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1.0 SUMMARY

This report outlines the finished result in the scope of the work, which is Pointing Mode
Determination of Resident Space Objects (RSOs). RSOs are any object orbiting another
body, but this work focuses on selective satellites of which little information is known. The
goal is to improve Space Situational Awareness (SSA) to be able to determine the intent
of the spacecraft, as well as provide any other useful information. This information can be
gathered using algorithms with information from resolved images of the RSO. The resolved
images can be obtained with an Observing Satellite (OS). For the purposes of this work,
the OS is already in place, orbiting near the RSO with a controller keeping the OS pointing
at the RSO, and is taking resolved images. The input to the provided work is in the form
of already-extracted feature points of the RSO in a two-dimensional image plane, used as
measurements for the attitude determination algorithms of the Extended Kalman Filter
(EKF).

Any object in space can pose a threat, and one step in improving SSA and assessing the
threat of an RSO is determining the attitude mode of the RSO, such as Sun-pointing, Earth-
pointing, uncontrolled tumble, etc. One proposed method of doing this is to track prominent
features of the RSO and compare their trajectories to would-be trajectories of the same
features given certain control laws specified by a multiple model adaptive estimator (MMAE).
The MMAE uses a bank of EKFs, each utilizing a different control law, and probabilistically
compares the output of each control law with what is seen in the measurements. The control
law acts to change the orientation of the object in the preferred manner, and each attitude
mode will utilize a control law to keep the object pointing in the preferred direction, if
there is one. Therefore, control laws are indicative of the attitude mode of the object,
and so determining which control law the object is following will subsequently determine
the attitude mode. The EKFs in the MMAE require measurements of the locations of the
features of the target RSO, and these measurements come from a sensor on the OS. The
measurements alone do not give enough information about the RSO to determine its attitude
mode without implementing the dynamics of the system. The dynamics of the OS relative
to the target RSO is modeled as formation flying, with the full dynamics of the two satellites
modeled in the Hill Frame, which is attached to the RSO at all times while it orbits the
Earth. With the relative position of the two satellites being estimated, the OS is also given
a control law which works to keep the RSO in the center of the image plane. With this
assumption, attitude dynamics as well as orbital dynamics will be coupled in the MMAE to
estimate the quaternions of both the RSO and OS as well as their relative positions. The
information of the quaternions at each time step are then used to compare a set of RSO
control laws to what is observed in order to determine the correct attitude mode.

1
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2.0 INTRODUCTION

Space situational awareness (SSA) is described as having the knowledge and information of 
resident space objects (RSOs). This information could range from knowledge of attitude 
modes, maneuvers, and orbits to reasonable predictions of actions which can be taken by the 
RSO. All of this information requires having knowledge of the attitude of the RSO. Resolved 
images of the target can be obtained with a sensor attached to an observing satellite (OS), 
so long as the OS stays close to the target RSO. The resolved images are coupled with object 
detection algorithms to be able to pick out prominent features on the object, and the features 
are tracked to give measurements as locations of the features on the RSO as they appear in 
the image. This information alone is not enough to be able to determine the attitude mode 
of the RSO, so the attitude determination Multiple Model Adaptive Estimator (MMAE) 
algorithm is implemented with the tracked feature points as measurements.

The location of measurements in a set of images can be converted to useful information if 
the position of the RSO and the OS are known. Since the OS needs to be close to the RSO in 
order to take resolved images, formation flying dynamics can be used to describe the 
relationship between the two spacecraft. The formation flying dynamics will be implemented 
in Extended Kalman Filters (EKFs) such that the attitude and position of the RSO are 
estimated. Once this information is obtained, control laws can be used to determine how the 
RSO would act given different attitude mode settings. The MMAE will compare several 
different control laws with the observed movements of the RSO, and the probability of each 
attitude mode being the one used by the RSO will be obtained. [1] When the probability of one 
mode is large enough, it can be reasonably determined what attitude mode the RSO is using, 
thus determining the pointing mode and increasing SSA.

