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Abstract 

Markov chain Monte Carlo (MCMC) methods are widely used in hydrology 

and other fields for posterior inference in a Bayesian framework. A 

properly constructed MCMC sampler is guaranteed to converge to the 

correct limiting distribution, but convergence can be very slow. While 

most research is focused on improving the proposal distribution used to 

generate trial moves in the Markov chain, this work instead focuses on 

efficiently finding an initial population for population-based MCMC 

samplers that will expedite convergence. Four case studies, including two 

hydrological models, are used to demonstrate that using multi-level single 

linkage implicit filtering stochastic global optimization to initialize the 

population both reduces the overall computational cost and significantly 

increases the chance of finding the correct limiting distribution within the 

constraint of a fixed computational budget. 
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1 Introduction 

1.1 Background 

Markov chain Monte Carlo (MCMC) simulation has been demonstrated to 

be a formal and flexible means by which to obtain robust estimates of 

hydrologic model uncertainty (Kuczera and Parent 1998; Campbell et al. 

1999; Bates and Campbell 2001; Marshall et al. 2004; Engeland et al. 2005; 

Vrugt et al. 2006; Vrugt et al. 2008a,b). With MCMC, a Markov chain-

directed random walk yields, upon equilibrium, random draws of the target 

posterior distribution. However, application of MCMC to characterize the 

posterior probability distribution can be computationally intensive. 

A key element for MCMC samplers is the proposal distribution, which 

generates the candidate jumps for consideration as part of the Markov 

chain-directed random walk of the posterior. For a given problem, there 

are many possible acceptable proposal distributions. However, its specific 

choice can dramatically impact the overall efficiency of the sampler to the 

target equilibrium distribution. Proposal distributions that generate either 

small or large jumps yield low acceptance rates and slow convergence. The 

primary goal is to choose a proposal distribution that is easy to sample 

from, generates unbiased moves, and which results in optimal mixing of 

the chains.  

An additional important and practical MCMC implementation issue 

involves specifying the initial values for the chain(s). Guidance for MCMC 

initialization is to start with a value as close to the center of the unknown 

posterior distribution or to employ multiple highly dispersed initial values 

(Gelman and Rubin 1992). With hydrologic models, however, there is little 

a priori knowledge of the high probability density region. Hence, chains 

are often initialized by uniform or latin hypercube sampling (LHS) from 

an uninformative uniform prior distribution. LHS is often used for reasons 

of computational efficiency. With LHS, the random samples of parameter 

values are generated in a controlled manner such that they are 

representative of the real variability (Xin 2014). 

Within the hydrologic modeling community, the development of MCMC 

samplers has focused on the definition of the proposal distribution. Vrugt 

et al. (2003) introduced the Shuffled Complex Evolution Metropolis 
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algorithm (SCEM-UA), an efficient sampling strategy that is a 

modification to the Shuffled Complex Evolution algorithm (SCE-UA) 

global optimization algorithm (Duan et al. 1992, 1993). The SCEM-UA 

sampling strategy adapts the proposal distribution during sampler burn-in 

in an attempt to accelerate the rate of convergence. However, the SCEM-

UA algorithm has subsequently been reported to lack detailed balance 

(Vrugt et al. 2008a). Smith and Marshall (2008) compared the 

effectiveness and efficiency of the adaptive Metropolis (Haario et al. 2001), 

delayed rejection adaptive Metropolis (DRAM) (Haario et al. 2006), and 

the differential evolution Markov chain (DE-MC) (ter Braak 2006) MCMC 

samplers in terms of their capacity to support hydrologic modeling. The 

DE-MC algorithm performed best with a known bimodal mixed normal 

target distribution, and all three samplers were reported to perform 

equally well with respect to convergence when they were initialized from a 

known high posterior density. Vrugt et al. (2008a, 2009) introduced 

differential evolution adaptive metropolis (DREAM) — an adaptive MCMC 

sampler that was designed to estimate the posterior probability density of 

hydrologic model parameters. DREAM is a modification to the DE-MC 

method (ter Braak 2006) that includes adaptations directed at improving 

overall algorithm efficiency and effectiveness. It outperformed the DE-MC 

and DRAM adaptive MCMC samplers when it was applied to infer the 

posterior parameter distribution of a Sacramento Soil Moisture 

Accounting (SAC-SMA) model (Vrugt et al. 2009). Kuczera et al. (2010) 

exploit the decaying memory of hydrologic systems to accelerate the 

convergence of their Bayesian Total Error Analysis multiblock MCMC 

sampling methodology for improved application with conceptual rainfall 

runoff models.  

1.2 Objective 

Markov chain initialization is another practical implementation issue that 

impacts the number of forward model calls for an MCMC sampler to 

converge. In their regional hydrologic modeling study, Engeland and 

Gottschalk (2002) initialized the MCMC sampler with parameters 

optimized with respect to the likelihood function rather than with random 

samples from the prior distribution. Kavetski et al. (2006a,b) initialized an 

adaptive population-based MCMC sampler using a multistart global 

optimization strategy that employed a Newton-type method for the local 

searches. Their method (Kavetski et al. 2006b,c) was limited to smooth 

problems. To improve upon burn-in efficiency for an application with the 

Soil and Water Assessment Tool hydrology model (Arnold et al. 1998), 
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Yang et al. (2007) initialized their MCMC sampler using results obtained 

from an application of the SCE-UA global optimization strategy. Gallagher 

and Doherty (2007) initialized their Model Independent Markov Chain 

Monte Carlo Analysis (MCMC sampler (Doherty 2003) with results 

obtained from application of the trajectory repulsion stochastic global 

optimization strategy, which uses the Levenberg-Marquardt method 

(Levenberg 1944; Marquardt 1963) for its local searches (Skahill et al. 

2009; Skahill and Doherty 2006). They demonstrated resultant reduced 

MCMC burn-in run requirements, but, as with the solution methodology 

of Kavetski et al. (2006a,b), a smoothness assumption is required for 

application of their approach.  

The knowledge gained by the application and development of computer-

based calibration methodologies has provided the hydrologic modeling 

community with a better understanding of some of the complications 

associated with calibrating rainfall-runoff models. These complications 

include the existence of multiple local optima, non-smooth response 

surfaces, and long valleys in parameter space that are a result of excessive 

parameter correlation or insensitivity (Gupta et al. 2003; Kavetski et al. 

2006c,d). For example, studies have reported upon these noted difficulties 

with calibrating the SAC-SMA model (Duan et al. 1992; Vrugt et al. 2009). 

A method that has previously been demonstrated to support efficient 

stochastic global optimization for watershed model calibration (Regis and 

Shoemaker  2007) is the implicit filtering (IMFIL) algorithm (Kelley 2011; 

Kelley 2001; Gilmore and Kelley 1995). IMFIL is an iterative sampling 

algorithm designed to optimize complex geometric response surfaces that 

may be non-smooth, nonconvex, and possess multiple local optima. 

Central finite differences are applied, and the finite difference grid stencil 

is refined as the optimization unfolds. Shoemaker et al. (2007) used 

implicit filtering for Multi-Level Single Linkage (MLSL) (Rinnooy Kan and 

Timmer 1987a,b) stochastic global optimization supervised local searches, 

and the hybrid method (i.e., MLSL-IMFIL) demonstrated improved 

efficiency relative to the widely used SCE method when applied to 

calibrate two separate watershed model example problems with a fixed 

computational budget.  

