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Abstract

The relationship between fracture aperture (maximum opening; dpax) and fracture width (w)
has been the subject of debate over the past several decades. An empirical power law has been
commonly applied to relate these two parameters. Its exponent (n) is generally determined
by fitting the power-law function to experimental observations measured at various scales.
Invoking concepts from fractal geometry we theoretically show, as a first-order approximation,
that the fracture aperture should be a linear function of its width, meaning that n = 1. This
finding is in agreement with the result of linear elastic fracture mechanics (LEFM) theory.
We compare the model predictions with experimental observations available in the literature.
This comparison generally supports a linear relationship between fracture aperture and fracture
width, although there exists considerable scatter in the data. We also discuss the limitations
of the proposed model, and its potential application to the prediction of flow and transport in
fractures. Based on more than 170 experimental observations from the literature, we show that
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such a linear relationship, in combination with the cubic law, is able to scale flow rate with
fracture aperture over ~14 orders of magnitude for variations in flow rate and ~5 orders of

magnitude for variations in fracture width.

Keywords: Boundary Fractal Dimension; Fracture Aperture; Fracture Width; Surface Rough-

ness; Cubic Law.

1. INTRODUCTION

Modeling flow and transport within fracture net-
works require knowledge of fracture attributes and
their scaling properties. A fracture is typically char-
acterized by its aperture, width, displacement, and
surface roughness. It is well documented in the lit-
erature that the surfaces of natural rock fractures
are rough and follow self-affine scaling from frac-
tal geometry.IIHZI The self-affinity of the surfaces of
fractures is best understood in a statistical sense.d
According to self-affinity, if one considers the height
difference between two points separated by distance
|z; — x| on a self-affine surface, then

(hi) = h(zs)) o |wi — 25", (1)

where h(x;) and h(z;) are the heights at points
x; and xj, respectively, and H is the Hurst expo-
nent characterizing the surface roughness. Gener-
ally speaking, the larger the Hurst exponent, the
smoother the fracture surface. A value of H ~ 0.8
was reported for granite® while H ~ 0.5 for sand-
stones.” However, a wider range of the Hurst expo-
nent e.g. 0 < H < 0.9 has been reported for a vari-
ety of rock joints3

One of the most important characteristics of an
individual fracture is its aperture, defined herein as
the maximum opening (dmax). The maximum open-
ing is related to the average opening via dy.x =
4/ 7d e B Although aperture has been typically
characterized as either the maximum or the average
opening, due to the rough surface of fractures, there
exists a distribution of aperture openings, rather
than a single unique value for a given fracture. It
is worth mentioning that the aperture opening dis-
tribution can only be inferred once the fracture
surfaces have been characterized, which requires
accurate imaging of the surface roughness.

Fracture aperture has been shown to control fluid
flow and solute transport processes. For example,
the well-known cubic law?¥ relates flow in a sin-
gle fracture to the product of fracture width w and
fracture aperture raised to the power three (i.e.

Q o wdd, Vh o< wdd,  Vh in which Q is flow
rate and Vh is hydraulic gradient). Accordingly, the
scaling relationship between fracture aperture and
its width has been the subject of active research
and debate over the past several decades. We should
point out that the terms width and length have been
interchangeably used in the literature to describe
the straight line from one tip of a rock fracture to
another, which can be a source of confusion.

A commonly applied model linking fracture aper-
ture to fracture width is the following empirical

power law 12,
dmax = cw” (2)

in which c is a constant coefficient, d,,x is the frac-
ture aperture as previously defined, w is the fracture
width, and n is an empirical exponent. Different val-
ues of n have been reported in the literature based
on experimental observations, stochastic reasoning,
and theoretical models. In Table [I, we summarize
the various values of n (and if appropriate the cor-
responding coefficients of determination, R?, deter-
mined by directly fitting Eq. (&) to measurements),
that have been obtained using these three differ-
ent approaches. For a comprehensive review, see
Ref. [T1

From a theoretical perspective, linear elastic frac-
ture mechanics (LEFM) theory, which has been suc-
cessfully applied to rock fractures, predicts that the
fracture aperture should scale linearly with fracture
width/™ meaning that the value of n in Eq. ()
should be equal to 1. A relationship similar to
Eq. () was suggested by Oron and Berkowitz
between mean aperture and mean width for varying
length sections within a self-affine fractal fracture.
According to Oron and Berkowitz1¥ n = H, the
Hurst exponent that characterizes the roughness of
the fracture surface (see their Eq. (24)).

