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1.0 SUMMARY 
 
Despite the great success of machine learning, most learning algorithms remain primarily non-
interactive. Human learning, on the other hand, is highly interactive. As learners we are inquisitive 
- we ask questions about the data shown to us and employ a variety of diverse feedback to decide 
what questions would yield answers that are most informative for the learning task at hand. In this 
project, we developed a suite of data-efficient interactive machine learning algorithms that employ 
judicious choice of what data to collect, when to collect it and how much to collect. This includes 
development of new algorithms as well as integration of algorithms developed in the investigators' 
prior works. 
 

2.0 INTRODUCTION 
 
In this project, we focused on developing machine learning methods that can interact with the data 
generating process to query the most informative data points, features, representations, labels, and 
type of labels. We focus on the following four specific tasks which focus on different aspects of 
interactive machine learning. 
 
Task I. Interactive unsupervised learning. We extended and incorporated our prior work on 
interactive algorithms for unsupervised problems, where the algorithm sequentially decides 
which data points, similarities, and features to query that are the most relevant to the given 
problem [9],[10],[13],[17]. 
 
Task II. Interactive supervised learning with diverse oracles. We developed methods for 
supervised problems such as classification [1],[19],[22], regression [7],[11],[15], optimization 
[21],  etc. which can leverage feedback from multiple types of diverse oracles such as direct 
labeling oracle, pairwise comparison oracle, ranking oracle, and multi-fidelity oracle, by adapting 
the queries presented to them according to their (unknown) skill set. 
 
Task III. Interactive transfer learning. We developed interactive methods that selectively query 
data points and labels from source domain that are most informative to the target domains [3] 
and can enable best transfer of information between the two domains in a transfer learning 
setting [2]. 
 
Task IV. Interactive deep learning. We developed a solid foundational understanding of methods 
for optimization of black-box models such as deep neural networks [4],[8],[12],[14],[16] and 
their generalization properties for deep neural networks [18],[20]. Then we developed methods 
for active learning and optimization where the function being learnt/optimized is represented 
using a deep neural network model [23].  
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3.0 METHODS, ASSUMPTIONS AND PROCEDURES 
 
We present below an overview of the interactive learning methods we developed for the four 
tasks outlines above. Details of the algorithms, assumptions and theoretical analysis can be found 
in the sections following the overview and the papers we published on these topics that are 
referenced below.  
 
Task I: Interactive unsupervised learning 

 
As an unsupervised learning task, we studied the adaptive high-dimensional density estimation 
problem. For general data, unlike spatial/temporal data, we do not have known correlations a priori 
among covariates that may be exploited. In order to model high dimensional data, the main 
challenge lies in constructing models that are flexible enough while having tractable learning 
algorithms. A large number of methods have considered auto‐regressive models to estimate the 
conditional factors p(xi∣xi−1, . . . , x1), for i ∈ {1, . . . , d} in the chain rule. If we only model the 
conditionals, the conditional factors p(xi∣xi−1, . . .), may become increasingly complicated as i 
increases to d. On the other hand if we use a complex transformation with restricted conditionals, 
then the transformation has to ensure that the transformed variables are independent. This 
requirement of independence on the transformed variables can be very restrictive. Now note that 
the transformed space is homeomorphic to the original space and a simple relationship between 
the density of the two spaces exists through the Jacobian. Thus, we can employ conditional 
modeling on the transformed variables to alleviate the independence requirement, while being able 
to recover density in the original space in a straightforward fashion. Using these ideas, we proposed 
a new family of methods, the transformation autoregressive networks for density estimation [9]. 
They apply complex transformations and autoregressive modeling of the conditionals. 

 
We also studied the problem of active search on networks. How can we help an investigator to 
efficiently connect the dots and uncover the network of individuals involved in a criminal activity 
based on the evidence of their connections, such as visiting the same address, or transacting with 
the same bank account? We formulate this problem as Active Search of Connections, which finds 
target entities that share evidence of different types with a given lead, where their relevance to the 
case is queried interactively from the investigator. We present RedThread [10], an efficient 
solution for inferring related and relevant nodes while incorporating the user’s feedback to guide 
the inference. Our experiments focus on case building for combating human trafficking, where the 
investigator follows leads to expose organized activities, i.e. different escort advertisements that 
are connected and possibly orchestrated. RedThread is a local algorithm and enables online case 
building when mining millions of ads posted in one of the largest classified advertising websites. 
The results of RedThread are interpretable, as they explain how the results are connected to the 
initial lead. We experimentally show that RedThread learns the importance of the different types 
and different pieces of evidence, while the former could be transferred between cases. 