Previous efforts to improve MCMC initialization for hydrologic models 

that go beyond sampling from the prior distribution have used the SCE 

optimization method to estimate global maxima of the likelihood function. 
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However, none of the hydrologic modeling studies have examined the 

gains in efficiency and reliability for MCMC convergence when using other 

optimization approaches to initialize the Markov chains. This report 

attempts to fill that gap. 

1.3 Approach 

In this report, population-based MCMC samplers are initialized based on 

results derived from a prior application of the stochastic global 

optimization method MLSL, which uses the implicit filtering algorithm for 

its local searches. The improved efficiencies derived with the Markov chain 

initialization methodology are profiled by revisiting two case study 

problems previously reported upon using the population-based MCMC 

sampler DREAM (Vrugt et al. 2009). The first example involves 

application of the SAC-SMA hydrology model, and the second considers 

use of the Hydrologic Model (HYMOD). Two initial case studies involving 

known and difficult multimodal targets are comprehensively explored with 

respect to reliability and efficiency for different MCMC sampler 

configurations provide a basis for the subsequent Bayesian supervised 

hydrologic calibration examples with the SAC-SMA and HYMOD models.  
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2 Methods 

This section summarizes the IMFIL, the stochastic global optimization 

method MLSL, and how information obtained from MLSL-IMFIL is used to 

initialize a population of chains for subsequent MCMC-directed hydrologic 

model calibration. The intent of using results obtained from MLSL-IMFIL is 

to yield a net improvement in overall MCMC sampler reliability and 

efficiency relative to a simple chain-initialization strategy based upon either 

uniform or LHS from an uninformative uniform prior distribution.  

2.1 Implicit filtering (IMFIL) 

The implicit IMFIL algorithm is a finite-difference-based sampling 

strategy that was designed to decrease the finite difference grid stencil as 

the search progresses in attempts to accommodate the optimization of 

complex geometric response surfaces, which may be non-smooth, 

nonconvex, and possess multiple local optima. Response surfaces with 

these attributes are often reported upon with the application of hydrology 

models. In particular, with IMFIL, a quasi-Newton local search is 

performed for a series of predetermined scales, and in each case the model 

Jacobian is estimated using finite differences with the given grid stencil. A 

given application of the method stops either when all of the predefined 

finite difference grid stencils are employed or a fixed computational 

budget is exhausted. 

2.2 Multi-level single linkage (MLSL) 

With a local search method, if there are different regions of attraction in 

parameter space, its solution will lead to just one of possibly many 

objective function minima; the particular one that is found is dependent 

upon the user-supplied set of initial parameter values. Stochastic global 

optimization (GO) can be employed as a remedy. Stochastic GO algorithms 

estimate the global minimum of the objective function by initiating local 

searches from global, randomly sampled points. The local and global 

phases can be iterated and/or the local searches may be initiated at some 

or all of the globally sampled points. Stochastic GO algorithms are 

guaranteed to converge, with probability one, to the global minimum as 

the sample size approaches infinity. Stronger convergence properties are 

possible for some stochastic algorithms, as mentioned below. Moreover, 

probabilistic-based stopping criteria can be developed for stochastic GO 
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methods (Rinnooy Kan and Timmer 1987a,b; Törn and Žilinskas 1987); 

however, an a priori computational budget may preclude any concern 

regarding termination criteria. 

One would like to utilize stochastic GO methods that are not only reliable 

in finding the global minimum but also efficient in the sense that they 

minimize the return to previously visited local minima in parameter space. 

A modeler would possibly also like to receive some information on the 

locations of non-global minima, especially if these minima are little 

different in magnitude from the global minimum but are widely separate 

from it in parameter space. Ideally, a single local search within the region 

of attraction of each local minimum would be performed. This would not 

only ensure that each local minimum is identified just once but also that in 

fact all local minima is found. However, it is also desirable to employ a 

method that works well if one has a predetermined computational budget 

in that for a given effort it compares favorably with other methods. 

Clustering methods were designed to accommodate these requirements. 

They are variants of Multistart (the Multistart method samples points 

from a uniform distribution over the feasible parameter space and starts a 

local search from each of the sample points), and the basic idea behind 

them is to group close points, sampled from the feasible parameter space 

and for which the specified groups presumably relate to actual regions of 

attraction in parameter space, and to apply a single local search procedure 

within each identified cluster. Either reduction (wherein sampled points 

associated with the highest objective function values are temporarily 

removed) or concentration (wherein the sampled points are transformed 

through application of one or a few iterations of a local search procedure) 

is employed to identify a reduced sample as part of the clustering process 

to provide some assurance that in fact the specified groups correspond to 

regions of attraction of actual local minima. Clustering methods are often 

iterative in that the global and local phases are repeated sequentially until 

a stopping criterion is satisfied. 

With clustering methods, it is possible that one cluster intersects multiple 

regions of attraction; hence, the global minimum could be missed or that 

one region of attraction contains more than one cluster, thus allowing for 

the same local minimum to possibly be identified more than once. MLSL is 

a clustering method that was developed to reduce the probability of not 

finding a local minimum or of finding a local minimum more than once 

(Rinnooy Kan and Timmer 1987a,b). MLSL mimics clustering by calculating 
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a critical distance rk at each iteration, k. This critical distance can be used to 

build clusters, but instead, in MLSL, the decision as to whether a local 

search is to be initiated from a given reduced sample point is simply based 

on whether there exists another reduced sample point within the distance rk 

of the given point with a corresponding lower objective function value. The 

critical distance rk is reduced at each iteration. Under certain assumptions, 

MLSL has stronger convergence properties than simpler stochastic global 

optimization algorithms. First, if the algorithm continues forever, the 

number of local searches performed is finite. Second, if rk tends to zero with 

increasing k, then every local minimum will be identified in finite time with 

probability one. The MLSL implementation follows that of Rinnooy Kan 

and Timmer (1987a,b) with a slight modification to sometimes avoid 

repeatedly finding the same local minima. 

2.3 Markov chain Monte Carlo (MCMC) 

MCMC is a formal Bayesian approach for estimating the posterior 

probability distribution of the adjustable model parameters. It treats the 

adjustable model parameters as random variables and relies upon Bayes’ 

Theorem to compute their joint posterior probability distribution. Bayes’ 

Theorem indicates that the posterior distribution is proportional to the 

product of the prior distribution, prescribed based on the modeler’s best 

judgment, expert opinion, or literature estimates, among possible others, 

and the likelihood function (i.e., conditional distribution), which 

encapsulates the conditioning process with the observed dataset. The idea 

behind MCMC is that while one wants to compute a probability density, 

p(p|y), where p and y represent the vector of adjustable model parameters 

and the observed data, respectively, there is the understanding that such 

an endeavor may be impractical. Additionally, simply generating a large 

random sample from the probability density is as good as knowing its 

exact form. Hence, the problem then becomes one of efficiently generating 

a large number of random draws from p(p|y). It was discovered that an 

efficient means to this end is to construct a Markov chain, a stochastic 

process of values that unfold in time, with the following properties: (1) the 

state space (set of possible values) for the Markov chain is the same as that 

for p; (2) the Markov chain is easy to simulate from; and (3) the Markov 

chain’s equilibrium distribution is the desired probability density p(p|y). 

By constructing such a Markov chain, one could then simply run it to 

equilibrium (and this period is often referred to as the sampler burn-in 

period) and subsequently sample from its stationary distribution. The 

Gelman and Rubin quantitative diagnostic measure (Gelman and Rubin 



ERDC/CHL TR-20-2  8 

 

1992) is commonly employed to assess chain convergence (Vrugt et al. 

