
 
 
 
 

 ARL-TR-8914 ● MAR 2020 
  
 
 
 

 
 
 
Computational Model Builder and Analysis 
Toolkit (COMBAT) Demonstrating Capabilities 
through Practical Examples 
 
by Dylan M Anstine, Chi-Chin Wu, James P Larentzos, and  
John K Brennan 
 
 
 
 
 
 
 

 

Approved for public release; distribution is unlimited. 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-8914 ● MAR 2020 

 

 
 
Computational Model Builder and Analysis Toolkit 
(COMBAT) Demonstrating Capabilities through 
Practical Examples 
 
Dylan M Anstine 
Department of Materials Science and Engineering, University of Florida  
 
Chi-Chin Wu, James P Larentzos, and John K Brennan 
Weapons and Materials Research Directorate, CCDC Army Research Laboratory 
 
 
 
 
 
 
 
 

 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

March 2020  
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From - To) 

13 May – 31 August 2019 
4. TITLE AND SUBTITLE 

Computational Model Builder and Analysis Toolkit (COMBAT) Demonstrating 
Capabilities through Practical Examples 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Dylan M Anstine, Chi-Chin Wu, James P Larentzos, and John K Brennan 
5d. PROJECT NUMBER 

HIP-19-021 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

CCDC Army Research Laboratory 
ATTN: FCDD-RLW-LB 
Aberdeen Proving Ground, MD 21005-5066 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-8914 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

US Department of Defense (DOD) High Performance Computing 
Modernization Program (HPCMP) 
Vicksburg, MS 

10. SPONSOR/MONITOR'S ACRONYM(S) 

HPCMP 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
ORCID ID(s): Chi-Chin Wu, 0000-0002-6036-3271; James P Larentzos, 0000-0002-9873-4349; John K Brennan, 0000-0001-
9573-5082 
14. ABSTRACT 

Particle-based simulations that access nanometer-to-micrometer length and nanosecond-to-microsecond timescales are 
becoming an increasingly common research practice. This report highlights the use of the Computational Model Builder and 
Analysis Toolkit (combat) to accomplish routine atomistic or coarse-grained modeling tasks for these types of simulations by 
using simple python programming. Several practical examples are presented that demonstrate both newly developed and  
pre-existing functionality of the combat software package. An additional module, combat_analysis, has been added that can 
leverage the parallel computational efficiency of combat to perform a number of in silico analytical characterization 
techniques. Each example section is clearly organized with a defined modeling task, a description of the code that 
uses combat to accomplish the task, and an accompanying graphical representation for the process. Although the 
demonstrations provided highlight a small fraction of combat’s functionalities, ideally the examples discussed will inspire 
creative use of the software's capabilities for a range of material systems at scales up to, or beyond, the micro regime. 
 
15. SUBJECT TERMS 

analysis toolkit, molecular modeling, simulation, data processing, system preparation 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

33 

19a. NAME OF RESPONSIBLE PERSON 

Chi-Chin Wu 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(410) 306-1905 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

List of Figures iv 

List of Tables v 

Acknowledgment vi 

1. Introduction 1 

2. The combat Software Package 1 

2.1 Example 1: Creating a Face-Centered Cubic (FCC) Surface 3 

2.2 Example 2: Production of a Random Ternary Alloy 5 

2.3 Example 3: Bond Energy Calculation 7 

2.4 Example 4: Generating a Core-Shell Nanoparticle 9 

2.5 Example 5: Nanoparticle in a Gaseous Environment 11 

2.6 Example 6: Creating a Spatial Composition Histogram 13 

2.7 Example 7: Distributions of a Bonded Molecular System 14 

3. Conclusions 16 

4. References 18 

Appendix. Construction of a Single-Crystal Face-Centered Cubic (FCC) 
Structure 19 

List of Symbols, Abbreviations, and Acronyms 24 

Distribution List 25



 

iv 

List of Figures 

Fig. 1 Schematic representation of the combat software package structure and 
workflow. An input file is used to create a system class object. 
Operations are performed on the data frames nested in the combat 
system class object to produce an output data file. ............................... 3 

Fig. 2 Visualization of the conversion of a bulk FCC crystal to an FCC 
material with a surface at 75% of the z box length oriented 
perpendicular to the z dimension .......................................................... 5 

Fig. 3 Visualization of the conversion of an initial single-component (Type-
A) diamond crystal converted to a randomly distributed ternary 
diamond alloy with a user-defined composition ................................... 7 

Fig. 4 Simulation cell containing a single polymer chain alongside the 
equations used to calculate the bond-stretching energy for the 
conformation presented ......................................................................... 8 

Fig. 5 Process visualization for the formation of a concentric core-shell 
nanoparticle: a) the initial BCC single crystal structure, b) 5-nm 
particle carved out of the bulk phase, c) core-shell spherical 
nanoparticle with a 1.0-nm-thick outer layer, and d) cross-sectional 
view of the core shell spherical nanoparticle ...................................... 10 

Fig. 6 Visualization of the combat populate() function with the addition of 
molecular oxygen and nitrogen gases to a system containing a 
spherical nanoparticle ......................................................................... 12 

Fig. 7 Visualization of a random ternary alloy system and the graphed results 
from the .csv file generated by the spatial_histogram() function ....... 14 

