution Statement A] Approved for public release and unlimited distribution.

8 Summary

In this report we defined integrability and focused on analyzing integration difficulty, the costs,

and the technical risks of performing a set of desired integration tasks. This difficulty can be

thought of as a function of the size of and distance between the interfaces of a set of components

{Ci} and a system S. We further explained that size is the number of potential dependencies be-

tween {Ci} and S and distance is the difficulty of resolving each of the dependencies.

We provided a set of sample scenarios for integrability and, from these and other examples, in-

ferred a general scenario. This general scenario can be used as an elicitation device, and it helps

with analysis because it delineates the response measures that stakeholders will care about when

they consider this quality attribute. We also described the architectural mechanisms—tactics and

patterns—for integrability. These mechanisms are useful in both design—to give a software archi-

tect a vocabulary of design primitives from which to choose—and analysis to help an analyst un-

derstand the design decisions made or not made, their rationale, and their potential consequences.

To address the needs of analysts, we described a set of analytical tools and discussed the artifacts

on which each of these analyses depends and the stage of the software development lifecycle in

which each of these analyses could be employed. And we delved into three specific architecture

analysis techniques for integrability: tactics-based questionnaires, an Architecture Analysis

Checklist, and coupling metrics.

Finally we provided a “playbook” for applying an architecture analysis for integrability. This

playbook combines the checklists and questionnaires with information about architectural mecha-

nisms to analyze an architecture to validate the satisfaction of an integrability requirement.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

[Distribution Statement A] Approved for public release and unlimited distribution.

9 Further Reading

A general discussion of quality attributes, quality attribute scenarios, tactics, and patterns that pro-

vided the foundation for much of this report may be found in the book Software Architecture in

Practice [Bass 2012]. That book, however, does not address integrability specifically. Another

general discussion of quality attributes, particularly the vocabulary surrounding them, can be

found in ISO/IEC/IEEE 24765 [ISO 2017].

A more in-depth discussion of the quality attribute of integrability specifically can be found in

Hentonnen [2007].

MacCormack [2006] and Mo et al. [2016] define and provide empirical evidence for architecture-

level coupling metrics.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

[Distribution Statement A] Approved for public release and unlimited distribution.

Bibliography

URLs are valid as of the publication date of this document.

[Bachmann 2007]

Bachmann, Felix; Bass, Len; & Nord, Robert. Modifiability Tactics. CMU/SEI-2007-TR-002.

Software Engineering Institute, Carnegie Mellon University. 2007. http://resources.sei.cmu.edu/li-

brary/asset-view.cfm?AssetID=8299

[Bass 2012]

Bass, L.; Clements, P; & Kazman, R. Software Architecture in Practice, 3rd ed. Addison-Wesley.

2012.

[Berkeley 2004]

“Model-View-Controller: A Design Pattern for Software.” 2004. https://pdfs.seman-

ticscholar.org/b288/c7074ef1ae95174538147eae22b41fe3746e.pdf

[Bianco 2011]

Bianco, Philip; Lewis, Grace; Merson, Paulo; & Simanta, Soumya. Architecting Service-Oriented

Systems. CMU/SEI-2011-TN-008. Software Engineering Institute, Carnegie Mellon University.

2011. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9829

[Brownsword 2004]

Brownsword, Lisa; Carney, David; Fisher, David; Lewis, Grace; Morris, Edwin; Place, Patrick;

Smith, James; Wrage, Lutz; & Meyers, B. Current Perspectives on Interoperability. CMU/SEI-

2004-TR-009. Software Engineering Institute, Carnegie Mellon University. 2004. http://re-

sources.sei.cmu.edu/library/asset-view.cfm?AssetID=7109

[Buschmann 2007]

Buschmann, F.; et al. Pattern-Oriented Software Architecture, Volumes 1–5. Wiley. 1996–2007.

[Cervantes 2016]

Cervantes, H. & Kazman, R. Designing Software Architectures: A Practical Approach. Addison-

Wesley. 2016.

