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Abstract 

Civil Military Operations (CMO) associated geospatial modeling is 

intended to enable increased knowledge of regional stability, assist in 

Foreign Humanitarian Assistance (FHA), and provide support to Force 

Health Protection (FHP) operational planning tasks. However, current 

geoenabled methodologies and technologies are lacking in their overall 

capacity to support complex mission analysis efforts focused on 

understanding these important stability factors and mitigating threats to 

Army soldiers and civilian populations. CMO analysts, planners, and 

decision-makers do not have a robust capability to both spatially and 

quantitatively identify Regions of Interest (ROI), which may experience a 

proliferation in health risks such as vector-borne diseases in areas of 

future conflict. Additionally, due to this general absence of geoenabled 

health assessment models and derived end-products, CMO stakeholders 

are adversely impacted in their Military Decision Making Process (MDMP) 

capabilities to develop comprehensive area studies and plans such as 

Course of Action (COA). The NET-CMO project is focused on fostering 

emerging geoenabling capabilities and technologies to improve military 

situational awareness for assessment and planning of potential health 

threat-risk vulnerabilities.  
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1 Introduction 

1.1 Background 

The New and Enhanced Tools for Civil Military Operations (NET-CMO) 

FY19 6.2/6.3 research project primarily addresses three challenge problem 

areas. These problems affect Civil Military Operation (CMO) ability to 

ensure long-term regional stability, assist in foreign humanitarian 

assistance (FHA), increase public health, or provide situational awareness. 

Solutions to these problems will not only increase stability and mitigate 

threats to the civilian population, but will also ensure force readiness and 

health for the Army at large.  

1.2 Army challenge problems 

1.2.1 Problem 1 - Uniform pixel size for spatial disparate datasets 

Commonly used geoenabled products, such as disease hazard maps and 

prediction of conflict prone regions, require raster data with varying 

spatial resolutions. These models require their raster inputs to have a 

uniform pixel size, which often requires resampling. Currently, there is not 

guidance on how to choose a uniform pixel size when working with 

spatially disparate data. In previous research, the common approach has 

been to resample to the smallest or largest pixel size of the dataset without 

taking into consideration the amount of error introduced, the processing 

time needed for analysis, or the preservation of spatial patterns, all of 

which can have an impact on a model’s overall results. Thus, a statistically 

valid way of selecting a uniform pixel size for spatially disparate raster 

data needs to be developed. 

1.2.2 Problem 2 - Resolution of data in denied regions 

Many regions of the world are data poor in terms of environmental, 

disease, demographic, and social data. Relevant data sources that may be 

available typically have coarse spatial and temporal resolution – with key 

predictive incidence datasets potentially only available annually at either a 

country or provincial level. Information with such a low fidelity provides 

for inhibited situational awareness of a region of interest (ROI) and makes 

it difficult for CMO planners to develop course of action (COA) based end-

products. Also, new techniques, scaling methods, and geoprocessing 
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algorithms are needed to conflate and merge ancillary geospatial data sets 

across these spectrums of scale and fidelity. 

1.2.3 Problem 3 - Mosquito-borne disease prediction 

Over half of the world’s population lives in a region where health risk from 

mosquito-borne diseases are endemic. With changing temperatures and 

increased extreme weather events, the global reach of these diseases is 

expanding. Current CMO practices do not possess the capability to predict 

when and where these mosquito-borne diseases will occur or the portion 

of the population that could become infected; therefore, they do not have 

the best situational awareness as to which preventative techniques to use, 

whom to vaccinate, the amount of medical supplies needed, or areas where 

civilians should be removed. Additionally, without understanding how a 

disease will spread, Soldiers could potentially be unable to protect 

themselves from these predictable health risks directly impacting mission 

readiness and effectiveness. As seen in the West African Ebola epidemic 

that occurred between 2013-2016, infectious disease can severely disrupt 

not only the public health of a region, but also its social and economic 

stability. With the increasing spatial distribution of mosquito-borne 

diseases and the growing resistance of these diseases to medicines, it is 

imperative that CMO work efforts focus on a better understanding of when 

and where these diseases will occur, spread, and their severity. Project 

outcomes will serve to safeguard a region’s public health, help stabilize 

populations, and protect Soldier’s well-being. 

1.3 Approach 

The quantitative tools and methodologies developed within the NET-CMO 

project will serve to enhance current and future mission analysis for CMO. 

The project was successful due to building upon scientific research across an 

interdisciplinary range of academic disciplines and employing a sound 

scientific framework. The tools and methodologies developed through 

research and development (R&D) work efforts were well-researched, 

constructed, documented, tested, and more importantly subjected to 

rigorous statistical validation to take into account the uncertainty that exists 

with any type of analysis. Additionally, team members working on the 

project had the requisite academic backgrounds and diverse professional 

expertise (physics, mathematics, human geography, environmental science, 

etc.) required to tackle the stated Army challenge problems. 
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The leveraging of outcomes from the prior ERDC 6.2 project Vulnerability 

Assessment Software Toolkit (VAST) drove the distinctive tasks of this 

project. The applied statistical approaches and planned quantitative tools 

and methodologies as mapped to problem areas are summarized below: 

1. Uniform pixel size for spatial disparate datasets 

a. Test and validate previously developed VAST tools to find an 

optimal uniform pixel size when working with remotely sensed data 

with disparate spatial resolution.  

(1) Tool 1: Multiple Semivariograms 

(2) Tool 2: Local Spatial Dispersion 

2. Resolution of data in denied regions 

a. Develop methodology to down sampling annual records of vector-

borne disease to a monthly time scale.  

b. Develop a model that can downscale and optimize provincial or 

country level vector-borne disease statistics to a 1 km or smaller 

pixel size. 

3. Mosquito-borne disease prediction 

a. Complete VAST developed mosquito-borne disease simulation. 

1.4 Objective 

The intended objectives of the NET-CMO project and goal of the R&D 

work efforts were to deliver Stakeholders the following geospatial 

processing mechanisms to enhance interpretation of Operational 

Environment (OE) and mission analysis capabilities. 

• Tool(s) capable of finding a uniform pixel size when working with data 

with varying spatial resolutions. 

• The capability to downscale coarse temporal and spatial resolution 

vector-borne disease data to provide a more defined situational 

awareness of a region. 

• Mapping and health risk analysis of the spatial and temporal spread of 

any mosquito-borne disease and the proportion of the population that 

will become infected.  
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2 Uniform Pixel Size 

2.1 Literature review 

Terrestrial features in remotely sensed imagery or geospatial data have 

inherent and quantifiable spatial variability and heterogeneity. The spatial 

resolution of a remotely sensed image represents the scale of sensor 

observations on the land surface (i.e. the pixel size). Other types of spatially 

sampled environmental data (e.g. precipitation) can be represented in 

gridded or raster form. The selection of an appropriate scale depends on the 

type of information desired as well as the size and variability of the land 

phenomena under examination. In modeling processes on the Earth’s 

surface, their spatial resolution must be considered. If the process is 

affected by detail at a finer scale than that provided by the data, the model’s 

output will be misleading (Goodchild 2011).  

The relationship between the size of objects or features in an image and 

spatial resolution helps determine the spatial structure of the image. Fine 

resolution, relative to scene object size, results in high correlation of 

neighboring pixels, reducing the local spatial variance. Large pixel size, 

relative to scene objects, results in a mixing of response from different 

kinds of objects, also depressing local variance. The pixel size that results 

in a maximum variance would then best capture the spatial variation in 

the image (Rahman et al. 2003; McCloy and Bøcher 2007). As seen in this 

study, this general principle may not hold for images with heterogeneous 

spatial structure having a broad range of spatial frequency of variation for 

image objects. 

Two common approaches used when resampling to a common spatial 

resolution are upscaling and downscaling. Upscaling refers to resampling 

all the data to a larger pixel size, while downscaling refers to resampling a 

raster to a smaller pixel size. The challenges associated with each 

resampling approach are listed below: 

1. Resampling raster data from a small pixel size to a larger pixel size may 

cause useful information to be lost.  

2. Downscaling to an arbitrary pixel size introduces user bias and false 

precision. Pixels that are significantly smaller than the target objects 

they represent contain redundant information (Wulder and Boots 

2001). If redundant pixels are overly present, minor background pixels 
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could become overly represented and skew geospatial models 

(Rodriguez-Carrion et al. 2014; Costanza and Maxwell 1994). Thus, it is 

preferable to size pixels at the point where only relevant information is 

preserved (Fisher et al. 2017).  

Little research has been carried out on how to effectively determine an 

ideal pixel size to resample to when working with disparate rasters, 

especially those that may be internally heterogeneous, such as land cover 

or population density. However, multiple techniques have been assessed 

by previous studies to identify a pixel size for single raster datasets that 

best represent the spatial information of objects present within a raster 

scene. The techniques include local variance (McCloy and Bøcher 2007; 

Woodcock and Strahler 1987; Rahman et al. 2003; Rodriguez-Carrion et 

al. 2014; Sharma et al. 2011; Hyppänen 1996), fractal analysis of digital 

elevation models (Sharma et al. 2011; Lam and Quattrochi 1992), and 

analysis of semivariograms (Atkinson and Curran 1997; Wu et al. 2006; 

Rahman et al. 2003; Hyppänen 1996; Cohen et al. 1990). 

Of these methods, two were explored in NET-CMO: semivariograms and 

local spatial variance. A semivariogram is a statistical method that 

efficiently characterizes the structure of spatial patterns (de Oliveira 

Silveira et al. 2017) and spatial continuity (de Lima Guedes et al. 2015) of a 

raster image. One of the most attractive qualities of semivariograms is 

their ability to render the spatial autocorrelation that occurs when 

evaluating rasters. Spatial autocorrelation, the tendency of phenomena to 

be similar to nearer points than farther points, is present in any dataset 

that describes a spatially dependent phenomenon, but can lower overall 

model accuracy in models that assume spatial independence (Dormann et 

al. 2007; Kühn and Dormann 2012; Legendre 1993). The semivariogram is 

a measure of spatial dependence between two observations as a function of 

distance between them and provides a graphical representation of spatial 

autocorrelation when working with spatial data. The semivariogram graph 

shows the distance at which pixels in a raster are no longer spatially 

autocorrelated, which is known as the ‘range’ of the semivariogram. Pixels 

before the range are similar to each other and therefore contain redundant 

information. An ideal pixel size for a single image is based on this location 

in the semivariogram. This ideal pixel size for a single image balances the 

maximization of variance between neighboring pixels and the ability to 

maintain spatial patterns throughout the dataset. 

The second method used to identify an ideal uniform pixel size across 

spatially disparate rasters was local spatial dispersion (LSD). Rahman et 
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al. (2003) assessed image spatial structure of similar vegetation by 

analyzing the mean local variance of pixel values at varied spatial 

resolutions. The authors found that a maximum value for this function 

may be related to an optimum pixel size for the segmentation of a 

particular land surface process or feature type. Two competing concerns 

are involved: finding a balance between reducing the correlation among 

neighboring pixels having sizes smaller than the spatial structure, and 

reducing effects of different spatial objects intermixed within a given pixel 

(pixel mixing). The balance between these concerns is obtained by finding 

the sample size associated with the maximum mean local variance of a 

feature when plotted against pixel size (Woodcock and Strahler 1987). This 

size will be tuned to the particular spatial structure of scene elements that 

make up the feature(s) under investigation.  

2.2 Geoanalytic data and methods 

2.2.1 Semivariograms 

2.2.1.1 Data  

The proposed semivariogram method is applied to tree cover, population, 

precipitation, and wind raster data available over Cambodia (Table 1). 

Cambodia was selected because its diverse spatial patterns in land cover, 

including multiple types of forest cover and woodlands, deforested land, 

plains, agriculture, grasslands, wetlands, and urban areas.  

All datasets were retrieved and processed in Google Earth Engine (GEE). 

The original application of the data was to provide monthly representations 

for each dataset. Landsat-derived tree cover and population data from 

WorldPop* are available in GEE as annual products and assumed static for 

each month of 2010. Wind was available as an averaged monthly product 

and required no additional processing. Precipitation from the Climate 

Hazards group Infrared Precipitation with Stations was the only dataset 

that required temporal reduction by summing the six collections for the 

month of June 2010 to provide the total monthly precipitation in 

millimeters (Table 1). 

                                                                 

* WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of 

Southampton) (2013) Cambodia 100m Population. Alpha version 2010, 2015 and 2010 estimates of 

numbers of people per pixel (ppp) and people per hectare (pph), with national totals adjusted to match 

UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. DOI: 

10.5258/SOTON/WP00040. 
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Table 1. Overview of all data types from Cambodia used in the study. 