2
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3.0 PROBLEM SETUP

3.1 Defining the Problem

The RSO and OS are in a formation flying scenario, which is modeled in the Hill Frame.
The Hill Frame moves with the RSO, with the ôr direction pointing radially outward from
the Earth through the satellite. The ôh direction points in line with the angular momentum
vector of the RSO orbit, and the ôθ direction finishes the triad. The Hill Frame is demon-
strated in Figure 1, where the RSO is modeled as the chief and the OS is modeled as the
deputy in this scenario.

Figure 1: The relationship of RSO and OS in a formation flying scenario

The unknown position vector from the RSO to the OS is ρc =
[
x y z

]T
, expressed in

the Hill Frame. The prominent features of the RSO are known locations with respect to the
RSO body frame, shown in Figure 2 as Vi, and the vector from the OS to the prominent
features is Vi − ρc. This vector, when used in the correct form, can be used to show where
the prominent features appear in the OS images, but the locations of the prominent features
need to be expressed in its body frame in order to be useful, which is shown as

bi =D ACVi + ρd (1)

i = 1, 2, ..., N

Where N is the number of feature points on the RSO, ρd is the position vector from the

3
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OS to the RSO, and DAC is the relative attitude matrix between the RSO and the OS. A
controller will be used to point the sensor of the OS in the direction of the RSO, and this
controller will be given an initial condition for the attitude and then will have constrained
movements to keep the sensor pointed at the RSO without performing extensive maneuvers.
The initial condition is a reference attitude for the OS to convert from the Hill Frame to its
Body Frame given by

DAH =

 yż−zẏ
‖ρc×ρ̇c‖

zẋ−xż
‖ρc×ρ̇c‖

xẏ−yẋ
‖ρc×ρ̇c‖

a32a13 − a33a12 a33a11 − a31a13 a31a12 − a32a11
−x
‖ρc‖

−y
‖ρc‖

−z
‖ρc‖

 (2)

where the aij terms refer to the terms within its own matrix. This reference attitude
matrix is chosen because it points the sensor, which is along the ẑd direction of the OS,
directly at the RSO, and it also starts the controller with the x̂d vector along the direction
of the relative angular momentum. Once the initial reference attitude is determined, the
subsequent reference attitudes are found by merging the previous attitude with the new
estimates. Figure 2 gives a rough idea of the orientation of each satellite within the Hill
Frame.

Figure 2: The vectors of association between RSO and OS

The attitude matrix in Equation (2) is required to have information about the relative
position of the two satellites to complete the reference attitude. The orbit of the RSO is found
via orbit determination algorithms, which is out of scope of this project. The position of the

4
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OS with respect to the RSO is estimated in the following chapters, and can be implemented
into the reference attitude from there.

3.2 Creating Measurements

In the field, the sensor on the OS will take images and track the feature points of the
RSO, and the measurements will be the locations of the feature points as they appear in the
images. For the purposes of creating an attitude determination and pointing mode estimator,
measurements must be simulated. A brief overview of how that is done is shown here.

An orbit must be picked for the RSO to base the relative dynamics off of. A geosyn-
chronous orbit is chosen, with the only requirement of any orbital element to meet this orbit
being the semimajor axis. Each of the other orbital elements, being the eccentricity, initial
true anomaly, inclination angle, right ascension angle, and argument of periapsis are each
chosen arbitrarily. The equation used to find the semimajor axis, a, to meet the demands of
a geosynchronous orbit is

P 2 =
4π2a3

G(M +m)
(3)

where P is the orbital period of one day, G is the gravitational constant, M is the mass of
the Earth and m is the mass of the RSO, which can be ignored. From the orbital elements,
the initial position and velocity of the RSO can be derived, and the orbital equation is used
to propagate the orbit

r̈ = − µ
3
r (4)

r

where r is the vector of the position of the satellite, µ = GM , and r = ‖r‖.
The project is set up such that the OS is ’close’ to the RSO, so other than that requirement

its orbit is also somewhat arbitrary. The orbit for the OS is picked such that the positional
elements, being the eccentricity, semimajor axis, and initial true anomaly, are the same as
the RSO, and the orientational elements, being the inclination angle, right ascension angle,
and argument of periapsis, are changed slightly so that the OS stays within roughly 1km of
the RSO. The picked orbital elements are then used to solve for the initial conditions of the
orbit, and the relative orbital equations are used to propagate the relative position of the
OS and RSO in the Hill Frame. [2]

