
1

Title: A methodology to support the selection of security frameworks

Authors:

● Jungwoo Ryoo (Member, IEEE), Pennsylvania State University-Altoona, jxr65@psu.edu

● Junsung Cho (non-member), Sungkyunkwan University, js.cho@skku.edu

● Humberto Cervantes (member, IEEE), Universidad Autonoma Metropolitana Iztapalapa,

hcm@xanum.uam.mx

● Rick Kazman (Senior Member, IEEE), kazman@hawaii.edu

● Geumhwan Cho (non-member), Sungkyunkwan University, geumhwan@skku.edu

● Jina Kang (non-member), National Security Research Institute, 4558kang@nsr.re.kr

● Hyoungshick Kim (non-member), Sungkyunkwan University, hyoung@skku.edu

Index Terms: Software architecture, Software security, software framework, tactics, design

patterns

Abstract:

There are many software frameworks available today, but there is little guidance on how to

select the best framework for any given software development project. Without such guidance,

users have to conduct their own research and eventually decide on a framework, typically

through trial and error, gut feelings, personal experience, or the experience of others. To

establish a more principled basis for such decisions, we offer a methodology: an objective set of

steps, with associated guidelines, for assessing and comparing the quality and value of

frameworks. To demonstrate its use, we apply this methodology by reviewing a set of software

security frameworks. We surveyed the most widely used Java-based software security

frameworks and compared them based on how well they address key concerns associated with

developing secure software: how well they support security functions integrated as part of

business logic, as well as other important adoption factors such as their adoption and popularity.

In particular we leveraged security tactics to guide our analysis of framework completeness.

These tactics help identify and focus scrutiny on essential security features. Our paper benefits

potential adopters of security frameworks by providing a methodology and criteria to select an

appropriate framework for their context.

Acronyms and Abbreviations:

● AES - Advanced Encryption Standard

● API - Application Programming Interface

● ART - Average Resolution Time

● COTS - Commercial Off-The-Shelf

● DL - Decoupling Level

● JAAS - Java Authentication and Authorization Service

● JCE - Java Cryptography Extension

● JEE - Java Enterprise Edition

● JVM - Java Virtual Machine

● OACC - Object Access Control Framework

● OWASP ESAPI - Enterprise Security API

mailto:jxr65@psu.edu
mailto:js.cho@skku.edu
mailto:hcm@xanum.uam.mx
mailto:kazman@hawaii.edu
mailto:geumhwan@skku.edu
mailto:4558kang@nsr.re.kr
mailto:hyoung@skku.edu

2

1. Introduction
The activity of designing a software architecture involves making design decisions to satisfy

architectural drivers [Bass 2012]. Drivers are requirements which have a direct influence on the

success of a software system, and hence on its architecture. In this paper we are interested in

examining the satisfaction of one category of driver--quality attributes--and more specifically we

are interested in the quality attribute of security.

When designing to address security concerns, it makes sense for an architect to attempt to

reuse existing solutions. These solutions include design concepts such as design patterns,

tactics or externally developed components such as frameworks [Cervantes2016b]. Design

patterns are conceptual solutions to recurring design problems and security design patterns

focus on solutions for security [Fernandez2013]. Tactics are proven design strategies that

influence the control of a quality attribute response [Bass 2012]. Frameworks are reusable

software elements that provide generic functionality addressing a recurring domain and quality

attribute concern, across a broad range of applications [Cervantes2013]. For instance, if an

architect has a security requirement for resisting attacks, he can start by identifying and

selecting the relevant tactics (see Figure 1). The chosen tactics may be design strategies such

as: Authorize Actors and Authenticate Actors. Next, the architect must decide on how to

implement these tactics. At this point there are several options:

a) Create an entirely new ad-hoc solution from scratch: while this new solution might be

better than existing solutions, it is often less-than-optimal from the perspectives of cost,

schedule, and (frequently) quality.

b) Use a security pattern: This may be more efficient and informed than a) but it still

requires the pattern to be refined into code. Furthermore, multiple patterns are typically

involved in the satisfaction of a security concern (for example, there is no point doing

authentication if you do not also do authorization), which makes this task nontrivial.

c) Use an application framework: this can be the most efficient approach as the architect

reuses a well-tested solution that solves the security problem. A framework is reusable,

tested code that already implements a number of patterns and tactics.

3

Figure 1: Security Tactics Hierarchy

In [Cervantes2016a], the analysis of several web-based applications demonstrated that the use

of frameworks is an appropriate and cost-effective approach to addressing security. However, a

significant challenge associated with this approach resides in the selection of an appropriate

framework for a given set of requirements. There are many frameworks--both commercial and

open-source--that address security, but there is little guidance available to architects on making

decisions about which framework to adopt. This is a critical decision. Choosing a framework,

even if it is “free” and open source, involves a commitment of substantial resources: to master

the learning curve, to integrate the chosen framework, and to test the integrated system. Thus,

the decision of a framework should not be taken lightly and should not be made based on gut

feeling or fashion.

In this paper we propose a more reasoned, disciplined approach to this critical decision. We first

establish a set of criteria to help in selecting appropriate frameworks to address security

requirements, and then perform a rigorous analysis of different security frameworks using these

criteria.

The structure of the paper is as follows. Section 2 discusses concepts associated with

frameworks in general and presents the particularities of security frameworks. Section 3

presents the goals and the scope of the research. Section 4 presents the selected criteria and

the procedures followed to collect data. Section 5 presents the results from the data collection

4

and section 6 discusses the methodology for framework selection. Section 7 presents a

discussion on threats to validity. This is followed by a presentation of related work in section 8

and, finally, section 9 concludes the paper and discusses future work.

2. Software Security Frameworks
In this section we discuss about application frameworks in general and about security

frameworks.

2.1 Application frameworks

An application framework (or simply framework) is a collection of reusable software elements,

constructed out of patterns and tactics, which provide generic functionality addressing recurring

domain and quality attribute concerns across a broad range of applications. Frameworks, when

carefully chosen and properly implemented, help increase the productivity of programmers.

They achieve this by allowing programmers to focus on business logic and end-user value,

rather than on addressing recurring problems which have already been solved [Cervantes2013].

Examples of these recurring problems include performing object-oriented to relational mapping,

creating user interfaces or authenticating users. As opposed to self-contained products,

framework functions are generally invoked from the application code, or they are “injected” into

the application code using some type of aspect-oriented approach. Frameworks usually require

configuration, typically through XML files or through other approaches such as annotations in

Java or following certain conventions in Ruby on Rails. An example framework is Hibernate

(http://hibernate.org/) which is used to perform object-oriented domain model to relational

database mapping in Java, mainly by adding anotations to the Java code.

There are two major categories of frameworks: “full stack” frameworks, such as Spring

(https://projects.spring.io/spring-framework/) or Java Enterprise Edition (JEE:

http://www.oracle.com/technetwork/java/javaee/overview/index.html), which are usually

associated with reference architectures and address general concerns across the different

layers and elements of the reference architecture. On the other hand non-full stack frameworks,

such as Java Server Faces (http://www.oracle.com/technetwork/java/javaee/javaserverfaces-

139869.html), are narrower in scope, addressing specific functional or quality attribute concerns.

