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Abstract

Rapidly developing experiments across multiple platforms now aim to realise small quantum codes, and so
demonstrate a memory within which a logical qubit can be protected from noise. There is a need to
benchmark the achievements in these diverse systems, and to compare the inherent power of the codes
they rely upon. We describe a recently introduced performance measure called integrity, which relates to
the probability that an ideal agent will successfully ‘guess’ the state of a logical qubit after a period of storage
in the memory. Integrity is straightforward to evaluate experimentally without state tomography and it can
be related to various established metrics such as the logical fidelity and the pseudo-threshold. We offer a set
of experimental milestones that are steps towards demonstrating unconditionally superior encoded
memories. Using intensive numerical simulations we compare memories based on the five-qubit code, the
seven-qubit Steane code, and a nine-qubit code which is the smallest instance of a surface code; we assess
both the simple and fault-tolerant implementations of each. While the ‘best’ code upon which to base a
memory does vary according to the nature and severity of the noise, nevertheless certain trends emerge.

1. Introduction

Large scale quantum algorithms are expected to require hardware that is fault tolerant: small imperfections in
the behaviour of physical qubits (whether they are superconducting loops, crystal defects or trapped ions) must
beidentified and corrected, so that there is no error on the logical level. Recently there has been rapid progress in
the implementation of quantum codes, across platforms as diverse as ion traps [ 1-3], superconducting qubits
[4-7], and crystal defect systems [8].

A comprehensively successful quantum code will have been achieved when one can demonstrate a full set of
quantum operations on encoded qubits with a fidelity that exceeds that of the best possible unencoded physical
qubits [9]. However this criterion is very challenging to achieve; it means ‘beating’ the superb fidelities exceeding
99.9% that can now be achieved with single physical qubits [10-12]. Even the task of achieving a superior
coherence time with a memory based on an encoded qubit, versus a single physical qubit, is not trivial.
Individually controlled physical qubits can persist for the order of a minute when not actively manipulated [12],
or 10 min using dynamical decoupling [13].

Itis therefore interesting to find a measure for the efficacy of memories based on small quantum codes, using
which we can identify reasonable milestones for near-future experimental realisations. Equally importantly we wish to
be able to fairly compare memories based on platforms that might have very different inherent timescales. A number of
measures of performance might be considered, including the diamond norm, the fidelity in the logical basis, surpassing
the pseudo-threshold, and so forth. Here we show that these measures can be related to a measure called the integrity of
the logical qubit, which was recently introduced for assessing the performance of a memory based on the seven-qubit
2D colour code (which is also the Steane code) in the context of ion trap quantum computing [ 14].

Here we will motivate the notion of integrity through its intuitive meaning as ‘the probability that Bob,
receiving a logical qubit from the memory system, can infer its state’. We show that in simple cases integrity also
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corresponds to ‘the fidelity of alogical qubit after storage in the memory’, but that the former meaning based on
state inference remains meaningful even when the latter notion of a memory’s fidelity becomes ill defined. We
offer a set of four milestones based on comparing the integrity of an encoded and actively-corrected quantum
memory versus either uncorrected variant or with a single physical qubit. The milestones are increasingly
challenging with the fourth being a demonstration of ‘Strictly superior encoded memory’. We report the results
of awide-ranging set of numerically intensive simulations, where we assess and compare several small memories
based on the five-qubit code, the seven-qubit Steane code, and the nine-qubit small surface code. We estimate
the performance levels required in the error correcting process (performed by an agent we label ‘Igor’) so that
our milestones can be met. We establish that the task of evaluating the integrity of a memory is experimentally
feasible when all the phases of the protocol (encoding, memory storage and decoding) are realised by the same
imperfect hardware.

We conclude by discussing generalisations: it is straightforward and natural to extend the concept of
integrity to encompass systems where a computation takes place. A further study of the properties of integrity
appears in a partner paper to the present one [15].

2. Introducing integrity

One can think of any memory as a channel for communicating information from the present (t = 0) toa
specified future time (+ = 7). The simplest notion of an ideal memory would be one where no change
whatsoever happens to the stored information. Presently we will wish to generalise from this simple notion, but
itis useful to begin by asking how we would benchmark performance against this basic standard: we could
compare the state at t = 0 with the state at t = 7, using either the fidelity or the trace distance. Let us briefly
review these two quantities.

There are two definitions of fidelity commonly used in the literature; one is the square of the other. Here we
use the squared quantity, formally defining fidelity as

Fpo pY) = || JPo 71 IIie- (1)

This definition uses the trace norm, itself defined as
lofle = Tr(Vo'o), )

and this is also the sum of the singular values of 0.

In the case that p, is a pure state [t)g) (1)o|, the fidelity then has a simple physical interpretation: if we measure
state p, in a basis where one of the possible outcomes is |1/, the fidelity is precisely the probability of this
outcome. When both states are pure, we have simply

F@o, 1) = [{tholay) 1.

While the fidelity measures the similarity of two states, the trace distance measures the degree to which two
states differ. It is defined as

Dipy p) = 5 o1 = Pollie- 3)

Ranging from 0 to 1, the trace distance has a remarkably clear intuitive meaning: it tells us the probability that
two states p, and p, could be told apart by an ideal experimentalist. Suppose that we present to an
experimentalist, Bob, a theoretical description of both p; and p,, and we also prepare a physical system in one of
these two states (with a 50/50 prior probability) and present this to the Bob. He must guess whether the physical
stateis p, or p;. Using his optimal strategy, his probability p, of guessing correctly is simply

b =5 + 3Dy - )

We will make extensive use of this idea presently.

The functions D(p,, p;)and1 — F(p,, p;) canboth be regarded as measures of how distinct two states are.
However it is important to note that these quantities are fundamentally different, and can give very different
‘scores’ in experimentally relevant cases. We opt to employ the trace distance, for various reasons described later
but most particularly because equation (4) leads to straightforward experimental realisations.

Our simple notion of an ideal memory—one permitting no change—is rather unsatisfactory. Certain
changes are in fact harmless and do not practically reduce the quality of a memory. Any deterministic, known
and anticipated change to the stored information is harmless if we can easily compensate: an example is the
continuous phase evolution which occurs within any physical qubit if the states |0) and | 1) are non-degenerate
eigenstates. For the present case of a memory that employs a quantum code to protect logical qubit(s) we can go
further: any correctable error is also relatively harmless in the sense that a ideal agent can recover the logical qubit
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with certainty. We would like our measure of the quality of a memory to incorporate these principles;
additionally, we have a notion of a ‘useless’ memory, one that should score zero, as a memory that fails to
preserve any recoverable information whatsoever.

Suppose that some qubit with density matrix p is to be stored in a code-based memory channel for a specified
period of time. We will use the symbol ® to denote the memory channel itself. The initial state p maps to the final
state p through this process:

* Setup: Att = 0 Alice (taken to be perfect) encodes the single qubit p into an n-qubit logical code: p, = E(p)
where E is the encoding map.

+ Thememory channel: Evolution and degradation of the logical qubit occurs while it is stored. This may include
the effects of actively applied error correction cycles (involving a non-ideal agent, whom we label Igor’ and
discuss presently). We have p; = N(p,) where Nis the noise map.

+ Conclusion: At t = 7, Bob (taken to be perfect) performs an error correction cycle, and then reverses Alice’s
encoding process to obtain a single physical qubit: p = D( p;) where D is the decoding map.

Itis the second step that we are interested in; steps one and three (Alice and Bob) merely frame the process.
We can write the entire channelas ® = D o N o E, thus incorporating Alice’s encoding E, the noise N, and
Bob’s decoding D. This overall map ® takes as input a single qubit state (Alice’s initial choice p) and ultimately
returns another single qubit state 7 = ®(p), i.e. Bob’s single qubit after decoding.

For an initial concept of an ideal memory as one causing no change at all, we would desire ®(p) = p,and so
(for example) 1 — D(p, (p)) could suffice as a good metric for the performance of our memory. However we
have noted that a much broader notion of ‘ideal’ is needed, for instance to accommodate systemic phase
evolution. Fortunately, there is a natural way to proceed: instead of focusing on the changes suffered by a single
logical qubit between t = 0 and t = 7, we can instead focus on the idea that a memory should preserve the
distinguishability of different states. This notion can incorporate both fixed, known evolutions and random-but-
correctable errors. Conversely it will properly recognise that all forms of memory which leave us with no
recoverable information, are equally and entirely useless.