5
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ẍ− xθ̇2
(

1 + 2
rc
p

)
− 2θ̇

(
ẏ − y ṙc

rc

)
= 0 (5a)

ÿ + 2θ̇

(
ẋ− xṙc

rc

)
− yθ̇2

(
1− rc

p

)
= 0 (5b)

z̈ + zθ̇2
rc
p

= 0 (5c)

θ̈ = −2
ṙc
rc
θ̇ (5d)

r̈c = rcθ̇
2

(
1− rc

p

)
(5e)

Where p is the semilatus rectum of the RSO orbit, rc is the radius of the RSO orbit wrt the
Earth, and θ is the true anomaly of the RSO.

In building the scenario for the mode estimation algorithm, Equation 5 determines the
orbital positions of the two spacecraft. The OS attitude controller uses a reference attitude
which is determined by some of the states from Equation 5 and some of the estimates in
the filter, which is discussed later. The final piece of the scenario before the filter can be
constructed is the RSO attitude. The RSO acts independently of the OS in its attitude
dynamics, but the scenario being built will test the estimator for each of the possible modes.
The modes being considered are Sun Pointing, Earth Pointing, Inertial Pointing, and Un-
controlled Tumble. The simulation is allowed to run for three orbital periods, and Table 1
shows the sequence of modes controlling the RSO.

Table 1: RSO Controller Mode Schedule

Time [s] Mode

1−64799 1
64800−129599 2
129600−194399 0
194400−259200 3

Now, the orientation and relative position of each satellite has been built for the use
scenario. Using Equation (1), the vector from the OS to each of the feature points on the
RSO is known. The colinearity equations are used to then obtain the location of each feature
point as they would appear in the images from the OS according to the reference frames
shown in Figure 2.

α = −f b2,i
b3,i

β = −f b1,i
b3,i

(6)

i = 1, 2, ..., N
where f is the focal length of the OS sensor. α and β are used as the measurements when
creating the attitude and pointing mode estimator.

6
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r̂ θ̂

4.0 EXTENDED KALMAN FILTER

With the measurements coming in from the OS, an Extended Kalman Filter (EKF) is used
to estimate both the relative position of the two satellites as well as each satellite’s attitude
relative to the Hill Frame.[3] A derivation of the equations of the EKF can be found in [4].

The EKF states that the OS and RSO will each have an angular rate measurement from a
rate integrating gyro, and each gyro will have a bias. This will be the case for the OS, but little
is known about the RSO and there will not be angular rate measurements supplied from it.
Instead, the filter will assume that the RSO is set to a specific mode, and it will model the RSO
controller and propagation from the estimate rather than with gyro measurement information.

4.1 Kalman Gain

The EKF is initialized with initial relative quaternion estimates between the RSO and Hill

Frame, q̂c/H , and the OS and Hill Frame, q̂d/H , the drift for both OS and RSO, β̂, relative 
position and its rate of change ρ̂  and ρ̇̂, radius of RSO orbit and its rate of change, r̂c and

˙c, the true anomaly and its rate of change, θ̂  and ˙, and the state covariance, P .

q̂c/H(t0) = ˆqc/H q̂d/H(t0) = ˆqd/H β̂c(t0) = β̂c0 β̂d(t0) = β̂d0 ρ̂(t0) = ρ̂0 ˆ̇ρ(t0) = ˆ̇ρ0

r̂c(t0) = r̂c0 ˆ̇rc(t0) = ˆ̇rc0 θ̂(t0) = θ̂0
ˆ̇θ(t0) = ˆ̇θ0 P (t0) = P0

The Kalman Gain is calculated with the equation

Kk = P−k H
T
k (q̂−k )

[
HT
k (q̂−k )P−k H

T
k (q̂−k ) +Rk

]−1
(7)

with the parameters in the Kalman Gain equation defined as the following series of equa-
tions. [3] [4]

Hk(x̂
−
k ) =


[
AdH(q̂−d/H)r̂1

−×
]

∂b̂−1
∂δαc/H

03×6
∂b̂−1
∂ρ̂−

03×7
...

