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Type System Unification

Unification of type systems and expression languages (Peter, 

Lutz*, Alexey, Brian, Serban)

• Data Components

• Property Types

• Classifiers

• Annexes

- Resolute, AGREE

- Data Modeling

- EMV2

- BA, BLESS

• ReqSpec

• Scripting languages (Python)



4
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public 
release and unlimited distribution. 4

Current Composite Types

AADL 2.2

Property types

• Range of

• List of

• Record

Data implementations

No operations available except

• List append (+=>)

• Boolean operations

Property expressions provide syntax for literals only 

ReqSpec adds expressions, uses basic type inference
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Current Usages of Types

Application data that occurs in the modeled system

• Data subcomponents
- Shared data

- Local variables in threads and subprograms

• Data communicated via data and event data ports

Information about the modeled system and individual components

• Properties

Mixture of models and properties

• Component classifiers and model elements as property values
- Bindings

- Specify constraints, e.g., Required_Virtual_Bus_Class

Additions in annexes

• Resolute: sets

• EMV2: error types and type sets, error types can have properties

• BLESS



6
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public 
release and unlimited distribution. 6

Type System and Expression Language Goals

Provide types for 

• Properties

• Features, e.g., data ports

• Data components

• Error types(?)

Support

• Specification of dependencies / constraints between properties

• Selecting model elements in configurations: Queries

• Structural analysis of instance models

- Similar to Resolute

• Requirement specification

- Similar to ReqSpec

Do we need structural analysis / constraints for declarative models?
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Type System Unification Approach

Base types

• Integer, Real, Boolean, String

• Enumeration, Unit

• Category (thread, processor, etc.), Classifier, Model Element 

• Range of Numeric (Compute_Execution_Time => 10ms .. 15ms)

Composite types

• List (ordered sequence of arbitrary length): list of int
• Set (unique elements): set of classifier
• Record (named fields) / Union (named alternatives)

• Tuples (unnamed fields)
- Convenient for multiple return values from a function

• Map: map mode -> Time
- Modal and binding specific property values in AADL 2.2 are (almost) maps

- Error type specific property values

• Arrays: array of int(10)
• Bag (?)

• Graph
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Type System Unification Approach

Properties on types

Useful for code generation and analyses that looks at data size (in 

memory or on a bus)

• Information about representation

int {data_size => 16bit}

• Range of valid values

int {range => 10 .. 20}

• Size of a fixed size list (if we don’t have arrays)
list of int {size => 3}

Properties are ignored for type checking purposes



9
AADL 3 TypeSystem and Expression Language

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public 
release and unlimited distribution. 9

User Defined Types

Users can create named types

• type byte: int { range => 0 .. 255 }

• type otherByte: byte { data_size => 8bit }

• type sensed: record ( type sensed2: record (
value: int, value: int,
timestamp: int timestamp: int

) )

Is a type name just a shorthand, or is it a new type?

• Structural equality is easily implemented, but we may want the 
same type name on connected ports

• Fully “opaque” types would complicate the expression language, 
i.e., how would we know that we can add 2 bytes?
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Numeric Ranges

Subsets of numeric types (or enumerations?)

• Range constrained Numeric
e.g., int [100 .. 120]

• Could be considered special syntax for a property on a type
e.g., int {range => 100 .. 200}

Subset constraints are difficult to maintain for expressions

• Simple assignments are easy to check

• If x is an integer [100 .. 120]

• 2 * x results in integer [200 .. 240]

• sqrt(integer[100 .. 120]) results in (not quite) real[10.0 .. 10.95]

Type checking should ignore range constraints, maybe except for 
simple assignments
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Expression Language: Literals

Numbers, strings, boolean true/false as in AADL 2

• Automatic conversion from integer literal to real value

Range literals

• AADL2: 2 .. 3 or interval notation [2, 3]

Enumeration and unit literals

• Qualified name: <package>.<enum type>.<enum literal>
e.g., myenums.signaltype.RED

• Need to import enumeration and unit literals in order to use their 
simple names

Collections

• To mirror declaration syntax

• list (1,2,3) is a list of int

• record (intfield = 1, boolfield = true) is a
record (intfield: int, boolfield: bool)
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Expression Language: Operations 1

Boolean

• and, or, not, …

Numeric values

• +, -, *, /, div, mod

Ranges

• Union, intersection, contains

Enumerations

• Consider them ordered, comparison operations

Units

• Get conversion factor, conversions

Strings, List

• append, substring, …

Records

• Access a field value

Union

• Access field depending on variant tag
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Expression Language: Operations 2

Set

• union, intersection, contains

Generic collection operations

• forall, exists, filter, fold

• Look for inspiration in existing collection library and copy

Classifiers

• Extends, get extended, get all extending, …

•  methods defined in the AADL meta-model

Named elements

• Get name, get classifier, get all subcomponents, …

•  methods defined in the AADL meta-model
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Variables

Need to be able to name results of expressions

• val x = 2 * 5

Variables or unmodifiable values?