Consider two pure states ¢ = |¢) (¥|and ¥, = |11 ) (¢, | which are orthogonal to one another. Orthogonal
states have trace distance of unity, since they can certainly be told apart. Let Alice choose 1) at random, uniformly
from all possible single-qubit states, and then opt to encode either ¢ or instead the antipodal state 1/, . Then ®(z))
or O (1)) will describe the state after it has passed through the memory channel and been decoded by Bob. If the
channel has caused the same fixed evolution to occur to each (logical) state, or indeed if it has introduced errors
but they are correctable, then these states will still be completely distinguishable—they will still have trace
distance equal to unity. Therefore we define the integrity of the memory as

R(®) = rrgnD(@(w), D). (©)

Note that we take the minimum over all possible choices of 1y made by Alice. We do this to account for the fact
that certain memory channels may have no detrimental effect on special choices of the state, as for example a
dephasing channel leaves |0) and | 1) unchanged. To provide a measure which guarantees at least some quality of
storage for all states, we consider the performance in the worst case. Note that for many environmental noise
models, including pure depolarising noise, Bob’s performance does not vary with Alice’s choice.

In the partner paper [ 15] this definition is obtained from a more basic starting point where orthogonality is
not imposed. Our discussion proceeds from equation (5) for the sake of brevity.

It is worth emphasising that R(®) is a function on the memory channel @ itself, thus one should speak of the
integrity of the memory (including the specific choice of error correction technology). It is understood that the
memory channel is used for some defined time 7, and that if the same memory system were used for a longer
time then its integrity would be lower; typical channels will have zero integrity as 7 — 0.

The integrity of the memory has a highly intuitive and natural meaning through the following scenario: We
suppose that Bob initially knows nothing about Alice’s choice of qubit to encode, but after Bob has completed
his decode process to obtain the single qubit we then describe to him two choices: either Alice’s initial qubit was
1 or it was 1), . Bob then makes a measurement of his choice to try to determine whether itis ® (1)) or ®(¢)) that
he has received. The integrity R (®) tells us Bob’s probability p, of guessing successfully according to

Poworst = 5 T s R(@) and so R(P) = 2p, 0 — 1. (6)
Here the label ‘worst’ reminds us that this is the lowest success probability, i.e. when the options 1), v, are the
ones least well preserved by the memory (if indeed there is any variation). The integrity therefore describes the
best possible guarantee that can be made on how well a memory preserves the distinctiveness of different states.
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Notice that we constrain Bob to use a specific method to identify the received state. He must map the logical
qubitback to a single physical qubit by first applying a standard round of error correction for the code in
question, then applying the inverse of Alice’s encoding circuit. Bob’s sole freedom is that he can choose how to
measure that final physical qubit. As we explain in appendix C, by constraining Bob this way we ensure that his
performance is associated with the code structure and its capacity to protect information. In the appendix we
discuss the performance of a more powerful agent who is given full information about the error channel and
complete license to perform any operations on all # received qubits; this agent actually has very similar
(sometimes identical) performance to our constrained Bob.

For some memories ® (although not for all conceivable memories) Bob’s correct strategy for his final step is
the obvious one: just measure in the basis {|t)), [t/ ) } and make the guess correspondingly. Then Bob’s success
probability is simply the fidelity of the state ® (1) with respect to Alice’s initial state 1, since the fidelity of any
state with respect to a pure state is the probability of obtaining that outcome in a measurement (as we remarked
following equation (1)). So in this case Bob’s probability of guessing correctly is simply b= F(, P(1)).
Moreover his worst performance is

Py worst = H}jn F@), ®()).

But given equation (6) we can now offer a precise meaning to the idea of ‘the (worst case) fidelity of a logical qubit
stored in the memory’ for any channel where Bob would opt to measure in the basis {|¢), |1 ) }. For sucha
channel,

Flogic = % + %R(q))

Loosely, Fiogc is the fidelity after we project into the logical subspace of the code with a perfect round of error
correction. For memory channels with sufficiently complex noise maps N that Bob’s choice of measurement
basis would notbe {|1), |11 )}, the veryidea of the ‘fidelity of a logical qubit stored in the memory’ becomes ill
defined. Thus, integrity is a general measure which relates to the notion oflogical fidelity when the latter notion
makes sense. However integrity remains well-defined and meaningful even when the logical fidelity does not: it is
the more general and robust concept.

Importantly, it is eminently practical to directly measure integrity in an experimental setting. Notice that
although the definition equation (5) refers to two different states, we would evaluate the integrity R through a
series of single uses of the memory—we simply follow our scenario described above involving Bob guessing
between options and employ equation (6). Consequently the costly process of performing full state tomography
is not required. Equally importantly, while the definition describes the encoding and decoding as occurring
perfectly (conceptualised by saying that Alice and Bob are perfect), we will show that in practice they can be made
imperfect and yet the experiment can gauge the integrity with good accuracy. These features are discussed in
more detail in section 5 and appendix F.

3. Milestones toward successfully protected memories

Armed with this notion of the integrity R of a memory channel ®, in essence the worst case probability that the
state of a stored qubit can be inferred by Bob, we now identify milestones towards the goal of superior code-
based quantum memories. In a similar spirit [16] has described ‘phases’ of development for surface code
realisations. The authors emphasise the crucial task of scaling so that phases beyond the first correspond to ‘at
least tens of qubits’. In the present paper we take the complimentary approach of stressing tipping points in
performance, while remaining agnostic as to the code type and the number of physical qubits.

For convenience of exposition we may imagine that a third party, besides Alice and Bob, is responsible for
the cycle(s) of error correction performed during the memory period: since this individual is effectively a flawed
assistant for Bob, we use the name Igor after the famous fictional lab assistant. We initially focus on the case
where at most one error correction cycle is used during the entire period 7 where memory operates, i.e. in
between Alice (t = 0) and Bob (t = 7). We therefore now specify Step 2 of table 1 in more detail, setting it out in
table 2. The key idea will be to compare the integrity of the memory channel without error correction (no Igor)
to the case with EC (Igor participates) and determine whether the latter is superior.

Let us use the symbol ¢ to label the memory channel when Igor performs 1 rounds of error correction, so
that ° labels the channel when no QEC is performed (i.e. noise sources are purely environmental). Then we say
thataround of error correction is beneficial if Bob’s probability of subsequently discriminating the state
correctly is higher when Igor indeed performs that round, i.e. when

R(PY) > R(D). (7

This criterion for successful error correction can be summarised as, ‘Is Igor a help or a hinderance to Bob?’.
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Table 1. Evaluating the integrity of a memory system. See also
figure 1.

Theoretical protocol for measuring integrity

la Alice (perfect) prepares a single qubit state 1)) or [¢),).
1b Alice perfectly encodes it into the # physical qubits.
2 From t = 0 to 7 the n qubits are in the memory; noise

occurs from environment and possibly error correction.
3a Bob (perfect) performs error correction on the n qubits,

then decodes (inverse of 1b) the state to a single qubit.
3b Bob is told Alice’s qubit was either |1)) or |1 ). He

measures his qubit and guesses, success probability p,.

Table 2. Expanding on Step 2 of table 1 when we wish to
assess the benefits of error correction.

Without error correction: memory ¢°

2a The n physical qubits are subjected to
environmental noise for a time 7.

With error correction: memory &'

2a The n physical qubits are subjected to
environmental noise for a time (7 — §) /2.

2b Optionally, Igor is asked to apply a full round of
imperfect error correction, taking time 0.

2¢ The n physical qubits are subjected to
environmental noise for a further time (7 — ) /2.

This seems entirely straightforward but there is a subtlety: the question of whether equation (7) is satisfied
will depend on the duration 7 of the memory channels (here we would naturally set the same 7 for both ®! and
@ for a fair comparison). Since we are interested in defining a first milestone for experimental efforts, we say
that error correction can be beneficial if

R(®H) > R(®°) for some value of 7. (8)

We will refer to the challenge of satisfying equation (8) as milestone M1: Beneficial error correction.

One might wonder if we should consider a stronger condition: R(®!) > R(®°) for all values of the common
duration 7. It is interesting and important to note that this condition will be impossible to satisfy in physical
devices where the process of error correction is very fast compared to the rate of environmental decoherence.
This applies, for example, to ion trap devices with clock-transition qubits where the environmental decoherence
time can be on the order of minutes but gate operations are sub-millisecond. We need only assume that
environmental decoherence is a continuous process to see that R(®°) — las 7 — 0, i.e. the integrity of the
simple memory channel is arbitrarily close to unity for a sufficiently short value of the memory duration 7. In
other words, finite environmental noise needs finite time to occur. We can inspect the equivalent limit for ! if
we assume that Igor’s error correction cycle is instantaneous (whereas if it takes finite time ¢ then we cannot
employ memory channel ®! for time durations less than 7 < §). But given instantaneous error correction, we
find R(®!) — € as 7 — 0, where eis non-zero and is related to the inevitable imperfections in the cycle of error
correction, i.e. the circuit elements such as state initialisations, one- and two-qubit gates, and measurements will
all have finite infidelity. What we are noticing is that it is not desirable to perform error correction ‘as frequently
as possible’—we should wait for a finite time before applying an error correction cycle, so that its negative
impact on the memory is justified by the positive gain. This is made very apparent by figure 3 in the next section.
Of course, if the time required for error correction is comparable to the environmental decoherence rate, as may
be the case for superconducting qubits, then one never has the luxury of waiting until the optimum time to
perform error correction; cycles should indeed be performed ‘back to back’.