 

2.2.1.2 Methods 

The output of a semivariogram is a graph that plots semivariance against 

grouped distances between pixels in a raster. Nearby pixels often exhibit 

lower semivariance than pixels that are farther away. This is because 

nearby pixels are more likely to contain similar pixel values. Pixels farther 

away from each other are likely to contain different features, and thus 

show high semivariance.  

An example of a semivariogram is shown in Figure 1. The x-axis represents 

the distance between pixels and the y-axis shows the amount of 

semivariance between pixels based on their physical distance from each 

other. The range, represented by a vertical dashed line, is the location in 

the semivariogram where pixels are no longer spatially autocorrelated. 

Pixels are spatially correlated before the range is reached and where the 

sill begins, represented by a horizontal hashed line. Hyppänen (1996) and 

Cohen et al. (1990) showed the range and sill relate to actual features on 

the ground.  
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Figure 1. A sample semivariogram showing the location of the sill and range (ESRI 2019a). 

Pixels are less correlated as distance between pixels increases. 

 

Previous research indicates the range as the ideal pixel size in a single 

raster type dataset (Hyppänen 1996; Curran 1988; Löw and Duveiller 

2014). However, according to framework based on Nyquist’s sampling 

theorem (Nyquist 1928), half the semivariogram range is more 

appropriate. Nyquist’s sampling theorem is based on his framework for 

converting one-dimensional telegraph analog data to digital format, and it 

states that the sampling rate must be equal to one-half the signal 

bandwidth. If the semivariance between pixels at varying ranges is thought 

of as a signal, then one-half the range can be thought of as the signal’s 

sampling rate, and therefore, the ideal pixel size for a single raster. This 

theory is supported by more recent research, which demonstrated that the 

distance above half the semivariogram range indicates the size at which 

spatial elements are not related (Rahman et al. 2003; Modis and 

Papaodysseus 2006).  

The workflow to extend the semivariogram to multiple rasters is listed 

below. The workflow was built in ArcMap and ModelBuilder in ArcGIS* 

(Environmental Systems Research Institute, Redlands, CA). 

                                                                 

* ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used 

herein under license. Copyright © Esri. All rights reserved. For more information about Esri® software, 

please visit www.esri.com.” 

http://www.esri.com/
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1. Each raster used in the analysis was projected into a common 

projection.  

2. The semivariogram and its range for each raster were calculated using 

the ArcGIS Geostatistical Wizard. The lag distance of the 

semivariogram was manually selected to be smaller than most visible 

objects in the raster. No accepted method exists to determine lag in 

continuous raster data. 

3. Because anisotropy (where the data show higher spatial 

autocorrelation in one direction than another) was present in the data, 

ArcGIS Geostatistical Wizard calculated the major and minor ranges. 

Half the minor range for the ideal pixel size for each raster is used as its 

optimal pixel size. The minor range was selected because it was the 

direction that contained the most variance in the raster. 

4. All of the raster images were upscaled or downscaled to all of the 

calculated ideal pixel sizes using a bilinear interpolation.  

5. Nearest neighbor interpolation was then used to resample and match 

the pixel position and resolution from the original projected raster for 

the purpose of calculating raster error introduced from resampling. 

The Mean Absolute Error (MAE) was calculated between the original and 

resampled raster data at each pixel size. The MAE values from this 

calculation were averaged at the resampled pixel size, which quantified the 

error caused by resampling. The average MAE values at each ideal pixel 

size were ranked from lowest to highest; the ideal pixel size with the lowest 

average MAE was selected as the best uniform pixel size. 

2.2.2 Local spatial dispersion 

An algorithmic approach was developed that addressed the creation of a 

spatial data model and a set of methods for performing internal 

calculations to arrive at an optimal sample size. These methods were 

required to compute and optimize LSD within the model before calculating 

the optimal sample size based on the discovered set of local maxima. A 

graphical user interface was then created in the MATLAB environment to 

perform the calculations and display the results of LSD optimization.  

2.2.2.1 Data 

The first step in the process is to create the spatial data model by 

populating it with resampled versions of the original image or spatial 

dataset with progressively lower spatial resolution. To do this, a 
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resampling method must be chosen to create these pixel aggregation levels 

calculated by a neighborhood function. Three resampling methods were 

allowed: block processing of the mean of each set of neighborhood values, 

bilinear interpolation, and bicubic interpolation. 

The next step is to compute the local dispersion at each cell location for 

each resampled image in the spatial data model. Common techniques for 

this purpose include local spatial variance (LSV) and Mean Absolute 

Deviation (MAD). The result is a set of LSD “images,” each one having the 

spatial resolution of the resampled image from which it was created. 

However, in order to proceed further with the matrix algebra necessary to 

find the set of LSD maxima in this multidimensional space, the spatial 

data model must have uniform granularity along all three orthogonal 

directions (r,c,s). This is required to have a uniform distribution of LSD 

values. Due to the nature of the pixel aggregation process, this granularity 

decreases in the sample size (s) direction. Therefore, an interpolation 

scheme must be applied to each LSD image to achieve the same spatial 

resolution as the original image. The nearest neighbor interpolation will be 

employed for this purpose. This results in a uniform distribution of LSD 

values throughout LSD space. 

2.2.2.2 Methods  

• Hessian Matrix Optimization: 

 r = row 

 c = column 

 s = sample size 

 

In order to find the Hessian for each x vector, each element must be 

evaluated numerically. A finite divided-difference approximation method 

will be used for this purpose. The values of x in the row, column, and 

sample dimensions will be perturbed by some small fractional value δ to 
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generate the partial derivatives. δ cannot be too small or too large. Too 

small a value may not provide enough variation in the variable to capture 

the functional trend at that location, too large may cause excess inaccuracy 

in the estimate for the derivative. Nominally, each δ increment in LSD 

space can be taken as an adjoining raster grid cell (one pixel) along one of 

the orthogonal axes r,c,s. 

In employing the divided-difference method to approximate the partial 

derivatives, one can normally choose from equations for a “forward,” 

“centered,” or “backward” sampling scheme for the δ increment. Since the 

centered difference equations are considered a more accurate 

representation of the derivative, this approach will be used to estimate the 

Hessian matrix elements. This requires adding and subtracting δ for each 

independent variable in the approximation equations, maintaining a 

consistent approach. However, because outside image boundaries cannot be 

sampled, Hessian elements for pixels within a distance δ of the r,c edges for 

each image will not be estimated. Normally, this limitation would also apply 

along the s axis as well. However, because any higher resolution images with 

sample sizes between s = 1 and s = δ may contain a large amount of LSD 

local maxima information, these images will be retained by substituting 

delta increments that yield LSD samples in the positive s direction. 

The result of these divided-difference calculations is an estimated Hessian 

matrix for each location in LSD space. The centered approximation 

equations for the 9 Hessian elements hij (i=1,2,3; j=1,2,3) are provided 

below. If assumed that the partials are continuous in the region 

surrounding each location x in LSD space, the mixed partials will be 

equivalent, e.g. ∂2f/∂r∂c = ∂2f/∂c∂r. 

Centered Divided Difference: 

 h11 = ∂2f/∂r2 = [f(r+δr,c,s) – 2f(r,c,s) + f(r-δr,c,s)] / (δr)2 

 h22 = ∂2f/∂c2 = [f(r,c+δc,s) – 2f(r,c,s) + f(r,c-δc,s)] / (δc)2 

 h33 = ∂2f/∂s2 = [f(r,c,s+δs) – 2f(r,c,s) + f(r,c,s-δs)] / (δs)2 

 h21 = ∂2f/∂r∂c = ∂2f/∂c∂r = [f(r+δr,c+δc,s) – f(r+δr,c-δc,s) – f(r-

 δr,c+δc,s) + f(r-δr,c-δc,s)] / 4δrδc 
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 h31 = ∂2f/∂r∂s = ∂2f/∂s∂r = [f(r+δr,c,s+δs) – f(r+δr,c,s-δs) – f(r-

 δr,c,s+δs) + f(r-δr,c,s-δs)] / 4δrδs 

 h32 = ∂2f/∂c∂s = ∂2f/∂s∂c = [f(r,c+δc,s+δs) – f(r,c+δc,s-δs) – f(r,c-

 δc,s+δs) + f(r,c-δc,s-δs)] / 4δcδs 

where 

 h12 = h21; h13 = h31; and h23 = h32. 

The next step in the process is testing each Hessian for the property of 

negative definiteness. Every location x in LSD space for which H(x) is 

negative definite will define a local maximum for f(r,c,s). To perform this 

test the determinants of three subset matrices H1, H2, H3 of the Hessian 

must be found, starting from the upper left position (h11). These are: 

 H1 =  h11 (a 1x1 matrix) 

 det(H1) = h11 = ∂2f/∂r2 

 H2 = h11 h12 (a 2x2 matrix) 

  h21 h22 

 det(H2) = h11 h22 - h12 h21 

   = ∂2f/∂r2 ∂2f/∂c2 – ∂2f/∂r∂c ∂2f/∂c∂r 

Under the assumption that the partials are continuous in the region 

surrounding location x in LSD space, 

 det(H2) = ∂2f/∂r2 ∂2f/∂c2 – (∂2f/∂r∂c)2 

 H3 = H (the full 3x3 matrix) 

 det(H3) = h11 h22 h33 - h11 h23 h32 - h12 h21 h33 + h12 h23 h31 + h13 h21 h32 - 

 h13 h22 h31 

 det(H3) = ∂2f/∂r2 ∂2f/∂c2 ∂2f/∂s2 – ∂2f/∂r2 ∂2f/∂c∂s ∂2f/∂s∂c –
 ∂2f/∂r∂c ∂2f/∂c∂r ∂2f/∂s2 + ∂2f/∂r∂c ∂2f/∂c∂s ∂2f/∂s∂r + ∂2f/∂r∂s 

 ∂2f/∂c∂r ∂2f/∂s∂c – ∂2f/∂r∂s ∂2f/∂c2 ∂2f/∂s∂r 
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Again, assuming that the partials are continuous in the local region, 

 det(H3) = ∂2f/∂r2 ∂2f/∂c2 ∂2f/∂s2 – ∂2f/∂r2 (∂2f/∂c∂s)2 – ∂2f/∂s2 

 (∂2f/∂r∂c)2 + 2(∂2f/∂r∂c ∂2f/∂c∂s ∂2f/∂r∂s) – ∂2f/∂c2 (∂2f/∂r∂s)2 

The following conditions are necessary and sufficient for H(x) to be 

negative definite: 

    det(H1) < 0 
 
    det(H2) > 0 
 
    det(H3) < 0 
 

This test is applied to every location vector x in LSD space, ultimately 

transforming LSD space into a “local maximum” space. x is a local 

maximum of f(r,c,s) wherever H(x) is negative definite. The output from 

these operations is, in theory, the set of optimal sample sizes associated 

with the subset of x vectors defined by the negative definiteness property 

of H(x) across the image or spatial dataset as determined by the LSD 

approach. These may be mapped to particular feature objects in the data 

with relatively uniform spatial frequencies to determine the optimal 

sample sizes generated by different features. If a single optimal sample 

size for the full dataset is desired, a weighted mean may be taken of the full 

set of derived sample sizes.  

The mean of the set of sample sizes associated with the set of LSD local 

maxima determined by the above procedure will be weighted by the LSD 

value associated with each local maximum. Because every location in the 

dataset’s LSD space is investigated for a possible local maximum, this 

single average sample size will be implicitly weighted by the area of 

individual feature objects that generate similar optimal sample sizes due to 

a relatively uniform spatial frequency response in the data. 

• Peakedness and Optimal Sample Size 

This complete set of local maxima may not be of uniform quality in terms 

of the robustness of each maximum found for LSD = f(r,c,s). That is, there 

may be some very weak or “shallow” maxima that are barely included in 

the set because they meet the requirements for negative definiteness near 

the limits of precision for the floating point numbers used in the 
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calculations. These maxima may have spurious accuracies and may not 

represent the spatial frequencies of the underlying image or spatial data 

feature. It may be useful, therefore, to apply a threshold to exclude these 

lower-quality maxima. The term “peakedness” will be used to describe the 

strength or quality of the LSD local maximum. 