 
Sparse dictionary learning has become a popular method for adaptively identifying parsimonious 
representations of a dataset, a fundamental problem in machine learning and signal processing. 
While most work on sparse dictionary learning assumes a training dataset of independent and 
identically distributed samples, a variant known as convolutional sparse dictionary learning relaxes 
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this assumption, allowing more general sequential data sources, such as time series or other 
dependent data. Although recent work has explored the statistical properties of classical sparse 
dictionary learning, the statistical properties of convolutional sparse dictionary learning remain 
unstudied. We aimed to understand the statistical properties of convolutional sparse dictionary 
learning, in terms of reconstruction (or denoising) error (i.e., the error of reconstructing a data 
sequence from a learned convolutional sparse dictionary decomposition, a process widely used for 
denoising and compression. We study this by identifying the minimax convergence rate of 
convolutional sparse dictionary learning in terms of reconstruction risk, by both upper bounding 
the risk of an established sparse dictionary learning estimator and proving a matching information‐
theoretic lower bound [13]. The emphasis in this paper is on proving results under minimal 
assumptions on the data. As such, we make no assumptions whatsoever on the dictionary or 
encoding matrices (such as restricted eigenvalue or isometry properties). Compared even to these 
“assumptionless” results, we consider dropping yet another assumption, namely that noise is 
independently distributed. In many of the above applications (such as image demosaicing or 
inpainting, or structured denoising), noise is strongly correlated across the data, and yet dictionary 
learning approaches nevertheless appear to perform consistent denoising. To the best of our 
knowledge, this phenomenon has not been explained theoretically. One likely reason is that this 
phenomenon does not occur in basis pursuit denoising, lasso, and many related compressed sensing 
problems, where consistency is usually not possible under arbitrarily dependent noise. In the 
context of sparse dictionary learning, tolerating dependent noise is especially important in the 
convolutional setting, where coordinates of the data are explicitly modeled as being spatially or 
temporally related.  Under sufficient sparsity, our results imply consistency (in reconstruction 
error) of convolutional sparse dictionary learning, even under arbitrary noise dependence. Our 
results indicate that consistency in reconstruction risk is possible precisely in the `ultra‐sparse' 
setting, in which the sparsity (i.e., the number of feature occurrences) is in o(N) in terms of the 
length N of the training sequence. Notably, our results make very weak assumptions, allowing 
arbitrary dictionaries and dependent measurement noise. We also verified our theoretical results 
with numerical experiments.  
 
Many problems in adaptive decision-making under uncertainty fall into the design of experiments 
framework, where one wishes to design a sequence of experiments and collect data so as to achieve 
a desired goal. For example, in electrolyte design for batteries, a chemist would like to conduct 
experiments that measure battery conductivity in order to identify an electrolyte design that 
maximizes conductivity. On a different day, she would like to experiment with different designs 
to learn how the viscosity of the electrolyte changes with the design. These two tasks, black-box 
optimization and active learning, fall under the umbrella of design of experiments and are 
pervasive in industrial and scientific applications. While several methods exist for specific design 
of experiments tasks, real world problems are broad and complex, and specialized methods have 
limited applicability. Continuing with the electrolyte example, the chemist can typically measure 
both conductivity and viscosity with a single experiment. Since such experiments are expensive, 
it is wasteful to first perform a set of experiments to optimize conductivity and then a fresh set to 
learn viscosity. Rather, it is desirable to design a single set of experiments that simultaneously 
achieves both goals. A second example is metallurgy, where one wishes to identify phase 
transitions in an alloy by carefully selecting a sequence of X-ray diffraction experiments. Here and 
elsewhere, the goal of the experimenter is application specific and cannot be simply shoehorned 
into standard design of experiments formulations such as black-box optimization, active learning, 
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etc. In addition, domain knowledge about the problem may need to be considered in selecting 
experiments, as it may significantly reduce the number of experiments needed to achieve the 
desired goal.  
 
To address these desiderata, we develop a general and flexible framework for goal oriented design 
of experiments, where a practitioner may specify her desired goal via a reward function that can 
depend on the data collected during the design of experiments process and unknown system 
characteristics, and hence cannot be directly computed by a decision-maker. We designed a new 
myopic strategy [17] for a wide class of sequential design of experiment problems, where the 
goal is to collect data in order to fulfil a certain problem specific goal. Our approach, Myopic 
Posterior Sampling, is inspired by the classical posterior (Thompson) sampling algorithm for 
multi‐armed bandits and leverages the flexibility of probabilistic programming and approximate 
Bayesian inference to address a broad set of problems. Our approach has two key advantages. 
First, our Bayesian formulation allows one to straightforwardly specify domain expertise. 
Moreover, modern tools for probabilistic programming enable practitioners to apply a Bayesian 
algorithm such as ours in a fairly straightforward manner. Second, our myopic strategy is simple 
and computationally attractive in comparison with policies that engage in long-term planning. 
Nevertheless, borrowing ideas from submodular optimization and reinforcement learning, we 
derive natural conditions under which our myopic policy is competitive with the globally optimal 
one. Empirically, this general‐purpose strategy is competitive with more specialized methods in a 
wide array of design of experiments tasks, and more importantly, enables addressing complex 
Design of experiments goals where no existing method seems applicable. On the theoretical side, 
we leverage ideas from adaptive submodularity and reinforcement learning to derive conditions 
under which myopic posterior sampling achieves sublinear regret against natural benchmark 
policies. Specifically, our contributions are: 
 

(i) We propose a flexible framework for design of experiments that allows a 
practitioner to describe their system via a probabilistic model, and specify their 
goal via a reward function. We derive a general purpose algorithm, Myopic 
Posterior Sampling, for this setting. 

(ii) Empirically, we demonstrate myopic posterior sampling performs favorably in a 
variety of synthetic and real world design of experiments tasks. Despite its 
generality, myopic posterior sampling is competitive with specialized methods 
designed for particular settings. More importantly, it enables design of 
experiments in non-standard application specific settings.  

(iii) In our theoretical analysis, we explore conditions under which myopic posterior 
sampling, which learns about the system over time, is competitive with myopic 
and globally optimal strategies that have full knowledge of the system. 

 
 

Task II: Interactive supervised learning with diverse oracles 
 

Given high costs of obtaining labels for big datasets, interactive learning is gaining popularity in 
both practice and theory of machine learning. On the practical side, there has been an increasing 
interest in designing algorithms capable of engaging domain experts in two-way queries to 
facilitate more accurate and more effort-efficient learning systems. On the theoretical side, study 
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of interactive learning has led to significant advances such as exponential improvement of query 
complexity over passive learning under certain conditions. While most existing approaches to 
interactive learning fix the form of an oracle, e.g., the labeling oracle, and explore the best way of 
querying, some recent work allows for multiple diverse forms of oracles. We focus on this latter 
setting, also known as active dual supervision. We investigate how to learn a classifier, regressor 
or optimizer, given limited access to labels on individual instances and pairwise comparisons about 
which one of two given instances is more likely to belong to a class or have a higher regression or 
optimization function value. 
 