It is possible to stochastically relate frac-
ture aperture to fracture width™ Based on this
approach, it is well documented in the liter-
ature (see e.g. Ref. [II) that fracture width-
and aperture-size distributions both conform
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Table 1 Various n Values Determined by Directly Fitting Eq. (2) to Measurements, and
their Corresponding Coefficients of Determination (R?) for Several Datasets Reported
in the Literature, Including Theoretical and Stochastic Approaches.

Reference Remarks No. of Exponent R?
Samples n*

13 LEFM theory — 1 —

15 Stochastic model for faults in a variety of tectonic NA 1 NA
environments

[20/ Kelduhverfi, Iceland, Fracture width <3 m 79 224024 041
Kelduhverfi, Iceland, Fracture width >3 m 0.89 £0.08 0.76
Myvatn, Iceland, Fracture width <3 m 49 1.78 £0.47 0.22
Myvatn, Iceland, Fracture width >3 m 0.63+0.08 0.81

62 Bonticou Crag NA 1 0.96
Outcrop 1, Forillon Park, Gaspe Peninsula NA 1 0.86
Outcrop 2, Forillon Park, Gaspe Peninsula NA 1 0.94
Anse a Mercier, Gaspe Peninsula NA 1 0.73
Les Petite Anse, gaspe Peninsula NA 1 0.66
Petite Vallee, Gaspe Peninsula NA 1 0.68
White-hall Dike NA 1 0.66
Lake Champlain NA 1 0.24

23 Fractures in clay ~3000 0.47+£0.03 NA

[63] Croagh Patrick quartz veins 431 1.20 0.73
Section parallel to the vein array, Croagh Patrick 139 1.47 0.64
Loughshinny 158 0.99 0.64
Loughshinny, section perpendicular to shear zone and 180 1.08 0.32
transport direction
Bridges of Ross quartz veins in sandstone 300 1.30 0.68
Bridges of Ross, section parallel to zone 96 0.95 0.26
Skelpoonagh Bay 305 1.08 NA
Quartz veins in granite 16 1.49 0.44

64 Veins in the damage zone of the Husavik—Flatey fault 384 1 0.66

8] Ship Rock Dike Segments from Delaney and Pollard NA 0.4 0.55
(1981)
LEFM theory incorporating subcritical and critical — 0.5 —
fracture propagation criteria

46 14 datasets from various studies (details given in their — 1 NA
Fig.[D)

65 Open fractures in tight gas sandstones 110 1 0.99
Calcite-filled fractures in tight gas sandstones 300 1 0.95

Note: * n represents the exponent in the power-law aperture-width relationship (Eq. [@)); NA means

not available.

to power-law probability density functions (i.e.
fdpax) = Cqdz%, and f(w) = Cyuw™? in which
Cy and C, are constant coefficients). Assum-
ing that dpna.x and w are related via the math-
ematical power-law function, Eq. (2), one can
write  f(dmax)d(dmax) = f(w)dw. Given that
d(dmax)/dw = cnw™ ! from Eq. @), then n =
(8—1)/(e—1). Scholz and Cowid'® reported a = 2.2
and 8 = 2.1 and found n = 1 for a variety of tec-
tonic environments. Those authors also showed that
n = 1 could accurately represent their measured
data. Besides power law scaling ™7 the log-normal
probability density function has also been used to

