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The observation of an unequivocal quantum speedup remains an elusive objective for quantum computing.
A more modest goal is to demonstrate a scaling advantage over a class of classical algorithms for a
computational problem running on quantumhardware. TheD-Wave quantum annealing processors have been
at the forefront of experimental attempts to address this goal, given their relatively large numbers of qubits and
programmability. A complete determination of the optimal time-to-solution using these processors has not
been possible to date, preventing definitive conclusions about the presence of a scaling advantage. The main
technical obstacle has been the inability to verify an optimal annealing time within the available range. Here,
we overcome this obstacle using a class of problem instances constructed by systematically combiningmany-
spin frustrated loops with few-qubit gadgets exhibiting a tunneling event—a combination that we find to
promote the presence of tunneling energy barriers in the relevant semiclassical energy landscape of the full
problem—andwe observe an optimal annealing time using aD-Wave 2000Qprocessor over a range spanning
up to more than 2000 qubits. We identify the gadgets as being responsible for the optimal annealing time,
whose existence allows us to perform an optimal time-to-solution benchmarking analysis. We perform a
comparison to several classical algorithms, including simulated annealing, spin-vector Monte Carlo, and
discrete-time simulated quantum annealing (SQA), and establish the first example of a scaling advantage for
an experimental quantum annealer over classical simulated annealing. Namely, we find that the D-Wave
device exhibits certifiably better scaling than simulated annealing, with 95% confidence, over the range of
problem sizes that we can test. However, we do not find evidence for a quantum speedup: SQA exhibits the
best scaling for annealing algorithmsby a significantmargin.This is a findingof independent interest, sincewe
associate SQA’s advantage with its ability to transverse energy barriers in the semiclassical energy landscape
by mimicking tunneling. Our construction of instance classes with verifiably optimal annealing times opens
up the possibility of generatingmany new such classes based on a similar principle of promoting the presence
of energy barriers that can be overcome more efficiently using quantum rather than thermal fluctuations,
paving the way for further definitive assessments of scaling advantages using current and future quantum
annealing devices.
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I. INTRODUCTION

The elusive and tantalizing goal of experimentally
demonstrating a quantum speedup is being actively pursued
using a variety of quantum computing platforms. The holy
grail is an exponential speedup, such as expected with

Shor’s algorithm for factoring integers [1], or with the
simulation of quantum systems [2–4]. This goal is still
substantially out of reach given the relatively small scale of
current universal quantum computers and quantum simu-
lators (∼20–70 qubits [5–10]), which prevents the imple-
mentation of fault tolerant quantum error correction on a
scale that would enable quantum circuits to be executed
reliably despite decoherence and noise. However, there is
reason for optimism [11] that current “noisy intermediate
scale quantum” (NISQ) era [12] quantum computers will be
capable of demonstrating the important milestone of “quan-
tum supremacy” [13], a less ambitious quantum speedup
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goal than that associated with application-level computa-
tional tasks such as factoring or quantum simulation.
The largest quantum information processing devices

currently available are quantum annealers, featuring several
thousands of noisy qubits and programmable qubit-qubit
interactions. Unlike universal quantum computers that
operate using quantum gates and the principles of the
circuit model [14], these devices specialize primarily in
solving combinatorial optimization problems, and are
designed to represent physical implementations of quantum
annealing (QA) [15] and the quantum adiabatic algorithm
[16]. While the algorithmic focus in the domain of
universal quantum computers has been on demonstrating
quantum simulation and quantum supremacy, in QA the
primary focus has been on benchmarking the algorithmic
performance of quantum annealers against classical algo-
rithms [17–27], an effort that has not yet been undertaken
with gate model quantum computers. This difference is
explained primarily by the relatively large number of qubits
available in QA, which enables scaling tests over several
orders of magnitude of problem sizes. Despite the large
body of work on benchmarking quantum annealers, con-
clusive evidence about how their performance scales with
problem size has until now been unattainable. The primary
reason, as we discuss in detail, is that it has not been
possible to identify an optimal annealing time for any class
of problem instances, an obstacle that was first pointed out
in Ref. [18].
Here, we overcome this obstacle by introducing a new

class of problem instances that exhibit an optimal annealing
time, and present for the first time a complete algorithmic
scaling analysis of a hardware quantum annealer (the
D-Wave 2000Q device [34]), up to the largest available
problem size of more than 2000 spins or qubits [35].
This advance allows us furthermore to demonstrate the

first certifiable observation of an algorithmic scaling
advantage obtained using quantum annealing hardware
over an important general purpose classical algorithm,
namely, over simulated annealing with single-spin updates
(SA) [36]. Without the identification of an optimal
annealing time, one can certify a scaling disadvantage
for the hardware quantum annealer, but not an advantage
[20]; this holds for all earlier scaling analyses presented for
quantum annealing hardware [17–25].
The advantage of QA over SAwe demonstrate holds for

a class of problem instances (called “logical planted” and
defined below) that we constructed by systematically
combining a distribution of frustrated cycles of coupled
spins over the entire hardware graph and small “gadgets”
made of a relatively small number of qubits (here we used
eight) that have a small quantum gap (on the order of the
temperature) and that exhibit a tunneling event that can be
established via numerical solution of the Schrödinger
equation. Since both features are flexible, our construction
provides a recipe for generalizing our results to a broader

class of problem instances. We show that the optimal
annealing time arises due to the gadgets, in the sense that
instances based only on frustrated loops do not exhibit an
optimal annealing time.
To establish the presence of many-qubit tunneling, we

resort to large-scale simulations using the discrete-time
simulated quantum annealing (SQA) algorithm [37], which
we contrast with the spin-vector Monte Carlo (SVMC)
algorithm [38]. Both SQA and SVMC are transverse-field
annealing algorithms, and thus more closely model QA
than a temperature-annealing algorithm such as SA does.
But while the SVMC algorithm is purely classical, in the
sense that it provides a time-dependent description in terms
of unentangled planar rotors, SQA is a classical algorithm
based on the path-integral Monte Carlo formalism, which in
its continuous-time limit and for sufficiently many spin
updates generates samples from the quantumGibbs state. In
particular, at sufficiently low temperatures SQA can mimic
tunneling [39,40] and describe entangled ground states such
as those followed by QA. It is the opposite trends exhibited
by SQA and SVMC as a function of the simulation temper-
ature that allows us to argue for the occurrence of many-
qubit tunneling. We emphasize that the appropriate energy
landscape for tunneling is not the classical energy landscape
associated with simulated annealing [26] but rather the
semiclassical landscape associated with transverse-field
annealing [41,42].
Our benchmarking analysis reveals that SQA has the best

scaling of all the annealing algorithms we tested for the
logical-planted instances, in particular outperforming the
quantum annealing hardware. It also outperforms a number
of algorithms (described below) designed to specifically
exploit features of the “Chimera” hardware graph of the
D-Wave devices [43,44]. The fact that SQAperforms sowell
for the logical-planted instance class is in itself a significant
and novel finding about the class of logical-planted problem
instances, since one might reasonably expect that as hard-
ware quantum annealers continue to improve, SQA will
become a lower bound on the performance of such hardware
[45]. The reason is that SQA serves as a reasonable classical
simulation of a thermally dominated quantum annealer but
of course does not actually physically manifest any of the
quantum features (unitary dynamics, coherent tunneling,
entanglement) that are expected to come into play in a
physical realization of sufficiently coherent QA. We show
for the logical-planted problem class that, by mimicking
tunneling, SQA traverses energy barriers more efficiently as
the temperature of the simulation is lowered. We use this to
argue that a key reason for the quantumannealer’s slowdown
relative to SQA is its suboptimally high temperature [46],
which causes it to behave more like the SVMC algorithm.
Thus, the strong performance of SQA on the logical-planted
instance class suggests that this class is a good target or basis
for the exploration of an eventual quantum speedup using
QA hardware.
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We first review and discuss, in Sec. II, the time-to-
solution metric, and how to establish optimality. Section III
presents our results. First, Sec. III A establishes the
empirical evidence for optimal annealing times for our
class of problem instances. Then, Sec. III B presents the
empirical evidence we found for a QA scaling advantage
over SA, but a disadvantage relative to SQA and the SVMC
algorithm. In Sec. III C, we introduce and describe the
properties of the class of problem instances for which we
observe the optimal annealing time and the scaling advan-
tage over SA.We discuss the implications of our results and
provide an outlook in Sec. IV. Additional technical details
and methods are provided in the Appendixes. A–K.

II. OPTIMAL TIME TO SOLUTION

We consider the standard setting where the goal of the
optimizer is to find the optimal solution (i.e., the global
minimum of the cost function) and one is interested in
minimizing the time taken to find the solution at least once.
There is a trade-off between finding the solution with a high
probability in a single long run of the algorithm and
running the algorithm multiple times with a shorter run
time and (usually) a smaller single-run success probability.
This trade-off is reflected in the time-to-solution (TTS)
metric, which measures the time required to find the ground
state at least once with some desired probability pd (often
taken to be 0.99):

TTSðtfÞ¼ tfRðtfÞ
N

Nmax
; RðtfÞ¼

lnð1−pdÞ
ln½1−pSðtfÞ�

: ð1Þ

Here, pSðtfÞ is the success probability of a single-instance
run of the algorithm with a run time tf, and RðtfÞ is the
required number of runs; success means that the optimal
solution was found. The instance size is N, and Nmax is the
size of the largest instance that the device accommodates
(typically set by the total number of qubits); the factor
N=Nmax accounts for maximal parallel utilization of the
device. While R and Nmax=N should correspond to whole
numbers, we do not round them here since this can result in
sharp TTS changes that complicate the extraction of scaling
with N; see Appendix A for more details.
However, when considering the performance of an

algorithm evaluated over an ensemble of randomly chosen
instances from the same class, we are typically interested not
in the TTS of a single instance but in a given quantile q of the
TTSdistribution over such instances at a given problem size,
N ∈ ½Nmin; Nmax�. We denote the qth quantile of the TTS
evaluated at tfðNÞ by hTTSðtfÞiq, and suppress the N
dependence for simplicity. Since the goal of optimization
is to find the solution as rapidly as possible, there is an
optimal tf value for a given quantile q, t�q, where hTTSðtfÞiq
is minimized, and we denote hTTSi�q ≡ hTTSðt�qÞiq. While
the success probability of individual instances may exhibit

many minima (as in the case of coherent evolution when
oscillations in the success probability are observed as the
annealing time is varied), the quantile of theTTSdistribution
exhibits only oneminimumbecause the manyminima of the
individual instances are unlikely to coincide, and there is
no ambiguity in the determination of an optimal tf value.
Finally, it is important to note that since quantiles are solver
dependent, a comparison between different solvers at the
same quantile involves different sets of instances.
We can now state the precise nature of the critical obstacle

alluded to above: if t�q < tmin, where tmin is the smallest
possible annealing time on the given quantum annealer, then
it becomes impossible to determine hTTSi�q. As was shown
in Refs. [18,20], when operating with a suboptimal tf, one
can easily be led to false conclusions about the scaling with
N of hTTSðtfÞiq compared to the all-important scaling as
captured by hTTSi�q, and even be led to conclude that there is
a scaling advantage where there is none.
None of the experimental quantum annealing bench-

marking studies to date [17–26,47] have provided a
complete scaling assessment, precisely because it has not
been possible to verify that t�q > tmin (for any quantile). The
culprit was the absence of a suitable class of problem
instances for which an optimal annealing time could be
verified. Here we report on a class of instances that exhibits
an optimal annealing time greater than tmin ¼ 5 μs on the
D-Wave 2000Q (DW2KQ, fourth generation, for which the
largest energy scale is ∼50 GHz in ℏ ¼ 1 units; see
Appendix B) and the D-Wave 2X (DW2X, third generation,
for which the largest energy scale is ∼40 GHz). In the main
text, we focus on the DW2KQ, and we provide results from
the DW2X in Appendixes G and K. This allows us to obtain
the first complete optimal-TTS scaling results for an
experimental quantum annealer, defined as the TTS scaling
obtained from certifiably optimal annealing times.
The D-Wave processors we use in our study are designed

to implement quantum annealing using a transverse-field
Ising Hamiltonian:

HðsÞ ¼ AðsÞHX þ BðsÞHP; ð2Þ

where s ¼ t=tf ∈ ½0; 1�, HX ¼ −
P

i∈Vσ
x
i , and HP ¼P

i∈Vhiσ
z
i þ

P
ði;jÞ∈EJijσ

z
iσ

z
j is the Ising, or “problem”

Hamiltonian whose ground state we are after. The σxi
and σzi are the Pauli matrices acting on superconducting
flux qubits that occupy the vertices V of a Chimera
hardware graph G with edge set E [43,44] and the local
fields hi and couplings Jij are programmable analog
parameters. The system is initialized in or near the ground
state of the initial Hamiltonian Hð0Þ, and the annealing
schedules AðsÞ and BðsÞ, which set the energy scale, are
described in Appendix B, along with further technical and
operational details, including a schematic of the Chimera
graph. The DW2KQ processor comprises 16 × 16 unit
cells, so we can consider L × L subgraphs up to Lmax ¼ 16
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for our analysis, where each subgraph comprises L2 unit
cells, and each complete unit cell comprises 8 qubits (a
small number of unit cells are incomplete, as a total of 21
out 2048 qubits are inoperative).

