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Abstract—Deep learning tasks are often complicated and
require a variety of components working together efficiently
to perform well. Due to the often large scale of these tasks,
there is a necessity to iterate quickly in order to attempt a
variety of methods and to find and fix bugs. While participating
in IARPA’s Functional Map of the World challenge, we
identified challenges along the entire deep learning pipeline
and found various solutions to these challenges. In this paper,
we present the performance, engineering, and deep learning
considerations with obtaining, processing, and modeling data,
as well as underlying infrastructure considerations that support
large-scale deep learning tasks. We also discuss insights and
observations with regard to satellite imagery and deep learning
for image classification.
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I. INTRODUCTION

Identifying the functional use of facilities and land in
satellite images is a problem that industry, academia, and
government have explored in depth. Due to the complex and
heterogeneous nature of satellite imagery [1], even within
categories, classification of land use within satellite imagery
is a daunting task. Furthermore, high-resolution datasets
of satellite imagery are unwieldy to store, transfer, and
manipulate, and performing complex learning tasks on such
high-resolution data becomes complicated as systems run
into storage, bandwidth, and memory issues.

IARPA, in collaboration with Johns Hopkins University’s
Applied Physics Laboratory (JHU APL), created a dataset
of over 1 million multispectral satellite images of sites
on the Earth’s surface from over 200 countries [2]. This
dataset contains multiple images for each site, captured
over time. Each image in this dataset contains at least one
example of a facility or land whose function falls into
one of 62 categories such as ”military facility,” ”barn,” or
”construction site.” Bounding boxes identifying portions of
the image that contain each instance of facility or land are
also provided. Each image is accompanied with metadata
providing information about each satellite image capture,
such as geospatial location, date, time, etc.

Labels for each of the 62 land use categories within each
bounding box were provided for the training and validation

subsets of the dataset. However, labels were not provided for
the test dataset. The test dataset also contained bounding
boxes that did not identify entities from any of the 62
categories, thereby creating another category called ”false
detection.” The FMoW challenge required participants to
identify each land use category or false detection instance
as such in the test dataset.

During this challenge, we explored a difficult deep learn-
ing task in a competitive environment with strict deadlines
and computational restrictions. This challenge necessitated
an infrastructure that could support fast experimentation and
agile, iterative development. In this paper, we demonstrate
and instrument limitations to infrastructure and deep learning
methods and present our effective workarounds. We explore
1) the underlying data and feature engineering, 2) the com-
putational infrastructure supporting deep learning, and 3)
deep learning approaches, their pros and cons, and attempted
solutions to problems these approaches present.

II. DATASET

IARPA, in collaboration with JHU APL, provided the
challenge with the largest publicly available satellite dataset
with bounding box annotations and metadata [2]. The com-
plete dataset is over 3.6 TB, comprised of over 1 million
images. All satellite imagery is provided by the DigitalGlobe
constellation1.

The dataset is split into training, validation, and testing
sets. These represent 65.2%, 11.4%, and 13.8% of the
dataset, respectively. The remaining 9.6% of the dataset was
sequestered for challenge validation purposes and was not
accessible to competitors during the competition. Labels for
the bounding boxes were not provided in the testing dataset.
Furthermore, labeled instances of ”false detections” were not
provided in the training dataset.

A. Satellite Imagery

The satellite imagery is available in two formats: 4/8-band
multispectral TIFFs and 3-band compressed JPEGs. There
are over 1 million images available in the overall dataset.

1https://www.digitalglobe.com/about/our-constellation



Figure 1. Example images from the dataset with bounding boxes manually superimposed: bounding box around a barn (left); bounding box around a
lighthouse (center); example of a false detection (right).

Satellite imagery is provided for each of the 63 categories.
An unlabeled dataset of satellite images, which may contain
the facility/land categories or the false detection category, is
provided for testing. Imagery was collected in the visible-
to-near-infrared spectrum and captured over 200 countries
with wide geographical and categorical diversity.