...
...

...
...[

AdH(q̂−d/H)r̂N
−×
]

∂b̂−N
∂δαc/H

03×6
∂b̂−N
∂ρ̂−

03×7

 (8a)

A(q) = ΞT (q)Ψ(q) =

[
q4I3×3 + [%×]
−%T

] [
q4I3×3 − [%×]
−%T

]
(8b)
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ri =
Vi − ρ̂
‖Vi − ρ̂‖

(8c)

∂b̂−i
∂δαc/H

= AdH(q̂−d/H)
∂r̂−i
∂ρ̂−

[
AcH(q̂−c/H)

]T
[Vi×] (8d)

∂b̂−i
∂ρ̂−

= A(q̂−)
∂r̂−i
∂ρ̂−

(8e)

∂r̂−i
∂ρ̂−

=
1

ŝ−i

− [(Yi − ŷ−)2 + (Zi − ẑ−)2] (Xi − x̂−)(Yi − ŷ−) (Xi − x̂−)(Zi − ẑ−)
(Xi − x̂−)(Yi − ŷ−) − [(Xi − x̂−)2 + (Zi − ẑ−)2] (Yi − ŷ−)(Zi − ẑ−)
(Xi − x̂−)(Zi − ẑ−) (Yi − ŷ−)(Zi − ẑ−) − [(Xi − x̂−)2 + (Yi − ŷ−)2]


(8f)

ŝ−i =
[
(Xi − x̂−)2 + (Yi − ŷ−)2 + (Zi − ẑ−)2

]3/2
(8g)

Rk =

R1 0 0

0
. . . 0

0 0 RN

 (9a)

Ri = Ri +
1

2
trace(Ri)bib

T
i (9b)

Ri = Eviv
T
i = JiR

FOCAL
i JTi (9c)

Ji =
1√

1 + α2
i + β2

i

−1 0
0 −1
0 0

− 1

1 + α2
i + β2

i

bi
[
αi βi

]
(9d)

bi =
1√

f 2 + α2
i + β2

i

−αi−βi
f

 (9e)

RFOCAL
i =

σ2
i

1 + d(α2
i + β2

i )

[
(1 + dα2

i )
2 (dαiβi)

2

(dαiβi)
2 (1 + dβ2

i )
2

]
(9f)

where d is a constant close to 1 and σ is the variance of measurement errors.
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4.2 Update

With the Kalman Gain calculated, the EKF can move forward to the Update step. In this
step, the measurement covariance as well as each of the propagated parameters are updated.
These parameters include a small angle error correction of the relative quaternion estimates
for both the RSO and OS, δαc/H and δαd/H , corrections for the drift of both the OS and RSO,
∆β, corrections for the relative position and position rate of change, ∆ρ and ∆ρ̇, corrections
for the radius of the RSO orbit and its rate of change, ∆rc and ∆ṙc, and corrections for
the true anomaly and true anomaly rate of the RSO orbit, ∆θ and ∆θ̇. These correction
terms are found using the Kalman gain and the residual between the measurement and the
estimate vector.