III. RESULTS

We start by describing our key results: the evidence for
optimal annealing times, and the evidence for a scaling
advantage of a physical quantum annealer over SA, along
with its scaling disadvantage against the SQA and SVMC
algorithms (we review these algorithms and discuss how we
implemented and timed them in Appendix C). We then
describe in detail the construction of the class of problem
instances exhibiting these properties and the role of
tunneling in explaining them.

A. Evidence for optimal annealing times

We first present the evidence for optimal annealing
times in Fig. 1. Figure 1(a) shows the TTS for a single
representative L ¼ 16 instance from a class we call logical-
planted problems. The unambiguous minimum at tf ¼
50 μs is the optimal annealing time for this instance. The
presence of a minimum is a robust feature: Fig. 1(b) shows
that the optimal annealing time feature persists for the
median TTS (hTTSi�0.5), at all sizes L ∈ ½12; 16�. In all
previous benchmarking work, only the rise in hTTSi as a
function of tf was observed, i.e., t� was always below tmin,
thus precluding the identification of an optimal annealing
time. The increase in the optimal annealing time from
L ¼ 12 to L ¼ 16 seen in Fig. 1(b) can be attributed to the
general increase with problem size of the per-instance
optimal annealing time as shown in Fig. 1(c), which shows

the distribution of optimal annealing times over all the
logical-planted problem instances we tested.

B. Evidence for a scaling advantage for QA hardware
over simulated annealing, and a disadvantage against

SQA and SVMC

Having established accessible optimal annealing times
(≥5 μs) for the logical-planted instances, we are now ready
to present a complete optimal-TTS scaling analysis. Our
results for the dependence of hTTSi� on problem size are
shown in Fig. 2, where we compare the DW2KQ results to
three classical algorithms: SA with single-spin updates
[36], SQA based on the discrete-time path-integral quan-
tum Monte Carlo algorithm [37], and the SVMC algorithm
[38]. Figure 3 summarizes the performance of each
algorithm in terms of the coefficients of exponential and
polynomial fits, respectively, for several quantiles and two
simulation temperatures for SQA and SVMC algorithms
(a hybrid polynomial-exponential fit does not work as well;
see Appendix D).
The results presented in Fig. 3 demonstrate a (95% con-

fidence) scaling advantage for the DW2KQ over SA in the
case of the logical-planted instances, for the entire range of
quantiles [0.25, 0.9]. This represents the first observation of
a scaling advantage over SA on an experimental quantum
annealer.
However, the SQA algorithm outperforms the DW2KQ

in all quantiles and at both the colder inverse temperature of
β ¼ 2.5 and the warmer β ¼ 0.51 (which corresponds to
the operating temperature of the DW2KQ). The SVMC
algorithm outperforms the DW2KQ in all quantiles at the
warmer inverse temperature of β ¼ 0.51 and in all quantiles
at β ¼ 2.5 except q ¼ 0.9, where the error bars are too large
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FIG. 1. Optimal annealing time and optimal TTS. Result shown are for the “logical-planted” instance class. (a) TTS (blue solid line)
and pS (red dashed line) for a representative problem instance at size L ¼ 16. A clear minimum in the TTS is visible at t� ¼ 50 μs, thus
demonstrating the existence of an optimal annealing time for this particular instance (but not by itself for the problem class). Note that
the decreasing or increasing TTS is associated with pS growing sufficiently fast or too slowly, respectively, with increasing tf.
(b) Median TTS as a function of annealing time for L ≥ 12, from 1000 instances. Dotted curves represent best-fit quadratic curves to the
data (see Appendix G for the scaling of t� with L, and Appendix K for details on the fitting procedure). The position of the minimum of
these curves gives t�. The position of hTTSi� shifts to larger tf as the system size increases. An optimum could not be established for
L < 12 for this instance class; i.e., it appears that t� < 5 μs when L < 12. (c) The distribution of per-instance optimal annealing times t�i
for different system sizes, as inferred directly from the positions of the minima as shown in (a). It is evident that the number of instances
with higher optimal annealing times increases along with the system size, in agreement with (b).
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to make a statistically significant determination. Thus, the
scaling advantage over SAwe observe is definitively not an
unqualified quantum speedup.
We note that our results are robust to modifying the SA

annealing schedule from a quadratic to a linear function in β
(seeAppendixE), and under a change of themetric to the so-
called “quantile-of-ratios speedup” [18] (see Appendix F).
We also note that of all the solvers featured in Fig. 3,

the scaling of the SVMC algorithm at β ¼ 2.5 increases
fastest from the easiest to the hardest quantile. As we
discuss in more detail below, and is clear from Fig. 3, the
SVMC and SQA performance depends strongly on the
temperature at which the simulations are run. Specifically,
we find that the SVMC algorithm performs better at
higher quantiles at higher temperatures, whereas SQA
performs better at all quantiles at lower temperatures.
We attribute this to harder instances involving an energy

barrier that the SVMC algorithm must thermally hop over,
while SQA can mimic tunneling through. This also
suggests that the DW2KQ performance is severely hin-
dered by its suboptimally high temperature. To explain this,
we next motivate and discuss how we constructed our
problem instances.

C. Construction of problem instances with an
optimal annealing time

Having presented the evidence for optimality and the
scaling analysis, we next describe the instance class with
these properties. The two key properties we wish our
instances to possess are (1) a guarantee of knowing the
ground state energy (a useful feature for benchmarking
optimizers at ever-growing problem sizes) and (2) an
optimal annealing time on the D-Wave processors.
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FIG. 2. Scaling of the optimal TTS with problem size. Result shown are for the logical-planted instance class. The data points
represent the DW2KQ (blue circles) and three classical solvers: SA (red diamonds), SVMC (purple left triangles), and SQA (green right
triangles) algorithms. The dashed and dotted curves correspond, respectively, to exponential and polynomial best fits with parameters
shown in Fig. 3 (also given in table format in Table III in the Appendix). Panels (a)–(c) correspond to the 25th quantile, median, and 75th
quantile, respectively. SVMC and SQA were run with β ¼ 2.5 here. Additional simulation parameters for SA, SVMC, and SQA
algorithms are given in Appendix C. The data symbols obscure the error bars, representing the 95% confidence interval for each optimal
TTS data point [computed from the fit of lnhTTSi to a quadratic function, as explained in Appendix K].
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FIG. 3. Scaling coefficients for the logical-planted instances. The data shown are for the coefficient b in fits to (a) a expðbLÞ and
(b) aLb for the logical-planted instances using L ∈ ½12; 16� for different quantiles and different solvers. Results are shown for the
DW2KQ, SA (with a final inverse temperature of β ¼ 5), SVMC, and SQA for two different inverse temperatures. The value β ¼ 0.51
corresponds to the operating temperature of the DW2KQ of 15 mK.
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1. Planted solutions

In order to guarantee a known ground state energy, we
construct “planted-solution” instances. The method builds
the problem Hamiltonian as a sum of frustrated loop
Hamiltonians Hl, such that

HP ¼
X
l

Hl ð3Þ

itself is “frustration free”; i.e., the planted solution is the
simultaneous ground state of all Hl terms and hence is the
ground state of HP [20]. Without loss of generality, we can
always pick the planted solution to be the j0 � � � 0i (all-zero
state) configuration, where henceforth the states j0i and j1i
denote the eigenstates of the σz operator with þ1 and −1
eigenvalues, respectively. We consider planted solutions
defined on the logical graph formed by the complete unit
cells of the D-Wave hardware graph (i.e., without faulty
qubits or couplers; in the case of an ideal Chimera graph,
this would form a square lattice) [22]. Frustrated loops are
then built on this logical graph, where logical couplings
between adjacent unit cells are imposed only when all four
physical interunit cell couplings are available. The intraunit
cell couplers are then all set to be ferromagnetic, guaran-
teeing that the planted solution on the hardware graph is
the planted solution on the logical graph with all physical
spins in the unit cell set to their corresponding logical
spin value. We refer to these as logical-planted instances.
In Appendix G, we introduce “hardware-planted” instances
and demonstrate that they also exhibit an optimal
annealing time.

2. Gadgets

In order to identify problem instances that exhibit an
optimal annealing time, we first recall that previous studies
of planted-solution instances on the D-Wave processors
[20–22] found a TTS that rises monotonically as a function
of the annealing time. Keeping Fig. 1(a) in mind, a
decreasing or increasing TTS results from the success
probability rising sufficiently fast or too slowly, respec-
tively, with increasing annealing time (we formalize this in
Sec. III C 4 below). In the case where the system is very
weakly coupled to its thermal environment, we can expect a
competition between adiabaticity (unitary dynamics) and
open system effects such as thermal excitations [48,49],
resulting in a peak in the success probability and a
minimum in the TTS. Though we note that it is unlikely
that the DW2KQ operates entirely in the weak-coupling
regime (the minimum gap associated with the gadget is
already below the temperature energy scale, as shown in
Fig. 4, and we expect the minimum gap of the large
instances to be smaller), from this perspective, shifting the
minimum in the TTS to larger tf values corresponds to
prolonging the timescale over which adiabaticity dominates
over open system effects. One way to try to accomplish this

is by enhancing the role of finite-range tunneling in the
dynamics. Motivated by this insight, and by recent work on
the possibility of a computational role of finite multiqubit
tunneling in quantum annealers [25,41], we introduce a key
modification and supplement the planted-solution instance
Hamiltonian [Eq. (3)] with terms corresponding to the
addition of identical 8-qubit gadgets that exhibit tunneling
during their anneal:

H0
P ¼ HP þ

X
i∈S

HGi
: ð4Þ

Here,HGi
denotes the gadget Hamiltonian in unit cell i, and

the gadgets are placed into randomly chosen unit cells:
S denotes a randomly chosen subset comprising a fraction
p of complete unit cells (we use p ¼ 0.1). The specific
8-qubit gadget we used fits into the unit cell of the D-Wave
processors, and its connectivity and parameters are depicted
in Fig. 5. The ground state of the gadget is the all-zero state
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0 0.5 1
10 0

10 1

10 2

FIG. 4. Expectation values of the Hamming weight operator.
Shown are the ground state and first excited state expectation
values of HW ¼ 1

2

P
n
i¼1 ð1 − σzi Þ for the 8-qubit gadget using the

DW2KQ annealing schedule. Inset: The ground state energy gap
to the first excited state, as calculated using the DW2KQ
annealing schedule. The dotted line corresponds to the operating
temperature of the device.