Fig. 8 Bond, angle, and torsional distributions of a model hydrocarbon 
molecular system. The y-axis (N) is the total number of bond-relevant 
molecular connectivity values found to fit in a bin: a) visualization of 
the model molecular system, b) 2-body bond distribution with  C-H 
and C-C bonds labeled, c) 3-body angle distribution, and d) 4-body 
torsional distribution. .......................................................................... 15 

Fig. A-1 Visualization of the linear algebra operations applied to randomly 
orient a diatomic molecule prior to insertion, as implemented in 
scipy.spatial.transform.Rotation ......................................................... 21 

Fig. A-2 Visualization of the spatial domain within the simulation cell of the 
metal surface in which the populate() function attempts to insert 
molecules (shown in blue). The surface on the left represents full 
domain sampling (the default sampling), which results in a greater 
number of failed insertion attempts. The surface on the right shows 
reduced domain sampling, which results in failed insertions only if the 
attempted insertion is within the cutoff of a previously inserted 
molecular system. ............................................................................... 22 



 

v 

Fig. A-3 Demonstration of the ability of the populate() function to populate a 
system with molecules of significant size. In this case, a box 
containing a polymer chain with a degree of polymerization equaling 
10 is populated with five replicas of the same system. ....................... 23 

 

List of Tables 

Table 1 Python script that uses combat to convert a bulk FCC single crystal to 
a material with an FCC structure and a surface at 75% of z box 
dimension by deleting particles with z positions greater than 75% of 
the z box length ..................................................................................... 4 

Table 2 Python script that uses combat to convert a bulk-diamond single 
crystal to a random ternary alloy of the user-defined composition ...... 6 

Table 3 Python script that uses combat to calculate the bond-stretching energy 
of a single polymer chain containing C-C and C-H bonds ................... 8 

Table 4 Python script that uses combat in conjunction with Numpy linear 
algebra functions to produce a concentric core-shell nanoparticle 
structure from a bulk BCC single crystal ............................................ 10 

Table 5 Python script demonstrating use of populate() function to create a 
gaseous environment containing molecular oxygen and nitrogen gases 
around a spherical nanoparticle .......................................................... 12 

Table 6 Python script using the combat and combat_analysis modules to 
produce a spatial histogram describing the relatively uniform alloy 
composition along the z direction ....................................................... 13 

Table 7 Python script using the combat and combat_analysis modules to 
produce histograms for routine bond-length distribution analysis ..... 15 

Table A-1 Sample LAMMPS input script used to generate an FCC crystal 
structure............................................................................................... 20 

  



 

vi 

Acknowledgment 

The authors acknowledge the Department of Defense (DOD) High Performance 
Computing Modernization program (HPCMP) for providing funding to Dylan M 
Anstine through the HPCMP internship program (HIP-19-021). Additionally, the 
authors express their gratitude to the support staff associated with the DOD 
Supercomputing Resource Center. Finally, the authors are grateful for helpful 
discussions with Dr Brian Barnes (US Army Combat Capabilities Development 
Command Army Research Laboratory [ARL]), Dr Betsy Rice (ARL), and Kelsea 
Miller (Texas Tech University). 

  



 

1 

1. Introduction 

The evolving capabilities of computing hardware and the development of efficient, 
often parallel algorithms implemented in particle-based simulation software have 
enabled simulations that now extend to the microscale and beyond. These large-
scale simulations consisting of millions to billions of particles over nanosecond-to-
microsecond timescales present enormous challenges in “big data” analysis, where 
representative examples are Mattox et al.1 and Jaramillo et al.2 A python-based 
toolkit for particle simulations, Computational Model Builder and Analysis Toolkit 
(COMBAT), hereafter referred to as combat (available at 
https://github.com/USArmyResearchLab/ARL-COMBAT), was recently 
developed and described in Fortunato et al.3 That report highlighted the use of 
organized Pandas DataFrames4 to describe model systems and parallel 
computations for analysis and processing. In the current report, we present a 
number of examples that demonstrate new functionality of combat and highlight 
the use of simple python programming to perform a range of pre- and 
postprocessing tasks. While the chosen examples demonstrate only a small fraction 
of combat’s capabilities, ideally they create perspective insights into the potential 
applicability to a broad range of material systems modeled at atomistic and coarse-
grain scales. In addition to the pre-existing combat functionalities, a new module 
was added, combat_analysis, which consists of a continuously expanding set of 
computational analytical tools. Currently, combat_analysis houses common 
methods, such as histogram generators, designed to leverage the computational 
efficiency of combat to readily perform in silico characterization and analysis. 

2. The combat Software Package 

A significant amount of the pre- and postprocessing analysis performed on large-
scale simulations across different research groups is accomplished by “in-house/in-
group” code. This has been in large part based on a lack of accessibility to the 
necessary computing power to perform such simulations for most computational 
researchers. However, combining the fact that large-scale simulations are becoming 
more attainable with the rapid growth of data informatics, a need for a large-scale 
pre- and postprocessing software is steadily growing. The original intent of combat 
was to provide a platform for addressing some of the large-scale computing needs 
by exploiting the efficiency of parallelizable python-based scientific computing 
libraries to provide readily available functionality for processing large-scale 
particle simulations. The scope of combat’s development has been focused 
particularly on systems for simulations performed with the Large-Scale 
Atomic/Molecular Massively Parallel Simulator (LAMMPS) software.5 



 

2 

Essentially, large quantities of particle data can be processed by performing 
calculations on an entire data frame of attributes, which can be easily partitioned 
across multiple central processing units, as opposed to much slower “for loops” and 
object-by-object processing. Additionally, combat is flexible by design because of 
its potential to use existing python computing libraries.  