While equation (8) is an important first milestone for an error-correcting quantum memory, further
milestones can also be identified. For a sufficiently high performing Igor, and along memory duration 7, it will
be beneficial to have multiple rounds of correction. This will be a signature of further progress toward a practical
quantum memory. We would then find that

R(®™) > R(®" 1) for some value of 7. 9
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Here we understand this need only be satisfied for some particular m > 1 (it seems likely that it would be
achieved first for m = 2 but we do not insist on this). We will refer to the challenge of meeting the condition in
equation (9) as milestone M2: Beneficial multi-round error correction.

Equations (8) and (9) involve comparisons between memories which both employ encoded qubits. There is
of course another type of comparison we can make, one which directly addresses the question of whether it is
‘worth’ using encoded memories at all: we should contrast such a memory channel to a simple, single qubit
memory. Let us use the symbol © for that memory channel. We can consider its integrity R (©) easily enough.
Alice prepares a single qubit, again choosing between ¢ and v, , but does not encode it into multiple qubits. It
exists asamemory from ¢ = 0 to f = 7, and finally Bob receives it but of course he has no decoding to do. The
qubithe receives, O () or © (1)), differs from Alice’s qubit only because of environmental noise. But as before
Bob must measure it to guess between the two possible states, and as before his probability of success is simply
% + %R(@). For our actively-corrected encoded memory to ‘beat’ the simple single-qubit memory, we require

R(®@™) > R(O) for some 7o, while using 76 = aTe. (10)

Here we require only that this is true for some specific value of m > 0 (it seems likely that m = 1 would be the
first demonstration). Note the more complex condition on the channel durations. In equation (8) and
equation (9) it was clear that the duration 7 of the two memory channels should be the same for a fair
comparison. This is not necessarily true of the equation (10) since one can argue that the meaningful time scale
for a quantum memory is not ‘wall clock’ time but rather the time required to perform an active gate operation
(perhaps the average time, given that circuit operations will differ in their time requirements, or perhaps the
slowest time to be strict). Depending on the hardware platform and architecture, the time required to perform a
gate operation on an encoded qubit may be longer than the time to perform the equivalent operation on an
unencoded qubit. This would then suggest that 75 should be longer than 7, and the factor o > 1isincluded in
equation (10) to reflect this. We will refer to the challenge of satisfying equation (10) as milestone M3: Beneficial
encoded memory.

Here we can make contact with the concept of a ‘pseudo-threshold’ (see e.g. [17, 18]). This concept is
typically used in the context of concatenated codes, where there may be several levels of concatenation required
before error rates fall sufficiently for deep quantum algorithms (such as Shor’s or particularly Grover’s
algorithm). In the present context, we restrict our interest to the lowest level of concatenation where a process
involving unencoded qubit(s) is compared to a process with a single level of encoding. The pseudo-threshold has
been surpassed if a circuit performs to a higher standard with the encoded qubits, i.e. logical qubits, versus using
the physical qubits directly. One might demand that for a complete universal set of operations, each operation at
the encoded level outperforms the analogous operation using unencoded qubits. Alternatively one might speak
of the pseudo-threshold for a specific operation, such as a single-qubit gate, a CNOT operation, a measurement
or indeed a memory. In essence equation (10) represents the (lowest tier) pseudo-threshold for memory, i.e. for
the identity operation in a circuit.

Assuming that equation (10) can be satisfied, there is a higher goal which might be achieved namely

max R(®Qpc) > R(O) for all 7o, and using 74 = ate. (11)

Here the maximum is over a family of memory channels having the same duration 75 but with differing numbers
of error correction cycles m. Importantly, we permit m = 0. If this condition is satisfied, it means that for any
desired duration we can sustain our encoded quantum memory at a higher integrity than a single physical qubit
memory. We do so by applying a suitable number of error correction cycles. Moreover this is true even allowing
for the factor v discussed above. This is therefore the ‘gold standard’ for demonstrating a quantum memory and
itis the most challenging of the criteria we have presented in this section. We will refer to the task of satisfying
equation (11) as milestone M4: Strictly superior encoded memory.

We have presented four milestones in an order which we expect may represent an increasing degree of
challenge. It is not necessarily the case that each is more difficult than the last—for example, conceivably M3 may
be achieved before M2 in a given physical device. However the fourth milestone is clearly the most demanding
and we should expect that the inequalities in equations (8)—(10) must all be satisfied before equation (11) can be
achievable.

It is worth noting that it is already a non-trivial accomplishment to achieve logical encoding with good
fidelity, and this can be established by verifying the logical qubit immediately after its creation—this is explored
in[16]. In our approach the first milestone is the one that would naturally follow such an accomplishment, i.e.
introducing Igor to perform an additional round of error correction mid-way.
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Figure 1. Reproduced from [14]. CC BY 4.0: cartoon of the protocol for assessing the integrity of an error-corrected memory. Alice
and Bob perfectly perform the encoding and measurement, respectively, of a logical qubit. Meanwhile, Igor is an imperfect agent
attempting error correction to fight noise.

4. Numerical studies

In this section we present our simulation results under the Alice-Igor—Bob framework described in tables 1 and
2. The simulation technique is based on the Monte Carlo method, the advantage of which has been described in
[14]. We emphasise that the integrity benchmark we have described is appropriate for any and all error models,
including coherent noise, non-Markovian noise and so on. As specified in appendix A, in this paper we have
used the simple canonical Pauli depolarising noise model (on all elements including state preparations, gates,
measurements, and environmental noise) since it is a standard model to use in a first investigation. We aggregate
alarge number of individual runs, in each of which a pure state undergoes a specific trajectory: after every circuit
elementis applied, a classical random number is generated and compared with the error rate for that circuit
element in order to decide whether an error is applied and if so its type. Each data point presented in this paper is
aresult of at least one million runs, and in order to make a smooth curve, at least 50 data points are generated for
asingle curve. The hardware used for this work is a cluster of approximately 100 nodes, which are connected by
Intel TruScale QDR Infiniband. Each node is based on a motherboard with two Intel E5-2640v3 CPUs and has
between 64 and 256 GB of memory.

For all the simulations presented in this paper, we use the Alice-Igor—Bob scenario that has been discussed in
tables 1 and 2. The circuit level description is shown in figure B3, where we take the five-qubit code as an
example. Igor performs his error correction cycle halfway through the duration of the memory channel (or for a
channel with n correction cycles, at points t = m/(n + 1) with m = 1..n).Igor measures a complete set of
stabiliser measurements and applies error correction based on the error syndrome. We take Igor’s action to be
instantaneous although it is of course trivial to assign it a finite time ¢ as indicated in table 2. If Igor’s analysis
indicates that a correction is necessary, then the appropriate correction is applied perfectly—this is a proxy for
the reality that one can simply note the need for correction and update future operations to allow for it, thus
never needing to apply an imperfect physical operation to the identified qubit. Note however that altering this
principle to instead apply a noisy fix would make negligible difference to the observed integrity, since it is merely
one additional operation for Igor’s circuit which at minimum involves over a dozen gates.

Presently we evaluate the integrity metric for three different well-known codes: the five-qubit code which is
the smallest possible error correcting code [19], the seven-qubit Steane code [20, 21] and the nine-qubit surface
code [21, 22]. We will compare the inherent properties of these codes, both in their simple and fault-tolerant
variants, and we will show examples where the various milestones described in the previous section are (or are
not) met.

We begin by explaining the nature of the graphs shown in this section. Typically they are of the general form
exemplified by figure 2(a). On the vertical axis we show the integrity, as defined earlier, which of course is equal
to unity for an ideal memory. The horizontal axis shows the duration 7 of the memory channel(s) in question;
the duration is shown as a ratio with respect to the environmental decoherence rate T'which is the decoherence
time of an isolated single physical qubit (see error model specification in appendix A). Each point alonga curve
in the figure is thus the integrity of a specific kind of memory when operating for the specific duration indicated
by the horizontal axis.