It is known in prior literature that it is often easier for human labelers to compare or rank inputs 
rather than predict an output directly. For example, in material design, synthesizing materials for 
specific conditions requires expensive experimentation, but with an appropriate algorithm we can 
leverage expertise of material scientists, for whom it may be hard to accurately assess the resulting 
material properties, but who can quickly compare different input conditions and suggest which 
ones are more promising. Similarly, in clinical settings, precise assessment of each individual 
patient’s health status can be difficult, expensive and/or risky (e.g. it may require application of 
invasive sensors or diagnostic surgeries), but comparing relative statuses of two patients at a time 
may be relatively easy and accurate. In both these scenarios we may have access to a modest 
amount of individually labeled data, but the bulk of more accessible training information is 
available via pairwise comparisons. There are many other examples where humans find it easier 
to perform pairwise comparisons rather than providing direct labels, including content search, 
image retrieval, ranking, etc.  
 
Despite many successful applications of comparison oracles, many fundamental questions remain. 
One of them is how to design noise-tolerant, cost-efficient algorithms that can approximate the 
unknown target hypothesis to arbitrary accuracy while having access to pairwise comparisons. On 
one hand, while there is theoretical analysis on the pairwise comparisons concerning the task of 
learning to rank, estimating ordinal measurement models and learning combinatorial functions, 
much remains unknown how to extend these results to more generic hypothesis classes. On the 
other hand, although we have seen great progress on using single or multiple oracles with the same 
form of interaction, classification, regression or optimization using both comparison and labeling 
queries remains an interesting open problem.  
 
In [1], we developed an interactive classification algorithm that learns from pairwise 
comparisons/ranking and direct labeling oracles, adaptively choosing which one to query, when 
and how much. The algorithm interleaves comparison queries to learn a ranking with a binary 
search using direct queries that classify current sample. Our analysis precisely quantifies how 
access to such comparison/ranking information significantly reduces label complexity (e.g. the 
need to perform expensive experiments) as a function of their relative cost with respect to the 
comparison queries and noise in both types of oracles. Specifically, we make the following 
contributions: 
 

(i) We analyze our algorithm under Tsybakov and adversarial noise conditions for the 
labeling oracle, along with the adversarial noise condition for the comparison 
oracle. Our general framework can augment any active learning algorithm by 
replacing the batch sampling in these algorithms with our algorithm.  
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(ii) We propose a specific instantiation of our algorithm, which can learn an arbitrary 
hypothesis class. The label complexity of the algorithm is as small as learning a 
threshold function under both Tsybakov and adversarial noise condition, 
independently of the structure of the hypothesis class. The total query complexity 
improves over previous best-known results under Tsybakov noise condition which 
can only access the labeling oracle. 

(iii) We derive another instantiation of our algorithm to learn the class of halfspaces. 
This algorithm has the same label and total query complexity, but is 
computationally efficient. 

(iv) We present lower bounds on total query complexity for any algorithm that can 
access both labeling and comparison oracles, and a noise tolerance lower bound for 
our algorithms. These lower bounds demonstrate that our analysis is nearly optimal. 

 
Building on this work where we demonstrated algorithms and guarantees for nonparametric 
classification using pairwise comparison and direct query oracles, we also developed methods for 
non‐parametric regression using ranking or pairwise comparisons and direct labeling oracles [7]. 
We develop the Ranking-Regression algorithm for nonparametric regression that can leverage 
ordinal information, in addition to direct labels. Theoretical analysis and practical experiments 
show the strength of our algorithm. Unlike classification where active queries help improve sample 
complexity for both comparisons and direct labels, in regression of smooth functions, active 
queries are only needed for comparisons to reduce the problem to learning an isotonic one‐
dimensional function which can be learnt efficiently using passive direct queries. Specifically, we 
make the following contributions: 
 

(i) To establish the usefulness of ordinal information in nonparametric regression, in we 
first consider the idealized setting where we obtain a perfect ordering of the unlabeled 
set. We show that the mean squared error of our algorithm can be shown to scale like 
m-2/3 + n-2/d, where m denotes the number of labeled samples, n the number of ranked 
samples, and d denotes the dimension of the feature space. To achieve a target constant 
MSE, the number of labeled samples required by the Ranking-Regression algorithm is 
independent of dimension. This result establishes that sufficient ordinal information of 
high quality can allow us to effectively circumvent the curse of dimensionality.  

(ii) Next, we analyze Ranking-Regression when using a noisy ranking. We show that the 
mean squared error scales as m-2/3 + n-2/d + v1/2, where v is the Kendall-Tau distance 
between the true and noisy ranking.  

(iii) As a corollary, we develop results for Ranking-Regression using pairwise comparisons. 
If the comparison noise is bounded, our algorithm can be combined with algorithms 
for ranking from pairwise comparisons to obtain an MSE of m-2/3 + n-2/d when d >= 4.  

(iv) We give information-theoretic lower bounds to characterize the fundamental limits of 
combining ordinal and standard supervision. These lower bounds show that our 
algorithms are almost optimal. In particular, the Ranking-Regression algorithm under 
perfect ranking, as well as under bounded noise comparisons, is optimal up to log 
factors. 

(v) In our experiments, we test Ranking-Regression on simulated data, and on various age-
estimation tasks. Our experimental results show the advantage of our algorithm over 
algorithms that only use labeled data when this labeled data is scarce. Our experiments 
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with the age-estimation data also show the practicality of our proposed Ranking-
Regression algorithm. These results are presented in Section 4.0.  

