
Mixed-Trust Computing for Real-Time Systems
D. de Niz1, B. Andersson1, M. Klein1, J. Lehoczky1, A. Vasudevan1, H. Kim2, G. Moreno1

1Carnegie Mellon University 2University of California, Riverside

Abstract—Verifying complex Cyber-Physical Systems (CPS)
is increasingly important given the push to deploy safety-
critical autonomous features. Unfortunately, traditional verifica-
tion methods do not scale to the complexity of these systems and
do not provide systematic methods to protect verified properties
when not all the components can be verified. To address these
challenges, this paper proposes a real-time mixed-trust computing
framework that combines verification and protection. The frame-
work introduces a new task model, where an application task can
have both an untrusted and a trusted part. The untrusted part
allows complex computations supported by a full OS with a real-
time scheduler running in a VM hosted by a trusted hypervisor.
The trusted part is executed by another scheduler within the
hypervisor and is thus protected from the untrusted part. If the
untrusted part fails to finish by a specific time, the trusted part
is activated to preserve safety (e.g., prevent a crash) including
its timing guarantees. This framework is the first allowing the
use of untrusted components for CPS critical functions while
preserving logical and timing guarantees, even in the presence
of malicious attackers. We present the framework design and
implementation along with the schedulability analysis and the
coordination protocol between the trusted and untrusted parts.
We also present our Raspberry Pi 3 implementation along with
experiments showing the behavior of the system under failures of
untrusted components, and a drone application to demonstrate
its practicality.

I. INTRODUCTION

Certification authorities (e.g., FAA [26]) allow the validation
of different parts of a system with different degrees of rigor
depending on their level of criticality. Formal methods have
been recognized as important to verify safety-critical com-
ponents [4]. Unfortunately, a verified property can be easily
compromised if the verified components are not protected from
unverified ones. Thus, trust requires that both verification and
protection of components are jointly considered. This is the
notion of trust used in this paper.

A key challenge to building trust is the complexity of
today’s operating systems (OSs) making them impractical to
verify. Thus, there has been a trend to achieve a trusted com-
puting base (TCB) by developing small verified hypervisors
(HVs) and microkernels, e.g., seL4 [22], CertiKOS [19], and
uberXMHF [30], [31]. In these systems, trusted and untrusted
components co-exist on a single hardware platform but in a
completely isolated and disjoint manner. We thus call this
approach disjoint-trust computing. Trusted components in the
TCB are typically made small and simple due to the difficulty
of verification. They are strictly isolated from untrusted parts
hosted in a virtual machine (VM) where rich functionalities
are implemented on full-scale guest OSs like Linux.

The fundamental limitation of disjoint-trust computing is
that it does not allow the use of untrusted components for

critical functionality that rely on verification to assure safety.
This is because the verified components must be isolated from
the untrusted ones if they are to be trusted. For instance, this
prevents the use of untrusted machine learning algorithms (for
which no effective verification method exists) to drive a car
if such functionality needs to be verified. Instead, a separate
trusted component would need to be in charge of the driving,
isolating it from any untrusted component. Unfortunately, the
complexity of the critical functionality demanded today, e.g.,
autonomous driving, makes the verification of these compo-
nents very difficult or practically impossible.

In this paper, we propose a framework enabling the use
of untrusted components within CPS critical functionality.
We call it the real-time mixed-trust computing (RT-MTC)
framework. In this framework, untrusted components are mon-
itored by verified components ensuring that the output of
the untrusted components always lead to safe states (e.g.,
avoiding crashes). This monitoring components are known as
logical enforcers [5], [14]. To ensure trust, these enforcers are
protected by a (verified) micro-hypervisor [31]. To preserve
the timing guarantees of the system, RT-MTC uses temporal
enforcers, which are small, self-contained codeblocks that
perform a default safety action (e.g., hover in a quadrotor)
if the untrusted component has not produced a correct output
by a specified time. Temporal enforcers are contained within
the base (verified) micro-hypervisor without jeopardizing the
existing level of trust (e.g., using compositional verification
offered by extensible micro-hypervisors [31]).

Our framework incorporates two schedulers: (i) a preemp-
tive fixed-priority scheduler in the VM to run the untrusted
components and (ii) a non-preemptive fixed-priority scheduler
within the HV1 to run trusted components. To verify the timing
correctness of safety-critical applications in our mixed-trust
framework, we propose a new task model and schedulability
analysis. We also present the design and implementation of a
coordination protocol between the two schedulers to preserve
the timing dependencies between the trusted and untrusted
components while preventing dependencies that can compro-
mise the trusted component. Lastly, we present an implemen-
tation of our proposed framework using uberXMHF [31], an
open-source, compositionally verified micro-hypervisor frame-
work, and the ZSRM scheduler [15]. However, we note that
in principle, our framework can also be instantiated with other
verified micro-kernels or hypervisors provided they satisfy our
requirements (see Section II).

This work relies on innovations for code verification for

1Removing HV task interleavings from the logical verification [30], [31].

the trusted parts that were presented in previous publications.
Since that is out of the scope of this paper, we refer the read-
ers interested in the compositional verification and isolation
provided by uberXMHF to [31], the runtime verification con-
ducted by logical enforcers to [5], and the formal verification
of temporal enforcement code to [8].

The remainder of this paper is organized as follows. Sec-
tion II presents our RT-MTC framework, an introduction to the
runtime verification model that it supports, and the conditions
that it must fulfill to preserve the verified properties of the
model. Section III defines the system model. Section IV
presents schedulability analysis of mixed-trust tasks, includ-
ing the evaluation of the schedulability analysis. Section V
presents a fail-safe coordination protocol. Section VI presents
the implementation of mixed-trust scheduling. Section VII
discusses the related work and Section VIII concludes.

II. REAL-TIME MIXED-TRUST COMPUTING (RT-MTC)

The RT-MTC framework provides the timing verification and
logical and timing protection to achieve trust in our previous
runtime verification work [5].

A. Logical Model

A system in [5] is modeled as a state machine with a set of
states S and a set of actions Σ; when we describe behavior,
we let s P S be a state and α P Σ be an action. The evolution
of the system is modeled by the transition relation RP , where
P is the time that elapses during the transition (referred to as
period), and the action applied at the start of the transition.
Formally RP pαq Ď S ˆ S is the relation such that if the
action α is applied to the system at time t when it is in
state s and subsequently the system is in state s1 at time
is t ` P , then ps, s1q P RP pαq. Without loss of generality
we also require that the system always performs an action in
each period P to match the continuous evolution of physical
processes. This can include an action where the source state
is equal to the destination state (i.e., a null action). We then
define RP pα, sq “ ts1 | ps, s1q P RP pαqu as the set of states
into which the system can transition after taking action α.
We then identify φ as the set of safe states. Given these safe
states we define a subset Cφ of φ-enforceable states as the
largest set of states satisfying the following two conditions:
Cφ Ď φ and @s P Cφ ‚ Dα P Σ ‚RP pα, sq Ď Cφ.

We denote by SafeAct : Cφ ÞÑ 2Σ the mapping from φ-
enforceable states to actions that will ensure that the system
remains enforceable, i.e., SafeActpsq “ tα | RP pα, sq Ď Cφu.

The action α selected by the untrusted component in the
system is monitored and enforced by the logical enforcer. The
logical enforcer, defined as LE “ pP,Cφ, µq, receives α from
the untrusted component. Thus, we assume the logical enforcer
executes with the same period P , and µpsq Ď SafeActpsq
returns a set of enforcing actions. In each execution, the LE
takes as input the current system state s and the system action
α and produces an output action α̃ defined as:

α̃ “

"

α if α P µpsq
pickpµpsqq otherwise

(1)

where pickpq selects one element from the set with an arbitrary
criteria. We say that α̃ is an LE-enforced action.

We now add to this model a temporal enforcer TE “

pE,Cφ, αT q that executes periodically E time units after the
untrusted component job arrives, takes the enforced action α̃
from the LE and generates a temporally-enforced action α̂
before the end of the period as follows:

α̂ “

"

αT if α̃ “ K
α̃ otherwise

(2)

where (i) αT P tα|α P SafeActpsq@s P Cφu, that is, αT is a
safe action for any state in Cφ (i.e., the specific state s is not
needed to calculate αT) and (ii) K denotes the absence of an
action. Thus, we say that α̂ is a TE-enforced action. Finally,
our system is assumed to start in Cφ.

B. Logical Model Required Conditions

We now define the conditions that our framework must
enforce to prevent an untrusted component from causing
behaviors not present in this model (see Appendix A in [16]
for justification). For the discussion of these conditions, we
let output denote the final action produced by the job once it
has been evaluated by the LE and TE. These conditions are
defined as follow:
‚ C1. Each task must produce an output every period.
‚ C2. There is only one output per period.
‚ C3. The output produced by a task in a period is either

from LE or TE.
‚ C4. An output produced by the task and validated by the
LE must be the product of a computation that executes
within a single period, i.e., that reads the state of the
system (e.g., senses), computes an output, and generates
the output within the same period.

