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Major Goals:  Multiphase problems are ubiquitous in science and engineering. In all cases these problems are 
characterized by interfaces that evolve, thus any simulation procedure developed to address them must be able to 
effectively track the interfaces. In cases where the key interface physics is limited to the motion of the interface 
between phases (e.g., breaking waves, hydraulic jumps, plunging jets, etc.) modeling methods that employ an 
implicit representation of the phase interfaces have been successfully developed. These methods are popular 
because they avoid the geometric complications of explicitly tracking interfaces. Since the implicit methods smear 
the interface physics over a mesh size dependent portion of the domain, they are less well suited for use in 
simulating problems where the physics of interest is highly localized to the interface and/or the details of the 
interface geometry must be carefully reflected in the models and discretizations (meshes) being used. Many 
problems of interest involve reactive interfaces where different physics on each side of the interface must be 
addressed in the phase models (e.g. a burning interface). The application of methods that employ an explicit 
representation of the interfaces can more directly, and accurately, model the desired interface physics.  An explicit 
representation of the interface geometry is also of importance to maintain when there is relative motion of objects in 
close proximity to each other and the quantities of interest are a function of the shape of the interfaces and quality 
of meshes used between the interacting objects.   The central focus of this project has been the development of a 
set of models and model discretization methods for the effective simulation of multiphase of three-dimensional 
problems in which interfaces are explicitly represented and tracked. 



To effectively meet the goals the following technologies needed to be developed:

• Thermodynamically consistent mathematical models capable of representing the physics of reactive interfaces 
while accounting for the mass, momentum and energy transfer on each side of the interface.

• Discretization methods that can effectively represent the interface physics, including appropriate discontinuities 
without introducing undue cost through the entire domain discretization when using mesh based methods.
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• Mesh control methodologies that can be effectively coupled with explicit interface geometry tracking methods to 
adaptively control anisotropic mesh configurations.



To satisfy the computational requirements the resulting procedures have been developed to execute in parallel as 
part of a coordinated simulation workflow. A final aspect of the project was the demonstration of the methods 
developed on problems with reactive interfaces and problems with evolving geometries where accurate geometry 
tracking and mesh configurations are needed.
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Accomplishments:  In this project we have developed adaptive methods to solve the multiphase problem where 
the dynamic interface is undergoing a change of phase or involves relative motion between different 
surfaces/objects. 



Finite element formulation for compressible phase change problems



We have developed a thermodynamically consistent formulation of jumps in thermo-mechanical quantities at an 
interface between two materials, where the interface represents a surface of phase change or that of a chemical 
reaction. We have done so for general (solid or fluid) compressible media. We have developed and implemented a 
variational formulation of these jump terms in a parallel fluid flow solver (PhaseChangePHASTA). These jump 
conditions translate to discontinuities in certain thermo-mechanical variables such as density, normal velocity, and 
pressure. Most prevalent implementations of these jump terms smear these discontinuities over a fictitious region 
confined around the interface whose width is numerically motivated. In this region, these approaches are forced to 
assume the existence of a mixture whose material behavior (constitutive models, equations of state) is an ad-hoc 
combination of the material on either side of the interface.



We have chosen not to adopt this approach. Rather, we allow for discontinuous interpolation across the evolving 
interface. As a result, we do not have to assume the existence of a fictitious material. We implement the jump terms 
using a discontinuous Galerkin (DG) finite element method and explicitly represent and track the interface. We note 
that within our approach the discontinuity is introduced only at the location of the interface (as it is explicitly 
tracked). In this way our approach is more economical than the standard DG finite element method.



We have analyzed the conservation properties of this method and demonstrated that up to errors in time-
discretization it exactly balances the global mass, momentum and energy between the phases. We have also 
developed a priori error estimates for this method on a related, linear advection-diffusion problem and shown that 
the error in the numerical approximation converges at an optimal rate in an operator-induced discrete norm. In 
addition, we have also developed an inexpensive a posteriori error estimator (an explicit one) and used it to drive 
mesh adaptivity.



We note that our formulation can accommodate cases where the phase change rate at the interface is determined 
by the local thermodynamic variables, as is the case in Vielle’s law. Further, we have considered the limited 
application of our approach to problems where the dense phase is a solid. In order to model solids, we have 
developed a formulation wherein the velocities are mapped to displacements, which are necessary to evaluate the 
stress components for a solid. 



Accompanying methods for evolving mesh and geometry 



A necessary capability in an explicit interface tracking approach, like the one described above, is the evolution of 
the geometry and mesh during the simulation. The geometry can evolve in shape and topology. Similarly, the mesh 
can evolve in shape and topology/connectivity. Our focus to this point has been on developments and problems 
that involve shape changes in the geometry along with shape and topological changes in the mesh. For these 
capabilities we have integrated PhaseChangePHASTA with geometry and mesh libraries developed at RPI (i.e., 
PUMI) and Simmetrix (i.e., GeomSim and MeshSim). The latter set of libraries were developed under an Army 
STTR Phase II project lead by Simmetrix and were fully utilized in this ARO project.



The geometry of the evolving interface due to phase change is based on a discrete boundary description where the 
mesh moves with the interface, while within the volume arbitrary mesh motion is used based on an arbitrary 
Lagrangian-Eulerian (ALE) frame. To tackle this most effectively the mesh motion procedures employed used a 
variable stiffness elasticity analogy which does a good job of controlling element shapes for interface evolution over 
a number of time steps. However, this form of mesh motion does not fully maintain the structure and desired 
normal resolution in the layered portion of the mesh at the interface. Thus, a procedure that uses connectivity of 



growth curves (in the layered mesh) has been derived and implemented to explicitly control the structure and 
normal resolution (including gradation) near the interface when the interface is changing shape. 

  

Mesh motion alone can only support a given amount of evolution in the interface/geometry. Thus, during the 
simulation it is required to employ methods that modify the mesh topology to maintain mesh quality and validity, as 
well as to ensure the appropriate mesh resolution based on adaptivity. We have integrated the parallel mesh 
adaptation procedures with PhaseChangePHASTA to support mesh adaptation steps with topological changes. In 
addition, the overall control loop, with all steps executing in parallel has been developed. In this loop, mesh 
adaptations with topological changes are carried out in an outer loop inside which an inner loop of mesh motion is 
employed over multiple time steps of flow solver. Furthermore, procedures have been developed for an efficient 
monitoring of the mesh to determine mesh adequacy during the simulation in order to automatically trigger mesh 
adaptation with topological changes.



In addition to phase change-related geometric changes, geometric changes can occur due to relative motion 
between different surfaces. An example is the case of the projectile moving down the tube or barrel of a firearm. In 
such cases the geometry is effectively described using a parametric boundary description (in contrast to a discrete 
representation of an arbitrarily evolving interface). This parametric representation is used to advantage when the 
elasticity based mesh motion predicts off-surface locations for boundary mesh vertices. To maintain locations on 
the appropriate surface we have integrated PhaseChangePHASTA with the geometry library and use geometric 
interrogations to ensure boundary mesh vertices remain on the parametric.



Simulation of problems of interest



We have worked on several problems that are used to verify, validate and demonstrate the tools we have 
developed. These include, (a) Stefan problem, which is a one-dimensional problem whose results are used to verify 
our formulation. (b) Exothermic phase change of a spherical droplet, which is a three-dimensional counterpart of 
the Stefan problem in spherical coordinates. (c) Burning of multiple grains in a chamber. This is a fully three-
dimensional problem that is used to test the performance of our algorithms in a complex setting. It is also used to 
verify whether we are able to accurately predict the pressure and temperature rise in the chamber. (d) Modeling of 
the motion of a projectile down the barrel of a firearm. This problem thoroughly tests our mesh motion and 
adaptation capabilities along with mesh snapping to parametric geometry. 



We have also demonstrated these technologies and problems to the US Army researchers at Benet Labs. In 
general, these capabilities are of direct interest to US Army CCDC Armaments Center researchers including those 
at Benet Labs. In addition, the developed technologies are also of interest to other US Army researchers and code 
developers, and specific relevant procedures have been integrated with the CREATE-AV Helios code and ERDC 
Coastal and Hydraulics Lab’s Proteus code under a DoD HPCMP PETTT project.
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Training Opportunities:  The current project has provided direct support for three doctoral students who have 
been trained in the broad area of computational science and engineering. Further, one postdoctoral researcher was 
trained, and has been provided professional opportunities (advising/mentoring, conference presentations, etc.) to 
enhance his career. In addition, several (bachelors, masters and doctoral) students, who were supported on other 
related DoD projects (including a DoD HPCMP PETTT project), have been able to interact with this project's team 
and develop supporting simulation technologies for other application areas of direct interest to the US Army. Some 
of these students have been hired, or offered a position, by different US Army groups including Steven Tran who 
was hired in the CREATE-AV Helios code team, Alvin Zhang who has accepted a position at ERDC's Coastal and 
Hydraulics Lab, and Erik Larrabee who is being considered for a position at Benet Labs.
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Results Dissemination:  The results of this project have been disseminated through the following mechanisms:

• Publications

• Presentations

• Software made available to Army collaborators

• Meetings with Army collaborators



See the technology transfer section for a summary of the interactions with Army collaborators. 



The following indicates publications related to this project in three groups:

• Direct project publications

• Subset of publications on the technologies being developed that support this project

• Publications discussing applications of interest to the Army

There is also a list of project conference and other relevant presentations. 



Project Papers



Granzow, B.N., Oberai, A.A, & Shephard, M.S. (2019). An Automated Approach for Parallel Adjoint-Based Error 
Estimation and Mesh Adaptation. Accepted Eng. Computers. 



Chandra, A., Keblinski, P., Sahni, O., & Oberai, A. A. (2019). A continuum framework for modeling liquid-vapor 
interfaces out of local thermal equilibrium. Int. J. Heat and Mass Transfer, 144, 118597.



Zhang, Y., Chandra, A., Yang, F., Shams, E., Sahni, O., Shephard, M., & Oberai, A. A. (2019). A locally 
discontinuous ALE finite element formulation for compressible phase change problems. J. of Comp. Physics, 393, 
438-464.



Carson, R. A., & Sahni, O. (2017). Scaling Laws for the Peak Overpressure of a Cannon Blast. J. of Fluids Eng., 
139(2), 021204. 



Yang, F., Chandra, A., Zhang, Y., Tendulkar, S., Nastasia, R., Oberai, A.A., Shephard, M.S., &

Sahni, O. (2019). A Parallel Interface-tracking Approach for Evolving Geometry Problems. Accepted Eng. 
Computers.



Supporting Technology Development Papers 



Granzow BN, Oberai AA, Shephard MS. Adjoint-based error estimation and mesh adaptation for stabilized finite 
deformation elasticity. Comp. Meth. App. Mech. Eng.. 2018 1;337:263-80. 



Granzow BN, Shephard MS, Oberai AA. Output-based error estimation and mesh adaptation for variational 
multiscale methods. Comp. Meth. App. Mech. Eng.. 2017 1;322:441-59.



Li J, Jagalur-Mohan J, Oberai AA, Sahni O. Stochastic variational multiscale analysis of the advection–diffusion 
equation: Advective–diffusive regime and multi-dimensional problems. Comp. Meth. App. Mech. Eng.. 2017 1;325:
766-99. 



Smith, C.W., Granzow, B., Diamond, G., Ibanez, D., Sahni, O., Jansen, K.E. and Shephard, M.S., 2018. In?
memory integration of existing software components for parallel adaptive unstructured mesh workflows. 
Concurrency and Computation, 30(18), p.e4510.



Smith, C.W., Rasquin, M., Ibanez, D., Jansen, K.E. and Shephard, M.S., 2018. Improving unstructured mesh 
partitions for multiple criteria using mesh adjacencies. SIAM J. Scientific Computing, 40(1), pp.C47-C75.



Sahni, O., Ovcharenko, A., Chitale, K.C., Jansen, K.E. and Shephard, M.S., 2017. Parallel anisotropic mesh 
adaptation with boundary layers for automated viscous flow simulations. Eng. Computers, 33(4), pp.767-795.



Ibanez, D.A., Seol, E.S., Smith, C.W. and Shephard, M.S., 2016. PUMI: Parallel unstructured mesh infrastructure. 
ACM Trans. Math. Software, 42(3), p.17.






Related Papers of interest to the Army 



Misiorowski, M, Gandhi F, Oberai AA. Computational Study on Rotor Interactional Effects for a Quadcopter in 
Edgewise Flight. AIAA J. 2019 Aug 23:1-1. 



Misiorowski, M., Gandhi, F., and Oberai, A., “Computational Analysis and Flow Visualization of Ducted a Rotor in 
Edgewise Flight,” J. AHS, 64, 042004 (2019). 



Misiorowski, MP, Gandhi FS, Oberai AA. Computational Study of Diffuser Length on Ducted Rotor Performance in 
Edgewise Flight. AIAA J.. 2018 Dec 31;57(2):796-808.



Tran, S. and Sahni, O., “Finite Element based Large Eddy Simulation using a Combination of the Variational 
Multiscale Method and the Dynamic Smagorinsky Model”, J. Turbulence, 18(5), 391-417, 2017.



Tran, S., Cummings, R. and Sahni, O., “Finite Element based Large Eddy Simulation of Flow over Bluff Bodies”, 
Comp. Fluids, 158, 221-235, 2017.



Conference Presentations



Exploring the effect of temperature discontinuity at interfaces in transient liquid-vapor phase change processes. C., 
Anirban, Z. Liang, A. Oberai, O. Sahni, and P. Keblinski. APS (2019).

Analysis-driven geometry and meshing for large scale simulations. S. Tendulkar, M. Beall, R. Nastasia, B. Downie, 
O. Klaas, M. Shephard, and O. Sahni. Proc. NAFEMS World Congress, Quebec, Jun 2019.

New Application Domains for the Variational Multiscale Method. Assad A. Oberai. WCCM 2018, NY, NY, July 2018.



Solving phase change problems using stabilized finite elements with improved interfacial conditions. C., Anirban, A. 
Oberai, P.l Keblinksi, and O. Sahni. APS DFD (2018).



An interface-tracking computational infrastructure for compressible multiphase processes. Yang, F., Chandra, A., 
Zhang, Y., Tendulkar, S., Nastasia, R., Oberai, A., Sahni, O. (2018, November). APS DFD.



Recent Efforts on Curved Element Mesh Adaptation, M.H. Siboni, K. Kamran, A. Dahale, O. Sahni & and M.S. 
Shephard, WCCM, NY, NY, July 23, 2018.



Geometry and Mesh Representation for High Order Methods.  M.S. Shephard and M.W. Beall, WCCM, NY, NY, 
July 25, 2018.



A Parallel Geometry and Mesh Infrastructure for Explicit Phase Tracking in Multiphase Problems. Yang, F., 
Chandra, A., Zhang, Y., Shams, E., Tendulkar, S., Nastasia, R., Sahni, O. (2017, November). APS DFD.



Mesh Motion and Adaptation for Two-Phase Flow Problems with Moving Objects, O. Sahni, A. Zhang, M.S. 
Shephard and C. Kees, SIAM CSE17, 2017 SIAM Conf. on Comp. Sci. and Eng., Atlanta, GA, USA, Feb-Mar 2017.



A Stabilized Finite Element Method for Compressible Phase Change Problems.  Zhang, Y., Yang, F., Chandra, A., 
Shams, E., Shephard, M., Sahni, O., & Oberai, A. (2017, Nov.).  APS DFD.



Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems. Chandra, 
A., Yang, F., Zhang, Y., Shams, E., Sahni, O., Oberai, A., & Shephard, M. (2017, Nov.).  APS DFD.



Stabilized Finite Element Methods for Compressible Phase Change Phenomena, E. Shams, F. Yang, Y. Zhang, A. 
Chandra, M. Shephard, O. Sahni & A. Oberai, 14th US Nat. Con.  Comp. Mech., Montreal, July 2017. 



Fast Dynamic Load Balancing Tools for Extreme Scale System. C. Smith, G. Diamond and M.S. Shephard. SIAM 
Conf. on Comp. Science and Eng., Atlanta, GA, March 1, 2017 



Parallel Geometry and Meshing Adaptation with Application to Problems with Evolving Domains. S. Tendulkar, O. 
Klaas, and M.W. Beall, and M.S. Shephard. SIAM Conf. on Comp. Sci.and Eng., Atlanta, GA, March 3, 2017.



Unstructured finite element simulations of compressible phase change phenomena. Shams, E., Yang, F., Zhang, 
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Y., Sahni, O. Shephard, M., Oberai, A. APS DFD, 2016, Boston, MA. 



A Finite Element Method for Simulation of Compressible Cavitating Flows, E. Shams, F. Yang, Y. Zhang, O. Sahni, 
M. Shephard and A. Oberai, APS DFD, Portland, OR, Nov. 20, 2016.



C.W. Smith, B. Granzow, D. Ibanez, O. Sahni, K.E. Jansen and M.S. Shephard, “Building Parallel Unstructured 
Adaptive Workflows Using In-memory Integration of Existing Software Components”, NSF XSEDE 16 Conf., Miami, 
FL, USA, July 2016



M.S. Shephard, C.W. Smith, D.A. Ibanez, B. Granzow, M.W. Beall, and S. Tendulkar, “Developing scalable 
components for massively parallel adaptive simulations”, Proc. NAFEMS World Congress, San Diego, CA, 10 
pages, 2015.



Unstructured finite element simulations of compressible phase change phenomena. Shams, E., Yang, F., Zhang, 
Y., Sahni, O., Shephard, M., & Oberai, A., 2015,  APS DFD.



Additional Relevant Presentations 



New Application Domains for the Variational Multiscale Method. A.A. Oberai. CSRI, Sandia National Labs, 
Albuquerque, July, 2017.



Adaptive Unstructured Approaches for Problems with Fluid-structure and Multiphase Interactions at Extreme Scale. 
O. Sahni and M.S. Shephard. ERDC Fluid-Structure Interaction Workshop (organized by Chris Kees), Vicksburg, 
MS, USA, Apr. 2016



Towards High-order Adaptive Analysis of Complex Boundary Layer Flows at Extreme Scale. O. Sahni. NASA 
Langley, Hampton, VA, USA, Feb. 2016
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Honors and Awards:  Assad Oberai: American Institute for Medical and Biological Engineering (AIMBE) College 
of Fellows, 2016.



Mark Shephard: Member of the faculty team that won the 2016 School of Engineering Outstanding Team Award, 
RPI.



Mark Shephard: Associate Editor, Siam Journal on Scientific Computing, 2018

Protocol Activity Status: 

Technology Transfer:  The simulation software developed in this project (i.e., PhaseChangePHASTA) has been 
made available to the US Army researchers, specifically to the technical staff at Benet Labs. 
PhaseChangePHASTA code is provided in a pre-installed fashion including a set of relevant test cases on RPI’s 
computer systems and along with the latest release of meshing and geometry libraries (that were developed by 
Simmetrix under a complementary STTR Phase II project) in the form of a complete simulation workflow. 



Several presentations and demonstrations were provided to US Army researchers at Benet Labs providing project 
accomplishments and detailing simulations of burning grains and moving projectile. Further, video tutorials have 
been created and provided for all the relevant steps ranging from geometry and mesh creation to performing 
adaptive analysis to post-processing. A pair of live demonstrations were also made for the simulation of moving 
projectiles. 



We further note that the simulation technologies developed in the current project are also of interest to other US 
Army researchers and code developers, and under a synergistic DoD HPCMP PETTT project certain procedures 
have been integrated with the CREATE-AV Helios code and ERDC Coastal and Hydraulics Lab’s Proteus code. 
We continue to interact with the Helios and Proteus code developers including Dr. Andrew Wissink, Dr. Vinod 
Lakshminarayan and Dr. Chris Kees. Specifically, we continue to interact to provide near-body error estimation and 
mesh adaptivity for the Helios code to support rotory wing simulations as well as error estimation, predictive 
resolution and mesh adaptivity for the Proteus code to support two-phase simulations of three-dimensional wave 
and river current processes interacting with floating structures (i.e., evolving geometry).
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a b s t r a c t

Continuum numerical methods modeling liquid-vapor phase change processes typically assume local
thermal equilibrium at the liquid-vapor interface – continuity of temperature at phase interfaces, and
a relation between interfacial saturation pressure and temperature based on phase co-existence curves.
Several standard macroscopic problems have been solved accurately by adhering to this assumption.
However, in micro-scale and certain non-standard macro-scale applications, significant jumps in temper-
ature are observed at liquid-vapor interfaces during phase change, and vapor pressure can be far from
equilibrium values. In this paper, we present a locally discontinuous arbitrary Lagrangian Eulerian finite
element formulation with temperature discontinuities at interfaces. A penalty-based approach is used to
weakly enforce the temperature jump condition. Furthermore, we use kinetic-theory-based Schrage rela-
tionship to evaluate the rate of phase change. We apply our methodology to solve the problem of flowing
vapor in a planar heat pipe. The flow rates predicted by our continuum simulations are in excellent agree-
ment with recently published molecular dynamics simulation results of the same problem. Interestingly,
accounting for temperature discontinuities leads to only a slight improvement in the prediction of mass
fluxes as compared to the case when temperature continuity is assumed. This is in contrast to the large
improvement in the prediction of temperature profiles and is a consequence of a weak dependence of the
evaporation/condensation rates on the vapor temperature.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Phase change processes such as evaporation, condensation and
sublimation are ubiquitous and have found applications in varied
disciplines including climatology [1], agriculture [2], astronomy
[3], medical therapy [4], thermal management [5] etc. Understand-
ing phase transitions at liquid-vapor interfaces has been the focus
of experimental [6,7], numerical [8,9] and theoretical [10,11] stud-
ies. The resulting behavior is often analyzed in terms of kinetic
models for evaporation/condensation. The first model was formu-
lated over a century ago based on the work of Knudsen and Hertz,
resulting in the Hertz-Knudsen relation [12]. This relationship was
developed based on thermodynamic and kinetic considerations,
and was later modified by Schrage [13] to account for non-zero
macroscopic velocity of the vapor which resulted in the Hertz-
Knudsen-Schrage relationship.

The validity of the Hertz-Knudsen relation and Schrage relation-
ships is still a subject of active research [14] and debate. Neverthe-
less, it is generally accepted that during a non-equilibrium
evaporation process there is a temperature discontinuity (temper-
ature jump) at the liquid-vapor interface [6]. Both, positive [15]
and negative [7] temperature jumps have been observed experi-
mentally. However, most continuum numerical methods for mod-
eling liquid-vapor phase change assume continuity of temperature
at phase interfaces [16,17]. Moreover, the value of interfacial tem-
perature often is determined by the saturation pressure of the liq-
uid [18]. In other words, the liquid-vapor interfaces is assumed to
be in local thermal equilibrium. Sometimes deviation from equilib-
rium, TI – Tsat , is considered while still maintaining temperature
continuity across interfaces [19]. In microscopic phase change
problems such as droplet evaporation, the assumption of continu-
ity of temperature at the liquid vapor interface might lead to non-
negligible errors [20,21].

In this article we introduce a stabilized finite element based
continuum numerical method capable of modeling liquid-vapor
phase change where we relax the assumption on the temperature

https://doi.org/10.1016/j.ijheatmasstransfer.2019.118597
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continuity at the interface. In the development of our approach,
due to lack of a generalized law for prescribing the temperature
jumps at the interface [19,11], we use an approximate law for tem-
perature jump proposed by Liang et al. [8] which was derived
based on the results of molecular dynamics (MD) simulations
and thermodynamic analysis. Liang et al. also observed that
Schrage relationship very accurately describes the evaporation/
condensation rates, and presented detailed results on mass and
heat flow in the planar heat pipe geometry. Therefore we use the
results from Liang et al. as ‘‘numerical experiments” to validate
our continuum-level framework.

The format of the remainder of this manuscript is as follows. In
the next Section we present mathematical formulation of the prob-
lem. The model system is described in Section 3, while results and
associated discussion are presented in Section 4. Finally, in Sec-
tion 5 we present summary and conclusions.

2. Mathematical formulation

In this paper, we closely follow the formulation of the locally
discontinuous arbitrary Lagrangian Eulerian (ALE) finite element
method [22] which was developed for modeling generalized phase

change processes. Let Xl and Xv denote the liquid and vapor phases
respectively, and CI the singular interface(s) between them. The

Navier-Stokes equations are solved in each phase, Xl and Xv , and
can be expressed as,

U ;t þ ðFadv
i � Fdiff

i Þ;i ¼ S; ð1Þ

where U represents the vector of conservative variables for the
mass, momentum and energy equations. Flux vector in each Carte-
sian direction is denoted by F i with superscripts ‘diff’ and ‘adv’ rep-
resenting the diffusive and advective contributions respectively.
The source term is indicated by S. The subscript ‘; t’ denotes a tem-
poral derivative. Subscripts ‘; i’ with i ¼ 1;2;3 denote spatial deriva-
tives; repeated indices imply a summation. The fluxes and
conservative variables are defined as,

U ¼q

1
u1

u2

u3

etot

2
6666664

3
7777775
; Fadv

i ¼qui

1
u1

u2

u3

etot

2
6666664

3
7777775
þp

0
d1i
d2i
d3i
ui

2
6666664

3
7777775
; Fdiff

i ¼

0
s1i
s2i
s3i
sijuj

2
6666664

3
7777775
þ

0
0
0
0
�qi

2
6666664

3
7777775
;

ð2Þ

where p is pressure, q is density, u is the flow velocity vector, dij is
the Kronecker delta, sij are components of the viscous stress tensor
for a Newtonian fluid, etot ¼ eint þ 1

2uiui is the total energy per unit
mass, and qi ¼ �jT ;i are components of the heat flux vector with
j being the thermal conductivity.

Conservation laws at the interface can be written as,

sFadv
i � Fdiff

i ti ¼ v I
isUti; ð3Þ

where the jump operator, s � ti, is defined as,

s � ti ¼ ð�Þlnl
i þ ð�Þvnvi : ð4Þ

Here nl is outward normal to the liquid at CI , with nv ¼ �nl, and v I
i

represents the components of interface velocity. Our prescription of
interface velocity is described later in this Section. Superscripts rep-
resent the phase – liquid or vapor. To solve these equations, we
introduce a 5� 1 vector, Y , of primitive variables - pressure, compo-
nents of velocity, and temperature. Introduction of these variables
will simplify prescription of certain interfacial conditions.

