
1
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 1

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL 3 Type System and Expression

Language
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution

AADL 3
Type System
and Expression
Language

Lutz Wrage

2
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 2

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0611

3
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 3

Type System Unification

Unification of type systems and expression languages (Peter,

Lutz*, Alexey, Brian, Serban)

• Data Components

• Property Types

• Classifiers

• Annexes

- Resolute, AGREE

- Data Modeling

- EMV2

- BA, BLESS

• ReqSpec

• Scripting languages (Python)

4
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 4

Current Composite Types

AADL 2.2

Property types

• Range of

• List of

• Record

Data implementations

No operations available except

• List append (+=>)

• Boolean operations

Property expressions provide syntax for literals only

ReqSpec adds expressions, uses basic type inference

5
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 5

Current Usages of Types

Application data that occurs in the modeled system

• Data subcomponents
- Shared data

- Local variables in threads and subprograms

• Data communicated via data and event data ports

Information about the modeled system and individual components

• Properties

Mixture of models and properties

• Component classifiers and model elements as property values
- Bindings

- Specify constraints, e.g., Required_Virtual_Bus_Class

Additions in annexes

• Resolute: sets

• EMV2: error types and type sets, error types can have properties

• BLESS

6
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 6

Type System and Expression Language Goals

Provide types for

• Properties

• Features, e.g., data ports

• Data components

• Error types(?)

Support

• Specification of dependencies / constraints between properties

• Selecting model elements in configurations: Queries

• Structural analysis of instance models

- Similar to Resolute

• Requirement specification

- Similar to ReqSpec

Do we need structural analysis / constraints for declarative models?

7
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 7

Type System Unification Approach

Base types

• Integer, Real, Boolean, String

• Enumeration, Unit

• Category (thread, processor, etc.), Classifier, Model Element

• Range of Numeric (Compute_Execution_Time => 10ms .. 15ms)

Composite types

• List (ordered sequence of arbitrary length): list of int
• Set (unique elements): set of classifier
• Record (named fields) / Union (named alternatives)

• Tuples (unnamed fields)
- Convenient for multiple return values from a function

• Map: map mode -> Time
- Modal and binding specific property values in AADL 2.2 are (almost) maps

- Error type specific property values

• Arrays: array of int(10)
• Bag (?)

• Graph

8
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 8

Type System Unification Approach

Properties on types

Useful for code generation and analyses that looks at data size (in

memory or on a bus)

• Information about representation

int {data_size => 16bit}

• Range of valid values

int {range => 10 .. 20}

• Size of a fixed size list (if we don’t have arrays)
list of int {size => 3}

Properties are ignored for type checking purposes

9
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 9

User Defined Types

Users can create named types

• type byte: int { range => 0 .. 255 }

• type otherByte: byte { data_size => 8bit }

• type sensed: record (type sensed2: record (
value: int, value: int,
timestamp: int timestamp: int

))

Is a type name just a shorthand, or is it a new type?

• Structural equality is easily implemented, but we may want the
same type name on connected ports

• Fully “opaque” types would complicate the expression language,
i.e., how would we know that we can add 2 bytes?

10
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 10

Numeric Ranges

Subsets of numeric types (or enumerations?)

• Range constrained Numeric
e.g., int [100 .. 120]

• Could be considered special syntax for a property on a type
e.g., int {range => 100 .. 200}

Subset constraints are difficult to maintain for expressions

• Simple assignments are easy to check

• If x is an integer [100 .. 120]

• 2 * x results in integer [200 .. 240]

• sqrt(integer[100 .. 120]) results in (not quite) real[10.0 .. 10.95]

Type checking should ignore range constraints, maybe except for
simple assignments

11
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 11

Expression Language: Literals

Numbers, strings, boolean true/false as in AADL 2

• Automatic conversion from integer literal to real value

Range literals

• AADL2: 2 .. 3 or interval notation [2, 3]

Enumeration and unit literals

• Qualified name: <package>.<enum type>.<enum literal>
e.g., myenums.signaltype.RED

• Need to import enumeration and unit literals in order to use their
simple names

Collections

• To mirror declaration syntax

• list (1,2,3) is a list of int

• record (intfield = 1, boolfield = true) is a
record (intfield: int, boolfield: bool)

12
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 12

Expression Language: Operations 1

Boolean

• and, or, not, …

Numeric values

• +, -, *, /, div, mod

Ranges

• Union, intersection, contains

Enumerations

• Consider them ordered, comparison operations

Units

• Get conversion factor, conversions

Strings, List

• append, substring, …

Records

• Access a field value

Union

• Access field depending on variant tag

13
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 13

Expression Language: Operations 2

Set

• union, intersection, contains

Generic collection operations

• forall, exists, filter, fold

• Look for inspiration in existing collection library and copy

Classifiers

• Extends, get extended, get all extending, …

•  methods defined in the AADL meta-model

Named elements

• Get name, get classifier, get all subcomponents, …

•  methods defined in the AADL meta-model

14
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 14

Variables

Need to be able to name results of expressions

• val x = 2 * 5

Variables or unmodifiable values?