FIG. 5. The 8-qubit gadget used in the instance construction.
The qubits (green circles) are arranged in a complete bipartite
graph. Blue (red) lines correspond to ferromagnetic (antiferro-
magnetic) Ising couplers with magnitude 1. The value of the local
fields on the qubits are given inside the circles, with a negative
value indicating a spin-up preference.
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of the eight qubits, so that the ground state of the full
Hamiltonian remains the all-zero state. The first excited
state of the gadget is doubly degenerate with average
Hamming weight seven.
Generically, one would not expect the annealing proper-

ties of HG to be shared by H0
P, but below we show to what

extent they are for our instances.

3. Tunneling

We next establish in what sense our gadget exhibits
tunneling. We show in Fig. 4 the expectation value of the
Hamming weight operator HW ¼ 1

2

P
n
i¼1 ð1 − σzi Þ in the

ground state and first excited state, computed by numeri-
cally solving the time-dependent Schrödinger equation for
the evolution of the gadget. This expectation value exhibits
a sharp change at the same point in the evolution where the
minimum gap occurs (shown in the inset). The ground state
reorients itself to the j0 � � � 0i state, while the first excited
state reorients to align closely with the j1 � � � 1i state. This
already suggests a tunneling transition, but in order to
confirm this we wish to establish the presence of an energy
barrier in the semiclassical potential that the quantum
system must tunnel through during the anneal. Such
tunneling transitions have been well studied in the context
of systems with qubit-permutation invariance [41,42,
50–52], but less so in the context of systems such as ours
without this symmetry.
The semiclassical potential as derived from the spin-

coherent path-integral formalism [53] is given by the
expectation value of HðtÞ in the spin-coherent state
jΩðθ⃗;φ⃗Þi¼⊗n

i¼1½cosðθi=2Þj0iiþeiφi sinðθi=2Þj1ii�. In the
context of the transverse-field Ising Hamiltonian [Eq. (2)],
the semiclassical potential becomes

Vðθ⃗; φ⃗; tÞ¼−AðtÞ
X
i

sinðθiÞcosðφiÞ

þBðtÞ
�X

i∈V
hi cosθiþ

X
ði;jÞ∈E

Jij cosðθiÞcosðθjÞ
�
:

ð5Þ

Equation (5) provides a multidimensional energy landscape
for the quantum annealing protocol. Unfortunately, due to
the absence of any symmetries, it is infeasible to exhaus-
tively explore this landscape and identify the actual location
of barriers, even under the simplification where
φi ¼ 0; ∀ i. Instead, as proxies for a direct calculation
of tunneling transition matrix elements or an instanton
analysis [54], we consider the behavior of the SVMC and
SQA algorithms. The SVMC algorithm performs
Metropolis updates on the potential energy landscape,
Eq. (5) [38]. Since this algorithm can only thermally
“hop” over energy barriers, we expect its performance to
deteriorate with decreasing temperature in the presence of

a relevant energy barrier. On the other hand, a path-integral
Monte Carlo based approach like SQA should be able to
not only thermally hop over these barriers but also mimic
tunneling through them [39,40,55], which should benefit
from a decreasing temperature. Therefore, we expect to be
able to identify tunneling energy barrier bottlenecks in the
quantum anneal by contrasting the temperature dependence
of the performance of SVMC and SQA.
Figure 6(a) shows that for our 8-qubit gadget, SQA and

SVMC algorithms behave as expected in the presence of a
tunneling energy barrier: the success probability of the
SVMC algorithm decreases with decreasing temperature,
whereas the success probability of SQA increases with
decreasing temperature. As shown in the inset and compar-
ing to Fig. 4, we see that the SVMC algorithm is effectively
trapped in the higher excited states, while SQA is able to
follow the ground state.
Next, we use the same technique to probe our planted-

solution instances with and without the gadget. We show
the behavior of two very different L ¼ 16 instances in
Fig. 6. For one of the instances [Fig. 6(b)], the introduction
of the gadget adversely affects the performance of the
SVMC algorithm, pushing the success probability to zero
for increasing inverse temperature β. For SQA, the
improvement in performance as β increases is significantly
sharper with the gadget. For the second instance [Fig. 6(c)],
we see that while SQA’s behavior is almost identical, the
SVMC algorithm exhibits an improving performance with
increasing β in the presence of the gadget, suggesting an
absence of an energy barrier. This analysis demonstrates
that the tunneling properties induced by our 8-qubit gadget
can be inherited by the problem instances even at the largest
problem size, and that the success probability exhibits a
strong temperature dependence. For further details on the
behavior of an ensemble of instances see Appendix G.
Unfortunately, we cannot directly probe tunneling or

study the temperature dependence on the D-Wave process-
ors. To the extent that SQA models the behavior of the
physical quantum annealer, one may choose to interpret the
evidence we have presented above as evidence for the role
of tunneling energy barriers induced by the gadgets.

4. The gadget is responsible for the observed
optimal annealing time

To more directly understand the effect of our gadget on
the hardware quantum annealer, it is instructive to contrast
the scaling behavior with and without the gadget. Toward
that end, we fit the empirical success probability pS to a
power law of the form bðtfÞa (see Appendix H for the fit
quality). We show in Fig. 7 the distribution of the scaling
coefficient a for 100 instances for the logical-planted
instances with and without the gadget. The two distribu-
tions differ substantially: the instances with the gadget
exhibit larger coefficients, almost all with a value greater
than 1, resulting in a significantly larger initial rate of
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increase in pSðtfÞ than for the instances without the
gadget. This, in turn, leads to the observed initial
decrease in the TTS with increasing annealing time:
upon expanding the logarithm in Eq. (1) for small pS,
we find that TTSðtfÞ∝tf=pSðtfÞ¼ðtfÞ1−a, so that TTSðtfÞ
decreases with tf provided a > 1; this is consistent with

Fig. 1(a), where the slope of pSðtfÞ is indeed seen to be
initially > 1, then dropping to < 1 for larger tf. Since the
TTS must eventually increase with the annealing time
[ideally, for sufficiently large tf, RðtfÞ → 1, at which point
TTSðtfÞ ∝ tf], this helps to explain why the instances with
the gadget exhibit an optimal annealing time. It also
suggests a useful heuristic for future studies attempting
to identify problem instance classes with an optimal
annealing time: the instances should have the property
that if pSðtfÞ ¼ gðtfÞ ≪ 1 for some function g, then
TTSðtfÞ ∝ tf=gðtfÞ must be decreasing for some range
of tf > tmin values. This is compatible with any faster-than-
linear form for g. We already alluded to a competition
between adiabaticity and thermal excitations as being
potentially responsible for an optimal annealing time.
Another mechanism, that appears to be more consistent
with the fact that the DW2KQ is not operating in the weak-
coupling regime, is that thermal relaxation is fast for small
tf and then slows down for sufficiently large tf, presumably
since the system has already entered the quasistatic
regime [56].

IV. DISCUSSION AND OUTLOOK

The key result of this work is the demonstration of an
algorithmic scaling advantage for QA hardware over the
SA algorithm for a family of problem instances constructed
with frustrated loops and a small gadget that exhibits
tunneling. It is worth emphasizing why the combinatorial
optimization and quantum annealing communities have
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FIG. 6. Probability of reaching the ground state (GS) at the end of the anneal using SVMC and SQA for different simulation inverse
temperatures β. (a) Simulation results for the 8-qubit gadget only. SQA’s success probability increases over a wide range of decreasing
temperatures, whereas the SVMC algorithm rapidly deteriorates as the temperature decreases. Inset: Expectation values of the Hamming
weight operator HW ¼ 1

2

P
n
i¼1 ð1 − σzi Þ for the 8-qubit gadget for SVMC and SQA using β ¼ 2.5. Compare to the behavior of the

ground state and first excited state shown in Fig. 4. For the SVMC algorithm, to compute the expectation value of the Hamming weight
operator at intermediate s values, we can either project the state to the computational basis (shown) or use the spin-coherent state; the
results are almost indistinguishable. For SQA, we average over the Hamming weight of the configurations in the imaginary-time
direction. (b),(c) Probability of reaching the ground state at the end of the anneal using SVMC and SQA for different simulation inverse
temperatures β using two different instances, with and without the 8-qubit gadget, at the largest available size L ¼ 16. (b) An instance
that exhibits a clear signature of a tunneling energy barrier when the gadget is introduced. (c) An instance that does not exhibit a
signature for a tunneling energy barrier even with the gadget. In all panels, SVMC and SQA simulations used 8 M and 3 M sweeps,
respectively, and both algorithms use the DW2KQ annealing schedule. The drop in success probability at large β for SQA is because
spin updates become less efficient at high β and more spin updates are required to maintain the high success probability.

FIG. 7. Empirical scaling behavior with and without the gadget.
Shown is the distribution of the power-law scaling coefficient a
obtained after fitting lnpS to a ln tf þ b for 100 instances at
L ¼ 16, run on the DW2KQ processor. We choose tf ∈ ½5; 50� μs
since this is the range over which the TTS decreases, as seen in
Fig. 1(a). The instances with the gadget typically exhibit a larger
scaling coefficient, which leads to the observation of an optimal
annealing time. In (a) and (b) error bars represent 95% confidence
intervals (2σ) calculated using 1000 bootstraps of 100 gauge
transformations [17].
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often focused on suboptimal heuristics such as SA (see,
e.g., Ref. [41]). SA is not only a very general metaheuristic,
but it is also often viewed as the inspiration for QA, with
thermal fluctuations replaced by quantum fluctuations [15].
Because of this correspondence between SA and QA, a
demonstration of superior performance by QA can pre-
sumably be attributed to an advantage of the quantum
approach over the thermal approach. The goal is then to
leverage this advantage to a broader range of problems.
However, as we have argued, temperature annealing as in
SA is actually quite different from transverse-field
annealing, so that the analogy between SA and QA needs
to be treated with care. Another concern we face is that
while the accuracy threshold theorem provides a theoretical
guarantee that for sufficiently low noise levels and through
the use of quantum error correction a finite-size device can
be scaled up fault tolerantly [57], in the absence of such an
asymptotic guarantee for quantum annealing a finite-size
device provides evidence of what can be expected at larger,
future sizes, only provided the device temperature, cou-
pling to the environment, and calibration and accuracy
errors, can be appropriately scaled down.
In light of this, what is the significance of our demon-

stration of a QA scaling advantage over SA? We believe
that an important clue lies in the fact that the SVMC
algorithm also exhibits an advantage over SA for these
problems. The SA and SVMC algorithms can both be
viewed not only as classical analogues of QA, but also as
implementing two of its possible classical limits [15,38,58].
While SA performs updates on the classical energy land-
scape associated with the Ising Hamiltonian, the SVMC
algorithm performs updates on the semiclassical potential
associated with the quantum anneal. A scaling difference
between the two, with an advantage for the SVMC
algorithm, suggests that thermal updates on the semi-
classical energy landscape is more efficient. While it is
unclear whether the quantum effects in the D-Wave devices
that have already been demonstrated on a smaller scale
(N ≲ 16) [17,25,41,59–63] remain operative at the much
larger scales we have employed in our study, the fact that
the DW2KQ also exhibits an advantage over SA suggests
that it must be evolving in a landscape that also allows for
better scaling. To be specific, this is the landscape asso-
ciated with transverse-field annealing as opposed to tem-
perature annealing. It is in this sense that quantum effects
that are necessarily absent from SA and might be present in
the quantum annealer can provide an advantage. This is
especially significant since there is a large overlap between
the instances solved at the median quantile by the DW2KQ
and all three of the classical algorithms, including SA, as
shown in Fig. 8. This means that if any quantum effects are
responsible for the scaling advantage of the DW2KQ over
the SA algorithm, then they are operative in largely the
same set of problem instances, so that these instances may
define a target class for quantum enhanced optimization.