The complete multispectral TIFF dataset is over 3.5 TB
and consists of a mixture of 4-band and 8-band images. In
contrast, the JPEG dataset is 207 GB and consists solely of
3-band images.

Although we used both datasets in some capacity during
experimentation, we mainly relied on the 3-band JPEG
dataset since working with datasets with variant dimen-
sionality (as in the 4-band or 8-band case) led to longer
development times. The smaller dataset size allowed us
to iterate in a much quicker fashion since data loading,
transfer, and memory requirements were lowered by an order
of magnitude. However, we verified our infrastructure and
methods on the full multispectral TIFF dataset to ensure that
our solutions scaled.

B. Metadata

The IARPA dataset provides comprehensive metadata for
all images. The metadata contains information which pro-
vides further context and environmental conditions for each
image. Examples of this information include geographical
location, amount of cloud cover, angles of the satellite
sensor, and much more. Some metadata fields are categorical
while others are numerical (discrete and continuous). Not all
metadata fields share the same numerical scale.

III. OBTAINING DATA

IARPA made the dataset publicly available and ready to
download via two methods: 1) Requester Pays AWS S3
buckets, and 2) P2P BitTorrent. For most competitors, using
Requester Pays S3 buckets was not financially practical, as
it would rougly cost 3600GB ∗ $0.09/GB = $3242 to

2https://aws.amazon.com/s3/pricing/

download the data. Initially, we requested data from AWS
S3. However, data transfer speeds were extremely low, with
estimated transfer completion times of over a month.

P2P BitTorrent proved to be a much better method of
transferring the data, although it still performed slowly. With
a 2x10 GbE uplink to the Internet via CMU’s Parallel Data
Laboratory (PDL)3, we were able to download both the TIFF
and JPEG datasets in little over one week.

BitTorrent demonstrated some limitations when down-
loading the data. While JHU APL hosted a seed box for
the data, much of the download depended on individual
contributors across the world contributing to the peer pool.
However, other peers rarely provided seeding, resulting in
a slower download process than otherwise expected. The
CMU PDL served as a dedicated seeder for the peer pool for
a few days after our completed download to aid the overall
competition.

The use of the BitTorrent protocol is not supported or
encouraged in many environments. In these circumstances,
there may be no choice but to use S3. However, with proper
data verification and data separation, using P2P protocols
should not be a concern. We used a sandboxed environment
to download the data and verify it (using methods such as a
hash), after which we transferred it to the unsandboxed file
system at large. This process kept us in compliance with our
organization’s rigorous security guidelines and provided us
with verification that our copy of the data was intact.

IV. DATA PROCESSING

Due to the highly heterogeneous nature of satellite im-
agery in terms of landscape, structures, cloud cover, and
more, proper data processing is extremely important to learn
useful features from the input data.

A. Bounding Boxes and Context

The provided metadata defines bounding boxes within the
images to be classified. These bounding boxes are usually

3http://www.pdl.cmu.edu/index.shtml



tight around the area of interest (Figure 2). It would be
simple to present only the bounded portion of the image
to the model. However, our hypothesis was that the land-
scape surrounding the bounded portion of the image gave
important context that would improve the representation of
the overall image. Therefore, we needed a way to expand
the bounding box to look at the context. To do this, we
defined a method to create a context window and performed
experiments to determine a reasonable context window size.

Figure 2. A tight bounding box around an amusement park.

We define the context window around the bounding to be
dependent on a context ratio, C, to be

context window =
C ∗AR

2

where AR is the aspect ratio of the image. The bounding
box would be expanded to cover an extra context window∗
width pixels, and by the same factor for the height (see
Figure 3). A context ratio of 0 would imply no extra
context window. In order to decide on a good context ratio,
we performed an experiment where we trained a simple
convolutional neural network on the input data while varying
the context ratio. We observed that a context ratio of ˜1.5
resulted in the greatest performance (see Figure 4).

Figure 3. Example of a bounding box and the expanded context window
around an instance of ”dam.”

Figure 4. Relative difference in accuracy with varying context ratio.