There are four types of memory channels shown in figure 2(a): the simple one-qubit memory © (shown in
blue), an encoded channels without Igor’s error correction, ®° (red), and two channels where Igor does perform
one round of correction @' (yellow, green). The last two differ only in that Igor’s error correction circuits have
error rates 0.2% and 0.7%, respectively. In all cases the encoded channels are using the five-qubit code.
Encoding and decoding tasks, performed by Alice and Bob, are perfect as per the definition of integrity (we defer
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Figure 2. The integrity of different types of memory channel (upper), and the integrity change during a given memory channel (lower).
(a) Memory integrity assessed over many different durations 7 ranging from zero to T, the single-qubit decoherence time. Blueline: a
single physical qubit, i.e. no encoding. Red: a memory using the five-qubit code for the stored qubit, but without active correction
during the channel. Orange: the same five-qubit code, but now with a round of error correction performed mid-way through the
memory duration, i.e. at time t = 7/2. Error rate in operations during the correction cycle is 0.2%. Green: as for orange, but error
rate 0.7%. (b) We plot the ‘integrity at interruption” in order to look inside three specific memory channels during their operation.
The three channels all have duration 7 = 0.4 T. As explained in the text, the interesting feature is the step-like decline occurring at
t = 7/2 = 0.2 T when Igor performs imperfect error correction.

the discussion of noisy Alice and Bob, an unavoidable reality in real benchmarking experiments, to later in this
section).

Igor’s error rate of 0.2% is low enough for him to perform well and consequently we observe two desirable
line crossings in the figure. For all durations 7 > 0.16 T we see that the error corrected memory ®! (yellow) is
superior to the uncorrected memory ®° (red). Thus forany 7 > 0.16 T we meet the M1: beneficial error
correction milestone specified earlier in equation (8). Furthermore, for all durations 7 between 7 ~ 0.035 T and
7 = 0.49 T the corrected memory ®! (yellow) has superior integrity to the single-qubit memory © (blue). Note
however that in comparing the single-qubit channel © to the encoded channels, we have not introduced any
scaling factor to adjust their relative durations (i.e. we have set & = 1in equation (10)). This might be
considered unreasonable unless the physical platform embodying the memory system is capable, in principle, of
performing transversal gates in one step so that operations on logical qubits are on the same timescale as
operations on physical qubits. With this important caveat, we can say that for any duration in the range
0.035 T < 7 < 0.49 T we can meet the M3: beneficial encoded memory milestone, equation (10).

In order to discover whether we can meet the remaining two milestones, and in particular the highly-
desirable M4: strictly superior encoded memory milestone, we would need to consider channels with multiple
rounds of error correction; this is shown presently.

The green line, corresponding to the higher per-gate error rate of 0.7% during Igor’s error correction, never
surpasses the integrity of the single physical qubit memory; therefore this channel does not meet milestone M3:
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beneficial encoded memory. However when the duration 7 > 0.55 T it does (barely) surpass the integrity of the
@0 channel. Therefore milestone M3: beneficial error correction is met.

Three points labelled A, B, and Chave been highlighted in figure 2(a). They lie at a value of the duration,

7 = 0.4 T for which the high-fidelity corrected channel is superior to the single physical qubit memory ©,
which in turn is superior to the encoded-but-uncorrected channel ®°. One might wish to understand how the
integrity varies over the course of the duration of those memory channels. In fact, the question is not entirely
proper since integrity is only defined as a property of the entire channel; but we can ask what would happen if
Bob were to ‘step in early’ at any time betweent = Oand t = 7 = 0.4 T. We suppose that Bob would perform
his usual decoding, measurement and guess using the state of the memory system at that premature point. From
his performance we can infer an ‘integrity so far’, so to speak, which we might also call the ‘integrity at
interruption’. Figure 2(b) shows this quantity. The blue and red lines, which correspond to the single-qubit
memory © and the encoded memory without correction ®°, do not reveal anything interesting. Indeed they
precisely correspond to the same lines in the region 0 < 7 < 0.4 T in the upper panel (in effect, we have just
‘zoomed in’). For these two cases the noise on the memory is simply a continuous process; when Bob interrupts
our channel that should have had duration 7 = 0.4 T, it is exactly equivalent to having a memory of the shorter
duration.

The green line in figure 2(b) corresponding to the error-corrected channel ®! is far more interesting. Itis
exactly coincident with the ®° line until + = 0.2 T because in these cases Bob interrupts before Igor performs his
error correction cycle. But then the ‘integrity at interruption’ falls sharply, i.e. there is a significant difference
between Bob interrupting immediately before Igor’s effort, versus doing so immediately afterwards. The reason
is that Bob’s process of decoding the memory begins with a round of error correction and his error correction is
perfect; thus it can only be worse to have Igor apply his own flawed effort at correction immediately beforehand.
However despite the sharp step down, the eventual integrity at full duration is higher. This is because Igor’s
efforts have reset the accumulation of errors, lowering the overall chance of an uncorrectable set of errors (i.e. 2
or more errors, for the five-qubit code) over the course of the complete memory channel. We see this evidenced
by the inverted parabolic curve immediately after Igor’s action: in effect the environment must ‘start again’ to
build up significant probability of weight-2 errors.

Itis interesting to reflect further on the observation that error correction cannot increase the quantity
‘integrity at interruption’, assuming we have no knowledge of the initial encoded qubit (given such knowledge
we can trivially increase integrity by erasing the memory and reinitialising it). Any form of error correction, with
whatever code and however well performed, is a process that merely ‘delays the inevitable’ in the sense that
integrity must fall; we can only alter the rate at which it falls. For the ultimate goal of fault tolerant quantum
computing, we must slow the decay of integrity to such an extent that the entire calculation can take place before
an error becomes likely. The fact that integrity is a non-increasing function of time is a merit versus over other
measures (such as the simple fidelity with respect to an ideal state) which can both fall and rise, so creating the
false impression that quantum information is somehow being regenerated.

A related observation is the following: the rate at which we should apply error correction cycles has some
optimum which depends on the relative severity of environmental decoherence per unit time versus the error
rate within our error correction process (the noise in Igor’s circuits). We should not apply error correction more
frequently than this rate, or else the loss of the integrity will be dominated by the noise we introduce in our error
correction cycles (recently a similar observation was described in [23]). The simulation results shown in figure 3
make this apparent; we again plot the ‘integrity at interruption’ as in figure 2(b), but now for three different
channels of common duration 7 = 0.57, the channels being the single qubit memory ©, and memories using
three or nineteen error correction cycles (®* and ®'%). From the right hand side of the graph we find the
integrities of the three memory channels: they are approximately 0.74, 0.78 and 0.63, respectively, i.e. the
memory channel featuring nineteen correction cycles is by far the worst, while three cycles (which is in fact the
optimum here) provide a superior integrity versus the single qubit memory. The reason is clear from inspecting
the curves: the ‘integrity at interruption’ reveals that the decay of the over-corrected channel is indeed
dominated by the step-like drops associated with noise from Igor.

With that introduction, we now present a series of simulations which contrast different codes, and also
compare fault-tolerant versus non-fault-tolerant implementations of error correction circuits. Unless otherwise
noted we use the standard error model of homogeneous Pauli noise occurring without correlation, and for Igor’s
circuits the noise occurs on all circuit operations with equal probability. It is worth stressing that the relative
performance of the codes may differ greatly when this error model is substantially varied.

The appendix shows the various encoding, decoding, and error correction circuits which we use in the
simulations described here. As a first step toward comparing the efficacy of different codes, we begin by
reporting a special case which is achieved by setting the memory duration to zero, and simply investigating the
impact of the error correction process itself. Thus, we take a perfectly encoded qubit prepared by Alice and
present it directly to Igor who performs an (entirely unnecessary!) error correction cycle before passing the
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Figure 4. Integrity change with increasing gate error rate. Here the duration of our memory is set to zero, in order to directly inspect
the negative impact of an imperfect error correction performed by Igor. The horizontal axis shows the level of noise associated with
each circuit element of Igor’s circuits. We analyse memories based on the five-qubit, the Steane, and the nine-qubit codes. Igor’s error
correction is performed either in a simple, non-fault tolerant fashion or with full fault tolerance. As explained in the text, the various
line shapes and the relative levels of performance are straightforward to understand qualitatively.

encoded qubit directly to Bob for his analysis. The reduction in integrity is thus purely due to Igor’s action. The
results are shown in figure 4. Notice that in contrast to all other figures in this paper, the horizontal axis here is
not time (since the duration is zero) but rather Igor’s error rate.