describe distributions of fracture aperture and/or
width T819

In addition to theoretical and stochastic values
for n, there are numerous empirical estimates of n
in the literature. For example, Hatton et all20 exper-
imentally analyzed two datasets (i.e. Kelduhverfi
and Myvatn) from the Krafla fissure swarm, Ice-
land, and found a break in slope in the aperture—
width data when plotted on a log-log scale. For the
Kelduhverfi dataset, they reported n = 2.2 + 0.24
with R? = 041 for w < 3m and n = 0.89 £
0.08 with R?> = 0.76 for w > 3m, while for the
Myvatn dataset, n = 1.78 + 0.47 with R? = 0.22
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for w < 3m and n = 0.63 £ 0.08 with R? = 0.81
for w > 3m. The break in slope was interpreted
as an indication of scale-dependent growth mecha-
nisms. In contrast, Renshaw and Park2! argued that
“... the break in slope is instead intrinsic to the
fracturing processes and represents the maximum
length scale at which the apertures of smaller frac-
tures are affected by stress perturbations induced
by larger fractures”. Later, Main et al?2 reanalyzed
the Kelduhverfi dataset using a new method based
on Schwartz’s information criterion and a Bayesian
approach and found a break in slope near 12m
(instead of 3m reported by Hatton et al29) as well
asn = 1.4940.29 for w < 12m and n = 0.64+0.41
for w > 12m. In Ref. 22, the difference in the
Bayesian information criterion (BIC) between the
double- and single-slope models, conditional on the
optimal change point, was about 5 (see their Fig. [II).
This implies a relative likelihood of exp(5/2), mean-
ing that the double-slope model is nearly 12 times
more likely than the single-slope model to be correct
for the Hatton et al20 dataset (I. Main, personal
communication 2018).

Other values of n, estimated by fitting datasets
obtained over a variety of length scales, are listed
in Table [l Interestingly, the arithmetic average of
all of the experimentally determined n values in
Table @ is 1.05 £ 0.07, a value which is not statis-
tically different from unity. It should be noted that
most n values presented in Table [ are based on rock
fracture measurements. However, n = 0.47 £ 0.03
was derived by Walmann et al® from cracks in
clayey soils, which are unconsolidated as compared
to rocks.

The main objective of this study is to use con-
cepts from fractal geometry to develop a first-
order approximation of the relationship between
fracture aperture dp.x and fracture width w. To
our knowledge, no such approach has previously
been proposed to predict the dp.x—w relationship.
In what follows, we briefly describe fractal geom-
etry, introduced by Mandelbrot2? and present its
fundamental concepts. We then derive a geometrical

Ly

Fracture aperture d,,,, I ‘Es-'“::‘_:& N S

= ==

Fracture width w

Fig. 1 Schematic cross-section through an elliptical frac-
ture with a rough boundary. dmax and w represent the frac-
ture aperture (maximum opening) and the fracture width,
respectively.

relationship between the aperture and width of a
single rough-walled fracture, resulting in a geomet-
rically based prediction of the exponent n in Eq. (2).
Finally, we compare our theoretical results with
experimental observations reported in the literature
and relate them to flow and transport models.

2. THEORY

Fractal geometry, introduced by Mandelbrot2%
has been shown to be a robust and appropriate
approach for modeling the multiscale structure of
complex and heterogeneous media such as rocks,
soils, and fracture networks 2382 A fractal ob ject
is characterized by having a (typically non-integer)
dimension less than the Euclidean dimension of the
space it is embedded in. If a fractal object is rescaled
in all directions with the same scaling factor, a sta-
tistically similar object is reproduced; this property
is termed self-similarity.

Many natural objects are self-affine rather than
self-similar, meaning that they require different
scaling factors in different directions™ The con-
cept of self-affinity has been used to model the
physical and geometrical properties of fracture net-
works #1433 Tt has also been applied to statisti-
cally characterize fracture surfaces* Poon et al. 2
among others (see Ref. B for a comprehensive
review), modeled surface roughness of fractures by
means of self-affinity. However, none of these models
predict the relationship between fracture aperture
dmax and fracture width w.

In the simple model that we present, self-affinity
is assumed. Let us presume that the cross-section of
a natural fracture can be represented by an ellipse
with a rough boundary, as shown in Fig.[1 It should
be pointed out that an unembroidered ellipse is the
shape of a Griffith crack traditionally employed in
LEFM (see e.g. Ref. B6)). Other crack geometries e.g.
edge, corner, or semi-circular have also been used
within Griffith theory. We further assume that the
rough boundary is fractal, and thus, following Man-
delbrot 2 one may relate the fracture perimeter P
to its area A as follows:

Dy
Pox A2, (3)

where Dy is the boundary fractal dimension (1 <
Dy < 2) characterizing the roughness of a cross-
section taken through a fractal fracture surface
(Fig. @). The higher the D; value, the rougher the
boundary.