[Clements 2010]

Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.; Nord, R.; &

Stafford, J. Documenting Software Architectures: Views and Beyond, 2nd ed. Addison-Wesley.

2010.

[Garlan 1995]

Garlan, D.; Allen, R.; & Ockerbloom, J. “Architectural Mismatch or Why It’s Hard to Build Sys-

tems Out of Existing Parts.” Page 179. In 17th International Conference on Software Engineer-

ing. Seattle, Washington. April 1995.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[Distribution Statement A] Approved for public release and unlimited distribution.

[Gartner 2019]

Gartner. “Service-Oriented Architecture (SOA).” IT Glossary. 2019. http://www.gartner.com/it-

glossary/service-oriented-architecture-soa/

[Henttonen 2007]

Henttonen, K.; Matinlassi, M.; Niemelä, E.; & Kanstrén, T. “Integrability and Extensibility Evalu-

ation from Software Architectural Models – A Case Study.” The Open Software Engineering

Journal. Volume 1. 2007. Pages 1−20.

[ISO 2017]

ISO/IEC/IEEE 24765. “Systems and Software Engineering — Vocabulary,” 2nd ed. 2017.

[Josuttis 2007]

Josuttis, N. SOA in Practice: The Art of Distributed System Design. O’Reilly. 2007.

[MacCormack 2006]

MacCormack, A.; Rusnak, J.; & Baldwin, C. Y. “Exploring the Structure of Complex Software

Designs: An Empirical Study of Open Source and Proprietary Code.” Management Science. Vol-

ume 52. Issue 7. July 2006. Pages 1015–1030.

[Mo 2016]

Mo, R.; Cai, Y.; Kazman, R.; Xiao, L.; & Feng, Q. “Decoupling Level: A New Metric for Archi-

tectural Maintenance Complexity.” Pages 499−510. In Proceedings of the International Confer-

ence on Software Engineering. Austin, TX. May 2016.

[Padilla 2019]

Padilla, M. O.; Davis, J. B.; & Jacobs, W. Comprehensive Architecture Strategy (CAS). The Open

Group. September 2019. https://www.opengroup.us/face/documents.php?ac-

tion=show&dcat=87&gdid=21082

[SWEBOK 2014]

Bourque, P. & Fairley, R. E., eds. Guide to the Software Engineering Body of Knowledge, Version

3.0. IEEE Computer Society. 2014.

[Wong 2011]

Wong, S.; Cai, Y.; Kim, M.; & Dalton, M. “Detecting Software Modularity Violations.” Pages

411–420. In Proceedings of the International Conference on Software Engineering. Honolulu, HI.

May 2011.

CMU/SEI-2019-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2019

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Integrability

5. FUNDING NUMBERS

FA8702-15-D-0002

6. AUTHOR(S)

Rick Kazman, Phil Bianco, James Ivers, John Klein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2019-TR-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

SEI Administrative Agent

AFLCMC/AZS

5 Eglin Street

Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report summarizes how to systematically analyze a software architecture with respect to a quality attribute requirement for integra-

bility. The report introduces integrability and common forms of integrability requirements for software architecture. It provides a set of

definitions, core concepts, and a framework for reasoning about integrability and satisfaction (or not) of integrability requirements by an

architecture and, eventually, a system. It describes a set of mechanisms, such as patterns and tactics, that are commonly used to satisfy

integrability requirements. It also provides a method by which an analyst can determine whether an architecture documentation package

provides enough information to support analysis and, if so, to determine whether the architectural decisions made contain serious risks

relative to integrability requirements. An analyst can use this method to determine whether those requirements, represented as a set of

scenarios, have been sufficiently well specified to support the needs of analysis. The reasoning around this quality attribute should allow

an analyst, armed with appropriate architectural documentation, to assess the risks inherent in today’s architectural decisions, in light of

tomorrow’s anticipated needs.

14. SUBJECT TERMS

architecture analysis, integrability, quality attributes, quality attribute requirements, software ar-

chitecture

15. NUMBER OF PAGES

58

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