In addition to the above conservation laws and appropriate
boundary conditions, kinematic conditions at the interface are
required. A generalized version of this condition can be written as,

sCYti ¼ Hi; ð5Þ

where the operator C, a 5� 5 tensor, is defined as,

C ¼
0 0T 0
0 I � nl � nl 0
0 0T 1

2
64

3
75: ð6Þ

Hi as,

Hi ¼

0
0
0
0
hT

2
6666664

3
7777775
nl
i ¼ hnl

i: ð7Þ

and the variable Y as,

Y ¼

p

u1

u2

u3

T

2
6666664

3
7777775
: ð8Þ

The tensor I in Eq. (6) is a 3� 3 identity tensor.
The left hand side of Eq. (5) evaluates the jump in tangential

velocities and temperature across CI while the right hand side pre-
scribes the value of this jump. In general, the 2nd, 3rd and 4th
entries of h can be non-zero if we have a slip-boundary condition;
this effect is not considered in the current study. We do not explic-
itly control the jump in interfacial pressure, so the LHS and RHS of
first row of Eq. (5) is identically zero. hT , the fifth component of h,
represents the jump in temperature at the liquid vapor interface as
demonstrated next. Expanding the fifth component/row of Eq. (5)
results in,

sTti ¼ Tlnl
i þ Tvnvi ¼ hTnl

i

Tl � Tv
� �

nl
i ¼ hTnl

i

Tl � Tv
� �

¼ hT :

ð9Þ

As seen from this illustration, hT represents the difference between
the liquid and vapor temperatures at the interface. It should be
noted that hT can be a function of Yv and Y l and is not necessarily
constant. In this paper we focus on a particular definition of this
temperature jump which was proposed by Liang et al. [8]. Finally,
to close the set of equations, the following equations of state are
utilized – the vapor is assumed to be a perfect gas and the density
of liquid is allowed to vary linearly with pressure and temperature.
This is discussed in detail in Section 3.

2.1. Prescription of phase change rate

Without an independent expression for the interface velocity
ðv IÞ our formulation is incomplete. We define v I as,

v I ¼ ul þ vpnl; ð10Þ

where vp represents the velocity at which the interface moves from
the liquid phase into the gas phase because of phase change. In case
there is no phase change, v I will be equal to ul. Using this relation
and conservation of mass at the interface, it can be shown that
uv ¼ v I; which is consistent with the fact that discontinuity in nor-
mal velocity arises only due to phase change. An expression for
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mass flux, considering a stationary interface, can be obtained from
classical kinetic theory. This expression with some considerations
on evaporation/condensation probabilities (accommodation coeffi-
cients) and bulk vapor velocity is given by the Schrage Relationship,

J ¼ 2aðTlÞ
2� aðTlÞ

ffiffiffiffiffiffiffiffiffiffiffi
kB

2pm

r
qsatðT

lÞ
ffiffiffiffi
Tl

p
� qv

ffiffiffiffiffiffi
Tv

p� �
; ð11Þ

where the symbols have the following interpretations: a – mass
accommodation coefficient, kB – Boltzmann constant, m – mass of
a molecule/atom, J – mass flux, qsat – saturated vapor density. For
a more detailed discussion on Schrage Relationships, the reader is
referred to [8,12]. The mass flux in the liquid phase in a frame mov-
ing with the interface is given by,

qlðul
i � v I

iÞnl
i ¼ J ð12Þ

Using Eq. (10) in Eq. (12) an expression for vp (phase change rate) is
obtained as

vp ¼ � J
ql

ð13Þ

2.2. Temperature jump at interfaces

As discussed earlier, hT represents the jump in temperature at
the interface. In addition, the average interfacial temperature is

defined as hTi ¼ ðTl þ TvÞ=2. When jhT j=hTi � 1 and if qv is
assumed to be equal to qsatðT

vÞ, then an approximate expression
for hT can be obtained [8]. This can be written as,

hT ¼ wJ; ð14Þ

where

1
w
¼ 2a

2� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kB

2pMhTi

s  
hTidqsat

dT

�����
hTi

þ qsatðhTiÞ
2

!
ð15Þ

It should be noted that the above expression provides only a satis-
factory estimate of the magnitude of hT but captures its direction
correctly [8]. Another definition of hT was proposed by Beardeaux
and Keljstrup [23] based on non-equilibrium thermodynamics,
but its applicability is limited by the need for accurate determina-
tion of the parameters in their expression.

2.3. Numerical method

We solve the 3D compressible Navier Stokes equations using a
stabilized finite element with sharp interfaces separating the dif-
ferent phases. We allow discontinuities in the primitive variables

(Y) only at the interface (CI); inside each phase (Xl and Xv ) the
primitive variables are continuous. At the interface, continuity of
tangential velocities and temperature jump is imposed weakly
using a penalty method. Details our approach can found in our ear-
lier work [22], and our meshing strategy is described in [24]. In the
current paper we modify the original formulation to account for
temperature discontinuities at the interface as described in Eq. (5).

3. Problem setup

Our problem of interest is a one-dimensional planar nano-
channel consisting of two interfaces. Evaporation occurs at one
interface and condensation at the other. This setup is the same as
used in the MD simulations reported by Liang et al. [8].

3.1. Geometry and mesh

The entire domain, X, can be subdivided into three sub-

domains: Xl1;Xl2 and Xv , with Xl1 [Xl2 ¼ Xl, and Xl1 \Xl2 ¼ £.
Total length of the nano-channel is 117 nm; width and height (y

and z directions) are both 10 nm. Initial thickness of Xl1 and Xl2

are 6.5 nm and 4.5 nm respectively. A 2D schematic of the problem
is shown in Fig. 1. As the simulation progresses, evaporation occurs

at CI1 and condensation at CI2. At the leftmost boundary of Xl1 and

rightmost boundary of Xl2, zero velocity and constant temperature
(T e and T c) BCs are prescribed. T e, the source temperature, is the
specified temperature of the boundary close to the interface where
evaporation occurs (CI1). Similarly, T c is the sink temperature. On
all other boundaries, appropriate BCs are prescribed such that the
problem becomes one-dimensional. A complete 3D model of the
problem with the mesh is shown in Fig. 2.

3.2. Properties and parameters

The density of the liquid is evaluated using a first order expan-
sion of qðP; TÞ which results in an expression for ql in terms of
thermal expansion coefficient (aP), isothermal compressibility
(bT ), and the reference values of temperature, pressure and density.
Since the liquid phase velocity is almost zero, the effect of dynamic
viscosity is negligible. This suggests that accurate imposition of
only j; cp, and q is important. Numerical values of these parame-
ters are obtained from MD studies that use Lennard Jones’ poten-
tial to model liquid argon. MD simulations were performed with
the exact potential parameters used by Liang et al. and good agree-
ment was found between our simulations and the values reported
in literature. We use cp � cv and set the value of aP to be an order
higher than the reported values. The variation of temperature in
the liquid is small and we are interested in the steady state behav-
ior of the system, so the assumptions made on these properties are
not expected to cause any significant anomalies in the response of
the system. All other parameters are obtained from MD/experi-
mental works as convenient.

The argon vapor is modeled as a calorically perfect gas with
c ¼ 1:67. The exact values of jv and lv are not deemed to be crit-
ical in the current problem of interest as in the steady state no gra-
dients in temperature and velocity are expected in the gas. So, as in
the case of the liquid, these values are obtained from MD/experi-
ments as convenient.

All the physical parameters are shown in Table 1. It will be
shown later in this manuscript that despite these ‘modeling’
assumptions, our simulations are able to replicate MD simulations
quite accurately.

3.3. Accommodation coefficient and saturation curve

As described in the Section 2, mass accommodation coefficient

(a) and saturation density (qsatðT
lÞ) are parameters in Eqs. (11)

and (15). The mass accommodation coefficient can be defined as
the ratio of vapor molecules condensing at a liquid-vapor interface
to the total number of vapor molecules colliding with this inter-
face. Limiting values of this accommodation coefficient signify
specular (a ¼ 0, no phase change) and diffuse (a ¼ 1) collisions.
The variation of a with temperature can be attributed to the
change in nature of collisions with increasing thermal energy of
the molecules. Typical values of these coefficients are between
the limits (0 to 1), and are often treated as fitting parameters in
experimental studies [7]. However, using MD simulations, these
coefficients can be evaluated precisely. Both, saturated vapor den-
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sities and accommodation coefficients for this specific fluid were
obtained by Liang et al. using MD simulations. Figs. 3 and 4 show

the variation of these parameters with Tl (values from Liang
et al. [8]) and polynomial fits to these data points are used as
inputs to continuum simulations.

4. Results and discussion

4.1. Pressure, temperature, velocity and density profiles

Two interfacial kinematic conditions on temperature consid-

ered here are: (a) Continuous temperature, Tl ¼ Tv (b) Discontinu-

Fig. 1. 2D schematic of the considered problem. Xl1 and Xl2 are the two liquid (blue) regions, Xv is the vapor (red) region. CI1 (evaporation) and CI2 (condensation) are the
liquid-vapor interfaces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. 3D model of the problem with the mesh. We use hybrid meshes: layered mesh with wedges at interfaces and tetrahedrons elsewhere. A combination of mesh motion
and mesh adaptation is used to account for the moving interface.

Table 1
Material properties for two phases.

Property Liquid Vapor Units

Molecular weight Mw – 0.039948 kg/mol
Density q 1421 [25] � 5 (85 K, 1 atm) kg=m3

Heat capacity cv 1160 [26–28] R
c�1

J/kg�K
Specific heat ratio c – 1.67
Molecular viscosity l 2.5e�3 [29,30] 7e�6 [31] N�s
Thermal conductivity j 0:13 [25] 5.5e�3 [31] W/m�K
Thermal expansion coeff. ap 1e�4 [32] 1=T 1/K
Isothermal compressibility bT 3e�9 [32] 1=p 1/Pa
Internal Energy diff. Degf 144 (87.178 K, 1 atm) [28] – kJ/kg

Fig. 3. Density of saturated vapor as a function of temperature. The black circles
represent data from Liang et al. [8] and the red dashed line is a 4th order polynomial
fit to that data. This polynomial can be expressed as, q ¼ 0:0000T4 � 0:0072T3þ
0:8732T2 � 47:5221T þ 972:7469 (coefficients are correct up to 4 decimal places).

Fig. 4. Mass accommodation coefficient (a) vs. temperature. A 3rd order polyno-
mial fit to the data from Liang et al. [8] (black circles) is indicated by the red dashed
line. The polynomial takes the form, a ¼ �0:0000T3 þ 0:0012T2� 0:0943T þ 3:5633,
with coefficients correct up to the 4th decimal point.
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ous temperature, where the magnitude and direction of the jump is
determined by Eq. (14). Results of part (a) are shown in Fig. 6, and
part (b) in Fig. 5. MD data reported in Liang et al. was averaged
region(bin)-wise over the data collection period (8 ns) and there-
fore, the exact location of the interface cannot be determined from
the data reported by them. We compare their averaged data with a
specific timestep in our continuum simulations which is represen-
tative of the time instant fromMD simulations. Fig. 5 shows a com-
parison of MD and continuum results – a very good agreement can
be observed for the velocity and density profiles. The minor differ-
ences in the temperature profile can be attributed to the approxi-
mate temperature jump condition as discussed in Section 2.
Furthermore, the error in pressure profile is likely associated with
two factors; (i) error in temperature and (ii) the perfect gas law for
the vapor phase equation of state. To corroborate the latter
assumption, we note that under standard conditions Argon gas is
well characterized by the ideal gas law. We refrain from consider-
ing more complicated equation of states because this simple gas
law gives predicts mass fluxes with good accuracy, as shown later.
At later times, the trends in the profiles remain the same with only
minor changes in the magnitude of the variables.

The temperature continuity assumption (Fig. 6) produces a tem-
perature profile which is quite different from those observed in MD
simulations. Interestingly, other variables are not affected signifi-
cantly by this assumption. As before, at later times, only minor
deviations are observed as compared to early times. The reason
behind this rather minor effect of the temperature continuity
assumption is in the fact that the phase change rate in Schrage for-
mula is mostly driven by the difference between saturation and
actual vapor pressure, and is only weakly sensitive to the temper-
ature changes as long as the changes are small relative to the abso-
lute temperature.

In addition to discontinuities at liquid-vapor interfaces, a jump
in temperature of about � 1K was observed at the solid-liquid
interface (Fig. 1 in [8]). Accounting for this boundary slip is neces-
sary as it affects the liquid temperature, saturation pressures and
thus, driving forces. To mimick the effect of the temperature slip
at solid-liquid interfaces in our quasi-steady continuum simula-
tions, we set the temperatures of the source (T e) and sink (T c) to
be 91.36 K and 78.77 K respectively, instead of 92.5 K and 77.5 K
as used in [8].

4.2. Mass fluxes

We commence our simulations from an artificial initial condi-
tion, so the initial transients (t < 5ns) are not considered in our
analysis. Variation of the vapor phase mass flux at the two inter-
faces with time is shown in Fig. 7. Our simulations enter a quasi-
steady regime only after t ¼ 5ns and mass fluxes vary almost lin-
early with time beyond this time instant. Liang et al. used a differ-
ent initial condition and their simulations entered the quasi-steady
regime earlier (t ¼ 3ns). Therefore, a precise direct comparison
with MD results in the transient regime is not possible. Further-
more, the continuum formulation during transient might be not
as reliable due to the assumption on heat capacities and moder-

ately large timesteps (CFLmax ¼ max CFLl;CFLv
n o

� 25 with

Dt ¼ 0:1 ns). CFLl=v is defined as cl=vDt
Dxl=v

, where, cl=v is the speed of

Fig. 5. Profiles of velocity, pressure, temperature and density at 7 ns when
continuity of temperature is not assumed at the interface. The open black circles
correspond to MD simulations performed by Liang et al.

Fig. 6. Velocity, pressure, temperature and density profiles at 7 ns when continuity
of temperature is assumed at the interface. At later times, similar trends are
observed.

Fig. 7. Vapor phase mass flux at the two, evaporating (circles) and condensing
(squares), interfaces as a function of time. The black dashed lines correspond to the
continuous temperature assumption and the red solid lines represent cases when a
temperature discontinuity is imposed using Eq. (14). The vertical blue lines
correspond to the time instances where comparisons are done with MD. Due to the
initial conditions some artificial transients are observed in the profiles which vanish
as the system enters the quasi-steady regime at about 5 ns. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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sound in the liquid/vapor phase at � 85K;Dt is the timestep used
in our simulations, and Dxl=v is the minimum mesh size in liquid/
vapor domain. Also, the magnitude of temperature slip at the
boundary is unknown in the transient regime. Therefore, we just
focus on comparison of our results with MD in the quasi-steady
state. Liang et al. reports only one (temporally and spatially) aver-
aged value of the mass flux with a time-averaging interval of 8 ns
starting at t ¼ 3 ns. So the representative time instant for MD
results is 7 ns. Comparison of continuum results with MD is done
at t ¼ 7 ns and t ¼ 16 ns (close to the end of the continuum simu-
lation), as shown in Table 2. At t ¼ 7ns the continuum model
accounting for the temperature discontinuity at liquid-vapor inter-
face yields remarkably good agreement with the results of MD sim-
ulations (see Table 2).

As seen in Fig. 7, the evaporation flux is always higher than the
condensation flux; so a build-up of density and pressure with time
is expected. This is consistent with another observation – the vari-
ation of mass flux in the vapor phase along the length of the chan-
nel, plotted in Fig. 8. Both effects arise due to quasi-steady flows.
The temperature continuity assumption yields higher mass fluxes
as compared to the discontinuous temperature case, and also has
larger errors when compared to MD simulations (refer Table 2);
however, even in this case the errors are limited to about 5%. This
implies that the evaporation/condensation mass fluxes can be pre-
dicted in continuum simulations with good accuracy using the
Schrage relationship even if no discontinuity in temperature is
considered at the interface. Of course, the temperature profile will
be inaccurate.

5. Summary and conclusions

We present a stabilized finite element based method capable of
modeling liquid-vapor interfaces out of local thermal equilibrium.

Using this method and a physically motivated prescription of tem-
perature discontinuity at the interface, we show that the assump-
tion of the temperature continuity does not result in large
variations in mass fluxes, even though the dissimilarities in tem-
perature profiles is significant. This originates from the fact that
the evaporation/condensation processes in our simulations of a
heat pipe with planar geometries are predominantly driven by
the difference between the actual and saturation vapor density.
This strongly implies that the equilibrium relationship between
interfacial temperature and vapor density at the interface should
to be relaxed.

Our continuum is capable of accurately predicting evaporation/-
condensation rates in quasi-steady flows when compared against
‘‘numerical MD experiments”. In particular, with the temperature
continuity assumption, relative error in mass fluxes is < 5%, and
with temperature discontinuity at the interface the error is under
2%.

Although we use the Schrage relation as the ‘‘phase change
law”, this methodology is capable of accommodating any other
equation. Similarly, more accurate versions of the interfacial tem-
perature discontinuity relation can be easily used. This method
can be applied and extended to model more complicated systems
such as collapsing vapor bubbles, spray cooling etc. where the
effect of temperature discontinuities and local thermal equilibrium
at the liquid vapor interface can be investigated.

Acknowledgement

This work was supported by the Office of Naval Research Ther-
mal Science Program, Award No. N00014-17-1-2767, and U.S.
Army grants W911NF1410301 and W911NF16C0117. We are
grateful to Dr. Zhi Liang (California State University, Fresno) for
providing us the data of his molecular dynamics simulations.

References

[1] A. Kay, H. Davies, Calculating potential evaporation from climate model data: a
source of uncertainty for hydrological climate change impacts, J. Hydrol. 358
(3–4) (2008) 221–239.

[2] J.D. Valiantzas, Simplified versions for the penman evaporation equation using
routine weather data, J. Hydrol. 331 (3–4) (2006) 690–702.

[3] F.M. Richter, Timescales determining the degree of kinetic isotope
fractionation by evaporation and condensation, Geochim. Cosmochim. Acta
68 (23) (2004) 4971–4992.

[4] K. Sefiane, On the formation of regular patterns from drying droplets and their
potential use for bio-medical applications, J. Bionic Eng. 7 (2010) S82–S93.

[5] S.G. Kandlikar, Z. Lu, Thermal management issues in a pemfc stack–a brief
review of current status, Appl. Therm. Eng. 29 (7) (2009) 1276–1280.

[6] G. Fang, C. Ward, Temperature measured close to the interface of an
evaporating liquid, Phys. Rev. E 59 (1) (1999) 417.

[7] V. Badam, V. Kumar, F. Durst, K. Danov, Experimental and theoretical
investigations on interfacial temperature jumps during evaporation, Exp.
Therm. Fluid Sci. 32 (1) (2007) 276–292.

[8] Z. Liang, T. Biben, P. Keblinski, Molecular simulation of steady-state
evaporation and condensation: validity of the schrage relationships, Int. J.
Heat Mass Transf. 114 (2017) 105–114.

[9] R. Hołyst, M. Litniewski, D. Jakubczyk, A molecular dynamics test of the Hertz–
Knudsen equation for evaporating liquids, Soft Matter 11 (36) (2015) 7201–
7206.

[10] M. Bond, H. Struchtrup, Mean evaporation and condensation coefficients based
on energy dependent condensation probability, Phys. Rev. E 70 (6) (2004)
061605.

Table 2
Comparison of vapor phase mass fluxes obtained from MD and Continuum simulations. All fluxes are in kg/m2/s.

hT Jmd t = 7 ns t = 16 ns

Je err. (%) Jc err. (%) Je err. (%) Jc err. (%)

hT – 0
278.44

281.87 1.23 277.25 �0.43 290.11 4.19 284.55 2.19
hT ¼ 0 292.23 4.95 286.60 2.93 300.98 8.09 294.94 5.93

Fig. 8. Variation of mass flux in the vapor phase. The lines in this figure have the
following meanings: solid lines - profiles at 7 ns, dashed lines - profiles at 16 ns, red
lines - discontinuous temperature, black lines - continuous temperature. A minor
variation in the mass flux along the channel is observed due the quasi-steady nature
of the problem. The dashed lines (16 ns) are left-shifted as compared to the solid
lines (7 ns) because of sustained evaporation at the left interface and condensation
at the right. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

6 A. Chandra et al. / International Journal of Heat and Mass Transfer 144 (2019) 118597

http://refhub.elsevier.com/S0017-9310(19)31870-8/h0005
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0005
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0005
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0010
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0010
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0015
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0015
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0015
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0020
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0020
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0025
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0025
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0030
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0030
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0035
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0035
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0035
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0040
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0040
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0040
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0045
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0045
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0045
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0050
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0050
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0050


[11] H. Struchtrup, S. Kjelstrup, D. Bedeaux, Analysis of temperature difference
driven heat and mass transfer in the Phillips–Onsager cell, Int. J. Heat Mass
Transf. 58 (1–2) (2013) 521–531.

[12] A.H. Persad, C.A. Ward, Expressions for the evaporation and condensation
coefficients in the Hertz-Knudsen relation, Chem. Rev. 116 (14) (2016) 7727–
7767.

[13] R.W. Schrage, A Theoretical Study of Interphase Mass Transfer, Columbia
University Press, 1953.

[14] A.P. Polikarpov, I. Graur, E.Y. Gatapova, O. Kabov, Kinetic simulation of the
non-equilibrium effects at the liquid-vapor interface, Int. J. Heat Mass Transf.
136 (2019) 449–456.

[15] E.Y. Gatapova, I.A. Graur, O.A. Kabov, V.M. Aniskin, M.A. Filipenko, F. Sharipov,
L. Tadrist, The temperature jump at water–air interface during evaporation,
Int. J. Heat Mass Transf. 104 (2017) 800–812.

[16] C.R. Kharangate, I. Mudawar, Review of computational studies on boiling and
condensation, Int. J. Heat Mass Transf. 108 (2017) 1164–1196.

[17] F. Gibou, L. Chen, D. Nguyen, S. Banerjee, A level set based sharp interface
method for the multiphase incompressible Navier–Stokes equations with
phase change, J. Comput. Phys. 222 (2) (2007) 536–555.

[18] S.W. Welch, J. Wilson, A volume of fluid based method for fluid flows with
phase change, J. Comput. Phys. 160 (2) (2000) 662–682.

[19] D. Juric, G. Tryggvason, Computations of boiling flows, Int. J. Multiph. Flow 24
(3) (1998) 387–410.

[20] B.-Y. Cao, J.-F. Xie, S.S. Sazhin, Molecular dynamics study on evaporation and
condensation of n-dodecane at liquid–vapor phase equilibria, J. Chem. Phys.
134 (16) (2011) 164309.

[21] S. Hardt, F. Wondra, Evaporation model for interfacial flows based on a
continuum-field representation of the source terms, J. Comput. Phys. 227 (11)
(2008) 5871–5895.

[22] Y. Zhang, A. Chandra, F. Yang, E. Shams, O. Sahni, M. Shephard, A.A. Oberai, A
locally discontinuous ale finite element formulation for compressible phase
change problems, J. Comput. Phys. 393 (2019) 438–464.

[23] D. Bedeaux, S. Kjelstrup, Transfer coefficients for evaporation, Phys. A: Stat.
Mech. Appl. 270 (3–4) (1999) 413–426.

[24] F. Yang, A. Chandra, Y. Zhang, S. Tendulkar, R. Natasia, A.A. Oberai, M.
Shephard, O. Sahni, A parallel interface-tracking approach for moving
boundary problems, Eng. Comput. (submitted for publication).

[25] A. McGaughey, M. Kaviany, Thermal conductivity decomposition and analysis
using molecular dynamics simulations. Part i. Lennard-Jones argon, Int. J. Heat
Mass Transf. 47 (8–9) (2004) 1783–1798.

[26] A. Granato, The specific heat of simple liquids, J. Non-crystal. Solids 307 (2002)
376–386.

[27] S. Nosé, A molecular dynamics method for simulations in the canonical
ensemble, Mol. Phys. 52 (2) (1984) 255–268.

[28] C. Tegeler, R. Span, W. Wagner, A new equation of state for argon covering the
fluid region for temperatures from the melting line to 700 k at pressures up to
1000 mpa, J. Phys. Chem. Ref. Data 28 (3) (1999) 779–850.

[29] S.H. Lee, J. Kim, Molecular dynamics simulation study of transport properties
of diatomic gases, Bull. Korean Chem. Soc. 35 (12) (2014) 3527–3531.

[30] E. Kirova, G. Norman, Viscosity calculations at molecular dynamics simulations
653 (1) (2015) 012106.

[31] H.J. Hanley, the viscosity and thermal conductivity coefficients of dilute argon,
krypton, and xenon, J. Phys. Chem. Ref. Data 2 (3) (1973) 619–642.

[32] W. Streett, L. Staveley, Experimental study of the equation of state of liquid
argon, J. Chem. Phys. 50 (6) (1969) 2302–2307.

