Limiting Run-time Behavior to Improve the
Verification of Autonomous Systems

Bjorn Andersson, Dionisio de Niz, and Gabriel Moreno

UN < ,- ‘\ T \:} -‘ '\6‘\

CARNEGIE MELLGN IVERSIT % 8
SOFTWARE ENGINEERING 1B

i . . . . . i [Distribution Statement A] Approved for public . . .
Software Engineering Institute | Carnegie Mellon University release and unlimited distribution. © 2017 Carnegie Mellon University

i




Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-0301

[Distribution Statement A] Approved for public o Viellon Universi 2
release and unlimited distribution. DA EEE e S

% Software Engineering Institute | Carnegie Mellon University



»

_._[Eh._ag ) Wy

SQUO.I(] ISN.IT.
j,uo sdooay, AyM

Video: 2011 Volvo !SGO Collision - V_|DO SHOWS TESLA AUTOPILOT FAILING
Avoidance Fails During Demonstration, .
Smashes Truck White House Drone
17 drone disasters that show why the FAA hates Crash Described as a U.S.
drones Worker’s Drunken Lark
Boeing 737 Max: Software patches can only RQ-4B GLOBAL HAWK ACCIDENT
fos0 much INVESTIGATION RELEASED

Systems architects, engineers, and management can all learn from the history of the development of this complex
aircraft

Drone Crash in Iran Reveals Secret U.S. Surveillance Effort

a— - - - o ‘ - - [Distribution Statement A] Approved for public . o
—~——=— Software Engineering Institute | Carnegie Mellon University 0 o0 distribution © 2017 Carmege Mellon Universiy O



Robotic surgery linked to 144 deaths In Death b}{ robot: the new
the US mechanised danger in our

changing world

As the use of autonomous machines increases in society, so

FaUIty pacemake rs 'killlng 2,000 a year': too has the chance of robot-related fatalities
Third of unexpected deaths among

patlii?ntstt_hought to be caused by ROBOT C ANNON
malfunctions KILLS 9, WOUNDS

14

Robot 'goes rogue and kills woman on
Michigan car parts production line'

a— - - - o ‘ - - [Distribution Statement A] Approved for public . o
~—=— Software Engineering Institute | Carnegie Mellon University . .. 1 unimited distribution. © 2017 Carmegie Mellon Universty 4+



The value that autonomous systems generate to
society is limited by their lack of safety.

[Distribution Statement A ] Approve d for public
release and unlimited distribution.

=§ Software Engineering Institute | Carnegie Mellon University

© 2017 Carnegie Mellon University



Technical/Scientific Questions

How do we know that an autonomous system is safe?

How do we know that the software computes the right result?
How do we know that the software computes the result at the right time?

How do we verify a system composed of both software and its physical environment
(Cyber-Physical Systems (CPS)) ?

How can we do offline verification of the software in an autonomous system when
we do not know precisely its physical environment?

How can we verify systems that use AlI/ML techniques?

How can we design systems to continue to perform some function
(maintain safety) even in the presence of cyber-attacks?

ai—— . . - - . . Distribution Stat tA]A d for publi
“= Software Engineering Institute | Carnegie Mellon University ~—Dsiiouion statement Al Approved for public ©.2017 Camegie Melon Uriversy



Runtime Assurance Key for Safety-Critical Autonomous-Systems

Constraining Behavior (satisfies @) with Enforcers
- Verifiable Constrained Behavior
- Verifiable Enforcer Implementation

Multiple Enforcers &, ®,:
- Identify Conflicts
- Resolution of Conflicts

[Distribution Statement A] Approved for public . o 7
release and unlimited distribution. ©2017 Carnegie Universit

__% Software Engineering Institute | Carnegie Mellon University



Our Work

Formalization of Enforcers Operating on Same Actuators

Algorithms to Combine Enforcers (called select)
- By Priority (select)

Enforcers Encoding in SMT Formulae

- select implementation with SMT

- Succinct SMT enforcer encoding

- select implementation as logical operations

Online SMT enforcer implementation
- Incremental solving

- Push/Pop Formulae

- Dynamic Context

Experiments with Drones

ai—— . . - - . . Distribution Stat tA]A d for publi
“= Software Engineering Institute | Carnegie Mellon University ~—Dsiiouion statement Al Approved for public 02017 Camegie Mellon Unversiy O



Formal Periodic Model: Representing Time-Aware Logic

State of the system: values of variables

- State variables: Vs

- Action variables: Vs

- Variable values from domain: D

- System state: state variable: s:V¢ » D € S

- Actions: action variables valuations: a: Vs = D

- Behavior: state transitions given actuation every period P: Rp(a) €SS X S
- Next state given action: Rp(a,s) = {s'|(s,s") € Rp(a)}

- Property to verify subset of all possible states: ¢ © S

- Enforceable state: Cy, € ¢ A Cyp = {s [Fa € Z:Rp(a,s) € Cyp}

- Safe actuation : SafeAct(s) = {a|Rp(a,s) € Cy}

[Distribution Statement A] Approved for public
release and unlimited distribution.

