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Abstract—The verification of Cyber-Physical Systems is in-
creasing in importance given the push to deploy complex au-
tonomous features with life-threatening consequences. However,
verifying CPS not only demands the verification of the application
code but also of the supporting OS. Unfortunately, the complexity
of traditional monolithic kernels has prevented their full veri-
fication. As a result, a new generation of verified hypervisors
capable of hosting a full OS within a VM has been created.
Notwithstanding, the verified properties of the hypervisor only
apply to the code within it and do not extend to the code running
the VM. In this paper we create a new scheduling model with
tasks consisting of two parts, an unverified part that runs in the
VM and a verified part that runs within the verified hypervisor.
The unverified part can contain bugs and hence is considered
untrusted. The verified part, on the other hand, is considered
trusted. Due to this mixture we call this a mixed-trust task. A
mixed-trust task is designed to run only its untrusted part if
the execution does not run into any bugs. The untrusted part
implements complex computations and has the support of a full-
blown OS. However, if this part fails to finished (e.g., due to
bugs) the trusted part is automatically activated by a timer
within the trusted hypervisor to ensure some safety property
(e.g. prevent a crash). The hypervisor ensures that the activation
of the trusted part does not depend on the untrusted one. This
execution model is implemented by the coordination of a verified
non-preemptive scheduler in the hypervisor and a preemptive
scheduler in the VM. Both the mixture of schedulers and the
required independence of the hypervisor scheduler present key
challenges that are addressed in this paper. In the paper we
present the schedulability analysis for the mixed-trust scheduler,
and its implementation based on the XMHF hypervisor and the
ZSRM schedulers.

I. INTRODUCTION

Certification authorities such as the FAA [18] allows the
validation of different parts of a system with different degrees
of rigor depending on their level of criticiality. This is only
allowed if it is possible to prove that higher-criticality com-
ponents are isolated from defects in lower-criticality compo-
nents. Given that failure of the highest-criticality components
can lead to fatal consequences, formal verification is highly
recommended to provide provable guarantees. However, to
preserve the level of rigor of this proof it is necessary to also
formally verify the mechanism that isolates the highest-critical
part from the rest.

The complexity of traditional monolithic kernels in general
and of the virtual memory system in particular has prevented
the verification of the code that implements process isolation.
As a result, a new generation of micro-kernels and hypervisors
has surged to cover this gap [20], [14], [11]. In this case, the
verification is limited to the code that implements the isolation
mechanisms and other simple micro-kernel and hypervisor
services. Unfortunately, these services are limited and cannot
support a full-scale application the way a full OS (such as
Linux) can. Therefore, these works does not address the need
to provide verified properties for complex real-life application.

This paper presents the timing verification work of a larger
framework that allows the verification of large complex sys-
tems based on runtime verification [8], [1]. In this framework,
small code components are added to the system to verify the
input (e.g., sensing) and outputs (e.g., actuation) of the system
ensuring that such outputs always lead to safe states (e.g.,
avoid crashes). It is worth noting that, in a CPS, verifying
the behavior of a system depends not only on the values
produced (outputs) but also the time when those outputs are
produced. Hence, our framework includes a temporal enforcer
that outputs a default safe action (e.g., hover in a quadrotor)
if an output has not been produced on time to finish by the
deadline. Clearly, if a provable guaranteed must be produced,
the mechanism that triggers and host the temporal enforcer
and the temporal enforcer itself must be verified. In this paper
we present the real-time schedulability approach for tasks
with verified temporal enforcers and the implementation of
the scheduling scheme coordinating the scheduler within the
verified hypervisor XMHF [20] and the ZSRM [9] scheduler
in the VM.

In our real-time scheduling framework tasks have an un-
verified part followed by a verified part. The unverified part
is expected to work most of the time (e.g., flying a drone
through a mission) but may fail occasionally (say due to a bug)
and, hence is considered untrusted. If this failure occurs, then
the verified part takes over to preserve some safety invariants
(e.g. prevents the drone from crashing). The latter part is
considered trusted and is where the temporal enforcer from our
runtime verification approach resides. As a result, these tasks



are considered mixed-trust tasks. It is worth highlighting that
the two parts are implemented as different subroutines (e.g., C
functions) and, hence, the second part is not a continuation of
the first one. This is a stark difference with mixed-criticality
task models. However, both the trusted and untrusted parts are
executed as a single job of a task and we need to ensure that
they are executed periodically with a common period and must
finish by their common deadline. This, together with the need
to prevent trusted-part’s dependencies from the untrusted part,
presents important challenges that need to be addressed in the
schedulability analysis.