The overarching goal of the combat software package is to provide a set of tools 
written in python language to enable the pre- and postprocessing of model systems 
for molecular dynamic (MD) simulations. The software is centered on using 
efficient vectorized calculations, which makes combat particularly well-suited for 
large systems [O(106–108) particles]. An overview of combat’s structure and 
workflow is given in Fig. 1. The main unit to the combat software package is the 
system class object, which houses information about the simulation cell (e.g., box 
dimensions), a data frame of particle attributes, and a collection of data frames 
containing molecular connectivity definitions (in the case of bonded systems). 
Additionally, the combat system is accompanied by many class functions that 
perform routine pre- and postprocessing methods. For example, bond_lengths() is 
a function that when called will calculate and append the lengths of all bonds 
contained in the bonds data frame. Furthermore, the design of combat allows for 
simple application of available SciPy,6 Numpy,7 and Pandas functionality to 
calculate system properties or perform operations that are not directly supplied by 
the functions in the system class object. As a demonstration, the example in the 
following makes use of linear algebra functions available in Numpy to calculate the 
distances among particles from a defined point. To highlight some of the 
capabilities that are readily available in combat, and to potentially excite creative 
usage of the software package, example applications for a variety of chemical 
systems are provided in the remainder of this report. For the seven examples 
presented, the first five are for preprocessing functionality, while the last two 
demonstrate postprocessing and analysis. The structure of each example contains 
the following: 

• Description of the objective of the example with relevant background 
information 

• Elaboration of important steps taken in the python script that use combat to 
accomplish the defined objective 

• A line-numbered table containing the python code and annotated comments 
to illustrate the python syntax required to accomplish the defined objective 

• A figure to provide a visual representation of the pre- and postprocessing or 
analysis performed in the example 



 

3 

 

Fig. 1 Schematic representation of the combat software package structure and workflow. 
An input file is used to create a system class object. Operations are performed on the data 
frames nested in the combat system class object to produce an output data file. 

2.1 Example 1: Creating a Face-Centered Cubic (FCC) Surface 

A common use of the combat software package is to read in a molecular or material 
system from a configuration file (e.g., a LAMMPS-formatted configuration file 
[.lmps]), perform a modification on the system, and then write a new .lmps 
configuration file that can be used in a molecular dynamics simulation. As a 
demonstration, this example will read in a bulk FCC material, then perform the 
necessary operations to modify the system and output an .lmps configuration file of 
an FCC structure with a new surface in perpendicular to the z dimension.  

To begin, an FCC crystal structure is generated using LAMMPS functionality (see 
Table A-1 in the Appendix for a sample LAMMPS input script that can be used to 
produce an FCC crystal structure). The FCC system is then modified through the 
set of python commands shown in Table 1 to generate an FCC surface. The system 
class object function from_data() is called to read in an .lmps configuration file to 
combat, where the .lmps configuration file name is provided as an argument. An 
additional argument (atom_style) is specified to describe the attributes associated 
with the atoms. For the python code given in the following, the atom style is 
specified to be “charge”, indicating that all atoms contained within the .lmps 
configuration file are associated with the following attributes: the atom type, the 
partial charge, and the x, y, and z atomic coordinates. These properties can be 
displayed by using the python print function on the particles data frame, as 
demonstrated in Table 1. 

Once the .lmps configuration file is used to generate a combat system, one can 
easily access and manipulate the properties of the system to produce a material with 
a surface perpendicular to the z dimension. The simulation cell dimensions of the 
system are defined through the lower (xlo, ylo, zlo) and upper (xhi, yhi, zhi) 
boundary system class attributes, which can be altered to create a material surface. 



 

4 

For the following example, an FCC surface is arbitrarily chosen to be produced that 
is oriented along the z direction by defining a variable that is equal to 75% of the  
z-dimension box length (see the surface_z variable in Table 1). The python 
command given at Line 8 is used to update the particles data frame such that the 
data frame includes only those particles that have a z coordinate smaller than 
surface_z. By deleting those particles that reside above surface_z, the resulting 
atom indices are now discontinuous and must be re-indexed to run an LAMMPS 
MD simulation. To accomplish the indexing, a Pandas function (i.e., the 
reset_index() function given on Line 10) operates on the particles data frame. Note 
that the Pandas function is not provided directly in the combat source code and is 
included as part of a separate library that is applicable to combat. This emphasizes 
the aforementioned flexibility to use both the functionality implemented in combat 
as well as the continuously increasing functionality of its dependencies (e.g., 
Pandas or SciPy). The final step is to use the system class object function 
write_data() to write a new .lmps configuration file that can be used for the MD 
simulations of an FCC surface. The example python script follows, alongside the 
initial and final structures (Fig. 2). 

Table 1 Python script that uses combat to convert a bulk FCC single crystal to a material 
with an FCC structure and a surface at 75% of z box dimension by deleting particles with z 
positions greater than 75% of the z box length 

 
 



 

5 

 

Fig. 2 Visualization of the conversion of a bulk FCC crystal to an FCC material with a 
surface at 75% of the z box length oriented perpendicular to the z dimension 

2.2 Example 2: Production of a Random Ternary Alloy 

The objective of this example is to convert an .lmps configuration file that contains 
a one-component single crystal with the diamond lattice structure to a randomly 
distributed ternary alloy with the same crystallographic structure. The initial 
structure can be easily generated in LAMMPS with a script similar to that given in 
Table A-1 of the Appendix. To avoid unnecessary complexity of the demonstration 
presented here, the three components (referred to arbitrarily as A, B, and C) are 
assumed to have the same lattice constant. A random number generator can be used 
to select atoms and then convert the atom types until a desired composition is 
reached. For this example, the initial diamond structure is defined to be composed 
purely of Component A, and the desired system is chosen to be a ternary alloy with 
the composition A0.4B0.2C0.4. 

