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Abstract
Rapidly developing experiments acrossmultiple platformsnowaim to realise small quantumcodes, and so
demonstrate amemorywithinwhich a logical qubit canbeprotected fromnoise. There is aneed to
benchmark the achievements in these diverse systems, and to compare the inherent power of the codes
they rely upon.Wedescribe a recently introducedperformancemeasure called integrity, which relates to
the probability that an ideal agentwill successfully ‘guess’ the state of a logical qubit after aperiodof storage
in thememory. Integrity is straightforward to evaluate experimentallywithout state tomography and it can
be related to various establishedmetrics such as the logicalfidelity and thepseudo-threshold.Weoffer a set
of experimentalmilestones that are steps towards demonstratingunconditionally superior encoded
memories.Using intensive numerical simulationswe comparememories basedon thefive-qubit code, the
seven-qubit Steane code, and anine-qubit codewhich is the smallest instanceof a surface code;we assess
both the simple and fault-tolerant implementationsof each.While the ‘best’ codeuponwhich tobase a
memorydoes vary according to thenature and severity of thenoise, nevertheless certain trends emerge.

1. Introduction

Large scale quantum algorithms are expected to require hardware that is fault tolerant: small imperfections in
the behaviour of physical qubits (whether they are superconducting loops, crystal defects or trapped ions)must
be identified and corrected, so that there is no error on the logical level. Recently there has been rapid progress in
the implementation of quantum codes, across platforms as diverse as ion traps [1–3], superconducting qubits
[4–7], and crystal defect systems [8].

A comprehensively successful quantum codewill have been achievedwhen one can demonstrate a full set of
quantumoperations on encoded qubits with afidelity that exceeds that of the best possible unencoded physical
qubits [9]. However this criterion is very challenging to achieve; itmeans ‘beating’ the superb fidelities exceeding
99.9% that can nowbe achievedwith single physical qubits [10–12]. Even the task of achieving a superior
coherence timewith amemory based on an encoded qubit, versus a single physical qubit, is not trivial.
Individually controlled physical qubits can persist for the order of aminute when not activelymanipulated [12],
or 10min using dynamical decoupling [13].

It is therefore interesting tofindameasure for the efficacyofmemories basedon small quantumcodes, using
whichwecan identify reasonablemilestones fornear-future experimental realisations. Equally importantlywewish to
be able to fairly comparememoriesbasedonplatforms thatmighthave verydifferent inherent timescales.Anumberof
measures of performancemight be considered, including thediamondnorm, thefidelity in the logical basis, surpassing
thepseudo-threshold, and so forth.Herewe show that thesemeasures canbe related to ameasure called the integrityof
the logical qubit,whichwas recently introduced for assessing theperformanceof amemorybasedon the seven-qubit
2Dcolour code (which is also the Steane code) in the context of ion trapquantumcomputing [14].

Here wewillmotivate the notion of integrity through its intuitivemeaning as ‘the probability that Bob,
receiving a logical qubit from thememory system, can infer its state’.We show that in simple cases integrity also
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corresponds to ‘thefidelity of a logical qubit after storage in thememory’, but that the formermeaning based on
state inference remainsmeaningful evenwhen the latter notion of amemory’s fidelity becomes ill defined.We
offer a set of fourmilestones based on comparing the integrity of an encoded and actively-corrected quantum
memory versus either uncorrected variant orwith a single physical qubit. Themilestones are increasingly
challengingwith the fourth being a demonstration of ‘Strictly superior encodedmemory’.We report the results
of awide-ranging set of numerically intensive simulations, wherewe assess and compare several smallmemories
based on thefive-qubit code, the seven-qubit Steane code, and the nine-qubit small surface code.We estimate
the performance levels required in the error correcting process (performed by an agentwe label ‘Igor’) so that
ourmilestones can bemet.We establish that the task of evaluating the integrity of amemory is experimentally
feasible when all the phases of the protocol (encoding,memory storage and decoding) are realised by the same
imperfect hardware.

We conclude by discussing generalisations: it is straightforward and natural to extend the concept of
integrity to encompass systemswhere a computation takes place. A further study of the properties of integrity
appears in a partner paper to the present one [15].

2. Introducing integrity

One can think of anymemory as a channel for communicating information from the present (t= 0) to a
specified future time ( t=t ). The simplest notion of an idealmemorywould be onewhere no change
whatsoever happens to the stored information. Presently wewill wish to generalise from this simple notion, but
it is useful to begin by asking howwewould benchmark performance against this basic standard: we could
compare the state at t=0with the state at t=t , using either thefidelity or the trace distance. Let us briefly
review these two quantities.

There are two definitions offidelity commonly used in the literature; one is the square of the other.Herewe
use the squared quantity, formally defining fidelity as

 r r r r=  ( ) ( ), . 10 1 0 1 tr
2

This definition uses the trace norm, itself defined as

s s s=  ( ) ( )†Tr , 2tr

and this is also the sumof the singular values ofσ.
In the case that r0 is a pure state y yñá∣ ∣0 0 , thefidelity then has a simple physical interpretation: if wemeasure

state r1 in a basis where one of the possible outcomes is y ñ∣ 0 , thefidelity is precisely the probability of this
outcome.When both states are pure, we have simply

 y y y y= á ñ( ) ∣ ∣ ∣, .0 1 0 1
2

While the fidelitymeasures the similarity of two states, the trace distancemeasures the degree towhich two
states differ. It is defined as

 r r r r= - ( ) ( ), . 30 1
1

2 1 0 tr

Ranging from0 to 1, the trace distance has a remarkably clear intuitivemeaning: it tells us the probability that
two states r0 and r1 could be told apart by an ideal experimentalist. Suppose thatwe present to an
experimentalist, Bob, a theoretical description of both r0 and r1, andwe also prepare a physical system in one of
these two states (with a 50/50 prior probability) and present this to the Bob.Hemust guess whether the physical
state is r0 or r1. Using his optimal strategy, his probability pg of guessing correctly is simply

 r r= + ( ) ( )p , . 4g
1

2

1

2 0 1

Wewillmake extensive use of this idea presently.
The functions  r r( ),0 1 and  r r- ( )1 ,0 1 can both be regarded asmeasures of howdistinct two states are.

However it is important to note that these quantities are fundamentally different, and can give very different
‘scores’ in experimentally relevant cases.We opt to employ the trace distance, for various reasons described later
butmost particularly because equation (4) leads to straightforward experimental realisations.

Our simple notion of an idealmemory—one permitting no change—is rather unsatisfactory. Certain
changes are in fact harmless and do not practically reduce the quality of amemory. Any deterministic, known
and anticipated change to the stored information is harmless if we can easily compensate: an example is the
continuous phase evolutionwhich occurs within any physical qubit if the states ñ∣0 and ñ∣1 are non-degenerate
eigenstates. For the present case of amemory that employs a quantum code to protect logical qubit(s)we can go
further: any correctable error is also relatively harmless in the sense that a ideal agent can recover the logical qubit
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with certainty.Wewould like ourmeasure of the quality of amemory to incorporate these principles;
additionally, we have a notion of a ‘useless’memory, one that should score zero, as amemory that fails to
preserve any recoverable informationwhatsoever.

Suppose that some qubit with densitymatrix ρ is to be stored in a code-basedmemory channel for a specified
period of time.Wewill use the symbolΦ to denote thememory channel itself. The initial state ρmaps to thefinal
state r̃ through this process:

• Setup: At t=0Alice (taken to be perfect) encodes the single qubit ρ into an n-qubit logical code: Er r= ( )n

where E is the encodingmap.

• Thememory channel:Evolution and degradation of the logical qubit occurs while it is stored. Thismay include
the effects of actively applied error correction cycles (involving a non-ideal agent, whomwe label ‘Igor’ and
discuss presently).We have Nr r¢ = ( )n n whereN is the noisemap.

• Conclusion:At t=t , Bob (taken to be perfect) performs an error correction cycle, and then reverses Alice’s
encoding process to obtain a single physical qubit: Dr r= ¢˜ ( )n whereD is the decodingmap.

It is the second step that we are interested in; steps one and three (Alice andBob)merely frame the process.
We canwrite the entire channel as D N EF = ◦ ◦ , thus incorporating Alice’s encoding E, the noiseN, and
Bob’s decodingD. This overallmapΦ takes as input a single qubit state (Alice’s initial choice ρ) and ultimately
returns another single qubit state r r= F˜ ( ), i.e. Bob’s single qubit after decoding.

For an initial concept of an idealmemory as one causing no change at all, wewould desire r rF =( ) , and so
(for example)  r r- F( ( ))1 , could suffice as a goodmetric for the performance of ourmemory. Howeverwe
have noted that amuch broader notion of ‘ideal’ is needed, for instance to accommodate systemic phase
evolution. Fortunately, there is a natural way to proceed: instead of focusing on the changes suffered by a single
logical qubit between t=0 and t=t , we can instead focus on the idea that amemory should preserve the
distinguishability of different states. This notion can incorporate bothfixed, known evolutions and random-but-
correctable errors. Conversely it will properly recognise that all forms ofmemorywhich leave uswith no
recoverable information, are equally and entirely useless.