Furthermore, frameworks can be “standalone” or “non-standalone”. The former can be deployed

independently, and have to be included as part of the application, for example in a jar file, while

the latter are part of the API and do not need to be explicitly included as part of the application.

2.2 Security Frameworks

There are many software frameworks that address security concerns. For example, full-stack

frameworks such as JEE include APIs that address authorization and authentication aspects of

security (JAAS: http://www.oracle.com/technetwork/java/javase/jaas/index.html). Other

frameworks are oriented towards addressing specific concerns, such as the creation of user

interfaces, but also address aspects of security. For instance, the ZK framework

(https://www.zkoss.org/) is oriented towards the creation of user interfaces for web applications

but also addresses security attacks that commonly occur via the user interface, such as SQL

http://www.oracle.com/technetwork/java/javase/jaas/index.html
https://www.zkoss.org/

5

injection attacks [Potix2015]. Finally, there are also stand-alone frameworks that are dedicated

specifically to addressing security requirements. The Spring Security framework

(http://projects.spring.io/spring-security/) is a good example of this category.

Software security frameworks are typically language-specific. Depending on the popularity of

the language, there will be different numbers of frameworks and, of course, different numbers of

frameworks specifically addressing security. For instance, according to our research, there are

considerably more Java frameworks supporting security than there are for other programming

languages. Finally, we can categorize software security frameworks according to whether they

are open-source or proprietary.

2.3 Selecting frameworks

The selection of externally developed components such as frameworks is an important decision

that is made as part of the architecture design process. The selection of frameworks can be a

challenging task because of their extensive number. There are a few criteria that are considered

by architects when selecting externally developed components:

● Problem that it addresses - is it something specific, such as a framework for object

oriented to relational mapping or something more generic, such as a platform?
● Cost - what is the cost of the license and, if it is free, what is the cost of support and

education?
● Type of license - does it have a licence that is compatible with the project goals?
● Support - Is it well supported? Is there extensive documentation about the technology?

Is there an extensive user or developer community that you can turn to for advice?
● Learning curve - how hard is it to learn this technology? Are there courses available?
● Maturity - Is it a technology that has just appeared on the market, which may be exciting

but still relatively unstable or unsupported?
● Popularity - is it a relatively widespread technology? Are there positive testimonials or

adoption by mature organizations? Will it be easy to hire people who have deep
knowledge of it? Is there an active developer community or user group?

● Compatibility and ease of integration - is it compatible with other technologies used in
the project? Can it be integrated easily in the project?

● Support for critical quality attributes - does it limit attributes such as performance? is it
secure and robust?

● Size - will the use of the technology impact negatively on the size of the application
under development?

Unfortunately, the answers to these questions are not always easy to find and the selection of a
particular technology is frequently performed using ‘first fit’, rather than a ‘best fit’, approach
[Hauge2009]. This means that developers will search alternatives based on their experience
and from internet searches. Once they identify an option that can solve their problem, they
download and test the candidate and if it satisfies their needs, they stop searching for more
options. We believe that one of the problems of selection is that in general, it takes a
considerable effort to evaluate multiple alternatives, and this promotes the use of a ‘first fit’
approach. Providing mechanisms that facilitate evaluating multiple alternatives with less effort is
an essential aspect of this research.

6

3. Research Goals and Scope
In this section we discuss the goals and the scope of the research.

3.1 Research goals

In this study we are pursuing the following research goals:

1. RG1: Develop a practical set of criteria to facilitate the selection of security frameworks

2. RG2: Collect data to support the analysis of the criteria identified in RG1

3. RG3: Propose a methodology that allows architects to use the criteria in RG1 to select

the best frameworks for their security needs

Note that in RG1 we specify, as part of the research goal, that the set of criteria are “practical”.

By practical we refer to the fact that the data associated with these criteria can be collected in a

relatively easy way. It should be noted that any data associated with the criteria that we collect

at the time of writing this paper is time-sensitive and may, in fact, be incorrect by the time the

paper is published. Over time every one of the frameworks that we examine will evolve, some

will disappear, and new ones will emerge. So the ultimate goal and output of this paper is not to

identify specific frameworks which are “better” or “worse”, but rather to illustrate how one might

evaluate frameworks in general, to support their selection.

3.2 Scope

For the purpose of addressing the research goals in this study, we have chosen to focus on

open source software security frameworks supporting the Java programming language and

dedicated to the quality attribute of security. We include standalone security frameworks and

APIs that are part of full stack frameworks (such as JAAS). We exclude non-security

frameworks (such as presentation layer frameworks like ZK) which, while they may include

security functionality, do not primarily focus on security. We constrain our scope in this way to

avoid making “apples and oranges” comparisons; that is, to avoid comparing frameworks with

fundamentally different objectives. This constraint also allows us to provide a deeper analysis of

each selected framework. Table 1 lists the frameworks that we considered for this paper. It

should be noted that the majority of these frameworks have a relatively narrow focus, as

described in the frameworks’ homepages. This focus is typically either authorization and

authentication (6 frameworks), cryptography (4 frameworks), or protection of web applications

against attacks (2 frameworks). The descriptions in table 1 come from the frameworks

homepages.

ID

Name and

version Main focus Description

1

Spring Security1

(v 4.1.0)
Authorization and

authentication

Spring Security is a powerful and highly customizable

authentication and access-control framework. It is used in

conjunction with the Spring framework and is the de-facto

standard for securing Spring-based applications.

1 http://projects.spring.io/spring-security/

7

2

Bouncycastle2

(v 1.54) Cryptography Java cryptography APIs.

3

JAAS3

(Java SE 8)
Authorization and

authentication

The Java Authentication and Authorization Service is part

of the Java security APIs. It is focused on authorization

and authentication.

4

JCE4

(Java SE 8) Cryptography

The Java Cryptography Extension is part of the Java

security APIs. It is focused on cryptography.

5

Apache Shiro5

(v 1.2.4)

Authorization and

authentication

Powerful and easy-to-use Java security framework that

performs authentication, authorization, cryptography, and

session management.

6

Jasypt6

(v 1.9.2) Cryptography

Java library which allows the developer to add basic

encryption capabilities to his/her projects with minimum

effort, and without the need of having deep knowledge on

how cryptography works.

7

HDIV7

(v 2.1.11)

Protection of web

applications

against attacks

HDIV is an open-source Java web application security

framework that eliminates or mitigates web security risks

by design for some of the most used JVM web

frameworks.

8

OWASP ESAPI8

(v 2.1.0)

Protection of web

applications

against attacks

This is the Java EE language version of OWASP ESAPI

(Enterprise Security API).

9

Keyczar9

(v 0.71) Cryptography

Keyczar is an open source cryptographic toolkit designed

to make it easier and safer for developers to use

cryptography in their applications. Keyczar supports

authentication and encryption with both symmetric and

asymmetric keys.