• For constraints and structural analysis unmodifiable named

values should be sufficient

• Variables require additional language constructs (loops) that can

be avoided if only named values are allowed

Add vals in block expressions

• {
val x = 2;
x + 1

}

15
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 15

Function Definitions

Reusable expressions => Functions

Proposed syntax

• def double(x: int): int = 2 * x

• def triple(x: int): int = {
val d = double(x);
x * d

}

• def factorial(x: int): int = {
def f(x: int, a: int): int =

if x <= 1 then 1 else f(x-1, x * a);
f(x, 1)

}

16
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 16

Prototype Implementation

Expression Annex for AADL2

Implemented

• Most types

• Some type checking

• Subset of expressions

• Initial expression evaluation

• No units yet

17
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 17

Type Extension

Type extension

• Exists for classifiers to add subcomponents, properties, …

• Records

- Add fields

• Unions:

- Add fields to one or more variants(?)

- Add variants

• Add properties to any type

- byte is a subtype of integer

- Not problematic as properties are ignored for type checking

• Assignment compatibility and type inference

- list of byte is subtype of list of integer

- Should be possible to define in a sound manner

Should there be configurations for types?

18
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 18

Measurement Units

Represent a (physical) quantity as a number with a dimension

• Length, Time, Mass, Force

Dimension has associated measurement units

• Length – meter (SI base unit)

• Time – second (SI base unit)

• Mass – kilogram (SI base unit)

• Force – Newton (Derived: 1 𝑁 = 1 𝑘𝑔 ∙𝑚

𝑠2
)

Different unit systems

• SI vs. Imperial

• Non-physical quantities, e.g., bit, byte

• Other: minute, day, year; rpm, angle, …

Users must be able to define new units

19
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 19

Unit Definition 1

Defining dimensions and corresponding measurement units

• Dimension as variation of enumeration types

- type LengthU: unit (cm, m = 100 * cm, …)

- type TimeU: unit (s, ms = s / 1000, …)

- type USLengthU: unit (in, ft = 12 * in, …)

• Similar to AADL2

• Similar to compound type declarations (records, lists, etc.)

Literals with units

- 100 ms

- 12 [ms]

Type declarations with units

• type LengthType: real [LengthU]

• type LengthType: real unit LengthU

20
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 20

Unit Definition 2

Property definition

• Value is a physical quantity

- property distance: real unit USLengthU

- property distance: real [USLengthU]

- distance => 2.5 [in]

• Value is a unit, e.g., to document the unit of the data on a data

port

- property dataUnit: LengthU

- dataUnit => [m]

21
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 21

Standard Metric Prefixes

Metric prefixes

• Base 10: centi, milli, micro µ, deka, kilo, Mega

• Binary: Ki (210), Mi (220), Gi (230)

• These are case sensitive, one is a greek letter

• Not distinct from units: meter vs. milli

Convenient to use them with any unit without repeatedly defining

the conversion factor.

Use syntax to separate metric prefix and unit name

• 1 [k’g], 12 [m’s], 640 [Ki’byte]

Only with base units

• If ms is defines as derived (ms = s/1000) the

1 [k’ms] should not be valid

22
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 22

Unit Expressions 1

Avoid units names such as KBytesps (as we have in AADL 2)

Allow expressions for derived units

• [k’g * m / s^2]

Unit expressions are written in []

• speed == 12 [m/s]

Simple unit may be written with or without []

• latency == 10 m’s or latency == 10[m’s]

Allow only multiplication, division, and exponentiation

Defining a derived unit type

• type ForceU = unit (N = [k’g * m / s^2])

23
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 23

Unit Expressions - 2

Convert between numbers and quantities

• val x = 1 x is an integer

val y = (x + 1)[s] y is an integer with a unit: 2s

val z = y in [ms] z is an integer: 1000

Calculation with units

• 10 N / 2.5 k’g == 4.0 [m / s^2]

24
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 24

Unit Definitions and Usage

Derived units with unit expressions

• type MassU: unit (g)

• type SpeedU: unit (LengthU / TimeU)

• type ForceU: unit (N = k’g * m / s^2, …)

Type declarations with units

• type SpeedT: real [SpeedU]

• type ForceT: real [ForceU]

• type OtherSpeedT: real [LengthU / TimeU]

Property definition

• property speedUnit: Speed

• speedUnit => [m/s]

• property force: ForceT

• speed => 2.5 [k’g * m / s^2]

25
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 25

Expressions and Classifiers

Add vals and defs to classifiers

Specify expressions that should be evaluated

system S.i
-- subcomponents, etc
prop => 1;
val v = 1;
def f(x: int): int = x;
-- assertions or invariants
assert test: #prop == f(v);

end S.i;

Definitions and assertions are inherited or can be configured in

For structural verification

• Add descriptive text to assertions (similar to Resolute claim functions)

• Analysis evaluates assertions (all, or just for a single component) on
an instance model

26
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 26

Next Steps

Complete expression annex implementation

Work out details of type extension

Add types and expressions to AADL 3 prototype implementation

Draft document