Likewise, SQA also evolves on the same semiclassical
energy landscape as the SVMC algorithm, but in addition
to thermal updates is also capable of mimicking tunnel-
ing. The fact that SQA’s scaling is far superior to that of
SVMC’s, and that this improves as the simulation
temperature is lowered, shows that tunneling is effective
at enhancing SQA’s performance for the logical-planted
instances. What does this tell us about the possibility that
the relative performance of the algorithms is indicative of
quantum effects in the DW2KQ device? It is known that
the scaling of the quantum Monte Carlo algorithm can be
as efficient [39,40,64] or less efficient [55] than the
incoherent tunneling rate scaling of a true quantum
annealer. Therefore, the fact that SQA overwhelmingly
outperforms the DW2KQ but that the DW2KQ still
outperforms SA suggests that the device is dominated
by classical dynamics with a very small quantum com-
ponent. While only speculative at this point, this type of
situation might be the best we can hope for in the current
generation of highly noisy quantum annealers, without
some form of quantum error correction or suppression
[65–69].
Figure 3 shows how the scaling of both SVMC and SQA

is strongly affected when we increase their temperatures to
the DW2KQ dilution fridge temperature. In both cases, for
the median and lower percentile, the performance of the
SQA and SVMC algorithms is hurt at this higher temper-
ature relative to the colder temperature. This strongly
suggests that the DW2KQ’s performance for this class of
instances is severely impacted by its temperature, consis-
tent with general expectations [46]. However, we also find
that the SVMC algorithm scales better than the DW2KQ.
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FIG. 8. Overlap of the instances that fall below the median
TTS for the classical solvers and the DW2KQ. We calculate the
TTS for 1000 instances with each solver’s respective optimal
annealing time for the median at a given size L, and check which
instances fall below the median TTS. Shown is the (normalized)
fraction of the overlap of the instances between the solvers.
Further details are given in Appendix I. Error bars represent
95% confidence intervals (2σ) calculated using 1000 bootstraps
of 1000 instances.
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One would expect that if the SVMC algorithm is the
classical limit of the device, then the DW2KQ should
perform at least as well as the SVMC algorithm. One
possible explanation for the violation of this expectation is
that additional noise sources, such as implementation
errors, further degrade the performance of the DW2KQ
relative to solvers run on digital classical computers [21].
We note that the performance of the SVMC algorithm

improves at higher percentiles at higher temperatures
relative to colder temperatures, which is consistent with
the algorithm being able to thermally hop over energy
barriers. This indicates that temperature is another algo-
rithmic parameter that should be optimized separately for
each quantile, a point we leave for future studies.
We emphasize that the discrete-time SQA algorithm

studied here should not be interpreted as a true model of a
thermal quantum system. It has been demonstrated that
time discretization may result in improved residual energy
minimization performance over the continuum case [70],
although this does not necessarily translate into a scaling
performance advantage. Nevertheless, the superior perfor-
mance of the SQA algorithm we have observed is an
interesting finding in its own right: we are unaware of
another example of an Ising model cost function where
SQAwith closed boundary conditions bests SA as a ground
state solver (Ref. [25] reports an example but uses SQA
with open boundary conditions). We have attributed this
advantage to a more favorable energy landscape with the
presence of tunneling barriers than can be traversed
efficiently, but to test whether the observed scaling advan-
tage would hold for a thermalizing quantum annealer
requires quantum Monte Carlo simulations without
Trotter errors [71–73]; unfortunately, at the >2000 qubits
scale we have worked with here, this is computationally
prohibitive. The same is true for master equation simu-
lations [41,74], even when implemented using the quantum
trajectories method [75].
We emphasize that the instances presented here are not

necessarily computationally hard, as suggested by the fact
that, considering the entire range of sizes we tested, the
quality of the polynomial fits is better than that of the
exponential fits (see Fig. 2). In the absence of the gadget,
the logical-planted instances are defined on a square
lattice and can be solved in polynomial time using the
exact minimum-weight perfect-matching (MWPM) algo-
rithm [76]. However, we have confirmed that this algo-
rithm performs poorly once the gadget is included, as
expected when local fields are present (see Appendix J).
Therefore, it is natural that algorithms optimized with
respect to the problem structure demonstrate superior
performance. For example, simulated annealing with both
single-spin and multispin updates (SAC), with the latter
being simultaneous updates of all the spins comprising a
unit cell (superspin approximation [23]), scales signifi-
cantly better than SA with single-spin updates but still

does not perform as well as SQA (see Appendix J).
Furthermore, there are many other classical algorithms
that do not implement the same algorithmic approach as
quantum annealing, such as the Hamze-Freitas-Selby
(HFS) [77,78] algorithm. The latter exploits the low tree
width of the Chimera connectivity graph and has in all
studies to date been the top performer for Chimera-type
instances. In contrast, here we find that the scaling
performance of the HFS algorithm lies between the
DW2KQ and SAC (see Appendix J). Another competitive
algorithm is parallel tempering with isoenergetic cluster
moves [79,80]. We can expect that a more highly
connected hardware graph will prevent algorithms such
as HFS or SAC from being efficient; which architectures
may lend themselves to an unqualified quantum speedup
remains an open research question.
In this work we focused on the task of finding any

ground state, and did not address the question of how well
quantum annealing can uniformly sample the ground states,
commonly referred to as ground state “fair sampling” and a
problem that belongs to the complexity class #P. It is well
established that quantum annealing with the standard
transverse-field driver Hamiltonian samples the ground
states in a biased manner [59,81–83], and our work
does not establish to what extent this bias exists for the
class of instances we study, nor whether the different
algorithms studied exhibit a different bias. Addressing this
question provides another approach for searching for a
quantum advantage beyond the standard optimization
approach [60,82].
Meanwhile, our hybrid frustration-tunneling-based in-

stance construction approach defines a clear path forward
by concretely establishing the possibility of generating
instance classes with accessible optimal annealing times,
amenable to a complete scaling analysis. By “mining”
those instances which exhibit the largest separation
between SQA and the top performing alternative classical
algorithms, while corroborating that the performance of
hardware-based QA is also competitive on the same
instances (at a minimum it should certainly continue to
beat SA), we expect to be able to identify the features that
give rise to a quantum advantage and learn how to
amplify the difference. This procedure can be iterated,
all the while ensuring that optimal annealing times can be
ascertained, in order to amplify the separation. Current
QA hardware may simply be too hot and incoherent to
exhibit an amplification leading to an unqualified scaling
advantage over all classical algorithms for the resulting
instance class. This is especially true for instances
amenable to SQA simulations that can reproduce the
incoherent tunneling rates of a noisy quantum annealer
[39,40,64], in which case more coherent devices will be
necessary. Nevertheless, the principles we establish here
will at the very least provide a means of testing this
exciting possibility.
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APPENDIX A: TIME TO SOLUTION
AND OPTIMALITY

We provide a derivation of the TTS expression given in
Eq. (1) (see also, e.g., the Supplemental Material of
Ref. [18]). Let us assume that the probability of observing
the ground state energy in any given repetition is pSðtfÞ,
and we ask how many repetitions R must be performed to
observe the ground state energy at least once. The prob-
ability of not observing the ground state energy once in R
trials is ½1 − pSðtfÞ�R. Therefore, to observe the ground
state energy at least once with probability pd is

1 − pd ¼ ½1 − pSðtfÞ�R: ðA1Þ

Solving for R gives the expression in Eq. (1) in the main
text. Technically, the number of repetitions is defined as
RðtfÞ ¼ ⌈½lnð1 − pdÞ�=fln½1 − pSðtfÞ�g⌉, but we do not
include the ceiling operation in the calculation of RðtfÞ
in this work, since this can result in sharp TTS changes that
complicate the extraction of a scaling. Similarly, the ratio
N=Nmax should be ðbNmax=NcÞ−1. The TTS should in
principle also include all time costs accrued by running the
algorithm multiple times, such as state initialization and
state readout times, as well as multiple programming times
if different gauges are used (see Appendix B). We do not
include these here either, because at least on the D-Wave
processors, the readout and programming times are several
factors larger than the annealing time and hence can

effectively mask the scaling behavior. Instead, we restrict
tf to be the run time between state preparation and readout
for all our algorithms.
To see how an analysis of the TTS that does not account

for optimal annealing times can lead one astray, consider
the following extreme example: suppose tf is too large at all
problem sizes N ∈ ½Nmin; Nmax�, such that RðtfÞ ¼ 1

always suffices to find the global minimum; in this case,
hTTSðtfÞi ∝ Ntf for all N (i.e., is constant except for the
parallelization factorN), which, except for trivial problems,
must obviously be false.

APPENDIX B: D-WAVE QUANTUM ANNEALERS

We used the D-Wave 2000Q (DW2KQ) processor
housed at Burnaby that features 2023 functional qubits
and 5874 programmable couplers. We also used the DW2X
processor housed at USC/ISI that features 1098 functional
qubits and 3049 programmable couplers. The minimum
annealing times for all D-Wave processors involved in
benchmarking studies to date are 5 μs for the D-Wave
One, D-Wave Two X, and D-Wave 2000Q, and 20 μs for
the D-Wave Two. Additional details about the processors
are provided below. For each instance, we ran 100 random
gauges (also known as spin-reversal transforms). A gauge
is the application of a particular bit-flip transformation
to the σz operators in the problem Hamiltonian; i.e.,
H0

P ↦
Q

N
i¼1ðσxi ÞsiH0

P

Q
N
i¼1ðσxi Þsi , where each si ∈ f0; 1g.

This transformation does not change the eigenvalues of
the transverse-field Hamiltonian, and it is meant to min-
imize the effect of local biases and precision errors on the
device [59]. For each gauge we took nreads ¼ 1000 read-
outs, unless constrained by tfnreads < 106μs. For example,
for tf ¼ 2 ms, we only took 400 readouts per gauge.
The annealing schedules of the D-Wave 2000Q

(DW2KQ) processor housed at Burnaby and the DW2X
processor housed at USC/ISI devices are shown in Fig. 9, in
units of GHz. These schedules are not measured but
computed and reported by D-Wave Systems Inc. based
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FIG. 9. Annealing schedules for (a) the DW2KQ and (b) the
DW2X. The units are such that ℏ ¼ 1. As a reference, we include
the operating temperatures of the devices, corresponding to
14.1 mK for the DW2KQ and 12.5 mK for the DW2X. Note
the different vertical axis scales.
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on their flux qubit models. The Chimera hardware graphs
of the DW2KQ and DW2X processors we used in this work
are shown in Fig. 10.
In the main text, we focused on the annealing time.

There are several other relevant timescales that we present
here for completeness. We used the default initial state
preparation time (tinitial). The readout time for the DW2KQ
is treadout ¼ 124.98 μs. A complete characterization of the
required run time (the “wall-clock time”) would include the
thermalization and readout times in each independent
run of the quantum annealer. Furthermore, since we
program the same instance multiple times using different
gauges, the programming time of tprogram ¼ 6987.80 μs
needs to be accounted for. In total, the wall-clock TTS
would be given by

TTSwall clock ¼ Gtprogram þ ðtf þ tinitial þ treadoutÞ
R

bNmax
N c ;

ðB1Þ
where G is the number of gauges, and R is the total
number of runs, divided equally among the G gauges.
However, since these timescales can be much larger than
the optimal annealing time, they can mask the scaling
of the TTS, and hence we focus just on the annealing time,
as in previous work [17,18]. In principle, the initial state
preparation time can be reduced and optimized along with
the annealing time if included as part of the TTS, but
we have not explored in this work how this impacts
performance.

