AWARD NUMBER: W81XWH-18-1-0763

TITLE: Precision Targeting of Castration-Resistant Prostate Cancer with a Novel Ferrous Iron-Dependent Therapeutic Delivery and Tumor Imaging Strategy

PRINCIPAL INVESTIGATOR: Michael J. Evans

**CONTRACTING ORGANIZATION:** The Regents of the University of California, San Francisco **San Francisco, CA 94143-3110** 

**REPORT DATE: OCTOBER 2019** 

TYPE OF REPORT: Annual

**PREPARED FOR:** U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

**DISTRIBUTION STATEMENT:** Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

| DEI                                           |                            |                                                                                                                                                                                                                                     | Form Approved                                                         |                                            |                                                                       |  |  |  |  |
|-----------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| RCI<br>Bublic reporting burden for this calls | PORT DOC                   | iowing instructions                                                                                                                                                                                                                 | OMB No. 0704-0188                                                     |                                            |                                                                       |  |  |  |  |
| data needed, and completing and re            | viewing this collection of | nformation. Send comments reg                                                                                                                                                                                                       | garding this burden estimate or an                                    | ny other aspect of th                      | is collection of information, including suggestions for reducing      |  |  |  |  |
| 4302. Respondents should be awar              | e that notwithstanding an  | ters Services, Directorate for Info<br>y other provision of law, no perso                                                                                                                                                           | ormation Operations and Reports<br>on shall be subject to any penalty | (0704-0188), 1215<br>for failing to comply | y with a collection of information if it does not display a currently |  |  |  |  |
| valid OMB control number. PLEASI              | E DO NOT RETURN YOU        | IR FORM TO THE ABOVE ADD 2. REPORT TYPE                                                                                                                                                                                             | ORESS.                                                                |                                            | 3. DATES COVERED                                                      |  |  |  |  |
| OCTOBER 2019                                  |                            | ANNUAL                                                                                                                                                                                                                              |                                                                       |                                            | 30SEP2018 - 29SEP2019                                                 |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            | 5a. CONTRACT NUMBER                                                   |  |  |  |  |
| 4. TITLE AND SUBTITLE:                        | atration Desistan          | t Draatata Canaar with                                                                                                                                                                                                              | a Nevel Ferreus Iren D                                                | an and ant                                 | W81XWH-18-1-0763                                                      |  |  |  |  |
| Therapeutic Delivery and                      | Tumor Imaging S            | trategy                                                                                                                                                                                                                             | a Novel Ferrous Iron-Dependent                                        | ependent                                   | 5b. GRANT NUMBER                                                      |  |  |  |  |
| . ,                                           | 00                         | _                                                                                                                                                                                                                                   |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            | 5C. PROGRAM ELEMENT NUMBER                                            |  |  |  |  |
| 6 AUTHOR(S)                                   |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| Michael J. Evans                              |                            |                                                                                                                                                                                                                                     |                                                                       | -                                          | 5e. TASK NUMBER                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            | _                                                                                                                                                                                                                                   | 5f. WORK UNIT NUMBER                                                  |                                            |                                                                       |  |  |  |  |
| E-Mail: Michael.Evans                         | s@ucsf.edu                 |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| 7. PERFORMING ORGAN                           | IZATION NAME(S)            | AND ADDRESS(ES)                                                                                                                                                                                                                     |                                                                       |                                            | 8. PERFORMING ORGANIZATION REPORT                                     |  |  |  |  |
| The Decente of                                | the Univers                | itu of Coliforn                                                                                                                                                                                                                     | in Con Example                                                        |                                            | NUMBER                                                                |  |  |  |  |
| San Francisco C                               | $\Lambda 0/1/3_{-311}$     | n n naithean ann an tartairtean an tartairtean an tartairtean an tartairtean an tartairtean an tartairtean an t<br>The tartairtean an tar | ila, San Francis                                                      | 500                                        |                                                                       |  |  |  |  |
| Sall Flancisco, C                             | A 94145-511                | 0                                                                                                                                                                                                                                   |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| 9. SPONSORING / MONIT                         | ORING AGENCY               | NAME(S) AND ADDRES                                                                                                                                                                                                                  | SS(ES)                                                                |                                            | 10. SPONSOR/MONITOR'S ACRONYM(S)                                      |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| U.S. Army Medical Re                          | esearch and Ma             | teriel Command                                                                                                                                                                                                                      |                                                                       |                                            |                                                                       |  |  |  |  |
| Fort Detrick, Maryland                        | 21702-5012                 |                                                                                                                                                                                                                                     |                                                                       |                                            | 11. SPONSOR/MONITOR'S REPORT                                          |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            | NUMBER(S)                                                             |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| 12. DISTRIBUTION / AVAI                       | LABILITY STATE             | MENT                                                                                                                                                                                                                                |                                                                       |                                            |                                                                       |  |  |  |  |
| Approved for Public R                         | Palaasa: Distribu          | ition I Inlimited                                                                                                                                                                                                                   |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| 13. SUPPLEMENTARY NO                          | DTES                       |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| 14. ABSTRACT                                  |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| We propose that me                            | obaniatioally upro         | lated anti cancor there                                                                                                                                                                                                             | noution can be more of                                                | factively depl                             | aved by administration in a pro-drug                                  |  |  |  |  |
| form that conditiona                          | llv releases the th        | erapeutic after chemic                                                                                                                                                                                                              | al reaction with Fe(II).                                              | bools of which                             | are augmented in CRPC cells and in the                                |  |  |  |  |
| tumor microenviron                            | ment. To test and          | validate our hypothesi                                                                                                                                                                                                              | s we will synthesize an                                               | d evaluate in                              | multiple prostate cancer models three                                 |  |  |  |  |
| novel agents, the Fe                          | (II)-activated form        | of a potent DNA-alkyla                                                                                                                                                                                                              | ator (TRX-CBI), the Fe(I                                              | I)-activated fo                            | rm of enzalutamide (TRX-ENZ), and a                                   |  |  |  |  |
| activated PFT probe                           | (18F-TRX) Our o            | biective is to show that                                                                                                                                                                                                            | t castration resistant p                                              | tate cancer in<br>rostate cancei           | diverse animal models using an Fe(ii)-                                |  |  |  |  |
| novel Fe(II)-targeted                         | approach and that          | at response to therapy                                                                                                                                                                                                              | can be predicted with 1                                               | 18F-TRX. Suc                               | cessful realization of these objectives via                           |  |  |  |  |
| the IDA mechanism                             | will greatly enable        | our long-term goal of                                                                                                                                                                                                               | identifying a "theranos                                               | stic" developn                             | nent candidate that can be progressed                                 |  |  |  |  |
| toward first-in-huma                          | in studies.                |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| 15. SUBJECT TERMS                             |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
|                                               |                            |                                                                                                                                                                                                                                     |                                                                       |                                            |                                                                       |  |  |  |  |
| 16. SECURITY CLASSIFIC                        | CATION OF:                 |                                                                                                                                                                                                                                     | 17. LIMITATION                                                        | 18. NUMBE                                  | R 19a. NAME OF RESPONSIBLE PERSON                                     |  |  |  |  |
|                                               | 10070 4 07                 |                                                                                                                                                                                                                                     | UF ABSTRACT                                                           | UF PAGES                                   |                                                                       |  |  |  |  |
| a. REPORT b.                                  | ABSTRACT                   | C. THIS PAGE                                                                                                                                                                                                                        | 114-11-12                                                             | <u>.</u> _                                 | 19b. IELEPHONE NUMBER (include area code)                             |  |  |  |  |
| Unclassified                                  | Unclassified               | Unclassified                                                                                                                                                                                                                        | Unclassified                                                          | 17                                         |                                                                       |  |  |  |  |
| Cholabolilou                                  |                            |                                                                                                                                                                                                                                     | 1                                                                     | 1                                          | Standard Form 298 (Rev. 8-98)                                         |  |  |  |  |