The peakedness of each local maximum will be calculated using the 

Laplacian of the function LSD = f(r,c,s) evaluated at each point 

determined by the Hessian matrix calculations. From vector analysis, the 

Laplacian means the “divergence of the gradient” of a scalar function, and 

is itself a scalar quantity. For a local maximum of a multivariate function, 

the Laplacian will be a negative number. The more “peaked” the local 

maximum is, the more negative the number. In this way the range of 

Laplacian values can be calculated for the initial full set of local maxima, 

then a chosen threshold expressed as a percentage of that range to include 

only those maxima with Laplacian values more negative than the threshold 

can be applied. The full set of local maxima in LSD space is equivalent to a 

threshold of zero. 

For the purposes here, the scalar function is LSD = f(r,c,s). The Laplacian 

at any point (r,c,s) is then given by 

∇2 f = ∂2f/∂r2 + ∂2f/∂c2 + ∂2f/∂s2 

 

Fortunately, these second-order partial derivatives were already estimated 

numerically when calculating the Hessian matrix for each location in LSD 

space, and comprise the principal diagonal of the matrix. They are now 

available to calculate the Laplacian for the set of local maxima determined 

by the Hessian matrix analysis. To do this, the trace (the sum of elements 

of the principal diagonal) of each Hessian matrix tr(Hrcs) in LSD space is 

found. The full range of Laplacian values, or peakedness, in LSD space can 

then be found.  

The final step is the calculation of optimal sample size. Using peakedness, 

the effect of different thresholds on the process of finding an optimal 

sample size for the whole image can be explored. The optimal size is 

defined as the mean of the set of sample sizes associated with the LSD 

space locations of the set of local maxima after applying a chosen 

Laplacian threshold, if desired. This mean is weighted by the number of 
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local maxima and their associated LSD values at each sample size. It is 

given by 

𝑆𝑜𝑝𝑡 = ∑ 𝐿𝑆𝐷(𝑙𝑚𝑎𝑥𝑖,𝑗)𝑆𝑖

𝑛,𝑚

𝑖,𝑗=1

∑ 𝐿𝑆𝐷(𝑙𝑚𝑎𝑥𝑖,𝑗

𝑛,𝑚

𝑖.𝑗=1

⁄ ) 

where 

 Sopt = optimal sample size 

 i = resampled image number 

 n = total number of resampled images 

 m = total number of LSD local maxima in resampled image i  

LSD(lmaxi,j) = for image i, the LSD value for each j of m local maxima  with 

peakedness above a given threshold 

 Si = sample size of image i 

2.3 Results and discussion 

2.3.1 Semivariograms 

2.3.1.1 Results  

The ideal pixel sizes for each raster dataset are listed in Table 2, along with 

the MAE for each resampling of the rasters. The average MAE at 470 m 

was the lowest among the four optimal pixel sizes, indicating that 470 m is 

the optimal uniform pixel size to resample each raster. The higher average 

MAE values at the larger pixel sizes indicated more error was introduced 

when resampling to those sizes. 

Table 2. Ideal pixel size for each raster and its corresponding MAE. The average MAE was 

lowest when all of the rasters were resampled to 470 m, making 470 m the ideal pixel size. 

 

Major and most minor features in each raster remained distinct when the 

rasters were resampled from their original pixel sizes to best pixel size for 

the dataset, 470 m. Resampling the population, precipitation, and wind 

pixels to the best pixel size for the entire dataset at 470 m introduced 
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redundancy to the dataset, but prevented problems that arose when 

resampling to each individual raster’s ideal pixel size (see Figure 2).  

Tree cover (30 m original resolution). The semivariogram calculated for 

the tree cover dataset resulted in a half range of 470 m. Some local 

variation in percent tree cover remained apparent at the 470 m pixel size, 

while linear features among the tree cover, such as waterways, that were 

visible at the native original of 30 m were no longer visible at 470 m (see 

Figure 2a). 

Population (1,000 m original resolution). The semivariogram calculated 

for the population dataset resulted in a half range of 20,457 m. Because 

the population of Cambodia is low throughout most of the country, 

resampling the raster to the ideal pixel size resulted in substantially 

reduced higher population values in urban areas that were present at the 

original spatial resolution (see Figure 2b).  

Precipitation (5,000 m original resolution). The semivariogram 

calculated for the precipitation dataset resulted in a half range of 96,114 m, 

which is much larger than its native pixel size of 5,000 m. The resulting 

pixels at 96,114 m were so large that there were gaps where there were not 

enough pixels on the border of the country (see Figure 2c).  

Wind (25,000 m original resolution). The semivariogram calculated for 

the wind dataset resulted in a half range of 94,901 m. The variation in 

wind speed was low and when resampled to its optimal pixel size, areas of 

high and low wind speed remained clear throughout the country; however, 

resampling to that pixel size left gaps as pixels were removed along the 

border of the country (see Figure 2d). 
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Figure 2. Each raster at its original resolution, resampled to its ideal pixel size, and to the 

pixel size, 470 m, with the lowest average MAE for (a) tree cover; (b) population; (c) 

precipitation; and (d) wind. 
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2.3.1.2 Discussion 

This paper expands on semivariogram methods used to identify a target 

uniform pixel size that can be used when analyzing rasters of differing 

spatial resolutions. This is achieved by finding a pixel size that minimizes 

both overall error and spatial autocorrelation while maintaining 

information from the original rasters. The test case of four rasters between 

30 m and 25,000 m resolutions resulted in an ideal pixel size of 470 m, 

which preserves the primary features shown in the data and useful in cases 

when mapping individual features on the ground is unnecessary.  

This approach yielded an optimal pixel size that was smaller than three of 

the four rasters, thus resampling the three rasters to the optimal pixel 

required resampling them to resolutions smaller than their original 

resolutions. As discussed in the introduction, resampling to a smaller pixel 

size introduces redundancy into the data, which can increase spatial 

autocorrelation. Spatial autocorrelation violates the assumption of 

independent observations (Dormann 2007; Legendre 1993; Kühn and 

Dormann 2012) and redundancy can slow down processing times and take 

up unnecessary storage (Fisher et al. 2017).  

This semivariogram technique would be most useful in species 

distribution models that require a uniform pixel size, like the maximum 

entropy model (Phillips 2017; Phillips et al. 2006; Nezer et al. 2017) and 

the ecological-niche factor analysis (Hirzel and Arlettaz 2003; Hirzel et al. 

2002; Santini et al. 2019). 

The resulting ideal pixel size is consistent with pixel sizes used in species 

distribution models. Hao et al. (2019) reviewed data used in species 

distribution studies and found that data ranged from 5 m in small-scale 

studies to 110,000 m in global studies. Data that are analyzed on the local 

level are often resampled to the smallest pixel size in the dataset (Soucy et 

al. 2018), which may be necessary in modeling presence of disease vectors, 

but unnecessary in other scenarios that do not require fine detail. For 

example, Santini et al. (2019) modeled species abundance at a large pixel 

size based on the theory that assumes a pattern arises at a geographic 

scale, irrespective of local variations. Fisher et al. (2017) found that higher 

resolution imagery performed better in characterizing environmental 

quality variables comprising a watershed model, but also did a cost-benefit 

analysis and determined costs to be higher utilizing high-resolution 

imagery.  
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2.3.2 Local spatial dispersion 

2.3.2.1  Results 

An overview of results from the multiscale LSD processing algorithm of 

several examples of geospatial data will be provided: a WorldView2 image 

(Figure 3) over Florida processed as Normalized Difference Vegetation 

Index (NDVI) values and three environmental datasets from Cambodia for 

tree cover (Figure 4), population density (Figure 5), and precipitation 

(Figure 6). These datasets have a wide disparity of spatial resolutions: 

1.3 m, 30 m, 991 m, and 4,954 m, respectively.  

Dataset statistics from the LSD optimization processing are shown in 

Table 3, including the optimal sample size results with and without the 

peakedness threshold. Example peakedness thresholds were chosen for 

each dataset to display an appreciable fraction of the total number of local 

maxima. The number of pixels available in each original image acts as an 

upper limit on the number of resampled images that can be created for 

optimization. This is controlled by varying the maximum percentage of 

edge pixels. For consistency in comparison, all processing was performed 

with the following parameters in common: computation kernel size, 3x3; 

resample method, pixel block mean value; LSD statistic, MAD; and finite 

difference equation delta value in pixels, 1. 
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Figure 3. WorldView2 image (Florida). 

 

Figure 4. Tree cover (Cambodia). 

 

Figure 5. Population density (Cambodia). 

 

Figure 6. Precipitation (Cambodia). 

 

Table 3. Dataset parameters and optimal sizes. 

 

• Florida WorldView2 Dataset  

For this high-resolution dataset depicting a mix of canopy, linear features, 

and open ground, Figure 7 shows a plot of the mean and median of the 

chosen LSD statistic (in this case, MAD) for each resampled image. Both 

measures of central tendency reach a maximum at a sample size of 

approximately 6.5 m. This value agrees with the optimal sizes given by the 

LSD optimization process. Figure 8 shows the frequency distribution of 

local maxima across the series of resampled images. The maxima become 

less frequent in the resample size dimension, except for a slight increase at 
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the first resample size of 2.6 m. This image contains the highest fraction of 

local maxima. The thresholded subset of these is depicted in Figure 9, 

showing their distribution across the image resampled to 2.6 m. It is 

apparent that they are spatially associated with different features in the 

images, such as the pattern of canopy and the edges of the canal in the lower 

left. The full distribution of thresholded local maxima in LSD space is 

shown as a point cloud in perspective view in Figure 10. Note the influence 

of the image’s linear features in the vertical distribution of local maxima. 

Figure 7. Mean, median MAD vs. sample size. 

 

Figure 8. Local maxima vs. sample size. 

 

Figure 9. Local maxima distribution at 2.6 m. 

 

Figure 10. Local maxima distribution in LSD space. 
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• Cambodia Tree Cover Dataset 

Figure 11 shows a plot of the MAD mean and median for each resampled 

image. In this case, their plots do not reach a local maximum against 

resample size, so an indication of an optimal size is not given. In spite of 

this, the LSD optimization method provides optimal sizes of 97 m 

(unthresholded) and 50 m (thresholded) for a native resolution of 30 m. 

Figure 12 shows a heat map of MAD values at the sample size 89 m. This 

sample size is the closest in the series to the calculated optimal size of 

97 m. Figure 13 depicts the distribution of thresholded local maxima 

derived from the MAD heat map distribution for the 89 m resampled 

image. It is apparent that the local maxima arrange themselves at 

locations where there are sudden changes in MAD values across the image 

space as seen in Figure 13. Figure 14 shows a peakedness histogram for the 

total set of local maxima. Since they were thresholded at 20% of the 

peakedness range, it is apparent that the remaining maxima represent a 

small fraction of the total. Table 3 shows that this figure is 81936/3026162 

or 2.7%. Of these, 6,068 local maxima are found at sample size 89 m, but 

this is sufficient to reveal their distribution according to the change of 

variance across the image space. 

Figure 11. Mean, median MAD vs. sample size. 
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Figure 12. MAD heat map at sample size 89 m. 

 

Figure 13. Local maxima distribution, sample size 89 m. 

 

Figure 14. Peakedness histogram. 

 

2.4 Cambodia population density dataset 

This dataset contains a large body of water where there are no values. 

Higher population densities surround the lake and line the watercourses 

that empty into it. As reported in Table 3, the calculated thresholded and 

unthresholded optimal sample sizes are 2,180 and 3,212 m, respectively, 

given the native spatial resolution of 991 m. Figure 15 shows an upward 
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trend in the MAD mean and median plots for the lower sample sizes in the 

series of 29 images, along with the computed optimal sizes of 2,180 m and 

3,212 m for thresholded and unthresholded peakedness, respectively. 

Figure 16 shows the MAD heat map for the resample size 2,972 m, the size 

closest to the unthresholded optimal value. The full point cloud 

distribution of thresholded local maxima in LSD space derived from the 

MAD values. However, this view looks straight down along the sample size 

axis at the local maxima found in the entire resampled image series. 

Figure 17 shows a scatter plot of MAD values for all local maxima in LSD 

space, plotted against their peakedness values. This plot gives the user a 

sense of how the maxima are distributed across the peakedness range as 

well as the range of dispersion from which they were derived. Figure 18 is 

a plot of mean peakedness for each image in the resample series, showing 

that it is highest at the original spatial resolution and then drops down to a 

relatively constant value as sample size increases. 

Figure 15. Mean, median MAD vs. sample size.  

 

Figure 16. MAD heat map, sample size 2972 m. 
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Figure 17. Local maxima distribution in LSD space. 

 

Figure 18. Scatter plot of MAD vs. peakedness. 

