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1. Introduction  

This technical note describes an approach to developing a methodology to predict 
outcomes of human–autonomous interaction, based on a survey of current 
literature, pursuant to the US Army Combat Capabilities Development Command 
Army Research Laboratory (ARL) Human Research and Engineering Directorate 
(HRED) Human–Autonomous Teaming (HAT) Essential Research Program 
(ERP). 

The military application of autonomous agents can arguably be traced back to the 
first and second world wars. Robotic platforms—for example, the Wickersham 
Land Torpedo, Kettering Bug, Leichter Ladungstrager Goliath, and FL-7 
motorboat—were developed, and actually employed in some cases, in an attempt 
to gain military dominance on the land, sea, and air.1 The development of GPS in 
the 1990s precipitated the modern concept of an autonomous agent.2 Since then, 
aerial drones have been used for surveillance and target acquisition to great effect. 
US military ground and air robots number in the thousands and perform a variety 
of functions.  

However, drones and robots have primarily been used as tools that augment 
Soldiers’ capabilities, much like a truck, rifle, or other conventional equipment. In 
recent years, the US military has gained interest in developing agents that are truly 
autonomous by incorporating machine learning (ML) capabilities into various 
platforms. It is envisioned that autonomous agents will evolve from merely being 
Soldiers’ tools to being functioning members of a military unit—a battle buddy.3 

Toward that end, ARL/HRED initiated an HAT ERP to undertake related research 
in direct support of the Next-Generation Combat Vehicle (NGCV) and Soldier 
Lethality (SL) Cross-Functional Teams (CFTs). The HAT ERP approach conceives 
of not only the potential capabilities of future intelligent technologies, but the 
potential for completely novel interactions among heterogeneous teams of Soldiers 
and intelligent agents. It also reconceives approaches and requirements for training. 

2. Ontology-based Predictive Models  

The purpose of this technical note is to support one of four HAT ERP research areas 
that entails development of predictive models to evaluate HAT interaction. 
Predictive models would enable researchers to weigh the merits of a course of 
action pursuant to a given scenario or contingency in question, then apply time and 
resources to that action based on the strength of the model outcome. The statistician 
George Box is attributed with remarking that “all models are wrong, but some are 
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useful”. Keeping Box in mind, this report provides an approach to developing 
predictive models for HAT interaction based on current literature. 

Modeling and simulation (M&S) has a long history of use in a variety of fields to 
support resource decisions, training scenarios, engineering design, and the 
development of products, to name a few. Technology advancements in these fields 
necessitate that M&S methods evolve to accommodate these advancements to 
remain current and effective. To achieve this, practitioners often design M&S 
architectures that enable the M&S methods to meet their purpose while providing 
flexibility to support changes in technology. Herein a similar concept is entertained 
within the context of HAT interaction. The HAT ERP is expansive and constantly 
evolving. The various research undertakings, while all moving toward a defined 
goal, span multiple domains; for example, neurotechnology, brain–computer 
interface, complex environment models, and naturalistic technology. An effective 
HAT interaction predictive model requires an architecture that can accommodate 
the depth and breadth of this research program.4–6 

The evolution of ML technology, integral to HAT interaction, has propagated the 
development and use of ontologies and taxonomies to define and integrate various 
domains that would otherwise be disjointed. It is posited that the same concept 
could be applied to HAT interaction M&S, in which taxonomies7 are stand-alone 
entities that define a given domain and act as arguments within an ontological 
architecture. The ontology defines relationships8 between or among taxonomies 
and enable the taxonomies to co-operate to achieve a goal; for example, predict 
HAT interaction outcomes.   

2.1  Ontologies   

Ontologies are commonly used by data analysts to integrate multiple concepts in a 
variety of ways. The ontologies provide a formal description of knowledge as a set 
of concepts within a domain, their attributes, and the relationships among them.9 
Whereas taxonomies only provide a set of vocabulary and a single relationship 
between the terms, an ontology provides a set of relationships, constraints, and rules 
that establishes context and inference. This provides an architecture that defines 
knowledge representations that are sharable and reusable, yet flexible enough to be 
augmented with new knowledge about the domain. 

Current literature cites several examples where ontological constructs enable 
efficient and reliable data integration and information exchange between different 
agents or systems to overcome capability limitations.10 For example, a given task 
may entail a team consisting of a human and two autonomous agents: one agent 
equipped with a visual sensor and the other designed for mobility. All activity is 
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managed by a common ontology. The human initiates a task sequence to either 
agent, which then exchanges visual data and spatial orientation coordinates to 
negotiate delivery of a payload. The agents have their respective limitations; 
however, they achieve the goal because their common ontology coordinates their 
activity.  

Ontologies are also used to facilitate multimodal data sources that fuse data to 
develop a full description of the environment, thereby providing the user a basis for 
inference.11 Furthermore, the environment is made open by allowing the addition 
or removal of modalities at any time according to the needs of the user.12 The result 
yields a higher degree of environmental affordance13 where physical and digital 
properties enable cooperation and collaborative actions. 