10

OACC10

(v 2.0.0)

Authorization and

authentication

OACC (pronounced Oak) is an advanced Java Application

Security Framework. OACC provides a high performance

API that provides permission-based authorization services

for Java applications. In a nutshell, OACC allows your

application to enforce security by answering the question:

Is entity ‘A’ allowed to perform action ‘p’ on entity ‘B’?

2 http://www.bouncycastle.org/
3 http://www.oracle.com/technetwork/java/javase/jaas/index.html
4 http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
5 http://shiro.apache.org/
6 http://www.jasypt.org/
7 http://www.hdiv.org/
8 https://github.com/ESAPI/esapi-java-legacy
9 https://github.com/google/keyczar
10 http://oaccframework.org/

8

11

jGuard11

(v 1.0.4)

Authorization and

authentication

jGuard is a library that provides easy security

(authentication and authorization) for Java web

applications.

It is based on the stable and mature JAAS framework,

which is part of the Java Standard Edition API.

12

PicketLink12

(v 2.7.1)
Authorization and

authentication

PicketLink provides an alternative to JEE Security,

providing a rich, powerful and flexible API to secure your

applications.

Table 1. Security frameworks considered in the scope of this paper

4. Framework Evaluation Criteria
This section addresses RG1: Develop a practical set of criteria to facilitate the selection of

security frameworks.

4.1 Selection of criteria

As discussed in section 2.3, there are many ways to characterize and evaluate any externally

developed component, including frameworks. Choosing criteria is a non-trivial problem. A

criterion such as “framework usability”, while important for long-term success, is extremely time-

consuming to assess and, unless your organization has the resources to do a large-scale

controlled study, will likely not be objective. It is not uncommon to observe comments in

discussion forums where people argue that a particular framework is “easier to use” than some

other one. Usability is relative to the complexity of the Application Program Interface (API), but

this complexity can be mitigated by the knowledge of the programmer. No matter how

comprehensive or popular a security framework is, it gets rarely used if its usability is poor.

While it would be desirable to measure usability, in practice this criterion is difficult to evaluate.

There have been some attempts to measure usability in an automated way [Scheller2015] and

[Piccioni2013] but so far these studies have had a limited scope.

Similarly, “quality of documentation” is difficult to objectively assess without a large-scale

controlled study. While both usability and quality of documentation are doubtless important to

the success of a framework, we suggest that an organization that needs to choose among a set

of frameworks use our proposed methodology to winnow the set down to a small number of

candidates and then subjectively assess other criteria, like usability, to make a final choice.

Other criteria might also be relevant in the final choice such as cost, familiarity of the

development team with a particular framework, the framework’s license, effect on other quality

attributes (such as performance or reliability), effect on the size of the resulting executable, and

so forth.

For this study we have endeavored to identify criteria that satisfy the following goals:

11 http://jguard.xwiki.com/xwiki/bin/view/Main/WebHome
12 http://picketlink.org/appsecurity/

9

1. The criterion is objective. A criterion such as ‘framework usability’ may be difficult to

measure, as this is largely subjective. It might even be difficult to get broad consensus

on the meaning of such a criterion.

2. Data to measure the criterion can be obtained in a relatively simple, economical way.

Our broader goal for this research is to establish a methodology that allows frameworks-

-any frameworks--to be compared to one another. New frameworks appear constantly,

so it should be easy to obtain information that allows comparisons to be made and to

update existing values of the criteria.

3. The criterion is orthogonal to other criteria already chosen. All things being equal, we

would like each of our criteria to measure a different dimension of framework goodness.

Table 2 describes the initial set of criteria that we identified, their meaning, and the rationale for

their selection.

Criterion Meaning Rationale

Completeness How many areas of
security concerns are
addressed by the
framework?

An architect who needs to address many
security requirements will probably favor a
framework with high completeness, but if only
one aspect of security needs to be addressed
(e.g. encryption), it may be better to use a
more specialized framework. It is also possible
to use multiple frameworks, but this could have
negative consequences, such as a higher
learning curve, managing inter-dependencies,
and increases in the codebase size.

Adoption and
Popularity

How widespread is the
use of the framework?

A framework that has broader user acceptance
should have better support, better longevity,
and higher quality. Such frameworks will
probably be favored over other, less broadly
accepted ones.

Maintainability Is the framework
internally well designed
and easy for the
developers to maintain?

A framework that not well designed will, over
time, be harder and harder to maintain, extend,
and debug.

Selecting a well designed framework is
preferable to avoid current and future quality
issues.

Community
Engagement

Is the framework
maintained properly?
How active is the
community that develops
it?

A community that is well engaged will strive to
resolve issues that are discovered and will also
resolve this issues in a relatively short time
period. Furthermore, an active community has
a considerable number of contributors.

10

Frameworks whose community is not engage
will eventually lose their popularity, resulting in
low adoption. Also, security frameworks whose
issues are not solved in an opportune time
window may be vulnerable to security attacks,
defeating their very purpose.

Table 2. Selected criteria

We believe that the criteria presented in Table 2 meet the three goals described above. In the

following subsections we discuss the metrics associated with each of these criteria, along with

the procedures used to collect the data.

4.2 Completeness

We measure completeness in terms of coverage of the domain. For this reason we scrutinize

each framework to determine how many distinct areas of security concerns the framework

addresses. However, more may not necessarily be better: it may be infeasible or unwise for a

single framework to attempt to address every possible security feature. Specialization could, in

fact, make a framework more effective or practical.

Security tactics exhaustively define the facets of software security that a framework could be

architected to address. Tactics are generic design primitives that have been organized

according to the quality attribute that they primarily affect: availability, modifiability, security,

usability, testability, and so forth [Bass2012]. Tactics have been used to guide both design and

analysis [Cervantes2016b] [Ryoo2015]. The way that we employ tactics here is a kind of

analysis: tactics describe the space of possible design objectives with respect to a quality

attribute and by determining which tactics a framework realizes, we get a measure of the

completeness of the framework. In this way we will be able to rank the frameworks according to

the degree of each framework’s coverage of security tactics. But this must be interpreted with

care: horizontal coverage (or breadth, measured in the number of security tactics addressed by

a particular framework) is not everything. The depth or quality of coverage--what we term

vertical coverage (how well, or in how many different ways, each security feature is covered)--is

an equally important criterion.

4.2.1 Security Tactics and Horizontal Coverage

Security tactics abstract the complete domain of design choices for software security. Figure 1

shows the security tactics hierarchy. There are four broad software-based strategies for

addressing security: detecting, resisting, reacting to, and recovering from attacks. These are the

top-level design choices that an architect can make when considering how to address software

security. The leaf nodes further refine these top-level categories. For example, to resist an

attack an architect may choose to authorize users, authenticate users, validate input, encrypt

data, etc. Each of these is a separate design choice that must be implemented, either by

coding or by employing a software component such as a framework.

11

By understanding which specific tactics are addressed by a security framework, we measure its

horizontal coverage (reported as the number of tactics that are covered by the framework). For

example, a security framework may specialize in providing encryption features and hence is

only implementing the ’Encrypt Data‘ tactic. This means that the horizontal coverage of the

framework is quite limited as it only covers a single tactic.