B. Highly Variant Bounding Box Resolutions

Images within and between categories varied in resolution.
While some images, such as certain instances of ”airport”,
were upwards of 4000x4000 px, other categories, such as
”zoo”, had images lower than 200x200 px. Furthermore,
images rarely had an aspect ratio of 1, causing aspect ratio
to be a case to consider when trying to handle images of
different resolutions. Convolutional neural networks have
no requirement that images must be the same resolution.
However, fully connected layers rely on fixed vector sizes
to operate, which imposes that convolutional feature maps
should be of the same dimensions. We explored multiple
strategies to work around this issue.

1) Bounding Box Rescaling: A common method of han-
dling datasets with images of varying resolutions is to rescale
all images to the same size [3]. In the case of [3], all images
were downsampled to a fixed common size (256x256px).
However, due to the extremely large range of resolutions in
our dataset, downsampling all images to a small size would
cause large images to be affected much more than already
small ones. To find a middle ground, we took a sample of
images and computed their mean and median resolutions
(Table I). Since the mean and median differed by a large
margin, we chose to rescale images to a size close to the
median to ensure that a large number of images would have
to undergo small transformations. Furthermore, the chosen
size had an aspect ratio of 1 to ensure that the convolution
math in neural networks would be simple. By skewing the
aspect ratio of the images, we are forcing the models to
learn an inaccurate representation of the underlying data.
While this is not an ideal trade-off, it was one that did
not have a considerable impact. We briefly pursued better
methods to maintain aspect ratios, but had to stop due to
time constraints. With more time, a proper solution could
be crafted.

2) Spatial Pyramid Pooling: Spatial pyramid pooling
(SPP)[4] uses a bag-of-words approach to create fixed-length



Table I
SAMPLE IMAGE RESOLUTION

Width (px) Height (px) Aspect Ratio

Mean 367 289 ˜1.27
Median 245 196 1.25

vectors that maintain spatial information. This lets us replace
the last pooling layer in the network with an SPP layer,
which allows images of any input size to be fed into the
model. There are significant real world limitations to this. In
[4], only images of two possible resolutions are used (i.e., all
images are resized to either 180x180 or 224x224, depending
on the closest dimension). However, we attempted to use
this approach without any resizing, leaving bounding boxes
in their original resolutions. In Keras, our framework of
choice for this problem, tensor allocation on the GPU is fixed
and not garbage collected until later in the execution cycle.
As a result, tensors are created for every image that has a
unique resolution, which results in an extremely rapid GPU
memory exhaustion. Because of this, our training process
terminated within a few batches as no further tensors could
be allocated. A possible acceptable trade-off to using SPP
in a dataset, with large variation in width and height would
be to create a limited amount of possible image resolutions
based on summary statistics and resize images to the closest
”bucket.” This approach would have ensured that our GPU
could maintain the allocated tensors in memory and not
distort images by a large amount. Due to time limitations,
we were unable to test this methodology.

Spatial pyramid pooling has been empirically shown to
boost the representation capacity of the network, leading
to higher accuracy[4]. Our hypothesis is that the use of
such a technique would lead to large gains in accuracy on
satellite imagery, which is naturally well-fit to the problem
SPP attempts to solve.

C. Different Pixel Scales

Every bounding box has an associated ground sample
distance (GSD), a field in the metadata that gives the side
length, in meters, of the square on the Earth’s surface that
each pixel in the image represents. A wide range of GSD
scales is present in the dataset, as observed in Figure 5.

Such different scales would fundamentally change the
way the data is interpreted by the models. Therefore, we
created a simple scaling mechanism to normalize all bound-
ing boxes to the same scale so that every pixel represented
a 1x1 meter square on the ground. Based on the distribution
of ground sample distances in Figure 5, a GSD of 1 meter
is not an ideal rescaling target since the median GSD is at
2 meters. However, we chose a normalized GSD of 1 meter
because it is a unit number and allowed us to use simpler
calculations to perform the experiment.

Figure 5. Distribution of ground sample distances in the dataset.