A. Chandra et al. / International Journal of Heat and Mass Transfer 144 (2019) 118597 7

http://refhub.elsevier.com/S0017-9310(19)31870-8/h0055
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0055
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0055
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0060
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0060
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0060
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0065
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0065
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0065
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0070
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0070
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0070
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0075
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0075
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0075
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0080
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0080
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0085
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0085
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0085
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0090
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0090
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0095
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0095
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0100
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0100
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0100
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0105
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0105
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0105
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0110
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0110
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0110
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0115
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0115
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0125
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0125
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0125
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0130
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0130
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0135
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0135
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0140
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0140
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0140
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0145
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0145
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0155
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0155
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0160
http://refhub.elsevier.com/S0017-9310(19)31870-8/h0160


Journal of Computational Physics 393 (2019) 438–464

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A locally discontinuous ALE finite element formulation for 

compressible phase change problems

Yu Zhang a, Anirban Chandra a, Fan Yang a, Ehsan Shams a, Onkar Sahni a, 
Mark Shephard a, Assad A. Oberai b,∗
a Scientific Computation Research Center (SCOREC), Rensselaer Polytechnic Institute, Troy, NY 12180, United States
b Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 September 2018
Received in revised form 11 March 2019
Accepted 15 April 2019
Available online 2 May 2019

Keywords:
Multiphase
Finite element method
Discontinuous interpolations
ALE
Compressible

The simulation of phase change processes that occur at high rates, like the collapse of a 
vapor bubble or the combustion of dense energetic materials, poses significant challenges 
that include strong discontinuities in select field variables at the interface, high-speed flows 
in at least one phase, significant role of compressibility, disparate phase rate and acoustic 
time scales and advection dominated processes. In this paper we present a finite element 
based method that addresses these challenges. The discretization is continuous everywhere 
except at the interface and it inherits its stability properties from both continuous and 
discontinuous finite element formulations like the SUPG and interior penalty methods. We 
track the evolution of the interface mesh and accommodate its motion in the volume 
by moving the mesh in accordance with an elastic analogy within an arbitrary eulerian 
lagrangian (ALE) framework. This motion is interspersed with a few select steps of 
mesh modification. We demonstrate that the proposed method has desirable discrete 
conservation properties and outline a proof for its stability. We also describe how this 
method is implemented in a finite element code within an implicit predictor-corrector 
time stepping scheme. Finally we apply this method to a series of phase change problems 
involving an energetic material, where we verify its implementation and demonstrate its 
utility.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Multiphase processes are ubiquitous in science and engineering. Examples include bubbly flows in oceans, rivers and 
streams, flows around ships and submarines, flows in the thermo-hydraulic components of nuclear reactors, and other pro-
cesses involving evaporation, condensation and sublimation. Multiphase processes necessarily involve a dynamically evolving 
interface between two phases. In order to accurately simulate these processes, particularly when there are physically pro-
cesses occurring at the interface, it is necessary to model the evolution of this interface and to accurately predict the 
transport of mass, momentum and energy across it. For this reason computational methods that attempt to simulate multi-
phase processes tend focus on these two aspects of multiphase flows.

Several techniques have been developed, refined and applied to modeling the evolution of the interface. These include 
volume of fluid methods [36,28,48,1], phase-field methods [4,7,24], level-set based methods [47,46,33,34] and interface 
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tracking methods [52,14,51,8]. Each type comes with its own advantages and disadvantages, and we refer the reader to the 
excellent articles cited above that describe these methods and their characteristics. In this manuscript we work with an 
interface-tracking method where we discretize the interface with a surface mesh and track its evolution in time. We note 
that our focus is on the techniques used to simulate the transport of mass momentum and energy across the interface and 
not on the method used for modeling its evolution. Thus the techniques developed in this paper could be used with other 
interface modeling approaches including the level set method.

It is logical to divide multiphase problems into those with phase change and those without. In processes without phase 
change, the interface and each phase move with the same velocity at the interface; whereas in processes with phase change 
all three velocities are different. This leads to the obvious challenge of keeping track of three different velocities at the 
interface. It also leads to other challenges including:

1. The requirement of modeling strong discontinuities in pressure, density and the normal component of material velocity 
at the interface, while at the same time enforcing continuity in temperature and the tangential components of material 
velocity.

2. In phase change processes with large density differences or high rates of phase change (the phase change of a liquid 
or a solid propellant, for example), phase change leads to very high speeds in the lighter phase. This in turn leads to 
compressible behavior in that phase and means that it must be modeled as a compressible continuum.

3. The inclusion of compressibility leads to another challenge which stems from the fact that the ratio of the speed of 
sound in either phase to that of the phase change velocity is typically very large. This means that in order to model an 
appreciable amount of phase change it is necessary to simulate over a long time period relative to the time it takes for 
an acoustic wave to traverse the computational domain. In other words, it leads to a problem with multiple temporal 
scales where we are interested in the long-term behavior of a system with significant small time-scale dynamics.

4. Finally, since the speed in one or both phases is large, these problems tend to be convection dominated, which poses 
challenges to the stability of the numerical technique.

In this manuscript we propose and implement a finite element based method that addresses these challenges. We allow 
for discontinuity in some variables at the interface by using discontinuous basis functions only at the interface. We restrict 
these basis functions only to the interface, and use C0 finite element basis functions elsewhere, in order to keep the total 
number of degrees of freedom under control. The mesh at the interface, and therefore the discontinuous basis functions, are 
constrained to move with the interface velocity. Everywhere else in the domain, the motion of the mesh is determined by 
solving a linear elastic problem. The effect of the moving mesh is captured in the weak formulation by posing the equations 
of motion and thermodynamics in a arbitrary Lagrangian Eulerian (ALE) framework [20,27,18].

The interface terms associated with our weak form are motivated by a discontinuous Galerkin formulation for the scalar 
advection diffusion problem [3,6,21]. Due to the use of discontinuous interpolations we are able to prove certain discrete 
conservation properties for the resulting method for each phase. The interface terms contain contributions that enforce the 
appropriate jump in the fluxes at the interface and the continuity of temperature and the tangential components of material 
velocity. They also include a stabilizing term that is motivated by the interior penalty method [2,3]. The volumetric terms, 
defined over each phase, contain the streamline-upwind Petrov Galerkin (SUPG) stabilization [19]. We solve the nonlinear 
ordinary differential equations resulting from the finite element discretization of the conservation laws and mesh motion 
using the Generalized-alpha method [25]. This leads to a staggered predictor-corrector approach within each time step and 
permits the use of implicit second-order time schemes which retain stability at very large values of the CFL number (≈ 20). 
This feature is essential for our application, since interface evolves very slowly when compared with the propagation of an 
acoustic wave.

When compared with incompressible phase change problems, there is a relatively small body of work dedicated to 
the simulation of compressible phase change problems. Among these, a significant proportion make use of multi-fluid or 
volume-of-fluid approaches, where multiple fluids are assumed to exist at any given spatial location (see for example [10,54,
40,13] and references therein). The method developed in this manuscript is different in that at a given spatial location only 
one phase is allowed to exist. A similar approach is developed in [31], where the authors have developed a finite volume 
method with a local Riemann solver in conjunction with a cut-cell method and applied it to the simulation of several 
interesting two-dimensional problems including that of bubble collapse. In contrast to this, in this manuscript, instead of 
a finite volume method we use a finite element method with a discontinuous basis that is confined to the interface, and 
instead of a cut-cell method we use an interface-fitted mesh that moves with the interface. The mesh around the interface 
is modified, when due to excessive mesh motion, its quality is no longer satisfactory. This modification step is triggered 
occasionally only as needed, thus most of the motion of the interface is accommodated by moving the mesh.

The remainder of this paper is as follows. In Section 2, we present the mathematical equations that describe the com-
pressible phase change problem. We present both the strong and the weak form of these equations, with a special emphasis 
on the equations at the interface. We also examine the conservation properties of the finite element discretization based 
on these equations and demonstrate it stability in the context of a simple model problem. In Section 3, we discuss some of 
the computational aspects of the proposed formulation. These include our treatment of the discontinuities at the interface, 
mesh motion, and the time integration scheme for the problem. In Section 4, we apply the computational method to solve 
problems of interest. These include a simple phase change Stefan problem, where we can verify the numerical solution, a 
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Fig. 1. Schematic diagram of the problem of interest.

spherical counterpart of this problem, and problems where we model phase change of single and six grains of a dense, 
energetic material enclosed in an adiabatic chamber. We end with conclusions in Section 5.

2. Mathematical model

Our mathematical model comprises of the compressible Navier-Stokes equations in the domain occupied by each phase 
(�+ and �−) and two sets of interface conditions (see Fig. 1). The first is obtained by imposing conservation laws at the 
interface between the phases, while the second is obtained by requiring the continuity of certain field variables at the 
interface. In the following section, we first describe the strong form of these equations. Thereafter we present the weak 
from that leads to a finite element method.

2.1. Conservation laws

The Navier-Stokes equations can be written in the general form of an advective-diffusive system with a source term as

U ,t + F i,i = S, (1)

where U is the vector of conservative variables, F i = F adv
i − F di f f

i are the flux vectors, where the superscripts adv and diff
denote the advective and diffusive parts, respectively, and S is the source term. The subscripts “, i” with i = 1, 2, 3 denote 
spatial derivatives, where the repeated index implies a summation, and the subscript “, t” denotes a temporal derivative.

The conservative variables and the fluxes are defined as,

U = ρ
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, (4)

where ρ is density, u is the flow velocity vector, p is pressure, τi j are components of the viscous stress tensor, δi j is the 
Kronecker delta, etot is the total energy per unit mass, and qi = −κT ,i are components of the heat flux vector.

The equations above are derived from the conservation of mass and energy and the balance of linear momentum for 
each phase. Thus they are valid in �+ and in �− the two distinct volumes occupied by the two phases. At the interface 
between these phases, denoted by �I , the same conservation laws lead to the following jump condition [9],

� F i �i = vi �U �i . (5)
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Here the jump operator �·�i is defined as,

�·�i = (·)+n+
i + (·)−n−

i , (6)

where, the superscripts + and − denote two phases, and ni are the components of the outward normal vector at the 
interface. We note that n+ = −n− . Further, in equation (5) v is the interface velocity, expressed as,

v = u− + upn+, (7)

where the speed up is the speed at which the interface retreats from the + phase into the − phase (denser) due to phase 
change. This speed, which is a direct measure of the rate of phase change, is determined by the local thermodynamic 
variables on either side of the interface. The expression for this speed can be viewed as a constitutive equation that must 
be supplied in addition to the jump conditions described above. In this manuscript we have simulated problems where this 
speed is held constant, as well as problems where it is determined by the gas pressure.

In order to understand the jump conditions implied by (5) it is instructive to consider the first of the five equations 
implied by it,

(ρun)
+ − (ρun)

− = (ρ+ − ρ−)(u−
n + up)

⇒ ρ+(u+
n − u−

n ) = (ρ+ − ρ−)up, (8)

where un denotes the velocity component along n+ . Equation (8) makes it clear that when the interface is evolving due to 
phase change, that is up �= 0, there is a discontinuity in the normal component of velocity. Further, the magnitude of this 
jump increases as the difference in the density between the two phases grows. For ρ+

ρ− = 0.01, this difference is 99 × up . 
Thus even if up is relatively small, this difference can be large. We note that a similar discontinuity exists in the pressure 
across the interface.

The phase change process is marked by changes in the molecular structure of the material which lead to changes in 
its thermodynamic properties and behavior. This includes sharp changes in density and pressure, as well as changes in the 
equations of state used for the two phases. The rate of phase change is determined by the thermodynamic variables at the 
interface, and in the examples considered in this paper, it is dependent only on the pressure of the vapor phase. We also 
assume that phase change is in local thermal equilibrium which ensures a continuous temperature at the interface. In many 
microscale applications this assumption may be violated and a jump in temperature might be observed. We note that this 
scenario can be easily accommodated with the approach developed in this manuscript.

Along with the jump conditions, we also need to enforce the “kinematic conditions” at the interface that stipulate the 
continuity of temperature and tangential velocity across the interface. For the primitive variable set,

Y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p
u1
u2
u3
T

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (9)

where p and T denote pressure and temperature, respectively, these equations may be written as

� CY �i = 0, (10)

where the operator C is defined as

C =
⎡
⎣ 0 0T 0

0 I − n+ ⊗ n+ 0
0 0T 1

⎤
⎦ . (11)

The diagonal sub-block in the center of the operator C projects out the normal component of the velocity at the interface 
and ensures the continuity of the tangential component. Further, the number 1 in the diagonal ensures the continuity in 
temperature at the interface. We note that since C is quadratic in the normal vector, its value on either side of the interface 
is the same. That is we could have used n− in the equation above without changing the definition of C. In summary the 
equations we wish to solve are given by (1), (5) and (10).

2.2. Equations in an arbitrary frame

In the approach described in this manuscript the mesh moves with the interface (interface tracking approach). Thus we 
wish to compute an equation for the rate of change of variables in a frame that is moving with an arbitrary velocity ũ with 
respect to the fixed frame [20]. We denote the time derivative in this frame with the subscript “, ̃t ,” and note that
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U ,t̃ = U ,t + ũi U ,i . (12)

Using this in (1) we arrive at

U ,t + F̃ i,i + ũi,i U = S, (13)

where the total flux is defined as before as the sum of advective and diffusive fluxes, that is F̃ i = F̃
adv
i − F di f f

i ; however the 
advection is relative to the velocity of the moving frame and is given by

F̃
adv
i = ρ

(
ui − ũi

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
u1
u2
u3
etot

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ p

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
δ1i
δ2i
δ3i
ui

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (14)

Assuming that the frame moves with the interface, that is on �I , ũ = v , we may move the term on the right hand side 
of (5) to the left hand side, and write this condition in terms of the modified flux,

� F̃ i �i = 0. (15)

Thus the equations that we wish to solve in a frame that is arbitrary, up to the restriction that it moves with the interface, 
are given by (13), (15) and (10).

2.3. Weak form

We wish to solve the equations for each phase, and the interface conditions using the finite element method. For this 
we work with a weak formulation of the original differential equations. We derive the weak form for the domain depicted 
in Fig. 1. On the outer boundary of this domain for simplicity we assume that the outward fluxes are prescribed, that is

F̃ in
+
i = H , on �+. (16)

In the weak form, which is posed for the primitive variables, Y , we work with functions that are continuous over the 
domain occupied by each phase, and are discontinuous across the interface. The space of weighting functions is given by

V =
{

V |V ∈ H1(�+)3, V ∈ H1(�−)3, V ∈ L2(�)3
}

, (17)

where � ≡ �− ∪ �+ . The space of trial solutions, denoted by S is identical to V . It too is comprised on functions that are 
continuous in the domain occupied by each phase, and discontinuous across the interface.

The weak form of the problem written for a finite element discretization of the function spaces is given by: find Y ∈ Sh

such that ∀W ∈ Vh ,∫
�

(
W · U ,t̃ − W ,i · F̃ i + W · (ũi,i U )

)
d�

+
∫

�̃

(
L̂W · τ (LY − S)

)
d�

+
∫

�̃

(
νh gi j W ,i · A0Y , j

)
d�

+
∫

�I

(
〈 F̃ i〉 · �W �i + 〈K T

i j W , j〉 · �CY �i

)
d�

+
∫

�I

(
�CW �i · D �CY �i

)
d� =

∫
�

W · Sd�

+
∫
�+

W · Hd�. (18)

In the equation above the · symbol denotes the dot product between two vectors, the average operator that is defined 
as 〈·〉 ≡ 1

2 [(·)+ + (·)−], �̃ is the interior of all elements in �, τ is a diagonal matrix of stabilization parameters, and the 
operator L is defined as,
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L≡ A0
∂

∂ t̃
+ Ãi

∂

∂xi
− ∂

∂xi

(
K i j

∂

∂x j

)
+ ũi,i U , (19)

where A0 = U ,Y , Ãi = F̃
adv
i,Y , and K i j is defined such that, K i j Y , j = F di f f

i . We note that LY represents the Navier-Stokes 
equations written using the primitive variables. The operator L̂ is defined to be

L̂≡ Ã
T
i

∂

∂xi
(20)

In (18) the terms on the first line represent the Galerkin contribution from the original PDE, the term on the second line 
is the streamline upwind Petrov-Galerkin (SUPG) term [19], the term on the third line is the discontinuity-capturing (DC) 
operator which adds isotropic diffusion that is proportional to a residual-based eddy viscosity [22], the first term on the 
fourth line weakly enforces the jump condition for the fluxes (15), while the remainder of the terms on the left hand side 
weakly enforce the continuity condition (10). Of these, the last term on the left hand is the equivalent of the interior penalty 
in a typical discontinuous Galerkin method [2]. In this term D is a diagonal matrix whose entries are given by

D = diag(0, Dm, Dm, Dm, De). (21)

The parameters Dm and De are determined by analyzing the stability of the weak form for a related scalar advection-
diffusion problem as described in Section 2.6. The volumetric terms in our formulation represent an SUPG-based stabilized 
finite element method for the pressure-primitive variables with a DC term [16,17]. We note that there are several forms of 
the stabilization parameters τ that have been proposed. In our formulation, for τ we have used the expression from [15]. 
For a detailed discussion of different types of DC operators, the reader is referred to [22,49,37,44].

2.4. Consistency

It is easy to see that the Euler-Lagrange equations associated with this weak formulation are the strong form of the 
original PDEs. This is done by performing integration by parts on the first term on the left hand side and collecting terms 
in the interior and the interface. This yields,∫

�

W ·
(

U ,t̃ + F̃ i,i + ũi,i U − S
)

d�

+
∫

�̃

(
L̂W · τ (LY − S)

)
d�

+
∫

�̃

(
νh gi j W ,i · A0Y , j

)
d�

+
∫

�I

(
〈 F̃ i〉 · �W �i + 〈K T

i j W , j〉 · �CY �i

)
d�

+
∫

�I

(
�CW �i · D �CY �i − �W · F̃ i �i

)
d�

−
∫
�+

W ·
(

F̃ ini − H
)

d� = 0. (22)

Using the definition of the jump and average operators it is easy to show that

�W · F̃ i �i = 〈W 〉 · � F̃ i �i + 〈 F̃ i〉 · �W �i . (23)

Using this in the last term of (22), and recognizing that the first term of (22) is the dot product of the weighting function 
with the residual of the Navier Stokes equation and may be rewritten as W · (LY − S), we arrive at,∫

�

W · (LY − S)d� +
∫

�̃

L̂W · τ (LY − S)d� +
∫

�̃

(
νh gi j W ,i · A0Y , j

)
d�
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+
∫

�I

(
−〈W 〉 · � F̃ i �i + (〈K T

i j W , j〉 + D �CW �i) · �CY �i

)
d�

−
∫
�+

W ·
(

F̃ ini − H
)

d� = 0. (24)

Once it is recognized that the numerical time-scale νh vanishes whenever the volumetric residual vanishes, the equation 
above makes it clear that Euler Lagrange equations implied by the weak from in the volume occupied by the two phases 
are the Navier Stokes equations (13). Whereas on the interface the Euler-Lagrange equations imply the jump (15) and the 
continuity (10) equations.

The interior stability of the formulation described in (18) can be attributed to the diffusive flux in the Galerkin term, the 
SUPG term and the DC term. The stability on the interface is obtained from the interior penalty term. Another mechanism 
of obtaining enhanced stability on the interface would be to replace the average flux on the interface with an upwinded 
or other stable numerical fluxes that are popular in finite volume methods [29,31]. While this is an option, we have not 
exercised it in this study.

2.5. Conservation properties

Since the weighting function and trial solution spaces are designed to be discontinuous across the interface, we are able 
to prove discrete conservation properties for each phase.

To see this in the context of conservation of mass, we begin by setting W = e1 in �+ and zero elsewhere. Here e j is 
the j-th Euclidean vector, and selecting j = 1 allows us to “pick” the conservation law for mass. Using this in (18), we are 
led to the equation,∫

�+
(ρ,t̃ + ∇ · ũρ)d� +

∫

�I

〈 F̃1i〉n+
i d� +

∫
�+

H1d� =
∫

�+
S1d�. (25)

Here 〈 F̃1i〉 = 〈ρ(ui − ũi)〉 is the average mass flux at the interface in a frame that moves with interface. Now consider the 
first term in the expression above,∫

�+
(ρ,t̃ + ∇ · ũρ)d� =

∫
�+

(ρ,t + ũ · ∇ρ + ∇ · ũρ)d�

=
∫

�+

(
ρ,t + ∇ · (ũρ)

)
d�

=
∫

�+
ρ,td� +

∫

�I

ũ · n+ρd�

= d

dt

∫
�+

ρd�. (26)

In deriving the relation above in the first line we have used (12), in the third line we have used the divergence theorem and 
the fact that ũ = 0 on the fixed boundary �+ , and in the fourth line we have made use of Leibniz theorem for evaluating 
the rate of change of integrated quantity when the domain of integral is changing with time. Using (26) in (25), we arrive 
at the statement of conservation of mass for the + phase in our numerical method,

d

dt

∫
�+

ρd� = −
∫

�I

〈 F̃1i〉n+
i d� −

∫
�+

H1d� +
∫

�+
S1d�. (27)

This states that the rate of change of the total mass of the + phase is balanced by mass flux through the interface, the 
boundary �+ and any mass sources.

Now setting W = e1 in �− and zero elsewhere, and repeating the derivation above, we arrive at

d

dt

∫
�−

ρd� =
∫

�I

〈 F̃1i〉n+
i d� +

∫
�−

S1d�, (28)

where we have made use of fact that n− = −n+ . By comparing the first term on the right hand side of (27) with its 
counterpart in (28), we note that the mass lost by the + phase at the interface is exactly gained by the − phase. Further 
by summing the two mass conservation results we arrive at mass conservation over the total volume:
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d

dt

∫
�

ρd� = −
∫
�+

H1d� +
∫
�

S1d�, (29)

which states that the total mass of the two phases is balanced by the mass flux through the external boundary and volu-
metric sources of mass.

We now derive a conservation statement for the j-th component of momentum in the + phase by setting W = e1+ j in 
�+ and repeating the steps described above. This leads to

d

dt

∫
�+

ρu jd� = −
∫

�I

(
〈 F̃(1+ j,i)〉n+

i + Dm(û+
j − û−

j )
)

d�

−
∫
�+

H1+ jd� +
∫

�+
S1+ jd�. (30)

Here 〈 F̃(1+ j,i)〉 is the average momentum flux at the interface in a frame that moves with the interface and û is the 
projection of the velocity of each phase at the interface in the tangential directions. We note that the total interface flux 
is the integral of the average momentum flux and a term that is the integral of the difference in the tangential velocity 
components. Through the kinematic penalty term we drive this difference to zero with mesh refinement, and as a result 
the momentum flux reduces to its actual value (see Figs. 7 and 14 for example). Setting W = e1+ j in �− , we arrive at

d

dt

∫
�−

ρu jd� = +
∫

�I

(
〈 F̃(1+ j,i)〉n+

i + Dm(û+
j − û−

j )
)

d� +
∫

�−
S1+ jd�. (31)

By comparing (27) with (31) we conclude that once again there is a perfect cancellation of fluxes at the interface. That is the 
momentum flux lost by the + phase is gained by the − phase. Consequently, the total momentum conservation statement 
is obtained by summing the statement over each phase and is given by

d

dt

∫
�

ρu jd� = −
∫
�+

H1+ jd� +
∫
�

S1+ jd�. (32)

Similar conservation expressions can be derived for energy. In the + phase it is given by

d

dt

∫
�+

ρ(e + |u|2
2

)d� = −
∫

�I

(
〈 F̃5i〉n+

i + De(T + − T −)
)

d�

−
∫
�+

H5d� +
∫

�+
S5d�. (33)

We again observe that the numerical energy flux at the interface is modified by a contribution that is proportional to the 
jump in temperature. This jump is penalized in our numerical method, and disappears with mesh refinement (see Figs. 7
and 14 for example). The energy conservation statement in the − phase is given by

d

dt

∫
�−

ρ(e + |u|2
2

)d� =
∫

�I

(
〈 F̃5i〉n+

i + De(T + − T −)
)

d� +
∫

�−
S5d�. (34)

Once again we retain the desirable property of perfect cancellation of fluxes between the two phases across the interface. 
The equation for the total conservation of energy is obtained by summing (33) and (34) and is given by

d

dt

∫
�

ρ(e + |u|2
2

)d� = −
∫
�+

H5d� +
∫
�

S5d�. (35)

The conservation properties for the methods may be summarized as follows:

1. For all conserved quantities (mass, momentum and energy) there is a perfect cancellation of flux at the interface. That 
is the flux entering the + phase through the interface is exactly equal to the flux leaving the − phase through the 
interface.

2. The mass flux at the interface is equal to the average of the flux of the two phases.
3. The momentum flux at the interface is equal to the average of the flux of the two phases plus a contribution that is 

proportional to the jump in the tangential component of the velocity. This jump is weakly enforced to be zero and it is 
driven to zero with mesh refinement.
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4. The energy flux at the interface is equal to the average of the flux of the two phases plus a contribution that is 
proportional to the jump in the temperature. This jump is also weakly enforced to zero and it is driven to zero with 
mesh refinement.

2.6. Stability

We do not provide a detailed analysis of stability properties of the proposed method here; instead we consider its 
application to a simple linear scalar advection-diffusion problem and examine the stability properties of the resulting dis-
cretization. This gives points to the origins of stability for the underlying discretization and also guides us in selecting the 
parameters Dm and De that weakly enforce continuity across the interface.