# TABLE OF CONTENTS

| 1. | Introduction                                     | 4       |
|----|--------------------------------------------------|---------|
| 2. | Keywords                                         | 4       |
| 3. | Accomplishments                                  | 4 - 14  |
| 4. | Impact                                           | 14      |
| 5. | Changes/Problems                                 | 15      |
| 6. | Products                                         | 16      |
| 7. | Participants & Other Collaborating Organizations | 16 - 17 |
| 8. | Special Reporting Requirements                   | 17      |
| 9. | Appendices                                       | 17      |
|    |                                                  |         |

<u>Page</u>

# 1. INTRODUCTION:

We propose that mechanistically unrelated anti-cancer therapeutics can be more effectively deployed by administration in a pro-drug form that conditionally releases the therapeutic after chemical reaction with Fe(II), pools of which are augmented in CRPC cells and in the tumor microenvironment. To test and validate our hypothesis we will synthesize and evaluate in multiple prostate cancer models three novel agents, the Fe(II)-activated form of a potent DNA-alkylator (TRX-CBI), the Fe(II)-activated form of enzalutamide (TRX-ENZ), and a novel Fe(II)-targeted therapeutic radionuclide, <sup>117</sup>Lu-TRX. We will also image prostate cancer in diverse animal models using an Fe(II)-activated PET probe (<sup>18</sup>F-TRX). Our objective is to show that castration resistant prostate cancer can be addressed effectively with these novel Fe(II)-targeted approach and that response to therapy can be predicted with <sup>18</sup>F-TRX. Successful realization of these objectives via the IDA mechanism will greatly enable our long-term goal of identifying a "theranostic" development candidate that can be progressed toward first-in-human studies.