∆x̂+k = Kkν (10)

where

∆x̂+k =
[
δαTd/H δαTc/H ∆βTc ∆βTd ∆ρT ∆ρ̇T ∆rc ∆ṙc ∆θc ∆θ̇c

]
and

ν = ỹk − hk(q̂−d/c) (11)

with
ỹk =

[
b̃T1 b̃T2 · · · b̃TN

]
and

hk(q̂
−
d/c) =


A(q̂−d/c)r1
A(q̂−d/c)r2

...
A(q̂−d/c)rN

 (12)

where
qd/c = qd/H ⊗ q−1c/H (13)

The corrections are implemented into the estimates through the following relations, which
completes the Update section of the EKF.

q̂+c/Hk
= q̂−c/Hk

+
1

2
Ξ(q̂−c/Hk

)δαTc/H (14a)

q̂+d/Hk
= q̂−d/Hk

+
1

2
Ξ(q̂−d/Hk

)δαTd/H (14b)

β̂+
ck

= β̂−ck + ∆β̂+
ck

(14c)

β̂+
dk

= β̂−dk + ∆β̂+
dk

(14d)
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ρ̂+ = ρ̂− + ∆ρ (14e)

˙̂ρ+ = ˙̂ρ− + ∆ρ̇ (14f)

r̂+c = r̂−c + ∆rc (14g)

˙̂r+c = ˙̂r−c + ∆ṙc (14h)

θ̂+ = θ̂− + ∆θ (14i)

˙̂
θ+ =

˙̂
θ− + ∆θ̇ (14j)

4.3 Propagation

The EKF propagates the estimates of the angular rates as well as the relative quaternions
and covariance matrix using the discretized models of the system, which are derived in [4].

ω̂+
ck
− β̂+

ck
(15a)

ω̂+
dk
− β̂+

dk
(15b)

This completes the propagation of the angular rates based on the drift of the rate integrating
gyros. The angular rates are then used to propagate the relative quaternions as follows.

q̂d/Hk+1
= Ω̄(ω̂dd/Ik)Γ̄(ω̂HH/Ik)q̂d/Hk

(16a)

where

Ω̄(ωdd/Ik) =

cos(12 ∥∥∥ωdd/Ik∥∥∥∆t)I3×3 − [Ψk×] Ψk

−ΨT
k cos(1

2

∥∥∥ωdd/Ik∥∥∥∆t)

 (16b)

with

Ψk =
sin(1

2

∥∥∥ωdd/Ik∥∥∥∆t)ωdd/Ik∥∥∥ωdd/Ik∥∥∥
10
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and

Γ̄(ωHH/Ik) =

cos(12 ∥∥∥ωHH/Ik∥∥∥∆t)I3×3 − [ζk×] −ζk
ζTk cos(1

2

∥∥∥ωHH/Ik∥∥∥∆t)

 (16c)

with

ζk =
sin(1

2

∥∥∥ωHH/Ik∥∥∥∆t)ωHH/Ik∥∥∥ωHH/Ik∥∥∥
Using the same equation structures seen in Equation 15, q̂c/Hk+1

can be calculated by

q̂c/Hk+1
= Ω̄(ω̂dc/Ik)Γ̄(ω̂HH/Ik)q̂c/Hk

(17)

Where the RSO qauternion and angular rate is substituted in for the OS quaternion and
angular rate from Equation 15. The State Covariance is also propagated with the following
equations

P−k+1 = ΦkP
+
k ΦT

k + Υk (18a)

where Φk and Υk are made by taking portions of the exponential matrix of the following A
matrix.

A =

[
−F GQGT

0 F T

]
∆t (18b)

with F , G, and Q defined as

F =


−
[
ω̂dd/I×

]
03×3 −I3×3 03×3 03×9 − AdH(q̂d/H)n

03×3 −
[
ω̂cc/I×

]
03×3 −I3×3 03×9 − AcH(q̂c/H)n

03×3 03×3 03×3 03×3 03×10
03×3 03×3 03×3 03×3 03×10

010×3 010×3 010×3 010×3
∂f(X)
∂X
|X̂

 (18c)

where ∂f(X)
∂X
|X̂ is the partial derivative of the nonlinear state space models of Equations (5).