Consider two pure states y y y= ñá∣ ∣and y y y= ñá^ ^ ^∣ ∣which are orthogonal to one another. Orthogonal
states have trace distance of unity, since they can certainly be told apart. Let Alice chooseψ at random, uniformly
fromall possible single-qubit states, and then opt to encode eitherψ or instead the antipodal state ŷ . Then yF( )
or yF ^( )will describe the state after it has passed through thememory channel and been decoded by Bob. If the
channel has caused the samefixed evolution to occur to each (logical) state, or indeed if it has introduced errors
but they are correctable, then these states will still be completely distinguishable—theywill still have trace
distance equal to unity. Thereforewe define the integrity of thememory as

  y yF = F F
y

^( ) ( ( ) ( )) ( )min , . 5

Note that we take theminimumover all possible choices ofψmade byAlice.We do this to account for the fact
that certainmemory channelsmay have no detrimental effect on special choices of the state, as for example a
dephasing channel leaves ñ∣0 and ñ∣1 unchanged. To provide ameasurewhich guarantees at least some quality of
storage for all states, we consider the performance in theworst case. Note that formany environmental noise
models, including pure depolarising noise, Bob’s performance does not varywithAlice’s choice.

In the partner paper [15] this definition is obtained fromamore basic starting point where orthogonality is
not imposed. Our discussion proceeds from equation (5) for the sake of brevity.

It is worth emphasising that F( )R is a function on thememory channelΦ itself, thus one should speak of the
integrity of thememory (including the specific choice of error correction technology). It is understood that the
memory channel is used for some defined time τ, and that if the samememory systemwere used for a longer
time then its integrity would be lower; typical channels will have zero integrity as t  ¥.

The integrity of thememory has a highly intuitive and naturalmeaning through the following scenario:We
suppose that Bob initially knows nothing about Alice’s choice of qubit to encode, but after Bob has completed
his decode process to obtain the single qubit we then describe to him two choices: either Alice’s initial qubit was
ψ or it was ŷ . Bob thenmakes ameasurement of his choice to try to determinewhether it is yF( ) or yF ^( ) that
he has received. The integrity F( ) tells us Bob’s probability pg of guessing successfully according to

 = + F F = -( ) ( ) ( )p pand so 2 1. 6g g,worst
1

2

1

2 ,worst

Here the label ‘worst’ reminds us that this is the lowest success probability, i.e. when the optionsψ, ŷ are the
ones least well preserved by thememory (if indeed there is any variation). The integrity therefore describes the
best possible guarantee that can bemade on howwell amemory preserves the distinctiveness of different states.
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Notice that we constrain Bob to use a specificmethod to identify the received state. Hemustmap the logical
qubit back to a single physical qubit byfirst applying a standard round of error correction for the code in
question, then applying the inverse of Alice’s encoding circuit. Bob’s sole freedom is that he can choose how to
measure thatfinal physical qubit. Aswe explain in appendix C, by constraining Bob this waywe ensure that his
performance is associatedwith the code structure and its capacity to protect information. In the appendixwe
discuss the performance of amore powerful agent who is given full information about the error channel and
complete license to perform any operations on all n received qubits; this agent actually has very similar
(sometimes identical) performance to our constrained Bob.

For somememoriesΦ (although not for all conceivablememories)Bob’s correct strategy for hisfinal step is
the obvious one: justmeasure in the basis y yñ ñ^{∣ ∣ }, andmake the guess correspondingly. ThenBob’s success
probability is simply the fidelity of the state yF( )with respect to Alice’s initial stateψ, since thefidelity of any
state with respect to a pure state is the probability of obtaining that outcome in ameasurement (aswe remarked
following equation (1)). So in this case Bob’s probability of guessing correctly is simply  y y= F( ( ))p ,g .

Moreover his worst performance is

 y y= F
y

( ( ))p min , .g ,worst

But given equation (6)we can nowoffer a precisemeaning to the idea of ‘the (worst case)fidelity of a logical qubit
stored in thememory’ for any channel where Bobwould opt tomeasure in the basis y yñ ñ^{∣ ∣ }, . For such a
channel,

= + F( )F .logic
1

2

1

2

Loosely, Flogic is the fidelity after we project into the logical subspace of the codewith a perfect round of error
correction. Formemory channels with sufficiently complex noisemaps  that Bob’s choice ofmeasurement
basis would not be y yñ ñ^{∣ ∣ }, , the very idea of the ‘fidelity of a logical qubit stored in thememory’ becomes ill
defined. Thus, integrity is a generalmeasurewhich relates to the notion of logicalfidelitywhen the latter notion
makes sense. However integrity remainswell-defined andmeaningful evenwhen the logicalfidelity does not: it is
themore general and robust concept.

Importantly, it is eminently practical to directlymeasure integrity in an experimental setting.Notice that
although the definition equation (5) refers to two different states, wewould evaluate the integrity through a
series of single uses of thememory—we simply follow our scenario described above involving Bob guessing
between options and employ equation (6). Consequently the costly process of performing full state tomography
is not required. Equally importantly, while the definition describes the encoding and decoding as occurring
perfectly (conceptualised by saying that Alice andBob are perfect), wewill show that in practice they can bemade
imperfect and yet the experiment can gauge the integrity with good accuracy. These features are discussed in
more detail in section 5 and appendix F.

3.Milestones toward successfully protectedmemories

Armedwith this notion of the integrity of amemory channelΦ, in essence theworst case probability that the
state of a stored qubit can be inferred by Bob, we now identifymilestones towards the goal of superior code-
based quantummemories. In a similar spirit [16] has described ‘phases’ of development for surface code
realisations. The authors emphasise the crucial task of scaling so that phases beyond thefirst correspond to ‘at
least tens of qubits’. In the present paperwe take the complimentary approach of stressing tipping points in
performance, while remaining agnostic as to the code type and the number of physical qubits.

For convenience of expositionwemay imagine that a third party, besides Alice and Bob, is responsible for
the cycle(s) of error correction performed during thememory period: since this individual is effectively a flawed
assistant for Bob, we use the name Igor after the famousfictional lab assistant.We initially focus on the case
where atmost one error correction cycle is used during the entire period τwherememory operates, i.e. in
betweenAlice (t= 0) andBob ( t=t ).We therefore now specify Step2 of table 1 inmore detail, setting it out in
table 2. The key ideawill be to compare the integrity of thememory channel without error correction (no Igor)
to the case with EC (Igor participates) and determinewhether the latter is superior.

Let us use the symbol Fm to label thememory channel when Igor performsm rounds of error correction, so
that F0 labels the channel when noQEC is performed (i.e. noise sources are purely environmental). Thenwe say
that a round of error correction is beneficial if Bob’s probability of subsequently discriminating the state
correctly is higher when Igor indeed performs that round, i.e. when

 F > F( ) ( ) ( ). 71 0

This criterion for successful error correction can be summarised as, ‘Is Igor a help or a hinderance to Bob?’.
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This seems entirely straightforward but there is a subtlety: the question of whether equation (7) is satisfied
will depend on the duration τ of thememory channels (herewewould naturally set the same τ for both F1 and
F0 for a fair comparison). Sincewe are interested in defining afirstmilestone for experimental efforts, we say
that error correction can be beneficial if

  tF > F( ) ( ) ( )for some value of . 81 0

Wewill refer to the challenge of satisfying equation (8) asmilestoneM1: Beneficial error correction.
Onemightwonder if we should consider a stronger condition: F > F( ) ( )1 0 for all values of the common

duration τ. It is interesting and important to note that this conditionwill be impossible to satisfy in physical
devices where the process of error correction is very fast compared to the rate of environmental decoherence.
This applies, for example, to ion trap devices with clock-transition qubits where the environmental decoherence
time can be on the order ofminutes but gate operations are sub-millisecond.We need only assume that
environmental decoherence is a continuous process to see that F ( ) 10 as t  0, i.e. the integrity of the
simplememory channel is arbitrarily close to unity for a sufficiently short value of thememory duration τ. In
otherwords, finite environmental noise needsfinite time to occur.We can inspect the equivalent limit for F1 if
we assume that Igor’s error correction cycle is instantaneous (whereas if it takes finite time δ thenwe cannot
employmemory channel F1 for time durations less than t d< ). But given instantaneous error correction, we
find  F ( )1 as t  0, where ò is non-zero and is related to the inevitable imperfections in the cycle of error
correction, i.e. the circuit elements such as state initialisations, one- and two-qubit gates, andmeasurements will
all havefinite infidelity.Whatwe are noticing is that it is not desirable to perform error correction ‘as frequently
as possible’—we shouldwait for afinite time before applying an error correction cycle, so that its negative
impact on thememory is justified by the positive gain. This ismade very apparent by figure 3 in the next section.
Of course, if the time required for error correction is comparable to the environmental decoherence rate, asmay
be the case for superconducting qubits, then one never has the luxury of waiting until the optimum time to
perform error correction; cycles should indeed be performed ‘back to back’.

While equation (8) is an important firstmilestone for an error-correcting quantummemory, further
milestones can also be identified. For a sufficiently high performing Igor, and a longmemory duration τ, it will
be beneficial to havemultiple rounds of correction. This will be a signature of further progress toward a practical
quantummemory.Wewould thenfind that

  tF > F -( ) ( ) ( )for some value of . 9m m 1

Table 1.Evaluating the integrity of amemory system. See also
figure 1.