Equation (B) has been successfully applied to
relate perimeter to area in clouds metallic rough
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fractures*® and soil and rock poresB#0 Further-
more, it has been also used in combination with the
model of Patzek and Silin! to describe fluid flow
in tubular pores with rough surfaces, and to accu-
rately estimate water relative permeability.

We can compute the width of the fractal perime-
ter of a rough-boundary ellipse shown in Fig. [ by
invoking the Mandelbrot? approach, followed by
Wheatcraft and Tyler™ and many others. Based on
this approach, a fractal length L; is a function of
some measurement scale € and the straight-line dis-
tance L between the two ends of the fractal path
as follows:

Ly =¢e=Pub (4)

in which D; is the fractal dimension of the fractal
length. Equation (@) is valid for both self-similar
and self-affine fractal curves. For a self-similar frac-
tal curve, divider method, box counting, and mass
scaling estimates of D; will all be the same. How-
ever, for a self-affine fractal curve, different values
of D; will be obtained using different evaluation
methods ™ We should also note that the concept
underlying fractals is self-similarity or self-affinity,
that is, invariance against variations in scale or size
(scale-invariance). Accordingly, the fractal dimen-
sion is theoretically scale-invariant. However, in the
nature, objects are only approximately fractal and
scale invariant, and one may expect the fractal
dimension to vary from one scale to another. A
notable example is fractal dimension determination
from images. For example, Baveye et al®¥ demon-
strated the effects of image resolution, thresholding,
and algorithm used to generate binary images on
the estimation of fractal dimension.

Assuming that the rough boundary shown in
Fig. @ is a fractal length, setting D; = D;, and
Ly = w in Eq. @) in combination with P o Ly
yields:

P o et ™ Doy, (5)

Equation () necessarily means that perimeter is
measurement scale-dependent. Given that 1 < Dy, <
2, P is directly proportional to the fracture width
w, while inversely proportional to the measurement
scale £. As a consequence, when ¢ tends to zero, P
approaches infinity.

The area of an ellipse with a smooth boundary
(represented by the black dashed line in Fig. [I)
is a function of the product of its semi-minor
and semi-major axes (wdpayx). Accordingly, for the
rough-boundary ellipse (shown in red) one can

A Geometrical Aperture—Width Relationship for Rock Fractures

approximately set
A o< wdpmax. (6)

Note that Walmann et al23 also used a relationship
similar to Eq. (6) to relate the area of a fracture to

its aperture and width.
Substituting Egs. (@) and (@) into Eq. [B]) gives

dmax = Cw, (7)

where C is a numerical prefactor whose value

depends on the measurement scale € (i.e. C'
2-2Dy

e D).

Equation ([{) represents a geometrical scaling
relationship linearly relating fracture aperture to
fracture width. It is in agreement with the LEFM
approach, which predicts that the fracture aper-
ture should scale linearly with fracture width.m3
Within the LEFM theory framework, the coeffi-
cient C' would be equal to o(1 — v)/p in which o is
the effective driving stress (remote tension plus the
internal fluid pressure), v is Poisson’s ratio, and p
is the shear modulus ™

As the derivation of Eq. () shows the rough-
ness exponent cancels meaning that it is mainly
the fracture geometry governing the linear dyax—
w relationship rather than the roughness per se.
It is interesting that the rough-boundary ellipse
produces the same result as the smooth-boundary
ellipse applied by LEFM. Although our geometri-
cal terminology is different from that of LEFM,
the obtained results indicate that perturbing the
boundary of a smooth-boundary ellipse, used in
LEFM theory, with self-affinity duplicates the lin-
ear w—dmax relationship. In Appendix A, using the
same geometrical terminology, we, however, demon-
strate that there exists no simple linear relation-
ship between fracture aperture and its width for
a smooth-boundary ellipse, unless w is significantly
greater than dp,.«. In Appendix B, we assume a rect-
angular fracture embroidered with a fractal rough
boundary (see Fig.[B.]) and demonstrate that when
w > daye the average fracture aperture (duye)
should scale linearly with its width (w).