To measure horizontal coverage, we first reviewed the published descriptions of all the

frameworks under investigation. These descriptions were primarily obtained from the

frameworks’ homepages. An example is the description from the Spring Security framework:

“Spring Security is a framework that focuses on providing both authentication and

authorization to Java applications. Like all Spring projects, the real power of Spring Security is

found in how easily it can be extended to meet custom requirements”. We also looked for

additional materials such as online articles and tutorials. This initial review gave us an idea of

the overall emphasis of each framework in their coverage. We then delved into the individual

Application Programming Interfaces (APIs) that support specific security tactics to verify the

claims made in the frameworks’ descriptions.

To ensure the consistency across our data collection, the information was captured using a

template, as shown in Table 3. This template served as a checklist, by listing all the known

security tactics. It also served as a questionnaire, eliciting information such as whether a

specific tactic is handled by the framework of interest, the APIs used to implement the tactic,

and additional justifications for how a decision on a framework’s support for the tactic was

made. In Table 3 we provide an example of how this template was filled out for Spring Security,

for the “Authenticate Actors” tactic.

Tactics
group

Tactics question Supported?
Yes/No/Not
sure

If you answered Yes/Not
Sure, please describe the
features of the framework,
which support the tactic
(provide links if necessary)
or describe why you are not
sure.

You should preferably use
the framework’s official
documentation to fill this
section.

If you answered Yes/Not Sure,
please list the packages in the
framework API, which are
associated with the tactic.

You must use the framework’s
official API documentation to fill
this section.

6 Resisting
attacks

Does the framework
support the
authentication of
actors ?

An example is
ensuring that an actor
(user or a remote
computer) is actually
who or what it purports
to be.

Yes Spring Security provides
different authentication
options:

● In Memory
Authentication

● JDBC
Authentication

● LDAP
Authentication

http://docs.spring.io/spring-
security/site/docs/4.0.4.RELE
ASE/reference/html/jc.html#jc
-authentication

org.springframework.security.authe
ntication
org.springframework.security.authe
ntication.dao
org.springframework.security.authe
ntication.encoding
org.springframework.security.authe
ntication.event
org.springframework.security.authe
ntication.jaas

...

http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/jc.html#jc-authentication
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/jc.html#jc-authentication
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/jc.html#jc-authentication
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/jc.html#jc-authentication

12

See also a list of technologies
that can be integrated for
authentication purposes:

http://docs.spring.io/spring-
security/site/docs/4.0.4.RELE
ASE/reference/html/introducti
on.html#what-is-acegi-
security

Table 3: Template used to capture horizontal coverage information

4.2.2 Security Tactic Instances and Vertical Coverage

Irrespective of the level of horizontal coverage, we are also interested in the vertical coverage of

each tactic. A framework may specialize in just a handful of tactics, but provide particularly deep

coverage of those tactics. An adopter of security frameworks, knowing this, can then make a

reasoned decision about whether to choose several narrow but deep frameworks (i.e. ones that

provide limited horizontal coverage but extensive vertical coverage), and be faced with the

additional challenge of learning and integrating these frameworks. Or the adopter might prefer

to choose a single framework (like Spring Security or OWASP ESAPI) that gives broad

horizontal coverage but less vertical coverage in many areas.

An important question to ask here is how to measure this dimension of coverage. We propose

measuring this using the concept of (security) tactic instances, which are concrete instantiations

of the leaf nodes of the security tactics hierarchy in Figure 1. For example, the ‘Encrypt Data’

tactic might be instantiated as ‘Encrypt Data Using Advanced Encryption Standard (AES)’ and

‘Encrypt Data Using RSA.’ The number of tactic instances of a security framework tactic is thus

a measure of vertical coverage. Note that we are simply counting here; we are not measuring

the quality of these instances. Quality is measured by other (orthogonal) criteria, such as

maintainability and community engagement.

To obtain vertical coverage data we explored the tactic instances in each framework by

examining its documented APIs. For instance, Bouncy Castle offers APIs such as

org.bouncycastle.jcajce.provider.asymmetric.rsa to implement an asymmetric encryption

algorithm called RSA. The API is then mapped to a corresponding security tactic. It should be

noted that it is currently necessary to rely on a human expert to perform this mapping, since

such a decision requires significant domain knowledge.

4.3 Adoption and Popularity

Adoption and popularity are also important criteria for evaluating a security framework. More

widespread adoption and popularity, we postulate, implies higher quality, better support, greater

likelihood of longevity, and better usability. Of course, a more highly adopted and popular

framework may be inferior in some other ways, such as having less coverage than newer or

http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/introduction.html#what-is-acegi-security
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/introduction.html#what-is-acegi-security
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/introduction.html#what-is-acegi-security
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/introduction.html#what-is-acegi-security
http://docs.spring.io/spring-security/site/docs/4.0.4.RELEASE/reference/html/introduction.html#what-is-acegi-security

13

less known frameworks. This is, once again, why we have chosen orthogonal measures of

framework quality in our evaluation method.

We used Stack Overflow (http://stackoverflow.com) to quantify the security frameworks’

adoption and popularity. This website is the most popularly used platform by programmers to

discuss technical issues, in the form of Questions and Answers (Q&A). We conducted our

searches by using the official names of security frameworks as keywords on the Stack Overflow

website, but some name variants were also used. For example, we employed several

combinations of keywords--such as ‘spring security’ and ‘spring-security’--to search for postings

on the Spring Security framework. Also, we used the advanced search option ‘answers:1..’ to

filter out questions without answers, as we consider these as less relevant. The number of

matches to our queries is the number questions posted regarding each security framework. We

believe that this is a reasonable approximate measure for the adoption and popularity of a

framework.

4.4 Maintainability

In this paper we use the term “maintainability” to denote how easy it is for a community of

developers to modify a framework to fix bugs (including newly emerging security threats), and to

add features (corresponding to new security requirements or variants on existing security

requirements).

The maintainability of a software system depends on the inherent maintainability of the code

(which can be measured by code complexity metrics) and the inherent complexity of its

architecture (which affects how easy it is for developers to work independently with confidence

that their changes will have little effect on each other). For the purposes of this work we have

chosen to examine the architectural complexity of each of our candidate frameworks, as

measured by its Decoupling Level (DL). DL measures how well a system's modules are

decoupled from each other and has been shown to strongly correlate with true maintenance

costs [Mo2016]. This metric is calculated by the Titan tool [Xiao2014].

Titan takes, as input Design Structure Matrix that contains the dependency relations among

project source files. In the examples presented here these dependency relations were

generated by a commercial reverse-engineering tool called Understand13. Given this input Titan

clusters the files and calculates the DL metric based on this clustering. The details of the

algorithm and the empirical validation of DL can be found in [Mo2016].

4.5 Community Engagement

We propose three different measures to evaluate the community engagement for frameworks.