G =



−I3×3 03×3 03×3 03×3 03×3
03×3 −I3×3 03×3 03×3 03×3
03×3 03×3 I3×3 03×3 03×3
03×3 03×3 03×3 I3×3 03×3
03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 I3×3
04×3 04×3 04×3 04×3 04×3


(18d)
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Q =


σ2
dνI3×3 03×3 03×3 03×3 03×3
03×3 σ2

cνI3×3 03×3 03×3 03×3
03×3 03×3 σ2

duI3×3 03×3 03×3
03×3 03×3 03×3 σ2

cuI3×3 03×3
03×3 03×3 03×3 03×3 σ2

ω

 (18e)

where the σ values are variances of the process noise. Taking the matrix exponential of A,
the Φ and Υ can be found.

B = eA =

[
B11 B12

0 B22

]
=

[
B11 Φ−1Υ
0 ΦT

]
(19)

Φ = BT
22

Υ = ΦB12

With these propagation steps, the EKF will accurately predict the true states to a degree
specified by the state covariance matrix. This will include an estimate of the relative quater-
nions, the relative position in the Hill Frame, the relative rate of change of the position, the
drift of the gyros of each satellite, the radius and rate of change of the radius of the RSO
orbit, and the true anomaly and rate of change of the true anomaly of the RSO orbit. Of
course, the EKF must be adjusted to fit the scenario of this specific project. Firstly, the RSO
will not be giving gyro measurements; rather a controller in the filter will be determining
the assumed maneuvers, which will lead into the MMAE discussed in the next chapter. The
EKF also does not estimate the quaternion of the RSO alone, rather it estimates the relative
quaternion between the RSO and the OS, and will produce the probability vector of the
different pointing modes. The overview of the filter presented in this report is not meant to be
exhaustive; more thorough derivations and discussions of the filter can be found in [3] and [4].
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5.0 MULTIPLE MODEL ADAPTIVE ESTIMATION

5.1 MMAE Structure

The Multiple Model Adaptive Estimator (MMAE) holds a bank of EKFs, each of which uses
a different control law. The different control laws are implemented to follow a respective
pointing mode, so in that sense each EKF is assigned to a specific pointing mode. The
output from each EKF goes into the MMAE, and the MMAE calculates the probability that
each EKF holds the correct model. An in depth discussion of MMAE algorithms can be
found in [1], and a summary is shown here.

Each EKF outputs a new estimate, covariance, residual, and residual covariance matrix
based on the assumed mode setting and propagation and update relations. The estimator
uses an Interacting Multiple Model (IMM) algorithm to combine the estimates and covari-
ances back into unison to be put back into the EKFs for the following iteration. In order to
do this, the probability that each mode is the true mode must be calculated. Coincidentally,
this is also the intended output of the estimator in this case. The mode probability is solved
for using a likelihood function and a mode transitioning matrix. The likelihood function is a
function of the residual and its covariance at the jth EKF, where j runs through the number
of EKFs, M . The residual covariance, E, was calculated in the update stage of the EKF as
part of the Kalman Gain.

E−(j) = H(j)P−(j)H(j)T +R(j) (20)

L = p
(
ỹ−(j)

)
=

1

[det(2πE−(j))]
1
2

e−
1
2
ν−(j)T (E−(j))−1ν−(j)

(21)

The mode transitioning matrix is a probability density function detailing the time-varying
mode sequence as a Markov process for M modes. The diagonal elements are the probability
that the mode does not change on an iteration, which is close to 1 because there are thousands
of iterations and the mode only changes a few to several times. The off diagonal elements
are the probability that the mode changes to the corresponding mode of that element, which
is the same probability between all off-diagonal elements.

ΠM =


π1 π2 · · · π2
π2 π1 · · · π2
...

...
. . .

...
π2 π2 · · · π1

→ 1 ≈ π1 < 1, π2 =
1− π1
M − 1

(22)

With the likelihood function and the mode transitioning matrix, the mode probability, µ,
is calculated and normalized below. Notice that the mode probability is directly related
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to the mode probability of the previous iteration. For the first iteration, the initial mode
probability used makes each mode equally likely, so µ

(j)
0 = 1

M

µ
(j)
k = µ

(j)
k−1p(ỹ

−(j)) (23)

µ
(j)
k =

µ
(j)
k∑M

j=1 µ
(j)
k

(24)

µk =
[
µ
(1)
k µ

(2)
k · · · µ

(M)
k

]
(25)

Equation (25) is the mode probability vector of the different EKFs, corresponding directly
to the probability of the correct RSO controller, however more steps are needed to allow the
estimator to continue in the following iterations. There are still M estimates and covariances,
and these need to be combined in a probabilistic manner in order to be useful, which will be
done in a reinitialization step.