Theoretical protocol formeasuring integrity

1a Alice (perfect) prepares a single qubit state yñ∣ or y ñ^∣ .

1b Alice perfectly encodes it into the n physical qubits.

2 From t=0 to τ the n qubits are in thememory; noise

occurs from environment and possibly error correction.

3a Bob (perfect) performs error correction on the n qubits,

then decodes (inverse of 1b) the state to a single qubit.
3b Bob is told Alice’s qubit was either yñ∣ or y ñ^∣ . He

measures his qubit and guesses, success probability pg.

Table 2.Expanding on Step 2 of table 1whenwewish to
assess the benefits of error correction.

Without error correction:memory F0

2a The n physical qubits are subjected to
environmental noise for a time τ.

With error correction:memory F1

2a The n physical qubits are subjected to

environmental noise for a time t d-( ) 2.

2b Optionally, Igor is asked to apply a full round of

imperfect error correction, taking time δ.

2c The n physical qubits are subjected to

environmental noise for a further time t d-( ) 2.
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Herewe understand this need only be satisfied for some particular >m 1 (it seems likely that it would be
achieved first form= 2 but we do not insist on this).Wewill refer to the challenge ofmeeting the condition in
equation (9) asmilestoneM2: Beneficial multi-round error correction.

Equations (8) and(9) involve comparisons betweenmemories which both employ encoded qubits. There is
of course another type of comparisonwe canmake, onewhich directly addresses the question of whether it is
‘worth’using encodedmemories at all: we should contrast such amemory channel to a simple, single qubit
memory. Let us use the symbolΘ for thatmemory channel.We can consider its integrity Q( ) easily enough.
Alice prepares a single qubit, again choosing betweenψ and ŷ , but does not encode it intomultiple qubits. It
exists as amemory from t=0 to t=t , andfinally Bob receives it but of course he has no decoding to do. The
qubit he receives, yQ( ) or yQ ^( ), differs fromAlice’s qubit only because of environmental noise. But as before
Bobmustmeasure it to guess between the two possible states, and as before his probability of success is simply

+ Q( )1

2

1

2
. For our actively-corrected encodedmemory to ‘beat’ the simple single-qubitmemory, we require

  t t atF > Q =Q F Q( ) ( ) ( )for some , while using . 10m

Herewe require only that this is true for some specific value of >m 0 (it seems likely thatm= 1would be the
first demonstration). Note themore complex condition on the channel durations. In equation (8) and
equation (9) it was clear that the duration τ of the twomemory channels should be the same for a fair
comparison. This is not necessarily true of the equation (10) since one can argue that themeaningful time scale
for a quantummemory is not ‘wall clock’ time but rather the time required to perform an active gate operation
(perhaps the average time, given that circuit operations will differ in their time requirements, or perhaps the
slowest time to be strict). Depending on the hardware platform and architecture, the time required to perform a
gate operation on an encoded qubitmay be longer than the time to perform the equivalent operation on an
unencoded qubit. This would then suggest that tF should be longer than tQ, and the factor a 1 is included in
equation (10) to reflect this.Wewill refer to the challenge of satisfying equation (10) asmilestoneM3: Beneficial
encodedmemory.

Here we canmake contact with the concept of a ‘pseudo-threshold’ (see e.g. [17, 18]). This concept is
typically used in the context of concatenated codes, where theremay be several levels of concatenation required
before error rates fall sufficiently for deep quantum algorithms (such as Shor’s or particularly Grover’s
algorithm). In the present context, we restrict our interest to the lowest level of concatenationwhere a process
involving unencoded qubit(s) is compared to a process with a single level of encoding. The pseudo-threshold has
been surpassed if a circuit performs to a higher standardwith the encoded qubits, i.e. logical qubits, versus using
the physical qubits directly. Onemight demand that for a complete universal set of operations, each operation at
the encoded level outperforms the analogous operation using unencoded qubits. Alternatively onemight speak
of the pseudo-threshold for a specific operation, such as a single-qubit gate, a CNOToperation, ameasurement
or indeed amemory. In essence equation (10) represents the (lowest tier) pseudo-threshold formemory, i.e. for
the identity operation in a circuit.

Assuming that equation (10) can be satisfied, there is a higher goal whichmight be achieved namely

  t t atF > Q =Q F Q( ) ( ) ( )max for all , and using . 11
m

m
QEC

Here themaximum is over a family ofmemory channels having the same duration tF butwith differing numbers
of error correction cyclesm. Importantly, we permitm=0. If this condition is satisfied, itmeans that for any
desired durationwe can sustain our encoded quantummemory at a higher integrity than a single physical qubit
memory.We do so by applying a suitable number of error correction cycles.Moreover this is true even allowing
for the factorα discussed above. This is therefore the ‘gold standard’ for demonstrating a quantummemory and
it is themost challenging of the criteria we have presented in this section.Wewill refer to the task of satisfying
equation (11) asmilestoneM4: Strictly superior encodedmemory.

We have presented fourmilestones in an order whichwe expectmay represent an increasing degree of
challenge. It is not necessarily the case that each ismore difficult than the last—for example, conceivablyM3may
be achieved beforeM2 in a given physical device. However the fourthmilestone is clearly themost demanding
andwe should expect that the inequalities in equations (8)–(10)must all be satisfied before equation (11) can be
achievable.

It is worth noting that it is already a non-trivial accomplishment to achieve logical encodingwith good
fidelity, and this can be established by verifying the logical qubit immediately after its creation—this is explored
in [16]. In our approach thefirstmilestone is the one that would naturally follow such an accomplishment, i.e.
introducing Igor to perform an additional round of error correctionmid-way.
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4.Numerical studies

In this sectionwe present our simulation results under the Alice–Igor–Bob framework described in tables 1 and
2. The simulation technique is based on theMonte Carlomethod, the advantage of which has been described in
[14].We emphasise that the integrity benchmarkwe have described is appropriate for any and all errormodels,
including coherent noise, non-Markovian noise and so on. As specified in appendix A, in this paperwe have
used the simple canonical Pauli depolarising noisemodel (on all elements including state preparations, gates,
measurements, and environmental noise) since it is a standardmodel to use in afirst investigation.We aggregate
a large number of individual runs, in each of which a pure state undergoes a specific trajectory: after every circuit
element is applied, a classical randomnumber is generated and comparedwith the error rate for that circuit
element in order to decide whether an error is applied and if so its type. Each data point presented in this paper is
a result of at least onemillion runs, and in order tomake a smooth curve, at least 50 data points are generated for
a single curve. The hardware used for this work is a cluster of approximately 100 nodes, which are connected by
Intel TruScaleQDR Infiniband. Each node is based on amotherboardwith two Intel E5-2640v3CPUs and has
between 64 and 256 GBofmemory.

For all the simulations presented in this paper, we use theAlice–Igor–Bob scenario that has been discussed in
tables 1 and 2. The circuit level description is shown infigure B3, wherewe take the five-qubit code as an
example. Igor performs his error correction cycle halfway through the duration of thememory channel (or for a
channel with n correction cycles, at points = +( )t m n 1 with =m n1 .. ). Igormeasures a complete set of
stabilisermeasurements and applies error correction based on the error syndrome.We take Igor’s action to be
instantaneous although it is of course trivial to assign it afinite time δ as indicated in table 2. If Igor’s analysis
indicates that a correction is necessary, then the appropriate correction is applied perfectly—this is a proxy for
the reality that one can simply note the need for correction and update future operations to allow for it, thus
never needing to apply an imperfect physical operation to the identified qubit. Note however that altering this
principle to instead apply a noisy fixwouldmake negligible difference to the observed integrity, since it ismerely
one additional operation for Igor’s circuit which atminimum involves over a dozen gates.

Presently we evaluate the integritymetric for three different well-known codes: the five-qubit codewhich is
the smallest possible error correcting code [19], the seven-qubit Steane code [20, 21] and the nine-qubit surface
code [21, 22].Wewill compare the inherent properties of these codes, both in their simple and fault-tolerant
variants, andwewill show examples where the variousmilestones described in the previous section are (or are
not)met.

We begin by explaining the nature of the graphs shown in this section. Typically they are of the general form
exemplified by figure 2(a). On the vertical axis we show the integrity, as defined earlier, which of course is equal
to unity for an idealmemory. The horizontal axis shows the duration τ of thememory channel(s) in question;
the duration is shown as a ratiowith respect to the environmental decoherence rateTwhich is the decoherence
time of an isolated single physical qubit (see errormodel specification in appendix A). Each point along a curve
in the figure is thus the integrity of a specific kind ofmemorywhen operating for the specific duration indicated
by the horizontal axis.

There are four types ofmemory channels shown infigure 2(a): the simple one-qubitmemoryΘ (shown in
blue), an encoded channels without Igor’s error correction, F0 (red), and two channels where Igor does perform
one round of correction F1 (yellow, green). The last two differ only in that Igor’s error correction circuits have
error rates 0.2% and 0.7%, respectively. In all cases the encoded channels are using the five-qubit code.
Encoding and decoding tasks, performed byAlice and Bob, are perfect as per the definition of integrity (we defer

Figure 1.Reproduced from [14]. CCBY 4.0: cartoon of the protocol for assessing the integrity of an error-correctedmemory. Alice
and Bob perfectly perform the encoding andmeasurement, respectively, of a logical qubit.Meanwhile, Igor is an imperfect agent
attempting error correction tofight noise.