 

• Cambodia Precipitation Dataset 

This dataset has the largest native resolution of 4,954 m, a plot of the MAD 

mean and median is shown for each resampled image (Figure 19). In this 

case, the plots not only do not reach a local maximum against resample 

size, but also continue an upward trend through the resample size series. 

Yet, the LSD optimization approach still provided reasonable optimal sizes 

of 11,572 m (unthresholded) and 10,984 m (thresholded). The sample size 

in the resampled image series closest to the calculated optimal sizes is 

9,909 m. Figure 20 is a histogram of the frequency of MAD values in the 

image with that spatial resolution, showing a maximum at a MAD value of 

about 10-12 m. A MAD heat map is provided for sample size 9,909 m in 

Figure 21. Here, it can be seen that the higher dispersion values are 

associated with transition zones with higher spatial frequencies in the 

original image. Finally, Figure 22 shows a perspective view of the point 

cloud of thresholded local maxima throughout LSD space. Their 

distribution appears more homogeneous at higher levels in the space. 



ERDC/GRL TR-20-3  26 

  

Figure 19. Mean, median MAD vs. sample size. 

 

Figure 20. MAD value frequency histogram, 9,908 m. 

 

Figure 21. MAD heat map, sample size 9,908 m. 
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Figure 22. Local maxima distribution in LSD space. 

 

2.4.1.1  Discussion 

The spatial characteristics of continuously varying phenomena on the 

Earth’s surface directly inform remotely sensed data or other types of 

environmental information collected in a geospatial context. The spatial 

domain, or structure of this data, can be used to optimize its interpretation 

or extraction of spatial information. Effective mapping or modeling of 

spatially dependent information requires capturing the spatial variation 

patterns of features of interest. A key consideration in image analysis is the 

relationship between spatial resolution and the spatial frequency structure 

of features found in the image data. In this methodology, optimal sample 

size results were driven by the number and distribution of LSD local 

maxima as well as the LSD values associated with each local maximum. If 

a peakedness threshold is chosen, the set of local maxima is first 

winnowed by a minimum peakedness value.  

The setting of a peakedness threshold can be a useful tool for exploring the 

distribution and peakedness of the local maxima set in LSD space by 

examination of various plotting options in the LSD Analysis Tool. A 

threshold is required if the retention of only high-value LSD optima for 

optimal sample size calculations is indicated. However, a general strategy 

has not been identified for choosing a threshold and, absent a supporting 

rationale for its use, selecting the unthresholded optimal size as a default 

procedure is recommended. In this work, a multiscale modeling approach 

to determine an optimal sample size for raster images containing remotely 

sensed or other environmental data with variable spatial structure was 

successfully examined. Resampling an image dataset in this way can 

increase the efficiency of image processing functions such as feature 

segmentation or of geospatial models such as that employed in the NET-

CMO project at ERDC-GRL. 
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• Graphical User Interface 

A useful tool and user interface was also created, called the LSD Analysis 

Tool, to exercise the algorithmic approach and allow a user to interactively 

process a dataset while in control of particular processing parameters 

(Figure 23). Various plotting options display relationships among LSD 

values, local LSD maxima, maxima peakedness, and LSD space locations. 

These output features and level of user control provide for repeated 

experimentation and better understanding of the spatial data structure. 

Figure 23. Local spatial dispersion analysis tool. 
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3 Spatial Downscaling 

3.1 Literature review 

Mosquito-borne illnesses are a significant public health concern, both to 

the Department of Defense (DoD) and the broader national and 

international public health community. To truly understand these diseases 

and their threats, a thorough grasp of their spatial distribution, patterns, 

and determinants is needed (Pages et al. 2010). This information, when 

available, is often only at a sub-national to regional scale. Such data 

availability fails to meet tactical-level applications when diseases exhibit 

high local variation (Rytkonen 2004; Linard and Tatem 2012). 

Additionally, finer spatial resolution is also required to successfully target 

disease burden within the population and reduce exposure.  

Previous research has applied spatial downscaling techniques to meet 

specific epidemiological study needs requiring more localized statistics. 

Examples include downscaling malaria incidence rates from regional to 

urban centers through multivariate regression, hand-foot-mouth disease 

from national to township levels using generalized linear models, and 

applying hierarchical Bayesian frameworks to develop 5 km gridded risk 

maps of malaria, Plasmodium falciparum. (Gething 2012; Wang et al. 

2017; Altamiranda-Saavedra et al. 2018). While these studies were able to 

improve coarse-scale information, they still failed to meet a spatial 

resolution relevant to tactical-level epidemiological mapping applications 

or the processing time required to support time-sensitive operations.  

3.2 Geoanalytic data and methods 

The research presented in this report focused on dengue, a mosquito-

borne viral disease transmitted by female mosquitoes, mainly of the 

species Aedes aegypti, the same vector responsible for transmitting 

chikungunya, yellow fever, and Zika infection. Dengue is endemic to the 

tropical belt and greatly influenced by rainfall, temperature, and 

unplanned rapid urbanization, with the severest form of disease being the 

leading cause of hospitalization and death among children and adults in 

Latin America and Asia (Brady et al. 2012). While oral prophylaxis can 

prevent mosquito-vector diseases such as malaria, there are no specific 

vaccines or antiviral treatments against dengue fever (Hesse et al. 2017). 
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This lack of treatment not only puts local populations at risk, but can also 

adversely impact military operations. 

3.2.1 Data 

Researchers at the Geospatial Research Laboratory (GRL) queried 

provincial-level dengue incidence rates at monthly intervals between 1998 

and 2010 from Project Tycho, a global health research database 

maintained by the University of Pittsburgh (Panhuis et al. 2018). 

Cambodia served as the ROI due to the endemicity of dengue, high local 

variation in disease incidence, and availability of administrative-level 

statistics. The data were reformatted to CSV and spatially joined in ESRI 

ArcMap to the Large-Scale International Boundary (LSIB)* shapefile 

(Humanitarian Information Unit 2017).  

GEE served as the high-performance cloud computing (HPC) environment 

used to process monthly composites of environmental, demographic, and 

landscape covariates between 1998 and 2010. GEE combines a multi-

petabyte catalog of satellite imagery and geospatial datasets with 

planetary-scale analysis capabilities that includes vector and raster data 

processing, machine-learning classifiers, and time series algorithms 

(Gorelick et al. 2017). 

3.2.2 Methods 

The methods in this research followed spatial downscaling principles 

found in similar studies that include improving coarse population and 

demographic data, and remotely sensed products such as precipitation, 

soil moisture, and surface temperature (Gaelle et al. 2016; Zhang et al. 

2016; Ezzine et al. 2017; Pang et al. 2017). The downscaling methods use a 

statistical algorithm to determine a relationship between a coarser 

response variable and finer spatial resolution covariates. This study chose 

to apply the random forests (RF) regression algorithm because of its 

demonstrated ability to yield higher accuracy compared to linear modeling 

techniques, albeit more difficult to interpret than a traditional linear 

regression (Couronne et al. 2018). RF is an ensemble classifier that 

constructs multiple de-correlated random regression trees that are 

bootstrapped and aggregated using the mean predictions from all 

                                                                 

* LSIB: Large Scale International Boundary Polygons, Simplified. U.S. Department of State, Office of the 

Geographer at https://catalog.data.gov/dataset/global-lsib-lines-simplified-2017mar30 

https://catalog.data.gov/dataset/global-lsib-lines-simplified-2017mar30


ERDC/GRL TR-20-3  31 

  

regression trees (Breiman 2001). RF models also provide a quantitative 

measurement of each variable’s contribution to the regression output, 

which is useful in evaluating the importance of each variable concerning 

dengue prevalence and conditions that affect disease vector suitability.  

In this case, the monthly dengue incidence rates previously compiled in 

ESRI ArcMap serve as the response variable. The monthly composites of 

environmental, landscape, and demographic geospatial data serve as the 

covariates used to develop a response function and model incidence rates 

to a user-defined output pixel size; this study selected 1,000 m output grid 

cells because it met the high-resolution criteria of previous fine-scale 

epidemiology studies (Sturrock et al. 2014; Delmelle et al. 2014). As 

previously stated, rainfall, temperature, and urbanization significantly 

affect the presence of dengue, primarily due to influences on habitat 

suitability for the mosquito vector, Aedes aegypti. The spatial covariates 

used in this study included precipitation, land surface temperature, NDVI, 

population, land cover and land use, and elevation (Table 4, Figure 24).  

Table 4. Spatial covariate types and data sources used in the epidemiological.  

 

Type Spatial Covariate Source

Environmental Precipitation CHIRPS

          sum

          mean

Land Surface Temperature (Day and Night) MODIS

          min

          mean

          max

NDVI* MODIS

Landscape Elevation SRTM

Annual Land Cover Product MODIS

Demography Human Population WorldPop

* Normalized Difference Vegetation Index, measure of vegetation cover and vigor
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Figure 24. Spatial covariates representing environmental, landscape, and demographic 

determinants. 

 

 

 

The spatial downscaling methodology is summarized in the sequential 

steps below: 

1. Query and download administrative-level monthly dengue incidence 

rates from Project Tycho. 

2. Spatially join dengue incidence rates to Large-scale International 

Boundaries (LSIB) shapefile and upload to GEE as a table asset. 

3. Query environmental, landscape, and demographic spatial covariates 

in GEE and spatially reduce to monthly composites. 
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4. Select month and year to model. 

5. Create a stratified sampling scheme in GEE and extract observed 

incidence rates (response variable) and environmental/landscape 

variables (covariates) for the time period. 

6. Build RF classifier using regression and run prediction; Validate 

regression outputs by aggregating predicted grid cell values to the 

provincial boundary and compare to observed administrative-level 

incidence rates. 

3.3 Results and discussion 

Figure 25 provides a visual comparison between the gridded values 

derived from the RF regression downscale model and the observed 

provincial-level incidence rates for June 2010. The gridded output clearly 

shows a much higher spatial fidelity that meets any number of tactical, 

operational needs. The gridded output can serve as a disease risk map that 

provides an understanding of the spatial variability in dengue and 

locations of higher risk to exposure. Also, the HPC environment of GEE 

made it possible to develop a gridded model for the entire nation within 

minutes, a task that would be computationally intensive and time-

consuming if duplicated in a desktop PC environment.  

Figure 25. (a) Results of 1,000-m downscaled product compared to (b) provincial-level 

statistics. 

 

(a)     (b)   
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3.4 Discussion 

Figure 26 lists the RF spatial covariates in order of importance for June 

2010. Population, temperature, vegetation cover, and precipitation were 

the most important variables, respectively, for describing the model, which 

coincides with epidemiological literature. The order of variable importance 

remained relatively consistent regardless of the chosen month and year. 

Figure 26. Spatial covariates in order of importance to the June 2010 downscale model. 

 

Figure 27 provides an example of model validation results for June 2010 

using the spatial aggregation technique described in Step 8 of the 

methodology summary. Grid cell values of predicted disease incident rates 

were averaged within each administrative boundary and compared to the 

observed incidence rate for that given province. The absolute minimum 

and maximum difference between observed and downscaled data was 0.92 

and 16.6 with the root mean square error (RMSE) being 5.64. A scatterplot 

was also used to compare observed and downscaled values yielding an R2 

of 0.87 (Figure 28). 
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Figure 27. Comparison between observed and downscaled output per province. 

 

Figure 28. Scatterplot of observed and downscaled output per province. 

 

Spatial downscale models were developed for each month between 1998 

and 2010, totaling 156 geospatial disease risk products. All models showed 

significant agreement between downscaled and observed data with the 

highest RMSE being 10.25 and the lowest being 1.22. The lowest calculated 

r2 for the scatterplot comparisons was .72, and the highest was .94.  
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RF regression proved to be a high performing predictive algorithm that 

required little knowledge of machine-learning to achieve good results. 

However, the RF model is not as easily interpretable as a traditional linear 

regression or classification/regression tree (CART), mainly due to the 

ensemble technique that creates hundreds of random, independent tress 

and then combines the average into a single result.  

GEE provided a HPC environment that met the standards required for 

tactical and operational standards. Gridded products at 1,000 m spatial 

resolution were processed at national-levels within minutes as opposed to 

several hours on a desktop environment. Further advantages to GEE 

include reduced local resources, both related to computation and data 

accessibility. The main disadvantage to GEE is that it is not aimed at the 

novice user since it requires programming knowledge of either JavaScript 

or Python.  