‚ C5. The TE of a task must execute E time units after
the arrival of the job it guards and finish before the end
of the period.

To satisfy these conditions we not only need to create
new runtime mechanisms, but the software also needs to be
structured in a way that takes advantage of these mechanisms.
This is the topic of our next section.

C. Software Architecture

Algorithm 1 shows the example behavior of a mixed-trust
application. The try block shows the core of the infinite loop
that periodically senses the state, computes and issues an
actuation. Within an iteration, the LE evaluates the computed
actuation α and replaces it with a safe one (α̃) if needed (as
in (1)). However, this loop can fail if the code within the try
block does not finish on time. Hence, a catch block is added to
respond to a timeout (E time units after the start of the current
period). If the timeout occurs, then the temporal enforcement
actuation αT is issued by the catch block, effectively imple-
menting (2). Note that it is not necessary to compute αT based
on the current state given that it is safe in any state within
Cφ. Regardless of which block performed the actuation, it
is immediately followed by a wait for the completion of the

2

Algorithm 1: Behavior of a Mixed-Trust Periodic Task
1 while true do
2 try:
3 sÐ currentState()
4 αÐ computeActuationpsq
5 α̃Ð LEps, αq
6 actuatepα̃q
7 catch timeout(E):
8 actuatepαT q
9 end

10 waitForNextPeriodpq
11 end

current period before executing another iteration. Now, even
if the LE and the TE are formally verified, Algorithm 1 can
still fail to preserve trust in φ if (i) the behavior of the LE is
modified (once modified we do not consider that the output is
from the LE — C3), (ii) the system fails to issue one of the
actuations α̃ or αT before the end of the period (C1), (iii) both
α̃ and αT are issued within a period (C2), (iv) an α̃ calculated
in a previous period is issued (C4), or (v) the TE is modified
(i.e., output is not considered to be a TE output — C3).

Based on the runtime assurance requirements and the fail-
ure possibilities presented above, we designed the software
architecture presented in Fig. 1. In this architecture, the
green components are trusted and need to be protected from
untrusted components (in red). Note that the LE requires the
output of the controller (α) in order to calculate its output
(α̃) as presented in (1). Hence, while it can be (and must
be) protected against logical behavior (code) modification, it
cannot be protected against delays given that the untrusted
controller can choose to delay its output at will. The TE,
on the other hand, does not depend on α̃ since it only uses
it to decide whether or not to issue its safe action αT .2

However, the TE still needs to be protected against logical
behavior (code) modifications. Similarly, the communication
of the α̃ from the LE to the TE must also be protected against
modification or falsification. Given this analysis, we define the
following protection requirements:
‚ P1. Logical behavior protection. This requires protecting

both the code and the related internal data. This is
achieved through memory protection.

‚ P2. Temporal behavior protection. This requires protect-
ing the activation time and the CPU bandwidth allocated
in order to meet real-time deadlines.

‚ P3. Communication authentication. This means that we
can verify the identity of the sender and ensure that the
sender itself is protected (P1).

‚ P4. Communication logical integrity. This means that the
message was not modified.

‚ P5. Communication temporal integrity. This means that
the output generated is the product of a computation
within a period.

It is worth noting that the protections listed above are the
protections of trusted code from untrusted code from within

2TE can be activated by either the arrival of α̃ from LE or the timeout
E time units after the task activation.

VM

HV

LEController

!

"
#"

TE
$"

task
activation

control flow

control+data
flow

data flow

TSTD

USTD
TSD

Fig. 1: Architecture

the same task. Such requirements are a clear departure from
other forms of protection between different tasks. This led
us to name this new task a mixed-trust task whose timing
characteristics will be formalized in Section III.

As discussed in the introduction, we use a HV and its hosted
VM to create a runtime environment to execute different
parts of mixed-trust tasks. In order to design this runtime
environment, we first design three protection domains to host
the different parts, and a coordination protocol to preserve the
temporal behavior of the overall mixed-trust task. The domains
we designed are:

Trusted Spatial protection Domain (TSD). This is where
the LE executes. It offers trusted protection against memory
modifications from untrusted components but does not offer
temporal protection.

Trusted Spatio-Temporal protection Domain (TSTD).
This is where the TE resides. It offers trusted memory and
temporal protection.

Untrusted Spatio-Temporal protection Domain (USTD).
This is where the untrusted component resides. It offers
untrusted spatial and temporal protection because it is imple-
mented in the unverified VM.

The location of these domains within the architecture is
shown in Fig. 1. This architecture allows us to (i) minimize
the code added into the HV space, (ii) protect the LE and
hence the integrity of the calculation of α̃ (P4), (iii) validate
the α̃ origin by verifying the hypercall (syscall to hypervisor)
origin (P3 – not shown in the figure), (iv) provide trusted
logical protection for the TE and the LE (P1), (v) provide
trusted temporal protection for the TE (P2), and (vi) provide
untrusted temporal and spatial protection (P1, and P2) to the
untrusted component.

In order to guarantee P5, we added a scheduler in the HV
and a coordination protocol that synchronizes the scheduler
in the VM with the one in the HV. Clearly, this coordination
requires a new integrated analysis that will be presented in
Section IV. Hence, we defer the discussion of the coordination
protocol to Section V. We now discuss the system model.

III. SYSTEM MODEL

Our system model considers a uniprocessor system with a
taskset Γ “ tµi|µi “ pTi, Di, τi, κiqu with unique priorities.
In the taskset, µi is a mixed-trust task with two execution
segments, τi and κi, with period Ti and deadline Di. The
segment τi is considered to be untrusted and runs in the
untrusted OS kernel inside the VM. The segment κi is con-
sidered to be trusted code and runs within the trusted HV. To
represent the fact that these segments are handled by different

3

schedulers, we consider them to be tasks and call τi the guest
task (GT) and κi the hyper task (HT). These tasks are defined
by: τi “ pTi, Ei, Ciq, κi “ pTi, Di, κCiq, where Ti and Di are
the same as in µi, Ci is the worst-case execution time (WCET)
of τi, and κCi is the WCET of κi. Consider a particular job
of µi, pτi,q, κi,qq. Ideally, τi,q will execute correctly taking no
more than Ci time units and finishing within Ei time units of
its activation. In this case, the job κi,q is not activated. The
logical enforcer (LE) verifies the correctness of τi,q , while the
timing enforcer (TE) verifies the timing. If the logical enforcer
(LE) does not notify the HV that τi,q finished correctly and
on time, then the corresponding HT κi,q is activated by a timer
set to expired Ei time units after τi arrives running at a higher
priority than any GT. The deadline for τi,q , Ei, is chosen to
ensure that κi,q can finish by Di, the µi deadline. We show
how to calculate Ei in Section IV.

Under our mixed-trust scheduling paradigm, HTs are sched-
uled in a higher-priority band than GTs in the VM. That is, the
execution of a HT is not preemptible by any GT running in the
VM, and a GT can be preempted by any HT that is ready to
run. Furthermore, we assume that all HTs are non-preemptive,
whereas GTs can be preempted.

Under normal operation, the mixed-trust task µi only runs
its GT τi executing at most Ci time units, finishing within Ei
time units after its arrival and satisfying the LE, which then
informs the scheduler of its correct completion. However, if
any of these three conditions fails (e.g., due to an error in τi
or the untrusted OS kernel or a security infiltration), then its
execution is interrupted and κi is run within the HV. To detect
this, a timer is set to expire Ei time units after τi’s arrival.
The goal of the schedulability analysis is to compute the Eis
in order to ensure that all GTs can finish by Ei if all GTs
execute correctly, and all activated HTs can finish by Di if
their corresponding GTs do not complete correctly, that is the
deadline of every task is met no matter whether any of the
GTs execute correctly or not.

IV. SCHEDULABILITY ANALYSIS

The schedulability analysis of a mixed-trust taskset is per-
formed in three steps: calculate the worst-case response time
(Rκi) of each HT κi assuming non-preemptive fixed-priority
scheduling; calculate Ei for each GT τi by simply subtracting
Rκi from the deadline Di; calculate the response time of each
GT τi and check whether it is at most Ei.

A. Hyper Task Response Time

To calculate the HT response time, we use previous results
on non-preemptive fixed priority scheduling (originally devel-
oped for the CAN bus) [13]. Specifically, the response time
of a HT κi is calculated in three steps:

1) We define the level-i active period as a time interval in
which the processor is busy at all times and (i) there
is at most one job from a task with lower priority than
κi’s arriving before the beginning of the active period,
and (ii) for the rest of the active period, there is only
execution of jobs from tasks with priority higher than or

equal to κi’s. We then compute the maximum duration
of a level-i active period. There are two reasons why
we compute this maximum duration of level-i active
period: (i) it allows us to compute the maximum number
of jobs of task κi in the level-i active period, and (ii) we
know that any execution outside the level-i active period
cannot influence the response times of jobs of task κi
in the level-i active period.