7

New J. Phys. 20 (2018) 023009 XXu et al

http://creativecommons.org/licenses/by/4.0/


the discussion of noisy Alice and Bob, an unavoidable reality in real benchmarking experiments, to later in this
section).

Igor’s error rate of 0.2% is low enough for him to performwell and consequently we observe two desirable
line crossings in the figure. For all durations t > T0.16 we see that the error correctedmemory F1 (yellow) is
superior to the uncorrectedmemory F0 (red). Thus for any t > T0.16 wemeet theM1: beneficial error
correctionmilestone specified earlier in equation (8). Furthermore, for all durations τ between t  T0.035 and
t  T0.49 the correctedmemory F1 (yellow) has superior integrity to the single-qubitmemoryΘ (blue). Note
however that in comparing the single-qubit channelΘ to the encoded channels, we have not introduced any
scaling factor to adjust their relative durations (i.e. we have set a = 1 in equation (10)). Thismight be
considered unreasonable unless the physical platform embodying thememory system is capable, in principle, of
performing transversal gates in one step so that operations on logical qubits are on the same timescale as
operations on physical qubits.With this important caveat, we can say that for any duration in the range

t< <T T0.035 0.49 we canmeet theM3: beneficial encodedmemorymilestone, equation (10).
In order to discover whether we canmeet the remaining twomilestones, and in particular the highly-

desirableM4: strictly superior encodedmemorymilestone, wewould need to consider channels withmultiple
rounds of error correction; this is shown presently.

The green line, corresponding to the higher per-gate error rate of 0.7% during Igor’s error correction, never
surpasses the integrity of the single physical qubitmemory; therefore this channel does notmeetmilestoneM3:

Figure 2.The integrity of different types ofmemory channel (upper), and the integrity change during a givenmemory channel (lower).
(a)Memory integrity assessed overmany different durations τ ranging from zero toT, the single-qubit decoherence time. Blue line: a
single physical qubit, i.e. no encoding. Red: amemory using thefive-qubit code for the stored qubit, but without active correction
during the channel. Orange: the samefive-qubit code, but nowwith a round of error correction performedmid-way through the
memory duration, i.e. at time t=t 2. Error rate in operations during the correction cycle is 0.2%. Green: as for orange, but error
rate 0.7%. (b)Weplot the ‘integrity at interruption’ in order to look inside three specificmemory channels during their operation.
The three channels all have duration t = T0.4 .As explained in the text, the interesting feature is the step-like decline occurring at

t= =t T2 0.2 when Igor performs imperfect error correction.
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beneficial encodedmemory. Howeverwhen the duration t > T0.55 it does (barely) surpass the integrity of the
F0 channel. ThereforemilestoneM3: beneficial error correction ismet.

Three points labelledA,B, andChave been highlighted infigure 2(a). They lie at a value of the duration,
t = T0.4 for which the high-fidelity corrected channel is superior to the single physical qubitmemoryΘ,
which in turn is superior to the encoded-but-uncorrected channel F0. Onemightwish to understand how the
integrity varies over the course of the duration of thosememory channels. In fact, the question is not entirely
proper since integrity is only defined as a property of the entire channel; but we can askwhatwould happen if
Bobwere to ‘step in early’ at any time between t=0 and t= =t T0.4 .We suppose that Bobwould perform
his usual decoding,measurement and guess using the state of thememory system at that premature point. From
his performancewe can infer an ‘integrity so far’, so to speak, whichwemight also call the ‘integrity at
interruption’. Figure 2(b) shows this quantity. The blue and red lines, which correspond to the single-qubit
memoryΘ and the encodedmemorywithout correction F0, do not reveal anything interesting. Indeed they
precisely correspond to the same lines in the region t< < T0 0.4 in the upper panel (in effect, we have just
‘zoomed in’). For these two cases the noise on thememory is simply a continuous process; whenBob interrupts
our channel that should have had duration t = T0.4 , it is exactly equivalent to having amemory of the shorter
duration.

The green line infigure 2(b) corresponding to the error-corrected channel F1 is farmore interesting. It is
exactly coincident with the F0 line until =t T0.2 because in these cases Bob interrupts before Igor performs his
error correction cycle. But then the ‘integrity at interruption’ falls sharply, i.e. there is a significant difference
betweenBob interrupting immediately before Igor’s effort, versus doing so immediately afterwards. The reason
is that Bob’s process of decoding thememory begins with a round of error correction and his error correction is
perfect; thus it can only beworse to have Igor apply his ownflawed effort at correction immediately beforehand.
However despite the sharp step down, the eventual integrity at full duration is higher. This is because Igor’s
efforts have reset the accumulation of errors, lowering the overall chance of an uncorrectable set of errors (i.e. 2
ormore errors, for thefive-qubit code) over the course of the completememory channel.We see this evidenced
by the inverted parabolic curve immediately after Igor’s action: in effect the environmentmust ‘start again’ to
build up significant probability of weight-2 errors.

It is interesting to reflect further on the observation that error correction cannot increase the quantity
‘integrity at interruption’, assumingwe have no knowledge of the initial encoded qubit (given such knowledge
we can trivially increase integrity by erasing thememory and reinitialising it). Any formof error correction, with
whatever code and however well performed, is a process thatmerely ‘delays the inevitable’ in the sense that
integritymust fall; we can only alter the rate at which it falls. For the ultimate goal of fault tolerant quantum
computing, wemust slow the decay of integrity to such an extent that the entire calculation can take place before
an error becomes likely. The fact that integrity is a non-increasing function of time is amerit versus over other
measures (such as the simplefidelity with respect to an ideal state)which can both fall and rise, so creating the
false impression that quantum information is somehowbeing regenerated.

A related observation is the following: the rate at whichwe should apply error correction cycles has some
optimumwhich depends on the relative severity of environmental decoherence per unit time versus the error
ratewithin our error correction process (the noise in Igor’s circuits).We should not apply error correctionmore
frequently than this rate, or else the loss of the integrity will be dominated by the noise we introduce in our error
correction cycles (recently a similar observationwas described in [23]). The simulation results shown infigure 3
make this apparent; we again plot the ‘integrity at interruption’ as infigure 2(b), but now for three different
channels of commonduration t = T0.5 , the channels being the single qubitmemoryΘ, andmemories using
three or nineteen error correction cycles (F3 and F19). From the right hand side of the graphwe find the
integrities of the threememory channels: they are approximately 0.74, 0.78 and 0.63, respectively, i.e. the
memory channel featuring nineteen correction cycles is by far theworst, while three cycles (which is in fact the
optimumhere) provide a superior integrity versus the single qubitmemory. The reason is clear from inspecting
the curves: the ‘integrity at interruption’ reveals that the decay of the over-corrected channel is indeed
dominated by the step-like drops associatedwith noise from Igor.

With that introduction, we nowpresent a series of simulationswhich contrast different codes, and also
compare fault-tolerant versus non-fault-tolerant implementations of error correction circuits. Unless otherwise
notedwe use the standard errormodel of homogeneous Pauli noise occurring without correlation, and for Igor’s
circuits the noise occurs on all circuit operations with equal probability. It is worth stressing that the relative
performance of the codesmay differ greatly when this errormodel is substantially varied.

The appendix shows the various encoding, decoding, and error correction circuits whichwe use in the
simulations described here. As a first step toward comparing the efficacy of different codes, we begin by
reporting a special case which is achieved by setting thememory duration to zero, and simply investigating the
impact of the error correction process itself. Thus, we take a perfectly encoded qubit prepared byAlice and
present it directly to Igorwho performs an (entirely unnecessary!) error correction cycle before passing the
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encoded qubit directly to Bob for his analysis. The reduction in integrity is thus purely due to Igor’s action. The
results are shown infigure 4.Notice that in contrast to all otherfigures in this paper, the horizontal axis here is
not time (since the duration is zero) but rather Igor’s error rate.

Figure 4 includes eight different options for the encoding and correction of a logical qubit. Three different
codes are considered: the five-qubit code, the seven-qubit Steane code (which is also the smallest 2D colour
code), and the nine-qubit surface code. For each of these, the performance of a non-fault-tolerant (non-FT) Igor
is plotted. For the nine-qubit code, a second curve shows the performancewhen Igor employs a specific FT error
correction circuit (see figure B4(e)). For each of the other two codes, we display the performance of two different
FT circuits: the standard ‘Shor’ approach using four ancilla qubits, and an alternativemethod very recently
proposed byChao andReichardt [24]which requires only two ancillas, seefigures B4(c) and (d).