Our runtime scheduling framework is composed of a veri-
fied hypervisor hosting a virtual machine running an unverified
kernel. To provide the proper isolation between the trusted and
untrusted environment we use two schedulers: (1) a simple
verified non-preemptive fixed-priority scheduler in the hyper-
visor to host the verified part of the tasks and (2) a preemptive
scheduler running in the kernel inside the virtual machine.
This allows the runtime framework to provide a rich set of
services (in a regular OS) to support complex applications
maximizing mission objectives (e.g. wining an autonomous
car race) while, at the same time, supports a verified isolation
mechanism and basic services for the verified application code
in charge of safety. The schedulability analysis of what we call
a mixed-trust scheduling to analyzed the timing guarantees
provided by the safe coordination of the two schedulers in the
platform is the main topic of this paper. Our system model
has two criticality levels where the untrusted part has a low-
criticality and the trusted part high-criticality. The semantics
of the criticality is a variant of the traditional mixed-criticality
scheduling work with two important differences: (1) tasks have
parts of different criticality levels instead of only one level.
And (2) the isolation requirement for the high-critical part
necessitates a separate scheduler and runtime environment.
We present the analysis, enforcement mechanisms, and our
implementation of the mixed-trust scheduler in a Raspberry
Pi-3 board.

II. SYSTEM MODEL

Our system is composed of a uni-core processor with a
taskset Γ “ tµi|µi “ pTi, Di, τi, κiqu indexed in priority
order, i.e., µi has higher priority than µj if i ă j. In the task set
µi is defined as a mixed-trust task with two execution segments
τi and κi required to execute in that order and a period Ti and
deadline Di. The execution segment τi is considered to be
untrusted and runs in the untrusted kernel inside the VM. On
the other hand, the segment κi is considered trusted code (e.g.
verified) and runs within the trusted hypervisor. For simplicity
of presentation and to represent the fact that they are handled
by different schedulers we consider these segments tasks and
call the untrusted one a guest task (because it runs in the guest
VM) and the trusted one a hyper task. These tasks are defined
by:

τi “ pTi, Ei, Ciq (1)

and
κi “ pTi, Di, κCiq (2)
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Figure 1: Mixed Trust Sample Timeline

Where Ti and Di are the same as in µi (replicated here
for convenience),Ci is the WCET of τi, and and κCi is the
WCET of κi. Ei determines how long the hyper task κi must
wait after the arrival of a job of τi to be activated. It is worth
noting that if a task tries to execute beyond Ci the task will be
enforced not to exceed this budget. Tasks are assumed to have
different priorities. For convenience we use κi,k to identify the
k’s (hyper) job of the hypertask κi and τi,k to identify the k
job of the guest task τi.

Under normal operation, the mixed-trust task µi only runs
its guest task τi executing less than Ci and informing the
scheduler of its completion. However, if it is detected that
τi is taking too long to complete (e.g. due to an error or a
security infiltration) then its execution is interrupted and κi is
run within the hypervisor. To detect this, a timer is set to expire
Ei time units after τi’s arrival. The goal of the schedulability
analysis is to compute Ei (if one exists) in order to ensure
that all hyper-tasks can finish by their deadline Di and all the
guest tasks can finish before the timer Ei if they do not exceed
their Ci. In our model, Ei is known as the enforcement timer.
Figure 1 depicts a sample execution timeline for a mixed-trust
taskset with three tasks.

III. SCHEDULABILITY ANALYSIS

The schedulability of a mixed-trust taskset is performed in
three steps: we first calculate the worst-case response time
(Rκi ) of each hypertask κi running in non-preemptive fixed-
priority scheduling. Then, we calculate the Ei timer for each
guest task τi by simply subtracting Rκi from the deadline Di.
Finally, we calculate the response time of each guest task τi
and verify that it is smaller than Ei.

1) Hyper-Task Response Time: To calculate the hyper-task
response time we use previous results from the CANBus
schedulability analysis [7]. In order to explain the mapping
of this analysis to our model let us make the following
observations about the non-preemptive scheduler used in our
model analysis:
‚ o1. Even though a hyper task κi does not execute unless

its corresponding guest task τi does not finish by the



enforcement timer Ei, the worst case delay for κi occurs
when all hyper-task always execute.