Figure 4 includes eight different options for the encoding and correction of alogical qubit. Three different
codes are considered: the five-qubit code, the seven-qubit Steane code (which is also the smallest 2D colour
code), and the nine-qubit surface code. For each of these, the performance of a non-fault-tolerant (non-FT) Igor
is plotted. For the nine-qubit code, a second curve shows the performance when Igor employs a specific FT error
correction circuit (see figure B4(e)). For each of the other two codes, we display the performance of two different
FT circuits: the standard ‘Shor’ approach using four ancilla qubits, and an alternative method very recently
proposed by Chao and Reichardt [24] which requires only two ancillas, see figures B4(c) and (d).

There are several interesting general observations to be made from figure 4. Firstly, it is reassuring to note
that two logically-necessary features are indeed present: one observes that all the cases which employ non-fault-
tolerant (non-FT) error correction for Igor have the expected linear decay as Igor’s error probability p increases
from zero: integrity goesas 1 — cp for some constant c because non-FT circuits are vulnerable to single errors.
Meanwhile the scenarios featuring FT error correction all have the expected inverted-parabolic shape: the
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integrity goes approximatelyas 1 — kp? when Igor’s error probability p is small. Circuits of this kind are
‘immune’ to single errors and vulnerable only to weight two (or higher) errors. Note that for higher (but still sub-
1%) error rates for Igor, the fault tolerant circuits become inferior to the simpler non-FT circuits. The reason is
essentially combinatorial scaling: the FT circuits are generally considerably more complex with far more gates,
thus as gate failure probability p increases the risk of a double error in these complex circuits eventually
outweighs the risk of a single error in the simple non-FT circuits. Thus one should not suppose that ‘fault
tolerant circuits are always better’—for small codes and appreciable rates of gate error, they may not be.

The different gradients in the various linear and parabolic curves can be qualitatively understood by
considering two desiderata. The first is the portion of all possible weight-2 errors that actually prove to be
correctable. For example, the five-qubit code is corrupted by all weight-2 errors, but the seven-qubit Steane code
can correct any pair of errors if (and only if) one is of type X and one of type Z. The nine-qubit surface code has
the highest portion of ‘harmless’ weight-2 errors in this sense. The relative ordering of the non-FT codes can be
explained by this feature alone. However for the FT codes, there is another competing feature: as noted above the
complexity of the FT error correction circuits is what ‘kills’ their performance, so simpler circuits are superior.
Consistent with this principle, we see wherever an appreciable performance gap exists between the ‘two-ancilla’
variant of a FT code versus the ‘Shor’ variant of the same code, the former is always superior. Moreover the FT
circuits for the five-qubit code are more simple than those the seven-qubit Steane, thus among the FT curves the
five-qubit outperforms the Steane. Remarkably FT circuits for the nine-qubit code exist which are actually very
simple (as previous authors have noted [16, 25]), and thus the FT surface code benefits from both desirable
features described here, and is unconditionally superior to all other codes in the plotted error range. However, it
does require the largest number of qubits: the 9 data-qubits themselves, and Igor also requires 6 ancillas in order
to perform stabiliser evaluation without error propagation. Thus one might argue that the FT five-qubit code, in
its two-ancilla variant, provides better ‘value per qubit’ since it requires a device with only 7 qubits in total.

Itis important to remember that the comparison made in figure 4 is for zero environmental error. The
relative performance of different codes will change once we deploy them properly into a memory channel where
environmental noise is degrading the encoded qubit. Figure 5 shows the integrity change of the memory under
our standard memory channel scenario ' i.e. ‘one use of [gor’s error correction midway’ where the code
employed is either the five-qubit, Steane, or nine-qubit code (all with non-FT correction). See figure B3 for the
explicit circuit used in the five-qubit code case; circuits for the other cases differ simply by substituting the
appropriate stabiliser checks. All curves in this figure correspond to an internal error rate for Igor’s operations of
0.5%. Thus the far left of the figure, with 7 = 0, gives us the same set of three data points as can be read from
figure 4 when the x-axis, the error rate, is 0.5%. We see that the Steane code is marginally superior to the five-
qubit code, but both are markedly inferior to the nine-qubit code. However, as we move away from the hard left
of figure 5 to consider increasing duration of the memory, we find that the five-qubit code surpasses first the
Steane and then even the nine-qubit code. The reason is that as more environmental error accrues, a code with a
larger number of physical qubits will reach the point where two-or-more errors are present, i.e. the situation
where the logical qubit may be corrupted, at an earlier time.

In preceding figures we have focused on cases where a single round of error correction is applied during a
memory channel, and we have identified points where our milestones M1 and M3, would be satisfied. In figure 6
we show how the use of multiple rounds of error correction (equispaced within the duration of the memory
channel) may allow us to meet milestone M2: Beneficial multi-round error correction associated with equation (9),
or even milestone M4: Strictly superior encoded memory associated with equation (11). In the upper panel, Igor’s
error rate suffices for the former but not the latter; in the lower panel Igor’s error rate is set to 0.1% which proves
to be sufficient to achieve the fourth milestone.

Before concluding this comparison of different codes, we should stress that our intention is not to identify
‘best and worst’ codes but rather to show the circumstances in which various codes can be the better choice. We
also recognise that there are other merits beyond the question of how well a code preserves channel integrity—
for example, the Steane code (which is also the smallest instance of the 2D colour code) has the significant merit
versus the smaller five-qubit that all Clifford operations can be applied transversally.

5. Assessing integrity in a real experiment

In all the theory and the numerical simulations described above, Alice and Bob are perfect agents: they provide
the framework within which we assess the memory channel. However, if we are to assess integrity in an
experiment—i.e. if it is to be a practical measure for benchmarking quantum memories—then we must tackle
the reality that Alice and Bob are merely phases of an experiment within which all operations are imperfect.
Bearing this in mind, to what extent can one can still assign an integrity to the memory channel? And more
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Figure 5. Comparison between the 5/7/9 qubit codes. The data shown are for our canonical Alice—Igor-Bob scenario where total
memory duration 7 during which pure environmental decoherence occurs continuously and a single (imperfect) round of error
correction occurs midway at t = 7/2. See e.g. figure B3. The error rates used for all the gate operations during the error correction
procedure are 0.5%. The lower panel (b) presents the same data but now with respect to the Steane code performance, so that the
integrity of that channel now lies along the horizontal axis.

importantly can we still confidently assert that the integrity of one channel is superior to another, in order to
determine whether milestones such as those identified in section 3 have been met?

In the simulations reported in this section, we apply the same error model and error severity to the actions of
Alice and Bob, as we do to Igor’s error correction cycle. It is crucial now to specify the particular circuits that
Alice and Bob use to perform their functions (whereas before, since they were perfect agents, any circuit
performing the desired function was equivalent).

In the idealised case we spoke of Alice preparing any encoded qubit she wished, i.e. she used a general
encoding circuit such as those displayed in figure B1. Bob used a complex procedure involving a full round of
error correction followed by inverting Alice’s general encoder to map an arbitrary encoded qubit back to a single
physical qubit. However, the definition of integrity corresponds to Bob’s performance when Alice opts for the
worst possible choice of qubit state to encode (or rather, when she picks between the two states |¢/) and |1y ),
which Bob has the most difficulty differentiating post-memory). If we have foreknowledge of which states these
are, we need only find circuits for Alice and Bob to use which perform equivalently to their general purpose
circuits in these special cases. Fortunately for a broad family of error models (see appendix F) we know that the
worst case choice Alice can make will correspond to Pauli basis states, i.e. {|¢), |1, )} will be either {|0), |1)} or
{I+), |=)}or{ly + ), |y — )}. Our challenge is therefore to find specific encoder circuits for Alice and analysis
circuits for Bob for these special cases. This must be done in such a way that we recover the ideal performance of
Alice and Bob when they are indeed error-free, but we obtain best-possible performance for Alice and Bob when
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Figure 6. Multiple rounds of quantum error correction (EC). The integrity of a family of memory channels all employing the five-
qubit code but differing in the number # of rounds of error-correction performed during the memory, where n = 0, 1, 2, 3, 4 or6.
Our imperfect agent Igor performs error correction cycles at times t = m7/(n + 1) for m = 1..n.Inthe upper panel (a) Igor’s gate-
level error rate is 0.3%. As explained in the main text, the system meets milestones M1, M2 and M3 but fails to meet M4. In the lower
panel (b) Igor’s error rate is now 0.1% and we see that by choosing a suitable # we can select a five-qubit encoded memory that will
beat the single-qubit memory for any desired duration 7, so meeting milestone M4: Strictly superior encoded memory.

they are error-burdened. In short, we look for compact fault-tolerant realisations of Alice and Bob for the cases
where |1} and |4/ ) are Pauli basis states.