Overall, normalizing the bounding boxes to a GSD scale
of 1 meter provided a marginal boost in accuracy of ˜2%.
We strongly believe that normalizing to the median GSD
would provide a larger boost in accuracy.

D. Data Augmentation

Data augmentation is a well explored practice to make
neural networks more robust to various types of input trans-
formations [3], [5]. We augmented both the metadata and the
images to allow the models to learn a more representative
function over the input space.

1) Image augmentations: We defined a set of basic trans-
formations that would provide a large variety of alternate
views on the data provided in the FMoW dataset.

• Rotations (15, 30, 45, 90, 180 degrees)
• Flips (East-West, North-South)
• Zooms (-1.5 - 1.5x)
• Channel-wise noise addition

Performing the augmentations during the training process
was a time-consuming operation. On large batch sizes, we
saw slowdowns in training of up to 2.5x. In order to de-
crease training times to perform quicker iterations, all image
augmentations were preprocessed and saved to disk ahead
of time. This approach provided us with a rapid training
pipeline as no expensive CPU processing was performed
for every image in the dataset, something which could add
multiple hours onto training due to the amount of time it
takes to perform these transformations.

Train-time augmentation allows us to apply a random
combination of transformations to each image whereas
preprocessing augmentations provides a fixed set of trans-
formations to feed through the model. A lower amount
of combinations, in the case of preprocessing, results in
lower generalization. This is a trade-off which must be
examined carefully. It is possible to preprocess all possible
combinations, but this requires an extremely large amount
of storage, something we did not have. In our case, we



were able to use the time saved in this part of the pipeline
to discover methods that led to much larger increases in
accuracy than train-time augmentation.

Table II
EFFECTS OF IMAGE AUGMENTATIONS

Transformation Model Accuracy

None 42%
Rotations 53%
Rotations + Flips 69%
Rotations + Flips + Zooms 72%
Rotations + Flips + Zooms + Noise 73%

2) Image processing: With the heavy number of data
transformations that we perform on a large set of data,
we had to choose a fast and performant library that could
perform the necessary transformations. We considered a few
Python libraries to use, and compared two in the end: PIL
and OpenCV.

We ran three main tests to compare performance between
PIL and OpenCV. The tests were run on 300 images,
averaged over 5 runs.

• Test 1: Load an image, blur it, and flip
• Test 2: Load an image, rotate by 45 degrees
• Test 3: Load an image, rescale to a fixed size

The comparison results are shown in Figure 6. Overall, PIL
performed slower than OpenCV, especially on flips, which
account for a considerable portion of our augmentations.
While PIL provides an easy-to-use API, our main focus
was getting maximum performance from the data processing
pipeline. When dealing with a large amount of data, the
disparity between the frameworks quickly adds up to a
noticeable difference in time. Since our processing pipeline
was relatively simple and did not require complicated,
detailed image manipulation, the slightly more verbose API
of OpenCV was not an issue.

The overall trade-off is decided by the size of the dataset.
On a smaller dataset, the differences in time between PIL
and OpenCV will not add up to a noticeable amount of time
spent just processing the image. However, on the Functional
Map of the World dataset, the small differences in processing
add up to over an hour. Roughly,

(3.1− 1.5) seconds

300 images
∗1, 000, 000 images∗ 1 hour

3600 seconds
u 1.5 hours

As evident, the extra processing time quickly adds up to
an extra hour and half per model training run, which is a
sizable time sink to the goal of quick iterations. Therefore,
we chose OpenCV to implement our transformations.

3) Metadata augmentations: As an added challenge,
IARPA introduced noise into their testing metadata. There-
fore, in order to truly be robust to test-time input fluctuations,
we had to ensure that the metadata was augmented to
account for some uniform noise range around the true data.

Figure 6. Comparison between PIL and OpenCV.

Therefore, we randomly created vectors of noise sampled
from a uniform distribution with various ranges and added
them to the normalized metadata vectors. Additionally, we
added noise to the time and date in the metadata by sizable
amounts to account for differences in time of day and year.