Having obtained a higher degree of affordance, inferences about the environmental 
state can be made through the exchange of information encoded in axioms and rules 
that provide a semantic foundation for dissimilar considerations;14 for example, 
statutory constraints, business rules, and workflow models. The ontology may also 
support inferences about the environmental state through the use of model-based 
mathematical methods15 that can also be encoded as intrinsic modeling 
capabilities16 or designed to reference subconstructs that perform those functions.14 

2.2  Taxonomies 

A taxonomy is a classification system that organizes a body of knowledge based on 
an underlying set of principles, definitions, and other considerations that serve to 
standardize a set of unifying constructs that can be used to systematically describe 
and interpret the contents therein. While ontologies provide broader context and 
inference, as previously described, taxonomies tend to be hierarchical in a manner 
that defines elements within their knowledge domains and how they relate. 

Taxonomies are used by practitioners from many diverse fields. The Canadian 
military developed a taxonomy of cyber effects and threats to their computer 
networks that is used as the foundation for various applications; for example, 
training simulation, policy, and procedure analysis.17 Research on US Army 
intelligence training posited the use of a knowledge taxonomy to enhance 
intelligence training practices.18 The Organization for Economic Cooperation and 
Development uses several taxonomies to monitor global economic activity.19 The 
US Securities and Exchange Commission uses a taxonomy to standardize corporate 
financial information to support reporting across multiple entities.20 

The list of taxonomy applications is extensive. However, in all cases the 
information a taxonomy provides is restricted to its own domain, as explained 



 

 
4 

 

previously. To create synergies beyond its domain or across multiple taxonomy 
domains, a taxonomy would need to be integrated into an ontology-based scheme. 
For example, an intelligence officer may need economic information that relates to 
an intelligence taxonomy to support an assessment. That need could be satisfied by 
an ontological scheme that relates both taxonomy domains. Alternatively, one 
taxonomy would have to subsume the other, which would likely be arduous, 
inefficient, and not readily adaptive to change. 

Research literature favors the ontology-based scheme. There are many examples 
that integrate taxonomies to achieve a stated goal. The structure, definitions, and 
domain standardization provided by the taxonomy are leveraged to execute 
operations that are encoded in the ontology. They can be relatively simple, 
translating a taxonomy across multiple agents, or very complex, converting 
differing taxonomies into common terms. They have been applied in a variety of 
fields, including robotics and automation, decision support systems, and 
collaborative engineering design. Furthermore, taxonomies have also been used to 
predict outcomes. In some cases a taxonomy can be constructed for modeling and 
analysis methods that can be employed when certain criteria are met. The idea is to 
use abstractions of an operational scenario in question to automatically select the 
appropriate method.21 Alternatively, outcome predictions can be determined by 
applying appropriate methods to taxonomy instances that represent an operational 
scenario.  

2.3  Data Considerations 

The data used in ML and other data analytics applications are usually collected as 
a byproduct of normal business operations. Netflix serves as a common example of 
this evolution in which its business operations data are used to personalize movie 
recommendations, auto-generate thumbnails and artwork, scout locations for 
movie production, edit movies, and monitor streaming quality. Increasingly, 
businesses such as Netflix are starting to regard their data as a primary resource 
that can repurposed and leveraged beyond its original use. 

As relevant research and ML practices have advanced, data used in these types of 
applications have been attributed with characteristics such as the following:  

• Fine-grained in resolution and uniquely indexical in identification22 

• Relationality: containing common fields that enable the conjoining of 
different datasets23  

• Veracity: data can be messy and noisy, and contain uncertainty and error24 
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• Value: many insights can be extracted and the data repurposed24  

• Variability: data whose meaning can be constantly shifting in relation to the 
context in which they are generated24 

These data characteristics are further emphasized in a report by Abassi et al.25 that 
defines an information value chain (IVC), which explains the relationship between 
technologies, skill sets, processes, and organizational factors in this new  
data-analytics paradigm. Relative to the HAT ERP, the IVC differs from 
conventional management information systems primarily in the amalgamation of 
technologies into “platforms” and processes into “pipelines” that make data more 
readily available to users. It is conceivable that platforms and pipelines could entail 
ontologies and taxonomies to perform their functions. The concept of the IVC may 
also be inferred when considering the development of the combat cloud by the US 
military.26 The combat cloud will be populated by data collected from conceivably 
any combat system platform that would serve as both sensor and effector. Thus, the 
data collected by the combat cloud are a byproduct of and used to support combat 
operations. 

Data generated from ARL research experiments could also be regarded as a 
byproduct of ARL operations collected from HRED and HAT ERP experiments, 
which could include experiments that explicitly entail HAT interaction scenarios. 
While the primary purpose is to support research questions and hypotheses for a 
given study, the data could conceivably be repurposed to support predictive 
modeling for HAT interaction or any other human sciences application.27 

Therefore, in addition to supporting predictive models, these data considerations 
have cost–performance implications for human sciences research in general. If data 
can be repurposed to serve objectives in addition to their original application, 
ARL/HRED could use its resources more efficiently. Repurposing data, in effect, 
would be a budget multiplier. 