Equation () is also in agreement with the
stochastic approach of Scholz and Cowié™ and the
average of the experimentally determined n values
presented in Table[Il However, there are some expo-
nents reported in the literature (e.g. those from
Ref. 20) that apparently do not match the theo-
retical prediction of n» = 1. In what follows, we
compare the geometrical model with two datasets
from Ref. 201 and demonstrate that Eq. ([), with
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different numerical prefactor C values, is able to
accurately match the experimental measurements
by Hatton et al?0

3. COMPARISON WITH
HATTON et al. EXPERIMENTS

Hatton et al?? collected two datasets, namely
Kelduhverfi and Myvatn, from the Krafla fissure
swarm, one of five volcano tectonic systems in the
active rift zone of northeast Iceland. It is proba-
bly worth pointing out that the Kelduhverfi and
Myvatn exposures have heavy joint sets at a charac-
teristic scale, that control the fracturing (see Fig.
of Ref. 20). However, this is not always the case
(I. Main, personal communication (2018)). Hatton
et al?9 measured fracture width, the straight line
from tip to tip, and fracture aperture, the maxi-
mum opening displacement along the width of a
fracture, using a tape measure. A total of 72 and
42 fractures were digitized for the Kelduhverfi and
Myvatn areas, respectively, from Fig. Bl in Ref. 20.
The yield of 72 for Kelduhverfi is less than the 79
stated in Ref. 20l The difference between the two
might be due to low figure quality or duplications
in the measurements.

Fracture aperture as a function of fracture width
is shown on a log-log scale for the two areas in
Fig. Bl As can be observed in Fig. Bh, the data points
are highly scattered, not only at short length scales
but also over the entire range of length scales. For

1000

100

=
o

Aperture d,,, (m)
=

0.1
0.01
0.001
0.0001 T T T T
0.1 1 10 100 1000 10000
Width w (m)
(a)

example, at short length scales a fracture aperture
of 0.001 m corresponds to a wide range of fracture
widths from near 0.1 to 1m, almost one order of
magnitude. Such scatter in the data causes substan-
tial uncertainties in the optimization of any mathe-
matical function’s parameters through a direct fit-
ting process.

In the Kelduhverfi dataset (Fig.[2h) both fracture
aperture and width span nearly four orders of mag-
nitude. However, in the Myvatn dataset, fracture
width spans nearly three and half orders of magni-
tude while aperture only varies over approximately
two orders of magnitude. Nonetheless, as we show
in Fig. Bl Eq. (@) with various numerical prefactors
can accurately capture the trends in the observa-
tions. We plotted Eq. (@) with C' = 0.001, 0.01, and
0.1 in Fig. B} however, one can clearly see that other
values of C' might be relevant to some data points.
In both plots shown in Fig. 2] the envelope of esti-
mated fracture aperture values via C' = 0.001, 0.01,
and 0.1 coincides remarkably with results from the
two datasets from Ref. 20.

Our results presented in Fig. 2] are in agreement
with those of Schultz et al® who experimentally
demonstrated for 14 datasets that fracture aperture
should linearly scale with fracture width (see their
Fig. [[}), similar to Eq. ([@). In their Fig. @ how-
ever, they discuss that for some experiments the
value n = 0.5 might be more relevant than n = 1.
Interestingly, Schultz et al8 found that the same
numerical prefactors C' = 0.001, 0.01, and 0.1 could

1000

100 -

=
o
"

Aperture d,,, (m)
=

0.1
0.01 -
0.001 -
0.0001 T T T T
0.1 1 10 100 1000 10000
Width w (m)
(b)

Fig. 2 Fracture aperture versus fracture width for the (a) Kelduhverfi and (b) Myvatn datasets from Ref. The solid
lines represent Eq. ([) with various numerical prefactor values (i.e. C' = 0.001, 0.01, and 0.1). To be consistent with Figs. Bh

and [Bb of Ref. 20, same symbols have been used.
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Fig. 3 Measured flow rate ) as a function of measured
aperture for eight datasets and 173 fractures digitized from
Ref. [48] The red and blue solid lines respectively represent
Eq. @) with n = 1 (from Eq. (7)) and numerical prefactors
102 and 108 (i.e. Q = 10%di . and Q = 108d2 ..

accurately capture aperture—width trends for more
than 170 fractures from 14 datasets including nor-
mal faults, strike-slip faults, and thrust faults.