The python random module, imported in Line 2 of Table 2, provides a basic random 
number generator that can be used repeatedly to progress toward the final ternary 
alloy until the target composition is attained. First, two variables are defined (Lines 
6 and 7) containing the number of atoms that need to be converted to achieve the 
desired ternary alloy composition. To convert Type-A particles to Type-B particles, 
the random number generator produces values corresponding to particle indices that 
will be converted by adjusting the associated particle [“type”] of the data frame 
from a value of 1 (indicating Type-A) to a value of 2 (indicating Type-B). This 
conversion process is performed within a python “while loop” until 20% of all of 
the particles in the simulation cell have been converted to Type-B particles. 
Similarly, the process is repeated to convert Type-A particles to Type-C particles 
using a new python “while loop”, which terminates when 40% of the Type-A 
particles are modified and change to Type-C particles. Note that the conversion 
nested within both “while loops” only happens when the random number generator 



 

6 

provides an index value for a particle that is Type-A (i.e., the particle [“type”] is a 
value of 1). If, by chance, the random number generator provides a value for the 
index of particle as Type-B or Type-C, a new random number will be generated, 
and the process will be repeated. An updated .lmps configuration file is then written 
upon reaching the target composition of A0.4B0.2C0.4. Figure 3 is a visualization of 
this process. 

Table 2 Python script that uses combat to convert a bulk-diamond single crystal to a 
random ternary alloy of the user-defined composition 

 



 

7 

 
Fig. 3 Visualization of the conversion of an initial single-component (Type-A) diamond 
crystal converted to a randomly distributed ternary diamond alloy with a user-defined 
composition 

2.3 Example 3: Bond Energy Calculation 

For the purposes of pre- and postprocessing and system–system comparison, the 
magnitude of energy-related terms needs to be considered in the applied interatomic 
potential. This example focuses on calculating the total bond energy of a simple 
molecular system (i.e., a short polymer chain). As shown in Fig. 4, the system 
contains carbon-carbon (C-C) and carbon-hydrogen (C-H) bonds that need to be 
separately accounted for in the energy calculations. The sum of the total bond 
energy for each bond type is calculated and expressed as the total conformation 
bond energy in the .lmps configuration file. The example assumes that the particles 
are bonded with simple harmonic springs, which is one of the most common  
bond-stretching potentials. The equilibrium bond positions are taken to be 1.5 and 
1.1 Å for the C-C and C-H bonds, respectively, chosen for demonstration purposes 
and not from any particular source, which are reasonable values for a  
C-C or C-H bond. In the interest of simplicity, both bond types will be assumed to 
have force constants of 250 kJ/mol. For illustration purposes for users who are less 
familiar with bonded system models, two sample calculations are provided: 1) a  
C-C bond with a 1.6-Å bond length, which results in an increased energy of  
2.5 kJ/mol, and 2) a C-H bond with a 1.3-Å bond length, which produces an 
increased energy of 10 kJ/mol. 



 

8 

 

Fig. 4 Simulation cell containing a single polymer chain alongside the equations used to 
calculate the bond-stretching energy for the conformation presented 

Similar to Examples 1 and 2, the combat python module is imported and an .lmps 
configuration file is read to create a system class object (see Table 3). Note that the 
atom_style keyword passed to the from_data() function is ‘full’, as opposed to 
‘charge’ in the previous examples, because the short polymer chain, being a bonded 
system, has additional atom attributes (e.g., the molecule identifier). The user is 
referred to the LAMMPS documentation for a list of possible atom style formats 
that .lmps data files can assume. 

Table 3 Python script that uses combat to calculate the bond-stretching energy of a single 
polymer chain containing C-C and C-H bonds 

 

 

 



 

9 

After reading the .lmps configuration file, the bond_lengths() function is executed 
(Line 6 of Table 3) to compute the bond distances. This action requires no keyword 
arguments and internally calculates the bond lengths for all bonds stored in the 
bonds data frame. The values are then appended to a new column in the bonds data 
frame with a header “length” to be used for further calculations. 

To simplify the complexity of the python code required for this example, two 
temporary data frames are created (temp_df1 and temp_df2) to exclusively contain 
bonds of a specific type (Lines 8 and 9). New columns corresponding to each bond 
type (in this case, the C-C and C-H bond types) are appended to each data frame 
and labeled with the column header “delta_length”. These new columns contain the 
value of the displacement from the equilibrium position (see Lines 11–12). The 
sum of this column multiplied by the force constant is used to compute the total 
bond-stretching energy for all bonds of the same given type (Lines 14 and 15). 
Summing these C-C and C-H bond stretching energies gives the total  
bond-stretching energy of the entire system (Line 17) that is displayed to the user 
with the simple python print function (Line 18). 