% Software Engineering Institute | Carnegie Mellon University



Formal Model

a3 & SafeAct(ss)

a, & SafeAct(s,)

a, € SafeAct(sy)

~#= Software Engineering Institute | Carnegic Mellon University [Dpriotion stetement Al Approved for public 2017 Cametewton Unversy 10

release and unlimited distribution.



Enforcer Definition

Enforcer: E = (P,Cy, 11, U)
* P: period of the enforcer
* Cy: set of ¢-enforceable states
*u:Cyp 2%: mapping from enforceable states to actions
- Vs € Cy - u(s) S SafeAct(s)
*U:Cyp X Z & R maps each ¢-enforceable state and its corresponding actuation to its
utility
- Dom(U) = {(s, a)I(s € Cqb) A (a € u(s))}

[Distribution Statement A] Approved for public
release and unlimited distribution.

=§ Software Engineering Institute | Carnegie Mellon University



Utility Agnostic Enforcer Operation

a if a € p(s)
pick(u(s)) otherwise

Q=
where:
pick(X): arbitrary element of X

a :actuation from unverified software
s. state of system before «

[Distribution Statement A] Approved for public . o 12
release and unlimited distribution. © LGz la il Ly

=§ Software Engineering Institute | Carnegie Mellon University



Enforcer

—Ja|a = E(s3,a’)

~#= Software Engineering Institute | Carnegic Mellon University [Dpriotion stetement Al Approved for public © 2017 Cametelon Unversy 1.3

release and unlimited distribution.



Example

(Xmaxr Ymax) 180

(xmin' ymax)

¢ 165 « o 105 *
0 + 105 270
285 6 0 _ Y
0, compass 0 axis
15 6 + 255 345
255 03 105 Q2

X , i .
( max ymm) X axis

Quadrotors Q4, Q,
State Variables: Vs = {x,y, 6, d}
Action Vs = {6,} : move in direction 6,

Z: Virtual Fence Zone

Co, = {0, y,0,d)|(x + bp1,y + 8p1) €EZA(x — b1,y — 8p1) € Z}
 §p1. braking distance

Cp, = {(x,y,0,d)|d + 65, = D}
* 85, largest reduction in d once separation enforcement applied

mins Ymin)

= —= . - - - . . Distribution Statement A] A d for publi
<= Software Engineering Institute | Carnegie Mellon University — [Dounion statemen’ 2 Approved for public

© 2017 Carnegie Mellon University

14



Combining Enforcers: Priority

select(s,(Eq, ...

select(s,{E{), a) = {

;En>; a) — <

% Software Engineering Institute

\

a, a € py(s)
pick(u;(s)),  otherwise

a, S € ﬂ Cop, N € ﬂ u; (s)
=2,.n i=1,..n
pick( [ mG),  se [ Con () m =0
i=1,..n =2,...n i=1,..n
select(s,{Eq, ..., E,_1), @), otherwise

[Distribution Statement A] Approved for public
release and unlimited distribution.

Carnegie Mellon University



Shorthand

« Sat(): Boolean -- formula is true
» Soln() assignment of V5. (action) values to satisfy formula

[Distribution Statement A] Approved for public . o 16
release and unlimited distribution. ©2017 Caregie Mellon University

—é Software Engineering Institute | Carnegie Mellon University



Symbolic Implementation

Enforcer Operations Symbolic Implementation

pi(s) =0

i=1,.n

pick( [ ] wis))

i=1,...,n

—Z==— Software Engineering Institute

—

Carnegie Mellon University

sat(V; =s A /\ Cop;)

i=2,...n

Sat(VS=S/\VZ=a/\ /\ ,Lll)

i=1,..,n

—sat(Vo =s A /\ Ui)

i=1,..,n

soln(Vs =s A /\ Ui, Vs)

1=1,..n

[Distribution Statement A] Approved for public . o 17
release and unlimited distribution. ©2017 Carnegie Mellon University



SMT Implementation

Logical formulae over theory of linear arithmetic over rationals with operations:
z3 to solve sat(F) and soln(F,V)

Online SMT
« Parameterized context 8 (conjunctions of formulas of current context)
« Context modified through push(F), pop()
» Shorthands
- b = sat™(I) = push(D); b := sat™(); pop()
- a = soln™ (T, V) = push(D); a = solnT(V); pop()

[Distribution Statement A] Approved for public
release and unlimited distribution.