2) The start time of each job from κi in the level-i active
period is calculated along with their finishing time. The
finishing time of this job is calculated by just adding the
execution time given that, once a task starts it cannot be
preempted. Then, the response time of a job is calculated
as the finishing time minus its arrival time.

3) For a given HT κi, the response time is computed as
the maximum response time across all jobs of κi in the
level-i active period.

Let tκi denote the maximum duration of a level-i active period.
Applying ideas in [13] on our model yields that tκi can be
calculated using:

tκi “ max
jPκLi

κCj `

R

tκi
Ti

V

κCi `
ÿ

jPκHi

R

tκi
Tj

V

κCj , (3)

where κLi is the set of all HTs with lower priority than κi
and κHi is the set of tasks with higher priority than κi.

Given that a lower-priority task may be running when a
higher-priority task arrives, (3) takes into account the maxi-
mum interference from one job of a lower-priority task.

Let wκi,q denote the latest starting time of the qth job of κi
in the level-i active period. Then, applying ideas in [13] on
our model, we can obtain wκi,q using:

wκi,q “ max
jPκLi

κCj`pq´1qκCi`
ÿ

jPκHi

p

Z

wκi,q
Tj

^

`1qκCj . (4)

The response time can then be calculated as follows. For the
jobs in the level-i active period, we can move the arrival times
of the jobs to be as early as possible without violating the
T parameters; this may change the schedule but the duration
of the level-i active period is non-decreasing and the starting
time of each job is non-decreasing. Hence, it holds that the qth

job of each HT κj in the active period (including κi) arrives
pq ´ 1qTj time units after the level-i active period starts. For
each job of a HT κi, we can add κCi to its starting time and
then subtract the arrival time of this job and this yields the
response time of the job. With these ideas, we can compute
the response time of κi as:

Rκi “ max
qPt1...

Q

tκ
i
Ti

U

u

pwκi,q ` κCi ´ pq ´ 1qTiq. (5)

It is worth noting that, in any schedulable taskset, the level-i
active period of a HT κi includes only the execution of its
first job if its corresponding GT τi has a Ci ą 0. This is
because if the taskset is schedulable, we verified that τi has
time to run for Ci and hence no HT runs at that time. In other
words, there is at least Ci time between two job executions (to
completion) of a HT κi when τi executes. Notwithstanding,

4

we keep the equation that considers active tasks with multiple
job executions to allow tasksets without GTs.

In the rest of the paper, we use Ei “ Di´R
κ
i (see Appendix

C in [16] for further discussion).

B. Guest Task Response Time

To calculate the response times of GTs, we need a new
notion of the busy period similar to the active period of
the previous subsection but that also incorporates interference
from HTs. Therefore, we define the level-i busy period as a
time interval such that at all times the processor is busy only
with execution from jobs from HT or execution from jobs of
GT of priority greater than or equal to the priority of τi.

We now define a theorem that identifies the phasings that
need to be explored to determine a GT’s worst-case response
time and motivate the schedulability equations.

Theorem IV.1. The longest response time for all GT jobs of
task τi of a mixed-trust task µi occurs in a level-i busy period
initiated by the arrival of either τi or κi and the arrival of
higher-priority GTs or HTs of other mixed trust tasks, µj .

Proof. Let pi denote the priority of τi. Following the argument
of Lehoczky [23], let r0, bs denote a level-i busy period (BP).
Assume the BP is initiated by the arrival of higher-priority
GTs or HTs of other mixed trust tasks, µj . Also assume that
the first job of µi in the BP is a job of τi, and it arrives at some
point, xi, after 0. Higher priority execution occupies r0, xiq.
This is followed by alternating intervals of τi and higher
priority execution until τi finishes, ending the BP. Since τi
execution cannot influence when higher priority jobs execute,
reducing xi to 0 leaves τis completion time unaltered but
moves its arrival time earlier thereby lengthening its response
time. Additionally, if Ei ă b, the arrival of κi will prevent τi
from ever finishing, effectively resulting in an infinite response
time and thus no need to check any further in the BP.

Again, assume the BP is initiated by the arrival of higher-
priority GTs or HTs of other mixed trust tasks, µj , but that
the first job of µi in the busy period is a job of κi, and
it arrives at some point, xi, after 0. Once again we reduce
xi to 0 and observe the effect on the τi job that follows
κi. The high priority and non-preemptability of κi might
cause κi to preempt or delay some high priority execution
in r0, xiq. However, τis completion time again will remain
unaffected, while its response time is lengthened. One can see
this by examining Fig. 2.b and moving κis start time from
0 to 2. We can also see the carry-in effect in Fig. 2.b. µj
is delayed by κi,q´1 thereby delaying the execution of τi,q .
The finishing time of τi,q remains the same if κi,q´1 starts
anywhere between 0 and 2.

Now assume that τi arrives at 0 and that for one µj , j ‰ i
its first τj job, has a priority higher than pi and arrives after
0. All other higher-priority τk’s or κk arrive at the start of
the BP. The finish time, Fi, of τi is equal to Ci plus the
execution time of higher priority jobs that execute before Fi.
Moving the arrival of τj to 0 will either increase or leave
unchanged the amount of higher priority execution before Fi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

𝜇𝑗

𝜇𝑖 𝜏𝑖,𝑞 𝜅𝑖,𝑞
0

𝑅𝑖,𝑞=7

a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

𝜇𝑖

𝜇𝑗

𝜅𝑖,𝑞−1 𝜏𝑖,𝑞
0

𝑅𝑖,𝑞=9

b)

Fig. 2: Aligning τi and τj yields shorter Ri,q than κi and τj

thereby increasing Fi. If κi arrives at 0 moving the arrival of
τj to 0 will also either increase or leave unchanged the finish
time of all τi jobs in the BP. The same argument can be used
if µjs first job is κj .

Previous work [7] has found the notion of a request-bound
function useful in schedulability analysis. We will now discuss
how to create a request-bound function for our model that
takes additional parameters. Our request-bound function gives
the amount of execution of a mixed-trust task.

Recall that in our model, a task can generate a job but
later the same job can “arrive” again (E time units later) to
perform HV execution. Therefore, from the perspective of the
request-bound function, this arrival of HV execution is treated
as the arrival of a job. The normal request-bound function takes
only two parameters: a task and a duration. In our model, we
will use a more specialized variant that takes two additional
parameters, y (a phasing) and b (a 0-1 variable). We use the
former parameter (y P tE,Auq to indicate the phasing of the
mixed-trust task µi; if y “ E, then we are computing the
request-bound function for the phasing when the level-i busy
period starts at a time when a HT of µi arrives; analogously if
y “ A, then we are computing the request-bound function for
the phasing when the level-i busy period starts at a time when
a GT of µi arrives. We use the latter parameter (b P t0, 1uq to
indicate whether the GT execution should be included in the
execution counted in the request-bound function.

The definition of request-bound function for our model is
as given by the equation below:

rbfyi pt, bq “

$

&

%

Q

t´pTi´Eiq
Ti

U`

Cib`
Q

t
Ti

U

κCi if y “ E
Q

t
Ti

U

Cib`
Q

t´Ei
Ti

U`

κCi if y “ A
(6)

In the above definition, we use rxs
` to mean maxp0, xq.

We will use this request-bound function to compute the
response time of the GT execution of a mixed-trust task µi.
Then, if the computed response time for each GT is less than or
equal to its E parameter, then the taskset is deemed schedulable
(assuming that we have already checked HT schedulability).
Therefore, our goal is now to present equations for computing
the response time of a given GT. We first present an equation
for the maximum duration of a level-i busy period. Then, we
compute the latest possible finishing time of a given job from
a given task in this level-i busy period. Since we know the
maximum duration of a level-i busy period, we can compute
an upper bound on the number of jobs of a given task in a
level-i busy period; we can compute the maximum response
time over all these jobs of the given task. This yields the GT
response time. We will compute the GT response time for
two cases: the case that the given mixed-trust task GT arrives

5

at the beginning of the level-i busy period and the case that
the given mixed-trust task arrives with its HT aligned with
the beginning of the level-i busy period. Given this high-level
outline, we will now present the actual equations.

For each µi, for each x P tE,Au, let tg,xi denote the
maximum level-i busy period such that this level-i busy period
starts with a job of the HT or the GT of µi arriving (x indicates
which). Then, similar to (3), we can, for x P tE,Au, for a
given task τi, compute tg,xi as:

tg,xi “

˜

ÿ

jPLi

rbfEj pt
g,x
i , 0q

¸

` rbfxi pt
g,x
i , 1q

`
ÿ

jPHi

max
yPtE,Au

rbfyj pt
g,x
i , 1q.