The first measure is the ratio of resolved issues vs. open issues. Issues include both

programming bugs to be fixed and feature enhancement requests. We consider that a high

resolution ratio indicates that the community that develops the framework actively works

towards improving its quality. The second measure is the average resolution time (ART), that is

the average time it takes for issues to be solved. This measure is calculated by Tr(i)- Tp(i)

13 https://scitools.com/

http://stackoverflow.com/

14

where Tp(i) is a timestamp created when an issue i is posted, and Tr(i) is a timestamp when the

issue i is resolved. A smaller ART indicates that the members of the community actively work

towards quickly addressing issues and improving the quality of the framework. The third

measure is the number of contributors (i.e. committers). A high number of contributors also

indicates that there is a vigorous community continuing the development of the framework.

It should be noted that these measures require that the framework has a publicly accessible

issue tracking system. We used the official GitHub API v3 (https://developer.github.com/v3/) to

obtain the issue tracking data in the case of Spring Security, PicketLink, OACC, Keyczar, ESAPI

and Hdiv, all of which are using GitHub to handle project issues. Bouncy Castle and Apache

Shiro are using JIRA (https://www.atlassian.com/software/jira), which is a proprietary issue

tracking tool developed by Atlassian. JIRA allowed us to export project issues as an Excel file.

The Other frameworks, jGuard and Jasypt, are using sourceforge.net (https://sourceforge.net/),

and we simply collected the necessary data manually. Of all the frameworks considered, only

JAAS and JCE do not have publicly accessible issue tracking systems as they are developed as

part of the Java API.

5. Data collection
In this section we address research goal RG2, namely, the collection of data to support the

analysis of the criteria. We present the results that we collected over our 4 criteria and our 12

chosen security frameworks.

5.1 Completeness

We first present the data collected for the completeness criteria which is decomposed into

horizontal and vertical coverage.

5.1.1 Horizontal Coverage

Table 4 summarizes the horizontal coverage of all the security frameworks we considered in this

study (Y’s mean the tactic is covered by the framework). Note that in the table we omitted the

tactics not covered by any of the frameworks we reviewed. Table 4 reveals that there are three

distinct groups of software security frameworks. The first group includes frameworks that focus

on cryptography. This group includes Jasypt, Keyczar, JCE and Bouncy Castle. The second

group includes frameworks that focus on authentication and authorization. This group includes

JGuard, OACC, PicketLink and JAAS. Finally, the third group includes frameworks that strive to

provide a comprehensive set of security features including cryptography, authentication,

authorization, and others in the security tactics hierarchy. This third group includes OWASP

ESAPI, Spring Security and Apache Shiro. These three groups can be contrasted with the focus

that was initially identified by the descriptions in the framework homepages (see Table 1).

15

 Resist Attacks Detect Attacks

Recover

from

Attacks

Identify

Actors

Authenti-

Cate

Actors

Autho-

rize

Actors

Encrypt

Data

Limit

Access

Validate

Input

Verify

Message

Integrity

Detect

Intrusion

Maintain

Audit Trail

JGuard Y Y Y Y

OACC Y Y Y Y

PicketLink Y Y Y Y

JAAS Y Y Y Y

Jasypt Y Y

Keyczar Y Y

JCE Y Y

Bouncy

Castle Y Y

OWASP

ESAPI Y Y Y Y Y Y Y Y Y

Spring

Security Y Y Y Y Y

Apache

Shiro Y Y Y Y Y

HDIV Y Y Y

Table 4. Horizontal Coverage for the different frameworks.

5.1.2 Vertical Coverage

We now present the framework evaluation data associated with vertical coverage according to

the three different framework groups discussed in the previous section. Note that although

vertical coverage information was obtained by analyzing the frameworks’ APIs, we do not list

the names of the individual APIs in Tables, 5, 6, and 7 for brevity reasons. For the first group,

which consists of frameworks whose primary focus is on cryptography, our analysis results are

shown in Table 5. Note that a Y in a table cell indicates that the framework contains APIs

addressing the specific tactic instance. As this table shows, Bouncy Castle has the highest

vertical coverage in this group.

Tactic Instance Bouncy Castle JCE Jasypt Keyczar

Associated

Tactic

ASN.1 Support Y Encrypt Data

16

Certificate Packages Y Y Encrypt Data

Cipher Y Y Y Y Encrypt Data

CMS Y

Encrypt Data,

Verify Message

Integrity

Key Management Y Y Encrypt Data

Message Digest Y Y Y
Verify Message

Integrity

MAC Y Y Y
Verify Message

Integrity

OpenSSL and PEM

Support Packages
Y Encrypt Data

Post-Quantum

Crypto
Y Encrypt Data

Signers Y Y Y
Verify Message

Integrity

TLS Y Y Encrypt Data

TSP Packages Y Encrypt Data

Table 5: Vertical Coverage for the framework group focused on cryptography

For the second group of frameworks, which is composed of those focusing on authorization and

authentication, the analysis results are shown in Table 6. For this group, JGuard and JAAS

have the highest vertical coverage.

Tactic Instance JGuard OACC PicketLink JAAS Associated Tactic

Access control model Y Y Y Y Limit Access

Credential Y Y Y Y Authenticate Actors

Login Y Y Y Y Authenticate Actors

Policy Y Y Authorize Actors

Auth Permission Y Y Y Y Authorize Actors

Private Credential Permission Y Y Authorize Actors

Table 6: Vertical Coverage for the frameworks focused on Authentication and Authorization

For the third group of frameworks, those which provide a comprehensive set of security

features, the analysis results are shown in Table 7. In this group, OWASP ESAPI has the

highest vertical coverage.

17

Tactic Instance OWASP ESAPI Spring Security Apache Shiro HDIV

Associated

Tactic

Access control Y Y Y Limit Access

Credential
 Y Y

Authorize

Actors

Login
Y Y

Authenticate

Actors

Policy
Y

Authorize

Actors

Auth Permission
 Y Y

Authorize

Actors

Input validation Y Y

Validate

Input

Output

encoding/escaping Y
Validate

Input

Cipher

Y Y Y Y

Encrypt
Data, Verify
Message
Integrity

Key Management Y Y Encrypt Data

Message Digest
 Y Y

Verify
Message
Integrity

Error handling and

logging Y Y

Maintain

Audit Trail

Web Application Firewall Y
Detect

Intrusion

OpenID Y
Identify

Actors

LDAP Y
Identify

Actors

Table 7: Vertical coverage for the frameworks with comprehensive support

5.2 Adoption and Popularity

Figure 2 shows the overall results for the Adoption and Popularity criteria. Among the security

frameworks evaluated, Spring Security is by far the most popular with 10453 questions on

StackOverflow.

18

Figure 2: The number of questions for the different security frameworks on Stack Overflow

(captured on June 23d, 2016)

We also analyzed the evolution of the number of questions over time and the results are shown

in table 8. Excluding the results from 2016 (for which we have only incomplete data), it seems

that Spring Security is the framework with the strongest growth trend. It is interesting, and

somewhat surprising, to observe the difference in the total number of questions between Spring

Security and all the other frameworks.