=§ Software Engineering Institute | Carnegie Mellon University



Algorithms

1 proc select(s,a,n) {

2 dfln=1) {

3 if (sat(Vs=sA Ve =a A uy))
4 return o;

5 return soln(Vs =s A u1,Vy);
6 }

T b= sgat(Vea=8NEC"™);

8 if (-b) return select(s,a,n —1);
9 if (sat(Vg =8 A Vy =aAu™))
10 return o;
11 o :=soln(Vs =sAu™,Vy);

12 if(a’ # 1) return o’;
13 return select(s,a,n —1);
14 }

~Z== Software Engineering Institute | Carnegie Mellon University

—

[Distribution Statement A] Approved for public . o 19
release and unlimited distribution. ©2017 Caregie Mellon University



Experiment — Setup

Controller & Enforcer running on Laptop
« Ubuntu 16.04
* Processor
« Two XBox controllers

Two Parrot mini-drones Travis

Optitrack localization system with 8 cameras @ 120Hz
* (X,y,z) + roll,pitch,yaw

Three-dimensional enforcement (fence & separation)
Operators Flying Drones with Xbox controllers
Fixed-Priority with Rate-Monotonic Priority Assignment

=§ Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.



Experiment Behavior

Individual Enforcers
* Virtual Fence:
- Enforcer Prevents Drone from Leaving Fenced Area
« Separation (Two Drones)
- Enforcer prevents drones from getting closer than the separation

Combined Enforcers (priority)
 Higher Priority: Virtual Fence:
- Drone “pushed” by separation enforcer when other drone approaches
- Until pushed drone reaches fence where it stops & violates separation
 Higher Priority: Separation
- Drone “pushed” by separation enforcer when other drone approaches
- When pushed drone reaches fence it does not stops violating virtual fence

[Distribution Statement A] Approved for public . o 21
release and unlimited distribution. © LGz la il Ly

% Software Engineering Institute | Carnegie Mellon University



Enforcer Performance

Thread | Per |Prio|Flt-Time|#Jobs |DL-Miss RespTime ExecTime
Ty, 5 O | 2358.22 [530841 0 1.099/0.151/0.039 1.099/0.150/0.039
Ter, 50 | 2 | 2358.22 | 53059 26 250.994/0.146/4.281 | 0.101/0.014/0.008
Trs 40 | 7 ] 2358.22 | 64996 19 238.114/0.118/2.842 [ 0.776/0.030/0.015
T'Log 1000] 1 | 2358.22 | 2656 0 31.849/1.198/3.598 | 0.895/0.330/0.114
(Eq) 20 | 8 | 145.98 | 7743 572 83.626/5.579/7.709 [ 39.164/5.415/7.453
(Ep)7T 20 | 8 147.99 | 8397 0 7.196/0.323/0.439 3.553/0.322/0.434
(Eq)” 20 | 8 | 197.11 | 8295 | 2564 | 33.910/9.798/10.237 | 32.722/9.558/9.984
(E1)*7 20 | 8 | 353.03 | 19684 0 7.539/1.015/1.435 7.310/1.012/1.427
(Ea) 20 | 8 | 219.07 | 11338 660 45.079/5.752/7.515 | 42.942/5.611/7.329
(Eg)7 20 | 8 | 146.55 | 8368 0 2.732/0.361/0.480 2.732/0.361/0.480
(Ea2)* 20 | 8 | 188.14 | 8099 2327 | 36.035/9.940/10.264 | 34.776/9.705/10.018
(E2)*T | 20 | 8 | 234.75 | 13258 0 11.623/0.999/1.856 | 11.242/0.986/1.817
(1. E2) | 20 [ 8 | 100.77 | 3479 | 2118 [46.066/15.415/11.633|44.547/15.088/11.384
(Eq, E-;)" 20 | 8 101.23 | 5605 0 3.834/0.637/0.787 3.834/0.637/0.788
(E1.E2)" | 20 | 8 | 130.74 | 4396 | 2657 [48.932/16.053/12.269|47.564/15.731/12.017
(E1.E2)*T| 20 | 8 89.79 | 5009 0 13.640/1.815/2.579 | 13.157/1.796/2.537
(Ea.Ey) | 20 | 8 55.61 | 2447 020 [57.623/10.631/11.434|56.112/10.416/11.192
(E2, E1)T | 20 ] 8 81.71 4629 0 3.898/0.561/0.762 3.899/0.561/0.762
(E2.F1)" | 20 | 8 69.50 | 2795 1152 [45.360/13.066/13.464[44.214/12.801/13.176
20 8 5315

(B2, B1)

96.15

0

16.940/2.656/3.770

16.371/2.586/3.647

~#= software Engineering Institute

Carnegie Mellon University

[Distribution Statement A] Approved for public

release and unlimited distribution.

© 2017 Carnegie Mellon University

22



Conclusions

Algorithms to combined CPS enforcers with conflicting actuations
 Design-time prioritization

Symbolic Enforcer Encoding in SMT

Online Incremental SMT implementation

Experiments with Drones
« Scheduled with RMS

[Distribution Statement A] Approved for public . o 23
release and unlimited distribution. © LGz la il Ly

=§ Software Engineering Institute | Carnegie Mellon University



