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Video: 2011 Volvo !SGO Collision - V_|DO SHOWS TESLA AUTOPILOT FAILING
Avoidance Fails During Demonstration, .
Smashes Truck White House Drone
17 drone disasters that show why the FAA hates Crash Described as a U.S.
drones Worker’s Drunken Lark
Boeing 737 Max: Software patches can only RQ-4B GLOBAL HAWK ACCIDENT
fos0 much INVESTIGATION RELEASED

Systems architects, engineers, and management can all learn from the history of the development of this complex
aircraft

Drone Crash in Iran Reveals Secret U.S. Surveillance Effort
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Robotic surgery linked to 144 deaths In Death b}{ robot: the new
the US mechanised danger in our

changing world

As the use of autonomous machines increases in society, so

FaUIty pacemake rs 'killlng 2,000 a year': too has the chance of robot-related fatalities
Third of unexpected deaths among

patlii?ntstt_hought to be caused by ROBOT C ANNON
malfunctions KILLS 9, WOUNDS

14

Robot 'goes rogue and kills woman on
Michigan car parts production line'
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The value that autonomous systems generate to
society is limited by their lack of safety.
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Technical/Scientific Questions

How do we know that an autonomous system is safe?

How do we know that the software computes the right result?
How do we know that the software computes the result at the right time?

How do we verify a system composed of both software and its physical environment
(Cyber-Physical Systems (CPS)) ?

How can we do offline verification of the software in an autonomous system when
we do not know precisely its physical environment?

How can we verify systems that use AlI/ML techniques?

How can we design systems to continue to perform some function
(maintain safety) even in the presence of cyber-attacks?
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Runtime Assurance Key for Safety-Critical Autonomous-Systems

Constraining Behavior (satisfies @) with Enforcers
- Verifiable Constrained Behavior
- Verifiable Enforcer Implementation

Multiple Enforcers &, ®,:
- Identify Conflicts
- Resolution of Conflicts
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Our Work

Formalization of Enforcers Operating on Same Actuators

Algorithms to Combine Enforcers (called select)
- By Priority (select)

Enforcers Encoding in SMT Formulae

- select implementation with SMT

- Succinct SMT enforcer encoding

- select implementation as logical operations

Online SMT enforcer implementation
- Incremental solving

- Push/Pop Formulae

- Dynamic Context

Experiments with Drones
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Formal Periodic Model: Representing Time-Aware Logic

State of the system: values of variables

- State variables: Vs

- Action variables: Vs

- Variable values from domain: D

- System state: state variable: s:V¢ » D € S

- Actions: action variables valuations: a: Vs = D

- Behavior: state transitions given actuation every period P: Rp(a) €SS X S
- Next state given action: Rp(a,s) = {s'|(s,s") € Rp(a)}

- Property to verify subset of all possible states: ¢ © S

- Enforceable state: Cy, € ¢ A Cyp = {s [Fa € Z:Rp(a,s) € Cyp}

- Safe actuation : SafeAct(s) = {a|Rp(a,s) € Cy}
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Formal Model

a3 & SafeAct(ss)

a, & SafeAct(s,)

a, € SafeAct(sy)
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Enforcer Definition

Enforcer: E = (P,Cy, 11, U)
* P: period of the enforcer
* Cy: set of ¢-enforceable states
*u:Cyp 2%: mapping from enforceable states to actions
- Vs € Cy - u(s) S SafeAct(s)
*U:Cyp X Z & R maps each ¢-enforceable state and its corresponding actuation to its
utility
- Dom(U) = {(s, a)I(s € Cqb) A (a € u(s))}
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Utility Agnostic Enforcer Operation

a if a € p(s)
pick(u(s)) otherwise

Q=
where:
pick(X): arbitrary element of X

a :actuation from unverified software
s. state of system before «
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Enforcer

—Ja|a = E(s3,a’)
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Example

(Xmaxr Ymax) 180

(xmin' ymax)

¢ 165 « o 105 *
0 + 105 270
285 6 0 _ Y
0, compass 0 axis
15 6 + 255 345
255 03 105 Q2

X , i .
( max ymm) X axis

Quadrotors Q4, Q,
State Variables: Vs = {x,y, 6, d}
Action Vs = {6,} : move in direction 6,

Z: Virtual Fence Zone

Co, = {0, y,0,d)|(x + bp1,y + 8p1) €EZA(x — b1,y — 8p1) € Z}
 §p1. braking distance

Cp, = {(x,y,0,d)|d + 65, = D}
* 85, largest reduction in d once separation enforcement applied

mins Ymin)
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Combining Enforcers: Priority

select(s,(Eq, ...

select(s,{E{), a) = {

;En>; a) — <

% Software Engineering Institute
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a, a € py(s)
pick(u;(s)),  otherwise

a, S € ﬂ Cop, N € ﬂ u; (s)
=2,.n i=1,..n
pick( [ mG),  se [ Con () m =0
i=1,..n =2,...n i=1,..n
select(s,{Eq, ..., E,_1), @), otherwise
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Shorthand

« Sat(): Boolean -- formula is true
» Soln() assignment of V5. (action) values to satisfy formula
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Symbolic Implementation