**2. KEYWORDS:** Molecular imaging, cancer theranostics, pro-drug, iron metabolism, fluorine-18, lutetium-177, pharmacology, castration resistant prostate cancer

# **3.** ACCOMPLISHMENTS: What were the major goals of the project?

The major goal for project period one is listed below with the subtasks stipulated in the approved statement of work. An additional column, termed "status" has been added to indicate whether, or to what extent, the subtask has been completed. Where appropriate, specific dates have been added to indicate when the subtask was completed.

| Specific Aim 1(specified in proposal)                                                                                                                                                                           | Timeline | Site 1        | Site 2                       | Site 3                         | Status                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|------------------------------|--------------------------------|------------------------------|
| Major Task 1: In vivo evaluation of <sup>18</sup> F-<br>TRX                                                                                                                                                     | Months   |               |                              |                                |                              |
| Subtask 1: Synthesis of <sup>18</sup> F-TRX and <sup>18</sup> F-DXL                                                                                                                                             | 1-2      | Dr.<br>Renslo | Dr.<br>Evans                 |                                | Completed,<br>Dec. 2018      |
| Subtask 2: Breeding the colony of<br>genetically engineered mice for imaging<br>with <sup>18</sup> F-TRX and treatment with TRX-<br>CBI                                                                         | 1-14     |               |                              | Dr.<br>Ruggero<br>(50<br>mice) | Ongoing                      |
| Subtask 3: PET and biodistribution<br>studies in nu/nu mice bearing PC3 tumors<br>with <sup>18</sup> F-TRX and <sup>18</sup> F-DXL<br>Cell lines: PC3 (ATCC)                                                    | 3-4      |               | Dr.<br>Evans<br>(40<br>mice) |                                | Completed,<br>Feb. 2019      |
| Subtask 4: PET and biodistribution<br>studies of <sup>18</sup> F-TRX in mice bearing<br>xenografts: LNCaP-AR, PC3 and tumor<br>sublines with stable MYC knockdown<br>Cell lines: LNCaP-AR (Sawyers,<br>MSKCC)   | 4-6      |               | Dr.<br>Evans<br>(20<br>mice) |                                | Ongoing,<br>50%<br>completed |
| Subtask 5: PET and biodistribution<br>studies of <sup>18</sup> F-TRX in mice bearing<br>xenografts: DU145, LAPC4, and tumor<br>sublines with stable PTEN knockdown<br>Cell lines: DU145 (ATCC), LAPC4<br>(UCLA) | 6-10     |               | Dr.<br>Evans<br>(20<br>mice) |                                | Ongoing,<br>50%<br>completed |
| Subtask 6: PET and biodistribution<br>studies of <sup>18</sup> F-TRX in genetically<br>engineered mouse models                                                                                                  | 10-14    |               | Dr.<br>Evans                 | Dr.<br>Ruggero<br>(18<br>mice) | Completed,                   |
| Milestone(s) Achieved: Determination<br>of tumor uptake of <sup>18</sup> F-TRX in vivo                                                                                                                          | 14       | Dr.<br>Renslo | Dr.<br>Evans                 | Dr.<br>Ruggero                 |                              |
| Local IRB/IACUC Approval                                                                                                                                                                                        | 2        |               | Dr.<br>Evans                 | Dr.<br>Ruggero                 | Completed,<br>Dec. 2018      |
| Milestone Achieved: ACURO Approval                                                                                                                                                                              | 2        |               | Dr.<br>Evans                 | Dr.<br>Ruggero                 | Completed,<br>Dec. 2018      |

#### What was accomplished under these goals?

# 1) Major activities:

The primary focus of the first project period was to synthesize and evaluate the biodistribution of a radiofluorinated 1,2,4-trioxolane molecule, termed <sup>18</sup>F-TRX. After completing the radiosynthesis, the <sup>18</sup>F-TRX was to be evaluated in a panel of prostate cancer models of increasing complexity and clinical relevance, from subcutaneous cell line implants, to genetically engineered mouse models with mutations expected to alter the intracellular labile iron pool (LIP). The scientific purpose of these studies was to establish that (1) mouse models of prostate cancer have an elevated LIP, (2) the LIP concentration is sufficiently high to retain measurable concentration of an imaging avatar for a TRX therapeutic (i.e. <sup>18</sup>F-TRX), and (3) to determine site(s) of normal tissue uptake that could represent sources of toxicity for a cognate TRX therapeutic. These studies lay the foundation for the antitumor assessment studies in years 2 and 3.