Consider a simple linear advection-diffusion equation for a scalar φ,

∇ · (aφ − κ∇φ) = 0, in �+ ⋃
�−. (36)

Here a is the advective parameter which is assumed to be divergence free, and κ is the diffusivity. On the interface �I , we 
have the flux continuity condition

�aiφ − κφ,i �i = 0, (37)

and the kinematic continuity condition,

�φ�i = 0. (38)

In addition, on �+ we have the flux prescribed as

(aφ − κ∇φ) · n = h. (39)

The weak form for this problem is given by: find φ ∈ Sh such that ∀w ∈ Vh ,

B(w, φ) =
∫
�+

wh d�, (40)

where the bilinear form B(·, ·) is defined as,

B(w, φ) ≡
∫
�

−w,i(aiφ − κφ,i)d�

+
∫

�̃

(a · ∇w)τ
(∇ · (aφ − κ∇φ)

)
d� +

∫

�̃

νhh2∇w · ∇φd�

+
∫

�I

(〈aiφ − κφ,i〉� w �i + 〈κ w,i〉�φ�i + D � w �i �φ�i
)

d� (41)

By comparing the terms in (41) with the terms in (18) it can be seen how the two formulations are related.
We now examine the coercivity of this bilinear form by setting the trial solution equal to the weighting function and 

assuming a linear finite element basis so that �φ = 0 within each element. This yields,

B(w, w) =
∥∥∥κ1/2∇w

∥∥∥2 +
∥∥∥τ 1/2a · ∇w

∥∥∥2 +
∥∥∥νh1/2h∇w

∥∥∥2 +
∥∥∥D1/2 � w �i

∥∥∥2

�I
(42)

We note that all terms are positive and contribute to the stability of the numerical scheme. The first term, which comes 
from the diffusion operator provides stability in the volume in the diffusive limit. The second term, which comes from the 
SUPG term provides stability along the streamlines of a in the advective limit. The third term, which comes from the DC 
operator provides residual-driven isotropic diffusion. The fourth term provides control on the jump in the solution at the 
interface. We would like this term also to be active in both the advective and diffusive limits. Driven by this objective, the 
dimensionally consistent expression for the parameter in this term is determined to be

D = max{ κ

hn
, |an|}. (43)

Generalizing this form of the parameter to the compressible phase change problem we select

Dm = max{μ
+

hn
,ρ+|u+

n |, μ−

hn
,ρ−|u−

n |}, (44)
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Fig. 2. The concept of a macro-element. The elements above share a common face, which happens to be on the phase interface, and whose edges are 
marked by thick lines. The evaluation of all the integrals on the interface requires information from all nodes marked on this figure. This requirement, 
which is non-standard in the finite element method, is met by defining a macro-element whose connectivity information includes all the nodes.

where μ± is the viscosity in the two phases, and hn is the mesh size in the normal direction at the interface. Similarly, for 
the energy equation

De = max{κ
+

hn
,ρ+C+

v |u+
n |, κ−

hn
,ρ−C−

v |u−
n |}, (45)

where κ± is the thermal diffusivity in the two phases, and C±
v is the coefficient of specific heat at constant volume.

In recent studies on stabilized ALE finite element methods for compressible Navier Stokes equations, it has been shown 
that establishing Galilean invariance for a given formulation provides certain benefits for stability [41–43]. Applying a similar 
analysis to the formulation presented in this paper will be a useful addition as it might lead to the development of new, 
more stable methods. However, this is complicated by the fact that we are working with primitive variables (where proving 
invariance is harder) and the fact that we have introduced an interface term within a discontinuous formulation. However, 
it is something that will be explored in a future work.

3. Computational aspects

3.1. Finite element discretization at the phase interface

As described in the previous section, the finite element basis functions are continuous on the domains occupied by each 
phase. Thus the finite element connectivity within these domains is the same as that of a standard finite element method. 
However, the basis functions are discontinuous across the phase interface. Thus the evaluation of the integrals at the phase 
interface, as well as the connectivity along the interface warrants some discussion.

The term,∫

�I

(
�CW �i · D �CY �i

)
d�, (46)

involves the dot product of the jump in the weighting function with the jump in the trial solution. This couples the degrees 
from one side of the interface with the degrees of freedom on the other side. Referring to Fig. 2, where we have shown two 
tetrahedral finite elements with a conforming face that lies on the interface, this term will couple the degrees of freedom 
on nodes 18, 34 and 55 with the degrees of freedom on nodes 39, 5 and 16.

The term,∫

�I

〈 F̃ i〉 · �W �id�, (47)

involves the dot product of the jump in the weighting function with average of the fluxes on either side of the interface. 
The advective part of the flux only involves the trial solution (and not its derivatives) and therefore through this term it 
only couples the degrees of freedom at the interface with each other (same as the term above). However, the diffusive part 
of the flux involves gradients of the primitive variables, and therefore evaluating it at the interface involves contributions 
from nodes that are not on the interface. Consequently this term couples degrees of freedom at the interface with those 
that are not on the interface. Referring again to Fig. 2, this term will couple the degrees of freedom on nodes 18, 34 and 55 
with the degrees of freedom on nodes 39, 5, 16, and 7, similarly degrees of freedom on nodes 39, 5, and 16 with those on 
18, 34, 55 and 4. It is easy to see that the term,
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∫

�I

〈K T
i j W , j〉 · �CY �id� (48)

which involves derivatives of the weighting functions and jumps in the trial solution will also generate a similar type of 
coupling.

In summary then, for those elements that share a face that lies on the phase interface, all the degrees of freedom (dofs.) 
on the bounding elements are coupled. One way to accommodate this coupling, which is the strategy we have selected, is to 
create macro-elements at the interface, whose connectivity list contains all the nodes associated with these two elements. 
In the context of Fig. 2, the macro-element will span both elements, and its connectivity list will read 4, 18, 34, 55, 39, 5, 
16, and 7.

3.2. Mesh motion and modification

As described above, the location of the interface at any given instant is represented by the common faces of the macro-
elements. At every time step, the location of the nodes on these faces is updated by computing the interface velocity via 
Equation (7). This gives us the updated information of the interface. Based on this update a new location is determined for 
every node in the finite element mesh through an elastic analogy [45]. The entire domain is treated like an elastic solid and 
Dirichlet (displacement) data is prescribed for the nodes on the interface and for the nodes that are on a fixed boundary. 
The updated location of all other nodes is determined by approximately solving an elastic problem for an isotropic linear 
elastic material.

In defining the elastic parameters for the mesh motion problem, we have to select the Young’s modulus, E and the 
Poisson’s ratio, ν , for the problem. We set the Young’s modulus to be inversely proportion to the volume of an element, and 
the Poisson’s ratio to a constant value of 0.2. This specific choice for the Young’s modulus ensures that the smaller elements 
deform the least, and the larger elements deform the most. Since the larger elements can deform more without becoming 
invalid, this allows for the simulation to proceed for a significant time interval without the need for mesh modification. We 
do however recognize that as the interface deforms significantly, the element quality deteriorates, and we perform mesh 
modification in those regions [30,38,39]. Yet another update, which is not considered in this paper, would require modifying 
the underlying geometric model when entities within it undergo topological changes. This addition to our approach will be 
considered in the future.

Changes in mesh topology are based on local mesh modification operations. These are applied in an incremental fashion 
and the solution is transferred in a local fashion (i.e., at the level of the mesh cavity) whenever a mesh modification 
operation is applied. A callback mechanism is invoked each time a mesh modification takes place. For example, when an 
element is refined by splitting its edge(s), a list of the old elements as well as elements of the new mesh are handed into the 
callback function which then accesses the solution values on the old elements and transfers them onto the new elements 
according to procedures encoded into the callback function. A linear interpolation is currently used to define solution values 
for the newly created nodes. This approach resulted in the desired accuracy for the cases considered in this paper. A more 
rigorous analysis of solution transfer, under the full set of local mesh modification operations, will be considered in the 
future (see [23], for example).

We note that in contrast to the displacement-based mesh motion method we have used in this manuscript, several 
authors have proposed the use of velocity-based mesh motion methods [32,53,5]. These methods are particularly useful 
for problems where the mesh velocity is driven by, and close to the complex velocity field for the material within the 
computational volume. That is, the problem is solved in a setting that is close to a Lagrangian formulation. In contrast to 
this, in our application the mesh velocity is driven by the interface velocity, which is not as complex, and about two orders 
of magnitude smaller than the fluid velocity in the lighter phase. Thus in the lighter phase, where the velocity field is 
complex, we are close to an Eulerian setting and the application of these methods is not necessary. However, as we move 
to more complex applications, we will consider these methods.

3.3. Time integration scheme

The weak form in (18) leads to a set of nonlinear ordinary differential equations that need to be solved in order to 
determine the evolution of the nodal values of the primitive variables. These equations are integrated using the Generalized-
alpha method [11,25]. This method is a general method which is defined by 4 parameters that determine the specific 
time-integration scheme that is being exercised. Many popular time integration schemes, such as the Newmark method, 
the trapezoidal method, and the mid-point rule can be obtained as special cases of the Generalized-alpha method. This 
approach is particularly useful in designing second-order time integration methods that are dissipative for high-frequency 
modes while retaining their accuracy for the lower-frequency modes.

In Section 2.5 we established the conservative properties for the semi-discrete (or time-continuous) version of our for-
mulation. The conservation properties of the complete formulation, that is the fully-discrete formulation, are determined by 
this analysis and the time integration scheme. As demonstrated in that section, the semi-discrete formulation is conserva-
tive; however the application of the time-integrator to this formulation results in a loss of conservation, and the extent of 
this loss is determined by the accuracy of the time-integrator. In order to the quantify this loss, for the complex problems 
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Table 1
Material properties for two phases.

Property grains gas Units

Molecular weight Mw – 0.029 kg/mol
Density ρ 100 ∼ 1 (at NTP) kg/m3

Heat capacity C p 1460 γ R
γ−1 J/kg K

Specific heat ratio γ – 1.4
Molecular viscosity μ 10 1e-5 Pa s
Thermal conductivity λ 31.1 0.04 W/m K
Compressibility αp 1e-4 1/T 1/K
Compressibility βT 1e-7 1/p 1/Pa

considered in this paper, we have plotted the variation of the conserved quantities as a function of time in the numerical 
examples section.

As described in [25], the Generalized-alpha method is implemented in a predictor-corrector format. Using this approach, 
every time-step begins with a predictor that is derived from the current estimates of the rate of change of variables. This 
is followed by a corrector step. For implicit methods applied to linear systems, the corrector step involves solving a linear 
system of equations. For nonlinear systems, it leads to a nonlinear algebraic problem, which is solved through approximate 
Newton iterations. In evaluating the left hand side for this problem, a consistent tangent is not evaluated; rather approxi-
mations are made to retain the important terms. Several (2–4) approximate Newton iterations are done to ensure that the 
residual for the nonlinear systems drops by three to four orders of magnitude. These steps are interlaced with mesh update 
steps in a staggered approach that ensures that both the fluid variables and the mesh coordinates are converged at the end 
of each time step. Each linear system is solved using the GMRES iterative solver along with a block-diagonal preconditioner.

4. Results

In this section we present numerical results that verify the formulation developed in the previous section and demon-
strate its utility in simulating phase change problems, especially those involving strong variations in density and velocities. 
In all the examples, we consider a gas phase whose properties are close to that of air with an ideal gas equation of state, 
and a condensed phase whose properties are close to that of grains found in explosives (HTPB) [35,12], with a few dif-
ferences. First, the density is chosen to be about a tenth of the actual value. Second, the grains are modeled as a very 
viscous fluid rather than a viscoelastic solid. And finally, for the last two examples considered, the phase change rate of the 
grains is increased from its original value to ensure that the phase change velocity, up , is sufficiently large. For the grains, 
the equations of state for density and internal energy are linear expansions in temperature and pressure about a reference 
value. All the material parameters are listed in Table 1. For all simulations we use finite elements with linear interpolations.

4.1. Stefan’s problem

This problem is used to verify that the conditions at the interface are correctly modeled. It comprises of a dense phase 
with the material properties of the grain and a much lighter gas phase. The interface is a plane with the normal oriented 
along the x-direction. We model a length of 2 mm of each phase with a square cross-section, assume a constant interface 
velocity of 1 m/s. In this problem, the dense phase is almost stationary and we apply a zero-velocity boundary condition 
at x = −2 mm. We also prescribe the temperature at this surface to be 288 K. On the boundary at x = 2 mm, we specify 
pressure and a zero heat-flux boundary condition. We also increase the thermal conductivity of the liquid phase by a factor 
of 100 in order to enhance diffusion so that we can compute an analytical solution to verify the numerical method.

The mesh used to solve this problem is shown in Fig. 3. We solve the problem with CFL ≈ 20 and accommodate the 
motion of the interface through mesh motion at every time step. We perform a mesh modification step every 200 time 
steps where the boundary layer mesh at the interface and at the domain boundaries is maintained. We perform a total of 7 
mesh modification steps. The mesh after 3 such mesh modification steps is shown in Fig. 3.

We test the performance of the mesh motion and mesh modification algorithms by demonstrating they approximate the 
so-called geometric conservation law (GCL) with good accuracy. According to the integral form of this law, the volume of a 
given phase at time t , denoted by V ±(t), must satisfy the relation [50],

V ±(t) −
t∫

0

∫

�I

v · n±d � = V ±(0). (49)

Recall that v is the velocity of the interface. In Fig. 4 we have plotted the left hand side of this equation as a function 
of time for the liquid and the gas phase, scaled by the initial volume. In this figure the red dots indicate instances when 
mesh modification is performed. From this figure we observe that for both phases the GCL is satisfied to good accuracy 
throughout the simulation. In fact, for this problem, since the interface starts and remains planar, the GCL is satisfied to 
within numerical precision during the entire simulation.
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Fig. 3. A zoomed-in cross-sectional view of the mesh for Stefan’s problem at time-steps N = 20, 820, 1250 & 1590 (from top to bottom). The colors indicate 
different phases. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Illustration of the GCL for each phase in the Stefan problem. Red dots indicate instances when the mesh is modified.

To verify our numerical results we analytically solve a one-dimensional Stefan problem with some simplifying assump-
tions. In the liquid we assume ρ = 100 kg/m3, v = 0 and dT

dx = constant, whereas in the gas we use the ideal gas equation 
of state to relate, ρ , T and P . The boundary conditions for this problem are same as that of the Stefan problem described 
above. The flow is assumed to be uniform in the gas since the momentum transfer is dominated by advection. As a result, 
the pressure in the gas phase is 1 atm, which is the boundary condition at the outlet. Given these assumptions, solving 
the quasi-steady Navier Stokes equations reduces to solving the interface conditions – a system of non-linear algebraic 
equations. These equations are solved in MATLAB and compared to the numerical solution as shown in Fig. 5. We observe 
good agreement and note that the minor differences between analytical and numerical solutions can be attributed to the 
assumptions made when evaluating the former. We observe similar agreement at other times (not shown here). This prob-
lem can be solved without including the DC term, and this solution, as well as the solution with the DC term are shown 
in Fig. 5. There is no discernible difference between these two solutions, indicating that this problem does not need the 
added stability from the DC term. We observe a significant jump in the velocity magnitude at the interface that occurs due 
to the significant difference in density among the two phases. We observe a jump in pressure that arises from balancing 
the momentum flux. We also note that even though the temperature was only weakly enforced to be continuous at the 
interface, it is in fact very close to being continuous.

We have performed a convergence study for the problem by refining the mesh at the interface in the normal and 
tangential directions, and computing the error in enforcing the flux and continuity (in temperature and tangential velocity) 
conditions. In Fig. 6 we have plotted the normalized L2 norm of the error in the flux condition for mass, momentum and 
energy as a function of mesh size, for formulations with and without a DC term. For the formulation without a DC term, we 
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Fig. 5. Comparison of analytical and numerical solutions for the Stefan problem at t = 0.75 ms. Black dashed and solid lines represent the numerical solution 
without the DC term, while red dashed and solid lines represent the numerical solution with the DC term, and the symbols represent the analytical solution.

note that the error in mass and momentum flux conditions reduces like O (h2), while the error in the energy flux condition 
varies as O (h1). The lower convergence in the energy flux condition is expected since it is dominated by the diffusive flux 
in the heavier phase, which in turn depends on the spatial derivative of temperature. In contrast to this the mass and 
momentum fluxes are dominated by advective components which only depend on the variables and not their derivatives. 
For the formulation with the DC term, we observe similar trends, but with two caveats. First, for mass conservation the 
convergence rate appears to drop from approximately 2 to 1. This drop is likely due to the fact that without the DC term 
the equations for the conservation of mass do not contain any diffusive terms; however the DC term introduces a diffusive 
term and therefore changes the character of this equation. Second, though the rates for momentum and energy remain 
the same with the addition of the DC term, the constant in front of all rates increases, thereby increasing the error in 
conserving different quantities at the interface. This poses a challenge. Understanding this effect, and then modifying the 
DC formulation to overcome it, is an interesting avenue for future work.

Another measure of the accuracy of our method at the interface is the imposition of the kinematic conditions. These are 
the continuity in temperature and the tangential components of the velocity vector. The normalized L2 in enforcing these 
conditions is shown in Fig. 7. From this figure we observe that both these errors are very small, and appear to be converging 
at O (h2). We also observe that these rates do not change with the introduction of the DC term, though the constant in front 
of them increases somewhat.

4.2. Phase change of a spherical droplet

Next we consider a problem described in spherical coordinates where we include additional physics when compared 
with Stefan’s problem. The mesh for this problem is displayed in Fig. 8. We consider a droplet of the denser phase with 
diameter 1 mm, surrounded by the larger sphere of the lighter phase with diameter 2 mm. On the surface of the outer 
sphere we prescribe zero velocity and zero heat flux condition. The problem starts with both phases at rest, and is driven 
by phase velocity of up = 1 m/s. When compared with the Stefan problem we include a heat of reaction (∼ 2 MJ/kg) term 
in the energy balance which represents the conversion of gaseous phase into the products of combustion. This term is 
accounted in the formulation by ensuring that the difference in the internal energy per unit mass between the liquid and 
the gas phase includes a contribution from this term. Since the emphasis of this manuscript is on modeling phase change, 
we do not consider more refined models of combustion. We do however note that the phase change methodology described 
in this paper can be combined with such models. We also note that in this problem, and all subsequent problems we have 
included the DC term in our formulation.

In Fig. 9 we examine the adherence of the numerical method to the GCL for this problem. We plot the sum of the volume 
and the integrated volume flux for each phase, scaled by its initial volume, as a function of time. According to the GCL (49)
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Fig. 6. Normalized L2 error in enforcing interface mass, momentum and energy flux conditions at t = 0.12 ms as a function of mesh size (Black - without 
DC; Red - with DC). The dash-dot line represents a slope of h1 and the dashed lines represent a slope of h2.

Fig. 7. Normalized L2 error in enforcing continuity of temperature and tangential velocity at the interface at t = 0.12 ms as a function of mesh size (Black 
- without DC; Red - with DC). All lines represent a slope of h2.

Fig. 8. A cross-sectional quadrant view of the mesh for the spherical droplet at time-steps N = 10, 100 & 430 (from left to right). The colors indicate 
different phases.
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Fig. 9. Illustration of the GCL for each phase in the sphere problem. Red dots indicate instances when the mesh is modified.

this quantity must be equal to unity. We observe that it stays close to unity throughout the simulation. We also note that 
due to the impulsive start to this problem, pressure waves are set up in the domain and are damped after some time. These 
waves cause rapid (though small) variations in the conserved geometric quantities at early time. The red dots in this plot 
represent instances when the mesh is modified. At these instances we observe changes in the volume for each phase. This 
is to be expected, since both the outer surface and the interface in this problem are curved surfaces that are approximated 
by linear finite elements. A change in these elements leads to a slightly changed overall volume for each phase.

The problem commences with the gas pressure at 1 atm. The phase change causes the droplet to shrink and the lighter 
phase created at the interface is expelled outward, while the fluid within the droplet is relatively stationary. It also results 
in the generation of heat due to the heat of reaction which causes the temperature to increase. Since all this occurs in a 
closed, adiabatic chamber, it causes the pressure within the gas phase to rise. This can be seen in the variation of physical 
quantities along a radial line in Figs. 10–12.

At early time (t = 0.006 ms in Fig. 10) the density of the liquid phase is around 100 times the gaseous phase. Given that 
the liquid phase is at rest, and the phase change velocity is 1 m/s, conservation of mass at the interface implies that the 
speed in the gaseous phase must be around 100 m/s. Further, conservation of mass in the gas implies that this speed decay 
as r−2, as long since the density in the gas is mostly uniform. This can also be observed in Fig. 10. Also, since at this time 
the phase change has just commenced, we do not observe appreciable changes in pressure and temperature beyond their 
initial values.

Next we consider the solution at t = 0.06 ms when the liquid sphere has lost around 38% of its initial volume (see 
Fig. 11). Due to sustained phase change and the corresponding generation of heat, the temperature at the interface has 
risen to 1,200 K. We note that enough time has passed for the hot gas to be convected to the outer boundary of the 
spherical domain, where we see a distinct front in the temperature profile. Within the droplet, the temperature at the 
interface has diffused into the core. Also, since the gas is contained within an enclosed chamber, the retardation of the 
gaseous phase at the outer boundary has led to an increase in the pressure to around 15 atm. The elevated pressure leads 
to elevated density at the interface, which in turn leads to the lowering of the speed in the gaseous phase to around 25 m/s.

These trends are seen to persist at t = 0.26 ms when the liquid volume is down to around 6% of its initial volume (see 
Fig. 12). The temperature at the interface has risen to 4,500 K, and the pressure everywhere is around 80 atm. The density 
of the gas at the interface has increased and its speed is now down to around 20 m/s. We also observe that the density 
variation is in inverse proportion to the temperature variation, leading to a more-or-less uniform pressure profile in the gas.

The process of mesh motion and modification is similar to that for the Stefan problem. As the interface moves, the mesh 
at the interface moves with it, while the mesh motion in the volume is determined by solving a linear elasticity problem. 
When the mesh quality starts to deteriorate a mesh modification step is performed in which the boundary layer mesh 
structure on either sides of the interface is preserved. We note that in the time takes for spherical droplet to shrink to 40% 
of its original diameter, which corresponds to 430 total time steps, we need only about 15 mesh modification steps.

We have also performed a convergence study for this problem by considering a hierarchy of meshes and computing the 
errors in enforcing the flux and continuity conditions at the interface. For the coarsest mesh the ratio of D/h = 5 (here D
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Fig. 10. Variation of the numerical solution along a radial line at t = 0.006 ms (N = 10). The solution in the dense liquid phase is denoted by a solid line 
and the gaseous phase is denoted by a dashed line.

Fig. 11. Variation of the numerical solution along a radial line at t = 0.06 ms (N = 100). The solution in the dense liquid phase is denoted by a solid line 
and the gaseous phase is denoted by a dashed line.
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Fig. 12. Variation of the numerical solution along a radial line at t = 0.26 ms (N = 430). The solution in the dense liquid phase is denoted by a solid line 
and the gaseous phase is denoted by a dashed line.

Fig. 13. Normalized L2 error in enforcing interface mass, momentum and energy flux conditions at t = 0.12 ms as a function of mesh size. The dash-dot 
line represents a slope of h1 and the dashed lines represent a slope of h2.

is the initial diameter of the sphere, and h is tangential mesh size) while for the finest mesh D/h = 40. The results of this 
study are shown in Figs. 13 and 14. From Fig. 13 we observe that the error in the momentum flux condition reduces as 
O (h2) and the error in the mass and energy flux conditions reduces as O (h). While from Fig. 14 we observe that the error 
in enforcing continuity in temperature and tangential velocities reduces as O (h2). All these rates are similar to the rates 
observed for the Stefan problem.

4.3. Phase change of a cylindrical grain

Next we consider the phase change and combustion of a cylindrical grain with hemispherical end caps enclosed in a 
small cylindrical chamber. The length of grain is 2 mm and its radius is 0.5 mm, while the length of chamber is 4 mm 
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Fig. 14. Normalized L2 error in enforcing continuity of temperature and tangential velocity at the interface at t = 0.12 ms as a function of mesh size. Both 
lines represent a slope of h2.

and its radius is 1 mm. Once again we include the heat of reaction term. In addition we use a more realistic phase change 
model by making use of Vieille’s law, where the phase change speed is given by up = a(p+)n , where p+ is the pressure of 
the gas. Here we select n = 0.7 and a = 7.9 × 10−5 m/(s Pan). These values are selected based on typical values found for 
an energetic material like AP/HTPB/AL [35,12]. We note that we have increased the value of a by a factor of 3000 in order 
account for the fact that we have used a lower density material (this accounts for a factor of 10) and to speed up the phase 
change process (this accounts for a factor of 300).

The initial pressure within the chamber is set to 1 atm. At this pressure the speed of phase change is 0.25 m/s, which is 
rather small. However, as phase change and reaction occur, the pressure in the chamber increases due to the deceleration 
of high speed gasses in a closed chamber, and the confinement heat released due to reaction. This causes the rate of phase 
change to increase due to the pressure dependence of Vieille’s law thereby accelerating the entire process. This can be seen 
by plotting the average gas pressure and temperature as a function of time in Fig. 15. We observe that both these quantities 
rise slowly initially and then increase exponentially, finally slowing down when the interface area becomes very small. We 
terminate the simulation when the volume of the grain reduces to about 3.5% of its initial volume.

The exponential increase in pressure and temperature introduces very strong gradients in the solution. In this case we 
have found that the SUPG term alone is unable to provide sufficient stability. For this reason we have made use of the 
so-called discontinuity (DC) capturing operators [22,49,37,44] in solving the single and multiple grain problems (considered 
next). Like the SUPG term the DC term is also residual based and is therefore consistent; however unlike the SUPG term 
which provides stability only in the upwind direction, this term, which takes the form of an isotropic diffusion, acts in all 
directions. Also, since this term involves gradients of the weighting function, it vanishes when the weighting function is set 
to unity to determine the conservative properties of the method. Thus the results of Section 2.5 hold even with the addition 
of this term.

The mesh used to solve this problem comprises of around 2.3 million linear tetrahedral and wedge elements. At the 
interface, on the side of the propellant grain, there are two layers of boundary layer mesh, with a total thickness of 2.2 ×
10−5 m. On the gas side, there are three layers of boundary layer mesh with a total thickness of 3.64 × 10−5 m.

The variation of pressure, temperature and velocity within the gas phase inside the chamber is shown in Figs. 16, 17 and 
18 respectively at two different time instances (t = 0.122 and 0.1907 ms). For pressure, we scale the pressure field with its 
average value, and plot this value. With this approach, we are able to discern variations in pressure are within 0.8–1.4 times 
the average pressure, and are therefore not significant. We also observe that due to the presence of strong acoustic waves 
that bounce back and forth within the chamber, the pressure distribution within the chamber does not display a consistent 
pattern that is sustained over the course of the simulation. The only trend that is observed is that along the axis of the 
grain, the pressure close to the center is elevated, and because of this and the dependence of phase change rate on pressure, 
this region of the grain is consumed faster than other regions. This gives the grain a pinched-off appearance at later times.