We will find that we can make use of the simple structure of CSS codes (in our example, the Steane code)
which permit very straightforward fault tolerant measurement, in the logical Pauli basis, by simply measuring
individual qubits (as exploited in e.g. [16]). Encoding of logical Pauli states is also well studied for these codes; an
efficient option can be to prepare a product state and then apply stabilisers, while for certain cases yet more
robust and compact techniques have been identified (see e.g. [26]), which we can simply adopt. For non-CSS
codes we will find that the process is less straightforward but we nevertheless identify solutions.

We emphasise that once we equip Alice and Bob with suitable circuits, we have a full prescription for an
experimental test of integrity: the experimental protocol simply corresponds to the steps listed in tables 1 and 2,
with the sole modification that Alice randomly picks between Pauli eigenstates, and given this pick both her
encoding circuit and Bob’s decoder are selected accordingly from optimised circuits such as those in figure B2.
Thus integrity is evaluated without state tomography.

The data plotted in figures 7 and 8 show the effect of allowing Alice and Bob to become noisy, for the Steane
code and the five-qubit code, respectively. Circuit details are given in the captions.

For Steane code (figure 7) we observe an excellent agreement between the ‘true’ integrity that would be
measured if one were able to use ideal agents Alice and Bob, and the estimate of the integrity that results from
using imperfect agents. We note that there is only a slight variation in the location of the crossing point, and that
ifa crossing occurs in the true integrity (as for the case when Igor’s error is 0.5%) then a crossing also occurs in
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Figure 7. Imperfect, but fault tolerant, Alice and Bob. The scenario in the upper panel (a) corresponds to three different memory
channels each using the Steane code to protect information. The encoder Alice and the analyser Bob are both ideal, as required in the
definition of integrity. We mark the meaningful line crossing which corresponds to meeting milestone M1 (for the orange line) or just
failing to do so (blue line). In the lower panel (b) we present the same analysis but now with errors during Alice and Bob’s circuits at the
same level as Igor’s. Specifically, Alice uses the circuits shown in figure B2 to encode her qubits into |0); . Figure B2 also shows how Bob
differentiates between |0); and |1); by simply measuring all qubits in the z-basis, performing classical error correction, and checking
the parity of a certain subset. Note that the key crossing (and failure to cross) from the upper panel are well approximated in the lower,
indicating that experimental evaluation of integrity is achievable.

the estimate; the specific crossing shown here is that which would show milestone M1 has been met. Conversely
when a crossing does not occur in the true integrity, it also fails in the estimate (here, for the case when Igor’s
error is 1%). The reason for the excellent agreement is that both Alice and Bob’s circuits are robust against
errors. Note we adopt the recently proposed protocol from [26]—by using a single additional qubit in her
encoding process, Alice is able to detect many errors, and if such errors are detected the encoding process is
restarted again until no error is detected. This we are free to do since Alice is ‘not on trial here’ so to speak; our
goal is to fairly evaluate the memory channel involving the environmental noise and Igor’s imperfect attempt(s)
aterror correction. Similarly, it would be legitimate to employ circuits for Bob which reject some outcomes
completely and do not count them towards the estimate of his guess success rate, if those cases definitely
correspond to some failure within Bob’s own processes. An example would be, if a measuring device fails to
return any result atall.

In our second example of noisy Alice and Bob, shown in figure 8 we employ the five-qubit code and,
crucially, we do not employ fault tolerant procedures for Alice and Bob. For the five-qubit code there is relatively
little literature describing fault tolerant state preparation and measurement (in contrast to the Steane code where
there are numerous circuits exhibited in the literature, and progress [26] has been made as recently as 2016).
Moreover the smaller size of the five-qubit code itself may mean that it is targeted by the very earliest
experiments where the additional complexity associated with making Alice and Bob fault tolerant is an
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Figure 8. Imperfect, and non fault tolerant, Alice and Bob. The comparison made here is similar to that in figure 7 except that now the
memory channels employ the five-qubit code and moreover in the lower panel (b) the circuits used by Alice and Bob are not fault
tolerant. Here, Alice uses the circuits specified in figure B2 to encode qubits into | —); and Bob uses the circuit shown in that figure to
differentiate between |+); and |—); . In contrast to figure 7 there is now a profound difference between two panels and one could not
directly assert that aline crossing in the lower panel implies a crossing would exist in the upper panel.

unwelcome obstacle. Unfortunately, when the tasks performed by Alice and Bob become vulnerable to single
gate failures, the resulting memory integrity estimates become very poor approximations to the true integrity. In
the lower panel of figure 8 we see that the line shapes have changed, losing the inverse-parabola shape for short
memory durations. We do still see line crossings, but they occur at significantly different locations. Most
troubling, a line crossing can occur in the experimental data when no such crossing would occur if Alice and Bob
were ideal. Thus, the observation of a crossing in the data is not, in of itself, strong evidence that the actual
memory channel has met a meaningful milestone (such as M 1: Beneficial error correction in this case).

Despite these issues, it can be possible to make use of data such as that in figure 8. One would need to perform
additional theoretical analysis in order to justify the claim that any observed crossing is indeed meaningful. For
example, if the errors in the various circuit elements are well characterised then one could perform simulations
equivalent to those presented in this paper. Essentially one would produce a version of figure 8(b) calculated with
an accurate error model in order to compare with the observed data; if the match proved to be good, one could
use further simulation to discover the integrity that would have been observed with ideal Alice and Bob. In order
words, if the data closely matches a simulation such as figure 8(b), one might fairly state that this is strong
evidence that the integrity is as shown in figure 8(a).

In summary, we can say that integrity can be assessed experimentally in a straightforward protocol: acting as
Alice we choose a qubit state then we perform a series of experimental runs where each run ends in a
measurement from which, as Bob, we ‘guess’ the original state with the binary outcome ‘succeeded’ or ‘failed’.
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We continue until we have a good estimate of Bob’s probability of success p,; if the system is such that p, depends
on Alice’s choice, then we find the least-favourable choice. The integrity of the memory is then simply

R(P) = 21% — 1.In this section we have shown that the creation of the logical qubit, i.e. Alice’s circuit, as well as
Bob’s analysis circuit, can both be noisy and yet we can obtain an excellent estimate of the integrity of the
memory channel itself (factoring out Alice and Bob).

6. Generalisations

The analysis presented here has defined the integrity of a memory channel, where that channel stores a single
logical qubit. The specific codes we have considered are distance three (a single physical qubit error is
correctable) but the definition applies equally to higher distance codes. For cases where a memory channel
stores several logical qubits, it is straightforward to generalise our integrity metric: a natural choice for an m
logical qubit memory would be to have Alice choose a state of m qubits, encode and transmit to Bob as in our
canonical picture (including optionally error correction from Igor) and then Bob decodes and is finally
informed of two options—Alice’s true state and a randomly chosen orthogonal state—between which he
must guess. The memory channel’s integrity will relate to Bob’s worst case performance within this
framework.

One can also generalise the notion of integrity beyond memory systems to actual computations. For a single
logical qubit the natural generalisation would be to perform multiple transversal gates between the Alice and Bob
stages, i.e. in lieu of the pure environmental noise periods. As with the memory channel, this computational
process could include one, or more rounds of error correction from our agent Igor.

7. Conclusion

To conclude: we have described and assessed a measure called integrity as a means to benchmark the
performance of a code-based quantum memories. Integrity measures how well a memory preserves the
distinctiveness of different states. It was introduced recently to assess ion trap based memories in [14], but is
generically applicable to any technology platform. Integrity is a property of the memory channel itself (including
any active memory correction routines) independently of the inevitable encoding and measurement stages.
Importantly the integrity of a memory can be assessed experimentally in a straightforward manner without the
need for full state tomography. We have identified links between integrity and quantities such as ‘fidelity of the
logical qubit’ or the ‘pseudo-threshold’.
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Appendix A. Error model

Here we specify the error model used in the numerical simulations presented in this paper.

Environmental decoherence is modelled as a depolarising process that occurs independently for each
physical qubit. Specifically, when our memory qubits are exposed to the environment for some time ¢ then the
probabilities of an error is given by

p =30 — exp(t/T)).

Given that an error occurs, it is assigned as one of the three Pauli operators oy, oy, 0 selected uniformly at
random. This occurs independently and in parallel for each physical qubit.

Noise also occurs when gate operations are applied by ‘Igor’ while performing error correction cycle(s)
during the memory channel in order to actively protect the stored information. Recall that Alice and Bob, whose
actionsatt = Q0 and t = 7 frame the memory channel, are considered ideal for the purpose of the definition of
integrity; however in the figures 7 and 8, and the associated main text, we consider the effect of making Alice and
Bob as noisy as Igor since this is the likely experimental reality. In all these cases our error model for circuit
operations is as follows:

+ Anoisy single-qubit gate is modelled by the ideal gate followed, with probability p,, by one of the three Pauli
operators oy, 0y, oz selected uniformly at random.