 
We also developed an interactive algorithm [11] that utilizes both labels and comparisons for linear 
regression, and show that it only requires a very small amount of direct labels to achieve low error. 
Similar to non-parametric regression, we show that active queries are only needed for comparisons 
to reduce the problem to a one‐dimensional problem of learning the scale in linear regression (akin 
to learning threshold for classification). Specifically,  

(i) Given a budget of m label queries and n comparison queries, we show that MSE of our 
algorithm decays at the rate of m-1+e-n/d. Once again we see that when sufficiently many 
comparisons are available, the label complexity of our algorithm is independent of the 
dimension d.  

(ii) We also give minimax lower bounds for the problem, showing that our algorithm is 
optimal up to log factors in the number of direct labels needed.  

(iii) We demonstrate the efficacy of this algorithm on a practical task of estimating people’s 
ages from face images.  

We further polished our work on regression using pairwise comparison and direct labels, and tested 
our algorithms in experiments on simulated data, age estimation and price‐estimation tasks [15]. 
Specifically, we curated a new dataset using crowdsourced data obtained through Amazon's 
Mechanical Turk. We provide workers AirBnB listings and attempt to estimate property asking 
prices. We obtain both direct and comparison queries for the listings, and also study the time taken 
by workers to provide these different types of feedback. We find that, our algorithms which 
combine direct and comparison queries are able to achieve significantly better accuracy than 
standard supervised regression methods, for a fixed worker time budget.  

 
We have successfully applied our earlier work on comparison oracles to streamline training data 
acquisition in critical care informatics [19]. The idea is that we can reduce an expert clinician’s 
effort needed to annotate a sufficient sample of data to enable training predictive models of clinical 
interest, and such reduction is feasible when we can ask simple, fitting types of queries. In our case 
study, it appeared that comparing two patient cases to assess which one is more severe can be done 
faster, and more importantly with greater confidence, than labeling the two cases directly into 
severe or mild. These results are presented in Section 4.0. This work has been published and 
presented at lead healthcare venues. We are currently generalizing our approach to enable 
crowdsourcing annotations from multiple labelers. 

 
Zeroth order non-convex optimization, also variously known as continuous multi-armed bandit or 
black-box optimization, is an important problem that naturally appears in various domains like 
dynamic pricing, reinforcement learning and material science. With an unknown black-box 
function f, zeroth order optimization aims to find the optimal point of the function with as few 
queries to (a noisy version of) f(x) as possible, with no gradient information directly available. 
Although zeroth order convex optimization is generally efficient, optimizing a non-convex f under 
smoothness constraints requires the same effort as estimating f almost everywhere, and usually 
leads to a query complexity exponential in d, where d is the feature space dimensionality. The 
prohibitive cost for non-convex optimization has motivated research on suitable assumptions, such 
as linear bandits, convex approximations, and optimization based on level sets. We propose a 
complementary approach, where in addition to direct queries to f, one can also compare two points 
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in feature space, and obtain the point with a larger f value. Inspired by dueling bandits in the bandit 
domain, we call our setting non-convex optimization with dueling-choice bandits; we note that 
different than dueling bandits, here direct queries and comparisons are both available for 
optimizing f, and therefore duels are available as an additional choice.  
 
We build our work on GP-UCB, a method for optimizing unknown functions under the Gaussian 
process (GP) assumption by optimizing the Upper Confidence Bound (UCB). Closest to our setting 
is a line of recent research on multi-fidelity GP optimization, which assumes that we can query the 
target functions at multiple fidelities of different costs and precisions. To briefly describe it, our 
setting is harder since we cannot directly query the function on which comparisons are based. 
Moreover, the multi-fidelity assumptions such as fidelities being close in sup-norm do not hold for 
our setting since any constant shift of the comparison function yields the same comparisons. We 
instead consider an active transfer learning setting where information from a function that can be 
learned using comparisons is transferred actively to optimize the target function. Optimization 
with comparisons has been studied under the framework of derivative-free optimization and 
continuous dueling bandits. However to the best of our knowledge, no previous work has 
theoretical guarantees on optimizing a non-convex f. Also, these results cannot be applied when 
the comparisons are biased (i.e., a Condorcet winner on comparisons might not be the best 
point for direct queries). 
 
We develop and evaluate a new algorithm for non-convex optimization with dueling choices, 
which we refer to as Comparison-based GP-UCB (COMP-GP-UCB). We can show that if 
comparisons are based on the same underlying function as a direct label, then the function can be 
optimized using comparisons only (which are cheaper) unlike the regression and classification 
settings where some labels are needed to figure out the ‘scale’ of the parameters being learnt. 
However, in practice, comparisons are done by experts/humans and are often based on a very crude 
approximation to the original function. To address this model mismatch and enable active transfer 
of knowledge from human queries to the true function being learned, we developed a Gaussian 
process regression based algorithm [21], where instead of directly querying the point with the 
maximum upper confidence bound, we perform a constrained optimization and use comparisons 
to filter out suboptimal points. Our theoretical and experimental results show the strengths of our 
algorithm. Specifically, we make the following contributions: 
 

(i) When we can obtain comparisons based on the target function f, we show that 
comparisons can be as powerful as direct queries: COMP-GP-UCB can achieve the 
same rate of convergence as its label-only counterparts, while using only comparisons 
and no direct queries. This solves an open problem of developing continuous dueling 
bandit algorithms with no-regret guarantees. 