#### 2) Specific Objectives:

There were several objectives for this project period. The first objective was to determine the biodistribution of <sup>18</sup>F-TRX in normal mouse tissues. The second objective was to determine the magnitude of <sup>18</sup>F-TRX uptake in human and mouse xenografts from subcutaneous prostate cancer cell line implants. The third objective was to determine the radiotracer uptake in a PC3 dissemination model. Lastly, the final objective was to determine the uptake if <sup>18</sup>F-TRX in a genetically engineered mouse model with prostate specific deletion of Pten.

3) Significant results or key outcomes:

Much of the data generated during this project period has been reported in a recent manuscript published in ACS Central Science (see also publications section of the progress report).

<u>Radiosynthesis of <sup>18</sup>F-TRX.</u> The synthesis of <sup>18</sup>F-TRX required the novel 1,2,4-trioxolane precursor reagent TRX-amine in which an amine-bearing side chain has been introduced at a bridgehead position on the adamantane ring (**Figure 1**). This reagent was synthesized in eight steps, based on the general approach described for the synthesis of artefenomel and related antimalarial trioxolanes.



The radiosynthesis of <sup>18</sup>F-TRX began with the automated preparation of <sup>18</sup>F-*N*succinimidyl 4fluorobenzoate. Using

an ELIXYS automated radiosynthesizer, <sup>18</sup>F-SFB was prepared in 75 min to a decay-corrected



Figure 2 Synthesis and isolation of <sup>18</sup>F-TRX. Panel A. Representative semi-preparative rad-HPLC traces showing, from top, the UV spectrum at 254 nm for TRX-amine starting material. UV the spectrum at 254 nm for pure <sup>19</sup>F-TRX the analytical standard, the UV spectrum at 254 nm for complex radiochemistry reaction mixture at 40 min, and the rad spectrum of the complex radiochemistry reaction mixture at 40 Peaks of interest min. labeled with the are retention time in minutes. Panel Β. Semipreparative rad-HPLC traces of the re-injected fraction isolated after purification. The retention time in minutes of the peak of interest representing <sup>18</sup>F-TRX is labeled. Panel C. A rad spectrum collected 30 min after incubation of <sup>18</sup>F-TRX aqueous in ammonium Fe(II) sulfate (30 mg/mL). The peak <sup>18</sup>Fcorresponding to TRX is not detected, and one new peak arises with radiochemical vield of approximately 70%. For the coupling reaction, 20 mCi of <sup>18</sup>F-SFB was added to TRXamine (5 mg of a formate salt) and 10% (v/v) DIPEA in anhydrous DMF (1 mL). The reaction was stirred at 40° C for 30 min. The reaction produced only one major radioactive peak, which comigrated with the <sup>19</sup>F-TRX standard (Figure 2A). The crude reaction was purified using semi-preparative HPLC (1:10 CH<sub>3</sub>CN:H<sub>2</sub>O to 19:1 CH<sub>3</sub>CN:H<sub>2</sub>O over 20 min) to obtain the radiotracer <sup>18</sup>F-TRX to a decay corrected radiochemical yield of 67  $\pm$ 7.2%. The purity of the compound was verified by reinjection on semi-prep HPLC (Figure 2B). <sup>18</sup>F-TRX concentrated, was and immediately reconstituted for additional in vitro or animal studies. The specific activity of <sup>18</sup>F-TRX was calculated to be  $0.052 \pm 0.02$  Ci/µmol.

Region of interest analysis of a dynamic PET/CT

acquisition from 0 - 60 minutes post injection revealed several enlightening trends. First, <sup>18</sup>F-TRX rapidly cleared from the mediastinal blood pool at a rate ~60 times faster than what we observed from a classic PK assessment of <sup>19</sup>F-TRX (**Figure 3A**). Moreover, <sup>18</sup>F-TRX rapidly accumulated in liver from 0 - 60 sec, suggesting that the radiotracer may be metabolized and cleared through this