(7)

where Li and Hi contains the tasks with lower and higher
priority (respectively) than µi’s. Given τi and level-i busy
period, we refer to job q as the qth job with a GT arrival
in the level-i busy period. For each τi, and x P tE,Au, let
wg,xi,q denote the maximum finishing time of job q of task τi,
relative to the start of the maximum level-i busy period, such
that this level-i busy period starts with a job of the HT or the
GT of τi arriving (x indicates which). Then, similar to (4), we
can, for x P tE,Au, for a given task τi, for a given job index
q of task τi, compute wg,xi,q as:

wg,xi,q “

˜

ÿ

jPLi

rbfEj pw
g,x
i,q , 0q

¸

` qCi ` pq ´ 1` Ipx“EqqκCi

`
ÿ

jPHi

max
yPtE,Au

rbfyj pw
g,x
i,q , 1q.

(8)
In (8), Iφ is an indicator function that returns 1 if φ is true
and 0 otherwise.

For each τi, for each x P tE,Au, let Rg,xi,q denote the
maximum response time of job q of τi such that this level-i
busy period starts with the arrival of a job of the HT or the
GT of τi (x indicates which). Then, similar to (5), we can,
for x P tE,Au, for a given task τi, for a given job index q of
task τi, compute Rg,xi,q as:

Rg,xi,q “ wg,xi,q ´ ppq ´ 1qTi ` Ipx“EqpTi ´ Eiqq. (9)

For each τi, for each x P tE,Au, let Rxi,q denote the maximum
response time of τi, such that this level-i busy period starts
with the arrival of a job of HT or GT of τi (x indicates which).
Then, similar to (5), we can, for x P tE,Au, for a given task
τi compute Rg,xi as:

Rg,xi “ max
qP

"

1...

R

t
g,x
i

´Ix“EpTi´Eiq

Ti

V*

Rg,xi,q (10)

Finally, the max response time of a GT over all phasings is
obtained using:

Rgi “ max
xPtE,Au

Rg,xi (11)

C. Monotonicity and how to solve the equations

We consider three cases depending on utilization.

1)
ř

µiPΓ
Ci`kCi
Ti

ą 1
For this case, we terminate the schedulability analysis
and report unschedulable because for this case, there is
no finite level-i busy period.

2)
ř

µiPΓ
Ci`kCi
Ti

ă 1
For this case, (7) has a solution; thus, there is an upper
bound on q. Note that (3)-(8) are of the form z=f(z) and
the right-hand side is monotonically non-decreasing in
the variable on the left-hand side—we solve these with
fixed-point iteration.

3)
ř

µiPΓ
Ci`kCi
Ti

“ 1
For this case, it is difficult to determine whether (7) has
a solution—we pessimistically report unschedulable.

D. Generalizations

It is worth noting that a taskset is not required to have
tasks with both GT and HT. More importantly, when a taskset
contains no HT our scheduling equations reduce to fixed-
priority preemptive response time analysis. Similarly, when
a taskset contains no GT, then it reduces to fixed-priority non-
preemptive schedulability analysis. We can also observe these
properties realized in a running system. For example, even if
GTs have their corresponding HTs, the system will run like
a “preemptive” scheduling system if all GTs finish without
exceeding their Ci. On the other hand, if a VM crashes, the
system will run like a pure non-preemptive system as will be
shown in Fig. 8 of Section VI-C.

E. Budget Enforcement

Given that GTs are not trusted, their Ci values need to be
enforced. This enforcement allows us to implement a graceful
degradation scheme by preventing failing GTs from interfering
with other non-failing GTs. Clearly, if a failure affects the
kernel in the VM (e.g., due to a security attack) all the GTs will
be compromised but the HV and the HT will be protected from
the failure. In contrast to the GTs, the HTs are trusted and their
κCi does not need to be enforced. In addition, there can be
two possible GT enforcement options when the enforcement
timer elapses: (i) the execution of the job of a GT τi is aborted
immediately and the corresponding HT κi is responsible for
cleaning up its execution, or (ii) the job of the GT τi is deferred
(suspended) and its HT κi executes only temporary actions
(e.g., safe actuation in a control task), allowing the GT’s job to
complete in the next period. Our current implementation uses
the latter option and we will call it deferral GT enforcement.

F. Experiments

This section presents experiments that show how taskset
parameters influence schedulability. We found three reasons
that impact schedulability:

1) When considering a task, its HT can experience inter-
ference from HT of other tasks. Also, the HT of other
tasks can also delay the execution of the GT of the task
under consideration. This double-accounting effect has
no analog in classic fixed-priority scheduling.

6

Parameter Range Default
Number of Tasks t3, 4, . . . , 200u 10
U t0.1, 0.2, . . . , 1.0u 0.8
κC

C`κC
t0.1, 0.2, . . . , 1.0u 0.1

Tmax
Tmin

t1, 2, 4, . . . , 1024u 100.0
Tmin 1000

TABLE I: Parameter Ranges and Defaults

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rc

e
n

ta
ge

 o
f

sc
h

ed
u

la
b

le
 t

as
ks

et
s

Utilization

Fig. 3: As utilization grows

2) A GT can experience a long delay because of execution
of HT of all the other tasks. This reason is most
impactful when the GT has very small period.

3) Consider the lowest-priority task and consider its GT.
When its period is around

?
2 of the period of its

higher priority task, then the schedulability deteriorates
(just like it does for classic rate-monotonic preemptive
scheduling).

We now illustrate the schedulability conditions just introduced
with the following experiments. In these experiments we
vary: (1) the taskset utilization, (2) the ratio between the
maximum period and the minimum period, (3) the number
of tasks in the taskset, and (4) the ratio between the HT
WCET and the sum of the GT and HT WCET. See Table I.
We perform five experiments to vary utilization, Tmax

Tmin ratio,
number of tasks, and κC

C`κC ratio. The default values for the
parameters that do not vary are presented in Table I. Two
observations are in order. First, the default number of tasks
is set to 10 given that a larger number of tasks reduces
the chance of having a schedulable taskset as can be seen
in Fig. 5. Second, the default utilization is set to 80% also
to reduce the influence of the utilization to dominate when
varying the other parameters. In the experiments each data
point is computed from 100,000 tasksets and we compute the
percentage of schedulable tasksets. Each taskset is generated
with the selected number of tasks. Each task is assigned a
utilization equal to the selected total utilization of the taskset
divided by the number of tasks. Then the period of the task is
chosen at random (with uniform distribution) from the period
range selected. Fig. 3 shows the percentage of schedulable
tasksets as the taskset utilization grows from 10% to 100%.
Note that the experiment shows a decline in the percentage
of schedulable taskset just after 20%. This is due to reason
2. Fig. 4 depicts the percentage of schedulable tasksets as
the ratio of the maximum and minimum period grows. Here,
we can see that when increasing the ratio, the success rate
decreases and then increases and then decreases again. The

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128 256 512 1024

Pe
rc

e
n

ta
ge

 o
f

sc
h

ed
u

la
b

le
 t

as
ks

et
s

Tmax/Tmin

Fig. 4: As Tmax
Tmin grows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3

1
0

1
7

2
4

3
1

3
8

4
5

5
2

5
9

6
6

7
3

8
0

8
7

9
4

1
0

1

1
0

8

1
1

5

1
2

2

1
2

9

1
3

6

1
4

3

1
5

0

1
5

7

1
6

4

1
7

1

1
7

8

1
8

5

1
9

2

1
9

9

Pe
rc

e
n

ta
ge

 o
f

sc
h

ed
u

la
b

le
 t

as
ks

et
s

Number of Tasks

Fig. 5: As number of tasks grow

initial decrease is caused by reason 3; the second decrease
is caused by the reason 2. Fig. 5 presents the fraction of
schedulable tasksets as the number of tasks in the taskset
grows. The curve decreases exponentially reaching zero at
about 115 tasks. This is because when the number of tasks
increases, the ratio of the maximum period to by the minimum
period among the tasks generated becomes larger and then
reason 2 becomes more impactful. Fig. 6 shows schedulable
tasksets percentage as the ratio of HT WCET to the combined
HT and GT WCET grows. The figure shows a quick drop in
the percentage of schedulable tasksets as this ratio increases.
This is because of reason 2.

V. FAIL-SAFE MIXED-TRUST SCHEDULING
COORDINATION PROTOCOL

With the timing analysis as background we can now discuss
the coordination protocol between our schedulers. A key
challenge that needed to be solved in our framework was the
prevention of any dependency of trusted HV and HT code

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Pe
rc

e
n

ta
ge

 o
f

sc
h

ed
u

la
b

le
 t

as
ks

et
s

kC/C+kC

Fig. 6: As κC
C`κC grows

7

from the untrusted code, while still enabling the successful
coordination of the HV and guest schedulers. The dependency
of a higher-critical component from a lower-critical one is
known as dependency inversion [17].

Preventing the dependency inversion problem necessitates
three mechanisms: (1) a Secure HT Bootstrapping (SHTBoot)
Protocol, (2) a Fail-Safe HT Triggering (FSHTrigger) mecha-
nism, and (3) a Late-Output Prevention protocol (LOP).

