
© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Limiting Run-time Behavior to Improve the

Verification of Autonomous Systems

Bjorn Andersson, Dionisio de Niz, and Gabriel Moreno

2© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Copyright 2019 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
DM19-0301

3© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

4© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

5© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

The value that autonomous systems generate to
society is limited by their lack of safety.

6© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

How do we know that an autonomous system is safe?

How do we know that the software computes the right result?

How do we know that the software computes the result at the right time?

How can we do offline verification of the software in an autonomous system when

we do not know precisely its physical environment?

How do we verify a system composed of both software and its physical environment
(Cyber-Physical Systems (CPS)) ?

How can we verify systems that use AI/ML techniques?

How can we design systems to continue to perform some function

(maintain safety) even in the presence of cyber-attacks?

Technical/Scientific Questions

7© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Constraining Behavior (satisfies Φ) with Enforcers

• Verifiable Constrained Behavior

• Verifiable Enforcer Implementation

Multiple Enforcers Φ1, Φ2:

• Identify Conflicts

• Resolution of Conflicts

Runtime Assurance Key for Safety-Critical Autonomous-Systems

𝚽𝟏:s>D

𝚽𝟐

8© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Formalization of Enforcers Operating on Same Actuators

Algorithms to Combine Enforcers (called select)

• By Priority (select)

Enforcers Encoding in SMT Formulae

• select implementation with SMT

• Succinct SMT enforcer encoding

• select implementation as logical operations

Online SMT enforcer implementation

• Incremental solving

• Push/Pop Formulae

• Dynamic Context

Experiments with Drones

Our Work

9© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

State of the system: values of variables

• State variables: 𝑉𝑆
• Action variables: 𝑉Σ
• Variable values from domain: 𝐷

• System state: state variable: s: 𝑉𝑆 ↦ 𝐷 ∈ 𝑆

• Actions: action variables valuations: 𝛼: 𝑉Σ ↦ 𝐷

• Behavior: state transitions given actuation every period 𝑃: 𝑅𝑃(𝛼) ⊆ 𝑆 × 𝑆

- Next state given action: 𝑅𝑃 𝛼, 𝑠 = {𝑠′| 𝑠, 𝑠′ ∈ 𝑅𝑃(𝛼)}

• Property to verify subset of all possible states: 𝜙 ⊆ 𝑆

• Enforceable state: 𝐶𝜙 ⊆ 𝜙 ∧ 𝐶𝜙 = 𝑠 ∃𝛼 ∈ Σ: RP 𝛼, 𝑠 ∈ 𝐶𝜙}

• Safe actuation : 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = 𝛼 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Formal Periodic Model: Representing Time-Aware Logic

10© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Formal Model

𝑆

𝜙

𝐶𝜙
𝑆1

𝑆2

𝑆3

𝑆4𝛼1 ∈ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠1)

𝛼2 ∉ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠2)
𝛼3 ∉ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠3)

11© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Enforcer Definition

Enforcer: 𝐸 = 𝑃, 𝐶𝜙 , 𝜇, 𝑈

• 𝑃: period of the enforcer

• 𝐶𝜙: set of 𝜙-enforceable states

• 𝜇: C𝜙 ↦ 2Σ: mapping from enforceable states to actions

- ∀𝑠 ∈ 𝐶𝜙 ⋅ 𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠)

• 𝑈: C𝜙 × Σ ↪ ℝ maps each 𝜙-enforceable state and its corresponding actuation to its

utility

- 𝐷𝑜𝑚 𝑈 = 𝑠, 𝛼 𝑠 ∈ 𝐶𝜙 ∧ (𝛼 ∈ 𝜇 𝑠)}

12© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Utility Agnostic Enforcer Operation

 𝛼 =
𝛼 𝑖𝑓 𝛼 ∈ 𝜇 𝑠

𝑝𝑖𝑐𝑘 𝜇 𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where:

𝑝𝑖𝑐𝑘(𝑋): arbitrary element of 𝑋

𝛼 :actuation from unverified software

𝑠: state of system before 𝛼

13© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Enforcer

𝑆

𝜙

𝐶𝜙
𝑆1

𝑆2

𝑆3

𝑆4𝛼1 = 𝐸 𝑠1, 𝛼1

𝛼4 = E 𝑠2, 𝛼2
¬∃ 𝛼| 𝛼 = E(s3, 𝛼

′)

𝛼4

𝑆5

14© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Example

Quadrotors 𝑄1, 𝑄2

State Variables: 𝑉𝑆 = {𝑥, 𝑦, 𝜃, 𝑑}

Action 𝑉Σ = {𝜃𝛼} : move in direction 𝜃𝛼

𝑍: Virtual Fence Zone

𝐶𝜙1
= 𝑥, 𝑦, 𝜃, 𝑑 𝑥 + 𝛿𝐵1, 𝑦 + 𝛿𝐵1 ∈ 𝑍 ∧ 𝑥 − 𝛿𝐵1, 𝑦 − 𝛿𝐵1 ∈ 𝑍}

• 𝛿𝐵1: braking distance

𝐶𝜙2
= 𝑥, 𝑦, 𝜃, 𝑑 𝑑 + 𝛿𝐵2 ≥ 𝐷}

• 𝛿𝐵2: largest reduction in d once separation enforcement applied

15© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Combining Enforcers: Priority