organ (**Figure 3B** and **3C**) as is the case for artefenomel in humans.<sup>30</sup> Kidney accumulation of the radiotracer was also observed, but the uptake was significantly lower than liver. Moreover, kidney uptake plateaued within 30 sec post injection, suggesting that (as with artefenomel) renal clearance is not the dominant mechanism of clearance of radiotracer. Focal uptake in a region of the small intestine was also observed early after radiotracer injection, and the accumulation steadily increased from 400 - 3600 sec. This observation is also consistent with a model of hepatobiliary excretion. To study radiotracer distribution over a broader window of time, ex vivo biodistribution studies were conducted at 30, 60, and 90 min post injection of <sup>18</sup>F-TRX in a separate cohort of mice (**Figure 3D**). These studies generally corroborated the PET findings, showing that <sup>18</sup>F-TRX uptake was dominant in the liver, components of the small intestine, and the kidneys. Moreover, radiotracer uptake generally increased from 30-90 min in these tissues. Radiotracer uptake was also observed in the spleen, pancreas, stomach, large intestine, and lungs. Uptake in the brain was very low, consistent with previous observations that other TRX conjugates do not cross the blood-brain barrier.<sup>31</sup>

To better understand the localization of the radiotracer within regions of the small intestine, components of the GI tract were excised from a representative mouse 60 min post injection and radiotracer biodistribution was assessed with PET/CT (**Figure 3E**). This study suggested that radiotracer uptake was predominant in the duodenum and jejunum. Comparatively lower uptake was observed in the ileum, cecum and a truncated segment of the large intestine (purged manually to remove fecal matter).



Figure 3. An in vivo assessment of the biodistribution of <sup>18</sup>F-TRX in tumor naïve immunocompetent mice. Panel A. Plasma concentration-time curve for <sup>19</sup>F-TRX administered via tail vein injection in C57Bl/6J mice revealing a plasma half-life of ~30 min. Panel B. Time activity curves derived from region of interest analysis of a 1 hour dynamic PET scan reveal radiotracer biodistribution in vivo. The radiotracer rapidly clears from the blood (red) with a calculated serum half-life of about 25 sec. The radiotracer is also sequestered within 60 sec by the liver (tan) and kidneys (blue), with no additional accumulation from 60 to 3600 sec. Liver uptake is significantly higher than what is observed in kidneys. Also, <sup>18</sup>F-TRX accumulation in the small intestine (grey) steadily increases from 0 to 3600 sec, consistent with a model of hepatobiliary clearance for the radiotracer. Little uptake is observed in the muscle (green). Panel C. Maximum intensity projections sampled serially over short time frames from the dynamic acquisition show the biodistribution of the radiotracer in normal tissues over time. A diffuse signal is observed at early time points, which gradually consolidates into the liver, kidney, and small intestine. Panel D. Biodistribution data acquired at 30, 60, and 90 min post injection of <sup>18</sup>F-TRX shows continuous accumulation of the radiotracer in many abdominal organs. The highest uptake was observed in the liver, kidneys, and small intestine. Radiotracer accumulation was low in the blood pool and muscle, as expected from the MIPs. Panel E. A PET/CT shows the biodistribution of <sup>18</sup>F-TRX in components of the gastrointestinal tract after dissection from a mouse. Prominent uptake was observed in the duodenum and jejunum, while comparatively lower radiotracer uptake was noted in the stomach, ileum, cecum, and large intestine. Liver, kidneys, and muscle are included for perspective on the upper and lower bound of radiotracer uptake in tissues.

We next tested whether <sup>18</sup>F-TRX biodistribution was impacted by exogenous treatments designed to alter tissue concentrations of ferrous iron. Twenty minutes prior to i.v. injection of <sup>18</sup>F-TRX, immunocompetent mice were treated with an i.p. bolus of PBS, ferric ammonium citrate (FAC, 20 mg/kg), desferrioxamine (50 mg/kg, DFO), deferiprone (50 mg/kg, DFP), or a mixture of FAC (20 mg/kg) pre-complexed with desferrioxamine (50 mg/kg, FAC + DFO). The use of a ferric iron source ensures that bioconversion to ferrous iron by normal cellular processes is a necessary prelude to reaction with <sup>18</sup>F-TRX. The biodistribution of the radiotracer at 60 min post injection was strikingly different between treatment arms on PET/CT (Figure 4A). For instance, while <sup>18</sup>F-TRX most visibly accumulated in the liver of mice treated with PBS, FAC treatment elevated uptake in the liver, small intestine, and gall bladder. Iron depleting strategies (e.g. DFO, FAC + DFO, DFP) reduced radiotracer uptake in the liver, while clearly redistributing <sup>18</sup>F-TRX to components of the small intestine. Quantitative biodistribution studies showed a statistically significant increase in <sup>18</sup>F-TRX uptake in the liver, spleen, pancreas, and duodenum of mice treated with FAC versus those treated with PBS (Figures 4B). Moreover, treatment with iron chelating agents significantly reduced <sup>18</sup>F-TRX uptake in virtually all tissues, with the notable exceptions of the duodenum, ileum, cecum, and large intestine in the FAC + DFO treatment arm. In summary, these data demonstrate that <sup>18</sup>F-TRX biodistribution is substantially influenced by exogenous treatments designed to modulate tissue concentrations of ferrous iron.