Future contributing work to this study would explore the local spatio-

temporal dynamics of the downscaled models. Dengue is known to be 

influenced by seasonal variables such as precipitation and surface 

temperatures. Identifying strong temporal signals within a time-series 

could provide a further understanding of risk trends overtime and possible 

associations with climate-disease teleconnections.  

In conclusion, this study improved coarse, administrative-level disease 

data by downscaling to a 1,000 m grid cell using RF regression and spatial 

covariates. The generated output provides the level of tactical precision 

required to support Civil-Military Operations (CMO) targeting human 

health initiatives at a local scale. The output also provides a detailed 

geospatial product of disease risk that can be used to inform doctrine 

related to force health protection and force readiness during deployments.  
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4 Temporal Disaggregation 

4.1 Literature review 

Lack of disease incidence data is a common problem within the field of 

epidemiology (Beale et al. 2008). In order to study the distribution, 

frequency, patterns, and predictors of disease, epidemiologists need to 

have a sufficient record of past disease cases. Unfortunately, for many 

areas of the world, disease incidence data is extremely lacking. At best, 

data may be available at country level or on an annual basis. From a 

temporal point of view, this is unacceptable for identifying periods of 

extreme disease activity, the seasonal patterns of disease, or prediction. 

Since the global collection of higher fidelity disease data is unlikely, a way 

to temporally disaggregate annual disease incident data must be 

identified.  

Temporal disaggregation is the process of taking a low frequency time 

series, such as annual disease cases, and dividing the time series into a 

higher frequency time series, such as monthly disease cases. This process 

of down sampling is typically done by 1) dividing the lower frequency time 

series into equal portions of the higher frequency time series or 2) using 

one or more related higher frequency time series to model the desired 

signal (Chamberlin 2010). For example, if disease transmission is 

dependent on the presence of mosquitoes, then infections are expected to 

occur more frequently when conditions are good for mosquito survival and 

reproduction. High frequency indicator time series of mosquito presence, 

such as temperature and precipitation, are often recorded and readily 

available. 

Within epidemiological literature, disaggregation of disease data has 

focused on the spatial distribution of disease (Rahman 2017). RF, spatial 

scan statistic, and neural networks (Khan et al. 2005; Kitron et al. 2006; 

Mendes and Marengo 2009; Rahman 2017) have used disease related 

variables, such as population density, land cover, and climatic factors, to 

spatially distribute disease incidents from a large region of interest to 

several smaller geographic areas. This process provides a finer resolution 

of the physical location of disease. The process of temporally 

disaggregating disease incidents, however, has not yet been explored. 
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Some popular methods for temporal disaggregation include neural 

networks, splines, and regression (Huth 2002; Kumar et al. 2012; Herath 

et al. 2016). However, the most commonly used methods are those 

developed specifically for temporal disaggregation, mainly when dealing 

with economic data (Chamberlin 2010; Sax and Steiner 2013). The basic 

framework for these methods, known as Denton, Denton-Cholette, Chow-

Lin, Fernandez, and Litterman, can be broken into three separate steps 

(Chamberlin 2010; Sax and Steiner 2013). The mathematical notation of 

these steps and their descriptions are in Table 5. 

Table 5. Variable notations and their definitions. 

Notation Description 

y The unknown time series of interest 

𝑦𝑙 The known low-frequency version of y 

ŷ The disaggregated time series of 𝑦𝑙  

p A preliminary estimate of y 

𝑋 The matrix of related time series 

𝐶 The matrix to convert high frequency to low frequency 

𝐷 The distribution matrix 

𝛴 The variance-covariance matrix 

• Step 1: Estimate the time-space variance-covariance matrix 

Estimate the variance-covariance matrix,𝛴, in the high-frequency time 

series space. Within this space, each dimension corresponds to a single 

point in time in the high-frequency time series. How 𝛴 is calculated 

differs for each disaggregation method (Sax and Steiner 2013). 

• Step 2: Compute a preliminary estimate, p, of the desired signal, y 

Denton and Denton-Cholette (Sax and Steiner 2013) simply estimate p 

as p = X, which only works when there is a single indicator series or no 

indicator series. Chow-Lin, Fernandez, and Litterman (Sax and Steiner 

2013) compute p as a Generalized Least Squares (GLS) estimate of the 

desired signal y (Sax and Steiner 2013). Specifically, p = XB̂ where 

B̂ = [𝑋𝑇𝐶𝑇(𝐶𝛴𝐶𝑇)−1𝐶𝑋]−1𝑋𝑇𝐶𝑇(𝐶𝛴𝐶𝑇)−1𝑦𝑙 

• Step 3: Adjust p using 𝑦𝑙 to get a final estimate ŷ 
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When computing p, no restrictions are imposed in relation to the known 

low-frequency time series 𝑦𝑙. In particular, for the final estimate ŷ, 

disaggregation requires that 𝐶ŷ = 𝑦𝑙. This can be computed using a right-

pseudoinverse D of C and the low-frequency error 𝑢𝑙 ≔ 𝑦𝑙 − 𝐶𝑝 in the 

preliminary estimation of 𝑦: 

ŷ = 𝑝 + 𝐷𝑢𝑙 

where 

𝐷 = 𝛴𝐶𝑇(𝐶𝛴𝐶𝑇)−1 

From here it can be seen that 𝐶ŷ = 𝐶𝑝 + 𝑢𝑙 = 𝑦𝑙, which is the original 

signal. It follows that if these techniques can be applied to economic data, 

they can be applied to vector-borne disease data as well. 

4.2 Geoanalytic data and methods 

4.2.1 Data 

Monthly records of dengue from 2005- 2010 for each province in 

Cambodia were collected from the University of Pittsburgh’s Project Tycho 

(van Panhuis et al. 2014). Dengue is a vector-borne disease that is spread 

by the Aedes aegypti and Aedes albopictus mosquitoes and is typically 

found within tropical and sub-tropical areas of world. There is currently 

no vaccine for dengue. While early detection and proper treatment can 

severely lower fatality rates, dengue has become a leading cause of 

hospitalization and death among both children and adults in most Asian 

and Latin American countries (WHO 2019). 

Environmental risk to dengue, or any mosquito-borne disease, is related to 

the parameters of precipitation, temperature, land cover, and vegetation 

health, all of which affect the habituation of mosquitoes (Chitnis et al 2012; 

Stuckey et al. 2014; Parham et al. 2015; Siraj et al. 2015). Monthly records 

of these parameters were obtained from remotely sensed data (Table 6), 

with NDVI considered a measure of vegetation health. Once collected, the 

environmental parameters were sub-setted to each Cambodian province 

and averaged in order to form a non-spatial time series.  
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Table 6. Remotely sensed environmental variables and their sources. Variables were spatially 

averaged for each province for every month of analysis. 

Environmental Variable Data Source 

Normalized Difference Vegetation Index (NDVI) MODIS (MOD43A4) 

Precipitation Sum CHIRPS 

Precipitation Mean CHIRPS 

Precipitation Sum Lagged CHIRPS 

Precipitation Mean Lagged CHIRPS 

Land Surface Temperature (LST) Day Mean MODIS (MOD11A1) 

LST Day Minimum MODIS (MOD11A1) 

LST Day Maximum MODIS (MOD11A1) 

LST Night Mean MODIS (MOD11A1) 

LST Night Minimum MODIS (MOD11A1) 

LST Night Maximum MODIS (MOD11A1) 

Within the dengue time series, there were five provinces that did not have 

continuous dengue records. These provinces are as follows: Kracheh, Stueng 

Traeng, Mondol Kiri, and Krong Pailin. In order to only use continuous time 

series, these provinces were deleted from the dataset. A map of the 

Cambodian provinces used in the analysis can be seen in Figure 29. 

Figure 29. Cambodian provinces used for temporal disaggregation. 
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4.2.2 Methods 

The first step of the analysis was determining which environmental 

variables were temporally correlated to dengue. To do this, the dengue and 

environmental time series of each Cambodian province were averaged 

together to create a mean, country level time series of dengue, and its 

predictors. The mean environmental time series were then correlated to 

the mean dengue time series. Environmental variables that had an R-

coefficient of 0.3 or higher, and were significant at α=0.05, were kept for 

disaggregation. Additionally, variables were tested for collinearity. If a pair 

of variables were found to have a collinearity of at least 0.90, the variable 

that was least correlated to dengue was discarded. 

Next was determining if the mean dengue time series was stationary. A 

stationary time series is one whose mean and variance are constant 

throughout time. A stationary time series is relatively easy to predict and 

most forecasting models assume that a time series is either stationary or 

can be made stationary. For temporal disaggregation, whether or not a 

time series is stationary affects which disaggregation method is used. For 

stationary series, the Chow-Lin disaggregation method is the best choice 

(Chamberlin 2010; Sax and Steiner 2013). For non-stationary time series, 

the Fernandez and Litterman models are more optimal (Chamberlin 2010; 

Sax and Steiner 2013). Please note that the Denton and Denton-Cholette 

disaggregation methods are only used when zero or one predictor variables 

are available. Since there is more than one environmental variable related 

to dengue, these methods were not explored. 

The augmented Dickey-Fuller test was run on the mean dengue time series 

to determine if the series was stationary. The null hypothesis of the 

augmented Dickey-Fuller test is that the time series is non-stationary. If 

the augmented Dickey-Fuller statistic is significant at α=0.05, then the 

time series is considered stationary. For this study, the augmented Dickey-

Fuller statistic was -3.5237 and had a p-value of 0.046. Therefore, the 

mean dengue time series is stationary and the appropriate disaggregation 

method is Chow-Lin. 

After stationarity had been determined, the mean dengue time series was 

aggregated from monthly cases to annual cases. This was done by 

summing all of the dengue cases within one year. Using Chow-Lin, a 

model was developed for every possible combination of environmental 

variables. A RMSE was calculated for each model and significance levels 
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for each model’s coefficients were recorded. The model with the lowest 

RMSE, most significant coefficients, and most visually pleasing graph was 

selected as the optimal model for disaggregation. This model was then run 

on the annually aggregated dengue cases for each individual province of 

Cambodia and an average RMSE was calculated. All calculations and 

model development was completed in Mathwork’s Matlab. 

4.3 Results and discussion 

4.3.1 Results 

The R-coefficients of the correlations between the mean dengue time 

series and the mean environmental predictors are listed in Table 7. The 

variables with an absolute R-coefficient greater than 0.3 are as follows: 

NDVI, precipitation sum, precipitation mean, and LST night maximum. Of 

these variables, precipitation sum and precipitation mean were highly 

correlated to each other. Due to this, precipitation mean was not kept as 

an environmental predictor since precipitation sum was more correlated 

to dengue. 

Table 7. R-coefficient between the mean dengue time series and the mean environmental 

variables time series. 

Environmental Variable R-Coefficient 

Normalized Difference Vegetation Index (NDVI) -0.35 

Precipitation Sum 0.48 

Precipitation Mean 0.47 

Precipitation Sum Lagged 0.25 

Precipitation Mean Lagged 0.25 

Land Surface Temperature (LST) Day Mean 0 

LST Day Minimum 0.13 

LST Day Maximum -0.09 

LST Night Mean -0.29 

LST Night Minimum -0.16 

LST Night Maximum -0.36 

A total of seven models, plus a null model that evenly distributed dengue 

cases throughout the year, were created from every possible combination 

of dengue correlated environmental variables. Of these models, only three 

models, 1, 4, and 6, had significant environmental coefficients (Table 8). 
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This significance occurred in the models that only used NDVI, 

precipitation sum, and land surface temperature (LST) night maximum as 

variables. Of these three models with significant coefficients, model 4, the 

model with the precipitation sum predictor, had the lowest RMSE. 

Table 8. Model name, variables, the p-value of each model’s coefficients and the RMSE. A * 

denotes variables that have significant coefficients at α=0.05. 

Model Name Model Variables 

Environmental 

Variable 

Significance RMSE 

Null Null NaN 12.210 

1 NDVI* 0.0236 13.833 

2 
NDVI 

Precipitation Sum 

0.980 

0.896 
10.71990 

3 

NDVI 

Precipitation Sum 

LST Night Maximum 

0.679 

0.978 

0.553 

18.88614 

4 Precipitation Sum* 0.0233 10.760 

5 
Precipitation Sum 

LST Night Maximum 

0.314 

0.431 
24.16393 

6 LST Night Maximum* 0.0312 12.80885 

7 

LST Night Maximum 

 

NDVI 

0.444 

0.336 
20.54409 

The graphs of the models provide a better picture of how well the mean 

dengue time series has been disaggregated (Figure 30). Of the three 

models with significant coefficients, model 4 does the best job of capturing 

the general seasonality of dengue. Model 6, in contrast, closely mirrors the 

null model and does not capture the peaks and valleys of the dengue time 

series. Both the null model and model 6 were only able to capture the step 

increases and decreases in dengue cases from year to year. Lastly, model 1, 

which only uses NDVI as a predictor variable, predicts a large number of 

dengue cases when a lower number occurred and predicts periods low 

disease activity when extreme dengue activity happened. The precipitation 

model (model 4), however, was able to capture every step change, peak 

and valley in the dengue time series, and only missed the extreme 

amplitude of cases in 2007. 
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Figure 30. Graph of (a) Mean Cambodian dengue time 

series (b) Null Model, (c) Model 1, (d) Model 4 and (e) 

Model 6. 