• For constraints and structural analysis unmodifiable named 

values should be sufficient

• Variables require additional language constructs (loops) that can 

be avoided if only named values are allowed

Add vals in block expressions

• {
val x = 2;
x + 1

}
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Function Definitions

Reusable expressions => Functions

Proposed syntax

• def double(x: int): int = 2 * x

• def triple(x: int): int = {
val d = double(x);
x * d

}

• def factorial(x: int): int = {
def f(x: int, a: int): int = 

if x <= 1 then 1 else f(x-1, x * a);
f(x, 1)

}
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Prototype Implementation

Expression Annex for AADL2

Implemented

• Most types

• Some type checking

• Subset of expressions

• Initial expression evaluation

• No units yet
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Type Extension

Type extension

• Exists for classifiers to add subcomponents, properties, …

• Records 

- Add fields

• Unions:

- Add fields to one or more variants(?)

- Add variants

• Add properties to any type

- byte is a subtype of integer

- Not problematic as properties are ignored for type checking

• Assignment compatibility and type inference

- list of byte is subtype of list of integer

- Should be possible to define in a sound manner

Should there be configurations for types?
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Measurement Units

Represent a (physical) quantity as a number with a dimension

• Length, Time, Mass, Force

Dimension has associated measurement units

• Length – meter (SI base unit)

• Time – second (SI base unit)

• Mass – kilogram (SI base unit)

• Force – Newton (Derived: 1 𝑁 = 1 𝑘𝑔 ∙𝑚

𝑠2
)

Different unit systems 

• SI vs. Imperial

• Non-physical quantities, e.g., bit, byte

• Other: minute, day, year; rpm, angle, …

Users must be able to define new units
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Unit Definition 1

Defining dimensions and corresponding measurement units

• Dimension as variation of enumeration types

- type LengthU: unit (cm, m = 100 * cm, …)

- type TimeU: unit (s, ms = s / 1000, …)

- type USLengthU: unit (in, ft = 12 * in, …)

• Similar to AADL2

• Similar to compound type declarations (records, lists, etc.)

Literals with units

- 100 ms

- 12 [ms] 

Type declarations with units

• type LengthType: real [LengthU]

• type LengthType: real unit LengthU
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Unit Definition 2

Property definition

• Value is a physical quantity

- property distance: real unit USLengthU

- property distance: real [USLengthU]

- distance => 2.5 [in]

• Value is a unit, e.g., to document the unit of the data on a data 

port

- property dataUnit: LengthU

- dataUnit => [m]
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Standard Metric Prefixes

Metric prefixes

• Base 10: centi, milli, micro µ, deka, kilo, Mega

• Binary: Ki (210), Mi (220), Gi (230)

• These are case sensitive, one is a greek letter

• Not distinct from units: meter vs. milli

Convenient to use them with any unit without repeatedly defining 

the conversion factor.

Use syntax to separate metric prefix and unit name

• 1 [k’g], 12 [m’s], 640 [Ki’byte]

Only with base units

• If ms is defines as derived (ms = s/1000) the

1 [k’ms] should not be valid
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Unit Expressions 1

Avoid units names such as KBytesps (as we have in AADL 2)

Allow expressions for derived units

• [k’g * m / s^2]

Unit expressions are written in [ ]

• speed == 12 [m/s]

Simple unit may be written with or without [ ]

• latency == 10 m’s or latency == 10[m’s]

Allow only multiplication, division, and exponentiation

Defining a derived unit type

• type ForceU = unit (N = [k’g * m / s^2])
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Unit Expressions - 2

Convert between numbers and quantities

• val x = 1 x is an integer

val y = (x + 1)[s] y is an integer with a unit: 2s

val z = y in [ms] z is an integer: 1000

Calculation with units

• 10 N / 2.5 k’g == 4.0 [m / s^2]
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Unit Definitions and Usage

Derived units with unit expressions

• type MassU: unit (g)

• type SpeedU: unit (LengthU / TimeU)

• type ForceU: unit (N = k’g * m / s^2, …)

Type declarations with units

• type SpeedT: real [SpeedU]

• type ForceT: real [ForceU]

• type OtherSpeedT: real [LengthU / TimeU]

Property definition

• property speedUnit: Speed

• speedUnit => [m/s]

• property force: ForceT

• speed => 2.5 [k’g * m / s^2]
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Expressions and Classifiers

Add vals and defs to classifiers

Specify expressions that should be evaluated

system S.i
-- subcomponents, etc
prop => 1;
val v = 1;
def f(x: int): int = x;
-- assertions or invariants
assert test: #prop == f(v);

end S.i;

Definitions and assertions are inherited or can be configured in

For structural verification

• Add descriptive text to assertions (similar to Resolute claim functions)

• Analysis evaluates assertions (all, or just for a single component) on 
an instance model
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Next Steps

Complete expression annex implementation

Work out details of type extension

Add types and expressions to AADL 3 prototype implementation

Draft document