Figure 4. <sup>18</sup>F-TRX biodistribution is substantially altered by exogenous treatments that change intracellular iron homeostasis. Panel A. (top) A timeline outlining the sequence of injections in immunocompetent C57B1/6J mice prior to PET/CT and biodistribution studies. (bottom) Representative maximum intensity projections (MIPs) showing the biodistribution of <sup>18</sup>F-TRX in mice from each treatment arm from 50-60 minutes post injection. Radiotracer uptake was predominantly in the liver of mice pre-treated with PBS, while pre-treatment with ferric ammonium citrate (FAC) augmented radiotracer uptake in nearly all organs, including the liver and components of the gastrointestinal tract. Pre-treatment with various iron depleting agents, including desferrioxamine (DFO), FAC complexed with DFO, and deferipone (DFP), generally reduced radiotracer uptake in organs and accelerated clearance. The MIPs, while inherently semi-quantitative, were derived from decay corrected PET data with scale bars adjusted to a range of 0% ID/g to 50% ID/g to enable gross comparison. Panel B. Biodistribution data collected at 60 min post injection show the percent changes in radiotracer uptake for selected organs in each treatment arm compared to mice receiving PBS. Relative increases in radiotracer uptake due to FAC treatment were observed in nearly all organs, while iron depleting treatments generally reduced organ uptake of the radiotracer. Treatment with FAC + DFO enhanced radiotracer uptake in components of the gastrointestinal tract, which may reflect accelerated clearance of the radiotracer.

<sup>18</sup>F-TRX detects prostate cancer tumor xenografts. We next evaluated if <sup>18</sup>F-TRX can detect human tumors derived from cell lines previously shown to harbor sensitivity to trioxolane prodrugs. Biodistribution studies were first conducted in intact male nu/nu mice bearing subcutaneous PC3 xenografts at 30, 60, and 90 min post injection of <sup>18</sup>F-TRX. The uptake of the radiotracer steadily increased from 30 – 90 min post injection. Radiotracer levels in the tumor significantly exceeded blood and muscle at 90 min post injection with a tumor to blood ratio of 1.97±0.4 and a tumor to muscle ratio of 1.90±0.3 (Figures 5A). We further tested if <sup>18</sup>F-TRX can detect PC3 implanted in the renal capsule, as subcutaneous implants, while convenient, do not model a clinically relevant tumor microenvironment. Biodistribution studies conducted 90 min post injection of <sup>18</sup>F-TRX showed equivalent radiotracer uptake in a PC3 tumor embedded in the renal capsule compared to the extent of uptake in subcutaneous PC3 tumors (**Figure 5B**). <sup>18</sup>F-TRX uptake was also significantly higher than background (blood and muscle) in subcutaneous EKVX and U251 tumors, two models of human lung adenocarcinoma and glioblastoma, respectively (**Figure 5B**). The U251 tumor, the model with the highest <sup>18</sup>F-TRX uptake, was visually obvious on small animal PET/CT (**Figure 5C**). Ex vivo analysis of the spatial distribution of the radiotracer in U251 tumors showed that <sup>18</sup>F-TRX was well distributed through the tumor xenograft, with the regions of highest uptake appearing to have the densest cellularity on H&E (**Figure 5D**). Collectively, these data show that genetically and pathologically diverse models of human cancer harbor high avidity for <sup>18</sup>F-TRX in vivo.

We next conducted an imaging study in a genetically engineered mouse model of prostate cancer. A 10 month old Pb-Cre:Pten<sup>fl/fl</sup> mouse with invasive adenocarcinoma was treated with <sup>18</sup>F-TRX, and after 90 minutes, the whole prostate was resected post mortem and imaged with PET/CT. Radiotracer uptake was visually higher in the prostate tissue compared to seminal vesicles and muscle (**Figure 5E**). Moreover, <sup>18</sup>F-TRX uptake was predominant in the prostate tissue, and not observed in the cysts that routinely develop in this disease model.