There are several interesting general observations to bemade from figure 4. Firstly, it is reassuring to note
that two logically-necessary features are indeed present: one observes that all the cases which employ non-fault-
tolerant (non-FT) error correction for Igor have the expected linear decay as Igor’s error probability p increases
from zero: integrity goes as - cp1 for some constant c because non-FT circuits are vulnerable to single errors.
Meanwhile the scenarios featuring FT error correction all have the expected inverted-parabolic shape: the

Figure 4. Integrity changewith increasing gate error rate. Here the duration of ourmemory is set to zero, in order to directly inspect
the negative impact of an imperfect error correction performed by Igor. The horizontal axis shows the level of noise associatedwith
each circuit element of Igor’s circuits.We analysememories based on thefive-qubit, the Steane, and the nine-qubit codes. Igor’s error
correction is performed either in a simple, non-fault tolerant fashion orwith full fault tolerance. As explained in the text, the various
line shapes and the relative levels of performance are straightforward to understand qualitatively.

Figure 3. Integrity change during three differentmemories, each of duration t = T0.5 . This figure is equivalent to figure 2(b), but
with three rounds (pink) or nineteen rounds (green) of error correction (gates error rate 0.2%) applied during the period ofmemory
storage. Clearly three rounds of error correction sustains the logical qubit while toomany rounds corrupt the logical qubit.
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integrity goes approximately as - kp1 2 when Igor’s error probability p is small. Circuits of this kind are
‘immune’ to single errors and vulnerable only toweight two (or higher) errors. Note that for higher (but still sub-
1%) error rates for Igor, the fault tolerant circuits become inferior to the simpler non-FT circuits. The reason is
essentially combinatorial scaling: the FT circuits are generally considerablymore complexwith farmore gates,
thus as gate failure probability p increases the risk of a double error in these complex circuits eventually
outweighs the risk of a single error in the simple non-FT circuits. Thus one should not suppose that ‘fault
tolerant circuits are always better’—for small codes and appreciable rates of gate error, theymay not be.

The different gradients in the various linear and parabolic curves can be qualitatively understood by
considering two desiderata. Thefirst is the portion of all possible weight-2 errors that actually prove to be
correctable. For example, the five-qubit code is corrupted by all weight-2 errors, but the seven-qubit Steane code
can correct any pair of errors if (and only if) one is of typeX and one of typeZ. The nine-qubit surface code has
the highest portion of ‘harmless’weight-2 errors in this sense. The relative ordering of the non-FT codes can be
explained by this feature alone. However for the FT codes, there is another competing feature: as noted above the
complexity of the FT error correction circuits is what ‘kills’ their performance, so simpler circuits are superior.
Consistent with this principle, we seewherever an appreciable performance gap exists between the ‘two-ancilla’
variant of a FT code versus the ‘Shor’ variant of the same code, the former is always superior.Moreover the FT
circuits for thefive-qubit code aremore simple than those the seven-qubit Steane, thus among the FT curves the
five-qubit outperforms the Steane. Remarkably FT circuits for the nine-qubit code exist which are actually very
simple (as previous authors have noted [16, 25]), and thus the FT surface code benefits fromboth desirable
features described here, and is unconditionally superior to all other codes in the plotted error range. However, it
does require the largest number of qubits: the 9 data-qubits themselves, and Igor also requires 6 ancillas in order
to perform stabiliser evaluationwithout error propagation. Thus onemight argue that the FTfive-qubit code, in
its two-ancilla variant, provides better ‘value per qubit’ since it requires a device with only 7 qubits in total.

It is important to remember that the comparisonmade infigure 4 is for zero environmental error. The
relative performance of different codes will change oncewe deploy themproperly into amemory channel where
environmental noise is degrading the encoded qubit. Figure 5 shows the integrity change of thememory under
our standardmemory channel scenario F1 i.e. ‘one use of Igor’s error correctionmidway’where the code
employed is either the five-qubit, Steane, or nine-qubit code (all with non-FT correction). See figure B3 for the
explicit circuit used in the five-qubit code case; circuits for the other cases differ simply by substituting the
appropriate stabiliser checks. All curves in thisfigure correspond to an internal error rate for Igor’s operations of
0.5%. Thus the far left of the figure, with t = 0, gives us the same set of three data points as can be read from
figure 4when the x-axis, the error rate, is 0.5%.We see that the Steane code ismarginally superior to the five-
qubit code, but both aremarkedly inferior to the nine-qubit code.However, as wemove away from the hard left
offigure 5 to consider increasing duration of thememory, we find that the five-qubit code surpassesfirst the
Steane and then even the nine-qubit code. The reason is that asmore environmental error accrues, a codewith a
larger number of physical qubits will reach the point where two-or-more errors are present, i.e. the situation
where the logical qubitmay be corrupted, at an earlier time.

In preceding figures we have focused on cases where a single round of error correction is applied during a
memory channel, andwe have identified points where ourmilestonesM1 andM3,would be satisfied. Infigure 6
we showhow the use ofmultiple rounds of error correction (equispacedwithin the duration of thememory
channel)may allow us tomeetmilestoneM2: Beneficial multi-round error correction associatedwith equation (9),
or evenmilestoneM4: Strictly superior encodedmemory associatedwith equation (11). In the upper panel, Igor’s
error rate suffices for the former but not the latter; in the lower panel Igor’s error rate is set to 0.1%which proves
to be sufficient to achieve the fourthmilestone.

Before concluding this comparison of different codes, we should stress that our intention is not to identify
‘best andworst’ codes but rather to show the circumstances inwhich various codes can be the better choice.We
also recognise that there are othermerits beyond the question of howwell a code preserves channel integrity—
for example, the Steane code (which is also the smallest instance of the 2D colour code) has the significantmerit
versus the smaller five-qubit that all Clifford operations can be applied transversally.

5. Assessing integrity in a real experiment

In all the theory and the numerical simulations described above, Alice and Bob are perfect agents: they provide
the frameworkwithinwhichwe assess thememory channel. However, if we are to assess integrity in an
experiment—i.e. if it is to be a practicalmeasure for benchmarking quantummemories—thenwemust tackle
the reality that Alice and Bob aremerely phases of an experiment withinwhich all operations are imperfect.
Bearing this inmind, towhat extent can one can still assign an integrity to thememory channel? Andmore
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importantly canwe still confidently assert that the integrity of one channel is superior to another, in order to
determinewhethermilestones such as those identified in section 3 have beenmet?

In the simulations reported in this section, we apply the same errormodel and error severity to the actions of
Alice and Bob, aswe do to Igor’s error correction cycle. It is crucial now to specify the particular circuits that
Alice and Bob use to perform their functions (whereas before, since theywere perfect agents, any circuit
performing the desired functionwas equivalent).

In the idealised case we spoke of Alice preparing any encoded qubit shewished, i.e. she used a general
encoding circuit such as those displayed infigure B1. Bob used a complex procedure involving a full round of
error correction followed by inverting Alice’s general encoder tomap an arbitrary encoded qubit back to a single
physical qubit. However, the definition of integrity corresponds to Bob’s performancewhenAlice opts for the
worst possible choice of qubit state to encode (or rather, when she picks between the two states yñ∣ and y ñ^∣ ,
which Bob has themost difficulty differentiating post-memory). If we have foreknowledge of which states these
are, we need only find circuits for Alice andBob to usewhich perform equivalently to their general purpose
circuits in these special cases. Fortunately for a broad family of errormodels (see appendix F)we know that the
worst case choice Alice canmakewill correspond to Pauli basis states, i.e. y yñ ñ^{∣ ∣ }, will be either ñ ñ{∣ ∣ }0 , 1 or
+ñ -ñ{∣ ∣ }, or + ñ - ñ{∣ ∣ }y y, . Our challenge is therefore tofind specific encoder circuits for Alice and analysis

circuits for Bob for these special cases. Thismust be done in such away thatwe recover the ideal performance of
Alice and Bobwhen they are indeed error-free, butwe obtain best-possible performance for Alice and Bobwhen

Figure 5.Comparison between the 5/7/9 qubit codes. The data shown are for our canonical Alice–Igor–Bob scenariowhere total
memory duration τ duringwhich pure environmental decoherence occurs continuously and a single (imperfect) round of error
correction occursmidway at t=t 2. See e.g.figure B3. The error rates used for all the gate operations during the error correction
procedure are 0.5%. The lower panel (b) presents the same data but nowwith respect to the Steane code performance, so that the
integrity of that channel now lies along the horizontal axis.
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they are error-burdened. In short, we look for compact fault-tolerant realisations of Alice andBob for the cases
where yñ∣ and y ñ^∣ are Pauli basis states.

Wewillfind that we canmake use of the simple structure of CSS codes (in our example, the Steane code)
which permit very straightforward fault tolerantmeasurement, in the logical Pauli basis, by simplymeasuring
individual qubits (as exploited in e.g. [16]). Encoding of logical Pauli states is alsowell studied for these codes; an
efficient option can be to prepare a product state and then apply stabilisers, while for certain cases yetmore
robust and compact techniques have been identified (see e.g. [26]), whichwe can simply adopt. For non-CSS
codes wewillfind that the process is less straightforward butwe nevertheless identify solutions.

We emphasise that oncewe equip Alice and Bobwith suitable circuits, we have a full prescription for an
experimental test of integrity: the experimental protocol simply corresponds to the steps listed in tables 1 and 2,
with the solemodification that Alice randomly picks between Pauli eigenstates, and given this pick both her
encoding circuit and Bob’s decoder are selected accordingly fromoptimised circuits such as those infigure B2.
Thus integrity is evaluatedwithout state tomography.