𝑠𝑒𝑙𝑒𝑐𝑡 𝑠, 𝐸1 , 𝛼 =
𝛼, 𝛼 ∈ 𝜇1(𝑠)

𝑝𝑖𝑐𝑘(𝜇1 𝑠), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑒𝑙𝑒𝑐𝑡 𝑠, 𝐸1, … , 𝐸𝑛 , 𝛼 =

𝛼, 𝑠 ∈

𝑖=2,…𝑛

𝐶𝜙𝑖
∧ 𝛼 ∈

𝑖=1,…𝑛

𝜇𝑖 𝑠

𝑝𝑖𝑐𝑘(

𝑖=1,…,𝑛

𝜇𝑖 𝑠), 𝑠 ∈

𝑖=2,…,𝑛

𝐶𝜙𝑖
∧

𝑖=1,…𝑛

𝜇𝑖 𝑠 ≠ ∅

𝑠𝑒𝑙𝑒𝑐𝑡 𝑠, 𝐸1, … , 𝐸𝑛−1 , 𝛼 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

16© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Shorthand

• Sat(): Boolean -- formula is true

• Soln() assignment of 𝑉Σ (action) values to satisfy formula

17© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Symbolic Implementation

Enforcer Operations Symbolic Implementation

𝑠 ∈

𝑖=2,…,𝑛

𝐶𝜙𝑖
𝑠𝑎𝑡(𝑉𝑠 = 𝑠 ∧

𝑖=2,…,𝑛

𝐶𝜙𝑖
)

𝛼 ∈

𝑖=1,…,𝑛

𝜇𝑖(𝑠) 𝑠𝑎𝑡(𝑉𝑠 = 𝑠 ∧ 𝑉Σ = 𝛼 ∧

𝑖=1,…,𝑛

𝜇𝑖)

𝑖=1,…,𝑛

𝜇𝑖 𝑠 = ∅ ¬𝑠𝑎𝑡(𝑉𝑠 = 𝑠 ∧

𝑖=1,…,𝑛

𝜇𝑖)

𝑝𝑖𝑐𝑘(

𝑖=1,…,𝑛

𝜇𝑖(𝑠)) 𝑠𝑜𝑙𝑛(𝑉𝑆 = 𝑠 ∧

𝑖=1,…,𝑛

𝜇𝑖 , 𝑉Σ)

18© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

SMT Implementation

Logical formulae over theory of linear arithmetic over rationals with operations:

z3 to solve 𝑠𝑎𝑡(𝐹) and 𝑠𝑜𝑙𝑛(𝐹, 𝑉)

Online SMT

• Parameterized context 𝜃 (conjunctions of formulas of current context)

• Context modified through push(F), pop()

• Shorthands

- 𝑏 ≔ 𝑠𝑎𝑡† Γ ≡ 𝑝𝑢𝑠ℎ Γ ; 𝑏 ≔ 𝑠𝑎𝑡†(); 𝑝𝑜𝑝()

- 𝛼 ≔ 𝑠𝑜𝑙𝑛† Γ, V ≡ 𝑝𝑢𝑠ℎ Γ ; 𝛼 ≔ 𝑠𝑜𝑙𝑛† 𝑉 ; 𝑝𝑜𝑝()

19© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Algorithms

20© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Experiment – Setup

Controller & Enforcer running on Laptop

• Ubuntu 16.04

• Processor

• Two XBox controllers

Two Parrot mini-drones Travis

Optitrack localization system with 8 cameras @ 120Hz

• (x,y,z) + roll,pitch,yaw

Three-dimensional enforcement (fence & separation)

Operators Flying Drones with Xbox controllers

Fixed-Priority with Rate-Monotonic Priority Assignment

21© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Experiment Behavior

Individual Enforcers

• Virtual Fence:

- Enforcer Prevents Drone from Leaving Fenced Area

• Separation (Two Drones)

- Enforcer prevents drones from getting closer than the separation

Combined Enforcers (priority)

• Higher Priority: Virtual Fence:

- Drone “pushed” by separation enforcer when other drone approaches

- Until pushed drone reaches fence where it stops & violates separation

• Higher Priority: Separation

- Drone “pushed” by separation enforcer when other drone approaches

- When pushed drone reaches fence it does not stops violating virtual fence

22© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Enforcer Performance

23© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public
release and unlimited distribution.

Conclusions

Algorithms to combined CPS enforcers with conflicting actuations

• Design-time prioritization

Symbolic Enforcer Encoding in SMT

Online Incremental SMT implementation

Experiments with Drones

• Scheduled with RMS