Enforcer Operations Symbolic Implementation

pi(s) =0

i=1,.n

pick( [ ] wis))

i=1,...,n

—Z==— Software Engineering Institute
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sat(V; =s A /\ Cop;)

i=2,...n

Sat(VS=S/\VZ=a/\ /\ ,Lll)

i=1,..,n

—sat(Vo =s A /\ Ui)

i=1,..,n

soln(Vs =s A /\ Ui, Vs)

1=1,..n
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SMT Implementation

Logical formulae over theory of linear arithmetic over rationals with operations:
z3 to solve sat(F) and soln(F,V)

Online SMT
« Parameterized context 8 (conjunctions of formulas of current context)
« Context modified through push(F), pop()
» Shorthands
- b = sat™(I) = push(D); b := sat™(); pop()
- a = soln™ (T, V) = push(D); a = solnT(V); pop()
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Algorithms

1 proc select(s,a,n) {

2 dfln=1) {

3 if (sat(Vs=sA Ve =a A uy))
4 return o;

5 return soln(Vs =s A u1,Vy);
6 }

T b= sgat(Vea=8NEC"™);

8 if (-b) return select(s,a,n —1);
9 if (sat(Vg =8 A Vy =aAu™))
10 return o;
11 o :=soln(Vs =sAu™,Vy);

12 if(a’ # 1) return o’;
13 return select(s,a,n —1);
14 }
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Experiment — Setup

Controller & Enforcer running on Laptop
« Ubuntu 16.04
* Processor
« Two XBox controllers

Two Parrot mini-drones Travis

Optitrack localization system with 8 cameras @ 120Hz
* (X,y,z) + roll,pitch,yaw

Three-dimensional enforcement (fence & separation)
Operators Flying Drones with Xbox controllers
Fixed-Priority with Rate-Monotonic Priority Assignment
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Experiment Behavior

Individual Enforcers
* Virtual Fence:
- Enforcer Prevents Drone from Leaving Fenced Area
« Separation (Two Drones)
- Enforcer prevents drones from getting closer than the separation

Combined Enforcers (priority)
 Higher Priority: Virtual Fence:
- Drone “pushed” by separation enforcer when other drone approaches
- Until pushed drone reaches fence where it stops & violates separation
 Higher Priority: Separation
- Drone “pushed” by separation enforcer when other drone approaches
- When pushed drone reaches fence it does not stops violating virtual fence
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Enforcer Performance

Thread | Per |Prio|Flt-Time|#Jobs |DL-Miss RespTime ExecTime
Ty, 5 O | 2358.22 [530841 0 1.099/0.151/0.039 1.099/0.150/0.039
Ter, 50 | 2 | 2358.22 | 53059 26 250.994/0.146/4.281 | 0.101/0.014/0.008
Trs 40 | 7 ] 2358.22 | 64996 19 238.114/0.118/2.842 [ 0.776/0.030/0.015
T'Log 1000] 1 | 2358.22 | 2656 0 31.849/1.198/3.598 | 0.895/0.330/0.114
(Eq) 20 | 8 | 145.98 | 7743 572 83.626/5.579/7.709 [ 39.164/5.415/7.453
(Ep)7T 20 | 8 147.99 | 8397 0 7.196/0.323/0.439 3.553/0.322/0.434
(Eq)” 20 | 8 | 197.11 | 8295 | 2564 | 33.910/9.798/10.237 | 32.722/9.558/9.984
(E1)*7 20 | 8 | 353.03 | 19684 0 7.539/1.015/1.435 7.310/1.012/1.427
(Ea) 20 | 8 | 219.07 | 11338 660 45.079/5.752/7.515 | 42.942/5.611/7.329
(Eg)7 20 | 8 | 146.55 | 8368 0 2.732/0.361/0.480 2.732/0.361/0.480
(Ea2)* 20 | 8 | 188.14 | 8099 2327 | 36.035/9.940/10.264 | 34.776/9.705/10.018
(E2)*T | 20 | 8 | 234.75 | 13258 0 11.623/0.999/1.856 | 11.242/0.986/1.817
(1. E2) | 20 [ 8 | 100.77 | 3479 | 2118 [46.066/15.415/11.633|44.547/15.088/11.384
(Eq, E-;)" 20 | 8 101.23 | 5605 0 3.834/0.637/0.787 3.834/0.637/0.788
(E1.E2)" | 20 | 8 | 130.74 | 4396 | 2657 [48.932/16.053/12.269|47.564/15.731/12.017
(E1.E2)*T| 20 | 8 89.79 | 5009 0 13.640/1.815/2.579 | 13.157/1.796/2.537
(Ea.Ey) | 20 | 8 55.61 | 2447 020 [57.623/10.631/11.434|56.112/10.416/11.192
(E2, E1)T | 20 ] 8 81.71 4629 0 3.898/0.561/0.762 3.899/0.561/0.762
(E2.F1)" | 20 | 8 69.50 | 2795 1152 [45.360/13.066/13.464[44.214/12.801/13.176
20 8 5315

(B2, B1)

96.15

0

16.940/2.656/3.770

16.371/2.586/3.647
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Conclusions

Algorithms to combined CPS enforcers with conflicting actuations
 Design-time prioritization

Symbolic Enforcer Encoding in SMT

Online Incremental SMT implementation

Experiments with Drones
« Scheduled with RMS
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