The data plotted infigures 7 and 8 show the effect of allowing Alice andBob to become noisy, for the Steane
code and thefive-qubit code, respectively. Circuit details are given in the captions.

For Steane code (figure 7)we observe an excellent agreement between the ‘true’ integrity that would be
measured if onewere able to use ideal agents Alice and Bob, and the estimate of the integrity that results from
using imperfect agents.We note that there is only a slight variation in the location of the crossing point, and that
if a crossing occurs in the true integrity (as for the case when Igor’s error is 0.5%) then a crossing also occurs in

Figure 6.Multiple rounds of quantum error correction (EC). The integrity of a family ofmemory channels all employing the five-
qubit code but differing in the number n of rounds of error-correction performed during thememory, where =n 0, 1, 2, 3, 4 or 6.
Our imperfect agent Igor performs error correction cycles at times t= +( )t m n 1 for =m n1 .. . In the upper panel (a) Igor’s gate-
level error rate is 0.3%. As explained in themain text, the systemmeetsmilestonesM1,M2 andM3 but fails tomeetM4. In the lower
panel (b) Igor’s error rate is now 0.1% andwe see that by choosing a suitable nwe can select a five-qubit encodedmemory that will
beat the single-qubitmemory for any desired duration τ, someetingmilestoneM4: Strictly superior encodedmemory.
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the estimate; the specific crossing shownhere is that whichwould showmilestoneM1has beenmet. Conversely
when a crossing does not occur in the true integrity, it also fails in the estimate (here, for the casewhen Igor’s
error is 1%). The reason for the excellent agreement is that bothAlice andBob’s circuits are robust against
errors. Notewe adopt the recently proposed protocol from [26]—by using a single additional qubit in her
encoding process, Alice is able to detectmany errors, and if such errors are detected the encoding process is
restarted again until no error is detected. This we are free to do since Alice is ‘not on trial here’ so to speak; our
goal is to fairly evaluate thememory channel involving the environmental noise and Igor’s imperfect attempt(s)
at error correction. Similarly, it would be legitimate to employ circuits for Bobwhich reject some outcomes
completely and do not count them towards the estimate of his guess success rate, if those cases definitely
correspond to some failure within Bob’s own processes. An examplewould be, if ameasuring device fails to
return any result at all.

In our second example of noisy Alice andBob, shown infigure 8we employ thefive-qubit code and,
crucially, we do not employ fault tolerant procedures for Alice and Bob. For the five-qubit code there is relatively
little literature describing fault tolerant state preparation andmeasurement (in contrast to the Steane codewhere
there are numerous circuits exhibited in the literature, and progress [26] has beenmade as recently as 2016).
Moreover the smaller size of the five-qubit code itselfmaymean that it is targeted by the very earliest
experiments where the additional complexity associatedwithmakingAlice and Bob fault tolerant is an

Figure 7. Imperfect, but fault tolerant, Alice and Bob. The scenario in the upper panel (a) corresponds to three differentmemory
channels each using the Steane code to protect information. The encoder Alice and the analyser Bob are both ideal, as required in the
definition of integrity.Wemark themeaningful line crossingwhich corresponds tomeetingmilestoneM1 (for the orange line) or just
failing to do so (blue line). In the lower panel (b)wepresent the same analysis but nowwith errors duringAlice and Bob’s circuits at the
same level as Igor’s. Specifically, Alice uses the circuits shown infigure B2 to encode her qubits into ñ∣0 L. Figure B2 also shows howBob
differentiates between ñ∣0 L and ñ∣1 L by simplymeasuring all qubits in the z-basis, performing classical error correction, and checking
the parity of a certain subset. Note that the key crossing (and failure to cross) from the upper panel are well approximated in the lower,
indicating that experimental evaluation of integrity is achievable.
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unwelcome obstacle. Unfortunately, when the tasks performed byAlice and Bob become vulnerable to single
gate failures, the resultingmemory integrity estimates become very poor approximations to the true integrity. In
the lower panel offigure 8we see that the line shapes have changed, losing the inverse-parabola shape for short
memory durations.We do still see line crossings, but they occur at significantly different locations.Most
troubling, a line crossing can occur in the experimental datawhen no such crossingwould occur if Alice and Bob
were ideal. Thus, the observation of a crossing in the data is not, in of itself, strong evidence that the actual
memory channel hasmet ameaningfulmilestone (such asM1: Beneficial error correction in this case).

Despite these issues, it can be possible tomake use of data such as that infigure 8. Onewould need to perform
additional theoretical analysis in order to justify the claim that any observed crossing is indeedmeaningful. For
example, if the errors in the various circuit elements arewell characterised then one could perform simulations
equivalent to those presented in this paper. Essentially onewould produce a version offigure 8(b) calculatedwith
an accurate errormodel in order to compare with the observed data; if thematch proved to be good, one could
use further simulation to discover the integrity thatwould have been observedwith ideal Alice and Bob. In order
words, if the data closelymatches a simulation such asfigure 8(b), onemight fairly state that this is strong
evidence that the integrity is as shown infigure 8(a).

In summary, we can say that integrity can be assessed experimentally in a straightforward protocol: acting as
Alice we choose a qubit state thenwe perform a series of experimental runswhere each run ends in a
measurement fromwhich, as Bob, we ‘guess’ the original state with the binary outcome ‘succeeded’ or ‘failed’.

Figure 8. Imperfect, and non fault tolerant, Alice and Bob. The comparisonmade here is similar to that in figure 7 except that now the
memory channels employ the five-qubit code andmoreover in the lower panel (b) the circuits used byAlice and Bob are not fault
tolerant. Here, Alice uses the circuits specified infigure B2 to encode qubits into -ñ∣ L andBob uses the circuit shown in thatfigure to
differentiate between +ñ∣ L and -ñ∣ L . In contrast tofigure 7 there is now a profound difference between two panels and one could not
directly assert that a line crossing in the lower panel implies a crossingwould exist in the upper panel.
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Wecontinue until we have a good estimate of Bob’s probability of success pg; if the system is such that pg depends
onAlice’s choice, thenwefind the least-favourable choice. The integrity of thememory is then simply
 F = -( ) p2 1g . In this sectionwe have shown that the creation of the logical qubit, i.e. Alice’s circuit, as well as

Bob’s analysis circuit, can both be noisy and yet we can obtain an excellent estimate of the integrity of the
memory channel itself (factoring out Alice and Bob).

6.Generalisations

The analysis presented here has defined the integrity of amemory channel, where that channel stores a single
logical qubit. The specific codes we have considered are distance three (a single physical qubit error is
correctable) but the definition applies equally to higher distance codes. For cases where amemory channel
stores several logical qubits, it is straightforward to generalise our integritymetric: a natural choice for anm
logical qubitmemory would be to have Alice choose a state ofm qubits, encode and transmit to Bob as in our
canonical picture (including optionally error correction from Igor) and then Bob decodes and is finally
informed of two options—Alice’s true state and a randomly chosen orthogonal state—between which he
must guess. Thememory channel’s integrity will relate to Bob’s worst case performance within this
framework.

One can also generalise the notion of integrity beyondmemory systems to actual computations. For a single
logical qubit the natural generalisationwould be to performmultiple transversal gates between theAlice and Bob
stages, i.e. in lieu of the pure environmental noise periods. Aswith thememory channel, this computational
process could include one, ormore rounds of error correction fromour agent Igor.

7. Conclusion

To conclude: we have described and assessed ameasure called integrity as ameans to benchmark the
performance of a code-based quantummemories. Integritymeasures howwell amemory preserves the
distinctiveness of different states. It was introduced recently to assess ion trap basedmemories in [14], but is
generically applicable to any technology platform. Integrity is a property of thememory channel itself (including
any activememory correction routines) independently of the inevitable encoding andmeasurement stages.
Importantly the integrity of amemory can be assessed experimentally in a straightforwardmannerwithout the
need for full state tomography.We have identified links between integrity and quantities such as ‘fidelity of the
logical qubit’ or the ‘pseudo-threshold’.
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AppendixA. Errormodel

Herewe specify the errormodel used in the numerical simulations presented in this paper.
Environmental decoherence ismodelled as a depolarising process that occurs independently for each

physical qubit. Specifically, when ourmemory qubits are exposed to the environment for some time t then the
probabilities of an error is given by

= -( ( ))p t T1 exp .1

2

Given that an error occurs, it is assigned as one of the three Pauli operators sX , sY , sZ selected uniformly at
random. This occurs independently and in parallel for each physical qubit.

Noise also occurs when gate operations are applied by ‘Igor’while performing error correction cycle(s)
during thememory channel in order to actively protect the stored information. Recall that Alice and Bob, whose
actions at t=0 and t=t frame thememory channel, are considered ideal for the purpose of the definition of
integrity; however in the figures 7 and 8, and the associatedmain text, we consider the effect ofmakingAlice and
Bob as noisy as Igor since this is the likely experimental reality. In all these cases our errormodel for circuit
operations is as follows:

• Anoisy single-qubit gate ismodelled by the ideal gate followed, with probability pe, by one of the three Pauli
operators sX , sY , sZ selected uniformly at random.