2003; Vrugt et al. 2008a; Vrugt et al. 2008b; Vrugt et al. 2009). A Markov 

chain with the above-mentioned properties can be constructed by 

choosing a symmetric proposal distribution and employing the Metropolis 

acceptance probability (Metropolis et al. 1953) to accept or reject 

candidate points. MCMC simulation is used for inference, search, and 

optimization with hydrologic models (Harmon and Challenor 1997; 

Kuczera and Parent 1998; Campbell et al. 1999; Bates and Campbell 2001; 

Makowski et al. 2002; Qian et al. 2003; Kanso et al. 2003; Vrugt et al. 

2003; Vrugt et al. 2008a,b; Vrugt et al. 2009). This study employs for 

purposes of demonstration the population-based MCMC samplers DE-

MC, DE-MCz (ter Braak and Vrugt 2008), and DREAMz. 

2.4 MCMC-MLSL-IMFIL 

MLSL-IMFIL has been demonstrated to be an efficient way to calibrate a 

hydrologic model (Shoemaker et al. 2007). MLSL-IMFIL is applied with a 

predetermined computational budget specified not only for each IMFIL 

search but also for the MLSL supervised stochastic global optimization 

run-in aggregate, to determine a collection of local maxima of the 

posterior probability density function. An application of MLSL-IMFIL 

results in a set, of size w, of maxima of the posterior probability 

distribution. These locations are given by Ω = {p1, p2, …, pw} wherein each 

local maxima pi has been identified ni times. Each MLSL-IMFIL identified 

maximum from the set Ω is ranked based on its computed likelihood. The 

r largest ranked maxima from Ω are retained, and this reduced set is 

denoted by Ωr. The maxima from Ωr are used to initialize the population to 

subsequently evolve using Markov Chain Monte Carlo simulation. If the 

number of points needed to initialize the population is greater than of size 

r, then additional points are obtained as needed by slightly perturbing the 

points from Ωr. 
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3 Examples and Results  

Four case studies demonstrate a proof of concept of the population-based 

MCMC sampler initialization strategy, to improve sampler efficiency and 

reliability. The first two case studies mimic the proposed initialization 

strategy by considering applications to known target distributions wherein 

the MCMC population is initialized with random draws from the target. 

The final two cases studies apply the MLSL-IMFIL initialization strategy 

together with DE-MCz and DREAMz to calibrate the SAC-SMA and 

Hydrologic Model (HYMOD) hydrology model applications. 

3.1 Bimodal normal target 

Mixed normal distributions have served as example problems to profile 

the capacities of different MCMC samplers to fully characterize a known 

target. Liu et al. (2000) and also Liang and Wong (2001) considered the 

five dimensional mixed Gaussian 

 ( ) ( )( ) ( )( ) , , , , ,  , , , , ,π N I N I= +x
5 5

1 2
0 0 0 0 0 5 5 5 5 5

3 3
 (1) 

For this distribution, the distance between the two modes is 5√5 ~ 11.2, 

and it is a documented difficult problem for Metropolis samplers. 

Ter Braak (2006) introduced the population-based DE-MC MCMC 

sampler and evaluated its performance considering the same 

five-dimensional mixed normal distribution as in Liu et al. (2000) and 

Liang and Wong (2001), but made more difficult by further separating the 

two modes: 

 ( ) ( )( ) ( )( ) ,  ,  ,  ,  ,  , , , , ,π N I N I= - - - - - +x
5 5

1 2
5 5 5 5 5 5 5 5 5 5

3 3
 (2) 

Not only based on this previous documented work, but also lessons 

learned from experience applying MCMC samplers to simultaneously 

optimize and infer conceptual hydrologic model parameters, defined here 

for the purposes of illustration is a mixture of two normal distributions on 

the square (-10,10) X (-10,10):  

 ( ) ( )( ) ( )( ) , ,  , , .π N I N I= - +x
2 2

1 1
5 0 5 0 0 0025

2 2
 (3) 



ERDC/CHL TR-20-2  10 

 

For this known target, one mode is wide while the other is narrow, and the 

distance between the two modes is specified (to be equal to 10) in a 

manner such that they are far apart from each other. Figure 1 is a plot 

characterizing the normal mixture distribution as defined in Equation 3, 

derived by application of an MCMC sampler, and presented for the reader 

to visualize the difficult nature of the problem. 

Figure 1. Bimodal normal mixture distribution of Equation 3. 

 

A total of 18 distinct numerical experiments were performed for the known 

target as defined in Equation 3 using either the population-based MCMC 

sampler DE-MC (ter Braak 2006) or its adaption DE-MCz (ter Braak and 
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al. (2008), and if operative, by considering different levels of outlier 

detection. The final five experiments employed the adaptive sampler DE-

MCz, with the initial row size, M0, of the matrix Z that contains the current 

and past states of the chains specified to be equal to either 20 (for 

experiments 14, 17, and 18) or 40 (for experiments 15 and 16), the matrix Z 

initially populated using LHS from the uninformative uniform prior 

distribution defined for the interval [-10,10], and the first N rows of Z used 

to define the initial population. In the final two experiments, the first four 

rows of Z were replaced with two random draws from each mode of the 

target distribution as defined in Equation 3. The fourteenth, fifteenth, and 

seventeenth experiments considered a population size of 4 whereas the 

sixteenth and eighteenth experiments specified N to be equal to 2, the 

dimension size of the problem. For each trial in a given experiment, a 

thinned history of the chains for the first random variable was plotted to 

observe if the chains did or did not see both modes during and upon 

completion of sampler burn-in. The configurations for each of the 18 

experiments and their related results are summarized in Table 1.  
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Table 1. Summary of the 18 numerical experiments for the bimodal normal mixture 

distribution of Equation 3 (N = No; Y = Yes; LHS = latin hypercube sampling; U[-10,10] 

= uniform distribution defined for the interval [-10,10]). 

Experiment 
MCMC 

Sampler 

Population 

Size 
Population Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for which 

the Chains Did 

See Both 

Modes at the 

End of 

Sampler  

Burn-In 

1 DE-MC 4 LHS from U[-10,10] N 3/30 

2 DE-MC 4 LHS from U[-10,10] Y; 1.5 IQR1 0/30 

3 DE-MC 4 

Two random draws from 

each mode of the 

target distribution 

N 30/30 

4 DE-MC 4 

Two random draws from 

each mode of the 

target distribution 

Y; 1.5 IQR 11/30 

5 DE-MC 4 

Two random draws from 

each mode of the 

target distribution 

Y; 2.0 IQR 14/30 

6 DE-MC 4 

Two random draws from 

each mode of the 

target distribution 

Y; 3.0 IQR 16/30 

7 DE-MC 4 

Two random draws from 

each mode of the 

target distribution 

Y; 5.0 IQR 25/30 

8 DE-MC 8 LHS from U[-10,10] N 3/30 

9 DE-MC 8 LHS from U[-10,10] Y; 1.5 IQR 5/30 

10 DE-MC 20 LHS from U[-10,10] N 10/30 

11 DE-MC 20 LHS from U[-10,10] Y; 1.5 IQR 7/30 

12 DE-MC 40 LHS from U[-10,10] N 18/30 

13 DE-MC 40 LHS from U[-10,10] Y; 1.5 IQR 20/30 

14 DE-MCz 4 

Z, of row size 20, is 

initialized using LHS 

from U[-10,10]; X is 

initialized using the first 

N rows of Z 

N 26/30 

                                                                 

1 interquartile range 



ERDC/CHL TR-20-2  13 

 