A. Secure HT Bootstrapping (SHTBoot)

The objective of the SHTBoot protocol is to ensure that
the HT can start and execute periodically according to its
specification even if the VM is unable to bootstrap the GT.
This is necessary to properly implement the trusted tempo-
ral protection of the TSTD and the protection requirement
P2 (discussed in Section II). We leverage the secure boot
mechanism provided by uberXMHF to ensure that the micro-
hypervisor framework is the first to get control when the
system is powered on. The SHTBoot protocol starts the HTs
and GTs independently out of bootstrapping task tables stored
in the HT and VM storage, respectively. To synchronize the
periodic activation of a GT with the corresponding enforce-
ment timer of its HT, the guest scheduler requests the start
time of the next period from the HV and uses this time to
start the first job of the GT, aligning the periodic activations
of the GTs and HTs as required.

B. Fail-Safe HT Triggering Protocol (FSHTrigger)

The objective of the FSHTrigger is to prevent a failure in the
VM from disabling or corrupting the periodic activation of the
HTs. This is the activation side of the protection requirement
P2. To implement the FSHTrigger, the strategy followed is to
program separate timers for the VM and the HV down to the
hardware level so that untrusted VM code can program its own
timer but cannot program the HV timer. This way when a task
µi is started, its Ei timer is programmed within the HV and
will always trigger no matter what code executes in the VM
(even malicious code actively trying to disable the timer). As a
result, the HT can always run on time and complete its safety
action by the deadline. We leverage the peripheral isolation
provided by uberXMHF to isolate the HV and guest timers so
that the guest cannot access the HV timer.

An HT must be isolated from failures of the corresponding
GT, however, some of their timing parameters need to be
synchronized: (1) initial release offset, which is needed to
program an enforcement timer exactly Ei units after the arrival
of each job, and (2) job completion time, which is to disable
the HT if the GT completed before Ei. The creation time syn-
chronization is performed by SHTBoot. For the completion-
time synchronization we rely on the logical enforcer (LE)
in the VM to send the completion signal to the HV. More
specifically, the LE verifies that the output produced is safe (or
replaces it with a safe one) and sends the completion signal. To
guarantee that the LE only sends the completion signal when
a safe output is generated, the HV protects the LE memory
and we assume that the LE code’s trustworthiness has been

assured (e.g., through verification). This satisfies the protection
requirement P1 and P3. The only possible failure is then a
denial-of-service, i.e., P2 is not guaranteed. In particular, if
the GT τi takes longer than Ci to complete, the task will
be suspended and the LE will neither complete nor send the
completion signal to the HV before Ei. However, this failure
is part of the assumption of the FSHTrigger protocol since
the absence of the completion signal will trigger the HT and
issue the safe output. In other words, the HT that hosts the
TE preserves its temporal behavior (P2).

C. Late-Output Prevention (LOP) Protocol

A late output may occur when a GT job is allowed to
complete and generates an output (e.g., actuation commands)
Ei time units or more after its arrival. Recall the deferral GT
enforcement approach explained in Section IV-E. In this case,
a job can be suspended once Ei time units have elapsed after
its arrival, and resumed in the next period, allowing it to send
its output in the second period (violating requirement C4).
Preventing this output is important because the logic in the
application algorithm (e.g., control algorithm) assumes that it
is computed within the execution of a single job, perhaps using
inputs (sensing) from the beginning of the period that are only
valid for output (e.g., actuation) during this same period (C4).
To solve this problem, the output and completion signals are
bundled in a single call, and all the output is mediated by
an LOP enforcer in the VM kernel scheduler, making sure
that the output is discarded if it is sent after Ei. We also
protect the LOP enforcer memory (in protection domain TSD)
in the kernel and assume that the trust in its code has been
established (e.g., through verification). As a result, the LOP
enforcer can only fail by not sending the output. The use of
the LOP enforcer separately from the LE allows us to separate
logical correctness from the temporal correctness, simplifying
its verification but preserving both properties.

VI. IMPLEMENTATION

Our scheduling mechanisms are implemented by the combi-
nation of the budget enforcement of the ZSRM kernel sched-
uler [15] running in a VM and a non-preemptive fixed-priority
scheduler implemented within the verifiable and extensible
uberXMHF micro-HV [30], [31], [29] running in a Raspberry
Pi-3 (RPi) platform with only one active core matching our
system model. In order to prevent failures in the VM from
affecting the code within the micro-HV, uberXMHF imple-
ments two-stage hardware memory page-tables and protections
that cannot be modified by the guest OS running inside the
VM. The two-stage hardware page tables isolate the micro-HV
memory where the HTs reside. The guest OS memory isola-
tion and protection have been formally verified as presented
in [30], [31]. uberXMHF employs a compositional verification
methodology that allows the addition of security sensitive
functionality as modularly protected and verifiable components
(called uberapps). We used this facility to implement the HV
scheduler as a uberapp.

8

1
8
0
6

1
8
8
8

A 2005

2
0
0
5

B 2205

2
2
0
5

2
8
0
6

2
8
8
8

A 3005

3
0
0
5

3
2
0
1

3
2
8
3

B 3285

3
2
8
6

A 1700

1
7
0
0

1
8
0
6

1
8
8
8

2
0
0
5

2
2
0
5

B 2380

2
3
8
0

3
2
0
1

3
2
8
3

A 3400

3
4
0
0

F 3500

3
5
0
0

1

2

μ

μ

Fig. 7: Mixed-Trust Taskset Execution Timeline (in 10´4 secs)

A. Hyper-Task-Aware Budget Enforcement

The ZSRM budget enforcement is performed by shadowing
the priority queues of the fixed-priority scheduler within a
kernel module to keep track of the current top-priority active
task and the amount of CPU time this task consumes. Tasks
become ready to run when they are created, and they go to
sleep by calling the ZSRM API wait_next_period()
when they finish their periodic job execution. At this time,
the shadow priority queues in ZSRM are updated, and the
top-priority active task in the queue is scheduled and marked
as the current task. Similarly, when a task period elapses,
ZSRM wakes the task up and makes a scheduling decision.
Whenever a task is scheduled, an enforcement timer is set
to expire with the maximum remaining budget of that task. If
the task either finishes or is preempted before the enforcement
timer expires, the timer is canceled and reprogrammed for the
next task. On the other hand, if the timer expires, the task
is suspended until its next periodic timer expires. The budget
accounting is implemented by recording a starting timestamp
when a task becomes the current task and a finishing
timestamp when the task is either preempted or completes its
periodic execution. Then, subtracting the starting timestamp
from the finishing one, gives us the CPU time used by the
task. We accumulate this time for all the intervals that a task
is considered to be the currently executing task in each period.

Given that HT preemptions are invisible to the VM and
ZSRM scheduler, the ZSRM budget enforcement fails to
account for them. To handle this, we use an event logger
within the HV to record the timestamps of the activation and
completion of the HTs. Then, these events are used to discount
the HTs preemptions from the budget when the budget timer
triggers, reprogramming the timer accordingly. See Appendix
B in [16] for overhead measurements.

B. Spurious Temporal Failure Illustration

We plot the run of a two-task taskset with timestamps
captured from both the kernel and the HV schedulers. Both
schedulers read the same hardware timer counter register
(as timestamps), allowing us to have an integrated timeline
without incurring context-switch penalties. Fig. 7 shows the
timeline plot reconstructed from timestamps for the follow-
ing events: (i) arrival (A) marking when the job becomes
ready to execute; (ii) guest job finishing (F) by calling the
wait_next_period() of the VM scheduler when the job
ends normally; (iii) budget enforcement (B); (iv) resume
marking the start of a colored rectangle showing when the
job starts to execute; and (v) paused presented as the end of a
colored rectangle. The activation of the HTs is presented as a
small rectangle marked by the resume and paused events and

A 9

9

F 32

3
2

A 109

1
0
9

F 124

1
2
4

A 217

2
1
7

F 232

2
3
2

A 317

3
1
7

F 332

3
3
2

5
1
5

5
1
6

6
1
5

6
1
6

7
1
5

7
1
6

8
1
5

8
1
6

9
1
5

9
1
6

1
0
1
5

1
0
1
6

A 0

0 9 3
2

F 48

4
8

A 200

2
0
0

F 215

2
1
5

A 408

4
0
8

F 408

4
0
8

8
0
6

8
0
7

1
0
0
6

1
0
0
7

1μ

2μ

Fig. 8: Permanent VM Crash Experiment (in 10´2 secs.)

filled with wavy and checkered patterns. The timeline shows
different types of preemptions as follows. From 1806 to 1888,
µ1’s HT (κ1) preempts µ2’s GT (τ2). Then from 2005 to 2205,
τ2 is preempted again this time by τ1. At 2205, τ1 is budget-
enforced letting τ2 to run until it is enforced at 2380. Given
that τ1 did not signal completion, its HT κ1 executes from
2806 to 2888. Then the next job of τ1 arrives at 3005 and
executes until it is preempted by the HT κ2 at 3201. κ2 finishes
its execution at time 3283 allowing τ1 to resume execution
until it is enforced at 3285. The last job execution shown in
the timeline is a normal that start at 3400 and finishes at 3500.