The velocity field in a plane within the chamber can be seen by visualizing the line integral convolution (LIC) of velocity 
in Fig. 17. At both times we observe high speeds of around 200 m/s. This is in contrast to the spherical droplet problem 
where the gas speed reduced with time. The difference between these two problems is the speed of phase change, which 
was held constant in the special droplet problem and allowed to vary as a function of pressure in the cylindrical grain 
problem. As a result in the cylindrical grain problem the reduction in the speed at the interface due to the increase in gas 
density is offset by the increase in the phase change speed due to increasing pressure. A close look at the flow patterns at 
different times reveals certain interesting features. These include, a stagnation flow on the curved surface of the chamber 
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Fig. 15. Average pressure and temperature in the gas as a function of time.

Fig. 16. Pressure, scaled by its average value in the chamber, at t = 0.122 and 0.1907 ms for the cylindrical grain problem (time step N = 410 and 1190).

surrounding the grain with the stagnation point (curve) directly above and below the grain, the presence of vortex cores 
(curves) towards the ends of the chamber that appear to move with time, and the presence of 2–3 stagnation points along 
the long axis of the cylinder that also appear to move with time.

The distribution of the temperature within the chamber is shown in Fig. 18 where we note that in contrast to the 
pressure distribution it is much more non-uniform. This can be understood by viewing temperature as a scalar that is 
generated at the interface (due to phase change and reaction) and is convected in the chamber by the gas (diffusion plays 
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Fig. 17. Line integral convolution (LIC) of velocity at t = 0.122 and 0.1907 ms for the cylindrical grain problem (time step N = 410 and 1190).

Fig. 18. Temperature at t = 0.122 and 0.1907 ms for the cylindrical grain problem (time step N = 410 and 1190).
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Fig. 19. Shape of the grain at t = 0.003,0.122,0.1706 and 0.1907 ms (time steps N = 10,410,660 and 1190).

Fig. 20. Mesh along a cross-section at t = 0.003,0.122,0.1706 and 0.1907 ms (time steps N = 10,410,660 and 1190).

very little role). Since the flow contains several regions of stagnant fluid that are not connected to the interface, these 
regions also correspond to locations where the temperature does not rise significantly.

The shape of the grain at 4 different times (t = 0.003, 0.122, 0.1706 and 0.1907 ms) is shown in Fig. 19. We observe 
that the grain retains its initial shape through most of the process. However, towards the end we begin to see a reduction 
in its thickness along its center which corresponds to the slightly higher pressure that is observed in this region.

The mesh for this problem along a cross-section for the same time instances is shown in Fig. 20. We undertake 5 mesh 
modification steps for the total of 1190 time steps that this problem is run. In every mesh modification step we maintain 
three layers of boundary layer mesh outside and two layers inside the grain.

For this problem, the total mass and energy of the system are conserved during the simulation, while the momentum is 
not. In Fig. 21, we have plotted the variation of these quantities for each phase, and the total system, as a function of time. 
As the simulation proceeds the mass and the energy of the system are transferred from the liquid to the gas phase. Since 
the energy density of the liquid phase is significantly larger, the cross-over point for the total energy, that is the time where 
the total amount of the conserved quantity in the gas phase exceeds that of the liquid phase, is later than the cross-over 
point for the total mass. The error in conservation during the course of the simulation for mass is 3.1% and for energy it is 
7.2%. This error can be reduced by increasing the accuracy of the time-integrator or by simply reducing the time-step in the 
simulation.

4.4. Phase change of multiple grains

Finally, we consider the phase change and burning of several (six) cylindrical grains. Each grain is a 2 mm long circular 
cylinder capped with hemispherical end caps of 0.5 mm radius. The grains are placed symmetrically in a cylindrical chamber 
that is 8.4 mm long and has a radius of 1.9 mm. The material properties of the grains are the same as in the previous 
example and as before the chamber has adiabatic boundary conditions.

The mesh used to solve this problem comprises of around 6.2 million linear tetrahedral and wedge elements. At the 
interface, on the side of the propellant grain, there are two layers of boundary layer mesh, with a total thickness of 2.2 ×
10−5 m. On the gas side, there are three layers of boundary layer mesh with a total thickness of 3.64 × 10−5 m.
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Fig. 21. Variation of the total mass and energy in the gas, the grain, and the total system as a function of time.

Fig. 22. Average pressure and temperature in the gas as a function of time.

The phase change process commences at 1 atm and increases exponentially until the interface area starts to reduce 
significantly. The variation of the average pressure and temperature in the gas phase is shown in Fig. 22 where, as for the 
one grain case, we observe a ramp up period followed by exponential increase in pressure and temperature. We terminate 
the simulation when the grains reduce to about 6% of their initial volume.

The distribution of pressure at the end of the simulation is shown in Fig. 23. From this figure observe that the pressure 
within the gas phase is quite uniform and varies within 0.8 to 1.3 of its average value. We also observe no sustained trends 
in the pressure distribution, primarily due to the multiple scattering of strong acoustic waves within the chamber.

The velocity distribution at the end of the simulation can be observed in a plot of the line integral convolution (LIC) of 
velocity in Fig. 24. In this figure we observe a very complex flow pattern that is formed from the interaction of the jet of 
fluid emanating from each grain with each other and with the surface of chamber.

The corresponding temperature distribution is shown in Fig. 25. In this figure we observe that the temperature distri-
bution is much more uniform when compared with the single grain case. We still observe pockets of low temperature that 
probably correspond to pools of stagnant gas, however the extent of these regions is much smaller than in Fig. 18.

The evolution of the shape of the grains is shown in Fig. 26 for t = 0.003, 0.132, 0.1886 and 0.2174 ms. Once again we 
observe that for a significant duration of the simulation the grains shrink while retaining their shape. However, towards the 
end they appear to become thinner along their centers when compared to their ends. Further, towards the end they also 
display asymmetry in their orientation with respect to each other.

In Fig. 27 we have shown a close-up of the mesh around one of the grains at four different instances. The mesh was 
modified at least once between each of these instances. We observe that through each modification cycle the boundary 
layer on either side of the phase interface has been preserved. We also note that even though the total simulation was 
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Fig. 23. Pressure, scaled by its average value in the chamber, at t = 0.2174 ms for the six grains problem (time step N = 1620).

Fig. 24. Line integral convolution (LIC) of velocity at t = 0.2174 ms for the six grains problem (time step N = 1620).

Fig. 25. Temperature distribution at t = 0.2174 ms for the six grains problem (time step N = 1620).

run for 1620 time steps, the mesh was modified only a total of 5 times. Thus the major portion of interface motion and 
deformation was accommodated via mesh motion, which significantly less expensive that mesh modification.

In Fig. 28, we have plotted the variation of the total mass and energy for each phase, and the total system, as a function 
of time. Once again, we observe that as the simulation proceeds the mass and the energy of the system are transferred from 
the liquid to the gas phase, and that the cross-over time for the total energy is larger than for the total mass. The error in 
conservation during the course of the simulation for mass is 1.3% and for energy it is 2.1%.
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Fig. 26. Shape of the grains at t = 0.003,0.132,0.1886 and 0.2174 ms.

Fig. 27. Mesh along the cross-section of a grain at t = 0.003,0.132,0.1886 and 0.2174 ms.

5. Conclusions

In this manuscript we have developed and implemented a finite element method to model compressible fluid phase 
change problems. The finite element interpolations are continuous everywhere except at the interface, where discontinuous 
interpolations are used to model the naturally occurring strong discontinuities. In this regard the method can be considered 
a combination of standard and discontinuous finite element methods and it inherits its stability from the SUPG and interior 
penalty methods. Within this method, at the interface, appropriate flux conditions as well as certain continuity conditions 
are imposed weakly. It is also shown that the proposed method possess certain desirable discrete conservation properties.

The interface between the two phases is a represented by a surface mesh which is evolved in time. The volumetric mesh 
is allowed to deform in response to this motion in analogy to a linear elastic solid. The motion of the mesh is accounted for 
through the ALE formulation. Mesh modification is performed only when it is found that the mesh motion alone is unable 
to deliver a mesh of desired quality.

This formulation is implemented in a compressible Navier Stokes finite element code within an implicit predictor-
corrector time integrator. This is particularly useful in working the disparate time scales of interface motion and acoustic 
waves while still retaining stability.

The performance of this method is verified using a simple Stefan’s problem for which an approximate analytical solution 
is computed. Furthermore, for this problem and its counterpart in spherical coordinates, the convergence of the errors in 
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Fig. 28. Variation of the total mass and energy in the gas, the grain, and the total system as a function of time.

enforcing the interface flux and continuity conditions with decreasing mesh size is quantified. Thereafter this method is 
applied to simulating the combustion of a single and several grains of a dense energetic material enclosed in a closed 
chamber with adiabatic walls. Interesting results that describe the change in the shape of the grains, the evolution of 
average pressure and temperature, and non-uniformity in the temperature field are obtained.

While the method presented in this paper is promising, we believe that there are several ways in which it can be 
improved, refined and extended to solve additional compressible phase change problems. These include the addition of a 
surface tension term in order to simulate the interaction and collapse of vapor bubbles in water. The extension of the gas 
phase description to include multiple components (air, gaseous propellant and the products of combustion, for example) so 
that processes that occur after phase change, like the combustion of the gaseous phase can be modeled more accurately. 
In addition, there are several interesting numerical extensions that can be explored as well. These include addition of 
interface stabilization terms that are the interface analogs of the SUPG and discontinuity capturing operators. These would 
be particularly useful for flows with strong shocks that run through interfaces.

Finally, we note that the methods that explicitly track interfaces, like the one presented here, are either limited to 
cases where the change in topology of the phase interfaces do not occur (examples in the current paper) or must include 
techniques that explicitly account for the topological changes. Developments required to support topological changes include 
procedures needed to track the geometry and mesh for an accurate detection of an imminent topological change, and 
procedures needed to update the geometry and mesh during a topological change (see [26] for an application in crack 
propagation). It is worth noting that although the mesh updates required in cases involving topological changes are more 
extensive as compared to cases with shape changes, such mesh updates can still be carried out by local mesh modification 
operations.
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Abstract

In finite element simulations, not all of the data is of equal importance. In fact, the primary purpose of
a numerical study is often to accurately assess only one or two engineering output quantities that can be
expressed as functionals. Adjoint-based error estimation provides a means to approximate the discretization
error in functional quantities and mesh adaptation provides the ability to control this discretization error
by locally modifying the finite element mesh. In the past, adjoint-based error estimation has only been
accessible to expert practitioners in the field of solid mechanics. In this work, we present an approach to
automate the process of adjoint-based error estimation and mesh adaptation on parallel machines. This
process is intended to lower the barrier of entry to adjoint-based error estimation and mesh adaptation
for solid mechanics practitioners. We demonstrate that this approach is effective for example problems in
Poisson’s equation, nonlinear elasticity, and thermomechanical elastoplasticity.

Keywords: automated, adjoint, a posteriori, error estimation, adaptation, finite element

1. Introduction

Numerical simulation has become ubiquitous in engineering and scientific practice due to the continuing
increase in power and accessibility of computational resources. For scientific and engineering applications,
ensuring the accuracy and reliability of the computed numerical solution is of primary importance. For exam-
ple, it is often necessary to design structural components for which the von Mises stress in the component’s
domain is less than a given material yield strength when subjected to a variety of loading conditions.

In the context of finite element methods, a posteriori error estimation and mesh adaptation provide useful
tools for approximating and controlling the discretization error when solving partial differential equations
(PDEs) (cf. [1, 26, 61]).

In an abstract finite element setting, one seeks to solve the variational problem: find u ∈ S such that

R(u;w) = 0 ∀w ∈ V, (1)

where R : S×V → R is a semilinear form, potentially nonlinear in its first argument and linear in its second,
and S and V are Hilbert spaces. Given the exact solution u to this problem and a corresponding finite element
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approximation uH , the discretization error is defined as e := u−uH . Traditional a posteriori error estimates
attempt to bound or approximate the discretization error in a global norm ‖e‖, such as the energy norm
induced by the underlying partial differential operator. In the past twenty years, though, adjoint-based
techniques have been developed and utilized to obtain approximations η or approximate bounds η̂ for the
error |J(u)− J(uH)| in some physically meaningful functional J : S → R, such that

|J(u)− J(uH)| ≈ η < η̂. (2)

The use of adjoint (or duality) techniques for a posteriori error estimation can be traced back to Babuška
and Miller [3, 4, 5] who explored the post-processing of functional quantities and Gartland [18] who explored
estimating point-wise errors. These ideas were then expanded to the context of adaptive finite element meth-
ods by Johnson et al. [15]. Becker and Rannacher [8] developed an approach to functional a posteriori error
estimation for Galerkin finite element methods called the dual weighted residual method. Giles and Pierce
[21] developed an approach conceptually similar to the dual weighted residual method, but additionally
concerned themselves with discretizations that lack Galerkin orthogonality, such as Godunov finite volume
methods. Venditti and Darmofal [58, 59, 60] developed adjoint-based error estimates for arbitrary dis-
cretizations using discrete adjoint equations based on two-level discretization schemes. Prudhomme and
Oden [42, 37] developed adjoint techniques to determine guaranteed upper and lower bounds for linear
functionals in the context of linear variational problems.

Adjoint-based error estimation and mesh adaptation have been heavily adopted by the computational
fluid dynamics (CFD) community [17]. This can in part be explained by the fact that the current increase
in computing power alone may not be sufficient to accurately resolve quantities of interest (QoIs) in CFD
applications, even when very finely generated a priori meshes are used [17]. However, despite its popularity
in CFD, adjoint-based error estimation is not regularly applied to solid mechanics applications.

In the context of solid mechanics, adaptive adjoint-based error estimation has been used to study linear
elasticity in two [45, 55, 22] and three [20] dimensions, two [46, 47] and three [19] dimensional elasto-plasticity,
two dimensional thermoelasticity [43], two dimensional nonlinear elasticity [32], and two dimensional hy-
perelasticity [62]. We remark that in the majority of this literature, mesh adaptation is performed with
structured adaptive mesh refinement using quadrilateral or hexahedral elements and without any discussion
of parallelization. Additionally, none of these investigations apply the current state of the art capabilities
of parallel three-dimensional unstructured mesh adaptation, as is currently the norm for CFD applications.

Perhaps one reason for this discrepancy is the fact that adjoint-based error estimation requires the
development and implementation of a number of non-trivial steps. From a high-level, the following steps
must be carried out to perform an adaptive adjoint-based error analysis:

1. Solve the original (primal) PDE of interest.

2. Using the primal solution, derive and solve an auxiliary adjoint PDE.

3. Enrich the solution to the adjoint PDE in some manner.

4. Compute error estimates using an adjoint-weighted residual method.

5. Localize the error to contributions at the mesh entity level.

6. Adapt the mesh based on the local error contributions.

Additionally, modern solid mechanics applications necessitate the use of parallel analysis, meaning each of
these steps must execute effectively and efficiently on parallel machines.

Further, both the primal residual and functional QoI can be highly nonlinear in solid mechanics. Solving
the primal and adjoint problems requires the linearization of the primal residual and the functional QoI with
respect to the degrees of freedom of the problem. The derivation and numerical implementation of these
linearizations can be time consuming and error-prone. As a result, adjoint-based error control has typically
remained a tool for expert analysis with a high barrier of entry.

As a final observation, we note that unstructured mesh generation and adaptation is robust, reliable, and
scalable for simplicial elements. However, for solid mechanics applications with incompressibility constraints,
such as isochoric plasticity or incompressible hyperelasticity, standard displacement-based Galerkin finite
element discretizations are known to be unstable when using simplicial elements. This fact may have further
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hindered the adoption of unstructured mesh adaptation for previous adaptive adjoint-based solid mechanics
applications.

To make adjoint-based error estimation and mesh adaptation more accessible to solid mechanics prac-
titioners, we seek to fully automate its steps for execution on parallel machines. Specifically, we seek to
develop software that automates steps 1-6 outlined above based solely on the inputs of a semilinear form
R and a functional QoI J . We endeavor to develop this software to be applicable to both Galerkin and
stabilized finite element methods.

Recently, Rognes and Logg [50] introduced a fully automated approach to goal-oriented error estimation
and mesh adaptation for Galerkin finite element methods within the FEniCS [35] finite element framework.
In this approach, the adjoint problem is derived in a discrete manner based on a user-implemented residual
R and a functional J . The adjoint problem is then solved on the same finite element space as used for
the primal problem and enriched to a higher order polynomial space by solving local patch-wise problems.
Based on the given semilinear form R, error contributions are then localized to the element-level by solving
local element problems to recover the strong form of the residual operator over element interiors and element
boundaries. The total error in the functional QoI is then computed as the sum of these error contributions.
As a final step, the mesh is adapted using conforming unstructured mesh refinement.

In this work, we present an approach for automating goal-oriented analysis that is distinct in several
ways. First, we consider adjoint-based error estimation in the context of both Galerkin and stabilized finite
element methods. Additionally, we propose solving the adjoint problem in a richer finite element space,
obtained via uniform refinement, than the space used for the primal problem. To localize the error to
the mesh entity level, we utilize a partition of unity based approach proposed by Richter and Wick [49].
This allows us to directly re-use the implemented semilinear form R for error localization, eliminating the
need to solve local element problems to recover the strong form residual. We also take advantage of fully
unstructured conforming mesh adaptation, where the mesh can be coarsened as well as refined. As a final
distinction, we highlight the ability of the proposed approach to execute on parallel machines.

In totality, our new approach can be described as follows. First, the primal problem is solved via
Newton’s method, where the Jacobian of the semilinear form R is obtained via automatic differentiation.
The adjoint problem is derived in a discrete manner in a richer finite element space obtained by a uniform
refinement of the initial mesh. The adjoint operator is derived by an application of automatic differentiation
to the semilinear form R, and the right-hand side of the adjoint problem is obtained by applying automatic
differentiation to the functional J . An approximate error η is computed as a modified discrete adjoint
weighted residual evaluated on the fine space. The error is then localized to mesh vertices using a variational
localization approach by introducing a partition of unity into the weighting slot of the semilinear formR. An
estimator of the error bound η̂ is obtained by summing the absolute values of localized error contributions.
Finally, the mesh is adapted by specifying a mesh size field, which defines the length of mesh edges over the
mesh. We have implemented this approach in a C++ finite element application which we have called Goal
[23].

Underlying this approach is the concept of template-based generic programming (TBGP) [38, 39], which
has previously been used to automate the solution of PDEs as well as embedded advanced analysis features,
such as sensitivity analysis and uncertainty quantification. From a high-level the TBGP approach consists
of a gather phase, a compute phase, and a scatter phase. The present work extends the TBGP approach to
include the automation of error localization, as required to drive mesh adaptation.

The remainder of this paper is outlined as follows. First adjoint-based error estimation is reviewed
for abstract Galerkin and stabilized variational problems. Next, a description of the software components
utilized in this work is provided. In particular, each step of the automated adjoint-based analysis is discussed
with respect to its utilized software components. A review of the concept of TBGP is then provided and its
extension for the purposes of adjoint-based error estimation is discussed. A detailed description of each step
in the adaptive adjoint-based process is then described. First the automated solution of the primal problem
is discussed. Then the automated derivation and solution of the adjoint problem is described. Next, the
automation of error localization to drive mesh adaptation is outlined and mesh adaptation procedures are
discussed. The implementation of several QoIs in the Goal application is reviewed. Finally, the effectiveness
of the proposed automated approach is demonstrated for several applications.
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2. A Review of Adjoint-Based Error Representations

In this section, a brief review of the derivation of adjoint-based error representations is provided for
Galerkin finite element methods as outlined by Becker and Rannacher [8], and for stabilized finite element
methods as outlined by Cyr et al. [12]. This review is intended to give context and serve as a road map for
the remaining sections in this chapter.

Let S and V be Hilbert spaces, Rg : S × V → R and Rτ : S × V → R be semilinear forms. Here the
subscript g is used to denote a residual that corresponds to a standard Galerkin method and the subscript τ
is used to denote a residual that arises due to numerical stabilization. Let SH ⊂ S and VH ⊂ V be classical
finite element function spaces, where H is a mesh-dependent parameter that denotes the fineness of the
discretization. We introduce the following variational abstract model problem: find u ∈ S such that

Rg(u;w) = 0 ∀w ∈ V. (3)

Similarly, we introduce the following abstract adjoint problem: find z ∈ V such that

R′g[uH ](w, z) = J ′[uH ](w) ∀w ∈ V, (4)

where the prime indicates Fréchet linearization about the argument in square brackets, which can equiva-
lently be expressed as the Gâteaux derivatives

J ′[uH ](w) := lim
ε→0

J(uH + εw)− J(uH)

ε
(5)

and

R′g[uH ](w, z) := lim
ε→0

Rg(uH + εw; z)

ε
(6)

Here, uH ∈ SH denotes some finite element approximation to the true solution u. The purpose of the adjoint
problem is to relate the original problem of interest to the functional quantity J , and it is this relationship
that allows us to derive adjoint-based error representations. Further, we note that the adjoint solution z
can be interpreted as the sensitivity of the QoI to perturbations in the primal PDE residual [17].

2.1. Galerkin Finite Element Methods

The corresponding Galerkin finite element formulation of the abstract problem (3) can be stated as: find
uH ∈ SH such that

Rg(uH ;wH) = 0 ∀wH ∈ VH . (7)

Let e := u−uH denote the discretization error. We can then derive an error representation for the functional
J in terms of the adjoint solution z as follows:

J(u)− J(uH) = J ′[uH ](e) +O(e2)

= R′g[uH ](e, z) +O(e2)

= Rg(u; z)−Rg(uH ; z) +O(e2)

= −Rg(uH ; z) +O(e2)

= −Rg(uH ; z − zH) +O(e2).

(8)

Here, the first equality is due to the linearization [8] of the functional J , the second equality is due to the
introduced adjoint problem (4), the third equality is due to the linearization [8] of the residual Rg, the
fourth equality holds due to the definition of the abstract primal problem (3), and the fifth equality is due
to Galerkin orthogonality, where zH denotes the projection of z onto the space VH .
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2.2. Stabilized Finite Element Methods

A corresponding stabilized finite element method of the abstract problem (3) can be expressed as: find
uH ∈ SH such that

Rg(uH ;wH) +Rτ (uH ;wH) = 0 ∀wH ∈ VH . (9)

Here Rτ denotes a consistent stabilization residual that adds stability to the numerical scheme. We say that
the stabilization is consistent if Rτ (u;wH)→ 0 as H → 0.

Again, we let e := u − uH denote the discretization error, and derive an error representation for the
functional J as follows

J(u)− J(uH) = J ′[uH ](e) +O(e2)

= R′g[uH ](e, z) +O(e2)

= Rg(u; z)−Rg(uH ; z) +O(e2)

= −Rg(uH ; z) +O(e2)

= −Rg(uH ; z − zH) +Rτ (uH ; zH) +O(e2).

(10)

Here, the first four equalities are obtained exactly as in the corresponding Galerkin finite element method.
However, when we subtract zH in the fifth equality, an additional term remains because the numerical
scheme (9) lacks Galerkin orthogonality.

3. Software Components

An adaptive adjoint-based simulation requires the implementation and coordination of a number of non
trivial components. Namely, the solution of a primal problem, the construction and solution of an auxiliary
adjoint problem, an enrichment of the adjoint solution, the estimation and localization of the error, and
mesh adaptation are all required steps in the adjoint-based adaptive process.

To implement each of these components for effective execution on parallel machines, we make use of two
state of the art software suites. The first is PUMI [31], which contains tools to support unstructured mesh
services on massively parallel machines. In particular, PUMI provides all of the necessary machinery to
store, query, adapt, and dynamically load balance parallel unstructured meshes via a collection of modern C

and C++ libraries. The second is Trilinos [28, 29], which provides a large variety of C++ packages to support
multiphysics simulations on parallel machines. In particular, Trilinos provides the ability to store and solve
sparse parallel linear systems, as well as tools to perform automatic differentiation.

Using these two software suites as building blocks, we have written a new C++ application for adjoint-
based error estimation and mesh adaptation with an emphasis on nonlinear solid mechanics. We have called
this application Goal [23]. Below, we describe how these software components are utilized for each portion of
the adaptive adjoint-based process, where the analysis is automated based only on the inputs of a semilinear
form R and a functional QoI J .

3.1. The Primal Problem

Based on an implemented weighted residual operator R, the Goal application computes element-level
residual vectors and element-level Jacobian matrices. The element-level Jacobian matrices are computed
via automatic differentiation using the Trilinos library Sacado. Sacado provides efficient automatic differ-
entiation using a C++ meta-programming technique called expression templates [40].

After the computation of a single element’s residual vector and Jacobian matrix, the Goal application
performs a finite element assembly step to sum contributions to the global residual vector and global Jacobian
matrix. To store and modify the global linear algebra objects, we utilize the Tpetra library provided by
Trilinos. In particular, the Jacobian matrix is stored as a sparse compressed row storage matrix in parallel.

The primal problem is solved via Newton’s method, which requires iterative evaluations of the global
residual vector and Jacobian matrix. For each Newton iteration, a global linear system must be solved.
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We solve this linear system iteratively in parallel using either a CG or GMRES solver provided the Trilinos
library Belos [7]. Additionally, we perform algebraic multigrid preconditioning using the Trilinos library
MueLu [41].

Once the primal problem has been solved, we utilize the PUMI library APF to store the finite ele-
ment solution information at nodes and if necessary secondary solution information at integration points.
Additionally, the APF library is used to provide shape function information and to query stored solution
information during residual and Jacobian evaluations. Throughout the entire solution process, the PUMI
mesh data structure is utilized to query mesh specific information.

3.2. The Adjoint Problem

To solve the adjoint problem in a richer finite element space than the one used for the primal problem,
we make use of the underlying PUMI mesh data structure [30] and the PUMI MeshAdapt software to
create and store a uniformly refined nested mesh with parent-child relations back to the original mesh. This
relational information is implemented in the Goal application, as it falls outside of the normal intended use
case of the MeshAdapt software, which concerns itself with fully unstructured conforming mesh adaptation
via edge splits, swaps, and collapses. However, the flexibility of the PUMI software allows us to additionally
construct data structures similar to those used in traditional adaptive mesh refinement (AMR) with little
implementation effort. Using the APF library and the parent-child relational information, we are able
to interrogate stored solution fields on both the parent and nested meshes, which is required during the
assembly of the adjoint problem.