Framework ...2009 2010 2011 2012 2013 2014 2015

2016…

Total

questions Search term used

Spring Security 140 461 1055 1440 1755 2196 2386 1020 10453
“Spring Security”,

"springsecurity"

Bouncy Castle 44 114 227 295 299 284 294 113 1670
“Bouncy Castle”,

"BouncyCastle"

Apache Shiro 5 30 71 125 189 197 120 58 795
“Shiro”,

"ApacheShiro"

JAAS 42 53 90 103 98 113 78 29 606 “JAAS”

JCE 16 33 53 66 75 80 68 30 421 “JCE”

Jasypt 1 12 11 25 41 36 37 17 180 “Jasypt”

OWASP ESAPI 2 3 19 35 23 47 32 15 176 “ESAPI”

PicketLink 0 1 2 3 10 27 26 4 73
“PicketLink”, "Picket

Link"

HDIV 0 0 2 11 4 11 37 3 68 “HDIV”

19

Keyczar 5 2 4 3 6 3 1 0 24 “Keyczar”

jGuard 1 0 0 0 1 0 0 0 2 “jGuard”

OACC 0 0 0 0 0 0 0 0 0 “OACC”

Table 8.Changes in the number of questions about security frameworks on Stack Overflow

5.3 Maintainability

Table 9 presents the results of the DL calculations for 10 of the 12 frameworks (we were unable

to obtain the source code for JAAS and JCE, and so could not calculate their DL values). With

the DL metric, the higher the value the better. The maximum DL value was obtained by JGuard

(0.813) while the minimum value was obtained by OWASP ESAPI (0.304). The average DL

value over the 11 measured projects is 0.62.

Project Date DL

JGuard 5/24/2016 0.813

Bouncy Castle 4/17/2016 0.784

Jasypt 5/24/2016 0.774

Spring Security 4/25/2016 0.737

PicketLink 4/18/2016 0.675

Keyczar 5/5/2016 0.609

HDIV 4/25/2016 0.586

Apache Shiro 4/25/2016 0.562

OACC 5/24/2016 0.450

OWASP ESAPI 4/25/2016 0.304

JAAS n/a n/a

JCE n/a n/a

Table 8. Results of the DL Calculations (note: higher DL is better), snapshots from May 2016

But DL values by themselves are just numbers and hence difficult to interpret; these numbers

must be put into a context. In [Mo2016] an analysis of 129 large-scale software projects,

covering a broad range of application areas (108 open source and 21 industrial projects) was

carried out. 60% of these projects were shown to have DLs between 0.46 and 0.75, with 20%

having DLs above 0.75 and 20% having DL values below 0.46.

From this data we can conclude that JGuard, Bouncy Castle, and Jasypt are in the top 20% of

software projects, in terms of their DL and that OACC and OWASP ESAPI are in the bottom

20%. Data for JAAS and JCE could not be obtained.

20

5.4 Community Engagement

Figure 3 shows the ratios of resolved issues including bug fixes and change requests (new

features) for each of the frameworks evaluated. Here, "resolved" means a developer has either

fixed the reported problem or satisfied the change request in a framework. We can see that

PicketLink (99.20%) is the highest ranked security framework in terms of the ratio of resolved

change requests. Moreover, Hdiv (93.33%), OACC (100% bug fixes and 72.73% changes),

JGuard (91.49% bug fixes and 35.82% changes), Bouncy Castle (92.81 bug fixes and 87.37%

changes), and Spring Security (92.92 bug fixes and 82.04% changes) are significantly better

than the other frameworks in their ratio of resolved issues. Note that PicketLink, Hdiv, and

Keyczar do not offer ways to distinguish bug fixes from other types of change requests in their

issue tracking system, which is why we classify them as generic changes (bars shown in green).

Fig 3: Ratio of resolved issues for security frameworks

Figure 4 shows the distribution of the percentage of issues resolved across time periods (in

days) for the different frameworks. For example, in the case of Spring Security, around 35% of

the issues are resolved between 0 and 20 days after they are raised. If issues found in a

security framework are promptly resolved, ART becomes increasingly skewed to the left. For

this measure, OACC, Hdiv, OWASP ESAPI, Keyczar, PicketLink produce desirable results.

However, as shown in Figure 3, OWASP ESAPI and Keyczar demonstrated that a significant

portion of their issues are still unresolved. Therefore, our data can be interpreted as showing

that OACC, Hdiv and PicketLink have lower community engagement as they have a low ART

and a high percentage of resolved issues.

21

(a) Spring Security (b) Apache Shiro

(c) OACC (d) Hdiv

(e) Bouncy Castle (f) OWASP ESAPI

22

(g) Keyczar (h) PicketLink

(i) Jasypt (j) jGuard

Fig 4: Distribution of issue resolution time for the security frameworks

Figure 5 displays the results with respect to the number of contributors (i.e. commiters) for the

different frameworks. In the case of Spring Security, PicketLink, Keyczar, Hdiv, OWASP ESAPI,

and OACC, we can readily get the contributor information from GitHub. Also, jGuard and Jasypt

show their contributors on their sourceforge.net website. Apache Shiro and Bouncy Castle list

their contributors on their own project websites. In the case of Bouncy Castle we did not find the

number of committers, as opposed to the other frameworks. However, as we mentioned, the

number comes from the framework homepage where they list every single person that has

contributed. Excluding BouncyCastle, we can see that Spring Security has the highest number

of contributors (119) compared with the other frameworks.

23

Fig 5: Number of Contributors

6. A Methodology for Framework Selection
In this section we address research goal RG3, that is proposing a methodology that allows

architects to use the criteria in RG1 to choose the best framework for their security needs. We

also discuss how framework evaluation--while important and valuable--is complex and typically

given inadequate attention in practice.

In the end, our methodology for framework selection is the major contribution of this paper. The

specific frameworks that we chose to evaluate, the specific evaluation criteria, and the mapping

of the criteria onto the chosen frameworks serve as an extended example of this methodology

and an existence proof that the method is usable.

The methodology itself is simple, generic, and repeatable. Although we have focused on

security frameworks, this methodology could in principle be used to evaluate any set of

frameworks that address a common set of concerns.

Our methodology consists of four major phases:

0. Identify candidate frameworks

1. Develop a practical set of criteria for framework selection

2. Collect data to support the analysis and evaluation of the identified criteria

3. Select a framework based on the evaluated criteria

24

While Phase 0 is obviously important, it is difficult to automate this phase, or even to provide

clear guidance on its operationalization. The evaluation team must simply satisfy themselves

that they have done an exhaustive search for relevant candidate frameworks.

Phase 1 is the most subtle and most important, which is why we have devoted a great deal of

space in this paper to it. The chosen criteria must reliably predict the likelihood of success of the

framework for the organization and its requirements, both in the near-term and the longer-term.

Furthermore, these criteria must be objective and practical to collect.

Data collection, as exemplified in section 5, needs not be overly time-consuming. But the team

must keep in mind that the evaluation of completeness, as discussed in section 4.2, will require

the effort of a human analyst. The tactics categorization can guide this process, but there is still

human judgement involved. For this reason, we recommend that it be done by several

independent analysts who can then compare their results and arrive at a consensus opinion.