‚ o2. A high-priority task κi can be delayed by a lower-
priority κk already running when κi arrived, due to its
non-preemptive execution nature.

‚ o3. Once a task κi starts running, it experiences no further
delays.

‚ o4. A job from a task κi can get extra carry-in preemp-
tions at the beginning of its period from jobs of higher-
priority tasks κj that were in turn delayed by lower-
priority jobs from κk.

Now, the response time of a hyper-task κi is calculated in
three steps:

1) A level-i non-preemptive busy period is calculated in
order to explore all possible interleavings and find the
worst-case response time of κi, in order to take into
account potential carry-in preemptions as stated in o4.

2) The start time of each κi job in the busy period is cal-
culated as the basis for the response time. The response
time is then calculated by just adding the execution time
to this starting time given observation o3.

3) The maximum response time among the jobs in the busy
period is then calculated.

The level-i non-preemptive busy period is calculated with
Equation 3.

tκi “ max
jPκLi

κCj `

R

tκi
Ti

V

κCi `
ÿ

jPκHi

R

tκi
Tj

V

κCj (3)

where κLi is the set of all hyper tasks with lower priority
than κi and κHi is the set of tasks with higher-priority than
κi.

As pointed out in o2, Equation 3 takes into account the
maximum preemption from one job of a lower-criticality task.

Then we can obtain the worst-case starting time of the q
job with Equation 4.

Wκ
i,q “ max

jPκLi
κCj`pq´1qκCi`

ÿ

jPκHi

p

Z

Wκ
i,q

Tj

^

`1qκCj (4)

Finally the response time of job q is calculated by obtaining
the longest starting delay of any job in the busy period and
adding its execution time with Equation 5.

Rκi “ max
xP

”

1...
Q

tκ
i
Ti

Uı

pWκ
i,xq ` κCi ´ ppx´ 1qTiq (5)

Difference from CANBus. It is worth noting that the
CANBus analysis only considers tasks with a single non-
preemptive execution segment. In contrast, our tasks µi has
two execution segments or subtasks: the guest task τi and
the hyper task κi. The guest task runs in the VM under
preemptive fixed-priority scheduling and the hyper task runs in
the hypervisor under non-preemptive fixed-priority scheduling.
More importantly, guest tasks only run if there is no hyper-
task ready to run, i.e., the hyper-tasks are idle when the guest

tasks run. This fact leads to a key difference that is reflected in
the way the adapted CANBus equations to work in the mixed-
trust model. Specifically, in a schedulable taskset, the level-i
busy period of a hyper-task κi that has a corresponding guest
task τi with non-zero WCET Ci (i.e., Ci ą 0) ends before
the second job of κi starts. This is because, a schedulable
taskset will ensure that both the guest task τi and the hyper
task κi have time to execute for their respective WCET Ci
and κCi. Hence, after the execution of the first job of κi there
should be some time when τi executes for Ci ą 0. Therefore,
as pointed out before, during the time that τi executes there
should not be any hyper-task ready to execute and this interval
is consider idle time from the hypervisor point of view. This
means that the hyper task level-i busy period ended as soon
as this idle time started. Furthermore, this idle time not only
ends the hyper task level-i busy period but the hyper task busy
period at all levels.

Notwithstanding the single-job busy period observation in
the previous paragraph, we keep the CANBus-based equations
to allow tasksets without any guest task components.

We will now discuss how to choose Ei. In order for hyper
tasks to be schedulable, clearly, we must choose E such that:

@µi P Γ, Ei ď Di ´R
κ
i (6)

We will later compute the guest response time of a task τi and
denote it by Ri. In order for guest schedulability to hold, we
must choose E such that:

@µi P Γ, Ri ď Ei (7)

Ideally, we would like to develop an algorithm that computes
E for each task such that if there is an assignment for which
the schedulability test is true, then our algorithm finds such an
E-assignment. This is an interesting problem; though we will
not address it here; we leave it for future research. Instead, in
this paper, we use a rule-of-thumb. We assign E to be as large
as possible while still satisfying Equation 6 and Equation 7.
The rationale for this is that choosing Ei as large as possible
gives as much space as possible for Ri; however, it may
adversely affect Rl of a task τl with lower priority than τi.
Based on this discussion, we choose to assign E with the
following rule:

Ei “ Di ´R
κ
i (8)

2) Active-Period Exact Analysis of Guest Response Time:
In order to calculate the exact response time of the guest we
used a modified version of the active period from the CANBus
analysis. However our analysis must account for the effects
other tasks’ guest and hyper tasks on τi and the effect of
κi on τi. This in turn depends on a determining worst-case
phasing for tasks relative to τi and κi.