On this finer mesh, element-level Jacobian matrices are computed using the Sacado library, based on the
Goal implementation of the operator R. Additionally, element-level derivatives of the functional quantity
of interest J are computed with respect to degrees of freedom of the problem, resulting in an element-level
functional derivative vector.

After the computation of a single element’s Jacobian matrix and functional derivative vector, the Goal
application performs a finite element assembly step to sum contributions to the global discrete adjoint matrix
and the global functional derivative vector. Like the primal problem, these global parallel linear objects are
stored using the Tpetra library. The global discrete adjoint operator and functional derivative vector fully
define the linearized adjoint problem, which we again precondition with algebraic multigrid techniques using
the MueLu library and solve using either CG or GMRES iterations using the Belos library. The fine-space
adjoint solution is then attached to the mesh using the APF library.

3.3. Error Estimation and Localization

The error estimation and localization routines are implemented entirely in the Goal application. The
error is localized by an evaluation of the stabilized weighted residual operator R, where the weight is chosen
to be the adjoint solution multiplied by a partition of unity. This error localization is discussed in further
detail in Section 7. Based on these element-level residual vectors, Goal performs finite element assembly of
the global residual vector, which is stored as a Tpetra vector. This vector represents an adjoint-weighted
residual error estimate at each mesh vertex for each PDE equation in the fine mesh. The error is attached
to the vertices of the fine mesh using the APF library.

3.4. Mesh Adaptation

Once the error is stored on the vertices of the fine mesh, we interpolate it to element centers of the coarse
mesh. The fine mesh data structures are then destroyed and the Goal application computes a mesh size field
that seeks to equidistribute the error for an output mesh with N elements. This mesh size field is given as
the input to the PUMI MeshAdapt software, which adapts the mesh with a sequence of edge splits, swaps,
and collapses [33, 2] to satisfy the given mesh size field. As a final step, we utilize the PUMI library ParMA
[54, 13] to perform diffusive load balancing to ensure parallel partitioning quality.
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3.5. In-Memory Integration of Components

The coupling of the software components described above is done in-memory [53]. That is, there is
no file-based communication of data from one analysis component to the next in the automated process.
This in-memory coupling is a key ingredient for parallel analysis, where filesystem bandwidth is a critical
bottleneck.

4. Template-Based Generic Programming

In this section, we provide a review of the concept of template-based generic programming for the eval-
uation and solution of PDEs [38, 39] and how it has been extended in the Goal application to automate
the process of adjoint-based error estimation and mesh adaptation. For PDE applications, TBGP is broken
into three major components, a seed or gather phase, a compute phase, and a scatter phase. The seed and
scatter operations must be programmed specifically for each evaluation purpose. In contrast, the compute
phase, where the PDE and QoI expressions are implemented, are written in a totally generic manner. Figure
1 pictorially represents this design philosophy.

Physics Code Legend

Gather

PDE terms

Scatter Global data structures

Local data structures

Generic template-based code

< ScalarT >

Gather/Scatter operations

Residual

Jacobian

Adjoint

QoI

QoI Deriv

Error

Figure 1: A schematic for the generic programming model of PDEs.

We invoke this approach at the element-level, meaning for each element we perform the process: Gather
→ Compute → Scatter. By doing so, we reduce memory overhead and eliminate complications introduced
by parallel computation [39]. Underlying the TBGP approach is the use of forward automatic differen-
tiation (FAD) [27]. The Goal application utilizes the Trilinos library Sacado [40] to perform automatic
differentiation.

The purpose of the gather/seed operation is to collect information from global storage containers and
‘gather’ it to local element-level data structures. Further, any FAD derivative information is seeded during
this operation, if necessary. For each evaluation type, the gather/seed operation initializes an array that
physically represent the degrees of freedom associated with the current element, and initializes FAD variables’
derivative arrays to physically represent derivatives with respect to the degrees of freedom associated with
the current element, when necessary. This degree of freedom array is templated on a scalar type ScalarT.
For the Residual, QoI, and Error evaluation types, this scalar type corresponds to a C++ double. For the
remaining evaluation types, this scalar type corresponds to a Sacado::FAD forward automatic differentiation
variable type.

The compute phase computes local contributions to the equations or expressions of interest at the element
level in terms of the degrees of freedom, as collected by the gather operation. The code for the compute
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Evaluation Type Scalar Type Input Output

Residual double uH , sH RH

Jacobian Sacado::FAD uH , sH ∂RH

∂uH

Adjoint Sacado::FAD uhH , s
h
H

[
∂Rh

∂uh

∣∣
uh

H

]T
QoI double uH , sH JH

QoI Deriv Sacado::FAD uhH , s
h
H

[
∂Jh

∂uh

∣∣
uh

H

]T
Error double uhH , s

h
H , z

h Rh

Table 1: A list of TBGP evaluation operations used in the Goal application. In this table uH is the primal solution vector, uh
H

is the prolongation of the solution vector to a richer space, sH is a (potentially empty) vector of history-dependent mechanics
state variables, shH is the prolongation of the state to a richer space, zh is the adjoint solution vector, RH is the residual vector

evaluated on the coarse space, Rh is the residual vector evaluated on the fine space, and JH is the scalar QoI.

Listing 1: The abstract Goal integrator class interface.

1 class Integrator {
2 public:
3 Integrator();
4 virtual ~Integrator();
5 std::string const& get_name() { return name; }
6 virtual void set_time(double, double) {}
7 virtual void pre_process(SolInfo*) {}
8 virtual void set_elem_set(int) {}
9 virtual void gather(apf::MeshElement*) {}

10 virtual void in_elem(apf::MeshElement*) {}
11 virtual void at_point(apf::Vector3 const&, double, double) {}
12 virtual void out_elem() {}
13 virtual void scatter(SolInfo*) {}
14 virtual void post_process(SolInfo*) {}
15 protected:
16 std::string name;

phase is written in an entirely generic fashion, and is templated on a scalar type ScalarT. Templating the
code used for the compute phase, along with appropriately chosen gather and scatter operations, allows the
same code to be re-used for the distinct evaluation purposes listed in Table 1.

The scatter phase takes the local element-level data evaluated in the compute phase and ‘scatters’ it to
the appropriate global data structure, as determined by the current evaluation operation. For instance, for
the residual evaluation operation, local element-level residuals are evaluated in the compute phase and then
summed into appropriate locations in the global residual vector during the scatter phase. Similarly, for the
Jacobian evaluation operations, local element-level Jacobians are evaluated in the compute phase and the
scatter opeation sums these local contributions to appropriate locations in the global Jacobian matrix.

In the Goal application, we have considered six specific gather/scatter evaluation operations correspond-
ing to the evaluation of the global residual vector, evaluation of the global Jacobian matrix, evaluation of
the adjoint of the global Jacobian matrix, evaluation of the functional QoI, evaluation of the derivative of
the functional QoI, and evaluation of localized adjoint-weighted residual error estimates. Table 1 lists the
inputs and outputs for these specific evaluation operations.

To realize these specific gather/scatter operations, we have implemented an abstract degree of freedom
class and an abstract quantity of interest class that are both templated on a scalar type ScalarT. This scalar
type is explicitly instantiated to either be a C++ double or a Sacado::FAD forward automatic differentiation
variable type. Both the degree of freedom and QoI classes are equipped with gather and scatter methods,
whose behavior changes based on an input parameter given to the class constructor. For the degree of
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freedom class, this parameter selects gather/scatter operations for either the residual, Jacobian, adjoint
Jacobian, or adjoint-weighted residual error evaluations. Similarly, for the QoI class, this input parameter
selects gather/scatter operations for either the evaluation of the QoI or the derivative of the QoI with respect
to the problem degrees of freedom.

Previously, TBGP has been utilized in the multiphysics code Albany [51, 57] with the capability to
perform the Residual, Jacobian, Adjoint, QoI, and QoI derivative evaluation operations shown in Table 1.
To extend the abilities of TBGP to include adjoint-based error estimation, the Goal application implements
the ability to perform the Adjoint and QoI derivative evaluations in a richer finite element space, as discussed
in Section 6, a feature not previously available in existing TBGP codes. Further, the Goal application
implements a novel evaluation type for the localization of the error, referred to as the Error evaluation type
in Table 1. For this purpose, we have implemented an abstract weighting function class whose behavior
changes based on the chosen evaluation type. This class evaluates the appropriate finite element weighting
function values and gradients based on linear Lagrange basis functions for the Residual, Jacobian and Adjoint
evaluation types. However, for the Error evaluation type, the behavior of the weighting function class is
modified such that it evaluates the value and gradient of the adjoint solution zh multiplied by a partition
of unity. This abstraction of the weighting function class allows us to re-use the PDE implementation of
the semilinear form R to assemble a residual vector Rh that represents an adjoint-weighted residual error
estimate at each mesh vertex for each PDE equation in the richer finite element space, which is then used
to drive mesh adaptation.

Listing 1 demonstrates the abstract integrator interface that has been implemented in the Goal ap-
plication. The abstract degree of freedom, QoI, and weighting function classes inherit from this base
class. For each of these classes, the gather and scatter methods are implemented specifically for each
appropriate evaluation type. The PDE equations in the Goal application are written as a combination of
Goal::Integrators. Given an ordered array of integrators, the Goal application performs finite element
assembly for every evaluation type in a generic manner, as outlined by Algorithm 1.

Algorithm 1 Assembly algorithm used in the Goal application

Given a mesh M and an ordered array of integrators I:
Call pre process for each integrator i in I.
for each element set es in mesh M do

Call set elem set for each integrator i in I.
for each element e in element set es do

Call gather for each integrator i in I.
Call in elem for each integrator i in I.
for each integration point ip in element e do

Call at point for each integrator i in I.
end for
Call out elem for each integrator i in I.
Call scatter for each integrator i in I.

end for
end for
Call post process for each integrator i in I.

5. The Primal Problem

5.1. Galerkin Finite Element Methods

We recall the definition of the abstract Galerkin finite element model problem, given by equation (7).
In this context, the weighted residual form Rg is implemented in the Goal application. As an example,
Listing 2 demonstrates the implementation of the Poisson residual Rg(u;w) := (∇u,∇w) − (w, f) in the
Goal application.
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Listing 2: Poisson residual.

1 template <typename ScalarT>
2 void Residual<ScalarT>::at_point(
3 apf::Vector3 const& p, double ipw, double dv) {
4 apf::Vector3 x(0,0,0);
5 apf::mapLocalToGlobal(elem, p, x);
6 double fval = eval(f, x[0], x[1], x[2], 0.0);
7 for (int n = 0; n < u->get_num_nodes(); ++n)
8 for (int i = 0; i < num_dims; ++i)
9 u->resid(n) += u->grad(i) * w->grad(n, i) * ipw * dv;

10 for (int n = 0; n < u->get_num_nodes(); ++n)
11 u->resid(n) -= fval * w->val(n) * ipw * dv;
12 }

Listing 3: Pressure stabilization residual for mechanics.

1 template <typename ScalarT>
2 void Stabilization<ScalarT>::at_point(
3 apf::Vector3 const&, double ipw, double dv) {
4 double h = get_size(mesh, elem);
5 double tau = 0.5*c0*h*h/mu;
6 auto J = k->get_det_def_grad();
7 auto F = k->get_def_grad();
8 auto Cinv = inverse(transpose(F)*F);
9 for (int n = 0; n < p->get_num_nodes(); ++n)

10 for (int i = 0; i < num_dims; ++i)
11 for (int j = 0; j < num_dims; ++j)
12 p->resid(n) += tau * J * Cinv(i, j) *
13 p->grad(i) * w->grad(n, j) * ipw * dv;
14 }

5.2. Stabilized Finite Element Methods

We recall the definition of the abstract stabilized finite element model problem, given by equation (9).
In this context, both the weighted residual statement Rg and the stabilized weighted residual form Rτ are
implemented in the Goal application. As an example, Listing 3 demonstrates the implementation of the
pressure stabilization [44] residual Rτ (w;u) term used in the Goal application for finite deformation solid
mechanics. This stabilization term is discussed in greater detail in Section 10.2.

5.3. Automated Solution Based on Residual Implementation

For each element, we compute element level Jacobian matrices by applying automatic differentiation [27]
to element-level contributions to the residual vector. For example, Listing 2 demonstrates how contributions
to the element-level Poisson’s equation residual R(w;u) = (∇w,∇u)− (w, f) are implemented. The element
level Jacobian matrices are then assembled into the global system Jacobian operator JH ∈ RN×N , given
by

JH =
∂RH(uH)

∂uH
(11)

Listings 2 and 3 both demonstrate how element-level contributions to the semilinear forms Rg and Rτ ,
respectively, are computed in the Goal application. Notice that this code is templated on a scalar type
ScalarT. When the scalar type is chosen as a C++ double, element-level contributions to the residual vector
RH are computed. When the scalar type is chosen as a Sacado forward automatic differentiation variable,
element-level contributions to the Jacobian matrix JH are computed. This illustrates a key concept of
template-based generic programming, in that the governing equations need only be implemented once to
compute a variety of additional information.

With the ability to fully assemble the Jacobian matrix JH and the residual vector RH , we solve the
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governing equations with Newton’s method, where we iterate over the steps

JH(uHk ) δuHk = −RH(uHk )

uHk+1 = uHk + δuHk ,
(12)

unitl the convergence criterion ‖RH(uH)‖2 < ε is met for a user-specified tolerance ε. Here uHk denotes
the solution vector at the kth iteration obtained by solving the Newton linear system. For linear variational
problems, we simply restrict ourselves to a single Newton linear solve, which reduces exactly to classical
FEM assembly for linear problems.

6. The Adjoint Problem

6.1. A Richer Space via Uniform Refinement

The adjoint solution must be represented in a richer space than the one used for the primal problem
to obtain meaningful error estimates. There are several strategies that are commonly used to obtain such
a representation. First, the adjoint problem can be solved in the same finite element space as the primal
problem and then be enriched to a higher order polynomial space [8] or a nested mesh [36] by some local
patch-wise operation, or variational multiscale enrichment [25] can be used in the context of stabilized finite
elements. Alternatively, the adjoint problem can be solved in a higher order polynomial space [16], which
we will refer to as p-enrichment. As a final option, the adjoint problem can be solved on a uniformly refined
mesh [11], which we will refer to as h-enrichment.

In this work, we choose the h-enrichment approach for several reasons. First, we would like the adjoint
solution to be as accurate as possible for error estimation purposes, so we choose to solve the adjoint
problem in a globally richer finite element space. Additionally, for stabilized finite element methods, the
use of p-enrichment would in general necessitate the use of higher order stabilization terms that vanish for
lower-order finite element methods with simplicial elements. These higher order terms are typically more
difficult to implement than their lower order counterparts. Further, we remark that higher-order stabilized
finite element methods are rarely used in practice, as stable higher-order mixed methods can usually be
derived with fewer overall degrees of freedom [56]. Finally, we note that the unstructured mesh adaptation
capabilities of the PUMI software make the h-enrichment approach readily available.

In the present context, we consider the term uniform refinement for triangles and tetrahedra to mean
splitting each edge of the parent element at its midpoint. Or, in other words, creating new edges by
connecting the midpoints of the parent element’s existing edges. The uniform refinement of a triangle
results in 4 nested triangles and the uniform refinement of a tetrahedron results in 8 nested tetrahedra.

We have denoted the trial and test spaces used for the primal problem as SH and VH , respectively. We
denote the trial and test spaces on the uniformly nested mesh as Sh and Vh, respectively, where h < H is
representative of a finer mesh size. Figure 2 illustrates the discretization for the coarse and fine trial and
test spaces defined for a three dimensional geometry with a complex void inclusion.

6.2. Discrete Adjoint Approximation

Let Rh : Rn → Rn denote the residual form of the system of nonlinear algebraic equations arising
either from the Galerkin (7) or stabilized (9) model problem posed on the uniformly nested mesh. Let
uhH := IhHu

H denote the prolongation of the primal finite element solution onto the richer space Sh via
interpolation. Let Jh : Rn → R denote the discretization of the functional QoI on the uniformly nested fine
space. We approximate the adjoint problem (4) in a discrete manner [17, 58, 59, 60], by solving[

∂Rh

∂uh

∣∣∣∣
uh
H

]T
zh =

[
∂Jh

∂uh

∣∣∣∣
uh
H

]T
. (13)

This allows us to automate the process of solving the adjoint problem, as discussed below. Here zh ∈ Rn
denotes the adjoint solution vector on the nested discretization.
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Figure 2: Example of a nested mesh (red edges) obtained via a uniform refinement of a base mesh (black edges) in three
dimensions.

We remark that in the case of stabilized finite element methods, the matrix on the left hand side of
equation (13) corresponds to the transpose of the discrete Jacobian matrix that arises from the stabilized
finite element method. In this manner, stabilization is in some manner incorporated into the adjoint problem.
This approach for approximating the adjoint problem for stabilized methods has been demonstrated to be
effective for error estimation [12].

6.3. Automated Solution Based on Residual Formulation

The construction of the Jacobian transpose matrix
[
∂Rh/∂uh

]T
is performed in the same automated

manner as the Jacobian for the primal problem. That is, for each element, we compute consistent element
tangent stiffness matrices via automatic differentiation of element-level contributions to the residual vector.
However, during the scatter phase of the template-based generic programming process, we transpose the
element-level tangent matrices and sum them into global Jacobian adjoint matrix. The computation of the
Jacobian adjoint is done using the same templated code that is used to compute the primal residual vector
and the Jacobian matrix, as illustrated by listings 2 and 3.

Similarly, the construction of the functional derivative vector
[
∂Jh/∂uh

]T
is done by evaluating deriva-

tives of element-level contributions to the functional via automatic differentiation. This results in element-
level derivative vectors that are then assembled into the global functional derivative vector. Listings 4 and
5 illustrate the implementation of two quantities of interest in the Goal application. Once the Jacobian
transpose matrix and functional derivative vector have been assembled, we solve the adjoint problem (13)
using a sparse iterative solver in parallel.

7. Error Estimation

7.1. Two-Level Error Estimates

Following Venditti and Darmofal [58, 59, 60], we review adjoint-based error estimation using two dis-
cretization levels. The discrete residual form of the governing equations for a Galerkin (7) finite element
method or a stabilized finite element method (9) posed on the fine space can be expressed as

Rh(uh) = 0. (14)
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Taking Taylor expansions of the discrete residual Rh evaluated on the fine space and the discrete func-
tional Jh evaluated on the fine space about the point uhH yields

Rh(uh) = Rh(uhH) +

[
∂Rh

∂uh

∣∣∣∣
uh

H

]
(uh − uhH) + . . . (15)

and

Jh(uh) = Jh(uhH) +

[
∂Jh

∂uh

∣∣∣∣
uh

H

]
(uh − uhH) + . . . (16)

respectively.
Using equation (14), the discretization error between the two spaces can be approximated to first order

as

(uh − uhH) ≈ −

[
∂Rh

∂uh

∣∣∣∣
uh

H

]−1

Rh(uhH), (17)

which can then be substituted into the functional Taylor expansion (16) to obtain the so-called adjoint
weighted residual

Jh(uh)− Jh(uhH) ≈ −zh ·Rh(uhH) (18)

where zh is the solution to the adjoint problem (13).

7.2. Modified Functional Error Estimate

Assume that the QoI converges at the rate k, such that J−Jh(uhH) = cHk and J−Jh(uh) = chk, where
J denotes the exact value of the QoI. If the fine space is obtained via uniform mesh refinement, then the
ratio of the fine mesh size to the coarse mesh size is given as h

H = 1
2 . Consider the ratio

Jh(uh)− Jh(uhH)

J − Jh(uhH)
=

[
J − Jh(uhH)

]
−
[
J − Jh(uh)

]
J − Jh(uhH)

=
cHk − chk

cHk

= 1−
(
h

H

)k
= 1−

(
1

2

)k
(19)

in the limit as H → 0 [17]. We call this ratio α := 1 − (1/2)k. Let η denote an approximation to the
functional error J − Jh(uhH). Let I denote the effectivity index given by

I =
η

J − Jh(uhH)
. (20)

We would like to obtain error estimates η that lead to effectivity indices of I = 1 as H → 0. To this end, we
recall Jh(uh)− Jh(uhH) ≈ −zh ·Rh(uhH) from equation (18) to obtain the scaled adjoint weighted residual
error estimate

η = − 1

α
zh ·Rh(uhH). (21)
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7.3. Error Localization for Galerkin Methods

Following the approach of Richter and Wick [49], we introduce a partition of unity φi, such that
∑
i φi = 1,

into the weighting function slot for the error estimate to localize the error. In this work, the partition of
unity is realized as linear Lagrange basis functions. This yields local error contributions ηi at the nvtx mesh
vertices in the mesh. Let zh ∈ Vh be the finite element solution obtained by solving the discrete adjoint
problem (13). We assume that this solution well approximates the continuous adjoint problem (4), such that
z ≈ zh. Let zH denote the interpolant of zh onto the coarse space VH . Recalling the error representation
(8) for Galerkin finite elements, we obtain partition of unity-based correction indicators ηi in the following
manner

J(u)− J(uH) ≈
nvtx∑
i=1

−Rg(uH ; (zh − zH)φi).︸ ︷︷ ︸
ηi

(22)

7.4. Error Localization for Stabilized Methods

Error localization for the stabilized finite element formulation (9) proceeds in the same manner as the
previous section. Let zh ∈ Vh denote the finite element solution obtained by solving the discrete adjoint
problem (13) and let zH denote the interpolant of zh onto the coarse space VH . Introducing a partition of
unity into the error representation (10) for stabilized finite element methods with the approximation z ≈ zh
yields the vertex-based correction indicators ηi:

J(u)− J(uH) ≈
nvtx∑
i=1

−Rg(uH ; (zh − zH)φi) +Rτ (uH ; zHφi).︸ ︷︷ ︸
ηi

(23)

Once correction indicators ηi have been evaluated, an approximate upper bound η̂ for the error is
computed by summing the absolute value of the error contributions over all mesh vertices

η̂ =

nvtx∑
i=1

|ηi|. (24)

7.5. Automated Error Localization Based on Residual Implementation

During the assembly of the adjoint problem (13), the evaluation of element-level contributions to the
residual vector evaluated on the fine space Rh(uhH) are necessarily computed by the machinery of for-
ward automatic differentiation. Thus, during the scatter phase for the adjoint problem computation, we
additionally sum element-level contributions to the fine residual to assemble the global vector Rh(uhH).
This, along with the solution zh to the adjoint problem (13) provides enough information to compute the
adjoint-weighted residual estimate (21) in an automated fashion.

Again, we let zh ∈ Vh denote the finite element solution to the discrete adjoint problem (13) and let
zH denote the interpolant of zh onto the coarse space VH . We refer again to Listings 2 and 3, which
illustrate implementations of Galerkin and stabilized semilinear forms Rg and Rτ , respectively, in the Goal
application. Specifically, we remark that these residual evaluations contain the evaluation of weighting
functions and their derivatives, given with calls to the methods w->val(node) and w->grad(node, dim),
respectively. To localize the error in an automated fashion, we override the calls to these methods such
that they return values of the adjoint solution multiplied by a partition of unity. For instance, at a given
reference location ξ in a given element, the partition of unity-based weight for the Galerin residual Rg is
computed as

w->val(n) =
[
(zh − zH) · φn

]∣∣
ξ
, (25)

and its corresponding gradient is computed as

w->grad(n) = ∇
[
(zh − zH) · φn

]∣∣
ξ
. (26)
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Similarly, for the stabilized residual Rτ , the partition of unity-based adjoint weight is computed as

w->val(n) =
[
zH · φn

]∣∣
ξ
, (27)

and its corresponding gradient is computed as

w->grad(n) = ∇
[
zH · φn

]∣∣
ξ
. (28)

In this manner, we have introduced partition of unity-based adjoint weights that have the same data type
as the weights used for the computation of the primal and adjoint problems.

Using the adjoint weights in the error localization evaluation results in element-level residual vectors
that correspond to contributions to the localized correction indicators ηi. During the scatter phase of the
error localization evaluation, we sum these element level contributions to the appropriate mesh vertices to
compute the localized correction indicators ηi.

8. Mesh Adaptation

Given localized correction indicators ηi at mesh vertices, we compute element-level correction indicators
ηe for e = 1, 2, . . . , nel, where nel is the number of elements in the coarse discretization, by interpolating the
vertex-based indicators to element centers and taking the result’s absolute value.

We then specify a mesh size field that defines the desired value of edge lengths over the mesh. From
a high-level, we would like to specify this size field such that areas of the mesh that contribute strongly
to the error in the QoI are refined, and areas of the mesh that are insensitive to the error are coarsened.
Following Boussetta et al. [10], we specify a size field that attempts to equidistribute the error in an output
adapted mesh with N target elements. Let p be the polynomial interpolant order for the chosen finite
element method. In the present setting, p = 1. We first define the global quantity G as

G =

nel∑
e=1

(ηe)
2d

2p+d . (29)

This global quantity arises by considering a priori convergence rates for the input mesh and attempting to
find an optimal mesh size for an output mesh with N elements [10]. With this global quantity, new element
sizes Hnew

e are computed by scaling the previous element size He

Hnew
e =

(
G

N

) 1
d

(ηe)
−2

2p+dHe. (30)

Finally, to prevent excessive refinement or coarsening in a single adaptive step, we clamp the element size
such that it is no smaller than one quarter and no greater than twice the previous element size. This
clamping is performed to ensure that mesh adaptation is being driven by accurate error indicators.

1

4
≤ Hnew

e

He
≤ 2. (31)

9. Quantities of Interest

In this section, we review three quantities of interest that we have implemented in the Goal application.
One benefit of the current automated approach is that additional quantities of interest can be rapidly
prototyped and investigated with relative ease. Here, we refer to the domain discretized by the finite
element mesh as Ω.
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Listing 4: Evaluation of the integrated displacement over a sub-domain.