5.2 MMAE - Reinitialization

The reinitialization step of the estimator takes the estimates and covariances from each of the
EKFs and intelligently recombines them for the next iteration through the use of a mixing
probability. [1] The mixing probability is a function of the mode transitioning matrix and 
the current mode probability, essentially showing the probability of each mode in the
upcoming iteration.

µ
(i|j)
k =

µ
(i)
k Πij∑M

i=1 µ
(i)
k Πij

(26)

Where the probability of each EKF, columns of i, being the EKF used in the next 
iteration given the EKF, rows of j, used to find the estimate being evaluated. In a typical IMM 
algorithm, the estimates are combined with a simple relationship:

x̂
+0(j)
k =

M∑
µ
(i|j)
k x̂

+(i)
k (27)

i=1

Due to the nature of quaternions, they cannot be directly averaged using a weighting
matrix and must differ from the standard MMAE algorithms for this reason. A method that
can be used to find the average quaternion is found in. [5] This is only the case for the 
quaternion part of the estimate, and the angular rate still uses the relationship shown above.

W =
M∑
i=1

µ
(i|j)
k x̂

+(i)
k (28)

x̂
+0(1:4)
k = MaxEigV ec(W ) (29)

In the quaternion averaging algorithm, the averaged quaternion will be the eigenvector
corresponding to the maximum eigenvalue given by matrix W . The complete vector of the
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combined estimate comes simply from merging the combined quaternion and angular rate
estimates.

x̂+0
k =

[
x̂
+0(1:4)
k∑M

i=1 µ
(i|5:7)
k x̂

+(i)
k,5:7

]
(30)

The covariance also needs to be combined in a probabilistic manner similar to the esti-
mate. In a typical IMM structure, this would look like the following

P
+0(j)
k =

M∑
i=1

µ
(i)
k

[
P

+(i)
k + (x̂

+(i)
k − x̂+0(j)

k )(x̂
+(i)
k − x̂+0(j)

k )T
]

(31)

Once again, the multiplicative nature of quaternions becomes problematic in an algorithm
that is designed to combine terms additively, and the covariance is of the error state in the
estimator. The quaternion part of the estimate in the covariance mixing is replaced with
error angles, which are solved for by approximating them to be roughly four times the error
modified Rodrigues parameters, where the quaternion error state is found multiplicatively
from the measurement of a given EKF and the mixed quaternion estimate.

δq = x̂
+0(1:4)
k ⊗ x̂(i)−11:4 (32)

δθ ≈ 4δp =
4δq1:3

1 + δq4
(33)

The angular rate will be able to use the straight subtraction that is used in a typical IMM
algorithm. The estimate error state, including both the error angles and the error angular
rate, can then be combined into one vector to be used in Equation (31).

δx =

[
δθ

x̂
+0(5:7)
k − x̂(i)5:7

]
(34)

P
+0(j)
k =

M∑
i=1

µ
(i)
k

[
P

+(i)
k + δxδxT

]
(35)

The combined estimate and covariance will be the input to each EKF for the next time
step, and in this way the loop is completed and mode probabilities will continue to be
calculated for each incoming measurement.
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6.0 RESULTS

6.1 Filter

The simulation of the relative dynamics between the RSO was run with a time span of
three days, equivalent to three full orbits of both satellites. Before the MMAE was added
to the estimator, the EKF was developed and tested. An example of a result of the states
of the relative quaternions, relative distances, and RSO radius and true anomaly are shown
in Figures 3 - 7 where state errors are plotted with their 6σ bounds.