(ii) Next, we assume that comparisons are based on a misspecified function fc, where fc 
approximates f. COMP-GP-UCB in this case uses comparisons to optimize a function 
fr which has the same optimizer as fc, and then use direct queries to search in a smaller 
region for the optimum of the target function. The regret rate of COMP-GP-UCB is 
then better than the label-only counterparts, and it depends on the difference between 
fc and f: the better the approximation, the lower the regret we can get from COMP-GP-
UCB. In particular, we show that the label complexity of our algorithm depends on an 
improved information gain corresponding to a comparison based constraint set that 
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restricts the search space for the optimum. In contrast, in the direct query only setting, 
the label complexity depends on information gain corresponding to the entire domain. 
We further demonstrate a version of the algorithm that adapts to the degree of model 
mismatch.  

(iii) Our algorithm also extends multi-fidelity GP optimization to the setting where 
information is transferred actively from a lower fidelity to a higher fidelity while only 
assuming that the optimizer of the lower fidelity (source function) is within a constant 
distance of the optimizer of the higher fidelity (target function), instead of the fidelities 
being close everywhere. 

(iv) In our experiments, we test COMP-GP-UCB on multi-fidelity functions from previous 
literature and show that it outperforms label-only algorithms and existing multi-fidelity 
algorithms when comparisons are cheaper than direct labels. 

 
Building on our prior work on classification, we consider a related problem called the Thresholding 
Bandit Problem which aims to find the set of arms with mean rewards greater than a given 
threshold.  The Thresholding Bandit Problem is an important pure-exploration multi-armed bandit 
problem and has a wide range of applications, such as anomaly detection, candidate filtering, and 
crowdsourced classification. For example, a popular crowdsourced classification model assumes 
that there are K items with the latent true labels li in {0,1} for each item. The labeling difficulty of 
the i-th item is characterized by its soft label yi in [0 1], which is defined as the probability that a 
random crowd worker will label the i-th item as positive. It is clear that the item is easy to label 
when yi is close to 0 or 1, and difficult when yi is close to 0.5. In multi-armed bandits, yi is the 
mean reward of arm i, and pulling this arm leads to a Bernoulli observation with mean li. Moreover, 
it is natural to assume that the soft label yi is consistent with the true label, i.e., yi >= 0.5 if and 
only if li = 1. Therefore, identifying items belonging to class 1 is equivalent to detecting those arms 
with yi> t where t = 0.5. 
 
We consider a new setting of thresholding bandits which arises in crowdsourced scenarios, where 
in addition to pulling arms, one can also duel two arms and get the arm with a greater mean since 
dueling two arms (comparing two choices) can be more cost and time efficient for humans than 
direct pulls (labeling an input). For example, in crowdsourcing, it will be cheaper and time efficient 
to ask a worker which image is more relevant to a query as compared to asking for an absolute 
relevance score of an image. We refer to this problem as thresholding bandit problem with Dueling 
Choices.  
 
A straightforward way to solve the thresholding bandit problem with dueling choices is to utilize 
an existing ranking algorithm to rank all the arms, and then use a binary search to find the 
boundary. However, this method is impractical because it can be very hard to differentiate arms 
with similar means (e.g., equally good images, similar quality materials). These arms might be far 
from the threshold and it is actually unnecessary to differentiate them. We instead take an iterative 
approach and develop an algorithm [22] called Rank-Search for solving thresholding bandit 
problem with dueling choices by alternating between ranking and binary search. Specifically, our 
contributions are: 
 

(i) We develop the Rank-Search algorithm for thresholding bandits with dueling choices, 
which alternates between refining the rank over all items using duels and a binary 



 

Approved for Public Release; Distribution Unlimited.   
10 

 

search process using pulls to figure out the threshold among ranked items. We 
interleave the ranking and searching step so that we do not waste time differentiating 
equally good arms. 

(ii) We prove theoretical guarantees for Rank-Search. We analyze the number of duels and 
pulls required under the fixed confidence setting, i.e., to recognize the set of arms with 
reward larger than t with high probability. To better illustrate our main idea, we further 
provide concrete examples, which show that the proposed Rank-Search only requires 
O(log2 K) direct labels, while the classical thresholding bandit problem requires at least 
O(K) labels.  

(i) We show complementary lower bounds which establish that Rank-Search is near-
optimal in both duel and pull complexity. 

(ii) Experiments show that Rank-Search outperforms previous baseline algorithms that 
only use pulls or duels.  

 
 
Task III: Interactive transfer and multitask learning. 
 
We developed an interactive method that selectively query data points and labels from source 
domain that are most informative to the target domains [3]. For this, we consider a classical design 
of experiments setting but optimize the design in source domain to enable best transfer of 
information to a target domain. Classical optimal solutions for design of experiments are 
combinatorial and we develop a continuous convex relaxation of these criteria followed by 
intelligent rounding using greedy, sampling and regret minimization approaches that is 
computationally efficient and near optimal. This work only considers a domain adaptation setting 
where the distribution of points in each domain are different but they share the same regression 
function. This can further be extended to the setting of hypothesis transfer learning where the 
input-output mapping in the two domains is related by a link function, building on our prior work 
on hypothesis transfer learning setting [2].  
 
 
Task IV: Interactive deep learning 

 
We started by developing a solid foundational understanding of methods for optimization of black-
box models such as deep neural networks and their generalization properties for deep neural 
networks. 