Since these are simple operations, these augmentations
were left to be performed at training time. Unlike images,
the metadata are simple vectors containing less than 50
elements. Because operations on these vectors are computa-
tionally simple, we did not incur any noticeable increase in
training time.

Overall, metadata augmentation provided us with a ˜2-3%
increase in test accuracy.

E. Infrastructure Limitations and Solutions

As a small research and prototyping lab, the CMU SEI
Emerging Technology Center has general purpose hardware
that is reconfigured and utilized for many different tasks
as needed. To accommodate the FMoW challenge’s unique
and large computational requirements on our varied compute
infrastructure, we identified and engineered clever trade-offs
that provided significant boosts to our performance.

Figure 7. Simplified infrastructure diagram.



1) System Specification: All data storage, processing, and
learning was done on two servers that the CMU SEI self-
hosts. Since most machines in our computing lab are multi-
tenant, we identified these two servers to be single-tenant
for the duration of the competition. We will refer to these
machines as GPU-CLUSTER and STR-CLUSTER, for a
general-purpose GPU compute cluster and storage server,
respectively. Mainly used for deep learning applications,
GPU-CLUSTER is a fast, compute-heavy server that lacks a
large amount of storage. STR-CLUSTER is a large storage
server meant to hold and transfer data over the network
and is not meant for large compute operations. Since this
problem required both a large computational load as well
as large storage requirements, a careful interfacing of these
two systems was necessary.

GPU-CLUSTER:
• CPU: 2x Intel R© Xeon R© E5-2640 v4 @ 2.40GHz
• Memory: 8x 32GB (256GB) DDR4-2400MHz ECC
• Storage: 2x Intel R© SSD 240GB, 2.5in SATA 6Gb/s,

RAID 1 (HW)
• GPU: 8x Nvidia GeForce GTX 1080 (8GB GDDR5X,

2560 CUDA cores)
STR-CLUSTER:
• CPU: 2x Intel R© Xeon R© E5620 @ 2.40GHz
• Memory: 12x 8GB (96GB)
• Storage: 8x Intel HDD 2TB, RAID 6 (HW)

STR-CLUSTER and GPU-CLUSTER are connected via
an Ethernet switch. STR-CLUSTER has a 2x10 GbE con-
nection to the switch in LACP mode, for an effective 20
GbE data pipe. However, GPU-CLUSTER has a 10 GbE
connection to the switch, meaning the overall system has an
effective max throughput of 10 GbE (See Figure 7).

2) Slow writes and deletes: Our storage server was set up
to be a general-purpose, read-operation oriented server. With
deep learning tasks that include heavy data augmentation and
image processing with frequent temporary file writes, this is
not an ideal setup. Existent hardware RAID 6, also known
as double-parity RAID due to its use of two parity stripes
on each disk, on STR-CLUSTER, presented a significant
challenge as RAID 6 is not meant to be used in a heavy
write setup. Due to existent data on the server that was
not removable, we had to identify and work around many
limitations of this system.

STR-CLUSTER was mounted on GPU-CLUSTER via
an NFS mount. The RAID 6 hard drive setup, high hard
disk latency, and less-than-ideal network bandwidth usage
resulted in slow random create and delete operations. While
random creates and deletes were at an unacceptable thresh-
old (see Figure 8, random reads were at a reasonable level.
We decided to take full advantage of our highly performant
random reads and created a system to work around our
high create workload. By creating a 100 GB RAM disk on

Figure 8. Disk latency on random access creates, reads, and deletes.

GPU-CLUSTER, we were able to stream data from STR-
CLUSTER into the RAM disk via sequential block reads
(which were ˜100x lower latency), perform heavy creates
on RAM disk, and almost instantly delete the relevant files.
With careful engineering and tuning, we developed a system
to seamlessly stream files and get a speedup of ˜5x on our
overall filesystem operations.

V. DEEP LEARNING DISCUSSION

While working on this problem, we attempted to develop
and use many different deep learning and machine learn-
ing techniques. In doing so, we observed some interesting
behaviors and discovered some intriguing problems that are
worth discussing.