C. Permanent Failure Illustration

In this section we present an experiment to show how our
approach handles a complete failure of the kernel in the VM.
More specifically, we start two tasks (µ1 and µ2) with periods
T1 “ 1 and T2 “ 2 seconds, respectively, with their respective
HTs designed to run for only 10 ms each. We let the task µ1

run for four periods and µ2 for three periods without faults
(not even timing faults so their HT do not trigger). The third
job of τ2 uses a semaphore to signal a third task (not shown)
whose only role is to wait for this signal and invoke a system
call in our scheduler specifically designed to test a full kernel
failure (this scheme allows τ2 to properly finish given that
the third task has the lowest priority). This call, in turn, calls
the kernel panic() function designed to stop the kernel in
unrecoverable failures (simulating a crash). In order to capture
the timestamps, we send them to a serial port through the HV.
However, because the serial port driver implementation is slow,
it creates some disruption in the timestamps. The resulting
trace is presented in Fig. 8. A few observations about the
trace are in order. First, the call to panic() occurs after τ2
finishes at time 408. Second, after this time no more arrival
(A) or finishing (F) events occur from either of the tasks.
Third, as expected both HTs (κ1 and κ2) continue executing
periodically. Finally, the first execution of both HTs after
the panic() call occurs almost two periods from the last
GT executions. In particular, the first execution of κ1 after
the panic() call occurs at 515 that is almost two periods
from the last arrival of its GT at 317. Similarly, for κ2 its
corresponding first arrival after the panic() call is at 806
and its last GT arrival at 408. This is expected because the
HT execution is scheduled at the end of the period of a task.
This means that when the GT executes at the beginning of
the period, the execution of the HT of the following period
will happen almost two periods apart, even though an output
is produced in every period.

9

Raspberry Pi 3

VV Gen L
E

Process

LOP
Kernel

Serial DrvHyp-Safe

disable

vv

vv

hvr

PX4

Raspberry Pi 3
HV

VM

Fig. 9: Drone Application Architecture

D. Illustrative Application

We implemented a sample mixed-trust application of a
drone mission. This application consists of two components:
(i) the mission controller, which generates velocity vectors
(VV) that the drone must fly to follow a route, and (ii) the
Pixhawk [1] flight controller running the PX4 autopilot [2]
in off-board mode, which makes the drone fly in the direction
and speed of the last VV received. The mission controller runs
in its own processor sending a VV message every 50 ms to the
processor where the flight controller runs. A logical enforcer in
the mission controller prevents the drone from violating spatial
constraints (e.g., a virtual fence or the collision volume of
other drones [9]). In addition, we added an HT to the mission
controller to take a safe action and continue to send VV mes-
sages to the flight controller in case the GT fails. Fig. 9 depicts
this structure, which, for simplicity of presentation, shows only
one mixed-trust task. This task has a guest task that generates
velocity vectors (VV Gen) and a hypertask (Hyp-Safe) that
generates the safe drone action hover (hvr), which is a null
VV. The figure also shows the LOP mediation of the messages
sent by VV Gen ensuring that (a) no late outputs are allowed,
and (b) when no output is generated by VV Gen the Hyp-Safe
HT generates the hover action. The mission controller was
implemented using a version of DronecodeSDK [3] that we
modified to handle serial communications through the serial
driver in the HV, and to use the bundled output and completion
signals for the LOP. We ran this application using hardware-in-
the-loop simulation (i.e., actual mission and flight computers
connected to a drone simulation), which allowed us to observe
the physical consequences. We tested both spurious failures
and hard failures where we verified that both the LOP and the
HTs properly prevent drone failures.

VII. RELATED WORK

Previous work recognized that small operating systems
kernels can be more reliable [21] and can be formally verified
[22]. In this context, decomposing an application can provide
security benefits as well [28]. But they do not provide schedu-
lability analysis. Previous work on hierarchical scheduling
(e.g., [18]) studies run-time systems with two schedulers and
they present theories that provide real-time guarantees but
they do not consider a task that spans different components.
Operating systems works considering real-time requirements
have also been presented [24], [11], [6], [20], [32] to achieve
isolation and some offer offline schedulability tests but not

for the task model that we consider (where a task can span
two operating systems) and they do not target formal veri-
fication of operating system code. Previous work [25], [10]
combining real-time and security are not based on a runtime
verification framework that requires the integration of trusted
and untrusted components. Works on mixed-criticality (see
[12] for an excellent survey) share our goal of monitoring
run-time behavior and taking action when behaviors that are
abnormal are detected. We are not aware of any work on a
mixed-criticality scheduler that considers our task model and
uses a formally verified HV. Simplex [27] is an architecture for
designing controllers. It comprises one complex controller, a
simple controller, and two sets of states. The first set describes
the safe states; the second set describes when there is a need
to transition between controllers. The complex controller is
allowed to operate when the plant is in the second set. If
the plant leaves this set, then the simple controller takes over.
With this architecture, the complex controller can be optimized
for performance and does not need to be verified; the simple
controller, however, is verified to make sure that the plant is
always in a safe state. One can think of the simple controller
in Simplex as somewhat analogous to our HT.

VIII. CONCLUSIONS

The safe use of untrusted components in CPS critical
functions requires protection and verification; this needs to
guarantee logical and timing correctness. We presented the
first framework that satisfies these requirements—we call our
framework real-time mixed-trust computing (RT-MTC). The
framework achieves this by (i) using trusted components
to monitor and replace unsafe untrusted component outputs
with safe ones (we call these monitoring components logical
enforcers) and (ii) protecting the logical and temporal behavior
of trusted components. Enforcers are protected from logical
behavioral modification by preventing modifications to their
memory (by untrusted components). However, to protect them
from temporal behavior modifications it is necessary for an
enforcer not to rely on output from untrusted ones in order to
execute. Hence, in our framework we introduced a temporal
enforcer that produces a safe output if the guarded untrusted
component does not produce one by a pre-specified time. The
untrusted component and its logical enforcer run in a guest
task (GT) in a VM that runs on a trusted HV and the temporal
enforcer runs in a hyper task (HT) within the HV. Together
they form a mixed-trust task. A protocol was designed to
coordinate the execution of a GT and its corresponding HT
without forcing HT to depend on its GT. We also presented
a new schedulability analysis for the mixed-trust task model
and experiments to evaluate its performance. We showed the
practicality and utility of our framework by (i) implementing
it with the open source uberXMHF HV and ZSRM scheduler,
(ii) demonstrating its ability to preserve the logical and timing
correctness even in the presence of transient and permanent
failures in the VM, and (iii) modifying the open-source
drone-controller PX4 to insert enforcers that guarantee safety
properties, testing it under both transient and permanent faults.

10

ACKNOWLEDGMENT

Copyright 2019 Carnegie Mellon University, Hyoseung Kim
and John Lehoczky. All Rights Reserved. This material is
based upon work funded and supported by the Department of
Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engi-
neering Institute, a federally funded research and development
center. The view, opinions, and/or findings contained in this
material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless
designated by other documentation. NO WARRANTY. THIS
CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVER-
SITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FIT-
NESS FOR PURPOSE OR MERCHANTABILITY, EXCLU-
SIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RE-
SPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT. [DISTRIBUTION STATE-
MENT A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution. Internal use:* Per-
mission to reproduce this material and to prepare derivative
works from this material for internal use is granted, provided
the copyright and No Warranty statements are included with all
reproductions and derivative works. External use:* This ma-
terial may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission
should be directed to the Software Engineering Institute at
permission@sei.cmu.edu. * These restrictions do not apply to
U.S. government entities. Carnegie Mellon R© is registered in
the U.S. Patent and Trademark Office by Carnegie Mellon
University. DM19-0389

REFERENCES

[1] https://pixhawk.org/.
[2] http://px4.io/.
[3] https://www.dronecode.org/.
[4] RTCA Special Committee 205. Formal methods supplement to DO-

178C and DO-278A, 2011.
[5] B. Andersson, S. Chaki, and D. de Niz. Combining symbolic runtime

enforcers for cyber-physical systems. In RV, 2017.
[6] E. Armbrust, J. Song, G. Bloom, and G. Parmer. On spatial isolation

for mixed criticality, embedded systems. In WMC, 2014.
[7] S. K. Baruah. Dynamic- and static-priority scheduling of recurring real-

time tasks. Journal of Real-Time Systems, 2003.
[8] S. Chaki and D. de Niz. Formal verification of a timing enforcer

implementation. ACM TECS, 2017.
[9] M. C. Consiglio, J. P. Chamberlain, C. A. Munoz, and K. D. Hoffler.