 
We start with the problem of black‐box global optimization of an unknown non‐convex smooth 
function with zeroth‐order feedback. In this setup, an algorithm is allowed to adaptively query the 
underlying function at different locations and receives noisy evaluations of function values at the 
queried points (i.e. the algorithm has access to zeroth‐order information). We precisely identify 
when improvements in convergence rate are possible for smooth functions; we show that for 
functions with fast level set growth around the global minimum, carefully designed optimization 
algorithms can identify a near global minimizer with many fewer queries [16]. In contrast to 
classical global minimax analysis of nonparametric estimation problems, we adopt a local analysis 
which characterizes the optimal convergence rate of optimization error when the underlying 
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function f is within the neighborhood of a “reference” function f0. We provide an intuitive and 
efficient algorithm that attains the derived upper error bounds. Specifically, our contributions are: 

(i) We design an iterative (active) algorithm whose optimization error converges at a rate 
depending on the reference function f0. When the level sets of f0 satisfy certain 
regularity and polynomial growth conditions, the local rate can be upper bounded by  
n-a/(2a+d-ab), where b in [0,d/a] is a parameter depending on f0 that characterizes the 
volume growth of level sets of f0. The rate matches the global minimax rate n-a/(2a+d) 
for worst-case f0 where b=0, but has the potential of being much faster when b>0. We 
emphasize that our algorithm has no knowledge of f0, a or b and achieves this rate 
adaptively. 

(ii) We prove local minimax lower bounds that match the n-a/(2a+d-ab) upper bound, up to 
logarithmic factors in n. More specifically, we show that even if f0 is known, no (active) 
algorithm can estimate f in close neighborhoods of f0 at a rate faster than n-a/(2a+d-ab). 
We further show that, if active queries are not available and x1, . . . , xn are i.i.d. 
uniformly sampled from X, the n-a/(2a+d) global minimax rate also applies locally 
regardless of how large b is. Thus, there is an explicit gap between local minimax rates 
of active and uniform query models. 

(iii) In the special case when f is convex, the global optimization problem is usually referred 
to as zeroth-order convex optimization and this problem has been widely studied. Our 
results imply that, when f0 is strongly convex and smooth, the local minimax rate is on 
the order of n-1/2, which matches the convergence rates in literature. Additionally, our 
negative results indicate that the n-1/2 rate cannot be achieved if f0 is merely convex, 
which seems to contradict n-1/2 that do not require strong convexity of f. However, it 
should be noted that mere convexity of f0 does not imply convexity off in a 
neighborhood of f0. Our results show significant differences in the intrinsic difficulty 
of zeroth-order optimization of convex and near-convex functions. 

 
As a first step towards optimizing high-dimensional non‐convex black‐box functions, we consider 
establishing a baseline of optimizing a high‐dimensional convex function using stochastic zeroth‐
order queries. Under sparsity assumptions on the gradients or function values, we present two 
algorithms: a successive component/feature selection algorithm and a noisy mirror descent 
algorithm using Lasso gradient estimates, and show that both algorithms have convergence rates 
that depend only logarithmically on the ambient dimension of the problem [14]. The first method 
uses a few noisy samples to select a small subset of “important variables” S in 1, …, d; afterwards, 
existing low-dimensional zeroth-order optimization techniques are applied to obtain a minimizer 
of f restricted to S. This requires assuming the function is sparse and only varies on a small subset 
of coordinates. The second method combines stochastic mirror descent and de-biased Lasso 
gradient estimates. The stochastic mirror descent based method does not require assuming the 
function is sparse and is seen to outperform the variable selection based method in simulations. 

 
Moving to first-order methods which are used more prominently for black-box functions such as 
neural networks, a central challenge to using first‐order methods for optimizing nonconvex 
problems is the presence of saddle points. Although the popular first-order method gradient 
descent was shown to almost always escape saddle points asymptotically, we show that even with 
fairly natural random initialization schemes and non-pathological functions, gradient descent can 
be significantly slowed down by saddle points, taking exponential time to escape [4]. On the other 
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hand, gradient descent with perturbations is not slowed down by saddle points - it can find an 
approximate local minimizer in polynomial time. This result implies that gradient descent is 
inherently slower than perturbed gradient descent, and justifies the importance of adding 
perturbations for efficient non-convex optimization. The counter-example that supports this 
conclusion is a smooth function defined in d dimensions, where gradient descent with random 
initialization will visit the vicinity of d saddle points before reaching a local minimum. While 
perturbed gradient descent takes a constant amount of time to escape each saddle point, gradient 
descent will get closer and closer to the saddle points it encounters later, and thus take an increasing 
amount of time to escape. Eventually, gradient descent requires time that is exponential in the 
number of saddle points it needs to escape, thus eΩ(d) steps. While our focus is theoretical, we also 
present experiments that illustrate our theoretical findings.  
 
Since first‐order methods often get stuck at saddle points, greatly deteriorating their performance, 
an alternative to adding perturbations is to use second‐order methods. However, most works on 
second‐order methods rely extensively on expensive Hessian‐based computations, making them 
impractical in large‐scale settings. To tackle this challenge, we introduce a generic framework that 
minimizes Hessian based computations while at the same time provably converging to second‐
order critical points [12]. Our framework carefully alternates between a first‐order and a second‐
order subroutine, using the latter only close to saddle points, and yields convergence results 
competitive to the state‐of‐the‐art. Empirical results suggest that our strategy also enjoys a good 
practical performance.  

 
While the previous analysis is general and applies to any black-box function with certain mild 
properties, it is not known if neural networks satisfy those properties. So we specifically consider 
the problem of learning a one‐hidden‐layer neural network with non‐overlapping convolutional 
layer and rectified linear unit activation. We show that despite the presence of the spurious local 
minimizer, gradient descent with weight normalization from randomly initialized weights can still 
be proven to recover the true parameters with constant probability, which can be boosted to 
probability 1 with multiple restarts [8]. We also show that, with constant probability, the same 
procedure could also converge to the spurious local minimum, showing that the local minimum 
plays a non-trivial role in the dynamics of gradient descent. Furthermore, a quantitative analysis 
shows that the gradient descent dynamics has two phases: it starts off slow, but converges much 
faster after several iterations.  