• Noisy state preparation ismodelled by ideal preparation followed by a possible error in the same fashion as
above.

• Noisymeasurement ismodelled by inverting the state to bemeasured in the relevantmeasurement basis, with
probability pe. So for example, prior to ameasurement in the z-basis a sX operationwill be applied to the qubit
with probability pe.

• Anoisy two-qubit gate ismodelled by the ideal gate followed, with probability pe, with one of thefifteen non-
trivial Pauli operators products sÄI X , sÄI Y ,K, s sÄZ Z selected uniformly at random.

Notice that the same error probability pe is used for all types of circuit element; this is the number that is specified
in themain paper as ‘Igor’s error rate’ and typically expressed as e.g. 0.3%.

Appendix B. Circuits diagrams

B.1. Alice andBob’s circuits
Infigure B1we show the encoding circuits whichwe employwhenAlice (taken to be ideal) encodes the physical
qubit yñ∣ which she has chosen to place into thememory. The encoding circuits come from [27, 28, 29],
respectively. Because Alice is perfect, there is no need for fault tolerance in these encoders. Bob employs the
inverse of these encoders as a step in his analysis, see table 1.

In order to experimentally investigate the integrity of amemory channel, wemust use circuits for Alice and
Bob that are as compact as possible and, as a strong preference, fault tolerant. Fortunately we need not consider
general encode/decode circuits since (for a broad class of noisemodels)we know that theworst case choice of
state for Alice to transmit will be a Pauli basis state. Thus it is such states that we need toAlice to prepare andBob
to differentiate. A suitable compact, fault tolerant encoding circuit for the Steane code is shown in figure B2(b)
which is adopted from [26]. An equally compact, but non fault tolerant encoding circuit for the five-qubit code is
shown infigure B2(b). For both the seven-qubit and the five-qubit cases, our Bob now simplymeasures all the
qubits; however importantly for the seven-qubit case he can perform classical error correction on the
measurement resultsmaking his inference process fault tolerant.

B.2. Igor’s circuits
Figure B3 shows the entire Alice–Igor–Bob process. In this figure, thememory channel employs the five-
qubit code and Igor’s error correction is not fault tolerant. Consequently the overall circuit is one of themore
simple examples; but cases where we employ the Steane code or the nine-qubit code are analogous, as are
cases where we opt tomake Igor’s process fault tolerant. The specific sub-circuits for these cases are shown in
figure B4.
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In our simulations (e.g.figure 4)we consideredmore than one type of fault tolerance. Themost common
method to avoidweight-2 errors is to encode four ancilla qubits into a cat state, verifiedwith additional qubit,
and apply transversal CNOTgates within each stabiliser check, whichmay be known as Shor’smethod. Circuits
infigures B4(a) and (b) demonstrate this approach. A slight difference between these two diagrams exists,
regardingmeasurement of the ancilla: for the five-qubit code, the encoded ancilla qubit needs to be decoded by
applying the gates used in encoding in reverse beforemeasuring the decoded physical qubit, while for the Steane
code, since each stabiliser check detects only one type of error, we can simplymeasure all the four physical qubits
in the corresponding basis and check the parity of themeasurement results.

The alternative fault-tolerant circuits with only two ancilla qubits are shown infigures B4(c) and (d) for the
five-qubit and seven-qubit codes, respectively. Here we are employing the ideas recently introduced in [24]. The
first ancilla qubit acts the same as that in the non-fault-tolerant circuit, and the second ancilla qubit acts as the
flag qubit: once anyweight-2 error occurs, themeasurement of it will turn from0 to 1. For both the five-qubit
and seven-qubit codes, eachweight-2 error corresponds to a unique error syndrome if applying a set of normal
stabiliser checks, thus we can detect anyweight-2 error bymeasurement of theflag qubit and correct bymapping
the stabilisermeasurement results with the unique error syndrome.

The nine-qubit code has the unusual and desirable property that the techniques described above,
involvingmultiple ancillas, are not needed for fault tolerance. As shown in figure B4(e), weight-2 errors can
be avoided simply by taking care tomeasure the stabilisers in a certain order (as has been discussed in
[16, 25]). Since only one round of stabiliser checks is to be preformed, fewer gates compensate the cost of six
ancilla qubits required.

Figure B1.General encoding circuits suitable for thefive-qubit, Steane, and nine-qubit codes. In all cases the physical state ofψ is
encoded into the logical state yñ∣ L .
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The full diagram for evaluating thememorywith fault-tolerant error correction is shown infigure B4(f),
wherewe take the Shor-type five-qubit code (figure B4(a)) as an example—analogous circuits apply for the other
cases. Comparedwith the non-fault-tolerant error correction as shown infigure B3, three rounds of stabiliser

Figure B3.Diagramof onewhole cycle of Alice–Igor–Bob scenariowith the five-qubit code. Firstlyfive physical qubits are encoded
into the logical state, then the logical qubit is subjected to environmental noise for a time period of T 2, followed by a cycle of
stabilisermeasurements and error correction, and then the logical qubit is again subjected to environmental noise for T 2. Lastly the
logical qubit is decoded andmeasured.

Figure B2. Encoding circuits for imperfect encoding procedures with thefive- and seven-qubit codes. For thefive-qubit code shown
in the upper panel, the encoded state -ñ∣ L is prepared in a non-fault-tolerant fashion, and Bob subsequently identifies the received
state bymeasuring three of the received qubits and computing their parity (again, a non-fault-tolerant process). For the seven-qubit
code shown in the lower panel, physical qubits are encoded into ñ∣0 L using additional qubit for detection of errors: if returns 1, Alice
restarts the encoding until it returns 0. Suchmethod reduces propagation of some errors in a noisy encoding process. Bob is also fault
tolerant: hemeasures all 7 qubits, andmay opt toflip one of the outcomes if it is necessary to do so in order to produce a legitimate
outcome; the parity of subsets 4, 5, 6, 7; 1, 3, 5, 7; 2, 3, 6, 7 should all be the same as to allowhim to guess between ñ∣0 L and ñ∣1 L .
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measurements are required in order to avoid additional errors introduced by error correction based onwrong
error syndromes.

AppendixC. Comparisonwith amore powerful Bob

The integritymeasure contains within its definition the notion that the agent Bob, who receives thememory
state at the end of its duration, will perform a round of (perfect) error correction as the first step of his analysis.

Figure B4.Circuits and diagrams for fault tolerant error correction. (a)A round of fault tolerant stabilisermeasurement with thefive-
qubit code. Herewe use the Shor’smethod, withwhich four ancilla qubits are entangled into the cat state with some error probability
and an additional qubit is used to verify the cat state is successfully prepared. After the stabilisermeasurement, the ancillas are decoded,
followed bymeasurement in x-basis. (b)A round of fault tolerant stabiliser checkswith the seven-qubit Steane code, again using
Shor’smethod. Since each stabiliser check detects either phase or bitflips, results can be obtained by checking the parity of
measurement results of all four ancillas without decoding. (c)The circuit to achieve fault tolerant correction of the five-qubit code
with only two ancillas. Thefirst ancilla is used for stabilisermeasurement, while the other one acts as theflag qubit: it returns -1 once
anyweight-2 errors occurs, and all such errors render a unique error syndrome thus can be corrected. (d)The same approach as in (c),
but for for the seven-qubit Steane code. (e) Stabilisermeasurements of ancillas following a particular order to achieve fault tolerance
with the rotated nine-qubit surface code. The large circles stand for the data qubits and the small circles are ancillas. The stabiliser
measurement should follow the order denoted by the colour orange, blue, green and finally purple. Since the ancilla labelled 3 can
physically act as the ancilla labelled 2 after finishing themeasurement in the blue half-circle and that alsoworks for ancilla 4, which can
act as ancilla 1 after themeasurement in the yellow half-circle, in total six ancillas are required to demonstrate fault tolerance.
(f) Schematic view of the whole cycle of Shor-type fault-tolerant Alice–Igor–Bob scenario with thefive-qubit code ((a) in thisfigure).
The same procedure also works for all the others described above. Three rounds of a full set of stabilisermeasurements are required to
obtain the correct error syndrome as to avoid artificially introducing new errors through error correction based on thewrong
syndrome.
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This ensures that wemake good contact with existing concepts such as the fidelity of a logical qubit, or the logical
error rate—at least where those latter concepts have clearmeanings.

However it is an interesting exercise to tomake a comparison betweenBob’s ability to correctly guess the
received state, as captured by the integrity, versus Bob’s performance if hewere given carte blanche tomake his
guess by performing any physically allowed process on all of the encoded physical qubits. The performance of
such a Bobwould correspond to the trace distance

r r= + ¢ ¢( )p D , ,B n n
1

2

1

2 ,0 ,1

where r¢
n,0 and r ¢

n,1 are the two possible n-qubit states received by Bob. Infigure C1we show a comparison
between the performance of thismore powerful Bob, and the Bob aswe have defined for the integritymeasure.
For both thefive-qubit code and the Steane code there is a negligible difference whenBob is given this extra
freedom. For the nine-qubit code there is a small difference. This indicates that the error correction process itself
is not quite optimal: somemeasurements differing from the canonical nine-qubit code stabilisermeasurements
would permit a superior guess, however suchmeasurementsmight be very non-trivial to implement (generally
the basis states can be entangled).