4. COMPARISON WITH FLOW
RATE EXPERIMENTS

The correlation between aperture and width has
an impact on flow rate ) in a single fracture,
which can be approximated by the following cubic

law210
Q x wdS ,Vh < wd3, Vh. (8)

For the validity of the cubic law in smooth and
rough fractures, see pp. 156 and 416417 of Ref.
for a review as well as Ref. 47. Equation () clearly
shows that flow rate () is mainly controlled by frac-
ture aperture dp.. rather than fracture width w.
This is because in Eq. (8) aperture is raised to the
power three, while width is only raised to the power
of unity. However, the effect of fracture width might
not be negligible, as we discuss in the following
paragraphs.

If the fracture aperture and the fracture width
are uncorrelated, Eq. (8) in its present form (@ o
d?...) should accurately scale flow rate with aper-
ture in a single fracture. However, if d.x and w
are correlated via Eq. (@), then w in Eq. (8) can

1

be replaced with df.x, and accordingly Eq. (8)

A Geometrical Aperture—Width Relationship for Rock Fractures

changes to

1
Q o dhk | (9)

and the values n = 0.5 (Refs. 8] 46, 48) and n =1
(see Table [ and Eq. (7)) result in Q o< do,.
and Q d‘(lmax), respectively. Equation (@) clearly
shows deviation from the cubic law that should
be attributed to the aperture-width relationship
(Eq. [@)). However, as we discuss later, there is
evidence in the literature indicating that such a
deviation can be attributed to surface roughness.
Accordingly, Eq. (@) will likely only provide accu-
rate results when the aperture is wide enough so
that the effect of surface roughness is minimized. In
what follows, we compare Q o di . with data from
flow rate experiments.

Klimezak et al®® collected eight datasets from
various studies in the literature including Shiprock
dikes, Florence Lake veins, Culpeper veins, Moros
joints, Lodeve veins, Donner Lake dikes, Emerald
Bay veins, and Emerald Bay dikes (see their Fig. 6).
Measured flow rate (m3/s) versus measured frac-
ture aperture (m) are shown in Fig. Blon a log-log
scale. As can be observed, flow rate and aperture
span near 16 and six orders of magnitude on the
vertical and horizontal axes, respectively. Generally
speaking, the measurements can be grouped into
two classes: () Shiprock dikes (represented by tri-
angles in Fig. Bl and (2) all others. Although both
classes have similar slopes on a log—log scale, the
Shiprock dikes require a larger aperture than other
types of fractures shown in Fig.Blto return the same
flow rate value.

In Fig. Bl we also show Eq. @) with n =1 (from
Eq. (7)) and two different numerical prefactors i.e.
10?2 and 10%. As can be seen, Q = 10%d%,. and
Q = 1084, precisely scale the measurements over
14 orders of magnitude variations in flow rate and
five orders of magnitude of fracture widths. This
result is a definite improvement on the Q o dj..
scaling propounded by Klimczak et al®® (see their
Fig. 6).