 
Next, we analyzed the generalization error of a simple convolution filter and an one‐hidden‐layer 
convolutional neural network with linear activation [18] and provide first formal evidence that the 
success of convolutional neural network is because it is a more compact representation than the 
fully connected neural network and thus requires fewer samples for learning.  

 
We also formalized a statistical model for generative adversarial networks, starting from studying 
the problem of estimating a nonparametric probability distribution under a family of losses called 
Besov integral probability metrics [20]. This family is quite large, including, for example, Lp 
distances, total variation distance, and generalizations of both Wasserstein (Earthmover's) and 
Kolmogorov‐Smirnov distances. For a wide variety of settings, we determined the mini‐max 
optimal convergence rate of this estimation problem. We also showed that in many cases linear 
distribution estimates, such as the empirical distribution or kernel density estimator, cannot 
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converge at the optimal rate. We also showed that integral probability metrics can be used to 
formalize a statistical model of generative adversarial networks. As a result, the above theorems 
imply bounds on the statistical error of a generative adversarial network, showing, for example, 
that, in many cases, generative adversarial networks can strictly outperform the best linear 
estimator.  

 
Deep neural networks are increasingly being used to model black-box functions. Examples include 
modeling brain response to stimuli, material properties under given synthesis conditions, and 
digital art. In these applications, often the model is a surrogate and the goal is rather to optimize 
the black-box function to achieve the desired brain response, material property, or digital art 
characteristics. Moreover, resource constraints imply that, rather than training on a passive dataset, 
one should focus subsequent sampling on the most informative data points. In the Bayesian setting, 
this can be achieved by utilizing the ability of Bayesian models such as Gaussian processes to 
model uncertainty in observed data via posterior variance, which can guide subsequent sampling.  
While a simple approach is to learn a deep model on passively acquired evaluations of the function, 
and then report its optima, this is wasteful as often the black-box evaluations are expensive (c.f., 
subject time in a brain scanner is limited, material synthesis experiments are expensive, etc.). Also, 
often pre-trained models of black-boxes need to be updated subsequently to identify inputs that 
may lead to novel outputs not explored in training set. For example, in material science a model 
trained to predict the energy of a pure lattice may need to be updated to understand new low-energy 
configurations achievable under defects, or deep neural net models of images may need to be 
updated to achieve desired characteristics of synthetic digital images. Sequential optimization of 
neural network models re-quires an acquisition function, similar to Bayesian optimization. 
However, popular acquisition functions (UCB, expectation maximization, Thompson sampling, 
etc.) are mostly based on an uncertainty measure or confidence. bound which characterizes the 
variability of the predictions. However, uncertainty estimates for deep neural networks are largely 
lacking or are very expensive to compute. For example, softmax probabilities are found to be not 
well-calibrated and bootstrap or cross-validation estimates require re-training the network several 
times which is often computationally prohibitive. We seek to investigate principled and 
computationally efficient estimators of uncertainty measures (like variance of prediction), that can 
then be used to guide subsequent sampling for optimization of black-box functions. 
  
We use the concept of influence functions from classical statistics to estimate the variance of neural 
network outputs which can be computed efficiently without retraining the network, and design a 
black-box optimization algorithm similar to confidence bound-based Bayesian algorithms. It is 
known that if the loss function is twice-differentiable and strictly convex, then the influence 
function has a closed-form approximation, and the influence-function based estimate provides an 
asymptotic approximation of the variance of prediction. Even though the loss function of neural 
networks is non-differentiable and non-convex, it was recently shown that in practice, the 
approximation continues to hold for this case. Our method [23] can outperform Bayesian 
optimization approaches for complex synthetic and real-world optimization problems since neural 
networks provide a better model for such complex scenarios. Our contributions can be summarized 
as follows: 
 

(i) We use influence functions to obtain a computation-ally efficient approximation of 
prediction variance in neural networks. 
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(ii) We propose a computationally efficient method to compute influence functions for 
neural network pre-dictions. Our approach uses a low-rank approximation of the 
Hessian, which is represented using an auxiliary network, and trained along with the 
main network. 

(iii) We develop a deep black-box optimization method using these influence function 
based uncertainty estimates that is valid in the non-Bayesian setting. 

(iv) We demonstrate the efficacy of our method with experiments, and show that our 
method can be com-parable to, and also outperforms Bayesian optimization in settings 
where neural networks may be able to model the underlying function better than GPs. 

(v) We demonstrate that our variance approximation can be used in the setting of active 
learning with experiments on real-world material synthesis data. 
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4.0 RESULTS AND DISCUSSION 
 
In addition to the theoretical results quantifying the sample complexity of the methods we 
develop, the data-efficient interactive methods we developed were demonstrated to be practically 
successful in various simulated settings as well as real world applications including age 
estimation from face images, price estimation for AirBnB ads, human trafficking as well as 
critical care informatics, as mentioned above.  We refer to the papers cited herein and included in 
Appendices for details and extensive results, only highlighting some of the results here.  

 
In a critical care setting, we considered the task of estimating a patient’s disease severity level 
from 1 (min) to 4 (max) by using direct queries to clinicians of the form “How sick is this 
patient?” as well as indirect queries of the form “Which parent is sicker?” given access to their 
vital signs data. Specifically, 2 expert clinicians were shown 793 real alerts in non-invasive 
continuous vital signals data as shown below on left (Figure 1), collected in a 24 bed 
surgical/medical trauma step down unit over a period of 3 months. The patient’s ground truth 
severity level on a scale from 1 to 4 was available in records based on actual outcomes as shown 
on right (Figure 2).  
 