We will argue in two steps, first considering the case in
which κi does not exist. The argument is a slight variant of
Theorem 1 in [15].

Lemma 1. In the case when a guest task does not have an
associated hyper task the longest response time for all jobs of



guest task τi occurs in a level-i busy period initiated by the
arrival of τi and the arrival of other tasks’ guest or hyper
tasks.

Proof. Following the argument of Lehoczky [15], let [0, b]
denote a level-i busy period. Assume that τi arrives at some
point xi after 0 during the busy period. Since the time before it
starts,[0,xi), is being used by higher priority guest tasks, higher
priority hyper tasks, or lower priority hyper tasks, moving its
start to zero cannot change its completion time and can only
increase its response time.

Assume that τi arrives at 0, but some higher priority guest
task, τj , is initiated after 0 while the prior hyper task does not
become part of the busy period. Moving the initiation of τj to
0 will result in an increased (or unchanged) amount of work
in every interval [0,t] for every t in [0,b) possibly increasing
or leaving unchanged the response time of τi jobs. Similar
arguments can be used if a higher or lower priority hyper task
is initiated after 0.

Now consider the case in which the guest task does have
an associated hyper task. Aligning other task arrivals with the
arrival of the k’s job of τi guest task does not necessarily cause
the worst-case response for τi’s k’s job. Sometimes aligning
other arrivals with the k ´ 1’ job’s hyper task of µi creates
a busy period that includes the k’s job of τi guest task and
results in it having a worse response time.

Lemma 2. In the case when a guest task does have an
associated hyper task the longest response time for the job
τi,k with the longest response time among all jobs of guest
task τi occurs in a level-i busy period initiated by the arrival
of either κi,k´1 or τi,k and the arrival of other tasks’ guest
or hyper tasks.

Proof. The proof is very similar to the proof of above Lemma.
Again let [0, b] denote a level-i busy period. Assume that
the busy period includes κi,k´1 and τi,k. Assume that κi,k´1

arrives at some point xi´1 after 0 during the busy period.
Unlike the previous case moving the start of κi,k´1 to zero
can reduce its response time since it is non-preemptible, but it
can only increase the response times of all of the guest tasks
in the busy period.

Assume that κi,k´1 arrives at 0, but some higher priority
guest task, τj , is initiated after 0 while the prior hyper task
does not become part of the busy period. Again moving the
initiation of τj to 0 will result in an increased (or unchanged)
amount of work in every interval [0,t] for every t in [0,b) and
therefore increase or leave unchanged the response time of
all guest task jobs in the busy period. (However, hyper tasks
could benefit.)Similar arguments can be used if a higher or
lower priority hyper task is initiated after 0.

We first define a parameterized request-bound function in
Equation 9. The notion of request-bound function has been
used in previous work [3]. The request-bound function for a
set of jobs from a given task τi, for a given time interval is the
sum of the execution time of the jobs that have arrival times

in this time interval. The request-bound function for a given
task τi, for a given time interval is the maximum request-
bound function that jobs of this task can generate in this time
interval. The request-bound function for a given task τi, for
a given time interval is the maximum request-bound function
that jobs from this task can generate in this time interval.
The request-bound function for a given task τi, for a given
duration is the maximum request-bound function that this task
can generate for a time interval of this duration. Recall that
in our model, a task can generate a job but later the same job
can ”arrive” again (E time units later) to perform hypervisor
execution. Therefore, from the perspective of request-bound
function, this arrival of hypervisor execution is treated as the
arrival of a job. The normal request-bound function takes only
two parameters: a task and a duration. In our model, we
will use a more specialized variant that takes two additional
parameters, y (a phasing) and b (a 0-1 variable). We use the
former parameter (y P tE,Auq to indicate the phasing of
the task τi; if y “ E, then we are computing the request-
bound function for the phasing when the level-i busy period
starts at a time when a hypertask of τi arrives; analogously
if y “ A, then we are computing the request-bound function
for the phasing when the level-i busy period starts at a time
when a guesttask of τi arrives. We use the latter parameter
(b P t0, 1uq to indicate the whether the guest execution should
be included in the counting of the request-bound function. If
we would use y “ A and b “ 1, then our notion measures
the same quantity as the traditional request-bound function.
Thus, our notion of request-bound function can be thought
of as a generalization of the original notion of request-bound
function.