2.4 Example 4: Generating a Core-Shell Nanoparticle 

Similar to the designs of Examples 1 and 2, this example begins with a single-phase 
bulk crystal and transforms it into a user-defined nanostructure with the use of the 
python commands given in Table 4. In particular, a 10-nm simulation cell 
containing a single-phase crystal with a body-centered-cubic (BCC) lattice is used 
to produce a spherical nanoparticle with a 5-nm diameter. The outer layer of this 
nanoparticle (1 nm) is then converted to a new atom type to form a concentric  
core-shell nanostructure. The key method employed to accomplish this task is to 
create a new particle attribute, r, for all of the particles in the system and append it 
to a new column in the particles DataFrame (Fig. 5a). The r attribute describes the 
radial distance of particles away from a chosen point, which is taken to be the center 
of the simulation cell for the sake of convenience.



 

10 

Table 4 Python script that uses combat in conjunction with Numpy linear algebra 
functions to produce a concentric core-shell nanoparticle structure from a bulk BCC single 
crystal 

 
 

 

Fig. 5 Process visualization for the formation of a concentric core-shell nanoparticle: a) the 
initial BCC single crystal structure, b) 5-nm particle carved out of the bulk phase, c) core-shell 
spherical nanoparticle with a 1.0-nm-thick outer layer, and d) cross-sectional view of the core 
shell spherical nanoparticle 

After reading the .lmps configuration file into combat, a list is created containing 
the x, y, and z coordinates for the geometric center of the simulation cell (Line 6 of 
Table 4). Their values are then replicated multiple times and inserted into a Numpy 
array that is the same length as the number of particles present (Line 8). This step 
is performed for the purpose of computational efficiency because it allows for the 



 

11 

distance between r and every particle to be calculated in a single vectorized 
command (Line 10 in Table 4). The particles data frame is then reduced to contain 
only those particles that have an r value equal to or less than 25 Å (Line 12), thus 
forming the 5-nm-sized core, as shown in Fig. 5b. The outer 10-Å layer of the atoms 
is then converted by selecting all particles with an r value greater than or equal to 
15 Å (Line 14) and setting their atom type to 2 in order to form the concentric  
core-shell nanoparticle (Line 16). As a final step before writing a new .lmps 
configuration file, because particles were removed from the simulation cell, the 
particle indices are adjusted to be continuous and starting at 1 to meet the 
requirements of the LAMMPS software package (Line 18). The final core-shell 
nanoparticle structure is shown in Fig. 5c, with a cross-section image shown in  
Fig. 5d. 

2.5 Example 5: Nanoparticle in a Gaseous Environment 

Considering the diversity and complexity of possible chemical systems, it is often 
desired to conduct simulations for multi-component material systems; for instance, 
liquid mixtures, particles in gaseous environments, or the interface between two 
materials. This example highlights the use of the populate() function to combine 
multiple .lmps configuration files into a single system and assist in the 
preprocessing for different simulation setups. The employment of this function is 
similar to the popular software package PACKMOL.8 The goal for this example is 
to place the core-shell nanoparticle generated in Example 3 into an environment 
containing oxygen and nitrogen gases. Three independent combat systems are 
created from .lmps files with labels s1, s2, and s3 (Lines 4–6 in Table 5) 
corresponding to the nanoparticle, a single oxygen molecule, and a single nitrogen 
molecule, respectively. 

Each combat system has a populate() function that takes another combat system 
object as an argument and attempts to insert a specified number of copies of that 
system. For instance, if s1.populate(s2) is called, it would result in a single nitrogen 
molecule being added to the nanoparticle system. The insertion can be replicated 
multiple times as defined by the user using the total_add argument. For this 
example, the values of the total_add argument will arbitrarily be chosen to be 50 
and 200 for nitrogen and oxygen, respectively. Unless otherwise specified, the 
particles that are being inserted are randomly rotated to minimize configurational 
bias within the system. Following rotation, the attempted insertion is made, and the 
new particle is tested for spatial overlaps with the pre-existing system. Overlapping 
criteria are user-defined through the cutoff argument of the populate() command, 
which sets the lower bound for a specific allowable interparticle spacing. If particles 
are found to be overlapping with any part of the pre-existing system, the attempted 



 

12 

insertion fails, and the process is repeated until the number of successful insertions 
is equal to the value of total_add. This example uses a default value of 1.0 Å cutoff, 
which is explicitly defined in the sample python code in Table 5 for clarity. 
(Interested readers are encouraged to refer to Appendix Section A.2 for additional 
information on the populate() function.) Figure 6 shows the end result after the two 
populate() functions are called. The populate() function, in principle, is capable of 
inserting a system of any size given that there is an appropriate amount of available 
space (see Appendix Fig. A-3 for an example involving polymer chains). 

Table 5 Python script demonstrating use of populate() function to create a gaseous 
environment containing molecular oxygen and nitrogen gases around a spherical nanoparticle 

 
 

 

Fig. 6 Visualization of the combat populate() function with the addition of molecular oxygen 
and nitrogen gases to a system containing a spherical nanoparticle



 

13 

2.6 Example 6: Creating a Spatial Composition Histogram 

The combat toolkit contains functions for routine postprocessing analyses. Many 
of these postprocessing functions are housed in the combat_analysis module to be 
imported separately alongside combat. The functions housed within 
combat_analysis take the form of static functions (similar to Numpy), meaning 
combat systems are passed to the function alongside other keyword arguments. The 
purpose of this example is to use the combat_analysis spatial_histogram() function 
to analyze the spatial variation in the composition for the randomly distributed 
ternary alloy produced in Example 2. The procedure shown in Table 6 includes 
importing combat, combat_analysis, and reading in the .lmps configuration file that 
was output in Example 2 (Lines 1–4). 