+ Noisy state preparation is modelled by ideal preparation followed by a possible error in the same fashion as
above.

+ Noisy measurement is modelled by inverting the state to be measured in the relevant measurement basis, with
probability p.. So for example, prior to a measurement in the z-basis a x operation will be applied to the qubit
with probability p..

+ Anoisy two-qubit gate is modelled by the ideal gate followed, with probability p,, with one of the fifteen non-
trivial Pauli operators products I ® oy, I ® oy, ..., 0z ® oy selected uniformly at random.

Notice that the same error probability p, is used for all types of circuit element; this is the number that is specified
in the main paper as ‘Igor’s error rate’ and typically expressed as e.g. 0.3%.

Appendix B. Circuits diagrams

B.1. Alice and Bob’s circuits

In figure B1 we show the encoding circuits which we employ when Alice (taken to be ideal) encodes the physical
qubit |1)) which she has chosen to place into the memory. The encoding circuits come from [27, 28, 29],
respectively. Because Alice is perfect, there is no need for fault tolerance in these encoders. Bob employs the
inverse of these encoders as a step in his analysis, see table 1.

In order to experimentally investigate the integrity of a memory channel, we must use circuits for Alice and
Bob that are as compact as possible and, as a strong preference, fault tolerant. Fortunately we need not consider
general encode/decode circuits since (for a broad class of noise models) we know that the worst case choice of
state for Alice to transmit will be a Pauli basis state. Thus it is such states that we need to Alice to prepare and Bob
to differentiate. A suitable compact, fault tolerant encoding circuit for the Steane code is shown in figure B2(b)
which is adopted from [26]. An equally compact, but non fault tolerant encoding circuit for the five-qubit code is
shown in figure B2(b). For both the seven-qubit and the five-qubit cases, our Bob now simply measures all the
qubits; however importantly for the seven-qubit case he can perform classical error correction on the
measurement results making his inference process fault tolerant.

B.2.Igor’s circuits

Figure B3 shows the entire Alice—Igor—-Bob process. In this figure, the memory channel employs the five-
qubit code and Igor’s error correction is not fault tolerant. Consequently the overall circuit is one of the more
simple examples; but cases where we employ the Steane code or the nine-qubit code are analogous, as are
cases where we opt to make Igor’s process fault tolerant. The specific sub-circuits for these cases are shown in
figure B4.
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Figure B1. General encoding circuits suitable for the five-qubit, Steane, and nine-qubit codes. In all cases the physical state of 1) is
encoded into the logical state [¢));..

In our simulations (e.g. figure 4) we considered more than one type of fault tolerance. The most common
method to avoid weight-2 errors is to encode four ancilla qubits into a cat state, verified with additional qubit,
and apply transversal CNOT gates within each stabiliser check, which may be known as Shor’s method. Circuits
in figures B4(a) and (b) demonstrate this approach. A slight difference between these two diagrams exists,
regarding measurement of the ancilla: for the five-qubit code, the encoded ancilla qubit needs to be decoded by
applying the gates used in encoding in reverse before measuring the decoded physical qubit, while for the Steane
code, since each stabiliser check detects only one type of error, we can simply measure all the four physical qubits
in the corresponding basis and check the parity of the measurement results.

The alternative fault-tolerant circuits with only two ancilla qubits are shown in figures B4(c) and (d) for the
five-qubit and seven-qubit codes, respectively. Here we are employing the ideas recently introduced in [24]. The
first ancilla qubit acts the same as that in the non-fault-tolerant circuit, and the second ancilla qubit acts as the
flag qubit: once any weight-2 error occurs, the measurement of it will turn from 0 to 1. For both the five-qubit
and seven-qubit codes, each weight-2 error corresponds to a unique error syndrome if applying a set of normal
stabiliser checks, thus we can detect any weight-2 error by measurement of the flag qubit and correct by mapping
the stabiliser measurement results with the unique error syndrome.

The nine-qubit code has the unusual and desirable property that the techniques described above,
involving multiple ancillas, are not needed for fault tolerance. As shown in figure B4(e), weight-2 errors can
be avoided simply by taking care to measure the stabilisers in a certain order (as has been discussed in
[16,25]). Since only one round of stabiliser checks is to be preformed, fewer gates compensate the cost of six
ancilla qubits required.
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state by measuring three of the received qubits and computing their parity (again, a non-fault-tolerant process). For the seven-qubit
code shown in the lower panel, physical qubits are encoded into |0}, using additional qubit for detection of errors: if returns 1, Alice
restarts the encoding until it returns 0. Such method reduces propagation of some errors in a noisy encoding process. Bob is also fault
tolerant: he measures all 7 qubits, and may opt to flip one of the outcomes if it is necessary to do so in order to produce a legitimate
outcome; the parity of subsets 4, 5, 6,7; 1, 3, 5, 7; 2, 3, 6, 7 should all be the same as to allow him to guess between |0) and |1);.
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Figure B3. Diagram of one whole cycle of Alice—Igor-Bob scenario with the five-qubit code. Firstly five physical qubits are encoded
into the logical state, then the logical qubit is subjected to environmental noise for a time period of T'/2, followed by a cycle of

stabiliser measurements and error correction, and then the logical qubit is again subjected to environmental noise for T'/2. Lastly the
logical qubitis decoded and measured.

The full diagram for evaluating the memory with fault-tolerant error correction is shown in figure B4(f),
where we take the Shor-type five-qubit code (figure B4(a)) as an example—analogous circuits apply for the other
cases. Compared with the non-fault-tolerant error correction as shown in figure B3, three rounds of stabiliser
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Figure B4. Circuits and diagrams for fault tolerant error correction. (a) A round of fault tolerant stabiliser measurement with the five-
qubit code. Here we use the Shor’s method, with which four ancilla qubits are entangled into the cat state with some error probability
and an additional qubit is used to verify the cat state is successfully prepared. After the stabiliser measurement, the ancillas are decoded,
followed by measurement in x-basis. (b) A round of fault tolerant stabiliser checks with the seven-qubit Steane code, again using
Shor’s method. Since each stabiliser check detects either phase or bit flips, results can be obtained by checking the parity of
measurement results of all four ancillas without decoding. (c) The circuit to achieve fault tolerant correction of the five-qubit code
with only two ancillas. The first ancilla is used for stabiliser measurement, while the other one acts as the flag qubit: it returns -1 once
any weight-2 errors occurs, and all such errors render a unique error syndrome thus can be corrected. (d) The same approach as in (¢),
but for for the seven-qubit Steane code. (e) Stabiliser measurements of ancillas following a particular order to achieve fault tolerance
with the rotated nine-qubit surface code. The large circles stand for the data qubits and the small circles are ancillas. The stabiliser
measurement should follow the order denoted by the colour orange, blue, green and finally purple. Since the ancilla labelled 3 can
physically act as the ancilla labelled 2 after finishing the measurement in the blue half-circle and that also works for ancilla 4, which can
actas ancilla 1 after the measurement in the yellow half-circle, in total six ancillas are required to demonstrate fault tolerance.

(f) Schematic view of the whole cycle of Shor-type fault-tolerant Alice—Igor-Bob scenario with the five-qubit code ((a) in this figure).
The same procedure also works for all the others described above. Three rounds of a full set of stabiliser measurements are required to
obtain the correct error syndrome as to avoid artificially introducing new errors through error correction based on the wrong
syndrome.

measurements are required in order to avoid additional errors introduced by error correction based on wrong
error syndromes.

Appendix C. Comparison with a more powerful Bob

The integrity measure contains within its definition the notion that the agent Bob, who receives the memory
state at the end of its duration, will perform a round of (perfect) error correction as the first step of his analysis.
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Figure C1. Effect of a ‘more powerful’ Bob. The solid lines here correspond to the performance of Bob as we have specified him within
our definition of integrity. The vertical axis here is Bob’s probability of making a successful guess, and the solid lines correspond to
memory channels with a single round of Igor’s error correction with error rate 0.5%. The dotted lines are the performance of a more
powerful Bob as described in the text; the dotted and solid lines are essential identical except for the nine-qubit code.

This ensures that we make good contact with existing concepts such as the fidelity of a logical qubit, or the logical
error rate—at least where those latter concepts have clear meanings.