Experiment 
MCMC 

Sampler 

Population 

Size 
Population Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for which 

the Chains Did 

See Both 

Modes at the 

End of 

Sampler  

Burn-In 

15 DE-MCz 4 

Z, of row size 40, is 

initialized using LHS 

from U[-10,10]; X is 

initialized using the first 

N rows of Z 

N 29/30 

16 DE-MCz 2 

Z, of row size 40, is 

initialized using LHS 

from U[-10,10]; X is 

initialized using the first 

N rows of Z 

N 30/30 

17 DE-MCz 4 

Z, of row size 20, is 

initialized using LHS 

from U[-10,10]; The first 

N rows are replaced 

with two random draws 

from each mode of the 

target distribution; X is 

initialized using the first 

N rows of Z 

N 30/30 

18 DE-MCz 2 

Z, of row size 20, is 

initialized using LHS 

from U[-10,10]; The first 

2N rows are replaced 

with random draws 

from the target 

distribution; X is 

initialized using the first 

N rows of Z 

N 30/30 

The population-based MCMC sampler DE-MC, initialized using LHS from 

the uniform prior, saw both modes of the known target distribution for 

only 3 of the 30 trials for population sizes equal to 4 and 8. The number of 

successes increased to 10 and 18 when the population size was increased to 

20 and 40, respectively. With the DE-MC sampler, when the population of 

size 4 was initialized using two random draws from each mode of the 

target, and outlier chain removal and replacement was inactive, all 30 

trials were successful. For the same DE-MC sampler configuration, but 

with outlier chain removal and replacement active, the success rate 
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progressively decreased as the IQR-based outlier detection level increased. 

At a detection level of 1.5 IQR, the number of successes was 11. At the 

suggested detection level of 2.0 IQR (Vrugt et al. 2008, 2009), the number 

of observed successes was 14. Regardless of population size for DE-MC 

simulations whose populations were initialized from the uninformative 

uniform prior, when outlier chain removal and replacement was operative 

at the 1.5 IQR detection level, the results do not indicate that the 

functionality positively or negatively impacted sampler reliability. 

Application of the adaptive sampler DE-MCz, whose jump proposals are a 

function not only of the current but also a thinned history of past states 

and whose initialization is more exhaustive for an equivalent population 

size, by a factor of 5 as it was configured in the fourteenth experiment 

when compared with the DE-MC sampler profiled in the first experiment, 

both with N set equal to 4, dramatically improved the overall measured 

success rate from 10% to 86.66% when initialization involved LHS of the 

uniform prior. In experiment 15, the population size remained constant, 

but the initial row size of the matrix Z was doubled to equal 40, and the 

success rate further improved. In experiment 16, M0 remained fixed at 40, 

but the population size was reduced to equal 2; however, the sampler 

success rate did not decrease. For the adaptive sampler DE-MCz at N equal 

to 4, when the initial M0 rows of Z are filled using LHS from the 

uninformative uniform prior, and the initial N rows, characterizing the 

initial state for X, are replaced with two random draws from each mode of 

the target distribution, the success rate improved to 100%. The success 

rate for the sampler DE-MCz remained at 100% when the population size 

was reduced to 2, equal in size to the dimensionality of the problem, even 

though while the matrix Z did, there was no assurance that for each trial 

the initial population X contained information about both modes of the 

target distribution. 

3.2 Twenty-component mixture normal target 

Liang and Wong (2001) considered simulation from the two-dimensional 

normal mixture distribution: 

 𝑓(𝑥) =
1

√2𝜋𝜎
∑ 𝑤𝑖𝑒𝑥𝑝 (−

1

2𝜎2
(𝑥 − 𝜇𝑖)𝑇(𝑥 − 𝜇𝑖))20

𝑖=1  (4) 

with 𝜎 = 0.1, 𝑤𝑖 = 0.05, and the mean vectors uniformly drawn from the 

square [0,10] X [0,10] as listed in Table 2. 
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Table 2. The mean vectors of the 20 components of the mixture 

normal distribution. 

i 𝜇𝑖1 𝜇𝑖2 i 𝜇𝑖1 𝜇𝑖2 i 𝜇𝑖1 𝜇𝑖2 i 𝜇𝑖1 𝜇𝑖2 

1 2.18 5.76 6 3.25 3.47 11 5.41 2.65 16 4.93 1.50 

2 8.67 9.59 7 1.70 0.50 12 2.70 7.88 17 1.83 0.09 

3 4.24 8.48 8 4.59 5.60 13 4.98 3.70 18 2.26 0.31 

4 8.41 1.68 9 6.91 5.81 14 1.14 2.39 19 5.54 6.86 

5 3.93 8.82 10 6.87 5.40 15 8.33 9.50 20 1.69 8.11 

A total of 27 distinct numerical experiments were performed using either 

the population-based MCMC sampler DE-MC (ter Braak 2006) or its 

adaption DE-MCz (ter Braak and Vrugt 2008) for the challenging known 

target as defined in Equation 4 but made more difficult by assigning the 

standard deviation equal in value to 0.01 rather than 0.1. The distances 

between component 4 and its nearest neighboring component and 

component 15 and its nearest neighboring component (excluding 

component two) are equal in value to 315 and 384 times the standard 

deviation, respectively. For all but 1 of the 27 numerical experiments, 30 

random trials were performed, the sampler input parameter which weights 

the two unique vectors from either the current (DE-MC) or past states 

(DE-MCz) in the definition of the jump proposal, excluding the current 

chain index and randomly selected without replacement, was defined to be 

equal to 1 approximately every fifth generation to mitigate against the 

potential of becoming trapped in a single mode within a multimodal 

distribution (Vrugt et al. 2009), and 1,000,000 evolutions were arbitrarily 

specified to define sampler burn-in, followed by an arbitrarily specified 

5,000,000 post burn-in monitoring period runs. 

The first six experiments involved different configurations with the MCMC 

sampler DE-MC, including the consideration of population size, 

initialization of the population using either LHS from the uninformative 

uniform prior distribution defined for the box [0,10] X [0,10] or by taking 

one or two random draws from each mode of the target distribution, and 

employment, or not, of an outlier chain removal and replacement 

functionality implemented as defined in Vrugt et al. (2008), and if 

operative, by considering different levels of outlier detection. The 

following 21 experiments employed different configurations of the 

adaptive sampler DE-MCz, considering different population sizes, different 

values for the initial row size, M0, of the matrix Z that contains the current 
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and past states of the chains, and how the matrix Z was initially populated, 

including use of LHS from the box [0,10] X [0,10], random draws from 

each mode of the target distribution as defined in Equation 4, or a 

combination thereof. For each trial in a given experiment, a thinned 

history of the evolving population, post burn-in, was plotted to observe if 

the chains did or did not correctly see all 20 modes during the monitoring 

period. The configurations for each of the 27 experiments and their related 

results are summarized in Table 3. 

Table 3. Summary of the 27 numerical experiments for the 20 component normal 

mixture distribution of Equation 1 (N = No; Y = Yes; LHS = latin hypercube sampling; 

U[0,10] = uniform distribution defined for the interval [0,10]). 

Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

1 DE-MC 20 LHS from U[0,10] N 0/30 

2 DE-MC 20 

One random draw 

from each mode 

of the target 

distribution 

N 11/30 

3 DE-MC 40 

Two random 

draws from each 

mode of the target 

distribution 

N 18/30 

4 DE-MC 40 

Two random 

draws from each 

mode of the target 

distribution 

Y; 1.5 IQR 3/30 

5 DE-MC 40 

Two random 

draws from each 

mode of the target 

distribution 

Y; 2.0 IQR 10/30 

6 DE-MC 40 

Two random 

draws from each 

mode of the target 

distribution 

Y; 3.0 IQR 17/30 

7 DE-MCz 20 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

X is initialized 

using the first N 

rows of Z 

N 15/30 
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Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

8 DE-MCz 20 

Z, of row size 400, 

is initialized using 

LHS from U[0,10]; 

X is initialized 

using the first N 

rows of Z 

N 24/30 

9 DE-MCz 20 

Z, of row size 

1000, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 29/30 

10 DE-MCz 20 

Z, of row size 

1500, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

11 DE-MCz 10 

Z, of row size 

1000, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 29/30 

12 DE-MCz 10 

Z, of row size 

1500, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

13 DE-MCz 4 

Z, of row size 

1500, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 27/30 
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Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

14 DE-MCz 2 

Z, of row size 

1500, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 26/30 

15 DE-MCz 4 

Z, of row size 

2000, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 29/30 

16 DE-MCz 2 

Z, of row size 

2000, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 27/30 

17 DE-MCz 2 

Z, of row size 

2500, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 9/10 

18 DE-MCz 2 

Z, of row size 

3000, is initialized 

using LHS from 

U[0,10]; X is 

initialized using 

the first N rows of 

Z 

N 30/30 
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Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

19 DE-MCz 20 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

The first N rows 

are replaced with 

one random draw 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

20 DE-MCz 20 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

The first 2N rows 

are replaced with 

two random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

21 DE-MCz 10 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

The first 2N rows 

are replaced with 

one random draw 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 28/30 

22 DE-MCz 10 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

The first 4N rows 

are replaced with 

two random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 



ERDC/CHL TR-20-2  20 

 

Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

23 DE-MCz 4 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

The first 10N rows 

are replaced with 

two random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 29/30 

24 DE-MCz 4 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

The first 20N rows 

are replaced with 

two copies of two 

random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

25 DE-MCz 2 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

The first 40N rows 

are replaced with 

two copies of two 

random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

26 DE-MCz 4 

Z, of row size 80, 

populated with 

two copies of two 

random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 
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Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

27 DE-MCz 2 

Z, of row size 80, 

populated with 

two copies of two 

random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

The first experiment, which involved application of the MCMC sampler 

DE-MC with N equal to 20, and the population initialized using LHS from 

the box [0,10] X [0,10] did not yield a single success across all 30 trials. 

The second experiment resulted in 11 successes when only the 

initialization of the population was changed to involve a single random 

draw from each component of the distribution. In the third experiment, 

when the population size was doubled to 40, and two random draws from 

each component of the distribution were used to initialize the population, 

the number of successes further increased to 18. The next three 

experiments were configured in the same way as the third experiment, but 

to also include application of outlier chain removal and replacement at 

three different outlier detection levels, viz., 1.5 IQR in experiment 4, 2.0 

IQR in experiment 5, and 3.0 IQR in the experiment 6. The fourth 

experiment resulted in a drop in the number of successes from 18 to 3. The 

fifth experiment yielded 10 successes, and application of the sixth 

experiment resulted in 17 successes. Figure 2(a) and Figure 2(b) are plots 

of a thinned history of the saved post burn-in random draws associated 

with trials 1 and 15 from experiment 6, respectively. Examining Figure 2 

and the contents of Table 3, it is clear that in the first trial, the thirteenth 

component of the distribution was completely missed and that in the 

fifteenth trial, the first component was missed as the sampler was 

configured and applied.  
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Figure 2. Scatter plots of post burn-in random draws for two unsuccessful trials from 

experiment 6 and one successful trial from experiment 18. 

 

(a)Experiment 6, trial 1. 

 

(b)Experiment 6, trial 15. 

 

(c)Experiment 18, trial 15. 

The remaining experiments involved application of the adaptive sampler 

DE-MCz (ter Braak and Vrugt 2008). In experiments 7 through 25, the 

matrix Z was initially populated using LHS from the square [0,10] X 

[0,10] and the population X was initialized using the first N rows of Z. 

However, for experiments 19 through 25, the first 20 to 80 rows of Z were 
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subsequently replaced with one, two, or two copies of two random draws 

from each component of the target distribution. In the final two 

experiments, the entire initial row space of Z was filled with two copies of 

two random draws from each component of the target distribution.  

Experiments 7 through 10 involved application of the adaptive sampler 

DE-MCz (ter Braak and Vrugt 2008) with N equal to 20 and increasing 

values for the initial row space size, M0, of the matrix Z. The number of 

successful trials progressively increased as the value for M0 increased. 

With M0 equal to 200, only one-half of the trials were successful. When M0 

was increased to equal to 1,000 in experiment 9, 29 of the 30 trials were 

successful. With M0 equal to 1,500, all 30 trials were successful in 

experiment 10. Experiments 11 and 12, which examined sampler 

performance when the population size was reduced to 10, demonstrated 

the same success rates as their similarly configured counterparts, viz., 

experiments 9 and 10, respectively. Experiments 13 through 18 examined 

sampler performance for population sizes equal in value to either 4 or 2. 

The initial row space size of the matrix Z needs to be approximately 3,000 

to yield a 100% success rate across all 30 trials when the population size is 

equal in value to 2. For the same initial row space size for the matrix Z, a 

larger population size yields a higher success rate, as observed when one 

compares the results obtained across experiments 15 and 16 and also 12 

through 14. The results shown in Figure 2(c), which show the empirically 

derived distributions from the monitoring period random draws for the 

first random variable, were obtained from the fifteenth trial associated 

with the eighteenth experiment.  

Regardless of whether one or two random draws from each component of 

the distribution are used to replace the initial 20 or 40 rows of Z, when the 

adaptive sampler DE-MCz is configured with a population size of 20 and 

the initial row space size for Z is equal to 200, all 30 trials successfully 

characterize the target distribution. When the population size is reduced to 

10, all 30 trials are successful when two random draws from each 

component replace the first 40 rows of Z; however, two of the trials are 

unsuccessful when only one random draw from each component of the 

distribution replaces the first 20 rows of Z. When the population size is 

further reduced to be equal in value to 4, one of the trials is unsuccessful 

when two random draws from each component of the target replace the 

first 40 rows of Z. Regardless of whether the population size is equal in 

value to 4 or 2, or the initial row space size for Z is equal to 200 or 80, 
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when the first 80 rows of Z are replaced or populated with two copies of 

two random draws from each component of the target distribution all 30 

trials are successful. A limited series of additional numerical experiments, 

each involving 30 trials, were performed to quantify, for two separate 

population sizes, the computational cost to achieve the completion of 

sampler burn-in for different configurations of the adaptive sampler DE-

MCz with the known target distribution defined in Equation 4. Due to the 

problematic nature of simply using the Gelman and Rubin quantitative 

convergence diagnostic to evaluate sampler convergence, for each trial in a 

given experiment, the completion of sampler burn-in was defined to occur 

when the percent error was less than 1 for both components of the mean 

vector and also the main diagonal and off-diagonal components of the 

covariance matrix associated with the two-dimensional 20-component 

normal mixture distribution defined in Equation 4. Experiments 18, 27, 

10, and 20 summarized in Table 3 were repeated with the previously noted 

sampler convergence criteria specified as operative, as were also the 

additional related sampler configurations summarized in Table 4. Table 5 

summarizes the results associated with each experiment. 