APPENDIX C: SIMULATION PARAMETERS
AND TIMING

Our implementation of the SA, SQA, and SVMC algo-
rithms is based on the graphics processing unit (GPU)
implementation used in Ref. [22] and described in more
detail in Ref. [84]. We briefly describe our CUDA imple-
mentation of these algorithms here for completeness. Inwhat
follows, a sweep is a single Monte Carlo update of all the
spins. For all implementations, we use the default cuRAND
random number generator (XORWOW). We compile the
CUDA code using the “-use_fast_math” flag, which, we note,
may not be suitable for Monte Carlo simulations that require
accurate calculations of thermal expectation values.
We first discuss our implementation of SA [36]. Each

GPU thread updates the eight spins in a single unit cell.
Because the Chimera graph is bipartite, each thread updates
the four spins in one partition followed by the four spins in
the second partition. A key feature of the implementation is
that the eight local fields, 16 intercell couplers, and 16
intracell couplers are stored in the memory registers of the
GPU.Only the spin configuration is stored on localmemory.
This minimizes the cost of retrieving data from global
memory. We use the GPU intrinsic math function for the
calculation of theMetropolis acceptance probability in order
to maximize execution speed. As many copies ncopies as
allowed by register memory are run in parallel in separate
GPU blocks. Therefore, we have for the timing of SA

TTS ¼ τsweepnsweep
R

ncopies
; ðC1Þ

(a) (b) (c) (d)

FIG. 10. Hardware and logical graphs for instance generation. (a) DW2KQ hardware graph, (b) DW2X hardware graph, (c) DW2KQ
logical graph, (d) DW2X logical graph. For DW2KQ (DW2X) subgraphs of size L ≤ 16 (L ≤ 12) were chosen starting from the lower
right-hand corner. (a),(b) Available qubits are shown in green, and unavailable qubits are shown in red. Programmable couplers are
shown as black lines connecting qubits. (c),(d) Complete unit cells are shown in green, and incomplete ones are shown in red. Logical
couplers are shown as black lines between the unit cells. The unit cells are numbered from 0, starting from the top left-hand corner and
moving across rows to the right.
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where nsweep is the number of sweeps and τsweep is the time
required to perform a single sweep. Because ncopies depends
on the total number of threads (L2Þ and hence on the problem
size, this can be equivalently written as

TTS ¼ 8L2nsweepR=fSA; ðC2Þ
where fSA is the number of total spin updates per unit time
performed by the GPU. For consistency we use the timings
reported inRef. [84] for runs performedon anNVIDIAGTX
980, which have fSA ¼ 50 ns−1. For SA, we use a temper-
ature annealing schedule that is the DW2X annealing
schedule for BðsÞ (shown in Appendix B) times β ¼
0.132 (in units where the maximum Ising coupling strength
jJijj is 1), such that βBð1Þ ≈ 5.
The implementation of the SVMC algorithm follows the

same structure as SA, except that the spin configuration is
replaced by angles fθig ∈ ð0; 2π� [38]. The energy poten-
tial along the anneal is given by

VðsÞ ¼ −AðsÞ
X
i

sin θi þ BðsÞ
X
i<j

Jij cos θi cos θj; ðC3Þ

a special case of Eq. (5) in the main text. An update involves
drawing a random angle ∈ ð0; 2π�, and it is accepted
according to the Metropolis-Hastings rule [85,86] with β ¼
2.5 for the logical-planted instances and β ¼ 0.51 for the
hardware-planted instances (in units where the maximum
Ising coupling strength jJijj is 1). We use the GPU intrinsic
math function for the calculation of the cosine, sine, and
Metropolis acceptance probability in order to maximize the
speed of the algorithm.The timing of the SVMCalgorithm is
the same as in Eq. (C2) but with fSVMC ¼ 29 ns−1 replacing
fSA. We use the DW2X annealing schedule for AðsÞ and
BðsÞ shown in Appendix B; this schedule keeps AðsÞ > 0
longer than that of the DW2KQ, which favors the SVMC
algorithm, since once AðsÞ ¼ 0 the system becomes the
classical Ising model and the most efficient updates use
θ ¼ 0, π, but SVMC chooses angles randomly.
The implementation of SQA follows the same structure as

SA, and also uses the DW2X schedule for similar reasons as
just mentioned for the SVMC algorithm. We restrict the
Trotter slicing to 64 in order to fit the spins along the
imaginary-time direction into a 64-bit word. A sweep
involves performing a singleWolff cluster update [87] along
the imaginary-time direction for each spin. Once a cluster of
spins is picked, it is flipped according to the Metropolis-
Hastings rule using the Ising energy of the cluster with β ¼
2.5 for the logical-planted instances and β ¼ 4.25 for the
hardware-planted instances. We use the GPU intrinsic math
function for the calculation of the Metropolis acceptance
probability in order to maximize execution speed. At the end
of the anneal, one of the 64 slices is picked randomly as the
final classical state. The timing of SQA is the same as in
Eq. (C2) but with fSQA ¼ 5 ns−1 replacing fSA.

We note that increasing the number of Trotter slices,
while decreasing the Trotter error, appears to reduce the
final success probability for one of the instances we have
checked (see Fig. 11, where the peak success probability
occurs for 64 slices), an effect noted in Ref. [70]. Studying
this effect over the entire set of instances is computationally
prohibitive at our > 2000 qubits scale.

APPENDIX D: ALTERNATIVE FITS

In Fig. 2 of the main text (see also Figs. 17 and 20
below), we present exponential and polynomial fits to the
optimal TTS as a function of L. Here we show that a hybrid
three-parameter fit, i.e., ln TTS ¼ aþ b lnLþ cL, does
not give reasonable fits with good confidence bounds for all
solvers. We restrict our attention to the hardware-planted
instances, since in that case we have 9 sizes for the fit.
Table I gives the results of the fits for the median; we see
that the estimate for the exponential scaling coefficient c of
the classical solvers is especially poor, likely due to an
insufficient number of data points for a three-parameter fit.

APPENDIX E: SA WITH A LINEAR SCHEDULE

We used the DW2X annealing schedule in Fig. 9(b) for
the SQA, SVMC, and SA simulations. Further optimization
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FIG. 11. Performance of SQA as we vary the number of Trotter
slices. Shown are CPU simulation results for the success
probability for a single logical-planted instance, using 32, 64,
128, and 256 Trotter slices. The success probability is maximized
for 64 slices. Error bars give the 95% confidence interval
generated by performing 1000 bootstraps.

TABLE I. The coefficient ða; b; cÞ in fits of lnhTTSi� to aþ
b lnLþ cL for the hardware-planted instances using L ∈ ½8; 16�.
Errors are 95% confidence intervals.

Solver a b c

DW2KQ −6.953� 1.442 5.017� 1.020 0.380� 0.090
SA 0.493� 1.102 9.521� 0.764 −0.193� 0.065
SQA 15.893� 5.396 0.248� 3.933 0.508� 0.360
SVMC 3.050� 1.814 9.316� 1.241 −0.075� 0.104
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of this schedule is likely to improve the overall perfor-
mance of the algorithms, although it is not evident whether
it will substantially change their scaling with problem size.
As an example, we provide results for the median TTS for
SA using the DW2X schedule with a different overall
temperature β ¼ 0.396 and a linear schedule in Fig. 12,
where we observe that the different schedules only shift the
TTS curve but do not change the scaling within the
statistical error bars. This indicates that our SA scaling
results are robust to minor modifications of the schedule.

APPENDIX F: QUANTILE OF RATIOS

The benchmarking analysis we performed in the main
text is akin to the “ratio-of-quantiles” comparison per-
formed in Ref. [18], where an alternative metric for
speedups was also defined, called the “quantile of ratios.”
For this case, we find the annealing time that minimizes the
TTS for each instance individually, and the per-instance
optimal TTS, denoted TTS�i , is the minimal TTS for each
instance individually. For each instance, the ratio of TTS�i
for two different solvers is calculated, and different
quantiles over the set of ratios are taken. We show in
Fig. 13 the results for the median ratio using the logical-
planted instances. The advantage of the DW2KQ relative to
SA continues to hold, and SQA continues to exhibit the
best scaling.

APPENDIX G: GADGET AND INSTANCE
CONSTRUCTION

The key new ingredient in our instance construction is an
8-qubit gadget that fits into the unit cell of the D-Wave
processors. The gadget has a bipartite K4;4 graph con-
nectivity with the following Ising parameters, as also
depicted in Fig. 5 in the main text:

h⃗T ¼ð−1;−2=3;2=3;−1;1=3;1;−1;1Þ;
J1;5¼þ1; J1;6¼−1; J1;7¼−1; J1;8¼−1;

J2;5¼−1; J2;6¼−1; J2;7¼þ1; J2;8¼−1;

J3;5¼−1; J3;6¼−1; J3;7¼−1; J3;8¼−1;

J4;5¼−1; J4;6¼−1; J4;7¼−1; J4;8¼−1: ðG1Þ

The logical-planted class of instances involves construct-
ing planted-solution instances on the logical graph of the
DW2KQ. The construction of the planted instance is
similar to that of Ref. [22]. We define the logical graph
of the DW2KQ as being composed of vertices correspond-
ing to only the complete unit cells (with no faulty qubits or
couplers). We also included one unit cell that was missing a
single intracell coupler (unit cell 251), since having this
missing coupler does not change the analysis. This is aminor
difference relative to Ref. [22], where only complete unit
cells were used. The edges of the logical graph correspond to
having all four intercell couplers. We did remove the logical
edge between unit cells 251 and 252. On an ideal Chimera
graph, this would form a square grid. We constructed an
Ising Hamiltonian as a sum of bαL2c frustrated loops, where
we picked α ¼ 0.65. We again chose to plant the all-zero
state. We constructed loops as follows. Choose a random
vertex on the graph as the starting vertex, and randomly pick
an available edge. If that edge does not already have jJj ¼ 3,
add the vertex connecting it to the chain until a loop is
formed. Continue until the chain forms a loop by hitting a
member of the chain. Only the loop and not the tail is kept.
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FIG. 12. Median scaling for SA on the logical-planted instances
with three different annealing schedules. We compare the median
TTS for SA using three different annealing schedules, 0.132BðsÞ,
where BðsÞ is from the DW2X annealing schedule in Fig. 9(b),
0.396BðsÞ, and a linear schedule. The dashed lines correspond
to the exponential fits expðaþ bLÞ with a ¼ 12.457� 0.332,
b ¼ 0.996� 0.24 and a ¼ 12.489� 0.888, b ¼ 1.037� 0.064
for the DW2X schedules and a ¼ 13.321� 0.934, b ¼ 1.002�
0.066 for the linear schedule. Inset: The annealing schedules in
the inverse temperature β as a function of the dimensionless
parameter s.
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FIG. 13. Median quantile of ratios for the logical-planted
instances. We show the ratio of the different classical solvers
C ¼ fSA;SQA;SVMCg to the DW2KQ. A positive slope, as for
SA and SVMC algorithms, indicates a scaling advantage for the
DW2KQ, while a negative slope, as for SQA, indicates a
slowdown. The data symbols obscure the error bars representing
the 95% confidence intervals (2σ) calculated using 1000 boot-
straps of 1000 instances.
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Accept the loop if it includesmore than 4 vertices; thismeans
that the minimum loop has 6 vertices. This then generates a
planted-solution instance on the logical graph. In order to
embed it on the hardware graph, turn on all the available
couplings in the unit cell to be ferromagnetic with J ¼ −3.
In the notation of Ref. [22], this amounts to constructing
instances with R ¼ ρ ¼ 3.
Finally, we randomly placed our gadget into a fraction

p ¼ 0.1 of all the connected unit cells in the planted-
solution instance, and added these terms to the Ising
Hamiltonian. (The gadget on unit cell 251 has the same
ground state even with the one missing coupling.) The final
Hamiltonian now has a maximum range of 6; i.e., jJijj ≤ 6

for all couplers. Again, the ground state of the final
Hamiltonian remains the all-zero state.

1. 8-qubit gadget

The key ingredient in our study is an 8-qubit gadget that
fits into the unit cell of the D-Wave processors. Figure 14
compares the results for the 8-qubit gadget on the two

D-Wave processor generations, for different representative
unit cells. The success probability exhibits a single maxi-
mum, with the peaks occurring at different annealing times
on the two devices. While there is some variation in the
magnitude of the success probability depending on which
unit cell is used, the position of the peak remains robust. We
note, however, that the position of the peak differs on the
two devices (around 100 μs on the DW2X and around
300 μs on the DW2KQ), indicating that the physical
characteristics of the two devices are different beyond
simply having different connectivity graphs.