Concepts of integration for UAS operations in the NAS. In Congress of
the International Council of the Aeronautical Sciences (ICAS), 2012.

[10] M. Correia, P. Verissimo, and N.F. Neves. The design of a COTS real-
time distributed security kernel. In EDCC, 2002.

[11] A. Crespo, I. Ripoll, and M. Masmano. Partitioned embedded architec-
ture based on hypervisor: The XtratuM approach. In EDCC, 2010.

[12] R. Davis and A. Burns. Mixed-criticality systems—a review.
In Technical Report, University of York, Available at https://www-
users.cs.york.ac.uk/burns/review.pdf, 2018.

[13] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time
Systems, 2007.

[14] D. de Niz, B. Andersson, and G. Moreno. Safety enforcement for the
verification of autonomous systems. In Proceedings of SPIE, 2018.

[15] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In RTSS, 2009.

[16] Dionisio de Niz, Bjorn Andersson, Mark Klein, John Lehoczky, Amit
Vasudevan, Hyoseung Kim, and Gabriel Moreno. Mixed-Trust Com-
puting for Real-Time System — extended version. https://www.andrew.
cmu.edu/user/dionisio/xchange/mixed-trust-scheduling-tr.pdf, 2019.

[17] H. Ding, L. Arber, L. Sha, and M. Caccamo. The dependency
management framework: a case study of the ION cubesat. In ECRTS,
2006.

[18] A. Easwaran, I. Lee, I. Shin, and O. Sokolsky. Compositional schedu-
lability analysis of hierarchical real-time systems. In ISORC, 2007.

[19] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent
OS kernels. In OSDI, 2016.

[20] Z. Jiang, N.C. Audsley, and P. Dong. Bluevisor: A scalable real-time
hardware hypervisor for many-core embedded systems. In RTAS, 2018.

[21] R. Kaiser and S. Wagner. Evolution of the PikeOS microkernel. In First
International Workshop on Microkernels for Embedded Systems, 2007.

[22] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In SOSP, 2009.

[23] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In RTSS, 1990.

[24] Y. Li, R. West, Z. Cheng, and E. Missimer. Predictable commmunication
and migration in the Quest-V separation kernel. In RTSS, 2014.

[25] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. Bobba. Real-time systems
security through scheduler constraints. In ECRTS, 2014.

[26] Special C. of RTCA. DO-178C, software considerations in airborne
systems and equipment certification, 2011.

[27] L. Sha. Using simplicity to control complexity. IEEE Software, 2001.
[28] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing TCB

complexity for security-sensitive applications: Three case studies. In
Eurosys, 2006.

[29] A. Vasudevan and S. Chaki. Have your PI and eat it too: Practical
security on a low-cost ubiquitous computing platform. In IEEE Euro
Symposium on Security and Privacy, 2018.

[30] A. Vasudevan, S. Chaki, L. Jia, J. M. McCune, J. Newsome, and
A. Datta. Design, implementation and verification of an eXtensible and
Modular Hypervisor Framework. In 2013 IEEE Symposium on Security
and Privacy, SP, 2013.

[31] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta. überspark:
Enforcing verifiable object abstractions for automated compositional
security analysis of a hypervisor. In 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[32] S. Xia, J. Wilson, C. Lu, and C.D. Gill. RT-Xen: Towards real-time
hypervisor scheduling in Xen. In EMSOFT, 2011.

APPENDIX

A. Soundness of Logical Requirement Conditions

In this appendix we prove that the conditions presented
in Section II-B are both necessary and sufficient under the
following threat model.

1) Threat Model: We consider an intruder that can modify
code, data, and/or the control flow (e.g., stack return addresses)
as well as create denial of service attacks by delaying the
actions, preventing them, or even increasing their frequency.

It is worth noting that modifying code, data, or control flow
manifests as altering the transitions and their actions in the

11

system or modifying its timing. Hence, we use the same state
machine representation to discuss the attack.

This threat model not only captures an attacker but also
incorrect behavior from the unverified software which can
clearly produce incorrect actions but more importantly can also
unintentionally overwrite regions of the memory modifying
code, data, or the control flow. We show that conditions C1-
C5 are necessary and sufficient to preserve the correctness
of our runtime assurance framework defined in [5] with the
following theorem.

Theorem A.1. Conditions C1-C5 are necessary and sufficient
to prevent behavior not defined by the state machine from [5]
in the presence of an intruder that can add, delete, modify,
delay or produced transitions (issue an action within a par-
ticular state) more frequently than every P time units.

Proof. We prove this in two steps. First, we show that all
these conditions are necessary. We do this by contradiction,
i.e., we show that by eliminating conditions one by one can
produce a behavior undefined by the state machine or unsafe
(not vetted by the LE + TE). And secondly, we prove that
these conditions are sufficient for the case of addition, deletion,
modification, or time modifications of the transitions.

First let us assume that condition C1 can be violated (is
not required) this means that is it possible not to produce an
action within a period P . However, this directly violates the
assumption of our model that an output should be produced
every period P .

Now, let us assume that condition C2 can be violated. This
means that we generate two or more actions in a period P .
However, the transition relation RP pαq is defined for only one
action per period P which lead to an undefined behavior and
hence a contradiction.

Assuming that condition C3 can be violated means that we
can have actions not generated by either LE or TE. However,
this breaks the assumption that the LE filters all actions of
untrusted components captured in (1) and that TE will issue a
default safe action if LE does not produce one by E captured
in (2) leading to a contradiction.

Violating condition C4 means that when the system is in a
state s and selects a transition ps, s1q, if this transitions is not
performed before P elapses, it can then experience another
transition triggered by TE from s to s2 “ RP pα

T , sq. In
such a case, when the delayed transition is performed after P ,
it would need to match a transition of the form ps2, s1q which
was not the originally selected one and may not even exist.
This is undefined in our model and hence, a contradiction.

Finally, violating C5 means that TE can start after E
time units have elapsed since the start of the period. This
directly violates our definition of the TE in (2) leading to
a contradiction. Moreover, this condition is required by our
schedulability analysis (see Section IV) to guarantee that TE
completes its execution before P elapses.

Now to show that these conditions are sufficient we reason
about each of the modifications that an attacker can perform.

Procedure Avg Overhead (ns) Max Overhead (ns)
job periodic arrival 7789 9052
context switch 4579 5053
budget enforcement 26263 42894
wait next period() 7789 9894
get HT interference 7473 11315

TABLE II: Overhead Measurements

Transition deletion. We have two cases. first the deleted
transition from RP pαq is from the unverified code. However,
we know that for all states s P Cφ, LE has a transition µpsq
that keeps the system within Cφ and hence the system remains
consistent and preserves φ. This requires that both an action is
performed every P (C1) and that such an action is performed
by either LE or TE (C3).

The second case is if the deleted transition corresponds to
either LE or TE. However, this case is also protected by
conditions C1,C3 which ensures that there is always an action
at least from TE.

Transition addition. In this case if the addition is to
the unverified part this is irrelevant since the output of the
unverified part is guarded by LE and TE so an erroneous
action will be filtered by LE and TE leading to the same
guaranteed behavior φ. This is cover by condition C3.

In the case that the added transition is to either LE or TE
then we know that they are no longer LE or TE since they
were modified. This is covered by C3.

It is worth noting that a modified transition can be treated
as an addition where the selected transition was the added one.
Therefore we do not discuss modifications separately.

More frequent transitions. This is prevented by condition
C2.

Delayed transitions. This is prevented by conditions
C1,C4,C5 that state that an action must be generated every
P , the transition from one state to another should not take
longer than P (single period), and that TE has enough time
to complete its execution respectively.

Hence, under our threat model conditions C1-C5 are both
sufficient and necessary.

B. Implementation Overhead

In our implementation, a runtime overhead is incurred
for each job execution due to the following operations: (1)
periodic guest job invocation, (2) guest job budget enforcement
(when required), and (3) suspension of a completed guest job
until the next period, which includes a hypercall to disable
the Ei timer that triggers the hypertask. The hyper job is
activated only when the guest job fails to meet its deadline, and
therefore, we limit our focus to the major sources of overheads
that happen in the guest VM and their interactions with the
HV. Before we discuss the specific overhead numbers, it is
worth noting that the ZSRM scheduler does not use any virtu-
alized hardware mechanism. More specifically, the two basic
hardware mechanisms used by ZSRM are to obtain timestamps
and to program timer interrupts. The timestamps are obtained
by reading a hardware register that is automatically updated
by a pre-programmed hardware timer and is not virtualized.
In our implementation we use two different hardware timers,

12

one for the HV and another for the VM (used to program
its own timer interrupts) and, hence, they are not virtualized.
However, ZSRM coordinates with the HV for some of its
functionality incurring the overhead as presented in Table II.
This table shows the average and maximum observed overhead
of our implementation in the RPi running at 1200 MHz. A few
observations about these numbers are in order: (i) the context
switch includes the shadow queue manipulation in the ZSRM
kernel module but not the kernel scheduling queues; (ii) the
budget enforcement includes the activation of a kernel thread
that is used to prevent modifying the priority queues of the
kernel from inside the timer interrupt context, as well as the
hypercall to obtain the HT interference. The use of this kernel
thread enables us to modify the priorities queues and pause
and resume tasks within a kernel module without modifying
the kernel. This incurs a higher penalty but allows us to use our
scheduler in Linux-based systems without access to modified
kernel sources (e.g., some Parrot drones). Nevertheless, this
overhead is reasonable for applications with periods of 10s
of millisecond or larger, which is the case for our drone
application that is presented in Section VI-D.