2.4  Human Sciences Knowledge Domain  

The intent of developing an ontology for human sciences research is to integrate 
information across the human sciences domain to support predictive models and 
other data analytics.   

To conceptualize how an ontology-based framework might apply to the 
ARL/HRED research program, consider the Web Ontology Language (OWL), the 
syntax of which is designed to model a network of nodes and arcs based on three 
elements known as Classes, Individuals, and Properties, which form a “triple” 
taking the following form28: 



 

 
6 

 

 

 Nominal: individual –> property –> individual (or value) 

Syntactical: subject –> predicate –> object 

The predicate is the primary mechanism with which domain information is 
integrated by either relating subjects and objects or subjects and values (numeric, 
strings, etc.).  

To further this conceptualization, consider the schematic presented in a recent ARL 
information briefing, shown in Fig. 1, that illustrates the ARL human sciences 
program delineated into research areas related by organizational and budget 
considerations. 

The Fig. 1 schematic could serve as the framework for an ontology representing the 
human sciences knowledge domain, wherein the Tier 2 and Tier 3 elements 
represent classes and subclasses, respectively. Actual data elements 
(electroencephalogram parameters, electrocardiogram parameters, etc.) considered 
in each Tier 4 research activity represent individuals in the ontology and also 
represent the data input to any data analytics to be performed. Predicates are 
contextually defined to relate individuals to each other or to a data value. These 
classes, subclasses, individuals, and properties are constructed in triples as 
previously described. 
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Fig. 1 Ontology framework for human-science knowledge domain 

As indicated in the Introduction, an ontology-based framework would also require 
taxonomies as stand-alone entities that define a given domain and act as arguments 
within an ontological architecture. The ontology defines relationships between or 
among taxonomies and enables the taxonomies to co-operate to achieve a goal (e.g., 
predict HAT interaction outcomes).  

Figure 2 presents a notional data taxonomy, based on Bloom’s cognitive domain,29 
to illustrate how taxonomies would apply to the human sciences ontology 
framework described. Notionally, such a taxonomy would represent the hierarchy 
of data collected from ARL/HRED research experiments, irrespective of 
organizational, operational, or budget considerations. The lowest element of a 
given taxonomy (i.e., data elements {x1, x2 … xn}, {y1, y2 … yn}) represent the 
actual data collected and correspond to the individuals defined in the ontology 
(electroencephalogram parameters, electrocardiogram parameters, etc.). In this 
framework, data elements could be retrieved from across all research activities to 
perform data analytics. In addition, in their role in ontology-based analytics, data 
taxonomies perform several other important functions: 

• Provide a centralized repository for standardized data 
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• Enable re-use of data beyond the original intended purpose, thereby 
improving organizational cost performance 

• Eliminate redundancy in data retrieval and storage 

• Facilitate augmenting or restructuring of strategic or tactical processes 

• Enable governance processes for fixing inconsistencies or providing 
feedback to users 

• Detail rules for automating remediation of predictable inconsistencies 

• Offer tools for sanitizing and normalizing data 

• Reduce ambiguity; ensure consistency in data definitions and 
inclusion/exclusion 

 

Fig. 2 Notional taxonomy based on Bloom's cognition domain 

For illustrative purposes, assume that the taxonomical data elements shown in  
Fig. 3 represent actual data collected by the Tier 3 ontological research activities—
Intuitive Naturalistic Technologies and Creating Group Synergies, indicated in  
Fig. 1. Triples can be formed based on the OWL syntax, as shown in Fig. 3. 
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Fig. 3 Triples based on OWL syntax 

Figure 4 presents a schematic of how the ontology and taxonomy combine to form 
the total framework for predictive models and data analytics. The predicates 
“Contains”, “Contained In”, and “Sibling Of” relate data elements across the human 
sciences knowledge domain, while the predicates “Converts To” and “Derives 
From” relate data values that would be used to perform predictive modeling and 
other data analytics. 

 

Fig. 4 Framework for ontology-based predictive models and data analytics 

3. Conclusion and Path Forward  

A survey of current literature indicates that artificial intelligence and data analytic 
practices entail the use of ontologies to integrate data, and taxonomies to define 
data, across one or more knowledge domains. The many benefits of an  
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ontology-based approach include horizontally integrating knowledge across the 
entire knowledge domain, vertically standardizing data definitions within the 
knowledge domain, repurposing collected data in addition to their original intended 
use (thereby improving the cost-effectiveness of the organization as a whole), 
adapting to evolutions in research initiatives, and lending itself to more effectively 
employing ML methodologies. 

A notional example is provided of how these practices and methodologies may 
apply to ARL/HRED, based on an ARL/HRED taxonomy of research activities that 
in turn serves as the ontological foundation, the “triples concept” employed in the 
OWL, and Bloom’s taxonomy of the cognitive domain. While the example 
provided is notional, it will serve as the conceptual basis for ensuing efforts focus 
on a proof of principle and development of a working prototype. Toward that end, 
future efforts may also consider implications of CFTs, (e.g., NGCV and SL), and 
possibly initiatives undertaken by the US Army branches (i.e., Combat Arms, 
Combat Support, and Combat Service Support). 
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