2. Hardware-planted instances

Here, we describe a class of instances we call hardware
planted (not discussed in the main text) that also exhibits
an optimal annealing time within the accessible range of
the DW2KQ, as we demonstrate below. The class is
defined by constructing planted-solution instances on
the hardware graph of the DW2KQ, shown in Fig. 10(a).
This method builds an Ising Hamiltonian as a sum of
bα8L2c frustrated loops, where the all-zero state is a
ground state of all loops (somewhat confusingly, the
Hamiltonian is thus frustration free in the terminology
of Ref. [88]). We picked α ¼ 0.35 (this value is approx-
imately where the peak in hardness occurs for the HFS
algorithm, described in Appendix J). We constructed loops
as follows. Choose a random vertex on the graph as the
starting vertex. From the (at most six) available edges
connected to this vertex, randomly pick one. If this new
vertex has not been visited already, it is added to the chain.
Continue until the chain forms a loop by hitting a member
of the chain. Only the loop and not the tail is kept. The loop
is discarded if any of the couplings along the loop already
have jJj ¼ 3, and if the loop does not visit at least two unit
cells [21]. The second condition means that the shortest
possible loop includes six vertices (within each unit cell
the degree of each vertex is four, but including other unit
cells the degree is six, except for unit cells along the
boundary of the Chimera graph, where the degree can be
five). Along the loop, choose the couplings to satisfy the
planted solution; i.e., set them all to be ferromagnetic.
Then randomly pick a single coupling and flip it. The
couplings along the loop are added to the already-present
coupling values on the graph. This process is repeated until
bα8L2c loops are generated for the chosen value of α.
Finally, we randomly placed our gadget into pL2

complete unit cells (without faulty qubits or couplers),
where in this work we set p ¼ 0.1, and added these terms to
the Ising Hamiltonian. The final Hamiltonian now has a
maximum range of 6; i.e., jJijj ≤ 6 for all couplers. The
ground state of the final Hamiltonian remains the all-zero
state because this state is the ground state of all loop and
gadget terms in the Hamiltonian.
We provide in Fig. 15 analogous results to those in Fig. 1

of the main text for the hardware-planted instances. In
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FIG. 14. Results for the 8-qubit gadget on the DW2KQ and
DW2X. (a) The gadget on four different unit cells of the DW2X.
(b) The gadget on four different unit cells of the DW2KQ. On
both devices we used 1000 gauges with 1000 anneals per gauge.
Error bars on the data points are 2σ calculated using 1000
bootstraps of each gauge.
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Fig. 15(a), we show a representative instance at L ¼ 16 that
exhibits an optimal annealing time above 500 μs. In
Fig. 15(b), we show that the median TTS exhibits a clear
minimum for sizes L ∈ ½8; 16� (no minimum was observed
for L < 8), which moves to higher annealing time values
with increasing problem size. This is reflected in the
distribution of instance optimal annealing times, as shown
in Fig. 15(c). The steady increase in the hardness of the
instanceswith problem size is reflected in the upward shift of
the minimum TTS in Fig. 15(b).
Apart from the obvious difference of the existence of

optimal annealing times at smaller sizes (L ≥ 8 compared
to L ≥ 12), the optimal annealing time is significantly
higher for the hardware-planted instances than for the
logical-planted instance class, as summarized in Fig. 16.
The optimal annealing time is seen to increase with

problem size in all cases, rising faster for the DW2KQ
than for the DW2X, but eventually flattening for both types
of problem instances. The increase is consistent with both
the possibility of benefit from a longer adiabatic evolution
time or from a longer thermal relaxation time at larger
problem sizes.
In Fig. 17, we present the scaling results for the

hardware-planted instances at three different quantiles, in
analogy to Fig. 2 in the main text. The simulation
parameters for the solvers are identical except that we
use colder temperatures for SA and SQA. For SA we use
β ¼ 0.396 [this corresponds to βBð1Þ ≈ 15], while for
SQA we use β ¼ 4.25. The scaling coefficients are
summarized in Table II. We again find that SQA has
the smallest scaling coefficient. The scaling coefficient of
the DW2KQ is larger than that of all the classical solvers
we tested, so for this class of instances we can
definitively rule out the possibility of scaling advantage
against the solvers we tested.

3. Correlating SQA and SVMC algorithms for
logical-planted instances

While a detailed analysis for each instance such as
shown in Fig. 6 in the main text is prohibitive, we correlate
in Fig. 18 the performance of SQA and SVMC algorithms
at β ¼ 2.5 and a relatively large number of sweeps. We
observe that for almost all the instances, SQA finds the
ground state with a significantly higher success probability
and substantially fewer spin updates. Furthermore, a
significant (but not overwhelming) number of instances
hug the vertical axis of the scatter plot, corresponding to
instances where the SVMC algorithm completely fails to
find the ground state but SQA succeeds with a nonvanish-
ing probability.
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FIG. 15. Optimal annealing time and optimal TTS for the hardware-planted instance class on the DW2KQ. (a) TTS (blue solid line) and
pS (red dashed line) for a representative problem instance at size L ¼ 16. A clear minimum in the TTS is visible at t� ≈ 550 μs, thus
demonstrating the existence of an optimal annealing time for this instance. (b)MedianTTS as a function of annealing time forL ≥ 8. Dotted
curves represent best-fit quadratic curves to the data (seeAppendixK for details). The position of hTTSi� shifts to larger tf as the system size
increases. An optimum could not be established for L < 8 for this instance class; i.e., it appears that t� < 5 μs when L < 8. (c) The
distribution of instance optimal annealing times for different system sizes, as inferred directly from the positions of the minima as shown in
(a). It is evident that the number of instanceswith higher optimal annealing times increases alongwith the system size, in agreementwith (b).
In (a) and (b) error bars represent 95% confidence intervals (2σ) calculated using 1000 bootstraps of 100 gauge transformations [17].
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FIG. 16. Scaling of t� with problem size for the two problem
classes. Error bars represent the 95% confidence interval for the
location of t� by fitting to a quadratic function as described in
Appendix K.

TAMEEM ALBASH and DANIEL A. LIDAR PHYS. REV. X 8, 031016 (2018)

031016-16



APPENDIX H: SUCCESS PROBABILITY
SCALING

In Fig. 7 of the main text, we showed the power-law
scaling coefficient of the success probability extracted for
tf ≤ 50 μs. Here we provide supplemental data to support
the quality of these fits. First, we show the data and fit in
Fig. 19(a) for the instance depicted in Fig. 1(a) of the main
text as well as its counterpart without the gadget. The data
for this instance nicely agree with a polynomial fit. In
Fig. 19(b), we show that the uncertainty in the power-law
scaling coefficient for the majority of the instances is below
10%, indicating that the polynomial fits to the data points
are reasonable.

TABLE II. The coefficient b in fits to (a) expðaþ bLÞ and
(b) expðaÞLb and the coefficient a in fits (c) expðaþ bLÞ and
(d) expðaÞLb for the hardware-planted instances using
L ∈ ½8; 16�. q denotes the quantile. Errors are 95% confidence
intervals.

Solver q ¼ 0.75 q ¼ 0.50 q ¼ 0.25

(a)

DW2KQ 0.842� 0.01 0.820� 0.009 0.796� 0.009
SA 0.645� 0.008 0.617� 0.006 0.628� 0.007
SQA 0.594� 0.029 0.510� 0.018 0.487� 0.015
SVMC 0.699� 0.012 0.705� 0.010 0.746� 0.012
HFS 0.796� 0.008
SAC 0.420� 0.015

(b)
DW2KQ 9.470� 0.111 9.310� 0.097 9.228� 0.105
SA 7.405� 0.089 7.275� 0.071 7.277� 0.085
SQA 6.461� 0.315 5.703� 0.199 5.383� 0.164
SVMC 8.258� 0.143 8.431� 0.119 8.669� 0.133
HFS 9.231� 0.029
SAC 5.001� 0.177

(c)
DW2KQ 0.59� 0.12 0.12� 0.10 −0.21� 0.11
SA 14.30� 0.09 14.19� 0.08 13.75� 0.09
SQA 16.48� 0.30 16.44� 0.20 15.97� 0.16
SVMC 17.26� 0.15 16.63� 0.13 15.64� 0.15
HFS 4.29� 0.12
SAC 12.16� 0.18

(d)
DW2KQ −12.63� 0.26 −12.96� 0.23 −13.37� 0.25
SA 3.79� 0.22 3.70� 0.18 3.34� 0.21
SQA 7.65� 0.73 8.51� 0.47 8.56� 0.39
SVMC 5.31� 0.36 4.33� 0.30 3.24� 0.33
HFS −8.85� 0.07
SAC 4.88� 0.43
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FIG. 18. Correlating the SQA and SVMC algorithm success
probabilities. Shown is a scatter plot correlating the highest
ground state probability for SQA (up to 2 M sweeps) and SVMC
(up to 8 M sweeps) algorithms. For the results shown here both
algorithms use the DW2X annealing schedule with an inverse
temperature of β ¼ 2.5.

8 10 12 14 16
10 2

10 4

10 6

10 8

DW2KQ
SA
SVMC
SQA

(a)

8 10 12 14 16
10 2

10 4

10 6

10 8

DW2KQ
SA
SVMC
SQA

(b)

8 10 12 14 16
10 2

10 4

10 6

10 8

DW2KQ
SA
SVMC
SQA

(c)

s s s

FIG. 17. Scaling of the optimal TTS with problem size for hardware-planted instances. The data points represent the DW2KQ (blue
circles) and three classical solvers, SA (red diamonds), SVMC (purple left triangle), and SQA (green right triangle). The dashed and
dotted curves correspond, respectively, to exponential and polynomial best fits with parameters given in Table II. Panels (a)–(c)
correspond to the 25th quantile, median, and 75th quantile, respectively. Simulation parameters for SA, SVMC, and SQA are given in
Appendix C. The data symbols obscure the error bars, representing the 95% confidence interval for each optimal TTS data point
(computed from the fit of lnhTTSi to a quadratic function as explained in Appendix K).

DEMONSTRATION OF A SCALING ADVANTAGE FOR A … PHYS. REV. X 8, 031016 (2018)

031016-17



APPENDIX I: CALCULATING THE
NORMALIZED OVERLAP OF INSTANCES

In Fig. 8 of the main text we showed the overlap of the
logical-planted instances below the median between the
classical solvers and the DW2KQ. In order to calculate this
quantity, we first fit the lnðTTSÞ of each instance to the
function aðln tf − bÞ2 þ c, and we evaluate the function at
the optimal annealing time for the median TTS. This gives
us a mean value ¯TTSiðt�Þ and its associated 1σ error ΔTTSi
for the ith instance. We then perform 1000 bootstraps over
400 instances, where for each bootstrap we generate two
sets of 100 normally distributed random numbers ηi;ð1;2Þ in
order to calculate two TTS realizations for each instance;
i.e., TTSi;ð1;2Þ ¼ ¯TTSiðt�Þ þ ηi;ð1;2ÞΔTTSi. For the two sets
of TTS realizations, we calculate the median TTS and find
which instances have a TTS below the median. We

calculate the overlap fraction of instances between two
solvers S and S0 for realizations α and β, respectively, which
we denote by fSα;S0β. The normalized fraction f̄C;DW2KQ

between a solver C and the DW2KQ is then given
fC1;DW2KQ2

by

f̄C;DW2KQ ¼ fC1;DW2KQ2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fC1;C2

fDW2KQ1;DW2KQ2

q
: ðI1Þ

The normalization ensures that even with the noisy reali-
zation of the TTS, the overlap of instances between a solver
and itself is one.