C. Conditions for Selecting E

Here we discuss selecting values of E parameters.
Let us now discuss how to compute the E values. In order

for HTs to be schedulable, clearly, we must choose E values
such that:

@µi P Γ Ei ď Di ´R
κ
i . (12)

We will later compute the response time of a GT τi and denote
it by Rgi . In order for the schedulability of a GT to hold, we
must choose E values such that:

@µi P Γ Rgi ď Ei. (13)

Ideally, we would like to develop an algorithm that computes
E, for each task, such that if there exists an assignment of
values of E to tasks such that the schedulability test deems
the taskset schedulable, then our algorithm finds an assignment
as well. In Section C1 we present such an algorithm.

1) Optimal Algorithm for Selecting E: We will now present
an algorithm for computing E parameters. With this algorithm,
if there exists an assignment of E-values to the tasks such that
the schedulability test in Section IV deems the resulting taskset
schedulable, then the algorithm will find an assignment. As a
technicality, we assume that the utilization of the taskset is not
equal to 100%, that is p

ř

τiPτ
Ci`kCi
Ti

q ‰ 1.
In general, when a schedulability test can be expressed

as a set of inequalities, one can rewrite the inequalities
as a constraint satisfaction problem. And then search for
assignment of values to configurable parameters such that all
constraints are satisfied; i.e., search for an assignment of values
to configurable parameters such that the taskset becomes
schedulable. In our case, however, it is more challenging
because in (10), there is no upper bound on the number of
variables; specifically, there is no upper bound on the index q.
We will show, however, how one can overcome this challenge.

Let tUBg,xi denote an upper bound on tg,xi . For a given τi
and x such that τi P τ and x P tE,Au, let PR1g,xi denote the
optimization problem: maximize tg,xi subject to the constraints
(7) and @τj P τ, 0 ď Ej ď Dj where tg,xi ,E1,E2,...,En are
variables.

For each task τi P τ , for each x P tE,Au, we can
solve PR1g,xi and let tUBg,xi denote the value of the objective
function for an optimal solution. Hence, for any assignment
of values to E1,E2,. . .,E|τ |, it holds that tg,xi ď tUBg,xi .

Recall that we want to impose the constraint that for each
task τi P τ , it should hold that Rgi ď Ei. Using (8), (9), (10),
and (11), we can rewrite this to impose that: for each task τi P
τ , for each phase x P tE,Au, for each q P

!

1 . . .
Q

tUBg,xi
Ti

U)

, it

should hold that pq ď
Q

tg,xi ´Ix“EpTi´Eiq

Ti

U

q ñ pwg,xi,q ´ ppq ´

1qTi ` Ipx“EqpTi ´ Eiqq ď Eiq.
Then, using (7), we can express tg,xi as: for each

task τi P τ , for each phase x P tE,Au, it should
hold that tg,xi “

´

ř

jPLi
rbfEj pt

g,x
i , 0q

¯

` rbfxi pt
g,x
i , 1q `

ř

jPHi
maxyPtE,Au rbfyj pt

g,x
i , 1q.

Then, using (8), we can express wg,xi,q as: for each task τi P

τ , for each phase x P tE,Au, for each q P
!

1 . . .
Q

tUBg,xi
Ti

U)

,

it should hold that pq ď
Q

tg,xi ´Ix“EpTi´Eiq

Ti

U

q ñ pwg,xi,q “
´

ř

jPLi
rbfEj pw

g,x
i,q , 0q

¯

` qCi ` pq ´ 1` Ipx“EqqκCi

`
ř

jPHi
maxyPtE,Au rbfyj pw

g,x
i,q , 1qq.

Having seen the main idea of how we can compute E, we
will now present detailed pseudo code for this algorithm—
see Algorithm 2. This algorithm is a direct translation of
the ideas above. Note that this algorithm involves (i) solving
multiple optimization problems and (ii) solving one constraint
satisfaction problem. These problems involve expressions that
are quite complex. It is noteworthy that we can rewrite them
by introducing auxiliary variables. For example, consider an
expression max(a,b); we can rewrite it by introducing a result
variable resmax (with the same type as a and b) and an indica-
tor variable indmax (that is in {0,1}) as follows: ppindmax “
0q ñ pa ď bqq^ ppindmax “ 1q ñ pa ě bqq^ ppindmax “
0q ñ presmax “ bq^ ppindmax “ 1q ñ presmax “ aqq;
the expression max(a,b) can then be substituted by resmax.
Another example: consider an expression ra´bc s; then we can
rewrite it by introducing the following auxiliary variables
and divpart (of the type integer) and rempart as follows:
pdivpart¨c´rempart “ a´bq^p0 ď rempartq^prempart ă
cq; the expression ra´bc s can then be substituted by divpart.
Similar rewriting can be used for an expression with a floor
function. In this way, we obtain a constraint satisfaction on a
format that can be solved by standard SMT solvers (e.g., Z3)
or MILP solvers (e.g., Gurobi). Note that we have constraints
involving implications and they are not part of normal MILP
expressions. For example, consider pa ď bq ñ pc ď dq; then
we can rewrite it with an indicator variable I P t0, 1u as
follows: pI “ 0 ñ pa ą bqq ^ pI “ 1 ñ pa ď bqq ^ pI ñ
pc ď dqq. There are MILP solver (Gurobi) that allows us to
express this type of implications directly. For those solvers

13

that do not allow this, however, we can rewrite it using the
big-M method and obtain expressions that every MILP solver
accepts. Algorithm 2: An algorithm for computing E parameters.

Input : Taskset τ where E-parameters of tasks are not
specified.

Output: A boolean (true or false) and if it outputs true, it also
outputs an assignment of values to E1, E2, . . ., E|τ |.

1 if
ř

τiPτ
Ci`κCi
Ti

ě 1 then
2 return false
3 else
4 // We will now analyze the HV. Specifically, we will

compute the response time of the HV
5 foreach τi P τ do
6 Compute tκi from (3) using fixed-point iteration.
7 end
8 foreach τi P τ do
9 foreach q P t1 . . .

Q

tκi
Ti

U

u do
10 Compute wκi,q from (4) using fixed-point iteration.
11 end
12 end
13 foreach τi P τ do
14 Compute Rκi from (5) and the already computed tκi

and wκi
15 end
16 // We will now analyze the GTs. Specifically, we will start

by computing an upper bound on the level-i busy period
17 foreach τi P τ do
18 foreach x P tE,Au do
19 Let PR1g,xi denote the optimization problem:

maximize tg,xi subject to the constraint (7) and
@τj P τ 0 ď Ej ď Dj where tg,xi , E1,E2,...,E|τ |
are variables.

20 Solve PR1g,xi and let tUBg,xi denote the value of
the objective function of an optimal solution.

21 end
22 end
23 // We will now setup a constraint satisfaction problem
24 Let PR2 denote the constraint satisfaction problem:

@τi P τ @x P tE,Au t
g,x
i “

´

ř

jPLi
rbfEj pt

g,x
i , 0q

¯

`

rbfxi pt
g,x
i , 1q `

ř

jPHi
maxyPtE,Au rbfyi pt

g,x
i , 1q

25 @τi P τ @x P tE,Au @q P
!

1 . . .
Q

tUBg,xi
Ti

U)

pq ď
Q

t
g,x
i ´Ix“EpTi´Eiq

Ti

U

q ñ pwg,xi,q “
´

ř

jPLi
rbfEj pw

g,x
i,q , 0q

¯

` qCi ` pq ´ 1` Ipx“EqqκCi `
ř

jPHi
maxyPtE,Au rbfyj pw

g,x
i,q , 1qq

26 @τi P τ @x P tE,Au @q P
!

1 . . .
Q

tUBg,xi
Ti

U)

pq ď
Q

t
g,x
i ´Ix“EpTi´Eiq

Ti

U

q ñ

pwg,xi,q ´ ppq ´ 1qTi ` Ipx“EqpTi ´ Eiqq ď Eiq
27 @τi P τ Ei ď Di ´R

κ
i

28 @τj P τ 0 ď Ej ď Dj
29 where tg,xi (forall i and x), wg,xi,q (forall i,q,x), E1, E2, . . .,

E|τ | are variables.
30 if satisfiable(PR2) then
31 return true and also return E-parameters obtained from

the solution of PR2.
32 else
33 return false
34 end
35 end

14