1 template <typename ScalarT>
2 void AvgDisp<ScalarT>::at_point(
3 apf::Vector3 const&, double w, double dv) {
4 for (int i = 0; i < num_dims; ++i)
5 this->elem_value += u->val(i) * w * dv;
6 this->elem_value /= num_dims;
7 }

9.1. Point-Wise Solution Component

First, we consider the evaluation of the solution u at a given spatial location x. This functional can be
expressed as

J(u) =

∫
Ω

δ(x− x0)u dΩ, (32)

where δ is the Dirac delta function. We implement this quantity of interest as a discrete delta function, such
that the right-hand side for the adjoint problem takes the form

∂Jh

∂uh
=
[
0 0 . . . 0 1 0 . . . 0 0

]
. (33)

For this implementation, a mesh vertex is always placed at the spatial location x0, the QoI derivative vector
is zeroed out, and we place a one in the row of the QoI derivative vector that corresponds to the solution at
the vertex.

9.2. Integrated Solution Over a Sub-Domain

Next, we consider the integrated solution over a sub-domain Ω0 ⊂ Ω, which can be expressed as

J(u) =

∫
Ω0

1

nc

nc∑
i=1

u dΩ. (34)

Here, nc denotes the number of components for the solution vector. As an example, Listing 4 demonstrates
the Goal implementation for the QoI corresponding to the integrated displacement over a sub-domain.

9.3. Integrated von Mises Stress Over a Sub-Domain

Finally, specifically for mechanics problems, we consider the evaluation of the von Mises stress integrated
over a sub-domain Ω0 ⊂ Ω, given as

J(u) =

∫
Ω0

σvm dΩ, (35)

where the von Mises stress σvm is defined as

σvm :=

√
3

2
σ′ijσ

′
ij . (36)

Here summation over repeated indices is implied and σ′ = σ − 1
3 tr(σ)I denotes the deviatoric part of the

Cauchy stress tensor σ. The von Mises stress is often used in yield criterion for elastoplastic constitutive
models, and is hence of particular interest for solid mechanics design applications.

We note that this function J(u) has sources of nonlinearities from the deviatoric stress tensor σ′ and
further nonlinearites introduced by the definition of the von Mises stress, which includes the square of
deviatoric stress components and a square root operation. The linearization and implementation of this
QoI, as required for adjoint-based error estimation, would be cumbersome at best without some kind of
automated approach. In contrast, Listing 5 illustrates the simplicity of the relevant C++ code that implements
integration point contributions to this specific QoI in the Goal application.
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Listing 5: Evaluation of the integrated von Mises stress over a sub-domain.

1 template <typename ScalarT>
2 void AvgVM<ScalarT>::at_point(
3 apf::Vector3 const&, double w, double dv) {
4 auto sigma = model->get_cauchy();
5 ScalarT vm = compute_von_mises<ScalarT>(sigma);
6 this->elem_value += vm * w * dv;
7 }

10. Results

10.1. Poisson’s Equation

As a first example, we investigate error estimation and mesh adaptation in Poisson’s equation for the
model problem{

−∇2u = f x ∈ Ω,
u = 0 x ∈ ∂Ω.

(37)

This model problem leads to the Galerkin finite element method: find uH ∈ VH such that Rg(uH ;wH) = 0
for all wH ∈ VH . Here the residual Rg is defined as

Rg(uH ;wH) := (∇uH ,∇wH)− (wH , f), (38)

and the space VH is given by

VH := {uh ∈ H1(Ω) : uH = 0 on ∂Ω , uH |Ωe ∈ P1}. (39)

Here Ωe denotes an element in a decomposition of the domain Ω into nel non-overlapping elements such that
∪nel
e=1Ωe = Ω and Ωi ∩ Ωj = ∅ if i 6= j. Additionally, P1 denotes the space of piecewise linear polynomials.

The domain is chosen to be Ω := [−1, 1]× [−1, 1] \ [− 1
2 ,

1
2 ]× [− 1

2 ,
1
2 ] as shown in Figure 3. The data is

chosen to be f = 1 and we consider a point-wise QoI of the form J(u) =
∫

Ω
δ(x− x0)udΩ, where the point

of interest x0 is chosen to be x0 = (0.75, 0.75). This problem was initially studied in the reference [6], where
the QoI was determined to have a reference value of J(u) = 0.0334474 ± 1e-7. Presently, we demonstrate
that our automated approach can reproduce the results for traditional adjoint-based error estimation found
in [6].

Figure 3: Domain and initial mesh (left) for the Poisson’s equation example with the QoI point indicated in red, final adapted
mesh (middle), and a close up of the upper-right hand corner of the final adapted mesh (right).

Starting from the initial mesh shown in Figure 3, the steps:

Solve Primal→ Solve Adjoint→ Estimate Error→ Adapt Mesh
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were performed seven times. The adaptive simulation was run using 4 MPI ranks. The mesh size field was
set according to equation (30) so that the target number of elements is twice that of the current mesh.
Figure 3 also shows the final adapted mesh resulting from this procedure. We remark that the distribution
of degrees of freedom in this mesh closely resembles the results obtained in reference [6].
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Figure 4: Effectivity indices for the adaptive Poisson’s equation example.

We naively choose k = 2 for the functional convergence rate, although the presence of re-entrant corners
may be reasonably expected to lessen this convergence rate. Despite this assumption, we demonstrate
reasonable and useful results in terms of error estimation and mesh adaptivity later in this section. The
choice of k yields a scaling factor α = 3

4 to be used in the estimate (21). We consider the “exact error”
E = J(u) − J(uH) and the effectivity index I = η

E , where η is the estimate given by equation (21). Here
we have placed quotations around the term exact error because we have only approximated the exact value
of the QoI J(u), and not truly recovered its exact value. Figure 4 plots the effectivity index I versus
the number of degrees of freedom in the adaptive process. This plot demonstrates the ability of the error
estimate to recover the “exact error” as H → 0.

Figure 5 displays the evolution of various errors during the adaptive process. The “exact error” E and
the estimated error η are very close, as previously demonstrated by the effectivity index I. Additionally, the
approximated upper bound on the error η̂ overestimates the error, but not to a large degree. This provides
some indication that the correction indicators are effective in that they do not drastically overestimate error.
Finally, we remark that an improved corrected QoI functional value can be computed as J∗(uH) = J(uH)+η.
Figure 5 demonstrates that this corrected value is nearly an order of magnitude more accurate than the
computed functional value J(uH) during the adaptive process.

Finally, Figure 6 demonstrates the evolution of the “exact error” for two adaptive strategies. The first
strategy uniformly refines the mesh at each adaptive step and the second strategy performs the adjoint-
based adaptive scheme developed in this work. We note that the error for the adjoint-based adaptive
scheme converges faster than the uniform refinement scheme. Further, this convergence plot is consistent
with the reference [6].
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Figure 5: Errors for the point-wise QoI for the adaptive Poisson’s equation example.

10.2. A Cell Embedded in a Matrix

Recently, the automated approach developed in this paper was applied to a stabilized mixed pressure-
displacement finite element formulation [44] for the governing equations of finite deformation elasticity
in a total Lagrangian setting [24]. For two and three dimensional problems in nonlinear elasticity, the
automated approach was shown to effectively estimate the error and provide improved error convergence
rates via adjoint-based mesh adaptation over uniform refinement.

In this section, the parallelization of a biomechanical application presented in the reference [24] is dis-
cussed. First, the governing equations are briefly reviewed. For mixed pressure-displacement formulations
in the Goal application, the Galerkin residual is defined as:

Rg(UH ;WH) :=∫
Ω

P : ∇wH dΩ +

∫
Ω

[
pH

κ
− 1

2j
(j2 − 1)

]
qH dΩ−

∫
∂Ωh

h ·w dΓ,
(40)

and the stabilization residual is defined as:

Rτ (UH ;WH) :=

nel∑
e=1

∫
Ωe

τe(jF
−1F−T ) : (∇pH ⊗∇qH) dΩ. (41)
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Figure 6: Error convergence using uniform mesh refinement and adjoint-based error estimation for the adaptive Poisson’s
equation example.

Here, F is the deformation gradient, j := det(F ), h is an applied traction over the boundary ∂Ωh, P :=
jσF−T is the first Piola-Kirchhoff stress tensor, σ is the Cauchy stress tensor, nel is the total number

of elements in the mesh, and τe :=
c0H

2
e

2µ is a mesh-dependent stabilization parameter, where c0 is a non-
negative stability constant, He denotes an element mesh size and µ denotes the bulk modulus. The Cauchy
stress tensor is defined via a neo-Hookean constitutive relationship. The total solution vector is defined as
UH := [uH , pH ], where uH corresponds to displacements and pH corresponds to pressures. Similarly, the
total weighting vector is defined as WH := [wH , qH ], where wH denotes a weighting function corresponding
to displacements and qH is a weighting function corresponding to pressures.

We focus on a microglial cell with dimensions of about 20µm ×20µm ×20µm embedded in an extracellu-
lar matrix of dimension 100µm ×100µm ×100µm. The QoI is chosen to be a local integrated displacement
J(U) =

∫
Ω0

1
3 (ux +uy +uz) dΩ, defined over a box Ω0 with dimensions 30µm ×30µm ×30µm that bounds

the microglial cell. Figure 7 shows the geometry defining the microglial cell, the bounding box Ω0, and the
extracellular matrix. The shear modulus is defined as µ = 600 Pa and Poisson’s ratio is set to be ν = 0.4999.

To drive the problem, traction boundary conditions are imposed along the surface of the microglial
cell. The magnitude of the applied traction h is defined to be 10 times the distance to the center of
the cell and its direction points inward towards the cell center. This traction is consistent with observed
physical behavior [14]. Displacements ux = 0, uy = 0, and uz = 0 are applied to the faces with constant
minimum x-coordinate value, constant minimum y-coordinate value, and constant minimum z-coordinate
value, respectively, to constrain rigid body rotations and translations.
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Figure 7: Domains for the microglial cell example.

Figure 8: A close-up of the initial mesh (left) the mesh after 5 adaptive iterations (center) and the final adapted mesh (right)
for the microglial cell example.

Figure 8 demonstrates an initial mesh, which contains around 30, 000 degrees of freedom. From this
initial mesh, the steps

Solve primal PDE→ Solve adjoint PDE→ Localize error→ Adapt mesh

were successively performed 10 times. During the adapt stage, the mesh size field was set such that desired
number of elements N in the output mesh is 1.5 times the number of elements in the previous mesh,
according to equation (30). Figure 8 additionally demonstrates the adapted meshes obtained at the fifth
and final adaptive iteration. In particular, both coarsening and refinement is performed during the adaptive
iterations.

The problem was run using 16 MPI ranks. Figure 9 demonstrates the parallel partitioning for the
initial mesh and for the final adapted mesh obtained after 10 adjoint-based adaptive iterations. To ensure
partitioning quality, ParMA was utilized to guarantee the imbalance of vertices and elements across parallel
partitions is no greater than 5%.

Figure 10 presents a breakdown of the total percentage of CPU time spent on each step in the adaptive
analysis. For every adaptative iteration, the error localization (23) takes only a small percentage of the
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Figure 9: The parallel mesh partitioning for the initial mesh (left) and the final adapted mesh (right) for the microglial cell
example.
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Figure 10: Breakdown of the CPU time spent for each portion of the adaptive process for the microglial cell example.

total CPU time, as it essentially amounts to an evaluation of the residual vector on the fine space. More
interestingly, mesh adaptation initially accounts for about 20 percent of the total CPU time but decreases as
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the adaptive simulation progresses. This is explained by the fact that the initial adaptive iteration requires
more work to optimally distribute the degrees of freedom for the functional QoI as compared to subsequent
adaptive iterations. In addition to refinement and coarsening operations, the mesh adaptation step also
performs shape correction to ensure elements are not too heavily skewed [33]. Finally, we note that the
adjoint problem accounts for roughly 40 to 50 percent of the CPU time over the course of the adaptive
simulation. While process of adjoint-based error estimation is not cheap for this example, we provide two
justifying remarks. First, this problem required only 3 to 4 Newton iterations for each primal solve. For
constitutive models with higher degrees of nonlinearity or for problems loaded to higher strains, it is not
uncommon for Newton’s method to converge in 7 to 10 iterations. In these scenarios, the relative cost of
adjoint-based error estimation is not as extreme. Second, for this computational price, we have achieved
very accurate error estimates as shown in the reference [24].

10.3. Elastoplasticity in an Array of Solder Joints

In this section, we investigate the utility of adjoint-based mesh adaptation for a thermomechanical
analysis of an array of solder joints used in microelectronics fabrication. We consider a 6× 6 array of solder
joints sandwiched between two materials with distinct thermomechanical properties to model a portion of
the process of ‘flip-chip’ manufacturing [9]. The full geometry is shown in Figure 11. We consider an
elastoplastic constitutive model with a von Mises yield surface and linear isotropic hardening, as given by
Simo and Hughes [52] with a temperature correction for the stress tensor [34]. The top slab, solder joints,
and bottom slab are modeled with the distinct material properties given in reference [9].

To drive the problem, the entirety of the domain is cooled from a reference temperature Tref = 393 K to
a resting temperature of Tf = 318 K in a single load step. The faces with minimum x, y, and z coordinate
values were constrained to have zero displacements in the x, y, and z directions, respectively. As a QoI, we
consider the integrated von Mises stress given by equation (35) over three solder joints shown in yellow in
Figure 11.

Figure 11: The solder joint array geometry (left) and the geometric specification of the integrated von Mises QoI (right).

The primal problem was solved on a sequence of uniformly refined meshes, starting with an initial mesh
with about 1 million elements distributed over 16 MPI ranks, and finalizing with a mesh with over half a
billion elements distributed over 8192 MPI ranks. For each solve, the work load for each mesh part (MPI
rank) was held constant at approximately 70, 000 elements. Figure 12 demonstrates weak scaling timing
results for various aspects of the primal solve. In particular, we remark that the assembly of the residual
vector and Jacobian matrix scale well as the number of MPI ranks increases. The preconditioning routine
shows a slight increase in time as the number of MPI ranks increases, but this increase is not drastic. The
time to solve the linear system, however, does not scale optimally. Improvements to parallel performance
could likely be made by more finely tuning the preconditioning and linear solver routines for the specific
problem, but this is outside the scope of the present work.

The approximate QoI, JH(uH), was computed at each primal solve. Using the QoI evaluations from the
finest three meshes, we performed Richardson extrapolation [48] to obtain a more accurate representation
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Figure 12: Weak scaling for the Goal application.

of the QoI. This value was given as J(u) = 328.9. We consider the extrapolated value to be the “true” QoI
value and measure errors with respect to it. The expected convergence rate of the QoI is k = 1, which is
confirmed by the Richardson extrapolation procedure.

From the same initial mesh used in the weak scaling study, we iteratively performed the steps:

Solve Primal→ Solve Adjoint→ Estimate Error→ Adapt Mesh

with a restart after each mesh adaptation using 128, 256, and 512 MPI ranks, such that the output number of
elements N in the adapted mesh was targeted to be 1 million, 2 million, and 4 million elements, respectively.
Figure 13 shows different components of the adjoint solution obtained during the adjoint-based adaptive
process. Figure 14 shows the spatial distribution of the error for the given QoI as computed by the adjoint-
based error estimation process. Unsurprisingly, the majority of the error is localized to the area which
geometrically defines the QoI. However, there are also contributions to the error from nearby solder joints
that decrease as the distance from the 3 QoI solder joints increases. These additional contributions to the
error are mostly gathered at the interface between solder joints and the underlying material slab, where von
Mises stress concentrations exist.

Figures 15 and 16 demonstrate the intial mesh used for the solder joint problem and the final adapted
mesh obtained via adjoint-based adaptation. These figures clearly demonstrate that the 3 solder joints that

24



Figure 13: The x-component of the adjoint displacement solution (left), and the pressure component of the adjoint solution
(right).

Figure 14: The spatial distribution of errors as computed by adjoint-based error estimation for the solder joint array.

define the QoI sub-domain are heavily refined, as expected. Additionally, notice that Figure 15 demonstrates
that there is refinement at the left-most solder joint, which is not included in the geometric definition of the
QoI. The adjoint-based error estimation procedure indicates that mesh must be refined in additional areas
to accurately assess the QoI.

Figure 17 demonstrates the convergence history of the error in the functional QoI, as defined by the
difference of the QoI obtained via Richardson extrapolation and the QoI approximated by the finite element
solution. We compare the convergence for two adaptive schemes, one achieved by successive uniform refine-
ments of the mesh and the other achieved by adjoint-based error estimation. After 4 adaptive iterations,
the adjoint-based adaptive procedure achieves nearly the same degree of accuracy as the uniform refinement
procedure with two orders of magnitude fewer degrees of freedom.

Finally, we remark that automated parallel adaptive workflows have been developed in reference [9].
As an avenue for future investigation, adjoint-based error estimation could be folded into these automated
workflows. In particular, an automated primal analysis could be used to inform the actual selection of the
QoI itself, which could then be accurately assessed using adjoint-based error estimation.
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Figure 15: Cross-sectional view of the initial mesh for the solder joint geometry (left) and the final adapted mesh (right).

Figure 16: The initial mesh for the solder joint geometry (left) and the final adapted mesh (right).

11. Conclusions

In this work, we have developed an automated approach for adjoint-based error estimation and mesh
adaptation for execution on parallel machines. We have developed this approach to be applicable to both
Galerkin and stabilized finite element methods. To realize this approach, we have extended the concept of
template-based generic programming for PDE models to include the automatic localization of error contri-
butions using a partition of unity-based localization approach. We have demonstrated that this approach is
effective for a variety of example applications, including nonlinear elasticity and elastoplasticity.
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[55] Erwin Stein, Marcus Rüter, and Stephan Ohnimus. Error-controlled adaptive goal-oriented modeling and finite element
approximations in elasticity. Comput. Methods in Appl. Mechanics and Eng., 196(37):3598–3613, Aug. 2007.

[56] Cedric Taylor and Paul Hood. A numerical solution of the Navier-Stokes equations using the finite element technique.
Comput. & Fluids, 1(1):73–100, Jan. 1973.

[57] Irina K Tezaur, Mauro Perego, Andrew G Salinger, Raymond S Tuminaro, and Stephen F Price. Albany/FELIX: A
parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis.
Geoscientific Model Development, 8(4):1197–1220, Apr. 2015.

[58] David A Venditti and David L Darmofal. Adjoint error estimation and grid adaptation for functional outputs: Application
to quasi-one-dimensional flow. J. of Comput. Physics, 164(1):204–227, Oct. 2000.

[59] David A. Venditti and David L. Darmofal. Grid adaptation for functional outputs: Application to two-dimensional inviscid
flows. J. of Comput. Physics, 176(1):40–69, Feb. 2002.

[60] David A. Venditti and David L. Darmofal. Anisotropic grid adaptation for functional outputs: Application to two-
dimensional viscous flows. J. Comput. Phys., 187(1):22–46, May. 2003.
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Abstract This paper presents a parallel interface track-
ing approach for evolving geometry problems where both

the computational domain and mesh are updated as
dictated by the analysis. An interface-fitted conforming
hybrid/mixed mesh with anisotropic layered elements is

used. A combination of mesh motion and mesh modifi-
cation is employed to update the mesh to account for
the interface motion. During mesh motion and modi-
fication the desired structure, shape and resolution of

the anisotropic layered elements at interface are main-
tained. All steps are performed on partitioned meshes
on distributed-memory parallel computers. The effec-

tiveness of the current approach is demonstrated on
problems with large motion or deformation in the ge-
ometry

1 Introduction

Problems with multimaterial, multiphase and fluid struc-
ture interactions arise in many engineering applications
such as solid combustion, droplet evaporation, flow-
driven projectile, blood flow through flexible arteries,
flow-induced vibration, to name a few. Figure 1 shows
two such problems. In such problems a common and
important feature is that the interface evolves in time.
Therefore, the geometry or spatial domain must be up-

F. Yang, A. Chandra, Y. Zhang, M. Shephard and O. Sahni
SCOREC, RPI, 110 8th Street, Troy, NY 12180
Tel.: +1-518-276-8560
E-mail: sahni@rpi.edu

S. Tendulkar and R. Nastasia
Simmetrix Inc.

A. Oberai
University of Southern California

dated based on the interactions, for example, between
an object and the surrounding fluid (i.e., between pro-

jectile and air) in the projectile case or between two
phases (i.e., liquid and gas) in the droplet case.

Two types of mesh-based approaches are commonly
used for evolving geometry problems: explicit interface

tracking, which is also referred to as front tracking,
and implicit interface capturing. These approaches em-
ploy different frameworks to describe and simulate the
transport equations of the material, namely the La-

grangian/material, the Eulerian/fixed or an arbitrary
Lagrangian-Eulerian (ALE) [24, 26, 12] framework. In
the case of an interface capturing approach, the inter-

face is represented implicitly in the material/volumetric
mesh that is typically fixed based on the Eulerian frame-
work. Commonly used interface capturing methods in-

clude the level set [35, 45, 48], phase field [2, 5] and
immersed boundary [36] methods. On the contrary, in
an interface tracking method the evolving interface is
explicitly represented in the underlying discretization

at all times. Interface tracking method can be achieved
by using any of the three frameworks involving a fixed
or a moving mesh. Commonly used interface tracking
methods include interface embedding methods [49, 19],
interface reconstruction procedures based on volume-
of-fluid and moment-of-fluid [44, 14, 6], interface en-
richment approaches based on XFEM [8] and methods
using interface-fitted mesh based on the Lagrangian or
an ALE framework [17, 51, 37, 10, 11, 28].

A major advantage of implicit interface capturing is
that topological changes in the interface are relatively
easy to incorporate, even when they occur frequently
(e.g., a large number of droplets interacting with each
other causing topological changes). However, the draw-
back of implicit methods is the ad-hoc treatment of in-
terface conditions as well as constitutive laws and equa-
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(a) Flow-driven projectile

(b) Evaporating droplet

Fig. 1 Two examples of the evolving geometry problem with
(a) fluid-structure interaction and (b) multiphase interaction
(two instances are shown in each example)

tion of state in the so-called blending region around the
interface. In contrast, interface tracking allows for a di-
rect treatment of the interface physics including discon-

tinuities and steep normal gradients. However, topolog-
ical changes are more complex to manage in interface
tracking.

We present an interface tracking approach that em-

ploys an ALE framework along with an interface-fitted
conforming hybrid/mixed mesh with anisotropic lay-
ered elements. In such an approach the geometry of the

computational domain must be updated as dictated by
the analysis to properly represent the current state of
the interface in terms of its location, shape and topol-
ogy. We note that the current paper does not include
general topological changes. The additional functions
needed for topological changes are under development.
In explicit interface tracking, the mesh must be updated
to be consistent with the updated geometry at every
instance. One way to update the mesh is to regener-
ate it entirely based on the updated geometry. Another

option is to apply local mesh modifications. Regener-
ating or modifying a mesh and using this altered mesh
in the analysis code at each time step is computation-
ally expensive (i.e., both mesh regeneration or modi-
fication and re-initialization of data structures within
the analysis code are time consuming). In contrast to
mesh regeneration or modification, mesh motion can be
used as the geometry evolves, based on the motion and
deformation of the interface, while keeping the mesh
connectivity the same (including the size of the data

structures related to the mesh in the analysis code).
Thus, mesh motion is efficient to use.

Several mesh motion methods have been proposed
in the previous research, such as mesh elasticity analogy
[34, 47, 52, 13], spring analogy [4, 7, 15, 53] and target-
matrix paradigm [31].

Large motion and deformation in the geometry oc-
cur in many problems of interest. For example, a pro-
jectile moving from one end of the cannon to the other
or droplets shirking significantly in volume due to phase
change. For problems with large motion and deforma-
tion in the geometry, mesh motion alone is not sufficient
while mesh regeneration or modification alone is com-
putationally expensive. Thus, a combination of mesh
motion and regeneration/modification is required for
problems with large motion and deformation in the ge-
ometry [16, 25, 50, 37, 22, 33, 10, 21, 3, 28].

We have developed an approach that employs a com-
bination of mesh motion and modification (instead of
mesh regeneration) to be efficient. In our approach the
mesh motion is based on mesh elasticity analogy and
mesh modification is based on local cavity-based oper-
ations (e.g., see [32, 39, 43]) that offers specific advan-
tages such as local solution transfer and parallelization.

A mesh size field (e.g., see [32]), which describes the
desired mesh resolution over the domain, is used to au-
tomatically trigger and drive mesh modification. The

mesh size field is either prescribed, computed based on
an error estimator, or a combination of the two.

This paper is organized as follows. Section 2 de-
scribes the overall simulation workflow and components.
Section 3 discusses the details of the geometry and mesh
updates. Results are presented in Section 4. Section 5

provides closing remarks.

2 Overall Simulation Workflow

The parallel interface tracking approach developed in
this work is based on three primary simulation com-
ponents or libraries. These components are shown in
Figure 2 including: pre-processor, solver, and model

and mesh adaptor. These three components are cou-
pled/linked using a “driver” code. Further, all the com-
ponents operate in parallel to target practical problems
of interest.

The role of pre-processor is to convert input data
(including mesh-related data) into a solver-suitable for-
mat and uses data streams to pass it to the solver.
In addition to physics computation, the solver includes
sub-components for mesh motion, error estimation and
mesh modification trigger (to indicate that the mesh
topology must be modified). These three additional sub-
components are efficient to operate within the solver

due to the direct access to the necessary data needed
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Fig. 2 Simulation components for interface tracking

for them, especially in a parallel distributed-memory
environment. The third component of model and mesh
adaptor updates the geometric model, applies mesh mod-
ification and performs dynamic mesh partitioning to

maintain parallel load balance. The solver uses data
streams to pass the necessary information to the adap-
tor including the current interface location and mesh
coordinates to update the shape information in the ge-

ometry and mesh as well as the mesh size and solution
fields to drive mesh modification and perform solution
transfer. The driver code continues until the simulation

completes spanning the desired interval of time.