Figure 5. <sup>18</sup>F-TRX targets tumor tissue in vivo in genetically and pathologically diverse cancer models. Panel A. Biodistribution data acquired at 30, 60, and 90 min post injection of <sup>18</sup>F-TRX in male nu/nu mice with subcutaneous PC3 xenografts. The radiotracer uptake in the tumor continually increases from 30-90 min, consistent with a biochemical mechanism of action. Moreover, radiotracer uptake in the tumor exceeds the level observed in blood and muscle at 90 min post injection, two standard reference compartments for background radiotracer accumulation. The human prostate cancer model PC3 was prioritized as it was previously shown to be highly sensitive to an Fe(II)-sensitive TRX prodrug bearing a chemotherapeutic payload.<sup>32</sup> \*P<0.01 compared to blood and muscle. Figure S4 shows the biodistribution values for the entire repertoire of tissues from this animal cohort as well as the tumor to normal tissue ratios. Panel B. Biodistribution data acquired 90 min post injection of <sup>18</sup>F-TRX shows radiotracer uptake in tumor exceeding background for PC3 tumors implanted in the renal capsule (rcPC3), and subcutaneous EKVX and U251 tumors (scEKVX, scU251). Figure S5 shows a MR image highlighting the tumor burden in renal capsule. Figure S6 shows the complete biodistribution data sets, and the tumor to normal tissue ratios. Panel C. PET/CT imaging data showing uptake of <sup>18</sup>F-TRX in tumor and normal tissues for mice bearing subcutaneous U251 tumors. The data was acquired at 90 min post injection. Panel D. H&E (left) and digital autoradiography (right) showing <sup>18</sup>F-TRX distribution within a representative section of U251 tumors. <sup>18</sup>F-TRX appears to be present in all regions of the slice, with the highest relative uptake appearing to co-localize with the area of densest cellularity on H&E. Panel E. (left) A photograph of the surgically excised whole prostate (Pr.), a piece of muscle from the hindlimb (Mu.), and the seminal vesicles (SV) of a ten month old Pb-Cre:Pten<sup>fl/fl</sup> mouse with fully invasive adenocarcinoma. Cysts extending from the anterior prostate are evident by eye. (middle) A volume rendered CT image of the tissues acquired on a small animal PET/CT. (right) A volume rendered PET/CT image of <sup>18</sup>F-TRX uptake in the tissues acquired 90 min post injection of <sup>18</sup>F-TRX. The image clearly shows relatively higher accumulation of radiotracer in the diseased prostate compared to muscle or seminal vesicles. <sup>18</sup>F-TRX was excluded from the cysts, as expected.

#### 4. Other achievements:

We have begun the synthesis of a TRX analogue functionalized with a chelator for radiolabeling with lutetium-177. We plan to conduct labeling and biodistribution studies in preparation for antitumor assessment studies. We have disclosed our findings as one peer reviewed publication and two conference abstracts (see products).

# What opportunities for training and professional development has the project provided?

Nothing to report

#### How were the results disseminated to communities of interest?

Nothing to report

#### What do you plan to do during the next reporting period to accomplish the goals?

We will continue to establish the mouse prostate cancer models and conduct imaging and biodistribution experiments with <sup>18</sup>F-TRX. We will aim to report these studies in a follow-up manuscript to the first publication, which was primarily meant to establish proof-of-concept that Fe(II) can be imaged with PET in normal and a few select cancer models.

We will also begin testing the antitumor efficacy of TRX-CBI in prostate cancer animal models. To this end, the Renslo laboratory has begun synthesis of the therapeutic, and the Ruggero lab has expanded a transgenic animal colony of mice with spontaneous prostate cancer. We also have all of the cell line models required to establish the animal models.

Lastly, we have begun the synthesis of a TRX conjugate for radiolabeling with Lu-177. We anticipate beginning pilot labeling studies during this project period, and preliminary mouse biodistribution studies prior to antitumor assessment studies.

#### 4. IMPACT:

#### What was the impact on the development of the principal discipline(s) of the project?

We have shown for the first time that the intracellular labile iron pool can be targeted with a translational imaging strategy (i.e. PET) that is ideal for studying the biology of metastatic castration resistant prostate cancer. Our imaging technology and data provide the first evidence that clinically relevant mouse models of prostate cancer maintain high levels of iron. While these data suggest that iron could be targeted to for imaging to improve the detection of prostate cancer disease burden—itself a major unmet clinical need—they also provide a clear scientific rationale for testing if therapies can be implemented to treat prostate cancer tumors by targeting iron. This is an entirely new approach for treating prostate cancer that is nevertheless well justified based on successful antimicrobial therapies. Lastly, our technology for imaging iron is a crucial advance for cell biology, and the scientific community is now poised to use imaging to study iron flux in normal cellular physiology, and potentially non-malignant human disorders.