APPENDIX J: COMPARISON TO OTHER
ALGORITHMS

In this appendix, we present results from testing a
number of other algorithms. Of course, for practical reasons
we cannot consider all other relevant algorithms (e.g., we
do not consider the isoenergetic cluster updates algorithm
[80]). Instead, we aimed to find other algorithms in addition
to SQA that have a better scaling than the DW2KQ for the
logical-planted instances. SQA remains the best-scaling
algorithm among those we tested.

1. HFS

In themain text, we did not make comparisons to the HFS
algorithm because it does not implement the same algo-
rithmic approach as the other annealing algorithms.
Nevertheless, because it is an algorithm tailored to solve
spin-glass problems on the Chimera architecture, it is
instructive to compare its performance. For the HFS algo-
rithm, we use the implementation provided by Ref. [89]
(which does not utilize a GPU), and we ran it in mode “-S3,”
meaning that maximal induced trees (tree width 1 in this
case) were used. The TTS is given by [20]

TTSHFS ¼ τHFSL

�
5

4
Lþ 2

�
ntreesRðntreesÞ; ðJ1Þ

where τHFS ¼ 0.3 μs is the time for a single update.RðntreesÞ
is the number of repetitions with ntrees tree updates. In
principle, the optimal TTS is found by finding the value of
ntrees that minimizes the TTS, but the implementation of
Ref. [89] continues to increase ntrees until an exit criterion is
reached. Specifically, the algorithm exits when the same
lowest energy is found consecutively after nexit ¼ 4 tree
updates. We have found that this can be highly nonoptimal,
especially for the hardware-planted instances. Therefore, in
all our scaling plots, we have optimized the value of ntrees.
This is an important distinction from all previouswork using
the HFS algorithm, which to the best of our knowledge did
not optimize ntrees, and hence the scaling of the HFS
algorithm in previous work is likely to be an underestimate
of the true scaling, in the very same sense that the D-Wave
scaling reported previously underestimates the true scaling.
The behavior of the optimal TTS with problem size is

shown in Fig. 20, with the scaling parameter fits given in
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FIG. 19. Fits of the success probability to a power law. (a) The
data points represent the DW2KQ lnðpSÞ results for the logical-
planted instances with (red circles) or without (blue crosses) the
gadget over the range tf ∈ ½5; 50� μs. The solid lines correspond
to the linear best fits a lnðtfÞ þ b, where a ¼ 1.546� 0.015, b ¼
−8.348� 0.052 (with the gadget), and a ¼ 0.367� 0.007, b ¼
−1.918� 0.019 (without the gadget). The 2σ error bars are not
visible as they are smaller than the data marker size. (b) The ratio
of the 2σ error to the best-fit value of the linear coefficient (shown
in Fig. 7 of the main text) for 100 instances of the logical-planted
instances without (blue) and with (red) the gadget.
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Table III. We find that for the logical-planted instances, the
HFS algorithm scales better than the DW2KQ, while for
the hardware-planted instances, the scaling of the two is
statistically indistinguishable.
For the HFS algorithm, we find that a quadratic fit does

not capture the general features of the TTS curve as a
function of number of tree updates. Instead, we find that a
function of the form lnhTTSi ¼ aðln ntreeÞ−3 þ bðln ntreeÞ −
ð4=33=4Þða3bÞ1=4 þ c captures the data well. The value of c
gives the value of lnhTTSi�. We give the fit values and their
confidence intervals in Tables IV and V.

2. SAC

We can also consider simulated annealing with both
single and multispin updates (SAC), with the latter being
simultaneous updates of all the spins comprising a unit cell

(superspin approximation [23]). This requires the algorithm
to know about the underlying hardware graph. The imple-
mentation of SAC is identical to that of SA, except each
sweep of single-spin updates is followed by a sweep of unit
cell updates. The eight spins in the unit cell are flipped, and
the move is accepted according to the Metropolis-Hastings
rule. Because the unit cell graph is bipartite, unit cells in the
first partition are updated first, followed by the unit cells in
the second partition. This algorithm can be implemented as
efficiently on GPU’s as the single-spin SA algorithm since it
does not require storing any more data in memory. Because
SAC effectively involves updating twice as many spins as
SA in a single sweep, the timing of SAC is the same as in
Eq. (C2) in Appendix C but with fSAC ¼ 25 ns−1. For
consistency, we use the same annealing schedule in BðsÞβ
for SAC as we did for SA, with BðsÞ as in Fig. 9(b) (in units
where the maximum Ising coupling strength jJijj is 1). We
use β ¼ 0.132 [this corresponds to βBð1Þ ≈ 5] for the
logical-planted instances and β ¼ 0.396 [this corresponds
to βBð1Þ ≈ 15] for the hardware-planted instances. We give
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FIG. 20. Scaling of the median optimal TTS with problem size
for DW2KQ versus HFS and SAC. The data points represent the
DW2KQ (blue circles), HFS (yellow left triangle), and SAC
(green right triangle). The dashed and dotted curves correspond,
respectively, to exponential and polynomial best fits with
parameters given in Table III. (a) Hardware-planted instances.
(b) Logical-planted instances. The data symbols obscure the error
bars, representing the 95% confidence interval for each optimal
TTS data point [computed from the fit of lnhTTSi to a quadratic
function as explained in Appendix K].

TABLE III. The coefficient b in fits to (a) expðaþ bLÞ and
(b) expðaÞLb and the coefficient a in fits (c) expðaþ bLÞ and
(d) expðaÞLb for the logical-planted instances using L ∈ ½12; 16�.
q denotes the quantile. Errors are 95% confidence intervals. Given
here are the fits for SVMC and SQA at β ¼ 2.5 only.

Solver q ¼ 0.75 q ¼ 0.50 q ¼ 0.25

(a)

DW2KQ 0.864� 0.028 0.760� 0.017 0.701� 0.014
SA 1.064� 0.031 0.996� 0.024 0.961� 0.023
SVMC 0.773� 0.060 0.500� 0.029 0.441� 0.020
SQA 0.450� 0.050 0.365� 0.035 0.331� 0.024
HFS 0.678� 0.013
SAC 0.510� 0.018

(b)
DW2KQ 11.962� 0.391 10.573� 0.242 9.746� 0.201
SA 14.635� 0.433 13.746� 0.331 13.299� 0.316
SVMC 10.735� 0.834 6.890� 0.399 6.141� 0.273
SQA 6.221� 0.697 5.047� 0.484 4.561� 0.331
HFS 9.455� 0.183
SAC 7.134� 0.259

(c)
DW2KQ −2.85� 0.40 −2.54� 0.25 −2.53� 0.21
SA 12.42� 0.44 12.46� 0.33 12.18� 0.32
SVMC 16.88� 0.84 19.26� 0.39 19.46� 0.27
SQA 16.60� 0.69 17.13� 0.48 17.12� 0.33
HFS 4.89� 0.19
SAC 10.39� 0.26

(d)
DW2KQ −22.25� 1.03 −19.75� 0.64 −18.39� 0.53
SA −11.23� 1.14 −9.80� 0.87 −9.39� 0.83
SVMC −0.56� 2.18 8.11� 1.03 9.47� 0.72
SQA 6.51� 1.82 8.95� 1.27 9.74� 0.86
HFS −10.52� 0.49
SAC −1.23� 0.68
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the fit values and their confidence intervals in Tables VI and
VII, and the behavior of the optimal TTS with problem size
is shown in Fig. 20, with the scaling parameter fits given in
Table II. We see that the HFS and DW2KQ algorithms are

statistically indistinguishable, and SAC is the top-scaling
algorithm for the hardware-planted instances, outperform-
ing even SQA. Results for the logical-planted instances are
given in Table III, which for convenience reproduces data

TABLE IV. Fit to ax−3 þ bxþ c − 4ða3bÞ1=4=33=4 for the median results of the logical-planted instances using HFS with y ¼ log TTS
and x ¼ log ntrees. The factor c does not include τHFS.

L Minimum trees Maximum trees a b c

8 3 30 0.841� 0.082 2.221� 0.453 9.897� 0.063
9 3 30 0.675� 0.078 2.458� 0.362 10.502� 0.052
10 4 30 0.747� 0.116 4.088� 0.941 11.518� 0.055
11 4 30 0.633� 0.117 5.253� 0.989 12.292� 0.053
12 5 30 0.669� 0.087 7.320� 0.957 13.029� 0.028
13 5 30 0.707� 0.104 12.266� 1.951 13.668� 0.029
14 5 30 0.666� 0.103 13.070� 2.049 14.430� 0.024
15 6 30 0.593� 0.095 14.247� 1.674 15.038� 0.022
16 5 30 0.674� 0.086 19.071� 1.855 15.742� 0.024

TABLE V. Fit to ax−3 þ bxþ c − 4ða3bÞ1=4=33=4 for the median results of the hardware-planted instances using HFS with y ¼
log TTS and x ¼ log ntrees. The factor c does not include τHFS.

L Minimum trees Maximum trees a b c

8 5 30 0.868� 0.068 7.838� 0.643 10.679� 0.020
9 7 30 0.489� 0.102 8.908� 1.392 11.500� 0.015
10 5 50 0.670� 0.041 13.950� 0.854 12.491� 0.018
11 5 50 0.432� 0.040 15.410� 0.671 13.125� 0.011
12 10 30 0.672� 0.263 23.631� 5.858 14.038� 0.022
13 30 100 1.061� 0.154 76.298� 12.888 14.582� 0.012
14 10 100 0.486� 0.086 35.793� 3.1606 15.583� 0.026
15 35 100 0.943� 0.239 96.115� 22.116 16.009� 0.014
16 35 100 0.878� 0.245 69.559� 22.095 17.185� 0.014

TABLE VI. Fit to y ¼ aðx − bÞ2 þ c for the median results of the logical-planted instances using SAC with y ¼ log TTS and
x ¼ log tf. The factor c does not include fSAC.

L Minimum tf Maximum tf a b c

12 10 2154 0.101� 0.010 4.495� 0.099 16.446� 0.039
13 10 2154 0.122� 0.009 5.104� 0.061 17.067� 0.037
14 102 2154 0.123� 0.026 5.504� 0.171 17.515� 0.031
15 102 2154 0.143� 0.034 5.876� 0.130 18.124� 0.046
16 102 3593 0.145� 0.020 6.247� 0.079 18.497� 0.034

TABLE VII. Fit to y ¼ aðx − bÞ2 þ c for the median results of the hardware-planted instances using SAC with y ¼ log TTS and
x ¼ log nsweeps. The factor c does not include fSAC.

L Minimum sweeps Maximum sweeps a b c

8 46 103 0.262� 0.102 5.911� 0.227 15.098� 0.125
9 46 4641 0.217� 0.038 6.656� 0.110 15.792� 0.082
10 166 5994 0.207� 0.048 6.907� 0.129 16.641� 0.078
11 166 5994 0.327� 0.059 6.903� 0.101 16.859� 0.079
12 166 104 0.293� 0.042 7.480� 0.100 17.250� 0.089
13 215 104 0.277� 0.078 7.743� 0.146 17.643� 0.165
14 278 104 0.295� 0.075 8.016� 0.180 18.075� 0.118
15 278 104 0.326� 0.057 8.160� 0.123 18.427� 0.083
16 464 104 0.325� 0.091 8.201� 0.166 18.712� 0.104
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from Fig 3 in the main text. Here we see that SAC outper-
forms the HFS algorithm, which in turn outperforms
DW2KQ, while SQA is the top-scaling algorithm, out-
performing SAC.