Table 4. Additional experiments performed to evaluate sampler efficiency (N = No; Y 

= Yes; LHS = latin hypercube sampling; U[0,10] = uniform distribution defined for the 

interval [0,10]; MLSL-N = Multi Level Single Linkage global optimization method with 

Newton’s method used for local searches). 

Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

28 DE-MCz 2 

Z, of row size 160, 

populated with 

four copies of two 

random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 
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Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

29 DE-MCz 2 

Z, of row size 320, 

populated with 

eight copies of 

two random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

30 DE-MCz 2 

Z, of row size 400, 

populated with 10 

copies of two 

random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

31 DE-MCz 2 

Z, of row size 600, 

populated with 15 

copies of two 

random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

32 DE-MCz 2 

Z, of row size 800, 

populated with 20 

copies of two 

random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 
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Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

33 DE-MCz 20 

Z, of row size 200, 

is initialized using 

LHS from U[0,10]; 

The first 4N rows 

are replaced with 

two random 

draws from each 

mode of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

34 DE-MCz 20 

Z, of row size 160, 

populated with 

four copies of two  
random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

35 DE-MCz 20 

Z, of row size 200, 

populated with 

five copies of two  
random draws 

from each mode 

of the target 

distribution; X is 

initialized using 

the first N rows of 

Z 

N 30/30 

36 DE-MCz 2 

Z, of row size 160, 

populated, using 

MLSL-N, with four 

copies of two  
upgrade vectors 

obtained from 

each mode of the 

target distribution; 

X is initialized 

using the first N 

rows of Z 

N 30/30 
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Experiment 
MCMC 

Sampler 

Population 

Size 

Population 

Initialization 

Outlier Chain 

Removal and 

Replacement; 

Outlier 

Detection 

Number of 

Trials for 

which the 

Chains Did 

See All 

Modes 

37 DE-MCz 2 

Z, of row size 320, 

populated, using 

MLSL-N, with eight 

copies of two  
upgrade vectors 

obtained from 

each mode of the 

target distribution; 

X is initialized 

using the first N 

rows of Z 

N 30/30 

With the exception of experiments 36 and 37, for a given experiment, the 

mean number of total model calls reported in Table 5 is the computed 

average based on all 30 trials, excluding the cost of initialization. The 

reported total model calls excluded the cost associated with initialization 

into the overall accounting since 10 of these 12 experiments involved the 

use of draws that were randomly generated from the known target rather 

than identified by using an actual search method. However, for 

experiments 36 and 37, the matrix Z and also the initial population X were 

initialized using results obtained from application of the stochastic global 

optimization method MLSL, which employed Newton’s method for its 

local searches. For these two experiments, the total model calls reported in 

Table 5 do account for the cost of initialization. Also reported in Table 5 

for each population size are the average percent reductions, based on all 

30 trials, achieved when intelligence is injected into the initialization of 

the MCMC supervised sampling process relative to simply using LHS of 

the box [0,10] X [0,10] with a density previously identified to be necessary 

to ensure sampler reliability across all trials. Among the limited sampler 

configurations that explored the impact of incorporating intelligence into 

MCMC sampler initialization rather than reliance upon LHS from flat 

priors, for population sizes of 2 and 20, the greatest mean percent 

reductions in total model calls achieved, excluding consideration of 

initialization costs, were approximately 60% and 43%, respectively. The 

lowest mean percent reduction in total model calls achieved for either 

population size was approximately 30%. For each of the experiments that 

employed random draws from the posterior itself for initialization, relative 

to using LHS of the box [0,10] X [0,10], comparable percent reductions 
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were also observed in the variability of the total number of model calls. For 

the two experiments that utilized results obtained from a prior application 

of MLSL to initialize the MCMC sampler, the mean percent reductions 

relative to the cost of experiment 18 were approximately 40%. 

Table 5. The mean number of total model calls required to 

achieve burn-in requirements (except for experiments 36 and 37, 

excluding the cost of initialization), and the mean percent 

reductions relative to an initialization using LHS at a density level 

previously identified to maintain sampler reliability across all 

thirty trials. (*=includes cost of initialization; LHS = latin 

hypercube sampling) 

Experiment 

Population 

Size 

Mean Number of 

Total Model Calls 

Mean Percent 

Reduction 

18 2 

2,907,909 

2,910,909*  

27 2 1,973,700 32.1 

28 2 1,614,828 44.5 

29 2 1,175,211 59.6 

30 2 1,227,842 57.8 

31 2 1,758,285 39.5 

32 2 1,396,735 52.0 

36 2 1,763,994 39.4 

37 2 1,830,834 37.1 

10 20 3,209,160  

20 20 2,004,868 37.5 

33 20 2,203,707 31.3 

34 20 1,838,475 42.7 

35 20 1,946,834 39.3 

3.3 Hydrologic model applications 

Vrugt et al. (2009) demonstrated application of the DREAM sampler to 

infer the posterior distribution of 13 (d=13) SAC-SMA hydrologic model 

parameters. Their case study is revisited herein, and the five-parameter 

(d=5) HYMOD hydrology model is also considered; however, instead, DE-

MCz and DREAMz are used, initialized either by application of LHS or 

using results obtained from application of MLSL-IMFIL. 
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Two experiments were performed for each hydrology model and each 

sampler wherein 30 trials were performed for each experiment. For the 

first experiment, the populations were initialized with LHS while for the 

second experiment MLSL-IMFIL was used to initialize both X and Z. For 

the HYMOD experiments, MLSL-IMFIL cost 1946 model evaluations on 

average to converge. For each SAC-SMA, trial a budget of 200,000 model 

calls was used for MLSL-IMFIL. For the MLSL-IMFIL experiments, the 

reported number of model evaluations includes the model evaluations 

performed by MLSL-IMFIL and by the MCMC sampler. (See Table 6 for 

the experimental results for the hydrology models.) 

Table 6. Experimental results for the hydrology models. (For experiments denoted by LHS+, 

the first M+ rows of Z are filled with information derived from MLSL-IMFIL or random draws 

from the known target itself (N ≤ 𝑴+ ≤ Mo). The first N rows of Z define X. When Z is 

initialized solely using LHS, these experiments are denoted by LHS.) (* Four of the thirty 

trials did not converge within the limit of 500,000 model calls; thus, the average number of 

model calls and percent reduction should both be larger.) 

Hydrologic Model Sampler Initialization 

Average Number of 

Model Evaluations 

% Reduction by 

LHS+ 

HYMOD DE-MCz LHS Mo=50, N=10 94651*  

HYMOD DE-MCz 

LHS+ Mo=50, N=10, 

M+=10 17314 82%* 

HYMOD DREAMz LHS Mo=50, N=5 15118  

HYMOD DREAMz 

LHS+ Mo=50, N=5, 

M+=5 5987 60% 

SAC-SMA DE-MCz LHS Mo=130, N=26 753098  

SAC-SMA DE-MCz 

LHS+ Mo=130, 

N=26, M+=26 276619 63% 

SAC-SMA DREAMz LHS Mo=130, N=13 486086  

SAC-SMA DREAMz 

LHS+ Mo=130, 

N=13, M+=13 256329 47% 
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4 Discussion and Conclusions 

The primary intent of the numerical experiments involving the known 

bimodal normal mixture target was to communicate the impact of 

population initialization on sampler reliability. LHS from uniform priors is 

commonly applied when MCMC is used for hydrologic model calibration. 

This form of population initialization, for N equal to 4, yielded success 

rates of 10% and 87% for the DE-MC and DE-MCz samplers, respectively. 