 

Based on its low RMSE score, significant predictor variable, and its ability 

to capture the general seasonality of the mean Cambodian time series, the 

Chow-Lin disaggregation method with the monthly time series of an area’s 

total precipitation was applied to each individual province in Cambodia. 

The mean RMSE among the disaggregation of all of these time series was 

12.925. The disaggregation of four Cambodian provinces’ dengue time 

series are in Figure 31. 
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Figure 31. Graphs of the dengue time series and annual dengue disaggregated using model 4 

for the Cambodian provinces of (a) Battambang (RMSE = 3.67), (b) Banteay Meanchey (RMSE 

= 18.53367), (c) Kandal (RMSE = 31.1175), (d) Siem Reap (RMSE = 20.53035). 

 

4.3.2 Discussion 

The variables that were most significantly correlated to Cambodian dengue 

were NDVI, precipitation, and maximum night LST. The temporal 

disaggregation models created with these predictors did not all achieve 

RMSEs lower than the null model and many produced variable coefficients 

that were not significant. Of all the models tested, model 4, which only 

used precipitation data as a predictor, performed the best. Model 4 had a 

lower RMSE than the null model, the coefficient of the precipitation 

variable was significant at α=0.05, and visually disaggregated the dengue 

time series better than any other model. Thus, temporal disaggregation of 

dengue cases can be achieved using the Chow-Lin disaggregation method 

with the total sum of an area’s precipitation as a predictor variable. More 

research is need in this area to see if the same technique can be used for 

other types of vector and non-vector-borne diseases. 
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5 Mosquito-Borne Disease Simulation 

5.1 Literature review 

Traditionally, density-based mathematical models of mosquito-borne 

disease divide the human and vector populations into “containers:” 

susceptible humans (𝑆) are healthy but could potentially acquire the 

disease, exposed humans (𝐸) have been bitten by an infected mosquito 

and undergoing incubation, infected humans (𝐼) are experiencing the 

symptoms of the disease, and those that recover (𝑅) are both healthy again 

as well as immune to re-infection. The total population, 𝑁, is merely the 

sum of these containers. Similarly, the adult mosquito population is made 

up of mosquitoes that are susceptible to infection, s, and those infected, i. 

Because of the short life-cycle of mosquitoes and the biomechanics of most 

mosquito-borne diseases, it’s assumed that the mosquito dies before ever 

recovering.  

The progression of mosquito-borne diseases in these models require 

continuous interaction between mosquitoes and humans – a susceptible 

human is bitten by an infected mosquito or a susceptible mosquito bites an 

infected human. To model this interaction, it is generally assumed that the 

populations are well-mixed – each mosquito in the population has an equal 

probability of interacting with each human, and vice versa. This makes the 

number of newly exposed human and mosquito individuals merely a matter 

of dimensional analysis. Let 𝑎 be the number of bites a mosquito gives in a 

day, 𝑏 be the probability that an individual mosquito bite leads to a 

susceptible human becoming “exposed,” and define 𝜆𝑆→𝐸  to be the 

“exposure rate,” the rate at which susceptible humans become exposed to 

the disease. Since the probability of each member of the human and vector 

populations are equal, the exposure rate can be written simply as 

 𝜆𝑆→𝐸 =
𝑎𝑏 𝑖

𝑁
  (1) 

A standard disease model of this type results in two phases: (1) disease free 

equilibrium, where the death of infected mosquitos outpaces the ability for 

them to infect new humans and (2) persistent presence of disease, where 

the temporal dynamics of the disease progression determine stable 

proportions of the human and mosquito populations that are infected 

(Shah and Gupta 2013).  
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While most vector-borne disease simulation research has been completed 

in rural areas, recent work has been given to modeling areas of high 

population density, such as a dense urban city. In a dense city, physical 

barriers to interaction and the sporadic location of vector breeding sites 

makes it so the human and vector populations interact heterogeneously. 

To address this shortcoming, Kong et al. (2018) modeled the interactions 

of mosquito and humans to be a random variable, with some humans 

more likely to interact with mosquitoes than others (Kong et al. 2018). 

They derived the exposure rate to have the form 

 𝜆𝑆→𝐸 = 𝑘 ln (1 +
𝑎𝑏 𝑖

𝑘 𝑁
)  (2) 

where 𝑘 is a heterogeneity parameter and 𝑙𝑛 is the natural logarithm. For 

very small values of 𝑘, 

 lim
𝑘→0

𝑘 𝑙𝑛 (1 +
𝑎𝑏 𝑖

𝑘𝑁
) = 0  (3) 

which represents the mosquito and human populations being completely 

quarantined from each other. Conversely, for large values of 𝑘,  

 lim
𝑘→∞

𝑘 𝑙𝑛 (1 +
𝑎𝑏 𝑖

𝑘𝑁
) =

𝑎𝑏 𝑖

𝑁
  (4) 

which is what is given under a well-mixed assumption .  

While all of these models incorporate the heterogeneous interaction of 

human and mosquito populations, they do not incorporate the full life 

cycle of the mosquito. Specifically, the models do not include a quiescent 

period, where, after achieving a blood meal, a mosquito ceases host-

seeking and finds an appropriate habitat to lay their eggs. This lack of 

temporal variation in host-seeking could be ignoring vital predictions of 

mosquito-borne disease.  

5.2 Geoanalytic data and methods 

The focus of the developed mathematical model was on the interaction of 

two different populations: human and mosquito. A container approach, 

the binning of a population into different categories based on certain 

characteristics, was applied to both human and mosquito populations to 

model how a disease moves within and between each population. The 
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containers for the human and mosquito populations are very similar, but 

different based on key differences in population life cycles. 

5.2.1 Data 

For the human population, the population is divided into four different 

containers: susceptible (𝑆), exposed (𝐸), infected (𝐼), and recovered (𝑅). 

Susceptible individuals are not immune to the disease and have yet to be 

exposed. Exposed individuals have been bitten enough by one or more 

infected mosquitoes for the disease to begin to incubate. After a sufficient 

period of time incubating, individuals become sick and are moved into the 

infected container. It is during this period of time that mosquitoes who are 

not infected themselves can bite the infected individuals and the disease 

can transfer from the human population back to the mosquito population. 

Finally, after a period of time spent infected, the individual recovers and 

spends a period of time temporarily immune from infection before being 

susceptible again to exposure.  

Similar to the human population, the mosquito population is divided into 

containers representing their full life cycle: egg, larvae, pupae, and adult. 

The mosquito population is further divided to reflect two separate 

dynamics: the progression of the disease in the mosquito and the 

mosquito's feeding cycle. The first part progresses similarly to the human 

population, being susceptible, exposed, and infected (mosquitoes do not 

recover). However, adult female mosquitoes seek out a blood meal for the 

purpose of providing energy to lay eggs, and after biting enough individuals 

to acquire a sufficient blood meal, go off to lay eggs and are no longer biting. 

This means that the three containers are further divided into active and 

quiescent, meaning the adult population has six total containers: 

susceptible active (𝑠𝑎), and quiescent (𝑠𝑞), exposed active (𝑒𝑎), and 

quiescent (𝑒𝑞), and infected active (𝑖𝑎) and quiescent (𝑖𝑞)*. Each stage of the 

mosquito’s pre-adult life is considered to last for 2-5 days, and as an adult, 

the female mosquitoes actively search for blood meals and then spend 2-3 

days laying eggs. Mosquitos total lifespan is 3-4 weeks, meaning that female 

mosquitoes will on average achieve 3-4 blood meals before dying.  

                                                                 

* Without loss of generalization, an incubation period is not included for the mosquitos, considering 

mosquitoes to be infected immediately after digestion of an infected blood meal. 
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5.2.2 Methods 

The probability dynamics of interaction driven state transitions (Kong et al 

2016) is now considered. Let 𝑋𝑖 be the number of effective contacts* 

between an individual in one population and the 𝑖th individual in the other 

population. It is assumed that for each individual, this number is Poisson 

distributed 𝜋(𝜃𝑖), with 𝜃𝑖 being the mean number of effective contacts for 

the 𝑖th individual. If the system was well mixed, 𝜃𝑖 is uniform, with every 

member of both populations having equal probability to interact with each 

other. However, 𝜃𝑖 is considered to be a random variable itself with a 

Gamma distribution, Γ(𝜃𝑖, {𝑘, 𝑚}) where 𝑘 is a shape parameter and 𝑚 is 

the rate parameter. The marginal distribution for 𝑋𝑖 is therefore 

 𝑃(𝑋𝑖 = 𝑥) = (
𝑥 + 𝑘 − 1

𝑥
) (

𝑚

𝑚+1
)

𝑘

(
1

𝑚+1
)

𝑥

 (5) 

which is the probability density of a negative binomial distribution with 

mean 𝑘/𝑚 and variance 𝑘(1 + 𝑚)/𝑚2. The probability of having at least 

one effective contact is given by 

 𝑝 = 1 − 𝑃(𝑋𝑖 = 0) =  1 − (1 +
1

𝑚
)

−𝑘

  (6) 

Identifying Equation 2 with the relationship between risk and rate to be 

𝑟𝑖𝑠𝑘 = 1 −  𝑒𝑟𝑎𝑡𝑒 , the transition rate can be derived to  

 𝜆(𝑡) =  𝑘 ln (1 +
1

𝑚
) (7) 

For the human population, the only transition of interest is caused by a 

blood meal being acquired by an infected mosquito -- blood meals by 

uninfected mosquitoes have no effect on the susceptible human 

population. Therefore, an "effective contact" is identified for the human 

population to be the blood meal acquisition by a member of the active 
infected mosquito population, 𝑖𝑞. If the mosquitos have a bite rate, 𝑎, with 

the probability that bite from an infected mosquito results in an infection 

is 𝑏, then the mean number of infected bites per person is 𝑎𝑏 𝑖𝑎/𝑘𝑁. 

                                                                 

* Here, “effective contact” means a contact that leads to a state transition. 
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Recalling that the mean of the Gamma distribution is 
𝑘

𝑚
, the susceptible to 

exposed transition rate can be written as 

 𝜆𝑆→𝐸(𝑡) = 𝑘𝐻𝑙𝑛 (1 +
𝑎𝑏 𝑖𝑎(𝑡)

𝑘𝑁
) (8) 

where 𝑘𝐻 is a heterogeneity parameter for the interactions of the 

susceptible human population and the active infected mosquito 

population.  

For the mosquito population, the definition of an "effective contact" is 

more complex. The full life cycle of the mosquito population would need to 

be modeled, including the quiescent periods of time adult female 

mosquitos spend laying eggs and not biting individuals. So, an effective 

contact means an active mosquito successfully achieving a blood meal, not 

just by those that achieve infected blood meals. For active mosquitos, the 

average number of effective contacts then is the product of the number of 

bites each mosquito takes and the probability a single bite will result in a 

blood meal*. Identifying the probability bite results in a sufficient blood 

meal as 𝑐, the transition rate of mosquitos from active blood meal seeking 

to quiescent is given by 

 𝜆𝑎→𝑞(𝑡) = 𝑘𝑣 𝑙𝑛 (1 +
𝑎𝑐

𝑘𝑣
) (9) 

where 𝑘𝑣 is the parameter controlling the heterogeneity of blood meal 

acquisition from the entire human population. For the susceptible 

mosquito population, there are two types of transitions that can occur: 

from 𝑠𝑎 to 𝑖𝑞 via interaction with the infected proportion of the human 

population, 𝐼 = 𝐼/𝑁, or from 𝑠𝑎 to 𝑠𝑞 via interactions with the uninfected 

proportion of the human population, 1 − 𝐼. This means that the probability 

of these transfers is given by 

 𝜆𝑠𝑎→𝑠𝑞
= 𝜆𝑎→𝑞(𝑡)𝐼(𝑡) = 𝑘𝑣𝑙𝑛 (1 +

𝑎𝑐

𝑘𝑣
) 𝐼(𝑡) (10) 

 𝜆𝑠𝑎→𝑖𝑞
= 𝜆𝑎→𝑞(𝑡) (1 − 𝐼(𝑡)) =  𝑘𝑣𝑙𝑛 (1 +

𝑎𝑐

𝑘𝑣
) (1 − 𝐼(𝑡)) (11) 

                                                                 

* Or, equivalently, how many bites are necessary for a blood meal 
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In general, the heterogeneity factor, 𝑘, doesn’t need to be equal between 

these two populations, but here it will be considered 𝑘𝑉 = 𝑘𝐻 = 𝑘 for 

simplicity. 