Table 6 Python script using the combat and combat_analysis modules to produce a spatial 
histogram describing the relatively uniform alloy composition along the z direction 

 

The purpose of a spatial histogram is to create bins along a dimension of the 
simulation cell and count the number of particles having a certain attribute. Passing 
the identifier argument to the spatial_histogram() function is a requirement because 
it specifies the particle attribute that is considered for bin incrementing. Because 
this example aims to assess spatial variation in the composition, the ‘type’ keyword 
will be passed as the identifier. In practice, the identifier argument can take the form 
of any column header present in the particles data frame. The desired dimension for 
the spatial histogram is then specified using the dimension argument. Here, this 
example is passing ‘z’ to indicate the z dimension. The binning arguments are also 
passed to inform the beginning (binstart) and end (binstop) locations of the 
histogram, and the width of each bin (binsize). The binstart and binstop arguments 
are set to be the lower and upper box dimensions, and the binsize argument is 
chosen to be 2.0 Å. Finally, the file_name argument is passed to indicate the name 
of the output .csv file, which is a convenient file format that can be readily graphed 
in any common graphing software. Figure 7 shows the composition spatial 
histogram graph for the ternary alloy from Example 2. The approximate randomly 
distributed composition is clearly exhibited in the figure through the relatively 
comparable numbers of particles along the z coordinate axis. 



 

14 

 
Fig. 7 Visualization of a random ternary alloy system and the graphed results from the .csv 
file generated by the spatial_histogram() function 

2.7 Example 7: Distributions of a Bonded Molecular System 

The ability to quickly calculate the bond distances and/or bond angles in a  
particle-based molecular system and determine their distributions is often sought in 
the modeling of molecular species. As an example, it would be beneficial to 
determine the C-C bond-length distribution in a simulation cell containing a 
polymer system for several reasons. From a preprocessing standpoint, this type of 
analysis allows modelers to judge whether the initial system preparation is present 
in an energetically unfavorable configuration. From a postprocessing perspective, 
the calculation of bond-length distributions enables the analysis of dynamic effects 
or the impact of external interactions on the conformational state of a molecule. 
With this in mind, the purpose of this example is to demonstrate that this type of 
analysis can be accomplished with combat/combat_analysis functions using 
minimal lines of a python code (Table 7). The system presented here is a relatively 
simple molecular model (i.e., a short polymer chain) consisting of carbon and 
hydrogen atoms only (Fig. 8a).



 

15 

Table 7 Python script using the combat and combat_analysis modules to produce 
histograms for routine bond-length distribution analysis 

 

 
Fig. 8 Bond, angle, and torsional distributions of a model hydrocarbon molecular system. 
The y-axis (N) is the total number of bond-relevant molecular connectivity values found to fit 
in a bin: a) visualization of the model molecular system, b) 2-body bond distribution with  
C-H and C-C bonds labeled, c) 3-body angle distribution, and d) 4-body torsional distribution. 

The combat toolkit is pre-equipped with functions to calculate common molecular 
bonding information. The system class has a function bond_lengths() to calculate 
the lengths of all bonds in the system and append them to a new column in the 
bonds data frame with a column header of “length”. Similarly, the angle_thetas(), 



 

16 

dihedral_phis(), and improper_chis() functions can all be called to calculate angles, 
torsions, and impropers, respectively. No keyword arguments are required because 
these functions directly access the necessary information for calculations contained 
in the system class object. The hydrocarbon molecule used in this example does not 
have any improper angles, thus it is only necessary to call the system 
bond_lengths(), angle_thetas(), and dihedral_phis() class functions (Lines 6–8 of 
Table 7). Following the calculation of the relevant information for bonding in this 
molecular system, combat_analysis functions are called to create a histogram of the 
distribution for different terms in the molecular connectivity. These functions are 
shown in Lines 10–14 of Fig. 7 and require three types of arguments to be passed: 
a system class object, a set of binning arguments, and the output file name for 
saving the histogram data. The binning arguments consist of defining the values for 
the beginning (binstart) and end (binstop) points of the histogram, and the width of 
each bin (binsize). For this example, the histogram bounds are chosen to be  
1.0–1.6 Å, 0°–140°, and 0°–180° for bonds, angles, and torsions, respectively. 
Histogram bin widths of 0.01 Å are used for bond lengths, and 20° for angles and 
torsions. Figures 8b–d show the output histogram data for the molecular system 
used in this example. This example demonstrates the power of combat for enabling 
routine bond, angle, and dihedral distribution analyses of a molecular system 
through minimal lines of python code that require only a handful of keyword 
arguments. 

3. Conclusions 

With continuous progress toward advanced computing hardware and refinements 
of efficient parallel algorithms, analyses through large-scale simulations have 
become an increasingly routine and important research practice. An evolving 
landscape of materials complexity also dictates that the development of in silico 
parallel characterization tools should have wide-reaching applicability and robust 
capability. The workflow and structure of combat/combat_analysis have been 
described and demonstrated in this report as a useful solution for several common 
molecular/material modeling processing tasks. The seven examples presented in 
this work highlight that common pre- and postprocessing tasks can be performed 
for selected diverse model systems with a minimal amount of python code. The 
combat and combat_analysis toolkits presented are shown to have a user-friendly 
platform for accomplishing the discussed tasks and are under continuous 
development to address the diverse set of challenges faced by researchers working 
on particle-based simulations at atomistic and coarse-grain scales. Currently, the 
flexibility of these tools and ease of implementation of high-performance  
python-based modules enables an enhanced ability for pre- and postprocessing of a 



 

17 

range of material systems across many scales. The example systems and processing 
tasks completed in this work provide practical demonstrations for a broad range of 
material models. Within our group, continuous expansion of the applicability of 
pre- and postprocessing tools to a broader range of system available in combat is 
ongoing. 