Finally, once data for the different criteria has been obtained, the architect can select the

framework that better suits his or her needs. This final step requires a value judgement on the

part of the evaluator: which criteria are more important than others? If ‘adoption and popularity’

are the most important criterion, then clearly Spring Security is the framework to adopt for

authorization and authentication. However, if ‘community engagement and maintainability’ are

more important, then perhaps jGuard would be preferred over Spring Security. If vertical

coverage is of paramount importance then JGuard or JAAS might be the top choice. Clearly

there is no single, objective “best” framework, and any notion of best must be tempered by the

evaluator’s goals (see Appendix A for an analysis of the different frameworks).

7. Threats to validity
Some threats to validity of the work presented in this paper include the possibility of having a

sampling bias with respect to the frameworks we selected. Security is a quality attribute that is

addressed directly by frameworks but other quality attributes such as performance or availability

are not directly addressed by particular frameworks, that is, there are not many ‘performance’

frameworks. We believe, though, that it is possible to find other frameworks for quality attributes

such as usability or testability. The fact that we have only studied security may reflect a

confirmation bias, as we may be falsely believing that any framework can be directly associated

with tactics.

Another threat to validity is that at this point we have not obtained feedback from practicing

architects to understand if they would be willing to make a selection decision based on the

criteria and the data that we have obtained. We have tried, however, to leverage our extensive

experience in working with practitioners to select criteria that we believe would be of use. Still,

we might be subject to optimism bias here.

25

One additional threat comes from the fact that the data for the coverage metric had to be

collected manually in the sense that it has to be interpreted, as opposed to the data for the other

metrics. This may lead to a form of experimenter’s bias. While this form of collecting evidence is

not optimal, we believe that our methodology is justified in that the coverage metric is essential

as it is the only one that focuses on the intent of the frameworks and their users.

Finally, not all of the data can be obtained equally. For example, it is not possible to differentiate

between bug fixes and feature requests in some of the frameworks to calculate the community

engagement metric.

8. Related work
Our work is unique due to the lack of research publications comparing and evaluating software

security frameworks. However, there have been attempts to provide general guidance on how to

select the best framework irrespective of the application domain. [Ahamed2004] discusses 29

criteria that can be used to evaluate frameworks. Although the list of criteria is useful, the

collection of data for many of these criteria (such as “design patterns” or “coupling”) is not

straightforward. [Jadhav2009] provides an extensive review of the evaluation and selection of

software packages, which are complete software systems such as Computer-Aided Software

Engineering tools or Enterprise Resource Planning systems. Similar to the previously discussed

work, their paper proposes an extensive list of criteria to evaluate software packages. Although

software packages are different from frameworks, many of the same criteria can be used when

selecting frameworks. Their review, however, does not mention the automated collection of data

associated with the packages, which is one important contribution in our work.

The work of [Hauge2009] presents an empirical study on the selection of open source software.

By interviewing 16 developers from different development companies, the authors arrived at the

conclusion that the selection process is often constrained by the situation (for example,

company policies) and that the developers use a ‘first fit’ rather than a ‘best fit’ approach

towards selection. In their opinion, these situations limit the use of more established selection

methods. We believe that our approach may help developers to avoid the ‘first fit’ approach by

providing them with means to evaluate different alternatives from information that can be

gathered, for the most part, in an automated way.

The work of [Mohamed2007] surveys 18 selection approaches for Commercial Off-The-Shelf

(COTS) products. From these different approaches, they synthesize a general selection process

which considers five steps that are: 1) Define evaluation criteria, 2) Search COTS products, 3)

Filter results based on requirements, 4) Evaluate the candidates on the filtered results, 5) Make

selection (using decision making techniques). Our work can be of particular use in step 4 of their

general selection process.

The topic of evaluating and choosing frameworks has also received considerable attention in

the popular press, e.g. [Selle 2013].

26

9. Conclusions and Future Work

In this paper we have presented a methodology for selecting application frameworks focused on

supporting the security quality attribute. Our methodology is intended to be practical, in the

sense that a user can make a selection by applying objective evaluation criteria to the data, and

this data can be collected in a relatively simple fashion.

This is the why our approach initially limited the number of evaluation criteria to the four

categories presented in the paper: completeness, adoption and popularity, maintainability, and

community engagement. Of the chosen criteria, completeness is the one that is the most subtle

and least automatable--it requires the judgement of a human analyst. We decided, however, to

keep this criterion as it is the only one that focuses specifically on the framework’s and user’s

design intent.

Although we have tried to select our evaluation criteria based on information that is useful and

insightful for practicing architects, reflecting their needs in developing real systems, we still need

to validate our proposed method and its results with practicing architects to better understand

whether they are willing to make selection decisions based on the information that our criteria

provide. Nonetheless, we believe that our methodology represents a true contribution as it is far

more detailed, holistic, and actionable than any prior research.

Future work includes industrial case studies and the identification of other criteria for which the

data can be collected in a similar way to the criteria discussed in this paper. Finally, we plan to

create a tool for practitioners that can provide them with a framework “profile” that evaluates a

chosen set of frameworks across different criteria.

Copyright 2018 IEEE. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-

15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center.

DM18-0778

References
[Ahamed2004] S. Ahamed, A. Pezewski, and A. Pezewski, Towards framework selection criteria

and suitability for an application framework," Proceedings International Conference on

Information Technology: Coding and Computing (ITCC), 2004, 424-428 Vol.1.

[Bass2012] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd

edition, Addison-Wesley, 2012.

[Cervantes2013] H. Cervantes, P. Velasco, and R. Kazman, “A Principled Way of Using

Frameworks in Architectural Design,” IEEE Software, 46–53, March/April 2013.

27

[Cervantes2016a] H. Cervantes, R. Kazman, J. Ryoo, D. Choi, D. Jang, “Architectural

Approaches to Security: Four Case Studies”, IEEE Computer, 2016, to appear.

[Cervantes2016b] H. Cervantes, R. Kazman, Designing Software Architectures: A Practical

Approach, Addison-Wesley, 2016.

[Fernandez2013] Fernandez-Buglioni, E., Security Patterns in Practice: Designing Secure

Architectures Using Software Patterns, Wiley, 2013.

[Hauge2009] Ø. Hauge, T. Østerlie, C-F. Sørensen, and M. Gerea, “An Empirical Study on

Selection of Open Source Software - Preliminary Results”, Proceedings of the 2009 ICSE

Workshop on Emerging Trends in Free/Libre/Open Source Software Research and

Development (FLOSS '09), 2009.

[Jadhav2009] A. Jadhav and R. Sonar, “Evaluating and Selecting Software Packages: A

review”, Journal of Information and Software Technology, 51 555-563, 2009

[Mo2016] R. Mo, Y. Cai, R. Kazman, L. Xiao, Q. Feng, “Decoupling Level: A New Metric for

Architectural Maintenance Complexity”, Proceedings of the International Conference on

Software Engineering (ICSE) 2016, (Austin, TX), May 2016.