The definition of request-bound function for our model is
as given by the equation below:

rbfyi pt, bq “

$

&

%

Q

t´pTi´Eiq
Ti

U`

Cib`
Q

t
Ti

U

κCi if y “ E
Q

t
Ti

U

Cib`
Q

t´Ei
Ti

U`

κCi if y “ A
(9)

We will use this notion of request-bound function to com-
pute the response time of the guest execution of a given task
τi. Then, if it holds for each task, that its computed guest
response time is less than or equal to its E-parameter, then the
taskset is schedulable (assuming that we have already checked
hypertask schedulability). Therefore, our goal is now to present
equations for computing the guest response time for a given
task. We will do so by presenting an equation for the maximum
duration of a level-i busy period. Then, compute the latest
possible finishing time of a given job from a given task in this
level-i busy period; then also show that arrival times of jobs
can be moved to be as early as possible given the model; these
two together (the finishing time and arrival time) allows us to
compute the guest response time of a job. Since we know the
maximum duration of a level-i busy period, we can compute
an upper bound on the number of jobs of a given task in a
level-i busy period; we can compute the maximum response
time over all these jobs of the given task. This yields the guest



response time. We will compute the guest response time for
two cases: the case that the given task arrives in the beginning
of the level-i busy period and the case that the given task
arrives with a hypertask in the beginning of the level-i busy
period. Given this high-level outline, we will now present the
actual equations.

For each τi, for each x P tE,Au, let tg,xi denote the
maximum level-i busy period such that this level-i busy period
starts with a job of hypertask or guesttask of τi arriving (x
indicates which). Then, in a similar spirit as Equation 3, we
can, for x P tE,Au, for a given task τi, compute tg,xi as
follows:

tg,xi “

˜

ÿ

jPLi

rbfEj pt
g,x
i , 0q

¸

` rbfxi pt
g,x
i , 1q

`
ÿ

jPHi

max
yPtE,Au

rbfyi pt
g,x
i , 1q.

(10)

Given a task τi and a level-i busy period, we refer to job q as
the qth job with a guest arrival in the level-i busy period. For
each τi, for each x P tE,Au, let wg,xi,q denote the maximum
finishing time of job q of task τi, relative to the start of the
maximum level-i busy period, such that this level-i busy period
starts with a job of hypertask or guest task of τi arriving (x
indicates which). Then, in a similar spirit as Equation 4, we
can, for x P tE,Au, for a given task τi, for a given job index
q of task τi, compute wg,xi,q as follows:

wg,xi,q “

˜

ÿ

jPLi

rbfEj pW
g,x
i,q , 0q

¸

` qCi ` pq ´ 1` Ipx“EqqκCi

`
ÿ

jPHi

max
yPtE,Au

rbfyj pw
g,x
i,q , 1q.

(11)
In Equation 11, Iφ is an indicator function that returns 1 if
the Boolean predicate φ is true and 0 otherwise.

For each τi, for each x P tE,Au, let Rg,xi,q denote the
maximum response time of job q of τi, relative to the start
of the maximum level-i busy period, such that this level-i
busy period starts with a job of hypertask or guest task of τi
arriving (x indicates which). Then, in a similar spirit as part
of Equation 5, we can, for x P tE,Au, for a given task τi, for
a given job index q of task τi, compute Rg,xi,q as follows:

Rg,xi,q “ wg,xi,q ´ ppq ´ 1qTi ` Ipx“EqpTi ´ Eiqq (12)

For each τi, for each x P tE,Au, let Rxi,q denote the
maximum response time of τi, such that this level-i busy
period starts with a job of hypertask or guest task of τi
arriving (x indicates which). Then, in a similar spirit as part
of Equation 5, we can, for x P tE,Au, for a given task τi
compute Rg,xi as follows:

Rg,xi “ max
qP

"

1...