  



 

18 

4. References 

1. Mattox TI, Larentzos JP, Moore SG, Stone CP, Ibanez DA, Thompson AP, 
Lísal M, Brennan JK, Plimpton SJ. Highly scalable discrete-particle 
simulations with novel coarse-graining: accessing the microscale. Molecular 
Physics. 2018;116(15–16):2061–2069. 

2. Jaramillo E, Wilson N, Christensen S, Gosse J, Strachan A. Energy-based yield 
criterion for PMMA from large-scale molecular dynamics simulations. 
Physical Review B. 2012;85(2):024114. 

3. Fortunato ME, Mattson J, Taylor DE, Larentzos JP, Brenna JK. Pre- and 
postprocessing tools to create and characterize particle-based composite model 
structures. Adelphi (MD): Army Research Laboratory (US); 2017 Nov. Report 
No.: ARL-TR-8213. 

4. McKinney W. Data structures for statistical computing in Python. Proceedings 
of the 9th Python in Science Conference; 2010 June; Austin, TX. p. 51–56. 

5. Plimpton S. Fast parallel algorithms for short-range molecular dynamics.  
J Comput Phys.1995;117:1–19. 

6. Jones E, Oliphant T, Peterson P. SciPy: open source scientific tools for Python. 
SciPy developers; 2001 [accessed 2019 Aug 16]. https://www.scipy.org. 

7. van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for 
efficient numerical computation. Computer and Information Science and 
Engineering. 2011;13(2):22–30. 

8. Martínez, JM, Martínez, L, Packing optimization for automated generation of 
complex system’s initial configurations for molecular dynamics and docking. 
J Comp Chem. 2003;24(7):819–825. 

  

https://www.scipy.org/


 

19 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix. Construction of a Single-Crystal Face-Centered Cubic 
(FCC) Structure   



 

20 

A.1  Construction of a Single-Crystal Face-Centered Cubic (FCC) Structure 

Table A-1 presents an example script for generating an initial structure in Large-
Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). 

Table A-1 Sample LAMMPS input script used to generate an FCC crystal structure 

units           metal 
atom_style      charge 
dimension       3 
boundary        p p p 
region          box block 0 1 0 1 0 1 units lattice 
create_box      1 box 
lattice         fcc 4.05 orient y 0 1 0 orient x 1 0 0 orient z 0 0 1 
create_atoms    1 box 
mass 1 26.98 
replicate       20 20 20 
 
write_data FCC.lmps 
 

A.2  Description of the populate() Function 

A.2.1  Randomizing Orientation of the Inserting System 

For many systems, particularly simulations performed with reactive interaction 
potentials, there is a sensitivity to the orientation at which particles interact. To 
avoid orientational bias in the simulation of such systems, the populate() function 
randomly rotates the populating system to a new angle at each attempted insertion 
(by default), as shown in Fig. A-1. If a user would like to disable this process, they 
can achieve this by passing the keyword argument “rotate = False” when calling 
the populate() function. Otherwise, the system orientation is determined by 
applying a randomly determined scipy.spatial.transfrom.Rotation to the x, y, and z 
positions of the combat.System.particles DataFrame. In practice, the rotation 
transformation is achieved through matrix multiplication of three randomly 
constructed x, y, and z rotation matrices, all of which preserve the reference 
geometry of the populating system.  

  



 

21 

 

 
Fig. A-1 Visualization of the linear algebra operations applied to randomly orient a diatomic 
molecule prior to insertion, as implemented in scipy.spatial.transform.Rotation 

A.2.2  Randomize System Position and Overlap Check 

Following the randomization of the system orientation described in A.2.1, the next 
step of the populate() function is to add a random change in position (∆𝑥𝑥,∆𝑦𝑦,∆𝑧𝑧) 
such that the new position is within the box dimensions of the system that is being 
populated: 

𝑥𝑥𝑓𝑓  ∈ [𝑆𝑆1. 𝑥𝑥𝑥𝑥𝑥𝑥, 𝑆𝑆1. 𝑥𝑥ℎ𝑖𝑖]                                         𝑥𝑥𝑓𝑓 =  𝑥𝑥𝑖𝑖 + ∆𝑥𝑥 

𝑦𝑦𝑓𝑓  ∈ [𝑆𝑆1.𝑦𝑦𝑥𝑥𝑥𝑥, 𝑆𝑆1.𝑦𝑦ℎ𝑖𝑖]                                         𝑦𝑦𝑓𝑓 =  𝑦𝑦𝑖𝑖 + ∆𝑦𝑦 

𝑧𝑧𝑓𝑓  ∈ [𝑆𝑆1. 𝑧𝑧𝑥𝑥𝑥𝑥, 𝑆𝑆1. 𝑧𝑧ℎ𝑖𝑖]                                         𝑧𝑧𝑓𝑓 =  𝑧𝑧𝑖𝑖 + ∆𝑧𝑧 

Following this random change in position, the system must be checked for any close 
overlaps (less than the defined cutoff) between the inserted molecular system and 
the system that is being populated. From a molecular simulation standpoint, it is 
desirable to avoid close overlaps because they can lead to energetically unfavorable 
configurations or unphysical geometries, which can either be unnecessarily difficult 
to equilibrate or result in unstable dynamics and invalid simulations. The overlap 
check is performed by comparing the number of neighbor particles of the original 
populating system before insertion to the number of the neighbor particles of the 
same system in its new environment; neighbor list details are described in Fortunato 
et al.1 If the length is different, this indicates that the insertion is too close to an 
existing particle in the system and the attempted insertion is determined to be a 
failure. 