[Mohamed2007] A. Mohamed, G. Ruhe, and A. Eberlein. COTS Selection: Past, Present, and

Future. In ECBS ’07 Proceedings of the 14th Annual IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems, pages 103– 114. IEEE Computer

Society, Mar. 2007.

[Piccioni2013] M. Piccioni, C. Furia, and B. Meyer, “An Empirical Study of API Usability”,

Proceedings of the International Symposium on Empirical Software Engineering and

Measurement, Baltimore, USA, October 2013.

[Potix2015] Potix Corp., Security Features of ZK Framework, Technical documentation of the

ZK framework, 2013, http://books.zkoss.org/images/e/ea/ZK_Security_Report.pdf, last visited

11/11/15.

[Ryoo2015] Ryoo, J., Kazman, R., Anand, P., “Architectural Analysis for Security”, IEEE

Security and Privacy, November/December 2015,13:6, 52-59.

[Scheller2015] T. Scheller, E. Kühn, “Automated measurement of API usability: The API

Concepts Framework”, Information and Software Technology, Volume 61, May 2015, Pages

145–162.

28

[Selle2013] P. Selle, “13 Criteria for Evaluating Web Frameworks”,

https://www.safaribooksonline.com/blog/2013/10/14/13-criteria-for-evaluating-web-frameworks/,

2013.

[Xiao2014] L. Xiao, Y. Cai, R. Kazman, “Titan: A Toolset That Connects Software Architecture

with Quality Analysis”, Proceedings of the 22nd ACM SIGSOFT International Symposium on the

Foundations of Software Engineering (FSE 2014), (Hong Kong), November 2014.

Biographies
Jungwoo Ryoo is a professor of Information Sciences and Technology (IST) at the

Pennsylvania State University-Altoona. Ryoo is also a graduate/affiliate faculty member of the

college of IST at Penn State. His research interests include information security and

assurance,software engineering, and computer networking.

Junsung Cho is currently a graduate student with the Department of Computer Science and

Engineering, Sungkyunkwan University, Suwon, Korea. His current research interests include

usable security, mobile security, and security engineering.

Humberto Cervantes, Universidad Autonoma Metropolitana Iztapalapa, is a professor and

researcher at Universidad Autónoma Metropolitana Itztapalapa. His current research interests

include software architecture design, and he is an industry consultant and a certified Software

Architecture Professional and ATAM Evaluator by the SEI.

Rick Kazman, is a professor at the University of Hawaii and research scientist at the Software

Engineering Institute. He has created several influential methods and tools for architecture

analysis, is author of more than two hundred peer-reviewed papers, and has coauthored several

books, including Software Architecture in Practice, Third Edition.

Geumhwan Cho is currently a graduate student with the Department of Computer Science and

Engineering, Sungkyunkwan University. His current research interests include usable security

and mobile security.

Jina Kang is currently a developer and researcher in the National Security Research Institute,

Daejeon, South Korea.

https://www.safaribooksonline.com/blog/2013/10/14/13-criteria-for-evaluating-web-frameworks/
http://ist.psu.edu/directory/jxr65

29

Hyoungshick Kim is an assistant professor with the Department of Software, Sungkyunkwan

University. His current research interests include usable security and security engineering.

30

Appendix A: Security Framework Analysis Details

A.1 Frameworks Focusing on Cryptography

There are four security frameworks whose primary focus is cryptography. They include: JCE,

Jasypt, Keyczar, and Bouncy Castle. Among these, the most comprehensive framework in its

vertical coverage is Bouncy Castle. It acts as a JCE provider and implements all its API.

Compared to JCE and Bouncy Castle, the vertical coverage of Jasypt and Keyczar fall right in

the middle. They offer a quick and easy cryptography implementations by providing user-friendly

APIs for developers who do not need all the bells and whistles available through Bouncy Castle.

Therefore, regarding their horizontal coverage, we conclude that these frameworks fully support

encrypt data and verify message integrity tactics while indirectly supporting derived security

features such as: identify and authenticate actors. The indirect support means that developers

still need to spend significant time in implementing their own design of these security features

using the crypto functions instead of being able to rely on the native API available through the

frameworks.

A.2 Frameworks Focusing on Authentication and Authorization

JGuard, OACC, PicketLink, and JAAS are authentication and authorization frameworks. JAAS is

built into J2SE and provides interfaces that allow flexible authentication and authorization

capabilities. JGuard builds on JAAS and supplies various implementations of its APIs.

For example, JAAS allows developers to create various login modules without fully

implementing all of them, but JGuard provides a much more extensive and complete collection

of login modules including: XMLLoginModule, OracleLoginModule, MySQLLoginModule, etc. It

also provides additional Authorization Managers.

OACC is not JAAS-based but offers its own authentication and authorization architecture. It has

a component similar to a login module, called AuthenicationProvidor, which by default provides

simple, password-based authentication. It also make available special features such as identity

delegation and multi-tenancy support as well as fully implemented data stores and Role-Based

Access Control (RBAC).

PicketLink is another authentication and authorization framework independent of JAAS. It uses

its own security models such as the concept of a partition and is geared towards supporting

Java Enterprise Edition (EE) although some of its features support Java Standard Edition (SE).

The main focus of PicketLink is identity management.

In terms of their vertical coverage, JAAS and JGuard are very comparable while OACC and

PicketLink are providing their own unique security models and focus. That is, OACC

31

concentrates on the usability of its access control model while PicketLink emphasizes identity

management.

A.3 Comprehensive Frameworks

These frameworks include OWASP Enterprise Security API (ESAPI), Spring Security, Apache

Shiro, and HDIV. Among these, OWASP ESAPI, and HDIV are available only for web

applications.

OWASP ESAPI is a comprehensive security framework designed to address all the OWASP top

ten security concerns, which include: cross-site scripting (XSS), injection flaws, malicious file

execution, insecure direct object reference, cross-site request forgery (CSRF), leakage and

improper-error handling, broken authentication and sessions, insecure cryptographic storage,

insecure communications, and failure to restrict URL access.

The security tactics covered by ESAPI are: identify actors, authenticate actors, encrypt data,

limit access, validate input, detect intrusion, verify message integrity, and maintain audit trail.

When compared to ESAPI, Spring Security has a more limited horizontal coverage. Its coverage

is much narrower in the core security area of: identify actors, authenticate actors, encrypt data,

verify message integrity, and limit access.

Apache Shiro is similar to Spring security in its scope of horizontal coverage. The covered

security tactics are: identify actors, authenticate actors, authorize actors, encrypt data, verify

message integrity, and limit access.

The main difference between ESAPI and Shiro is that the former is intended for the advanced

users of the built-in Java security models and their corresponding security APIs while the latter

provides easy-to-use APIs for developers with limited Java security knowledge. Spring security

also fits this description.

HDIV is a web application security framework that offers Runtime Application Self-Protection

(RASP). It covers security tactics such as: validate input, detect intrusion, and maintain audit

trail.