5.2.3 Human and vector master equations 

Now that the dynamic state transition rates for the human and vector 

populations have been derived, the full master equations can be written for 

the stochastic model. For the human population, we have 

 𝜕𝑡𝑆(𝑡) = −𝑘 𝑙𝑛 (1 +
𝑎𝑏 𝑖𝑎(𝑡)

𝑘 𝑁
) 𝑆(𝑡) + 𝜆𝑅→𝑆𝑅(𝑡) (12) 

 𝜕𝑡𝐸(𝑡) = −𝜆𝐸→𝐼𝐸(𝑡) + 𝑘 𝑙𝑛 (1 +
𝑎𝑏 𝑖𝑎(𝑡)

𝑘 𝑁
) 𝑆(𝑡) (13) 

 𝜕𝑡𝐼(𝑡) = −𝜆𝐼→𝑅𝐼(𝑡) + 𝜆𝐸→𝐼𝐸(𝑡) (14) 

 𝜕𝑡𝑅(𝑡) = −𝜆𝑅→𝑆𝑅(𝑡) + 𝜆𝐼→𝑅𝐸(𝑡) (15) 

where 𝜆𝑅→𝑆 is the immunity loss rate, 𝜆𝐸→𝐼 is the incubation rate, and 𝜆𝐼→𝑅 

is the recovery rate. To write the master equation for the immature 

mosquito population, first note that eggs are laid by quiescent adults. 
Identifying the number of eggs as 𝑁𝑒𝑔𝑔𝑠 and the transition from quiescent 

to active as 𝜆𝑞→𝑎, the immature master equations will be written as 

 𝜕𝑡𝑛𝑒(𝑡) = −𝜆𝑒→𝑙𝑛𝑒(𝑡) + 𝜆𝑞→𝑎𝑁𝑒𝑔𝑔𝑠 (𝑠𝑞(𝑡) + 𝑖𝑞(𝑡)) − 𝜇𝑒𝑛𝑒(𝑡) (16) 

 𝜕𝑡𝑛𝑙(𝑡) = −𝜆𝑙→𝑝𝑛𝑙(𝑡) + 𝜆𝑒→𝑙𝑛𝑒(𝑡) − 𝜇𝑙𝑛𝑙(𝑡) (17) 

 𝜕𝑡𝑛𝑝(𝑡) = −𝜆𝑝→𝑎𝑑𝑢𝑙𝑡𝑛𝑝(𝑡) + 𝜆𝑙→𝑝𝑛𝑙(𝑡) − 𝜇𝑝𝑛𝑝(𝑡) (18) 

𝜆𝑝→𝑎𝑑𝑢𝑙𝑡 is written to identify the rate of pupae maturing into adults, both 

male and female. Assuming the population is evenly split, only half of 

those mosquitos will be added to the active susceptible mosquito 

containers. With this last piece in place, the adult mosquito master 

equations can be written as 

 𝜕𝑡𝑠𝑎(𝑡) = −𝑘 𝑙𝑛 (1 +
𝑎𝑐

𝑘
) 𝑠𝑎(𝑡) + 𝜆𝑞→𝑎𝑠𝑞(𝑡) − 𝜇𝑎𝑠𝑎(𝑡) (19) 

 𝜕𝑡𝑠𝑞(𝑡) = 𝜆𝑞→𝑎𝑠𝑞(𝑡) + 𝑘 𝑙𝑛 (1 +
𝑎𝑐

𝑘
) (1 − 𝐼)𝑠𝑎(𝑡) − 𝜇𝑞𝑠𝑞(𝑡) (20) 
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 𝜕𝑡𝑖𝑎(𝑡) = −𝑘 𝑙𝑛 (1 +
𝑎𝑐

𝑘
) 𝑖𝑎(𝑡) + 𝜆𝑞→𝑎𝑖𝑞(𝑡) − 𝜇𝑎𝑖𝑎(𝑡) (21) 

𝜕𝑡𝑖𝑞(𝑡) = −𝜆𝑞→𝑎𝑖𝑞(𝑡) + 𝑘 𝑙𝑛 (1 +
𝑎𝑐

𝑘
) 𝐼𝑠𝑎(𝑡) + 𝑘 𝑙𝑛 (1 +

𝑎𝑐

𝑘
) 𝑖𝑎(𝑡) − 𝜇𝑞𝑖𝑞(𝑡)  (22) 

To explore the dynamics of this model, these equations were implemented 

into a fully stochastic model in Java using a human population of 𝑁 =

3000 and an initial mosquito population of 𝑛 = 300. Containers were 

initialized with a random proportion of the overall population and 

simulations were run for 10 years of simulation time to reach dynamic 

steady states. So, as to keep temporal parameters identical across the 

phase space sweep, the overall mosquito population was controlled by 

modifying the adult death rate. Other parameters were kept constant (see 

Table 9 for values).  

Table 9. Parameter values. 

Parameter Description Value 

𝑘 Heterogeneity Factor Varies (day-1) 

𝑎 Mosquito bite rate 3 day-1 

𝑏 Probability of exposure per bite, human 0.3 

𝑐 Probability of exposure per bite, vector 0.3 

𝑁𝑒𝑔𝑔𝑠 Number of eggs laid at once 300 

𝜆𝐸→𝐼 Intrinsic incubation rate 1/12 day-1 

𝜆𝐼→𝑅 Recovery rate 1/7 day-1 

𝜆𝑅→𝑆 Immunity Loss Rate 1/225 day-1 

𝜆𝑞→𝑎 Re-activation rate 1/3 day-1 

𝜇𝑎, 𝜇𝑞 Adult mosquito death rates 1/28 day-1 

𝜇𝑝, 𝜇𝑙 , 𝜇𝑝 Immature mosquito death rates 1/10 day-1 

𝜆𝑒→𝑙 Egg to larvae transition rate 1/3 day-1 

𝜆𝑙→𝑝 Larvae to pupae transition rate 1/7 day-1 

𝜆𝑝→𝑎𝑑𝑢𝑙𝑡  Pupae to adult transition rate 1/3 day-1 
 

5.3 Results and discussion  

5.3.1 Results 

The implementation of the described container model via simulation 

demonstrated two expected limiting dynamic phases (Figure 32a): disease 
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free equilibrium (for small 𝑘, which represents quarantine) and persistent 

disease (for large 𝑘, representing complete mixture). Additionally, it is 

found that there exists a region in between these limiting cases where the 

system undergoes aperiodic outbreaks and large swings in the population 

proportions. This lack of temporal stability is evidence of stochastic 

resonance, wherein the mosquito population behaves like a colored noise 

source to the human population. This causes small fluctuations in the 

populations of the mosquito containers to translate into large population 

swings in the human containers. This dynamic phase is made more 

apparent by considering the relative deviation of the system parameters, i.e. 

the standard deviation divided by the average. As seen in Figure 33, both 

the mean value and the relative variance demonstrate the aperiodic phase. 

Further, an order of magnitude increase in mosquito population causes 

this dynamic phase to disappear as the more mosquitos present in a region 

per person, the more likely the systems dynamics will mimic a well-mixed 

system. Thus, the aperiodic outbreak region appears as a balance of 

disease presence and population screening. 
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Figure 32. (a) Time trajectories of the susceptible (S), exposed (E), 

infected (I), and recovered (R) populations for the three states of the 

epidemic model: disease free equilibrium, aperiodic outbreak, and 

persistent recovery. (b) Mean population proportion values as a 

function of the heterogeneity parameter, 𝒌. Each point is a time 

average of 10 years. 

 

Figure 33. (Left) average and (right) relative variance of susceptible proportion as a function 

of both heterogeneity parameter and human-vector population proportion. Values were 

calculated over time and then average across 100 simulations. 
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5.3.2 Discussion 

In this report, a container-based mosquito-borne disease model that 

includes heterogeneous interactions between the host-vector population 

and the oscillatory behavior of mosquito activity due to temporary 

cessation of blood meal seeking has been motivated to lay eggs. These two 

additions lead to a model with three dynamic phases: disease-free 

equilibrium, aperiodic outbreak, and persistent disease presence. The 

aperiodic outbreak phase is a result of stochastic fluctuations in infected 

mosquito populations propagating to the human population via non-linear 

stochastic resonance, leading to high relative variance of infection cases. 

This resonance disappears with overall mosquito population increases as 

well, and has probabilistic qualities that cement the aperiodic outbreak 

stage is a distinct phase.  

These results suggest that interventions to screen human populations from 

mosquitoes or reduce the overall mosquito population (to prevent 

outbreak) can cause increasing temporal volatility, leading a population to 

be more vulnerable to full on outbreaks. 
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6 Project Summary 

6.1 Army mission support outcomes 

Upon successful closure of the NET-CMO research project, innovative 

geoenabling tools and methodologies focused on enhancing mission 

analysis for Army CMO were developed. Metrics for success set forth by 

GRL management that align with Army Force Health Protection (FHP) 

doctrine, emerging Army Modernization priorities, and Joint Operational 

Planning requirements were the focus of these enhancements. Project 

metrics fundamentally tracked the following narrative: “develop critical 

enhancements to the suite of methods and tools supporting mission 

analysis for civil-military operations to enhance stability and mitigate 

health threats-risks to the civilian population.”  

Specified operational planning tasks within the Army mission support area 

of FHP and the Multi Domain Common Operating Picture (COP) have a 

focus on potential threats to conditions of soldier’s health. The require-

ments stated to address these threats include protection of warfighting 

function, preventive medicine measures, and unit health assessments of 

combat and operational stress. The evaluation of environmental influences 

(i.e. regions of high risk of vector-borne diseases) are also necessary to 

maintain force readiness and for development of COAs. Attainment of a 

sufficient level of situational awareness within a region of interest that are 

prone to disease is important for Commanders to provide timely assessment 

of these health threats-risks to personnel under their command.  

The products and methodologies developed by NET-CMO specifically 

address the identification of regions prone to vector-borne disease. This is 

vital for FHP, force readiness, and operational planning. Additionally, 

tools and techniques were also developed to support the identification of 

these disease prone regions. The project’s noteworthy outcomes and the 

Army requirements they addressed are listed below. 

• Army Doctrine: Protection Warfighting Function 

o Commanders and unit leaders are responsible for protecting and 

preserving Army personnel against injury or loss that may result 

from risks of vector-borne diseases. Army policy stated in AR 11-35 

requires Commanders to provide timely assessment of these risks to 

personnel under their command (Joint Publication 4-02.8) 
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* NET-CMO Outcome 

~ Disease Simulation process 

~ Health Threat-Risk products 

•  Army CFT Priorities: Common Operating Environment 

o Focus on addressing near-term capability gaps to enable a shared 

geo-spatial foundation across networked computing environments 

and warfighting functions. With primary emphasis upon the 

handling and manipulation of complex, big data sources for 

geoenabled mission planning and analysis (Army Modernization 

Strategy)* 

* NET-CMO Outcomes 

~ Uniform Pixel Sizing tools (Semivariogram and LSD) 

~ Temporal Data Disaggregation methods 

~ Spatial Downscaling methods 

• Army Campaign Plan: Joint Operation Planning Process 

o Preparation of COA or COP (health related) to conduct a map-based 

environmental assessment of situational mission space to evaluate 

associated Soldier/Squad health threats-risks. Product 

Visualization of vector-borne health influences to generate a 

geospatial  overlay of operational AOI to enable strategic planning 

initiatives (Joint C2 CDD)† 

* NET-CMO Outcomes 

~ Health Threat-Risk products 

6.2 Conceptual workflow 

The downrange goal of the collective NET-CMO project components is to 

assimilate the various tools and methodologies into a connected 

operational workflow (Figure 34). Providing a user (i.e. analyst, planner, 

decision-maker) with an enhanced geoprocessing mechanism to transform 

complex, big geospatial data sources into situationally aware, actionable 

                                                                 

* Army Modernization Strategy (Apr 2018), Cross Functional Team (CFT) Priorities: Army Futures 

Command (AFC). 