  

                                                 
1 Fortunato ME, Mattson J, Taylor DE, Larentzos JP, Brenna JK. Pre- and postprocessing tools to 
create and characterize particle-based composite model structures. Adelphi (MD): Army Research 
Laboratory (US); 2017 Nov. Report No.: ARL-TR-8213. 



 

22 

A.2.3  Region-Specific Population 

For many systems, particularly large-scale systems with spatially varying density, 
it is desirable to only attempt system insertions within regions that have an 
allowable volume to accommodate the populating system. To increase 
computational efficiency, the populate() function allows for region-specific 
insertion of molecules by specifying the dimension bounding keyword arguments: 
xlo, xhi, ylo, yhi, zlo, and zhi. As an example, by setting these arguments to the 
edge of the metal surface shown in Fig. A-2, the probability of successfully 
inserting a small molecule system is higher because only overlaps with other 
inserted molecules need to be considered. As a result of a higher probability of 
successful insertions, less internal iterations of the populate function will need to 
be performed, and thus less wall-clock time will be required to accomplish the 
desired number of insertions (Fig. A-3). 

  

Fig. A-2 Visualization of the spatial domain within the simulation cell of the metal surface in 
which the populate() function attempts to insert molecules (shown in blue). The surface on the 
left represents full domain sampling (the default sampling), which results in a greater number 
of failed insertion attempts. The surface on the right shows reduced domain sampling, which 
results in failed insertions only if the attempted insertion is within the cutoff of a previously 
inserted molecular system. 

  



 

23 

 

Fig. A-3 Demonstration of the ability of the populate() function to populate a system with 
molecules of significant size. In this case, a box containing a polymer chain with a degree of 
polymerization equaling 10 is populated with five replicas of the same system. 

  



 

24 

List of Symbols, Abbreviations, and Acronyms 

.lmps Large-Scale Atomic/Molecular Massively Parallel Simulator file 
format 

ARL US Army Combat Capabilities Development Command Army 
Research Laboratory 

BCC body-centered cubic 

C carbon 

combat Computational Model Builder and Analysis Toolkit (COMBAT) 

CSV comma-separated value 

DOD Department of Defense 

FCC face-centered cubic 

H hydrogen 

HPCMP High Performance Computing Modernization program 

LAMMPS Large-Scale Atomic/Molecular Massively Parallel Simulator 

MD molecular dynamics 



 

25 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 CCDC ARL 
 (PDF) FCDD RLD CL 
   TECH LIB 
 
 15 DIR ARL 
 (PDF) FCDD-RLW-LB 
   N J TRIVEDI 
   J P LARENTZOS 
   J K BRENNAN 
   B RICE 
   E F C BYRD 
   B BARNES 
   C WU 
   J GOTTFRIED 
   S IZVEKOV 
   F DE LUCIA 
   R PESCE-RODRIGUEZ 
  FCDD-RLW-ME 
   S COLEMAN 
  FCDD-RLW-MG 
   T SIRK 
   J ANDZELM 
   B RINDERSPACHER 
 
 1 US NAVAL RSRCH LAB 
 (PDF)  I SCHWEIGERT 
 
 4 SANDIA NATIONAL LABS 
 (PDF)  M WOOD 
   S J PLIMPTON 

  A P THOMPSON 
   S MOORE 
 
 2 HPCMP 
 (PDF)  L DAVIS 
   E EVANS 

K NEWMEYER 
 
 1 UNIV OF FLORIDA 
 (PDF) DEPT OF CHEM 
   C COLINA 
   D ANSTINE 
 
 1 MASSACHUSETTS INSTITUTE 
  OF TECHNOLOGY 
 (PDF)  M FORTUNATO 
 

 1 PURDUE UNIVERSITY 
 (PDF)  A STRACHAN 
 
 1 UNIVERSITY OF MISSOURI 
 (PDF)  T SEWELL 
 
 1 JE PURKINJE UNIV 
 (PDF)  M LISAL  
 


	List of Figures
	List of Tables
	Acknowledgment
	1. Introduction
	2. The combat Software Package
	2.1 Example 1: Creating a Face-Centered Cubic (FCC) Surface
	2.2 Example 2: Production of a Random Ternary Alloy
	2.3 Example 3: Bond Energy Calculation
	2.4 Example 4: Generating a Core-Shell Nanoparticle
	2.5 Example 5: Nanoparticle in a Gaseous Environment
	2.6 Example 6: Creating a Spatial Composition Histogram
	2.7 Example 7: Distributions of a Bonded Molecular System

	3. Conclusions
	4. References
	Appendix. Construction of a Single-Crystal Face-Centered Cubic (FCC) Structure
	List of Symbols, Abbreviations, and Acronyms