#### What was the impact on other disciplines?

Our interest in developing new anti-cancer diagnostics and therapeutics by targeting the labile iron pool parallels other imaging and medicinal chemistry efforts targeting LIP in non-malignant disorders. Other animal imaging approaches have relied on low resolution imaging modalities like bioluminescence, and some strategies require exotic genetic engineering of mice to express reporter proteins like luciferase. Our nuclear imaging strategy is much higher resolution, absolutely rather than semi-quantitative, and does not require any special genetic manipulation of mice. In this respect, our technology is poised to sensibly complement the ongoing imaging efforts in preclinical animal models of infectious disease by groups like Dr. Chris Chang's laboratory at UC Berkeley. The therapies that we are developing could potentially be applied to non-malignant neoplastic disorders, particularly those driven by mTORC1 or RAS. These include maladies like tuberous sclerosis complex and lymphangioleiomyomatosis, and RASopathies like neurofibromatosis.

#### What was the impact on technology transfer?

Nothing to report.

### What was the impact on society beyond science and technology?

Nothing to report.

# 5. CHANGES/PROBLEMS:

Nothing to report

#### Changes in approach and reasons for change

We have de-emphasized the use of the <sup>18</sup>F-dioxolane (DXL) negative control compound during this project period. While the synthesis was straightforward and high yielding, we found that studying the biodistribution of <sup>18</sup>F-TRX after iron supplementation or withdrawal provided the necessary data to show that radiotracer accumulation in normal tissues was iron dependent. This experiment is also a better representation of naturally occurring changes in tissue concentrations of iron owing to environmental factors.

#### Actual or anticipated problems or delays and actions or plans to resolve them

Project period one was generally very productive, and we did not encounter many challenges. We have remaining animal imaging experiments to execute using subcutaneous models and a PC3 dissemination model. We do not anticipate any challenges in setting up these animals, nor any difficulties with conducting the imaging studies. We were slightly delayed in executing these studies as we conducted some crucial animal biodistribution studies to show that <sup>18</sup>F-TRX biodistribution is iron dependent.

# Changes that had a significant impact on expenditures

Nothing to report

# Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents

#### Significant changes in use or care of human subjects

Not applicable

#### Significant changes in use or care of vertebrate animals

Nothing to report. This project was approved by UCSF IACUC on August 21, 2018.

# Significant changes in use of biohazards and/or select agents

Nothing to report.

#### 6. PRODUCTS:

#### • Publications, conference papers, and presentations

#### Journal publications.

Muir RK, Zhao N, Wei J, Wang YH, Moroz A, Huang Y, Chen YC, Sriram R, Kurhanewicz J, Ruggero D, Renslo AR, Evans MJ. Measuring Dynamic Changes in the Labile Iron Pool in Vivo with a Reactivity-Based Probe for Positron Emission Tomography. ACS Cent Sci. 2019 Apr 24; 5(4):727-736. PMID: 31041393., federal support was acknowledged

Books or other non-periodical, one-time publications. Nothing to report.

#### Other publications, conference papers and presentations.

Measuring dynamic changes in the labile iron pool with a reactivity-based probe for positron emission tomography. Poster abstract at the 2019 World Molecular Imaging Congress

Measuring dynamic changes in the labile iron pool with a reactivity-based probe for positron emission tomography. Poster presentation at the 2019 UCSF Radiology research symposium.

#### • Website(s) or other Internet site(s)

Nothing to report

# • Technologies or techniques

Nothing to report

#### • Inventions, patent applications, and/or licenses

Talukdar, P., Renslo, A.R., Blank, B.R., Muir, R.K., Evans, M.J. Trioxolane agents PCT/US2018/039768, published 03/2019

# • Other Products

Nothing to report

# 7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

#### What individuals have worked on the project?

Name: Michael Evans Role: Principal Investigator Nearest person month worked: 1.87 *Contribution to project: Dr. Evans supervised the radiochemistry and the animal imaging and biodistribution studies. He also worked with Dr. Chen to analyze and summarize the data for the manuscript submission.* 

Name: Zhuo Chen Role: Post-Doc Nearest person month worked: 10 *Contribution to project: Dr. Chen was responsible for the radiochemistry and the animal PET and biodistribution studies.* 

# Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?

Nothing to report.

#### What other organizations were involved as partners?

Nothing to report.

#### 8. SPECIAL REPORTING REQUIREMENTS

#### COLLABORATIVE AWARDS: N/A QUAD CHARTS: N/A

#### 9. APPENDICES:N/A