R

t
g,x
i

´Ix“EpTi´Eiq

Ti

V*

Rg,xi,q (13)

Parameter Default Value
Number of Tasks 10

Utilization 0.8
Tmin 100

Tmax
Tmin

ratio 100.0
D
T

ratio 1.0
κC

C`κC
ratio 0.1

Table I: Default Parameters

Finally, the max response time of a guest task over all
phasings is obtained with Equation 14.

Rgi “ max
xPtE,Au

Rg,xi (14)

A. Enforcement

Given that guest tasks are not trusted, their Ci needs to be
enforced. In contrast to guest tasks, hyper-tasks are trusted
and their κCi does not need to be enforced. In addition, there
can be two possible guest task termination options when the
enforcement timer elapses: (i) the execution of the guest task
τi is aborted and the corresponding hyper task κi is responsible
for cleaning up its execution, or (ii) τi is deferred and its hyper
task κi only executes temporary actions (e.g. safe actuation in
a control task) allowing the guest task to finish in the next
period.

B. Experiments

For our experiments define the following ranges:
‚ U P t0.1, 0.2 . . . , 1.0u
‚

κC
C`κC P t0.1, 0.2, . . . , 1.0u

‚
TMAX
TMIN P t1, 10, 100, . . . , 1000000u

‚
D
T P t0.01, 0.1, 1.0u

For each combination generate 1000 tasksets and record
schedulability and analysis time. The total utilization of the
taskset is evenly divided into the number of tasks and the
periods are chosen at random from the period range selected.

We perform five experiments to vary utilization Tmax
Tmin ratio,

number of tasks, κC
C`κC ratio, and D

T ratio.
The default values for the parameters that do not vary are

presented in Table I. Two observations are in order. First, the
default number of task is set to 10 given that a larger number
of task reduces the change having a schedulable taskset as can
be seen in Figure 4a. And secondly, the default utilization is
set to 80% also to reduce the influence of the utilization to
dominate when varying the other parameters.

The graphs we will present are:
1) Execution Time Enforcement: All jobs of tasks τi are

enforced not to exceed Cζii units of execution. This is nec-
essary, to ensure that a lower-priority higher-criticality τj
does not suffer preemptions beyond those accounted in the
schedulability equations.

IV. RELATED WORK

The contribution of this paper is to provide both security
and real-time guarantees; and doing so by (i) combining
a previously-proposed formally-proven hypervisor [20],
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Figure 4: as number of tasks grow
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Figure 5: as κC
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(ii) extending this hypervisor to make it suited for real-time
tasks, and (iii) present schedulability analysis for tasks running
on the resulting system. This section describes previous work
related to this contribution.

It is well-known that software of larger size tends to have
more defects and it is also generally appreciated in the security
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community that it is desirable to formally prove correctness of
security mechanisms—such arguments were made even back
in the 1972 with ”The Anderson Report” which helped set
the agenda for computer security research. There are several
OS kernels that have been developed for security or with
isolated parts; one of them is L4 which has been adapted
for different purposes. The L4 kernel has been modified [13]
to use hierarchical scheduling (see below) where the root
scheduler uses time-triggered scheduling to decide which com-
ponent should be active; however, there is also a background
component (called background partition) that is always active.
It is possible, however, for a task in the background component
to have higher priority than a task in another component; in
this case, a task in the background component can preempt a
task in the other component. Also, because of the benefits of
having small code base and isolation, researchers at Georgia
Tech and Dresden [19] studied the problem of reducing the
complexity of a kernel. They used a previously proposed
approach (called Nizza) for re-architecting software to separate
security-critical and non-security critical parts and applies this
approach on three applications. They used a microkernel (L4)
and a virtual machine running Linux. For similar reasons,
researchers at NICTA created a small operating systems (OS)
kernel (called seL4) and formally verified it [14]. The ideas
were the following: (i) make the kernel small—move as many
services as possible outside the kernel, (ii) verification is
simplified by executing most kernel code non-preemptively
and perform I/O—not with interrupts—but with pre-specified
polling points, (iii) perform the verification with refinement,
that is, show that each behavior of the concrete semantics
of the implementation satisfies the abstract semantics, (iv) do
the verification in two step: specification on the highest level,
Haskell code as intermediate level, and C-code as the lowest
level; show that the intermediate level is a refinement of the
highest level and show that the lowest level is a refinement
of the intermediate level, and (iv) use the theorem prover
Isabelle/HOL.