 

 
Figure 1. Continuous vital signals data for a single patient shown to experts. 

 
 



 

Approved for Public Release; Distribution Unlimited.   
16 

 

 
Figure 2. Distribution of ground truth severity level. 

 
 
The hypothesis is that easier questions (such as comparisons) can be carried out with less effort 
and more confidence, yielding more accurate data for training machine learning models. The 
results of our analysis are shown below for training machine learning models using direct queries 
only vs. direct + comparison queries. Lesser effort was needed for comparisons and the x-axis has 
been adjusted to reflect total effort needed in terms of direct labels (i.e. 384 comparisons required 
effort equivalent to 180-116 = 64 direct label queries). As can be seen, active learning using 
comparisons and direct queries is able to save considerably on the total clinician effort needed for 
the task. 
 
 

 
Figure 3. Comparison of Receiver Operating Characteristic (ROC) Area Under the Curve 

(AUC) for the standard active learning algorithm and comparison-based learning 
algorithm with direct and comparison clinician feedback on patient data 
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In another application, we considered the task of predicting the biological age of a person given 
his face image using the Apparent-Real age tagged face image (APPA-REAL) dataset which 
consists of 7,591 images, and each image is associated with a biological age and an apparent age. 
The biological age is the person’s actual age, whereas the apparent ages are collected by asking 
crowdsourced workers to estimate their apparent ages. The images are divided into 4,063 train, 
1,488 validation and 1,962 test samples. We use the apparent ages to get a ranking of the images, 
in addition to selective direct biological ages. The figure 4 below shows the error in estimating the 
biological image using direct queries only (5 and 10-Nearest Neighbor (NN)) and direct queries + 
ranking information (our method, Ranking-Regression (R2), called R2 5-NN and R2 10-NN below). 
Again, we see significant improvement when using ranking information.  

 
Figure 4. Error in estimating the biological image using direct queries only (5 and 10-NN) 

and direct queries + ranking information (our method called R2 5-NN and R2 10-NN). 

 
 

 
Figure 5. Error in estimating the AirBnB price using direct queries only (k-NN) and direct 

queries + ranking information (our method called R2) 
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We also applied our methods to predict the price of an AirBnB listing. We use 357 listings as the 
training set and 93 as the test set. We collected direct labels and comparisons using mechanical 
turk. We observe that, in this case, both direct queries and comparisons take the same amount of 
time (probably as the time to read each posting is the dominant time factor), however comparisons 
were 10% more accurate than direct labels. We again observe that out method R2 had a significant 
performance both boost over the best nearest neighbor regressor under the same total worker time 
(see figure 5 above, here m denotes number of direct queries).  
 
Finally, we also report on some simulated and real data results for interactive optimization using 
deep neural networks. In the figure 6 below, we compare our method that uses influence functions 
to guide further sampling for optimizing a black-box synthetic function modeled by a neural 
network to competing Bayesian optimization approaches which use Gaussian process as the model. 
We observe that even though Neural Networks (NNs) require initial warm-up data to obtain a good 
initial model, further updates to that model using selective data quickly outperform competing GP 
based approaches (INF, LCB, MPI and EI), where INF denotes Influence Function, LCB denotes 
Lower Confidence Bound, MPI denotes Maximum Probability of Improvement and EI denotes 
Expected Improvement. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
Similarly, on a real world Modified National Institute of Standards and Technology database 
(MNIST) data of hand-written digits (figure 7 below), we see that the influence function (INF) 
driven neural network model (when pre-trained to classify digits 1 and 8) is able to quickly select 
input images to maximize the probability of chosen image to be of digit 3 with higher probability 
than competing GP optimization method (LCB). 
  

Synthetic function - Ackley 5D 

Figure 6. Error achieved by our method (NN-INF) compared to competing GP based 
methods for a synthetic function 
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5.0 CONCLUSIONS 
 
This project developed methods for interactive machine learning where instead of simply learning 
input-output mappings and associations given data that is collected a priori to any analysis, 
machine learning algorithms made high-level decisions about which data should be collected that 
is most informative to the learning task at hand. The methods we developed came with principled 
theoretical guarantees which illuminated the settings under which data-efficient learning was 
possible by precisely quantifying the sample complexity improvements over learning from 
passively collected datasets under reasonable assumptions. A wide variety of learning problems 
were considered ranging from density estimation, classification, regression, optimization and 
bandit problems. Furthermore, this was achieved by leveraging multiple diverse forms of 
interactions of the algorithms with the data-generating process including direct label queries, 
indirect comparisons and rankings, as well as unsupervised feature and similarity queries. 
However, such interactive analysis only scratches the surface of learning from diverse forms of 
interactive feedback – many other modes of interaction that govern human learning include 
relations, partial knowledge graphs, instructions, demos, etc. To achieve the next level of artificial 
intelligence it is critical to introduce a new paradigm of intelligent interactive machine learning 
algorithms that learn continually via such rich and complex feedback and make high-level 
decisions in collaboration with humans. 
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Figure 7. Likelihood achieved by our method (NN-INF) compared to competing GP based 
method for MNIST dataset 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
APPA-REAL Apparent-Real age tagged face image dataset 
AUC Area Under the Curve 
COMP-GP-UCB Comparison based Gaussian Process with Upper Confidence Bound 
EI    Expected Improvement 
GP    Gaussian Process 
INF   Influence function based approach 
LCB   Lower Confidence Bound 
MNIST  Modified National Institute of Standards and Technology database 
MPI   Maximum Probability of Improvement 
R2    Ranking Regression 
ROC Receiver Operating Characteristics 
UCB   Upper Confidence Bound 
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