However it is an interesting exercise to to make a comparison between Bob’s ability to correctly guess the
received state, as captured by the integrity, versus Bob’s performance if he were given carte blanche to make his
guess by performing any physically allowed process on all of the encoded physical qubits. The performance of
such a Bob would correspond to the trace distance

1 1 ’ ’
pg =5+ 3PCPu0 Py

where p;, ;and p,, , are the two possible n-qubit states received by Bob. In figure C1 we show a comparison
between the performance of this more powerful Bob, and the Bob as we have defined for the integrity measure.
For both the five-qubit code and the Steane code there is a negligible difference when Bob is given this extra
freedom. For the nine-qubit code there is a small difference. This indicates that the error correction process itself
is not quite optimal: some measurements differing from the canonical nine-qubit code stabiliser measurements
would permit a superior guess, however such measurements might be very non-trivial to implement (generally
the basis states can be entangled).

In order to achieve this slightly higher level of performance, Bob would require not only the freedom to make
any measurements he sees fit on the received n encoded qubits, but (crucially) also a complete understanding of
the noise processes in the memory channel. In short, he would require an accurate theoretical description of the
memory channel itself, so that he can derive both ®(¢/) and ® (¢, ) once the two options for the original qubit, ¢
and 1), are revealed to him. Only then can he determine what measurements to make in order to achieve
maximum probability of a distinguishing between them.

For these reasons we opt to constrain Bob as described in the main paper. Doing so gives us a more
‘operational’ meaning to integrity, and allows us to make direct links to other related concepts in the field.

Appendix D. Case where fault tolerance is beneficial

In the main text, figure 6(b) shows the performance of a high quality memory channel using the five-qubit code
and performing n cycles of error correction, equispaced over the duration, with a gate error rate of 0.1%. As
noted in that figure caption and the associated main text, with this level of fidelity we find that the memory
channel meets the most demanding of our milestones, M4: Strictly superior encoded memory. In the case analysed
in the main paper Igor used a non-fault tolerant error correction cycle; however from the earlier figure 4 one
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Figure D1. Comparing memories employing FT verus a non-FT error correction. In this figure we plot the ‘integrity at interruption’
tolook inside a memory process, as discussed earlier for figures 2 and 3. We compare three memory channels all of the same duration
7 = 0.2 T. The blue line is our standard reference, the single-qubit memory. The other two are based on the five-qubit code, with the
error rate of all the gates involved in the error correction process to be 0.1%. The data shown in orange are for the memory channel
protected by Igor using a non-FT error correction, and the optimal number of such cycles is 2. The data shown in green is for a more
sophisticated Igor using the fault tolerant circuit shown in figure B4(c). It is interesting to note that the optimal number of error
correction cycles is now 4. However the overall performance is near-identical (i.e. lines are very close on the far right).

would expect that a fault tolerant Igor using the (recently proposed) 2-ancilla technique might lead to an even
more highly performing memory channel.

In fact we have found that the memory using fault-tolerant correction is indeed superior, albeit just slightly.
An interesting point is that the optimal number of error correction cycles is higher, for a given channel duration,
when one employs fault tolerant correction versus the naive circuit. This makes intuitive sense: when gate errors
are aslow as 0.1% the fault tolerant error correction circuits work well and introduce less noise than the naive
circuits (see figure 4), so that we will see smaller step-like deteriorations in the quantity we call ‘integrity at
interruption’ implying that they can be used more frequently. This is shown in figure D1 where we contrasta
fault-tolerant and non-fault-tolerant channels of duration 7 = 0.2 T..

Appendix E. Significance of imposing a minimum

In all simulations previously described in this report the environmental decoherence was purely depolarising.
Consequently the environment has no preferred basis, and one finds that Bob’s probability of successfully
guessing the nature of the state selected by Alice does not vary according to her choice. Thus the minimum
appearing in the definition of integrity, equation (5), is redundant in the sense that the minimum and maximum
are the same. In order to show that this will not generally be true, and that therefore it is indeed necessary to
specify the minimum, we need only switch from a pure depolarising environment to a pure dephasing
environment.

The results of such simulations are shown in figure E1 which shows a Steane code protected memory as in
earlier plots (see figure 7) but now with all environmental noise being pure dephasing. The interesting point is
that now Bob’s ability to guess the original encoded state varies dramatically with Alice’s choice of initial state. If
she chooses either |0) or |1) then the logical qubits are in fact immune to phase noise, so that Bob’s performance
impaired only by the noise introduced by Igor—the corresponding line (red) is therefore flati.e. not a function
of the memory duration. In contrast Bob’s ‘worst case’ performance is obtained when Alice’s choice for the
encoded state is [+ ) or | — ) as shown by the yellow line, and it is this that would define the integrity of memory
channel.

In the following section we explain for many common environmental noise models the ‘worst case’ will be
found among the Pauli eigenstates.
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Figure E1. Integrity in a pure dephasing environment. Plot shows the integrity for a memory channel using a the seven-qubit Steane
code, and and single round of Igor’s error correction procedure with a gate error rate of 0.5%. Whereas all other plots in this paper
correspond to a pure depolarising environment, here we have a pure dephasing environment. Consequently, Bob’s ability to guess the
nature of the received state depends strongly on Alice’s choice of which qubit to send: if she sends a z-basis eigenstate then Bob’s
success is certain. Note that only the blue and yellow lines actually conform to the definition of integrity since the minimum is
specified, equation (5).

Appendix F. When does it suffice to prepare Pauli eigenstates?

In the main text and in the preceding appendix we noted that Alice’s choice of state to encode can influence
Bob’s performance when he guesses the nature of the received state. Therefore integrity is defined from the worst
case performance. In the main text we noted that when indeed this occurs, we will often find that the worst case
corresponds to Alice choosing a Pauli eigenstate. Here we explain that this is typical for a broad range of error
models. In the following, when we refer to ‘weak’ noise this is in the sense that the error probability is <0.5,
which is in general the region of interest where the milestones M1-M4 can be met.

Recall that we are assessing single-qubit memories, represented by a channel ® on single-qubit states, in the
presence of realistic noise using experimentally viable methods. We proceed by describing a general class of noise
channels with noise dominated by incoherent Pauli errors, and describe conditions under which we can reduce
the testing of single-qubit memories subject to such noise to testing of Pauli eigenstates.

Wewrite P = {0, o), 6@ o3} for the set of single-qubit Pauli operators (we sometimes write 1 = o©,
X =00Y = 0@, and Z = 0®). Let PM denote the set of M-fold tensor products of Pauli operators
oW @ ... ® o', A Pauli channelis achannel on M > 1 qubits whose Kraus operators are each proportional to
an element of PM, representing random Pauli operators acting on those qubits according to some distribution.
We may denote such a channel by

D(p)= > p TpT. (F1)

TepM
(All such channels are unital, i.e. (ID(%JI) = %Jl.)

Aweak Pauli channelis such a channelinwhich p; ., > % We can experimentally estimate the integrity
of aweak Pauli channel ® on a single qubit, as follows. First note that we may simplify the formula of memory
integrity from equation (5) by noting that

R(®) = min  [@@) — 2ol
Yot

= min H () — (1) Ht . (F2)

For such channels we have ®(¢(?) = Q; o for some a; > 0:inparticular, as these channels are unital, ap = 1.
Then for any single-qubit state p = %[]l + 100 + 1,6® + r,00)], we have

3 3
H D(p) — q)(%]l) Ht = Z%rjaja(f) = Y oriak (F3)
d j=1 o j=1
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This is a convex combination of the scalars 0{?, which is minimised by setting r]-2 = 1 for the smallest coefficient
ajand r; = 0 otherwise. Thus

R(®) = mina? = min D@(), 2(p7)), (F4)
J J

where <p(ij) arethe 4-1-eigenstates of the respective Pauli operator o7,

A weak i.i.d. Pauli channel is such a channel which consists of a tensor product ®; ® ¢, ® --- ® ®; of
identical channels. We are more generally interested in maps ® = D o N o E which consist of an ideal encoder
E for a stabiliser code (encoding one qubit into M qubits), a noise process N weak i.i.d. Pauli channel on M
qubits, and an ideal decoder D which performs one round of correction decodes the M qubit state again to a
single-qubit state. It is not difficult to show that ® will be a weak Pauli channel when Nis a weak i.i.d Pauli
channel, in which case the worst case performance will be achieved by Pauli eigenstates in this case as well.

This motivates the following procedure to experimentally assess the quality of an isolated quantum memory
on a weak Pauli channel: prepare a state apg) = |¢) (@], apply @ to it, and test the probability with which we
obtain the outcome |¢) (¢| when a (/) measurement is performed on it. Performing the above many times for
each Pauli operator o/, we may determine with some level of confidence for which operator o/ this fails most
often. This determines the pair of orthogonal states which ® does the poorest job at keeping distinguishable;
using equation (6), we may then compute R (D).
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