3. Minimum-weight perfect matching

Before the mapping onto Chimera and the introduction
of the gadget, the logical-planted solution instances are
defined on a two-dimensional square grid. Here, we check a
polynomial-time algorithm for solving the minimum-
weight perfect-matching problem [90,91] and show that

it cannot be used to efficiently determine the ground state of
the logical-planted instances defined on Chimera with the
gadget. In order to do so, we map the Ising Hamiltonian on
the square grid to a MWPM problem [92], run the Blossom
V algorithm [91] to determine the solution to the MWPM
problem, and finally map the solution of the MWPM
problem to a ground state of the Ising Hamiltonian.
While the MWPM algorithm does find the ground state
of the planted-solution instance defined on the square grid,
it does not necessarily find the ground state of the
associated Chimera instance with the gadget. The reason
for this is that the gadget reduces the degeneracy of the
ground state by selecting only those states for which the
unit cell on which the gadget is placed points up. Without
knowing this and because of the large ground state
degeneracy, the MWPM predominantly selects the wrong
ground state. We show in Fig. 21 how the success
probability of finding the ground state decreases with
increasing problem size. While at L ¼ 8, MWPM finds
the ground state for approximately half the instances, at
L ¼ 16, it finds the ground state of only 16 instances out of
1000 instances. This means MWPM is not competitive with
SAC, HFS, or SQA.

APPENDIX K: DETERMINING THE OPTIMAL
ANNEALING TIME AND OPTIMAL TTS

In order to determine the position of the optimal
annealing time t� and its associated hTTSi� (we drop the
quantile notation q for simplicity) at a given size L for the
DW2KQ, DW2X, SA, SQA, and SVMC results, we fit
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FIG. 21. Success probability for MWPM on the logical-planted
instances. The data symbols correspond to the average success
probability calculated using 1000 bootstraps of 100 instances for
L < 12 and of 1000 instances for L ≥ 12, and the error bars
represent the 95% confidence intervals (2σ) calculated from the
same bootstrap.

TABLE VIII. Fit to y ¼ aðx − bÞ2 þ c for the median results of the logical-planted instances using the DW2KQ with y ¼ log TTS and
x ¼ log tf.

L Minimum tf Maximum tf a b c

12 5 100 0.124� 0.040 2.233� 0.317 6.588� 0.036
13 5 100 0.141� 0.044 2.732� 0.196 7.371� 0.040
14 5 100 0.144� 0.040 3.341� 0.160 7.968� 0.032
15 5 100 0.182� 0.050 3.672� 0.224 9.007� 0.032
16 5 180 0.221� 0.031 3.798� 0.104 9.557� 0.032

TABLE IX. Fit to y ¼ aðx − bÞ2 þ c for the median results of the hardware-planted instances using the DW2KQ with y ¼ log TTS
and x ¼ log tf.

L Minimum tf Maximum tf a b c

8 5 330 0.115� 0.026 3.089� 0.266 6.465� 0.046
9 5 330 0.148� 0.026 3.997� 0.122 7.531� 0.051
10 5 610 0.203� 0.025 4.476� 0.092 8.521� 0.049
11 5 2000 0.268� 0.019 5.059� 0.070 9.209� 0.055
12 9 2000 0.281� 0.029 5.390� 0.092 10.084� 0.060
13 17 2000 0.305� 0.029 5.583� 0.070 10.745� 0.050
14 30 2000 0.338� 0.044 5.834� 0.093 11.540� 0.064
15 30 2000 0.330� 0.038 5.795� 0.080 12.479� 0.063
16 55 2000 0.342� 0.055 5.853� 0.107 13.033� 0.068

DEMONSTRATION OF A SCALING ADVANTAGE FOR A … PHYS. REV. X 8, 031016 (2018)

031016-21



TABLE X. Fit to y ¼ aðx − bÞ2 þ c for the median results of the hardware-planted instances using the DW2X with y ¼ log TTS and
x ¼ log tf.

L Minimum tf Maximum tf a b c

9 5 2000 0.223� 0.026 2.636� 0.244 7.688� 0.103
10 5 2000 0.240� 0.034 2.926� 0.270 8.780� 0.103
11 5 2000 0.291� 0.037 3.265� 0.226 9.825� 0.112
12 5 2000 0.333� 0.030 3.428� 0.137 10.591� 0.083

TABLE XI. Fit to y ¼ aðx − bÞ2 þ c for the median results of the logical-planted instances using SA with y ¼ log TTS and
x ¼ log nsweeps. The factor c does not include fSA.

L Minimum sweeps Maximum sweeps a b c

8 784 14384 0.130� 0.029 7.843� 0.118 19.272� 0.034
9 1000 37926 0.139� 0.022 8.58� 0.086 20.355� 0.040
10 3359 105 0.124� 0.025 9.408� 0.118 22.105� 0.037
11 5455 2 × 105 0.125� 0.026 10.196� 0.118 23.29� 0.035
12 5000 106 0.122� 0.012 10.970� 0.075 24.423� 0.041
13 10 000 106 0.124� 0.020 11.485� 0.109 25.445� 0.054
14 22 000 2 × 106 0.122� 0.019 12.057� 0.114 26.301� 0.044
15 35 000 2 × 106 0.132� 0.028 12.601� 0.125 27.568� 0.059
16 60 000 8 × 106 0.109� 0.017 13.103� 0.139 28.366� 0.052

TABLE XII. Fit to y ¼ aðx − bÞ2 þ c for the median results of the hardware-planted instances using SAA with y ¼ log TTS and
x ¼ log nsweeps. The factor c does not include fSA.

L Minimum sweeps Maximum sweeps a b c

8 297 23357 0.127� 0.015 7.971� 0.072 18.708� 0.040
9 483 37926 0.139� 0.018 8.772� 0.080 19.703� 0.049
10 1274 105 0.124� 0.014 9.373� 0.073 20.533� 0.032
11 2069 1.2 × 105 0.145� 0.020 10.046� 0.081 21.221� 0.050
12 5455 1.2 × 105 0.154� 0.034 10.45� 0.111 21.802� 0.038
13 5455 3 × 105 0.153� 0.024 11.037� 0.115 22.344� 0.051
14 5455 3 × 105 0.188� 0.025 11.429� 0.115 22.898� 0.051
15 8858 5.6 × 105 0.179� 0.017 11.887� 0.077 23.378� 0.035
16 14 384 106 0.172� 0.018 12.293� 0.073 23.837� 0.039

TABLE XIII. Fit to y ¼ aðx − bÞ2 þ c for the median results of the logical-planted instances using SQA with y ¼ log TTS and
x ¼ log nsweeps. The factor c does not include fSQA.

L Minimum sweeps Maximum sweeps a b c

8 27 825 359 381 0.339� 0.039 11.475� 0.046 19.476� 0.036
9 27 825 599 484 0.325� 0.028 11.792� 0.037 19.811� 0.037
10 46 415 106 0.324� 0.033 12.068� 0.048 20.577� 0.039
11 46 415 599 484 0.451� 0.053 12.17� 0.050 20.977� 0.05
12 77 426 106 0.322� 0.064 12.296� 0.082 21.505� 0.061
13 77426 106 0.414� 0.075 12.391� 0.070 21.905� 0.073
14 77 426 106 0.469� 0.078 12.477� 0.065 22.171� 0.069
15 77 426 106 0.575� 0.095 12.589� 0.071 22.678� 0.089
16 77 426 106 0.606� 0.094 12.653� 0.071 22.955� 0.073
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the lnhTTSi data for different annealing times to a function
of the form aðln tf − bÞ2 þ c. The value of b gives the value
of t�, and the value of c is the associated lnhTTSi�.
The fit values and their confidence intervals are given in

Tables VIII (logical planted) and IX (hardware planted)
for the DW2KQ, in Table X for the DW2X (hardware
planted only, since logical-planted instances did not
exhibit an accessible optimal annealing time on the
DW2X), in Tables XI and XII for SA, in Tables XIII

and XIV for SQA, and in Tables XV and XVI for the
SVMC algorithm.
The outcome of this fitting procedure for the DW2KQ

results on the logical-planted instances are shown in
Fig. 1(b) of the main text and on the hardware-planted
instances in Fig. 15(b). The fits for the DW2X on the
hardware-planted instances are shown in Fig. 22. Because
the largest problem size we can program on the DW2X is at
L ¼ 12, we studied only hardware-planted instances on

TABLE XIV. Fit to y ¼ aðx − bÞ2 þ c for the median results of the hardware-planted instances using SQA with y ¼ log TTS and
x ¼ log nsweeps. The factor c does not include fSQA.

L Minimum sweeps Maximum sweeps a b c

8 7742 599 484 0.373� 0.036 12.005� 0.085 20.424� 0.082
9 12 915 599 484 0.504� 0.050 12.162� 0.089 20.985� 0.086
10 16 681 599 484 0.567� 0.052 12.258� 0.075 21.700� 0.086
11 27 825 599 484 0.704� 0.092 12.382� 0.095 22.057� 0.117
12 46 415 599 484 0.701� 0.164 12.497� 0.130 22.632� 0.142
13 46 415 106 0.613� 0.089 12.742� 0.089 23.043� 0.108
14 46 415 106 0.756� 0.119 12.791� 0.098 23.597� 0.142
15 77 426 106 0.662� 0.173 12.928� 0.129 24.069� 0.156
16 77 426 106 0.710� 0.181 12.945� 0.139 24.434� 0.166

TABLE XV. Fit to y ¼ aðx − bÞ2 þ c for the median results of the logical-planted instances using the SVMC algorithm with y ¼
log TTS and x ¼ log nsweeps. The factor c does not include fSVMC.

L Minimum sweeps Maximum sweeps a b c

8 4641 105 0.183� 0.032 10.166� 0.075 21.545� 0.041
9 7742 4 × 105 0.135� 0.017 10.919� 0.079 22.485� 0.037
10 27 825 106 0.141� 0.023 11.705� 0.103 23.515� 0.040
11 27 825 4 × 106 0.140� 0.011 12.546� 0.059 23.797� 0.036
12 27 825 4 × 106 0.168� 0.012 13.003� 0.049 25.184� 0.042
13 46 415 4 × 106 0.174� 0.023 13.362� 0.076 25.864� 0.056
14 77 426 3 × 106 0.217� 0.041 13.700� 0.105 26.457� 0.069
15 77 426 8 × 106 0.220� 0.023 14.159� 0.110 26.582� 0.077
16 105 8 × 106 0.235� 0.024 14.434� 0.126 27.208� 0.072

TABLE XVI. Fit to y ¼ aðx − bÞ2 þ c for the median results of the hardware-planted instances using the SVMC algorithm with
y ¼ log TTS and x ¼ log nsweeps. The factor c does not include fSVMC.

L Minimum sweeps Maximum sweeps a b c

8 4641 105 0.087� 0.066 10.229� 0.406 21.754� 0.082
9 2782 4 × 105 0.106� 0.026 11.350� 0.215 22.890� 0.075
10 4641 4 × 105 0.132� 0.030 11.961� 0.255 23.774� 0.061
11 105 106 0.148� 0.042 12.875� 0.285 24.651� 0.079
12 46 415 4 × 106 0.143� 0.023 13.492� 0.111 25.321� 0.060
13 46 415 4 × 106 0.158� 0.023 13.887� 0.107 25.884� 0.050
14 77 426 4 × 106 0.176� 0.048 14.394� 0.264 26.592� 0.075
15 12 9154 8 × 106 0.179� 0.034 14.919� 0.167 27.183� 0.057
16 21 5443 8 × 106 0.182� 0.043 15.215� 0.241 27.693� 0.054
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this device. Note that because the hardware graph of the
DW2X differs from that of the DW2KQ [see Figs. 10(a)
and 10(b)], we should not assume that the instances defined
on both are necessarily from the same class.
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FIG. 22. Median TTS as a function of annealing time for
hardware-planted instances on the DW2X. Unlike the DW2KQ,
the optimal annealing time for L ¼ 8 appears to be smaller than
5 μs; for L ≥ 9 the optimal annealing time t� lies within the range
of achievable annealing times for the DW2X device. Further-
more, for the same problem size, the DW2X optimal annealing
times are consistently smaller than those of the DW2KQ
[compare to Fig. 15(b) and recall Fig. 16]. While the difference
in the hardware graph may play a role in this, it is likely that the
intrinsic differences between the two devices is responsible (see
Appendix G 1 for additional comparisons).
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