A. Pre-trained Models

Initializing models with weights trained on large datasets
such as ImageNet has been shown to be unreasonably
effective [6], [7]. It was previously believed that the massive
size and diversity of ImageNet created a network that
learned general features, but this was shown to be a flawed
hypothesis [8]. In our experiments, ImageNet pre-training
demonstrated dramatic improvements in accuracy. However,
we hypothesized that pre-training on a dataset more similar
to our actual satellite imagery dataset would result in better
overall accuracy compared to ImageNet.

We used a simple VGGNet [9] convolutional neural
network with no pre-trained weights as a baseline model.
The model was trained on the IARPA dataset, and the
resultant accuracy was logged. We repeated the experiment
with VGGNet pre-trained on ImageNet as well as DeepSat
[10] datasets. Figure 9 shows the results of this experiment.
As expected, using pre-trained weights resulted in a massive
gain in accuracy as opposed to not pre-training at all. Fur-
thermore, we observed a ˜5% gain in accuracy when using
DeepSat to pre-train the model as opposed to ImageNet. Due
to the limited amount of trials and detailed methodology,



we are cautious about making claims about the veracity of
this solution, especially with regard to deeper, complicated
models. Given more time, we would like to further explore
the use of DeepSat and compare the differences in accu-
racy, precision, and recall with models pre-trained on other
datasets. Related work in transfer learning gives credence to
this idea [11].

Figure 9. Comparison of accuracy with different pre-training datasets.

B. False Detections

A sizable part of this challenge was accurately classifying
false detections. Incorrectly handling false detections – the
4th most populated class in the dataset – significantly
affected overall precision and recall. Samples of false de-
tections were not provided in the training data, but they
were present in validation and testing data. In literature,
this problem is known as selective classification or a reject
option [12], [13]. We had multiple options for handling this
problem.

1) Data mixing: A simple solution was to take a very
limited subset of false detections provided in the validation
dataset and use them to train the model. However, due to
the low availability of data, this solution would have led to
limited generalization and higher confusion across the entire
network. [2] used this approach to achieve an acceptable
gain in accuracy. As such, data mixing should only be used
when larger amounts of data are available to provide a
comprehensive look at false detections.

2) Random cropping: [2] do not provide a detailed expla-
nation of how false detections were labeled in the dataset.
Short of the proper methodology to create false detections,
an option would be to randomly crop images containing
other classes in regions that are not enclosed by existent
bounding boxes. This would provide us with a false detection
dataset as big as we required and would give us greater
generalizability across the network. However, a significant
shortcoming of this method is that a random crop may

encompass an instance of another valid category. As a result,
we may create ”false detections” that are mislabeled.

After attempting these possible solutions individually as
well as a combination of the two, we compared the precision
and recall between not handling the false detection problem
and our attempted solutions. Overall, the attempted solutions
resulted in a greater confusion across all categories as
opposed to not attempting a solution at all. Given more
time and effort spent developing these methods further, we
speculate that these techniques would show greater positive
effect on precision and recall.

C. Neural Network Architecture Design

1) Deep learning: Many popular deep learning frame-
works now exist in the open-source community for re-
search and production purposes. TensorFlow4, Keras5, and
PyTorch6, and many others are popular frameworks with
large open-source and industrial backings. In choosing a
framework, we required one that fulfilled the following
criteria:

• Ease of creating custom architectures
• Ability to write custom loss functions and optimization

strategies
• Simple GPU acceleration
Architectures: TensorFlow and Keras are popular deep

learning frameworks created and supported by Google. Both
are static computation graph frameworks, which means that a
model’s structure and dataflow are defined ahead of time and
cannot be modified during runtime. Conversely, PyTorch is
a dynamic computation graph framework, which means that
the architecture of the model can be changed during runtime.
Models that we wanted to create were either all inherently
static graphs, or we could easily implement the dynamic
nature of the computation with some creative engineering.
Out of the three, Keras presents a very straightforward and
concise API, although it comes with a learning curve. All of
these points made a good argument in favor of Keras, but Py-
Torch was also familiar since its API is straightforward and
”Pythonic”. TensorFlow, which Keras can use as a backend,
presented an API that is verbose in many ways, especially
when creating deep models that stack many layers. Since
Keras can directly work with TensorFlow when needed, we
preferred to use Keras where possible.