Several of the sub-components have been developed

in earlier works not involving interface tracking. For ex-
ample, in-memory based coupling [46] is used between
all the components (instead of a file-based coupling),
which is crucial to be performant on parallel computers.
The pre-processor and solver use data streams for in-
memory coupling as mentioned above, while the adap-
tor uses well-defined functional interfaces (or applica-
tion programming interfaces, APIs), see [46] for details.
The solver employs an ALE finite element formulation
[54] for the physics computation, while the error esti-
mation is performed using an explicit variational mul-
tiscale (VMS)-based error estimator [23].

In this paper, we focus our attention on new devel-
opments made for parallel interface tracking. Details of
the geometry and mesh updates are discussed in the
next section, while the trigger for mesh modification

along with the parallel programming model and mesh
partition are discussed in this section.

2.1 Trigger for Mesh Modification

Geometry updates in the current problems of interest

only involve shape changes and thus, can be performed
at the necessary frequency (e.g., at every time step).
However, mesh updates also include modification or
connectivity changes that are time consuming to per-

form and update into the solver. Thus, it is desirable
to apply mesh modification at a lower frequency (i.e.,
not at every time step) and a mechanism is needed that

can trigger mesh modification only when necessary.

Two criteria are used to trigger mesh modification.

If either of the criterion is met then mesh modification
will be executed. Both criteria rely on the mesh size
field. In this study, the mesh size field is determined

at each time step, which is relatively inexpensive. It
is either prescribed based on the current state of the
geometry (i.e., it evolves in time with the geometry),
computed based on an error estimator, or a combination
of the two.

The first criterion is based on mesh resolution and a
mesh modification is triggered when the current mesh
resolution is not satisfactory with respect to the mesh

size field at the given time step. This idea has been
developed before and commonly used in an adaptive
transient simulation (e.g., see [38]), and we follow the
same in this work.

The second criterion targets mesh quality and re-
quires element shape quality to be above a threshold.
Several element shape quality measures are available in
the literature. Note that it is necessary to use a signed
quality measure such that any inverted/invalid element
is detected with a negative value. In this work, we use a
normalized mean ratio in the transformed/metric space
defined by the given mesh size field (e.g., see [32]). Note

that it can attain a maximum value of 1 for an element
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with the “best” shape (e.g., a regular tetrahedron).
Note that any other suitable measure of the element
shape quality can be used. Mesh modification is trig-
gered when the shape quality measure for any element
in the mesh is below the threshold value. The current
procedure is summarized in Algorithm 1, where γM de-
notes the shape quality measure in the metric space
while the subscripts e and 0 are used to denote an el-
ement value and the threshold value, respectively. For
the current choice of element shape quality measure,
0.3 is used as the threshold value.

Algorithm 1 Quality-based mesh modification trigger
1: triggerMeshModFlag = OFF

2:
3: for each element e do
4: compute the element quality γMe
5: if γMe < γM0 then
6: triggerMeshModFlag = ON

7: break
8: end if
9: end for

10:
11: if triggerMeshModFlag == ON then
12: return to driver and apply mesh modification
13: end if

2.2 Parallel Programming Model and Mesh Partition

The current parallel programming model builds upon
earlier work not including interface tracking. It relies on

each simulation component to use the same distributed-
memory parallel mesh (e.g., see [27]) and thus, ensures
that all simulation steps are efficiently performed in

parallel. In this model, the mesh is partitioned into the
desired number of parts and message passing interface
(MPI) [20] is used such that each part is associated
with a MPI rank or process. Hybrid parallel program-
ming (including data parallelism) will be considered in
the future.

The underlying parallel mesh database provides APIs
to query the necessary information related to the inter-
part boundaries, specifically each mesh entity on the
inter-part boundaries (including mesh vertices, edges
and faces in 3D) has multiple copies since it is dupli-
cated on all residing parts. These copies are stored as
remote copies in each residing part (e.g., see [27]). These
APIs are directly used by the geometry and mesh adap-
tor to operate in parallel as discussed in the next sec-
tion. Similarly, these APIs are used in the pre-processor

to build parallel communication structures used by the
solver.

In the pre-processor, owner relationship is estab-
lished among remote copies of any given inter-part mesh
entity such that one copy is assigned as the owner who
is in-charge of communication between all the copies.
In the solver, owner relationship is used to device a
two-pass communication strategy to perform physics
computation in parallel, see [41, 40] for details. Sub-
components of mesh motion and error estimation fol-
low the same form of parallel computation. This is the
primary reason why these sub-components currently re-
side in the solver component. However, our workflow is
flexible to support these sub-components to be defined
outside of the solver such that other options can be
incorporated.

Parallel interface tracking is supported by imposing
two constrains on the parallel mesh partition. These
constrains ensure that the overall parallelization strat-
egy and communication structures used in each compo-
nent remain the same with and without interface track-

ing. The first constrain is applied to support parallel
discontinuous interpolation/solution for physically dis-
continuous fields at the interface such as density or nor-
mal velocity. The second constrain is applied to support

parallel mesh updates of highly anisotropic layered ele-
ments around the interface. Each constrain is imposed
by forming sets of related elements around the interface

and enforcing the elements within any related set to be
assigned to the same part during mesh partitioning. We
note that, due to the locality of any constrained element

set, the parallel load balance is not altered for practical
problems of interest.

Fig. 3 A schematic showing a portion of the distributed
mesh on three parts, P0, P1 and P2, that consist of discon-
tinuous interpolation and layered elements at the interface
(note that an artificial gap is introduced at the interface and
inter-part boundaries for clarity)

In the case of a discontinuous interpolation at the

interface, the degrees-of-freedom on each side of the in-
terface are different. Any mesh face on the interface
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is duplicated into two images and each image is used
by the corresponding mesh region (i.e., on each side of
the interface). Note that lower dimensional mesh enti-
ties (i.e., vertices and edges) can have more than two
images for cases involving interactions between more
than two materials at a physical location. For problems
involving diffusion, the degrees-of-freedom of the two
mesh regions sharing a mesh face on the interface are
coupled in the current finite element formulation, see
[54] for details. Thus, a macro element is formed based
on the two mesh regions around the interface, see Fig-
ure 3. Each macro element containing two mesh regions
is defined as an element set that is constrained to be on
the same part during parallel mesh partitioning. This
ensures that the parallel interactions between degrees-
of-freedom remain the same to a parallel case with no
interface and thus, the two-pass communication strat-
egy discussed above is applicable during physics com-
putation involving parallel interface tracking. Note that
the geometric compatibility at the interface is ensured
during mesh motion and modification, as discussed in

the next section.

Element sets are also defined for the highly anisotropic

layered elements around the interface to ensure their
desired structure, shape and resolution are maintained
during mesh motion and modification in parallel. In

this case, an element set is defined based on a layered
stack (see Figure 3), which contains all the elements
through the layered height/thickness. Layered stacks

on each side of the interface are considered separately.
Note that the parallelization details of the geometry
and mesh adaptor are discussed in the next section.

In summary, there are two types of element sets
around the interface. One based on macro elements and
the other based on layered stacks. An overlap can oc-
cur between different element sets. In such a situation,
a superset containing all the relevant element sets is
constructed and enforced to be on the same part dur-
ing mesh partitioning. Note that the maximum possible
overlap can be forced or limited to be local in nature
such that the parallel load balance is not altered for

practical problems of interest. For example, the maxi-
mum possible overlap can be forced to the most com-
mon situation which includes a macro element and two
layered stacks from each side of the interface, which can
be attained by a meshing process that ensures any mesh
region around the interface only has one mesh face on
the interface. It is also important to note that these
two types of element sets provide flexibility to target
a wide variety of problems. For example, some prob-
lems may not require macro elements (e.g., free surface
problems) in which case element sets based on macro

elements will not be present, or may not require lay-

ered elements (e.g., due to lack of anisotropy) in which
case element sets based on layered stacks will not be
present, while some problems may not involve macro
elements on some part of the interface and may not
require layered elements on some part of the interface.

3 Geometry and Mesh Updates

3.1 Geometry Updates

The computational domain is defined using a bound-
ary representation-based geometric model. Such a do-
main definition includes a set of topological entities,
each having shape information associated with them.
Interface motion can result in shape and/or topological
changes in the geometry. As mentioned above, we cur-
rently focus on problems where the geometry undergoes
shape changes while the topology remains fixed. There

are two classes of shape changes. One class where a rigid
body motion is involved. The second class includes ar-
bitrary deformations.

For problems involving a rigid body motion, a para-
metric representation is employed for the geometry (i.e.,
based on a CAD system), while in cases involving ar-

bitrary deformations a parametric description is not
suitable and therefore, a discrete representation is used
(e.g., based on a triangulation).

In the case of a parametric geometry, the update
is applied to the relevant objects or region entities in

the geometry, e.g., when a projectile slides through the
cannon. Parallelization is straightforward in this case
by storing the entire geometry in each MPI rank or

process and by using a synchronization/reduction step
to update the shape of the geometry in each process.
We note that a parallel partition may be required for a
parametric geometric model with millions of geometric

entities and will be consider in the future.

For problems involving arbitrary deformations, we
currently use the evolving interface mesh to define and
update the discrete geometric representation. Paralleliza-
tion is achieved based on the partitioning of the inter-
face mesh. It is also important to note that the relation
of the mesh entities to the geometric model entities is
currently maintained, specifically mesh edges relating
to model edges and mesh faces relating to model faces.

By doing this it is possible to employ methods that
enrich the shape information for the discrete geometry
beyond that defined by linear mesh facets. For exam-
ple, methods like subdivision surfaces can be used to
account for the local curvature [50]. Shape enrichment
is particularly useful in case of a discrete geometry when

applying mesh modification at the interface.
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3.2 Mesh Updates

The mesh must be updated to remain consistent with
the geometric model at every instant. In this study, the
mesh is updated by mesh motion or, if indicated by
the trigger, by mesh modification. Mesh modification is
based on local cavity-based operations including non-
manifold cases and layered elements [32, 50, 39, 42].
For parallel mesh modification based on local cavity-
based operations see [1, 43]. For interface tracking, we
employ the same parallel mesh modification procedures
including at the interface. This is made possible with
the two constrains applied on parallel mesh partition,
as discussed in Section 2.2. In this paper, we focus our
attention on mesh motion.

Mesh motion is divided into four steps: moving ge-
ometric entities, static geometric entities, layered ele-
ments, and tetrahedral elements. These steps are cou-
pled with the mesh modification trigger to maintain
mesh quality and validity, where the updated mesh is
checked after applying all the four steps and the moved

mesh is accepted and used only if it is deemed accept-
able by the trigger. Otherwise the mesh state is reverted
to the prior state (i.e., before applying mesh motion)
and a mesh modification is instead triggered on the

prior state of the mesh. This approach is found to be
sufficient for the current problems of interest. Further,
parallelization in each step is achieved by moving to-

gether all the copies of each mesh entity at the inter-
part boundaries, which ensures geometric compatibility
at the inter-part boundaries. Each mesh motion step is

discussed below.

3.2.1 Moving Geometric Entities

In the present study, for each problem case a certain
set of geometric entities are allowed to undergo a mo-
tion, specifically a set of geometric faces, edges and ver-
tices are allowed to move. The motion for these moving

geometric entities is computed as part of the physics
computation, e.g., as part of a rigid body motion or of
an arbitrarily deforming interface. Motion of each mesh
entity residing on these geometric entities is set to be
the same as that of the geometric entity. This motion
is used as an input to drive the other three steps in

mesh motion. It is important to note that for an inter-
face supporting discontinuous interpolation, all images
of each mesh entity on the interface move together en-
suring geometric compatibility at the interface.

3.2.2 Static Geometric Entities

Mesh motion for each mesh entity residing on the static
geometric entities, i.e., geometric faces, edges and ver-

tices that are fixed, is computed such that the mesh
entity is constrained to remain on the geometric entity.
This is achieved in two steps. In the first step, we use
the linear mesh elasticity analogy (including Jacobian-
based stiffening [47]) to displace mesh entities with-
out any constraints; given the input on mesh motion
from the moving geometric entities discussed above. In
the second step, updated locations from the first step
(which can be off for the curved geometric entities) are
projected back onto the geometric entities by employ-
ing a local search procedure provided by the geome-
try library. The projected locations are used to move
the mesh entities residing on the static geometric enti-
ties. Essentially, during mesh motion the mesh on the
static geometric entities is allowed to slide on the geom-
etry. This feature provides a great deal of flexibility in
mesh motion and enables the use of mesh motion alone
(without any mesh modification) for a relatively longer
duration. We note that in many problems of interest,
absence of this feature may result in mesh modification
at every time step. Figure 4(a) shows a translating and

rotating projectile in a cannon. The projectile trans-
lates axially from the back/closed end to the open end
by a distance approximately equal to its length. It ro-
tates in the counter clockwise sense by 34.5◦ as shown

by the 4 differently colored quadrants of the projectile.
For this demonstration, a uniform tetrahedral mesh is
used and the total motion is applied in about 400 steps;

only mesh motion is used. The mesh on the projectile
surface moves with it while the mesh on the cannon
walls is allowed to slide on it and the tetrahedral vol-

ume mesh is free to move in all three directions. Overall
a good quality mesh is maintained.

3.2.3 Layered Elements

Many problems of interest exhibit relatively strong gra-

dients in certain directions as compared with other di-
rections, such as a shear layer near the wall in a vis-
cous flow or high normal gradient in temperature at a
burning interface. In such cases, highly anisotropic lay-
ered elements are desired near the appropriate bound-
aries/interfaces.

Pre-defined meshes with layered elements near the
walls have been utilized in previous studies ([18, 30,
29]). However, for evolving geometry problems, a pro-
cedure is needed that tightly controls the anisotropic
layered elements in an adaptive fashion when the shape
of the geometric entities is changing. We aim to main-
tain the desired structure, shape and resolution of the
anisotropic layered elements during mesh motion. As
noted earlier, mesh modification for layered elements

is based on earlier works [39, 42, 43]. Mesh motion
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(a) Initial mesh

(b) Mesh after translation and rotation

Fig. 4 Mesh motion for a translating and rotating projectile
in a cannon (half of the mesh with a cut through the center
plane is shown and the cannon walls are kept translucent)

based on the linear mesh elasticity approach is not ro-
bust in maintaining or explicitly controlling the struc-
ture, shape and resolution of the anisotropic layered el-

ements. Therefore, we have developed an explicit repo-
sitioning method for the layered elements that employs
connectivity of the growth curves. Note that mesh mo-
tion for the rest of the interior mesh containing tetra-
hedral elements is discussed below, while transition el-
ements between layered and tetrahedral elements move

accordingly from each side (and does not require any
additional consideration).

Fig. 5 Schematic of a growth curve

We first define a growth curve (see Figure 5). It is
a collection or stack of mesh edges defined along the
local normal direction to the boundary/interface. At
an interface, growth curves on each side are treated
differently. The mesh vertex on the boundary/interface

from which a growth curve originates is called the base
vertex. The direction of a growth curve is called the
growth direction.

Currently, a growth curve is geometrically graded
and defined by four parameters: the first layer thick-
ness t

(1)
l , growth ratio rl, total number of layers nl and

growth direction or local unit normal vector n. The
first three parameters (t

(1)
l , rl, nl) are either prescribed

or computed adaptively [9]. The fourth parameter n is
calculated based on the current geometry shape which
is evolving with time. For a given mesh vertex on the
boundary/interface, the local unit normal vector n is
computed by a weighted average of the unit normal vec-
tors of mesh faces on the boundary/interface around
this mesh vertex. In case of a distributed/partitioned
mesh, the two-pass communication strategy is used to
computed the local unit normal vector along the growth
direction.

First, the thickness of the ith layer in a growth curve
is computed as:

t
(i)
l = ri−1

l t
(1)
l = rlt

(i−1)
l i = 2, 3, ..., nl (1)

Subsequently, the position of each vertex on a growth

curve is given by:

x(i) = x(i−1) + t
(i)
l n = x(i−1) + ri−1

l t
(1)
l n (2)

where x is the coordinate of a vertex. The superscript
(i) indicates it is the ith vertex on a growth curve, where
i = 0 implies the base vertex.

This procedure requires the connectivity of a growth

curve, where all the mesh vertices on each growth curve
are maintained in a list. In case of a distributed/partitioned
mesh, a growth curve is allowed to be at the inter-part

boundary. However, the entire growth curve (or lay-
ered stack) is constrained to be together on any resid-
ing part(s) as discussed in Section 2.2 (i.e., the list of
vertices on a growth curve is complete on any given
part). Figure 6 shows a partitioned growth curve for
parallel mesh motion. This way the explicit reposition-
ing for each growth curve is applied independently on
each part (assuming that the position of the base vertex
and the four growth-curve parameters (including local
unit normal vector) are available on each part). The
position of the top most vertex in case of a partitioned
growth curve is also ensured to be consistent among
all residing parts by using the two-pass communication

strategy discussed in Section 2.2.

3.2.4 Tetrahedral Elements

After applying the above three mesh motion steps, all
that is remaining is the mesh motion for the interior
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Fig. 6 A partitioned growth curve

mesh containing tetrahedral elements. It is performed
using the linear mesh elasticity approach including Jacobian-
based stiffening [47]. The input in this fourth mesh mo-
tion step is provided by the mesh motion or displace-

ment computed in the above three steps.

3.2.5 Summary of Mesh Updates

We summarize this section with a demonstration of the
entire mesh update process based on a combination of
mesh motion and modification. A 9-grain case is used

where the grains translate and shrink in a closed cham-
ber. The interface motion is prescribed in this demon-
stration. In Figure 7, three meshes, including anisotropic

layered elements at the interface, are shown at two in-
stants (t = t0 and t1). Each mesh consists of about
220,000 and 1,000,000 number of vertices and regions,
respectively. Mesh motion is applied on the initial mesh

at t = t0 to obtain a mesh at t = t1, see Figure 7(b).
In the mesh after motion, two aspects are important to
note: 1) the structure, shape and resolution of the lay-

ered mesh is maintained, and 2) the elements become
too distorted in between the grains (see the zoomed
view on the right side in Figure 7(b)). We note that the
mesh motion is exaggerated in this case to clearly show
the distorted elements. Further, a mesh modification is
applied at t = t1 to obtain a mesh with the desired
quality, see Figure 7(c).

4 Results

Two problems are selected to demonstrate the utility
of the current interface tracking approach. The first
one involves 6 grains undergoing phase change with ar-
bitrary deformations. The second one includes a rigid
projectile moving/translating down the barrel.

(a) Initial mesh at t0

(b) Mesh after motion at t = t = t1

(c) Mesh after modification at t = t1

Fig. 7 Mesh updates based on mesh motion and modifica-
tion (including layered elements) for a 9-grain case

4.1 Grain Case with Phase Change

Fig. 8 Center plane of the 6-grain case at the beginning

In this section, we present a problem involving 6
grain-shaped droplets undergoing a phase change from
denser liquid to lighter gas inside a camber, In this
problem, predicting the exponential rise of pressure and
temperature in the camber is typically of interest and
thus, fully 3D transient simulations of phase change
process is performed up to a certain duration, see [54]

for more details. Figure 8 shows the center plane of
the problem with 6 grain-shaped droplets in an adia-
batic cylindrical camber with no-slip walls. At the be-
ginning, each droplet is a 2 mm long circular cylinder
capped with hemispherical end caps of 0.5 mm radius.
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The phase change rate is governed by the Vieilles law:

up = a(p+)n (3)

where p+ is the pressure of the surrounding gas, while
the exponent is set to be n = 0.7 and the pre-factor to
be a = 7.9e − 5 m/(sPan). The initial pressure of the
closed chamber is set to be 1 atm. As the droplets un-
dergo phase change from denser phase to lighter phase,
the pressure increases and speeds up the phase change
rate in return. Discontinuous interface is utilized in this
case. Further, layered elements are used on both sides
of the interface.

Figure 9 shows meshes and solution fields around
one of the grains at three instances (t = t0, t1 and t2).
A cut through the mesh is shown, where the change in
grain size/volume is clear between the first and last in-
stances. Solution fields of velocity magnitude and tem-
perature are shown, where at each instance the former
is shown in the left half and the latter in the right half.
t = t0 is near the beginning while at t = t1 and t2 mesh

modification is triggered. Thus, there are two mesh and
solution states for each instance of t1 and t2, one after
mesh motion (only) and the other after mesh modifi-
cation. In this case, the mesh size field is prescribed to

be finer near the interface and is based on the current
state of the geometry (i.e., it evolves in time with the
geometry). Note that the structure, shape and resolu-

tion of the anisotropic layered elements are maintained
during mesh motion and modification. The overall mesh
quality is maintained to be above the threshold value
of 0.3 as discussed in Section 2.1. Further, the solution

fields are well resolved, especially at the interface in-
cluding discontinuity in the normal component of the
velocity and steep normal gradient in the velocity and
temperature fields.

4.2 Projectile Case with Rigid Motion

A finned projectile inside a pressurized cannon is con-
sidered. In this case, the projectile velocity and flow
field at the exit of the cannon are of interest (e.g., to
design a muzzle brake). Figure 10 shows the problem
setup for this case, where high pressure and tempera-
ture is set at the closed end of the cannon. The high
pressure pushes the projectile towards the open end.
The projectile is considered to be a rigid object. It
translates axially along the tube. It is 711mm in length
and has 8 fins. The inner length of the cannon is 2000
mm, while its inner diameter and thickness are 120
mm and 10 mm, respectively. The outer boundary (not

shown) is set as outflow and placed at a sufficiently long
distance away from the cannon. Currently, no-slip and

zero heat flux conditions are set on all the walls, where
no-slip condition due to the projectile is taken at the
contact between projectile and inner side of the can-
non. Since we are primarily interested in the projectile
motion and gaseous flow, material inside the projectile
and cannon walls are not included in the current simu-
lations.

A stabilized finite element method for pressure-primitive
variables with a discontinuity capturing operator is used,
see [54] for more details. The projectile starts at 20 mm
from the left inner side of the cannon and moves about
1300 mm in 6 ms such that the projectile reaches near
the exit of the cannon. Two mesh size fields are used
in this case. One that is prescribed to be finer near the
projectile and is based on the current state of the geom-
etry (i.e., it evolves in time with the geometry). Other
which is computed adaptively using a VMS-based error
estimator.

We first focus our attention on the geometry-based
prescribed mesh size field. Evolution of the geometry

and mesh is shown in Figure 11 at six different instances
as the projectile moves from the left/closed end to the
right/open end of the cannon. A cut through the mesh

is shown. A zoomed view near the projectile nose is
shown for all six instances at the top while a zoomed
view near the fins is shown at the bottom. The mesh

refinement around the projectile is maintained as dic-
tated by the geometry-based prescribed mesh size field.
Similarly, a finer mesh is maintained near the tip of
the fins. Figure 12 shows the parallel mesh partition

at the same instances (different colors indicate differ-
ent parts). Throughout the simulation, the partitioned
mesh consists close to 13.5 million elements in total on

256 parts.

Figure 13 shows the minimum mesh quality over
time, it is clear that the threshold value is satisfied

throughout the simulation. Note that the rate of mesh
modification becomes relatively higher towards the end
of the simulation, which is expected as the projectile
reaches the exit of the cannon and a topological change
in the geometry is imminent.

Figure 14 shows the evolution of the normalized pro-
jectile velocity over time. The maximum projectile ve-
locity is roughly 330 m/s, which is reached near the exit
of the cannon.

Figures 15 and 16 show the Mach number and nu-
merical schlieren at four different instances. The precur-
sor wave in front of projectile is clearly formed at t =2.5

ms and it propagates out of the cannon by t =3.5 ms.
In the later two instances of t =4.5 ms and 5.5 ms, the
barrel shock is clearly formed and at the last instance
a complex shock structure is observed. These features
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Fig. 9 Mesh cut (top row), and solution fields (bottom row), around one of the 6 grains at three instants (t = t0, t1 and t2),
where t = t0 is near the beginning while at t = t1 and t2 mesh modification is triggered

Fig. 10 Setup of the projectile case

are common for a case with a fast moving projectile in
a cannon.

Next we focus our attention on the simulation em-
ploying the error-based mesh size field. In the initial
instances, the error-based adapted mesh remains about
the same to the mesh based on the prescribed mesh size
field, where some additional refinements are observed
near the exit of the cannon as the precursor wave prop-
agates out of the cannon (e.g., at t =3.5 ms). However,

with the formation of the barrel shock by t =4.5 ms
and a complex shock structure by t =5.5 ms, the error-
based adapted mesh is focuses resolution in the shock
regions. The total number of elements reaches a maxi-
mum of about 8.5 million in the case of the error-based
adapted mesh. We recall that the total number of el-

ements remains about 13.5 million in the mesh based
on the prescribed mesh size field. Figures 17 and 18
show a cut view of the mesh zoomed near the exit of
the cannon at two instances of t =4.5 ms and 5.5 ms.
Meshes based on both types of the mesh size field are
presented to clearly show the utility of the error-based
mesh adaptation. Figures 19 and 20 show a zoomed
view of the Mach number near the exit of the cannon
at the same two instances. As expected, the complex

shock structure is resolved crisply for the error-based

adapted mesh and thus, leads to a higher accuracy.

5 Closing Remarks

We presented a parallel interface tracking approach for
evolving geometry problems. In our approach, the com-

putational domain is defined using a boundary representation-
based geometric model that is updated as dictated by
the analysis. An interface-fitted conforming hybrid/mixed

mesh with anisotropic layered elements is used. The
mesh is updated to be consistent with the updated ge-
ometry at every instance. Mesh is updated using a com-
bination of mesh motion and mesh modification. Mesh
modification is triggered only when necessary. Further,
during mesh motion and modification the desired struc-
ture, shape and resolution of the anisotropic layered

elements at interface are maintained. All steps are per-
formed on partitioned meshes on distributed-memory
parallel computers.

We demonstrated our approach on two problems
with large motion or deformation in the geometry. The
first problem involved 6 grains undergoing phase change
with arbitrary deformations. The second problem in-
cluded a rigid projectile moving/translating down the
barrel, where an error-based adapted mesh was shown
to provide a highly accurate solution.
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Fig. 11 Mesh at six different instances (cut view)
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