The results of additional experiments with the bimodal normal mixture 

target suggest that injecting more intelligence into the initialization 

process has clear potential to improve sampler reliability, dramatically in 

the case for the profiled population-based MCMC sampler DE-MC and less 

so for its profiled adaption, DE-MCz. Both profiled population-based 

MCMC samplers exhibited 100% success rates when the population to 

evolve was initialized using random draws from the target distribution.  

Observed strengths of the profiled adaptive sampler DE-MCz are that its 

jump proposals are a function not only of the current population but also a 

thinned history of its past states and that its initialization involves filling 

the matrix Z, whose initial row space is greater than the population size, 

N. With the initial row space size for Z greater than N, it permits for more 

exploration to occur prior to population evolution, and it is the 

explanation for the previously observed 77% increase in the success rate 

for the profiled adaptive sampler DE-MCz relative to DE-MC when 

comparing the results from experiments 1 and 14. The previously 

mentioned strengths of the profiled adaptive sampler DE-MCz also permit 

the use of fewer chains relative to its native form DE-MC (ter Braak and 

Vrugt 2008). Its success rate increased from 87% to 100%, in 

experiment 16, when the initial row size was doubled, to 40, and the 

population size was decreased by a factor of 2, to 2, equal in value to the 

dimensionality of the problem. The results obtained in experiment 16 and 

also in the final experiment, which also employed a population size of 2, 

emphasize that the initial population alone must not necessarily contain 

all of the modes, as long as they are also seen in Z, which is a basis for 

jump proposal generation.  

MCMC simulation can be computationally expensive when it is measured in 

terms of the total number of forward model calls that are required before 

one can be confident that sampling is occurring with stable frequency from 

the posterior distribution. It is not uncommon for one or more chains to 
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become and remain entrapped for prolonged periods, resulting in reduced 

sampler efficiency. Moreover and related, another real and potentially 

problematical situation involves full characterization of multimodal 

posteriors, particularly when the modes are distinct and far apart, as is the 

case with the bimodal mixed normal target of Equation 3. Vrugt et al. 

(2008a) introduced the outlier chain removal and replacement functionality 

as a means by which to improve MCMC sampler efficiency. A secondary 

intent with this case study was to clearly communicate the knowledge 

gained through experience with application of the outlier chain removal and 

replacement functionality. This known bimodal normal mixture target 

definition of Equation 3 was informed based on the experience with MCMC 

supervised hydrologic model calibration. It is clear, based on the results 

from the first 13 experiments, that the outlier chain removal and 

replacement functionality degrades sampler reliability, particularly when 

the population is initialized intelligently rather than arbitrarily and the 

posterior is multimodal with modes well separated from each other. 

Moreover, the results further suggest that the functionality is tunable; 

hence, its use introduces an additional input parameter that one must 

adjust to optimize sampler performance for a given problem. Its use 

effectively homogenizes the population, and if it is not tuned properly for 

the given problem, it can negatively impact sampler performance. 

The experiments performed with the bimodal normal mixture target of 

Equation 3 demonstrated that intelligent sampler initialization has the 

potential to increase reliability with respect to a population-based MCMC 

sampler’s capacity to fully characterize the equilibrium distribution. Later 

case studies will investigate the impact of intelligent initialization on 

sampler efficiency. 

In this example, a previously documented challenging multimodal normal 

mixture problem was revisited but made even more difficult by reducing 

the standard deviation by one order of magnitude. The capacities of the 

population-based MCMC samplers DE-MC and its adaption DE-MCz to 

fully characterize the known target after a predetermined rather 

exhaustive burn-in period were measured through a series of experiments, 

each consisting of 30 random trials. The experiments involved different 

sampler configurations, primarily focusing on population size, the initial 

row space size of the matrix Z for the sampler DE-MCz, and the means by 

which X and Z were initialized. As with the first example problem, the 
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impact of using outlier chain removal and replacement was also explored 

with this 20-component normal mixture target.  

The MCMC sampler DE-MC was unable to successfully characterize the 

known multimodal target a single time, across all 30 trials, when its 

population size was specified to be equal in value to 10 times the 

dimension of the problem and the population was initialized by using LHS 

from the box [0,10] X [0,10]. When a single random draw from each 

component of the target was used to initialize the population of size 20, 

the sampler DE-MC was able to successfully characterize the distribution 

for 11 of the 30 random trials. By contrast, its adaption, the sampler DE-

MCz, using the same population size and initialization strategies, was able 

to fully characterize the known multimodal target with 100% success rates 

across all trials. When LHS from the box [0,10] X [0,10] was used to 

initialize the matrix Z, a value for M0 equal in value to 1,500 was required 

to ensure the 100% success rate. Lower values specified for M0 yielded 

lower success rates across all 30 trials. For example, specified values for 

M0 equal to 200, 400, and 1,000 yielded 50%, 80%, and 97% success 

rates, respectively. When the matrix Z was initialized using LHS from the 

box [0,10] X [0,10] and then a single random draw from each component 

of the distribution was used to overwrite the first N equal to 20 rows of Z, 

and initialize X, then a value for M0 specified equal to 200 was sufficient 

to ensure the 100% success rate. Moreover, the sampler DE-MCz was able 

to successfully characterize the known multimodal target across all trials 

using a population size of two, either with M0 equal to 3,000 when Z was 

initialized using LHS from the box [0,10] X [0,10], or 80 when the matrix 

Z was populated with two copies of two random draws from each mode of 

the target distribution.  

The MCMC sampler DE-MC did exhibit improved success with increasing 

population size. With a population of size 40 initialized using two random 

draws from each component of the target, the number of successes further 

increased to 18 out of 30. However, for this problem, the impact of 

intelligent population initialization was less dramatic for the DE-MC 

sampler than it was with the first example. In the first example, two 

random draws from each of the two modes yielded a 100% success rate 

across the 30 trials; whereas, using a similar initialization strategy with the 

20-component normal mixture target, the sampler DE-MC failed to fully 

characterize the distribution for 12 of the 30 trials. 
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The success rate of the adaptive sampler DE-MCz with the population size 

fixed, consistently increased as the initial row space size for Z, initialized 

using LHS from the box [0,10] X [0,10], was increased. It was also 

observed for the sampler DE-MCz that when the population size is 

reduced, and the matrix Z is initialized using LHS from the box [0,10] X 

[0,10], the value for the initial row space size for Z must be increased to 

maintain an equivalent success rate. For the sampler DE-MCz, the 

experiments also demonstrated that it was possible to successfully 

characterize the multimodal distribution across all trials while using a 

population size equal in value to the dimension of the problem, as long as 

the matrix Z was either initialized with information about the posterior 

modes of the distribution itself or by simply sampling the entire box with 

sufficient density prior to evolution.  

Regardless of whether the sampler DE-MC or its adaption DE-MCz was 

used, there was no observed consistency across those trials which failed to 

fully characterize the known distribution. In particular, the one or many 

components missed were not consistent from trial to trial within a given 

experiment or across the set of experiments. For an equivalent population 

size, the DE-MC sampler possessed a higher failure rate. Its adaption, 

DE-MCz, was more successful by virtue of its capacity not only to specify 

an initial row space size for Z greater than N, but also in that its jump 

proposals are a function of Z, which grows as the population evolves. 

The results associated with this multimodal example further illustrated the 

problematic nature of the outlier chain removal and replacement 

functionality. With this 20-component normal mixture problem, it was 

demonstrated that use of the outlier chain removal and replacement 

functionality clearly decreased the reliability of the MCMC sampler DE-

MC to fully characterize the target distribution. Moreover, the experiments 

demonstrated that outlier chain removal and replacement is tunable; 

hence, it introduces an additional parameter that one must properly 

configure to optimize sampler performance for a given problem. For this 

problem, when the outlier detection level was specified to be consistent 

with a previously reported suggested value, the DE-MC sampler exhibited 

reduced reliability relative to simply not using the functionality. 