Figure 3: State Error of Relative Quaternion Between RSO and Hill Frame

As is shown, the states do not converge within the covariance bounds immediately upon 
starting the filter, but they do converge given time. Once the states converge, they do 
not break outside of the bounds away from the truth. This could cause problems for the 
MMAE, because it will be relying on a filter that is able to completely converge within
the covariance bounds quickly. The simultations shown in this report are done using the
filter with the shown results. One way to improve performance of the MMAE could be to
wait until the filter is converged, and then input the MMAE to begin tracking the mode 
probability. Another possible solution is to weight the likelihood of some filters over others,
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Figure 4: State Error of Relative Quaternion Between OS and Hill Frame

Figure 5: State Error of the Drift of the OS Gyro

because the filter itself acts better with some RSO controllers over others. Weighting the
likelihood function in the MMAE could help to negate these patterns. Once the MMMAE
is added in, which will be shown in the following results, the filter has a much more difficult
time converging. This could lead to errors in the mode detection results.
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Figure 6: State Error of the Relative Positions

Figure 7: State Error of the RSO Radius and True Anomaly

6.2 Mode Estimation

First, results are shown with using the standard filter and MMAE as descibed throughout
the report. Figure 8 indicates the mode probabilities throughout the simulation, using the 
mode scheudle shown in Table 1.
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Figure 8: Mode Probabilities With Standard EKF and MMAE. Mode 1 is Sun Pointing, Mode 2
is Earth Pointing, Mode 3 is Inertial Pointing, and Mode 0 is Uncontrolled Tumble

Clearly, a filter which takes a long time to converge has an effect on the mode estimator.
While the filter is converging, the MMAE has a difficult time estimating the correct EKF,
because none of them are showing the true value. When this occurs, an uncontrolled tumble
appears to be more likely than the other controllers. Towards the end of the simulation, the
filter is much closer to converging behind the scenes, and the estimator can more accurately
estimate the true mode of the RSO. This is why the estimator correctly changes the predicted
mode from mode 0 to mode 3. Figure 9 shows one of the states in this example to demonstrate
the level of convergence of the filter while the MMAE is active.

With the MMAE active, the relative position state does not fully converge to within the
covariance bounds, however it greatly improves throughout the simulation. This trend is
followed by each of the remaining states in the filter as well. To reiterate, in the beginning
when the states are far from being converged, the MMAE is not able to correctly estimate
the mode of the RSO controller. Once the states get closer to their true values, the MMAE
performs as intended.

One way to adjust the MMAE to act favorably is by weighting the likelihood function to
account for the modes that are viewed favorably by the estimator while the filter has yet to
converge. For example, before the filter converges the MMAE is more likely to predict an
Uncontrolled tumble as being the correct mode, regardless of which mode the RSO is truly
set to. By reducing the weight of the uncontrolled tumble in the likelihood function, the other
modes are allowed to be seen more favorably upon the estimator. Figure 10 demonstrates
the effect that weighting the likelihood function can have on the mode estimator.
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Figure 9: Relative Position State Error and Covariance With MMAE Active

As Figure 10 shows, the MMAE still does not perform perfectly, but it is much improved.
The beginning of the simulation accurately predicts Sun Pointing as the correct mode, and
the end of the simulation accurately predicts Inertial Pointing. The MMAE still has trouble
discerning between Earth Pointing and an uncontrolled tumble, but this is still with the
filter acting in the same way as Figure 9.
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Figure 10: Mode Probabilities With a Weighted Likelihood Function in the MMAE. Mode 1 is
Sun Pointing, Mode 2 is Earth Pointing, Mode 3 is Inertial Pointing, and Mode 0 is 
Uncontrolled Tumble
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7.0 FUTURE WORK

The mode estimator continues to have room for improvement. The MMAE algorithm seems
to be working for a converged filter, however the performance of the filter is imperative for the
success of the MMAE. Since it takes so long for the filter to converge, the MMAE struggles
to work as intended. Moving forward, more time should be invested in the convergence of the
filter, particularly upon initiation of the algorithm. If the filter can converge immediately,
the mode estimation will be accurate.
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