Custom functions: TensorFlow, Keras, and PyTorch all
provide ways to implement custom mathematical concepts
into models. Implementing novel functions in TensorFlow
or Keras is difficult because of their rigid API and the
requirement to use a static computation graph. On the other
hand, PyTorch is extremely simple to use to create new
functions via its direct, NumPy-like API and define-by-run
structure.

4https://www.tensorflow.org/
5https://keras.io/
6http://pytorch.org/



GPU acceleration: TensorFlow and Keras both provide
simple, built-in libraries to use GPU acceleration for training
models. With limited boilerplate and infrastructure setup, all
GPU acceleration is abstracted away from the user. While
this abstraction makes TensorFlow and Keras extremely
easy to use, it takes away all fine control from the user
if they wish to control their own GPU memory usage.
Furthermore, PyTorch provides the ability to the user to
define which portions of code will use the GPU. This makes
it more complicated to provide acceleration, but allows the
user to granularly control GPU usage. In addition, Keras,
TensorFlow, and PyTorch all provide transparent APIs to
utilize multiple GPUs to enable massive data parallelization.

Overall, Keras provided us the flexibility and ease of
use that we required. The custom functions that we wanted
to implement were not overly complicated, and with some
careful thinking and working within the framework’s con-
straints, we would be able to create the functionality re-
quired. Furthermore, a baseline model provided by [2] was
also implemented in Keras, providing us an easy reference
to base our code on. We heavily considered PyTorch but
preferred the plug-and-play nature of Keras instead. Had we
approached this problem with complex, novel architectures,
PyTorch would have been the preferred choice.

2) Use symlinks where possible: Keras provides a built in
data loading utility called ImageDataGenerator7. However,
ImageDataGenerator requires a fixed directory structure,
which caused us to move data around to different directory
structures depending on the data pipeline. Moving data is
an operation that takes time dependent on the underlying
storage medium, filesystem, and size of the data itself.
Ideally, moving data should be limited as much as possible
so time is not wasted, but in certain cases, it is unavoidable.
In this use case, we incurred frequent moves of every image
up and down the directory structure. It would have taken
considerable engineering to recreate the functionality of
ImageDataGenerator to fit our directory structure, so we
decided to use symlinks to create an efficient way to move
data around.

By using slow symlinks, which hold the absolute path
to the data, we created an ephemeral file and directory
structure that could be manipulated rapidly without shuffling
entire images around. Creating the symlinks was a fast,
one-time operation. Symlinks were on the order of sub-
100 bytes (depending on file path length), compared to 10
MB for images. Although this method still incurred some
disk latency, we were able to move entire symlinks in large
blocks, providing us a ˜4x speedup compared to moving
entire images around.

3) Architecture effects: Our neural network models used
multiple convolutional neural networks in parallel as compo-
nents, including both a network pre-trained on ImageNet and

7https://keras.io/preprocessing/image/

Figure 10. Relative frequencies of classes in dataset (with some omitted).

an initially untrained network. These two networks function
as simultaneous feature extractors, and we combine their
features by concatenating their outputs and feeding the result
to a network of several dense layers. The motivation behind
this choice is that while the network that was pre-trained on
ImageNet can already extract features from natural images,
the initially untrained network has the opportunity to learn to
extract features from the problem-specific dataset of satellite
images.

To optimize the satellite image feature extractor sub-
network, we experimented with various convolutional neural
network architectures, including VGGNet [9], ResNet [14],
and DenseNet [15]. We found that the best performance
occurred with the DenseNet161 architecture, whose perfor-
mance we compare against other architectures in Table III.
We note that the comparison between architecture families
(e.g., between ResNet architectures and DenseNet architec-
tures) may not be fair because of the different numbers of pa-
rameters in each model, and that it is possible, for example,
that a larger ResNet architecture could have outperformed
the DenseNet architectures that we tried. However, ResNet
is inefficient in its parameters usage [15], and thus a larger
model was unable to fit on our GPUs.