The results of the numerical experiments indicate that for this challenging 

multimodal problem a population size of two can be specified while using 

the adaptive sampler DE-MCz and yield success across all 30 trials, where 
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success is measured in terms of the ability to characterize the complete 

distribution upon completion of an arbitrarily specified comprehensive 

burn-in period of 1,000,000 evolutions. The explorations profiled herein 

either involved employment of LHS using a large value for the initial row 

space size for Z and/or by populating Z with random draws from the 

target itself. What has not been measured and compared so far is the 

efficiency of one particular sampler configuration relative to another. Of 

additional interest is whether an initialization that involves random draws 

from the target itself results in increased overall sampler efficiency, 

measured in terms of the total number of model calls required to achieve 

the completion of sampler burn-in, when compared with a sampler 

configuration that is in line with how MCMC is used with hydrologic 

simulation, viz., LHS of uninformative uniform priors. 

By initializing the population to be evolved with information about the 

target itself, rather than by using LHS of the box [0,10] X [0,10], it was 

observed that an approximate 37% increase in reliability for the 

population-based MCMC sampler DE-MC when it was configured with a 

population of size 20. For the adaptive MCMC sampler DE-MCz, the initial 

experiments that focused on sampler reliability underscored that DE-MCz 

can effectively see all 20 components of the posterior distribution, with a 

population size as small as two, as long as sufficient effort is directed at 

filling the matrix Z prior to MCMC sampling. However, the additional 

experiments clearly indicated that if one can inject learned intelligence 

about the target itself into the matrix Z, then one can yield substantially 

improved sampler efficiencies relative to simply sampling the box [0,10] X 

[0,10] with a sufficient density to ensure reliability across all of the trials.  

Clearly, intelligent initialization reduces the overall computational cost of 

MCMC supervised sampling while maintaining sampler reliability. The 

results, particularly those associated with experiments 18 and 27, motivate 

one to give consideration to employment of an effective and efficient search 

method prior to MCMC sampling, to find draws from the target distribution 

to initialize X and Z, not only to ensure sampler performance to fully 

characterize the equilibrium distribution but also to investigate if there are 

efficiency gains to be derived with such an approach relative to the 

conventional application of MCMC in the hydrologic modeling literature, 

which is to simply sample from uninformative uniform priors. The results 

associated with experiments 36 and 37 clearly show that all 20 modes can 
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be found with a limited computational budget, and that information can be 

used to initialize MCMC sampling of the posterior distribution. 

This study was motivated by the experiences with excessively long burn-in 

run requirements when using MCMC samplers to reliably calibrate 

hydrologic models and also by the observation that the development and 

application of Bayesian samplers for hydrologic simulation has primarily 

focused on the MCMC proposal distribution. Herein, the focus is on a 

proof of concept assessment of the potential merits to be derived from a 

directed rather than arbitrary initialization strategy that attempts to align 

itself with conventional guidance for application of MCMC. The 

experimental results from the four profiled case studies suggest that when 

using population-based MCMC that it pays, in terms of improved 

reliability and sampler efficiency to complete burn-in, to optimize first.  

The experimental results from the four profiled case studies suggest that 

initializing a MCMC sampler’s population with local minima can 

dramatically increase the chance of converging to the correct distribution 

within a predetermined computational budget and significantly decrease 

the computational time until sampler convergence. The first two case 

studies, sampling from known multimodal posterior distributions, 

demonstrate that initializing the chains by randomly sampling from the 

high posterior density regions increases the reliability of the sampler. In 

the first case study, the reliability increases from 86% to 100% when 

replacing LHS initialization with initialization from the distribution itself. 

In the second case study, the reliability increased from 50% to 100%. In 

the second case study it is shown that sampler initialization using MLSL-N 

stochastic global optimization results can be equally effective in increasing 

reliability. Moreover, the MLSL-N initialized sampler runs resulted in a 

mean 40% reduction in total model calls to complete burn-in relative to 

simply using LHS (with M0=3000) to initialize the population. 

For both hydrologic model applications, there is a comparison of the total 

number of model calls that are required for the sampler to complete burn-

in when using MLSL-IMFIL for initialization versus that of simply using 

LHS. For the HYMOD model, the average run length when using MLSL-

IMFIL initialization decreased by at least 82% compared to LHS 

initialization when using the DE-MCz sampler and by 60% when using the 

DREAMz sampler. For the SAC-SMA model using MLSL-IMFIL, 
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initialization decreased the average run length by 63% for the DE-MCz 

sampler and by 47% for the DREAMz sampler.  

These improved efficiencies are notable at first glance but do not tell the 

complete story. For the 13-parameter SAC-SMA hydrology model 

application, the reported total number of model calls to complete burn-in 

includes the predetermined budget prescribed for the initialization; hence, 

it takes the DE-MCz/DREAMz samplers, after use of MLSL-IMFIL, 

approximately 76619/56329 calls to sample with stable frequency from the 

equilibrium distribution. Therefore, the conclusion is that it takes 

approximately 338/215% more model calls to optimize simply using the 

DE-MCz/DREAMz samplers relative to the proposed blended algorithm 

approach. With the five-parameter HYMOD model application, it takes 

approximately 4074/569% more model calls to optimize simply using the 

DE-MCz/DREAMz samplers. The conjecture is that the requirements 

necessary for the proper design of MCMC jump distributions limit their 

capacities relative to other methods, which have been demonstrated to be 

efficient and reliable for global optimization.  

With the case studies profiled herein, a likelihood formulation consistent 

with IMFIL for Least Squares was employed, which was used for the local 

searches within MLSL for initialization of the MCMC sampler. Alternate 

likelihood formulations would require use of the more general form of 

IMFIL. A proof-of-concept assessment of an initialization strategy using 

two samplers with documented use within the hydrologic modeling 

community was demonstrated. The hypothesis is that comparable results 

would result with additional applications involving other available 

population-based samplers. 

A well-constructed MCMC sampler will eventually converge to the correct 

posterior distribution, but the number of model calls until convergence 

can be prohibitively expensive. The proof-of-concept approach was 

demonstrated to reduce the length of burn-in by leveraging the merits of a 

well-documented efficient and reliable global optimization clustering 

method to initialize a population-based sampler. It requires no 

modifications to existing MCMC samplers. Other optimization approaches 

to initialize a sampler for hydrologic simulation are possible; however, the 

recommendation is the use of methods that share the known merits of 

MLSL-IMFIL for further investigation. MLSL-IMFIL identifies the high 

probability density regions of the posterior distribution, and its results 
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could be used to build and refine a surrogate response surface while 

sampling. Opportunities also exist to provide broader application of this 

proof of concept by cohesively blending MLSL-IMFIL with a given sampler 

into a single algorithm. 
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Acronyms and Abbreviations 

DE-MC differential evolution Markov chain 

DRAM delayed rejection adaptive Metropolis 

DREAM differential evolution adaptive metropolis 

GO global optimization 

HYMOD hydrologic model  

IMFIL implicit filtering  

LHS latin hypercube sampling  

MCMC Markov chain Monte Carlo  

MLSL multi-level single linkage  

SAC-SMA Sacramento Soil Moisture Accounting  

SCEM-UA Shuffled Complex Evolution Metropolis Algorithm 
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