In order to achieve this slightly higher level of performance, Bobwould require not only the freedom tomake
anymeasurements he seesfit on the received n encoded qubits, but (crucially) also a complete understanding of
the noise processes in thememory channel. In short, hewould require an accurate theoretical description of the
memory channel itself, so that he can derive both yF( ) and yF ^( ) once the two options for the original qubit,ψ
and ŷ , are revealed to him.Only then can he determinewhatmeasurements tomake in order to achieve
maximumprobability of a distinguishing between them.

For these reasonswe opt to constrain Bob as described in themain paper. Doing so gives us amore
‘operational’meaning to integrity, and allows us tomake direct links to other related concepts in the field.

AppendixD. Casewhere fault tolerance is beneficial

In themain text,figure 6(b) shows the performance of a high qualitymemory channel using the five-qubit code
and performing n cycles of error correction, equispaced over the duration, with a gate error rate of 0.1%. As
noted in thatfigure caption and the associatedmain text, with this level offidelity wefind that thememory
channelmeets themost demanding of ourmilestones,M4: Strictly superior encodedmemory. In the case analysed
in themain paper Igor used a non-fault tolerant error correction cycle; however from the earlier figure 4 one

FigureC1. Effect of a ‘more powerful’Bob. The solid lines here correspond to the performance of Bob aswe have specified himwithin
our definition of integrity. The vertical axis here is Bob’s probability ofmaking a successful guess, and the solid lines correspond to
memory channels with a single round of Igor’s error correctionwith error rate 0.5%. The dotted lines are the performance of amore
powerful Bob as described in the text; the dotted and solid lines are essential identical except for the nine-qubit code.
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would expect that a fault tolerant Igor using the (recently proposed) 2-ancilla techniquemight lead to an even
more highly performingmemory channel.

In fact we have found that thememory using fault-tolerant correction is indeed superior, albeit just slightly.
An interesting point is that the optimal number of error correction cycles is higher, for a given channel duration,
when one employs fault tolerant correction versus the naive circuit. Thismakes intuitive sense: when gate errors
are as low as 0.1% the fault tolerant error correction circuits workwell and introduce less noise than the naive
circuits (see figure 4), so that wewill see smaller step-like deteriorations in the quantity we call ‘integrity at
interruption’ implying that they can be usedmore frequently. This is shown infigureD1wherewe contrast a
fault-tolerant and non-fault-tolerant channels of duration t = T0.2 .

Appendix E. Significance of imposing aminimum

In all simulations previously described in this report the environmental decoherencewas purely depolarising.
Consequently the environment has no preferred basis, and onefinds that Bob’s probability of successfully
guessing the nature of the state selected byAlice does not vary according to her choice. Thus theminimum
appearing in the definition of integrity, equation (5), is redundant in the sense that theminimumandmaximum
are the same. In order to show that this will not generally be true, and that therefore it is indeed necessary to
specify theminimum,we need only switch from a pure depolarising environment to a pure dephasing
environment.

The results of such simulations are shown infigure E1which shows a Steane code protectedmemory as in
earlier plots (seefigure 7) but nowwith all environmental noise being pure dephasing. The interesting point is
that nowBob’s ability to guess the original encoded state varies dramatically withAlice’s choice of initial state. If
she chooses either ñ∣0 or ñ∣1 then the logical qubits are in fact immune to phase noise, so that Bob’s performance
impaired only by the noise introduced by Igor—the corresponding line (red) is therefore flat i.e. not a function
of thememory duration. In contrast Bob’s ‘worst case’ performance is obtainedwhenAlice’s choice for the
encoded state is +ñ∣ or -ñ∣ as shownby the yellow line, and it is this that would define the integrity ofmemory
channel.

In the following sectionwe explain formany common environmental noisemodels the ‘worst case’will be
found among the Pauli eigenstates.

FigureD1.Comparingmemories employing FT verus a non-FT error correction. In thisfigurewe plot the ‘integrity at interruption’
to look inside amemory process, as discussed earlier for figures 2 and 3.We compare threememory channels all of the same duration
t = T0.2 . The blue line is our standard reference, the single-qubitmemory. The other two are based on thefive-qubit code, with the
error rate of all the gates involved in the error correction process to be 0.1%. The data shown in orange are for thememory channel
protected by Igor using a non-FT error correction, and the optimal number of such cycles is 2. The data shown in green is for amore
sophisticated Igor using the fault tolerant circuit shown infigure B4(c). It is interesting to note that the optimal number of error
correction cycles is now 4.However the overall performance is near-identical (i.e. lines are very close on the far right).
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Appendix F.Whendoes it suffice to prepare Pauli eigenstates?

In themain text and in the preceding appendix we noted that Alice’s choice of state to encode can influence
Bob’s performancewhen he guesses the nature of the received state. Therefore integrity is defined from theworst
case performance. In themain text we noted that when indeed this occurs, wewill often find that theworst case
corresponds toAlice choosing a Pauli eigenstate. Herewe explain that this is typical for a broad range of error
models. In the following, whenwe refer to ‘weak’noise this is in the sense that the error probability is0.5,
which is in general the region of interest where themilestonesM1–M4can bemet.

Recall that we are assessing single-qubitmemories, represented by a channelΦ on single-qubit states, in the
presence of realistic noise using experimentally viablemethods.We proceed by describing a general class of noise
channels with noise dominated by incoherent Pauli errors, and describe conditions underwhichwe can reduce
the testing of single-qubitmemories subject to such noise to testing of Pauli eigenstates.

Wewrite s s s s= { }( ) ( ) ( ) ( )P , , ,0 1 2 3 for the set of single-qubit Pauli operators (we sometimes write  s= ( )0 ,
s= ( )X 1 , s= ( )Y 2 , and s= ( )Z 3 ). Let PM denote the set ofM-fold tensor products of Pauli operators

s sÄ Ä( ) ( )a aM1 . APauli channel is a channel on M 1qubits whoseKraus operators are each proportional to
an element of PM , representing randomPauli operators acting on those qubits according to some distribution.
Wemay denote such a channel by

år tr tF =
t

t
Î

( ) ( )†p . F1
PM

(All such channels are unital, i.e.  F =( )d d

1 1 .)

Aweak Pauli channel is such a channel inwhich   Ä Äp 1

2
.We can experimentally estimate the integrity

of aweak Pauli channelΦ on a single qubit, as follows. First note thatwemay simplify the formula ofmemory
integrity from equation (5) by noting that



 y y

y

F = F - F

= F - F

y y

y

^
 

( )
( ) ( ) ( )

( ) ( )

min

min . F2

1

2 1 0 tr

1

2 tr

0 1

For such channels we have s a sF =( )( ) ( )j
j

j for some a 0j : in particular, as these channels are unital, a = 10 .

Then for any single-qubit state r s s s= + + +[ ]( ) ( ) ( )r r r1

2 1
1

2
2

3
3 , we have

 å år a s aF - F = =
= =
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Figure E1. Integrity in a pure dephasing environment. Plot shows the integrity for amemory channel using a the seven-qubit Steane
code, and and single round of Igor’s error correction procedure with a gate error rate of 0.5%.Whereas all other plots in this paper
correspond to a pure depolarising environment, here we have a pure dephasing environment. Consequently, Bob’s ability to guess the
nature of the received state depends strongly onAlice’s choice of which qubit to send: if she sends a z-basis eigenstate thenBob’s
success is certain.Note that only the blue and yellow lines actually conform to the definition of integrity since theminimum is
specified, equation (5).
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This is a convex combination of the scalars aj
2, which isminimised by setting =r 1j

2 for the smallest coefficient
aj and rj= 0 otherwise. Thus

 a j jF = = F F+ -( ) ( ( ) ( )) ( )( ) ( )min min , , F4
j

j
j

j j2

wherej
( )j are the±1-eigenstates of the respective Pauli operator s( )j .

Aweak i.i.d. Pauli channel is such a channel which consists of a tensor product F Ä F Ä Ä F1 1 1of
identical channels.We aremore generally interested inmaps D N EF = ◦ ◦ which consist of an ideal encoder
E for a stabiliser code (encoding one qubit intoM qubits), a noise processNweak i.i.d. Pauli channel onM
qubits, and an ideal decoderDwhich performs one round of correction decodes theM qubit state again to a
single-qubit state. It is not difficult to show thatΦwill be aweak Pauli channel whenN is a weak i.i.dPauli
channel, inwhich case theworst case performancewill be achieved by Pauli eigenstates in this case as well.

Thismotivates the following procedure to experimentally assess the quality of an isolated quantummemory
on aweak Pauli channel: prepare a statej f f= ñá ∣ ∣( )j , applyΦ to it, and test the probability withwhichwe

obtain the outcome f fñá∣ ∣when a s( )j measurement is performed on it. Performing the abovemany times for
each Pauli operator s( )j , wemay determinewith some level of confidence forwhich operator s( )j this failsmost
often. This determines the pair of orthogonal states whichΦ does the poorest job at keeping distinguishable;
using equation (6), wemay then compute F( ).
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