Table III
EFFECTS OF NEURAL NETWORK ARCHITECTURES

Architecture Validation Accuracy Challenge Score

VGG16 53.1% 472774.00
ResNet50 67.3% 578552.21
DenseNet121 75.3% 614221.42
DenseNet161 78.7% 664645.25

D. Class Imbalance and Optimization

Many classes were over-represented in the dataset, while
others were severely underrepresented (Figure 10), leading
to a classic imbalanced class learning problem. There are



many strategies to accommodate imbalanced classes [16],
[17], [18].

Over-sampling and under-sampling were implemented to
modest improvements in accuracy [19]. Skewed batches
were a larger problem, in which certain categories were
completely missing for multiple batches. Since batch sizes
were not always greater than the number of categories, we
implemented a strategy in which categories were randomly
sampled from the dataset with probability

P = log
1

P (category)
∗ P (category)

We also implemented a guarantee that a given category
would be represented within batch size/63 batches. This
strategy did not have the gains in accuracy that we expected.
However, it did stabilize our otherwise irregular training
process, in which the network would randomly initialize in
a state where the loss would keep increasing or not leave
a local minimum. This sampling process ensured that our
model converged at a relatively smooth rate.

VI. INSIGHTS

A. Multiple-Instance Classification

The FMoW challenge featured a unique problem. Each
satellite image in the training data contained exactly one
bounding box, but images in the test set contained multiple
bounding boxes, each to be classified by our algorithm.

The naive approach involves simply classifying each
bounding box in a testing image independently. A smarter
approach would take into consideration the relationship
between bounding boxes in a testing image and their labels,
since bounding boxes that are in the same image are nec-
essarily geographically close on Earth. Such an approach
would involve heuristic reasoning about what land usages
are likely to be found near each other. For example, one
could guess that it is unlikely for a golf course to be near
an archaeological site. It would therefore be desirable to
make a classifier that assigns low probability to the event
that two bounding boxes in the same image would have
the ”golf course” and ”archaeological site” labels. Since the
training dataset contains only one bounding box per image,
assigning low probability to image combinations would
be impossible to do purely through supervised learning.
Possible solutions include generating surrogate secondary
bounding boxes during training but asking the network to
classify only the bounding box for which the true label is
known, and creating a multiple-instance classifier equipped
with a hand-engineered (not learned) matrix of expected
class coincidences.

In the end, we decided to perform the naive, independent
bounding-box classification due to time constraints.

Preliminary results from ongoing research demonstrates
that more intelligent multiple-instance classification will

increase the precision and recall across the categories of
satellite imagery classification.

B. Importance of Data Engineering and Infrastructure Plan-
ning

After comparing both accuracy and benchmark results
from models run on raw data versus models run on processed
data, it is clear that careful data engineering and processing
is extremely important for tasks of this scale. Furthermore,
it shows that well-planned infrastructure, even on the scale
of two machines, provides a large boost to accuracy and the
ability to iterate over methodologies rapidly. It is essential
for machine learning researchers and engineers to understand
the systems they are working on, their limitations, and other
real-world influences on the problem at hand.

VII. CONCLUSION

We periodically submitted our solutions to FMoW’s chal-
lenge page. Over the course of the competition, our team
obtained a ranking of #8 out of the 69 competing teams.
We ended the competition ranked #27 due to our inability to
submit results because of CMU’s holiday schedule, and late
submissions and data science competition specific ensem-
bling strategies, common in online data science challenges,
by other teams.

In this paper, we have identified limitations in an end-to-
end deep learning task pipeline. Namely, we discuss limita-
tions in obtaining, storing, processing, and modeling a large
dataset of satellite imagery. We highlight the importance of
maintaining a fast and efficient pipeline at all steps to ensure
that tasks can be explored with quick iteration speeds and
stability. Furthermore, we discuss limitations and possible
solutions in relation to deep learning for image classification
and present a few areas of future research.
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