The real-time systems community has studied hierarchical
scheduling meaning that the system has schedulers on different
levels. Typically, there is one root-level scheduler (sometimes
called global scheduler) which decides at each instant which
component/subsystem should be allowed to execute and then
the selected component/subsystem has a local scheduler that



decides which task in the component/subsystem should ex-
ecute. The main driver behind the research in hierarchical
scheduling is typically not security but instead the driver is
typically to reduce the effort/cost of integrating components
from different suppliers into a larger software system. The
real-time systems community has developed schedulability
analyses for hierarchical systems; these are verification pro-
cedures that take as input a model of a system and outputs
a guarantee whether all tasks will meet their deadlines are
run-time (see for example [10]). Typically, in hierarchical
scheduling, one uses a method to compute the resource usage
for each component and this becomes the timing interface of
the component; then the schedulability test takes the timing
interface of all components are input. One way to implement
hierarchical scheduling is by letting the root scheduler be the
scheduler in hypervisor and then let each component be a
virtual machine and then a local scheduler is implemented
by the guest operating system in a virtual machine. Typically
hierarchical scheduling is used for systems where tasks in two
different components are independent. It is noteworthy that the
works in hierarchical scheduling do not solve our scheduling
problem because we assume interaction between the guest task
and the hypertask.

The real-time systems community has developed small
OS kernels in order to improve security and also developed
schedulability analysis for them. An example of this is Quest-
V [16] which also has a corresponding schedulability analysis.
Quest-V is intended to run on multicore processors and parti-
tion the resources, both processors and memory; and then run
one guest operating system on each partition (called sandbox
in [16]). In this way, software executing in one partition cannot
write to memory belonging to another partition and cannot
compete for processing resources that belong to another par-
tition. A schedulability analysis for message passing between
tasks in different partitions is also presented in [16]. In a
similar spirit (but for a single processor system), researchers
in Valencia [5] has created an OS kernel (called XtratuM)
that provides time-partitions accordng to ARINC 653. Similar
to other kernels mentioned above, the goal is to keep the
size of the kernel small in order to achieve reliability; hence
the kernel uses non-preemptive execution. The paper [5] does
not offer schedulability analysis but there are techniques in
hierarchical scheduling that offers that. Composite is the name
of another operating system with similar goals (small kernel
size and offering predictable timing). It is noted that managing
resources shared across components places a special challenge
[2]. Researchers have also noted the advantages of putting a
hypervisor in hardware [12].

The real-time systems community has also considered
confidentially; specifically information leakage between real-
time tasks of different confidentiality levels when they are
scheduled by a real-time scheduler [17]. Note that this is
different from our work where we consider real-time require-
ments and integrity. From a distributed systems perspective,
researchers have developed a security kernel that can tolerate
some security violations [4]; it is implemented with RT-Linux

under Linux.
The real-time systems community has also developed

scheduling algorithms for real-time tasks where the tasks may
have different criticalities and also different estimates on the
worst-case execution time depending on the criticality level it
is used for. The literature is vast—see [6] for an excellent
survey. The work on mixed-criticality scheduling tends to
ignore security aspects and tends to assume that the operating
system is functioning. In our paper, however, we provide real-
time guarantees even for the case that the guest operation
system fails (because of a bug or security breach).

V. CONCLUSIONS

Software is increasing in complexity, to provide greater
functionality and performance. Simultaneously, society has
come to depend more and more on the services that computers
perform. These are general trends but they have become
particularly important in the area of autonomous systems (for
example autonomous cars or UAVs) that perform perception
and planning (that involves executing algorithms whose worst-
case execution time or even termination are hard to prove)
and must interact with the physical world in a safe way even
if the complex function fails or does not finish within its
expected worst-case execution time. In this paper, we have
responded to this challenging situation with our proposal. Our
proposal involves (i) a way of structuring software with one
non-critical part (whose functional correctness is not trusted)
and one critical part (whose functional correctness is trusted
and its code base is small enough to be formally verified
and it is structured to not depend on the non-critical part),
(ii) a hypervisor that supports this way of structuring software,
(iii) a task model that is suited for this way of structuring
software, (iv) an exact schedulability test that takes a taskset
described with this task model as input, and (v) an evaluation
of this run-time system (the hypervisor and the Linux kernel
together) showing that the hyperapps successfully perform
functionality in the event that the part in the guest operation
system fails.
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