† Joint C2 CDD (Apr 2013), sections 1.2.2 Concept Development Framing of the visualization 

capabilities needed to enable solutions that address 1.2.1 Strategic Guidance, 1.2.4 Global Force 

Management (GFM) Support to Planning, and 1.2.5 Readiness Support. 
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end-products. This would geoenable the very time-consuming and 

computationally intensive process of generating outcomes for predicting 

and understanding health threat-risk related factors impacting Soldiers. 

Figure 34. Functional concept mapping of collective NET-CMO workflow. 

 

6.3 Stakeholder engagements 

6.3.1 U.S. Army Walter Reed Biosystematics Unit (WRBU) 

Using RF and environmental raster datasets, NET-CMO produced 

monthly maps of potential aedes aegypti activity in the southwest United 

States to WRBU. WRBU included these maps in a monthly report on 

mosquito risk sent to the Global Emerging Infections Surveillance (GEIS). 

This information is used by U.S. troops stationed along the Southern 

U.S. border (Figure 35). 

Figure 35. Mosquito activity risk map for SW United States.  
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6.3.2 Army Public Health Command (APHC): Tick-Borne Diseases Lab 

(TBDL) 

Using the machine learning technique maximum entropy, NET-CMO 

developed presence maps of the tick ixodes scapularis (Figure 36). APHC 

TBDL representatives requested this work to help them identify regional 

hotspots for tick-borne disease activity. The identification of these regions 

is useful for determining training regions. Preventing soldiers from 

contracting a tick-borne disease, such as Lyme disease, during training is 

vital in order for the U.S. Army to maintain force readiness. Reference 

Appendix B for a summary of this ERDC technical note. 

Figure 36. Ixodes scapularis disease map for NE United States. 

 

6.3.3 Army Force Health Protection and Preventive Medicine: MEDDAC-

Korea/65th Medical Brigade 

NET-CMO researchers generated a map product for evaluation of 

mosquito larvae habitat in South Korea (Figure 37). The creation of this 

map will be detailed in an ERDC technical note, ‘Understanding the 

Disease Vector Operational Environment by Predicting Presence of 

Anopheles Mosquito Breeding Sites Using Maximum Entropy Modeling: 

Maxent Software Platform’ by Susan Lyon. A summary of this ERDC 

technical note is in Appendix C. 
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Figure 37. Potential breeding sites of Anopheles mosquitos shown in purple. 

 

6.4 Potential for transition 

6.4.1 Map based planning system (MBPS) 

Significant effort has been directed towards transitioning NET-CMO 

technologies and VAST disease simulation workflow into the ERDC-GRE 

6.2-6.3 MBPS operational planning framework. The R&D team prepared 

detailed Feature Requirement Specification (FRS) documentation to 

include User Interface (UI) design requirements, component technical 

descriptions, and development of notional workflows to enable transition 

to MBPS and FY20 successor program GEOD (Figure 38). 
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Figure 38. Notional UI concept for VAST Workflow within MBPS. 

 

6.4.2 Harris ENVI  

ERDC-GRL has established a Cooperative Research And Development 

Agreement (CRADA) with the creator of the ENVI software suite, L3Harris 

Geospatial Solutions (“Harris”), to exchange R&D work and technologies.* 

As part of this CRADA, ERDC-GRL will transition the ArcMap 

semivariogram model (Figure 39) to Harris to further develop within the 

ENVI framework. The overall goal of this transition is the implementation 

                                                                 

* ENVI: Environment for Visualizing Images. L3Harris Geospatial Solutions. 

https://www.harrisgeospatial.com/Software-Technology/ENVI 

https://www.harrisgeospatial.com/Software-Technology/ENVI
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of the semivariogram tool Distributed Common Ground System–Army 

(DCGS-A). 

Figure 39. Uniform pixel size ArcMap model builder model. 

 

6.5 Next generation of NET-CMO   

6.5.1 Systemic integration 

Building upon R&D project marketing initiatives (Appendix A) and stated 

outcomes with specified customer requirements, the future potential of 

NET-CMO related work efforts is very positive. ERDC-GRE program areas 

such as Geo-Enabled Operational Design (GEOD) emphasizing geospatial 

approaches to Army mission command and analysis will be able to further 

leverage and transition these NET-CMO workflows, tools, and 

methodologies into their program-systems of record.  

Other mission support organizations that may benefit from further 

development and collaboration of geoenabled health threat-risk 

assessments include the U.S. Army Medical Command MEDCOM Public 

Health Center (USAPHC). The integration of NET-CMO work efforts to 

assimilate their technologies into operational command level geoenabled 

systems would enhance Army readiness posture by identifying and 

assessing current and emerging health threats. 

6.5.2 Product space 

Continuation of the NET-CMO work area would focus on expanding the 

portfolio of health threat-risk type evaluations of potential diseases along 

with more rigorous quantification (i.e. statistical analysis) of 

environmental induced stressors impacting Army readiness, Soldiers well-

being, and civil stability mitigation efforts. 

Example 1-Spatial and temporal prediction of tick-borne diseases: There 

is potential to generalize the spatio-temporal modeling of mosquito-

spread disease to diseases spread by ticks. This would require a marked 

amount of model complexity because ticks have a much longer life span, 
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sometimes living over 1-2 years. During this lifespan, they survive off 

interactions with a variety of other animals, so the model would have to 

incorporate several other species. Thus, modeling efforts would 

incorporate other population interactions and zoological lifecycles, and the 

environmental factors affecting them. Inverting this relationship, the 

prevalence of tick-borne disease in a region would also be used to infer the 

local population of otherwise unaccounted for animal populations. 

Example 2-Risk to the Warfighter of non-vector-borne diseases: The 

expansion of mapping and being predictive of disease capabilities beyond 

vector-borne diseases would be beneficial to the Army. Current 

methodologies for predicting the spread of infectious diseases focus on 

human-to-human interactions, without considering the role the physical 

environment plays. Inclusion of environmental parameters into non-

vector-borne infectious disease models would allow for a strong 

identification of regions prone to disease and the ability to better protect 

U.S. soldiers. 

Example 3-Optimal Uniform Pixel Size for Categorical Data: Continuous 

raster and gridded numerical pixel data are important to the Army; 

however, the Army also works heavily in the domain of gridded categorical 

data. This includes land cover mapping involving classifying imagery into 

categorical land cover classes. The same questions arise when working 

with multiple categorical rasters of disparate pixel sizes of what pixel size 

is the optimal size. Continuation of NET-CMO could include development 

of a uniform pixel technique with categorical data. 

6.6 Concluding remarks 

The NET-CMO project took 1 year of fast R&D work effort leveraging 

previous work that had been completed within the ERDC 6.2 project 

VAST. Given this accelerated time frame, in coincidence with specified 

metrics established by management primarily focused upon proof-of-

concept activities to assess, test, validate (i.e. statistically), and establish 

transition paths for enhanced geoenabling technologies and capabilities, 

the project was highly successful. As proposed in the initial NET-CMO 

Project Management Plan (PMP), established exit criteria and team 

performance metrics were effectively accomplished. 

The culmination of these new geoanalytic methods, geoprocessing tools 

and, value-added end-products will have a positive impact to further 
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support FHP domain (i.e. disease threats-risks) of military operations. To 

include protecting soldiers and assets through the ability to identify 

vector-borne disease, understand stability vulnerabilities in a region, and 

mitigate threats to a civilian population. NET-CMO deliverables will 

provide the U.S. Army with an increased situational awareness capability 

and provides planners with the resources needed to help resolve these 

potential health threats-risks. 
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Appendix A: NET-CMO Summary  
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Appendix B: Species Distribution Modeling of 

Ixodes scapularis and Associate Pathogens 

in States East of the Mississippi River 

Summary 

Introduction 
 The Tick-Borne Disease Laboratory (TBDL) of the Army Public 
Health Center requested that the ERDC Geospatial Research Laboratory 
analyze tick observation data and model the presence of the vector, I. 
scapularis, and the associated pathogens carried by this vector, using a 
modeling methodology similar to the one used by St. John, et al. 2016. 
Ecological niche models were developed using the maximum entropy 
(Maxent) methodology (Phillips 2006), which creates a probability map 
predicting where a target species will be found based on a dataset of 
presence observations of the species, combined with multiple 
environmental datasets believed to describe habitat suitability.  
 
Methodology 
 Using location and species information for I. scapularis and 
environmental input raster data, a Maxent model was generated using a 
toolbox and standard operating procedure (SOP) developed for use in 
ArcGIS (Griffin 2017). The Maxent methodology generates measures to 
assess the suitability of the model’s prediction in the form of a sensitivity 
plot. Once the pathogen presence probability models were complete, the 
models were compared using the Raster Calculator tool in the Map Algebra 
toolbox under Spatial Analyst Tools in ArcGIS Pro 2.3.3. Areas where 
overlapping probabilities are shown could indicate locations where co-
infections are likely to occur. As I. scapularis initially acquires pathogens 
from previous host species, such as rodents or deer, before passing them on 
to humans; probability distributions could also indicate regions where 
higher occurrences of host species carrying disease 
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End Product 
 The result was a map of 
Ixodes scapularis habitat 
prediction. The map’s color ramp 
indicates the probability that 
Ixodes scapularis is the 
probability that at least one tick is 
in that pixel, derived from the 
presence locations and 
environmental variables. 
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Appendix C: Understanding the Disease 

Vector Operational Environment by Predicting 

Presence of Anopheles Mosquito Breeding 

Sites Using Maximum Entropy Modeling 

Summary 

Understanding the Disease Vector Operational Environment by 

Predicting Presence of Anopheles Mosquito Breeding Sites Using 

Maximum Entropy Modeling: Maxent Software Platform 

Introduction 
  The purpose of this study is to help address the need for new and 
innovative methods to promote military readiness through better 
understanding of vector-borne disease threats in both familiar and 
unfamiliar operational environments. The Anopheles genus is comprised of 
several hundred species of mosquito, dozens of which have the ability to 
transmit parasites that cause malaria in humans (Kim, et al. 2011). Malaria 
is of particular interest to medical planners, because of the long history of 
adverse effects on combat operations (U.S. Dept of the Army 2015).  

Methodology 
 Maximum entropy is a machine learning method that makes 
predictions based on incomplete information (Phillips, Anderson and 
Schapire 2006) Since the maximum entropy method is not usually 
implemented in standard statistical software platforms, a dedicated 
software application called Maxent can be used for analysis. Maxent is a 
Java-based open source Windows application that was developed to provide 
a way to use the maximum entropy method to model species geographic 
distributions (Phillips, Dudík and Schapire 2004). The software uses data 
from known species presence locations, along with environmental data that 
describe aspects of the habitat that may cause the species to prefer those 
locations, and builds a probability map predicting the likelihood that the 
target species will be found throughout the area of interest (Phillips, 
Anderson and Schapire 2006).  
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End Product The Maxtent output shows the higher predicted likelihood 
of the presence of Anopheles breeding sites as shown in red, and cells with 
lowest predicted likelihood are shown in blue. The presence locations used 
to build the model are indicated by white squares on the prediction map.  
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Acronyms 

CART classification/regression tree 

COA Course of Action 

COP Common Operating Picture 

CMO Civil Military Operations 

CRADA Cooperative Research and Development Agreement 

DCGS Distributed Common Ground System 

DoD Department of Defense 

FHA Foreign Humanitarian Assistance 

FHP Force Health Protection  

FRS Feature Requirement Specification 

GFM Global Force Management  

GEE Google Earth Engine 

GEOD Geospatially Enabled Operational Design 

GLS Generalized Least Squares 

GRL Geospatial Research Laboratory 

HPC High Performance Computing 

LSD Local Spatial Dispersion 

LSIB Large-Scale International Boundary 

LST Land Surface Temperature 

LSV Local Spatial Variance 

MAD Mean Absolute Deviation 

MBDS Mosquito-Borne Disease Simulation 

MBPS Map Based Planning Services 
 MDMP Military Decision Making Process 

MAE Mean Absolute Error 

NDVI Normalized Difference Vegetation Index  

NET-CMO New and Enhanced Tools for Civil-Military Operations 

OE Operational Environment  

PMP Project Management Plan 

R&D Research and Development 

RF Random Forests 

RMSE Root Mean Square Error 

ROI Region of Interest 

USAPHC U.S. Army Public Health Center 

TBDL Tick-Borne Diseases Lab 

UI User Interface 

VAST Vulnerability Assessment Software Toolkit Readiness 
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