It is worth pointing out that one should expect
Eq. (@) to be valid only under the laminar flow
(low Reynolds number) condition. However, some of
the high discharge experiments of Klimczak et al®®
presented in Fig. Bl would likely violate this condi-
tion for water. Those experiments apparently corre-
spond to magma flow through dikes with wide aper-
tures. Given that magma’s viscosity is remarkably
high and significantly greater than that of water,
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the Reynolds numbers associated with those exper-
iments should not be too large. However, magmas
are typically quasi- or non-Newtonian, for which
applying Darcy’s law causes uncertainties in calcu-
lations. Given the lack of detailed information on
the flow rate experiments of Klimczak et al. 8 care
should be taken in interpreting the close correspon-
dence between Eq. ([@) and the data in Fig. 3 as
model validation. Clearly, additional experimental
work on water flow rates in fractures is needed in
order to fully evaluate our proposed model.
Although we have shown that a simple geo-
metrical scaling relationship, Eq. (@), in combi-
nation with the cubic law can accurately repre-
sent the experimental data from Klimczak et al.,@'
there is experimental and numerical evidence in the
literature that surface roughness can remarkably
affect fluid fAlow®® Accordingly, an exponent dif-
ferent than 4 might better scale flow rate () with
fracture aperture dpya.x. For example, lattice-gas
simulations in single self-affine (anisotropic) frac-
tures by Zhang et al3¥ revealed exponents greater
than 4. For three-dimensional fractures with rel-
atively rough (H = 0.8) and rough (H = 0.3)
surfaces, those authors found exponents 2.67 and
3.15, respectively. With further decreases in H
they found significant increases in the exponent
scaled permeability with mean aperture. Zhang
et alBP¥ stated that “Our study shows quantitatively
that the experimentally observed deviation from
the cubic law can be attributed to surface rough-
ness”. Sahimi® also stated that in fractures with
rough surfaces, an exponent as large as 6 might
be expected. Eker and Akin®® simulated fluid flow
through two-dimensional fractures with rough sur-
faces via the lattice-Boltzmann technique. Those
authors reported that as the mean aperture-fractal
dimension ratio increased, permeability increased.
They stated that, “The resulting permeability val-
ues were less than the ones obtained with the cubic
law estimates”. Eker and Akin® also found that the
exponent scaled permeability with mean aperture
was linearly correlated to fractal dimension charac-
terized fracture surface roughness for isotropic frac-
tures (see their Eq. (12)). More specifically, their
simulations resulted in exponents ranging from 4.27
to 5.66, in accord with the results of Zhang et al¥
Recently, Liu et al® combined concepts from frac-
tal curves, Eq. 4, with the cubic law, Eq. 8, and
proposed () o dg\;DT in which Dt represents the
tortuosity fractal dimension. Given that theoreti-
cally 1 < Dp < 3, the exponent 6 — Dy can be

expected to range between 3 and 5, with Dy =2
corresponding to our model prediction. Further
research on comparing these different approaches
could be valuable.

5. DISCUSSION

One of the main assumptions in our theoretical
derivation is that the boundary of the fracture
surface is fractal. Many studies in the literature
indicate that fracture surfaces are rough and obey
fractal geometry®2PZ02 However, not every rock
fracture surface is necessarily fractal at all scales.
In fact, natural fractures that exhibit self-similarity
or self-affinity might lose their fractal properties
above and below upper and lower cutoff scales. The
aperture—width relationship for fractures whose sur-
face is non-fractal may well deviate from the theo-
retical linear function given in Eq. (@), as we show
in Appendix A.

In addition, we assumed that fractures are
elliptical with a rough boundary. Although natu-
ral fractures have been frequently represented by
ellipses 2059 in reality they typically have irregu-
lar cross-sections with converging—diverging open-
ing geometry. Furthermore, rather than a unique
aperture for a given fracture, there exists a distri-
bution of gap sizes due to the rough surfaces of frac-
tures. Thus, we should caution that any significant
deviation from elliptical shape may cause uncertain-
ties in our proposed scaling relationship.

Madadi et al® studied fluid flow in two-
dimensional fractures with rough self-affine sur-
faces, quantified with the Hurst exponent H, using
the lattice-Boltzmann method. They wused five
values of H ranging from less than 0.5 (which gener-
ated rough surfaces) to near 1 (which provided rel-
atively smooth surfaces). In their study, the mean
aperture of the fractures was varied to generate nar-
row to wide fractures. They stated that, “Using
a simple mean aperture for representing a frac-
ture with rough internal surfaces will always result
in gross errors, unless, of course, the fractures are
wide, in which case the surface roughness does not
really matter”.

A rough profile (i.e. the fractal path shown
in Fig. [I) can be characterized by two param-
eters: (I) the boundary fractal dimension (or
Hurst exponent), and (2) the root-mean-square
of the roughness height. The former characterizes
the boundary roughness, while the latter controls
the roughness thickness. The higher the boundary
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fractal dimension, the rougher the fractal path.
Likewise, the higher the root-mean-square of the
roughness height, the thicker the fractal profile.
In our theoretical framework, described in Sec. [,
only the boundary fractal dimension was employed.
The effect of the root-mean-square of the roughness
height was not incorporated. Further investigation
is required to understand how the root-mean-square
of the roughness height might impact the predic-
tions of our theoretical linear relationship, Eq. (7).

6. CONCLUSIONS

In this study, we developed a first-order linear
approximation of the relationship relating frac-
ture aperture (dpax) to fracture width (w). Linear
relationships have been previously proposed either
experimentally or theoretically in the literature.
However, for the first time, we invoked concepts
from fractal geometry to show that d.x should
scale linearly with w. We reanalyzed the Hatton
et al®@ database, for which nonlinear power-law
equations, with breaks in slope, have been reported,
and demonstrated that a linear relationship with
various numerical prefactors could accurately cap-
ture the trends in the data. Comparison with previ-
ously published flow rate experiments also showed
that our linear scaling relationship, in combination
with the cubic law, could accurately scale flow rate
with fracture aperture for more than 170 experi-
mental observations.
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APPENDIX A

In this section, we consider an elliptical fracture
with a smooth boundary presented in Fig. [Al
We show that there exists no simple relationship
between fracture aperture and its width, unless the
latter is significantly greater than the former.

Following Eq. (B), one may relate fracture
perimeter to its area for a smooth-boundary object
(Dy = 1) as follows:

P x Az, (A.1)
Within Euclidean geometry, Eq. (A1) always holds
because the dimension of area is [L?], while that of
perimeter is [L].

In the literature, various formulas have been
developed to determine the perimeter of an ellipse.
Most, if not all, of these are approximations. The
two most widely applied models were proposed by
Ramanujan®! and are in the following forms:

P~ 7 |(dnax +w)

3(w — diax)?
10(dimax + W) + /oy + 1ddpaxw +w? |
(A.2)
P~ 7[3(dmax + W) — v/ (dmax + 3w) (3dmax + w)].
(A.3)

In addition to these relatively simple relationships,
there exist several other models in series form.
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Fracture aperture d,,, I C:: ::D

Fracture width w

Fig. A.1 An elliptical fracture with a smooth boundary.
dmax and w represent the fracture aperture (maximum open-
ing) and the fracture width, respectively.

In contrast to the perimeter formula, the area of
an ellipse is exact and can be calculated as

A= %wdmax. (A.4)

Combining either Eq. (A.2)) or (A3) with Eqs. (A1)
and does not yield any straightforward rela-
tionship between dpya.x and w for a smooth-walled
elliptical fracture. This is simply because P is a
complex function of dpax and w (see Egs. (A2)
and (A3)). Accordingly, there exists no simple rela-
tionship linking dpax to w. Only if w > dpax, both
Egs. (A2) and reduce to a linear propor-
tionality between perimeter and width i.e. P o< w.
Given that A o wdpax, substituting P and A into

Eq. (&) yields

dmax X W (A.5)
which is the same as our Eq. (). The difference
between Eq. (AJF) and Eq. (@) is that the former

holds if and only if w > diax, while the latter does
not depend on any assumption between w and d,ax.

APPENDIX B

Here we assume a rectangular fracture with a frac-
tal rough boundary (see Fig. B.I]) and demonstrate

aperture d,,.

Fracture width w

Fig. B.1 A rectangular fracture with a rough boundary.
dave and w represent the average fracture aperture and the
fracture width, respectively.

that under specific circumstances fracture aperture
scales linearly with its width. For this purpose, fol-
lowing Eq. (B]), we assume that

Dy
PoxAz. (B.1)

If w > dpnax, one can approximate the fracture
perimeter by

P oc g7 PoqPe, (B.2)

This means that the fractal rough width of the frac-
ture dominantly contributes to the perimeter. We
further assume that the area can be represented by

A < wdyye. (B.3)

Combining Egs. (B2) and (B3) with Eq. (BJ)
gives

Aave X W (B.4)

which is similar to Eq. (7). One should note that any
fracture whose geometry differs significantly from
that given in Fig. and/or any failure in the
assumptions P oc w” (Eq. (B2)) and A o wdaye
(Eq. (B3)) could cause significant deviations from

Eq. (B4).

1940002-12



	INTRODUCTION
	THEORY
	COMPARISON WITH HATTON et al. EXPERIMENTS
	COMPARISON WITH FLOW RATE EXPERIMENTS
	DISCUSSION
	CONCLUSIONS

